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ABSTRACT

Crescent electron distribution functions in the electron diffusion region in asymmetric reconnection with a guide field (strength less than
50% of the upstream magnetic field) are investigated by theory and fully kinetic simulations. Electron motion in the electron diffusion region
is a combination of meandering across the current sheet and gyration around the guide field. Combining the two canonical momentum
conservation laws in a one-dimensional model with the energy conservation law, we derive the shape of crescent electron distribution func-
tions in both velocity planes: perpendicular to the magnetic field and coplanner with the magnetic field. There are two major effects of the
guide field on crescent distribution functions: (1) widening the opening angle of the crescent in a reduced distribution function and (2) the
linear cut-off of a distribution function nonparallel to the magnetic field. We also discuss a translational mapping (perpendicular to the linear
cut-off) of distribution functions between the X-line and another position. In addition, considering the gyration due to the normal magnetic
field, we predict the shape of distribution functions in general positions in the electron diffusion region. The predictions will be useful to
identify features of magnetic reconnection in a guide field by satellite observations.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5092809

I. INTRODUCTION

Nongyrotropic electrons play important roles in the electron dif-
fusion region (EDR) during magnetic reconnection. The nongyrotropy
can arise due to meandering motion of particles in the reconnecting
component of the magnetic field, which reverses its sign across a cur-
rent sheet. Those meandering electrons are responsible for generating
off-diagonal components of the electron pressure tensor, and the diver-
gence of which can break the magnetic field lines in the EDR to change
the topology of the magnetic field and convert magnetic energy into
particle energy. Because of the meandering across the current sheet,
electron velocity distribution functions (VDFs) in the EDR exhibit a
characteristic crescent shape in the velocity plane perpendicular to the
reconnecting magnetic field.1–8 Recent space observations by NASA’s
Magnetospheric Multiscale (MMS) have detected the evidence of cres-
cent electrons in magnetic reconnection at Earth’s magnetopause.9–18

In our previous study of asymmetric reconnection without a
guide field,2 we obtained an equation to describe the parabolic

boundary of a crescent electron VDF. The crescent part becomes out-
standing in the magnetospheric side of the EDR, because the in-plane
Hall electric field, which is highly enhanced in the magnetospheric
side of the EDR, energizes meandering electrons. Depending on the
distance from the magnetic neutral line, the opening angle of the cres-
cent shape varies; the further the distance from the neutral line, the
larger the opening angle of the crescent. In addition to the energization
by the in-plane electric field, there is acceleration by the out-of-plane,
reconnection electric field, which introduces the broadening of the
crescent in the direction of acceleration. We derived an equation
to determine the outer boundary of the crescent, which is given as a
function of the number denoting how many times electrons cross the
current sheet.6 As the meandering continues in the EDR, the outer-
most boundary of the crescent is shifted toward the direction of
electron acceleration by the reconnection electric field.

Crescent electron VDFs have been also studied in guide field
reconnection. References 19 and 20 demonstrated by two-dimensional
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(2-D) particle-in-cell (PIC) simulations of guide field asymmetric
reconnection that crescent electron VDFs are seen in the EDR in the
velocity plane perpendicular to the magnetic field, and the guide field
strength BG in those studies is BG ¼ B0, where B0 is the asymptotic
value of the reconnecting component of the magnetic field. Crescent
electrons were observed in Ref. 13 in guide field reconnection, in
which the guide field is BG � B0, in Earth’s magnetopause by MMS
observations, and in the velocity plane perpendicular to the magnetic
field. Asymmetric reconnection was studied in Ref. 14 in Earth’s
magnetopause by MMS observations and 2-D PIC simulations, and
crescent VDFs were detected in the EDR in reconnection with an
intermediate-strength guide field, BG � 0:2B0. Also, it was shown by
test particles that electron orbits are combined motion of meandering
and gyration around a guide field. The study in Ref. 8 applied 2-D PIC
simulations to show that electron crescent VDFs form up to the guide
field BG � B0, but they do not form in reconnection with a stronger
guide field, BG � 5B0.

Despite intensive studies of electron crescent VDFs in asymmet-
ric reconnection, there has been no theory to explain the details of
VDFs in the EDR during guide field reconnection. In this paper, we
discuss the effects of the guide field on crescent electron VDFs during
asymmetric magnetic reconnection by means of theory and kinetic
simulations. As far as we know, this is the first study to derive analyti-
cal expressions of the shape of crescent VDFs in guide field reconnec-
tion. We consider the intermediate magnitude of the guide field, less
than 50% of the asymptotic reconnecting magnetic field, in which elec-
trons are still not fully magnetized in the EDR, and both meandering
motion and gyration around the guide field are important.

The guide field modifies the shape of crescent VDFs. We will dis-
cuss three effects of the guide field on crescent electrons: widening of
the opening angle of the crescent in a reduced VDF, a new VDF linear
cut-off nonparallel to the magnetic field, and a translational VDF
mapping perpendicular to the linear VDF cut-off from the X-line to a
different location in the EDR. In addition to those guide field effects,
we will extend the theory to explain VDFs in general positions around
the X-line in both inflow and outflow directions.

The following is the organization of this paper: in Sec. II, we will
explain simulation parameters and show some 2-D PIC simulation
results. In Sec. III, we will describe the electron motion in the EDR in
guide field reconnection, and we will derive several theoretical predic-
tions for electron crescent VDFs. In Sec. IV, we will extend the theory
discussed in Sec. III to general positions in the EDR. Section V gives
conclusions of this study.

II. 2-D PIC SIMULATIONS OF ASYMMETRIC
RECONNECTION WITH GUIDE FIELDS

Simulations are done in the x-y-z coordinates, where z is the cur-
rent sheet normal direction, y is the direction of the current, and x is
the direction of the reconnecting magnetic field across the current
sheet. The initial magnetic field and density at t¼ 0 are Bx ¼ B0

½tanhðz=wÞ þ a1� and n ¼ n0½1� a2 � a2tanhðz=wÞ � ða2=2a1Þ
sech2ðz=wÞ�, where B0 is the mean asymptotic field between the mag-
netosheath, ð5=6ÞB0, and the magnetosphere, ð7=6ÞB0, with a1 ¼ 1=6
and a2 ¼ 7=16, n0 is the sheath density, and the magnetosphere den-
sity is n0=8. The current sheet width w ¼ 0:5di, where di ¼ c=ðn0e2=
�0miÞ1=2 is the ion skin depth based on n0, the speed of light c, the ele-
mentary charge e, the vacuum permittivity �0, and the ion mass mi.

Two conditions vdi=vde ¼ �Ti=Te and B2
0=2l0 ¼ n0ðTi þ TeÞ

ða2=2a1Þ are satisfied initially, where Tj and vdj are temperature and a
y-directed drift speed, respectively, a subscript j¼ i or e represents the
ion or electron species, and l0 is the vacuum permeability. A guide
field is chosen as By ¼ BG ¼ 0:1B0; 0:2B0; 0:3B0, and 0:4B0, and in
this paper, we denote each run as run 1 (BG ¼ 0:1B0), run 2
(BG ¼ 0:2B0), run 3 (BG ¼ 0:3B0), and run 4 (BG ¼ 0:4B0). To maxi-
mize the reconnection rate, we rotate the system clockwise in the x-y
plane such that the new y direction bisects the angle between the
asymptotic magnetic fields on the two sides, which is discussed in Eq.
(7) of Ref. 21. For example, when BG ¼ 0:2B0, the rotation angle is
1.88 degrees. In the following, all the data are shown in the rotated
coordinates, and to describe the guide field in the rotated system, we
use a subscript “g” as Bg, and to denote the guide field in the original
nonrotated frame, we use a subscript “G” as BG. To initiate reconnec-
tion, a perturbation to the magnetic flux function is added as
W1 ¼ 0:1diB0sech

2ðx=2wÞsech2ðz=wÞ. The mass ratio of ion to elec-
tron mi=me ¼ 25, the temperature ratio Ti=Te ¼ 2, and the ratio of
the plasma frequency to the electron cyclotron frequency xpe=Xe

¼ 4:0, where xpe ¼ ðn0e2=�0meÞ1=2 and Xe ¼ eB0=me, the Alfv�en
speed vA ¼ B0=ðl0n0miÞ1=2 ¼ c=20, and the system size is Lx � Lz
¼ ð25:6diÞ2, using 5122 grids, where 1 grid ¼ 0:05di. The time step is
0:19x�1pe . The boundary condition is periodic in the x direction and
conducting walls in the z direction.

Since results with different guide fields are similar to the results
with BG ¼ 0:2B0 (run 2), in this paper, we will mainly show results
with BG ¼ 0:2B0.

Figures 1(a)–1(h) show color contours of several quantities in
run 2 (BG ¼ 0:2B0) at Xit ¼ 38:3, where Xi is the ion cyclotron fre-
quency based on B0: electron density ne (a), magnetic field By (b), elec-
tric fields Ez (c), Ey (d), and Ex (e), and electron fluid velocities Vex (f),
Vey (g), and Vez (h). The gray curves on each plot are the projection of
magnetic field lines on the x-z plane, where x is the outflow direction
and z is the inflow direction. The density ne is higher in the magneto-
sheath side, z< 0, than in the magnetospheric side, z> 0, and shows a
little left-right asymmetry due to a small guide field. In the panels
from (a) to (d), the right panels next to each contour panel are the
one-dimensional (1-D) profiles of each quantity along x ¼ xX
¼ �0:3di, which is drawn as the white dashed line in each contour
plot passing through the X-line, where the subscript X represents the
value at the X-line. The magnetic field By varies in x and z, but�0:2B0

across the dashed line, as seen in the 1-D profile of By in the right
panel. In the 1-D panel, we also plotted the Bx profile, which becomes
zero at z ¼ zX ¼ 0:05di. In the outflow regions, where jxj > 0,
By changes significantly, but as long as we focus on near the electron
stagnation point, located in the magnetospheric side of the EDR
around x ¼ xX and z ¼ zX þ 0:45di, the By strength is of the order of
0:2B0. Near the electron stagnation point is the region we will focus on
to discuss VDFs in this study.

The Hall electric field Ez exists mainly in the magnetosphere,
z> 0. It is nonzero and negative at the X-line, at z ¼ zX ¼ 0:05di, and
jEzj decreases to zero in the magnetosheath side at z ¼ zX � 0:4di.
We denote this position as z ¼ zc as shown in the 1-D profile in the
right panel. jEzj increases as the 1-D panel shows, up to z ¼ zX
þ 0:6di, and then it decreases. There is a clear layer of Ez along the
separatrices in the magnetospheric side. The reconnection electric field
Ey is positive around 0:1B0vA. The electric field Ex is enhanced mostly
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in the region where Ez is negative and large; however, Ex is noisy and
small in the vicinity of the X-line.

The electron fluid velocity Vex shows a pair of outflows in the x
direction, mostly along themagnetospheric side separatrices. Along those
separatrices, there is an enhancement of jVeyj, which is responsible to

generate a thin current density layer in the reconnection region. The
inflowVez shows a positive value at the X-line, and the stagnation point is
located in themagnetospheric side, around x¼ xX and z ¼ zX þ 0:45di.

In panels (a)–(h), the red boxes are where we measure electron
VDFs shown in Fig. 2. The center of each box is at x ¼ xX ¼ �0:3di,

FIG. 1. Contours of electron density ne (a), out-of-plane magnetic field By (b), Hall electric field Ez (c), reconnection electric field Ey (d), electric field Ex (e), electron outflow
velocity Vex (f), electron out-of-plane flow Vey (g), electron inflow velocity Vez (h) for run 2 (BG ¼ 0:2B0) at Xi t ¼ 38:3. The gray curves are magnetic field lines. In panels
(a)–(d), the right panel shows a 1-D profile of each quantity along the line x ¼ xX (vertical white dashed line). Density ne is high in the magnetosheath (z< 0). By along x ¼ xX
is around 0:2B0. Hall electric field Ez is a linearly decreasing function in the magnetosphere (z> 0) and the maximum of jEzj � 0:7B0vA. The reconnection electric field
Ey � 0:1B0vA. In the 1-D profile of By, the profile of Bx is also shown. The red line Bx ¼ bz in (b) and the red line Ez ¼ �kðz � zcÞ in (c) are linear approximations used in
this study. In the magnetosphere, at x ¼ xX and z ¼ zX þ 0:45di is the electron stagnation point, where Vez ¼ 0 [see panel (h)]. The three red boxes in each panel (top at
z ¼ zX þ 0:45di , middle at z ¼ zX, bottom at z ¼ zX � 0:2di ) are where electron VDFs in Fig. 2 are measured.
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and the box size is 1di in the x direction and 0:1di in the z direction.
Since the EDR is elongated in the x direction, VDFs around the X-line
exhibit a weaker variation in x in the vicinity of the X-line than in the
z direction. Therefore, we use a longer x size than the z size of the box
to obtain better counting statistics for VDF data. The top red box is at
the stagnation point, z ¼ zX þ 0:45di, the second box is at the X-line,
z ¼ zX, and the bottom box is at z ¼ zX � 0:2di, in the magneto-
sheath. Figures 2(a)–2(c) show the electron VDF at the X-line. These
are reduced VDFs integrated along the third direction in each plot.
Figure 2(a), the vy-vz plot, shows a circular structure with an opening
near vz ¼ 0 and vy > 0, which is a U-shaped VDF.6 Figures 2(b) and
2(c) show other velocity planes, vy-vx and vz-vx, respectively, and the

VDF in vx > 0 shows a triangular shape, while the VDF in vx < 0
shows a circular shape. We approximate this VDF at the X-line as a
“cone” þ a “hemisphere,” as shown in diagram (d). In Sec. III, we will
consider a mapping of this VDF to a VDF away from the X-line. More
details about this approximated VDF in panel (d) will be discussed in
Sec. III.

Panels (e)–(h) in Fig. 2 show VDFs in both z > zX and z < zX
sides. Figures 2(e) and 2(f) are at the stagnation point,
z ¼ zX þ 0:45di, in the magnetosphere, while Figs. 2(g) and 2(h) are
at z ¼ zX � 0:2di, in the magnetosheath. In the magnetosphere [Figs.
2(e) and 2(f)], the electrons show a crescent in the vy-vz plane, and the
crescent electrons are energized by Ez

2 as well as the reconnection

FIG. 2. Top row: (a)-(c) Reduced electron VDFs at the X-line (x ¼ xX and z ¼ zX). This is modeled as a VDF shape composed of a cone and a hemisphere [panel (d)]. Middle
row: (e) and (f) Electron VDF at the electron stagnation point x ¼ xX and z ¼ zX þ 0:45di . Panel (e) shows a crescent shape, while panel (f) shows a meandering component
and a magnetized component (rectangular shape). The white solid line is parallel to the magnetic field. (g) and (h) Electron VDF at x ¼ xX and z ¼ zX � 0:2di (magneto-
sheath). Bottom row: (i)–(l) X-line VDF for each run with the different guide field strength. The green line is vx ¼ 5vA � vy , and the green circle is vx ¼ �½ð5vAÞ2 � v2y �

1=2.
The X-line VDF looks independent from the guide field strength. Note that VDFs are based on the counts of particles in each bin during 10 time steps in the simulation.

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 26, 082310 (2019); doi: 10.1063/1.5092809 26, 082310-4

Published under license by AIP Publishing

https://scitation.org/journal/php


electric field Ey.
6 In the magnetosheath [Figs. 2(g) and 2(h)], crescent

electrons also can be seen. In the vy-vx velocity plane, in both magneto-
sphere and magnetosheath sides, shown in panels (f) and (h), there are
magnetized rectangular VDFs, elongating in the magnetic field direc-
tion, which is along the white solid lines. These magnetized electrons
are convected from the upstream, and they have not started meander-
ing motion across the current sheet. These magnetized population can
be easily recognized, because their boundaries are parallel to the local
magnetic field, which is along the white straight line. On top of each
rectangular magnetized electrons, the meandering population is seen,
predominantly in vx > 0 in z > zX in panel (f), and vx < 0 in z < zX
in panel (h).

III. 1-D THEORETICAL MODEL WITH a GUIDE FIELD AND
THE DEPENDENCE OF ELECTRON VDFS ON THE z
POSITION

In this section, discussing electron meandering motion in simpli-
fied 1-D fields, we will derive the shape of a crescent VDF in guide
field asymmetric reconnection, and we will elucidate the effects of a
guide field on electron VDFs. In the theory, the reconnection X-line is
set to be at the position x¼ 0 and z¼ 0. We will model a current sheet
as a 1-D structure, where all the field quantities depend only on the z
position. This 1-D treatment can be applied in the EDR, especially

around the line x¼ 0. In our previous study,6 it is discussed that the
applicable range of a 1-D model is, roughly speaking, �1di � x � 1di
for zero-guide field reconnection. However, as we will discuss in Sec.
IV, a guide field introduces left-right asymmetry, in terms of the x
position with respect to the X-line, for the shapes of VDFs, even within
61di from the X-line. Therefore, in this section, we will focus on
VDFs on the line x¼ 0, and later in Sec. IV, we will generalize the the-
ory of VDFs to general x positions. We note that in this section, we
only focus on electron VDFs in the magnetospheric side, in z> 0, due
to meandering electrons, and we do not consider the magnetized elec-
trons coming from the magnetospheric side seen in Fig. 2.

Under this 1-D model, we will discuss two important aspects of a
crescent VDF in the vy-vz plane. We will focus on only the inner
boundary of a crescent, which is the right-side boundary seen in Figs.
3(b)–3(d). One important aspect is the vy-intercept at vz ¼ 0 of the
parabola that describes a crescent shape. Another important aspect is
the opening angle of the parabola. Using cuts of a VDF in various vy-
vz planes for fixed vx values, we will show that the intercept of the
parabola depends on the guide field strength, but the opening angle of
the parabola in each cut of a VDF is independent from the guide field.
However, we will demonstrate that the opening angle of the parabola
in a reduced VDF integrated in the vx direction does depend on the
guide field strength, owing to the superposition effect of each cut of

FIG. 3. Cuts of the VDF at x ¼ xX and z ¼ zX þ 0:45di for run 2 (BG ¼ 0:2B0). (a) Reduced VDF in the vy-vz plane. (b)–(d) Cuts of the VDF in various vx planes. Magenta
parabolas are Eq. (5) in various vx planes. The intercept of the parabola depends on vx. (e) Reduced VDF in the vy-vx plane. (f)–(h) Cuts of the VDF in various vz plane.
Magenta straight lines are Eq. (5) in various vz planes, and white lines are parallel to the magnetic field. VDFs are elongated along the theoretical lines.
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the VDF. The larger the guide field is, the larger the opening angle of
the crescent in the reduced VDF becomes. In the following, we will
first discuss cuts of a VDF, and then we will discuss the reduced VDF.

Let us assume a magnetic field B ¼ ðBx;By;BzÞ ¼ ðbz;Bg ; 0Þ,
and an electric field E ¼ ðEx; Ey;EzÞ ¼ ½0; Er ;�kðz � zcÞUðz � zcÞ�,
where Bg and Er are a uniform guide field and a reconnection electric
field, respectively. Uðz � zcÞ is a shifted step function, which is 1
when z � zc and zero when z < zc. This Ez represents the Hall electric
field, and simulations show that zc < 0, as seen in the right panel of
Fig. 1(c). Bx in all z and jEzj in z � zc are linearly increasing functions
of z, and b and k are constants. Note that the Ez profile for run 2
[BG ¼ 0:2B0, the right panel of Fig. 1(c)] shows fairly good agreement
with the linear profile; however, in run 3 (BG ¼ 0:3B0) and run 4
(BG ¼ 0:4B0), actual Ez profiles are not consistent with a linear profile,
but there are two peaks in Ez in zX < z < zX þ 0:7di (data not
shown). A theory taking into account the Ez variations could be devel-
oped, but it is beyond the scope of this paper. Nonetheless, we will
apply a linear profile of Ez ¼ �kðz � zcÞ to all the simulation runs in
this study, by fitting a linear curve to extract the parameter k from sim-
ulation data, and the results are shown in Table I.

Focusing on the vicinity of the x¼ 0 line, we neglect Bz and Ex in
this analysis. The reconnection electric field Er is �0:1B0vA, much
smaller than Ez, compared with the maximum of Ez � 0:7B0vA along
the line x ¼ xX. In the analysis below, we discuss the zero-th order
motion of electron, neglecting acceleration by Ey¼ Er, and we set Er¼
0. Also, our discussion will be limited to VDFs in the magnetosphere,
z> 0, where the crescent shape in VDFs becomes outstanding, due to
the energization by the Hall electric field Ez.

2,4 We will not consider
the magnetized electrons coming from the magnetospheric side; there-
fore, in the following, VDFs in simulation results after Fig. 3 are com-
posed of only magnetosheath electrons, which come from z< 0. There
must be small numbers of meandering electrons from the magneto-
spheric side, too, but the density of the meandering magnetosheath
electrons is dominant in VDFs. Thus, in the following, we will show
VDFs due to only magnetosheath electrons.

First, we will derive two constants of motion from the momen-
tum conservation law. In z � zc, Ez can be eliminated by moving into
the reference frame with a drift speed vd ¼ ð�kzc=Bg ;�k=b; 0Þ. In
the following, we use a subscript d in variables in this drifting frame,
and we have relationship vxd ¼ vx þ kzc=Bg ; vyd ¼ vy þ k=b;
vzd ¼ vz , and zd ¼ z. Let us discuss particle motion in z � zc in the
drifting frame, where Ezd ¼ 0, and no energization occurs. The equa-
tion of motion in the drifting frame is mdvxd=dt ¼ eðdzd=dtÞBg , and
mdvyd=dt ¼ �eðdzd=dtÞbzd , where m is the electron mass, and inte-
grating these equations, we obtain

vxd0 ¼ vxd �
eBg

m
zd; or vx0 ¼ vx �

eBg

m
z

� �
; (1)

vyd0 ¼ vyd þ
eb
2m

z2d; or vy0 ¼ vy þ
eb
2m

z2
� �

; (2)

where the subscript 0 represents the value at t¼ 0, and we assume that
a particle is at z ¼ zd ¼ 0 at t¼ 0. These equations represent the
canonical momentum conservation in the x and y directions. In the
above Eqs. (1) and (2), the relationship in both drifting and nondrift-
ing frames are shown.

Considering the above two constants of motion based on the ini-
tial position at z¼ 0, and combining them with the energy conserva-
tion law, let us obtain the region in the velocity space where a VDF of
meandering electrons is confined. In this drifting frame, since there is
no electric field, the particle’s kinetic energy is conserved, and we have

v2xd þ v2yd þ v2zd ¼ v2xd0 þ v2yd0 þ v2zd0; (3)

where the right-hand side represents the constant initial energy at
zd ¼ z ¼ 0. Substituting vxd0 and vyd0 from Eqs. (1) and (2), respec-
tively, into Eq. (3), we obtain

vyd ¼
m
eb

z�2d v2zd �
1
4
eb
m
z2d þ 2

Bg

bzd
vxd �

eBg

m

Bg

b
� m
eb

z�2d v2zd0: (4)

Now we consider the fact that v2zd0 � 0, and the particles whose
vzd0 ¼ 0 give the largest vy-intercept for the above equation. Using this
condition v2zd0 � 0, and changing the frame from the drifting frame
with the subscript d to the nondrifting frame without the subscript d
using vxd ¼ vx þ kzc=Bg ; vyd ¼ vy þ k=b; vzd ¼ vz , and zd ¼ z, we
obtain the following inequality:

vy �
m
eb

z�2v2z �
1
4
eb
m
z2 � k

b
þ 2

Bg

bz
vx þ

kzc
Bg

 !
� eBg

m

Bg

b
: (5)

This represents the region in the velocity space where meandering
electrons can exist. Note that the sum of the first three terms in the
right-hand side gives the same parabola as in reconnection with
the zero guide field,2,6 and the sum of the rest terms with Bg represents
the guide field effect, which gives a shift of the intercept. The intercept
is a function of vx, too. Note also that in the above equation, we used
the condition v2zd0 � 0, but rigorously speaking, that condition can be
applied only to vxd0 < 0 (see the Appendix A); when vxd0 � 0, the
condition becomes v2zd0 � cz , where cz is a function of vxd0 and vyd0
given by Eq. (A5). However, since cz is negligibly small under the range
of guide field in this study, less than 50% of B0, Eq. (5) is sufficiently
close to the rigorous expression. In this paper, in Subsection IIIA,
using the above inequality Eq. (5), we will discuss cuts of a VDF in
various vx planes and vz planes.

A. Cuts of a VDF in the vy-vz plane and in the vy-vx

plane

Let us discuss velocity space cuts in the vy-vz plane, which are
constant-vx planes. In each cut of a VDF in a constant-vx plane, the
parabola Eq. (5) represents the inner boundary of a crescent VDF
based on a specified vx value. Figures 3(a)–3(d) show the reduced VDF
and multiple cuts of the VDF at x ¼ xX and z ¼ zX þ 0:45di in the
simulation (run 2, BG ¼ 0:2B0) for various vx values, and theoretical

TABLE I. Parameters in each simulation run.

Run 1 (Bg ¼ 0:1B0) b ¼ 1:26B0=di; k ¼ 0:711B0vA=di;
Bg ¼ 0:112B0; zc ¼ �0:326di

Run 2 (Bg ¼ 0:2B0) b ¼ 1:10B0=di; k ¼ 0:541B0vA=di;
Bg ¼ 0:175B0; zc ¼ �0:407di

Run 3 (Bg ¼ 0:3B0) b ¼ 1:08B0=di; k ¼ 0:439B0vA=di;
Bg ¼ 0:237B0; zc ¼ �0:503di

Run 4 (Bg ¼ 0:4B0) b ¼ 1:20B0=di; k ¼ 0:619B0vA=di;
Bg ¼ 0:328B0; zc ¼ �0:395di
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curves based on Eq. (5). We only used meandering electrons coming
from the magnetosheath, z< 0. Therefore, although the position of the
VDF measurement at z ¼ zX þ 0:45di is the same as that in Fig. 2(e),
the VDF in Fig. 3(a) is different from Fig. 2(e), and the difference is
due to the removed particles, i.e., magnetospheric particles. In each cut
based on vx, the range of the velocity is 60:5vA from the specified vx
plane. These panels (b)–(d) show that the vy-intercept of the parabola
varies depending on the vx value, as explained by Eq. (5). To draw these
theoretical curves, we used the following parameters measured in run 2
(BG ¼ 0:2B0) atXit ¼ 38:3: the slope of Bx is b ¼ 1:10B0=di, the slope
of Ez is k ¼ 0:541B0vA=di, the guide field Bg ¼ 0:175B0, and the posi-
tion zc ¼ �0:407di. We conclude that the theory, Eq. (5), is in good
agreement with the crescent boundary in each vx-cut of the VDF.

We note that for the z position, since the bin size to measure a
VDF is 0:1di in the z direction, i.e., zX þ 0:4di � z � zX þ 0:5di for
this bin to measure the VDF at z ¼ zX þ 0:45di, we use the z value of
the lower boundary of this bin, z ¼ 0:4di, to draw these theoretical
curves, Eq. (5). This is because the smaller the z value is, the narrower
the opening angle of the parabola becomes. Note also that the guide
field Bg in the actual simulation is not a constant, because the simula-
tion was performed in the system slightly rotated in the x-y plane
so that the reconnection rate is maximized,21 and Bg ¼ 0:175B0 is
an average of By in the z direction, from z ¼ zX � 0:075di to z ¼ zX
þ 0:625di, along the line x¼ xX at Xit ¼ 38:3.

One of the most important guide field effects on meandering
electrons in the EDR is manifested as a new structure cut-off in VDFs
in a different velocity plane. To see the new cut-off, let us compare
various vz-cuts of the VDF in the vy-vx plane. The right-hand side of
Eq. (5) gives a linear relationship between vy and vx, and the intercept
of the linear line on the vy-axis depends on the vz value. In Figs.
3(e)–3(h), we plotted the reduced VDF of meandering magnetosheath
electrons, which are the same particles as in Fig. 3(a), and multiple
cuts of the VDF in various vz. The theory, drawn as the magenta
straight lines, well explains the cut-off of the meandering electrons in
the vy-vx plane. Here, we again use z ¼ 0:4di, the lower boundary of
the bin, to draw these theoretical curves. Each cut of the VDF shows a
structure elongated along the theoretical line.

The slope of the straight line in the vy-vx plane in Eq. (5),
vy � 2ðBg=bzÞvx þ const:, shows that the VDF cut-off is not parallel
to the magnetic field direction. If it were parallel, the slope would be
vy � ðBg=bzÞvx ¼ ðBy=BxÞvx , drawn as the white lines in Figs.
3(f)–3(h). If Bx is a constant, electrons are just gyrating around the
magnetic field, and those magnetized particles should appear along the
white line. The factor 2 of the slope of the magenta lines results from
the fact that electrons are meandering and unmagnetized in Bx ¼ bz,
which is a linear function of z, i.e., a result of the ratio between the sec-
ond term in the right-hand side of Eq. (1), ðeBg=mÞz, and the second
term in the right-hand side of Eq. (2), ðeb=2mÞz2. Equation (5) is

FIG. 4. Dependence of the cut of a VDF at vx ¼ 0 plane on z positions along x ¼ xX for run 2. Magenta parabolas are Eq. (5) with vx ¼ 0 at various z positions. As we move
from a small z to a large z, the opening angle of the parabola becomes wider.
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useful to distinguish crescent electrons due to unmagnetized meander-
ing electrons from the ones due to magnetized electrons, such as dis-
cussed by Ref. 22. Note that this discussion is limited only to near
x¼ 0; however, in Sec. IV, we will discuss this feature of the nonparal-
lel VDF cut-off in general x positions.

Let us examine the z dependence of crescent electrons. Figure 4
shows crescent electrons in run 2 (BG ¼ 0:2B0). These are vx-cuts of
VDFs at vx ¼ 0, in the vy-vz plane, for the position x ¼ xX (in the
theory, x¼ 0), using only magnetosheath electrons. In each plot, the
magenta curve is the prediction of the inner crescent boundary of
the VDF, Eq. (5) with vx ¼ 0. As we move from z ¼ zX þ 0:1di to
z ¼ zX þ 0:8di, the opening angle of the crescent becomes wider and
wider. Except for z ¼ zX þ 0:1di, the prediction drawn as the magenta
curve and the inner boundary of the crescent are in good agreement.

The theoretical curve for z ¼ zX þ 0:1di does not match the sim-
ulation VDF, as seen in Fig. 4(a), where the vy-intercept of the theoret-
ical curve is near vy ¼ �10vA, while the vy-intercept of the crescent
inner boundary of the simulation VDF is near vy ¼ �3vA. This dis-
crepancy can be attributed to the fact that Eq. (5) does not include the
effect of the reconnection electric field Ey. The theoretical curve, Eq.
(5), shows that as the value of z ¼ zsp, which is a z-position in the
magnetosphere, becomes smaller and close to zero, the leftward shift
of the curve (vy-intercept) due to the term/ 2Bg=ðbzÞ becomes larger.
Note that the shift is leftward, since zc < 0. The denominator, bz, in

the factor 2Bg=ðbzÞ is from the second term in Eq. (2), which becomes
zero as z ! 0. However, if we include the effect of Ey in the right-
hand side of Eq. (2) as a term �ðeEy=mÞt, where t is the time interval
of the motion from z¼ 0 to z ¼ zsp, we can avoid this divergence of
2Bg=ðbzÞ as z ! 0, because the factor becomes 2Bgz=ðbz2 þ 2EytÞ,
which does not diverge in the limit z ! 0. Therefore, in a more accu-
rate theory that includes Ey, the leftward shift of the theoretical curve
would be smaller than in the theoretical curve in Fig. 4(a).
Development of such a theory is beyond the scope of this paper.

Figure 5 shows vz-cuts at vz ¼ 0 of VDFs for run 2, on the line x
¼ xX, from z ¼ zX þ 0:1di to z ¼ zX þ 0:8di. The magenta lines
show the theoretical lines based on Eq. (5) for each position of z ¼ zsp,
using vz ¼ 0. The slope of the line depends on the position z ¼ zsp,
and the slope in each plot matches the boundary of each VDF cut for
positions z larger than or equal to zX þ 0:3di. For the smaller portions
z ¼ zX þ 0:1di and z ¼ zX þ 0:2di, there are many electrons below
the theoretical lines. These may be also because we neglected the effect
of Ey in the theory, as discussed in Fig. 4. For positions larger than
z ¼ zX þ 0:2di, there is clear agreement between the theoretical pre-
dictions and the observed cuts of VDFs.

Figure 6 shows comparisons of vx-cuts of VDFs at vx ¼ 0 and
vz-cuts of VDFs at vz ¼ 0 for various guide field strengths, from
BG ¼ 0:1B0 to 0:4B0, at z ¼ zX þ 0:5di and z ¼ zX þ 0:7di. The
parameters of b, k, Bg, and zc measured in each run are summarized in

FIG. 5. Dependence of the cut of a VDF at vz ¼ 0 plane on z positions along x ¼ xX for run 2. Magenta lines are Eq. (5) with vz ¼ 0 at various z positions. As we move from
a small z to a large z, the slope of the line changes, and the VDF in each panel is elongated along the theoretical cut-off line.
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Table I. The top two rows [panels (a)–(h)] are vx-cuts of VDFs in the
vx ¼ 0 plane, composed of particles in a velocity range jvxj � 0:5vA.
The magenta curves are predictions by Eq. (5) with vx¼ 0. Depending
on the guide field strength, the vy-intercept of each parabola varies.
The intercept is shifted leftward as BG increases, as predicted by the
terms / Bg in Eq. (5). The theoretical predictions of the vy-intercept
in Figs. 6(a)–6(d) are: (a) �4:7vA, (b) �4:7vA, (c) �5:2vA, and (d)
�6:6vA, and those in Figs. 6(e)–6(h) are (e) �3:2vA, (f) �3:5vA, (g)
�4:0vA, and (h) �5:2vA. In contrast, the opening angle of each cres-
cent for the same z position does not strongly vary, and this is expected

from Eq. (5), as seen in the first term ðm=ebÞz�2v2z , which does not
depend on Bg. In simulations, since the slope b is not a fixed constant,
as seen in Table I, there is a weak dependence on Bg of the opening
angles of crescents; however, those opening angles are almost the same
in the same z position, throughout all the guide field strengths. The
bottom two rows (panels (i) to (p)) are vz-cuts of VDFs in the vz¼ 0
plane, composed of particles in a velocity range jvzj � 0:5vA.
Electrons are well explained by Eq. (5) with vz ¼ 0, for all the guide
fields, and VDFs show elongated structures along the straight lines.
Depending on the guide field strength, the slope of the straight line

FIG. 6. Dependence of cuts of VDFs on various guide field strength. Top two rows: Cuts of VDFs at vx ¼ 0 at z ¼ zX þ 0:7di and z ¼ zX þ 0:5di . Magenta parabolas are
Eq. (5) with vx ¼ 0 in various guide fields. The intercept of the parabola depends on the guide field strength, but the opening angle of the parabola is independent from the
guide field. Bottom two rows: Cuts of VDFs at vz ¼ 0. Magenta lines are Eq. (5) with vz ¼ 0 in various guide fields. The slope of the line depends on the guide field, and
VDFs are along the theoretical cut-off lines.
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varies. We conclude that cuts of VDFs in constant vz-planes in the
vy-vx plane are useful to see the effect of a guide field.

B. Reduced VDF in the vy-vz plane

In this subsection, we will discuss the crescent in a reduced VDF
in the vy-vz plane, and show that the guide field effect can be seen in
the reduced VDF more clearly than cuts of VDFs in the vy-vz plane. In
vx-cuts of VDFs, Eq. (5) tells that the vy-intercept of the parabola
depends on the guide field, but the opening angle of the parabola does
not. However, for the reduced VDF in the vy-vz plane, as in Fig. 7(a),
the crescent inner boundary does not match the parabola Eq. (5) using
a constant vx. In Fig. 7(a), the two parabolas are based on Eq. (5) using
vx ¼ 0 and vx ¼ 4vA, and the crescent opening angle in the reduced
VDF is larger than the openings of those parabolas. This is because, as
we will see in this subsection, the projection of the crescent from each
layer with different vx needs to be considered to compose the reduced
VDF. The goal of this subsection is to show that the opening angle of
the crescent boundary of a reduced VDF depends on the guide field
strength, although the opening angle of the parabola in each vx-cut of
the VDF is independent from the guide field.

Let us derive the crescent boundary for a reduced VDF by taking
into account this projection effect and considering the mapping
between the X-line VDF and a VDF at z ¼ zsp in the magnetosphere.
As seen in Figs. 2(a)–2(d), the X-line VDF has a cone in vx � 0 and a
hemisphere in vx < 0. Figure 7(b) shows this modeled X-line VDF in

the vy0-vx0 plane, where the subscript 0 represents the initial value at
z¼ 0. It shows a triangular structure in vx0 � 0, and the cross section
of this cone at a certain vx0 is a circle, whose radius takes the maxi-
mum at vx0 ¼ 0. In this model VDF for a guide field BG ¼ 0:2B0, we
assume that the slope of the cone, denoted by s in the following, which
is the ratio of the height to the base-radius of the cone, is 1 in vx0 � 0.
Simulations show that the slope s is close to 1 for various guide field
strengths, in the range 0:1 � BG=B0 � 0:4. In Figs. 2(i)–2(l), reduced
VDFs in the vy-vx plane at the X-line, z ¼ zX, in various guide fields
from BG ¼ 0:1B0 to 0:4B0 are shown. The green line in each panel
represents the line vx ¼ �vy þ 5vA, and the slope s¼ 1 is in fairly
good agreement for every X-line VDF. However, the slope s for a
larger guide field case, larger than in this study, 0:4B0, can be different
from s¼ 1. Keeping this s as a parameter for general strength of Bg, we
have

vx0 ¼ sðv0 � vr0Þ; (6)

where vr0 ¼ ðv2y0 þ v2z0Þ
1=2 and v0 represents the radius at vx0 ¼ 0. In

vx0 < 0, the VDF has a shape different from the cone. In run 1 to run
4, a spherical shape, v2x0 þ v2y0 þ v2z0 ¼ v20, is a good approximation. In
Figs. 2(i)–2(l), the green circle in each panel represents the boundary
of the sphere v2x0 þ v2y0 þ v2z0 ¼ v20 in vx < 0, and this approximation,
neglecting the bulge of the VDFs in the negative vy direction due to
the acceleration by Ey, is in good agreement to explain the lower
boundary (vx0 < 0) of the VDFs in vy-vx plane, for guide field
0:1 � BG=B0 � 0:4. In all the runs, let us use v0 ¼ 5vA.

FIG. 7. (a) Reduced VDF in the vy-vz plane at x ¼ xX and z ¼ zX þ 0:45di for run 2. The two magenta curves are Eq. (5) with vx ¼ 0 and vx ¼ 4vA, and the curves do not
match the VDF. (b)-(c) Model VDF at the X-line. The X-line VDF in vx0 > 0 is a cone, and that in vx0 < 0 is a hemisphere. The four dashed lines are cuts at constant vx0
values, and the cross sections are plotted in panel (c). (e)-(f) Mapped circles at z ¼ zsp. Each circle is the mapped cross section using Eq. (11). Four magenta parabolas are
Eq. (5) using corresponding vx. Blue crosses are crossing points between the circle and the parabola in each vx plane. The blue curve is Eq. (17). (f) Region where electrons
exist in each vx layer. (d) Reduced VDF and the theory curve Eq. (17) (blue). The orange dashed curve is the theory curve using Bg ¼ 0 and zc ¼ 0.
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In the cone-and-sphere VDF, the slope s in vx0 > 0 may be
related to the slope of the rectangular VDF seen in the magnetosheath.
For example, Fig. 2(h), the VDF at z ¼ zX � 0:2di, shows a rectangu-
lar component due to magnetized electrons, whose slope is determined
by the ratio Bx=By , the white line in Fig. 2(h). The slope value, Bx=By ,
depends on position z in the magnetosheath, as Bx depends on z, and
the slope of the X-line VDF may be determined by the slope of the
VDF at the location where electrons in the rectangular VDF start to be
unmagnetized, between the position z ¼ zX � 0:2di and z¼ zX.

We consider the mapping from the cone-and-sphere VDF at
the X-line to the VDF at z ¼ zsp, a position in the magnetosphere. In
Fig. 7(b), four horizontal dashed lines represent examples of four cuts
in various vx0. Each cut has a circular cross section with a different
radius vr0, determined by Eq. (6). Figure 7(c) shows the cross section
circles corresponding to the vx0-cuts in Fig. 7(b). We will consider
how the cross section circle in each vx0-layer at z¼ 0 is mapped into
the VDF at z ¼ zsp, after particle motion from z¼ 0 to z ¼ zsp. The
electric field Ez ¼ �kðz � zcÞ accelerates electrons, and the velocity
square v2x þ v2y þ v2z increases. Note that we use variables without sub-
script 0 to discuss the mapped VDF at z ¼ zsp. Considering the energy
equation in the nondrifting frame, where Ez accelerates electrons, we
obtain the following:

v2y þ v2z ¼ v2r0 þ v2x0 � v2x þ /; (7)

where / is the increase in the velocity square due to Ez, obtained by
the integral�2ðe=mÞ

Ð
Ezdz from z¼ 0 to z ¼ zsp as

/ ¼ ek
m
ðz2sp � 2zczspÞ: (8)

In Eq. (7), the right-hand side includes quantities vr0; vx0, and vx. If
we express vr0 and vx0 as functions of vx, the entire right-hand side of
Eq. (7) is expressed as a function of vx, and we can draw the mapped
circle v2y þ v2z for each vx plane. From Eqs. (1) and (6), we have

vx0 ¼ vx �
eBg

m
zsp; (9)

and

vr0 ¼ v0 � s�1vx þ s�1
eBg

m
zsp: (10)

Substituting these into Eq. (7), we obtain

v2y þ v2z ¼ s�2 vx � sv0 � ðs2 þ 1Þ
eBg

m
zsp

� �2
þ /

� ðs2 þ 1Þ
eBg

m
zsp

� �2

� 2sv0
eBg

m
zsp: (11)

If we specify a vx value, the above equation represents a circle in the
vy-vz plane. Thus, the circle in the vy0-vz0 plane with a certain vx0 at
z¼ 0 is mapped to the circle in the vy-vz plane with
vx ¼ vx0 þ ðeBg=mÞzsp, which is derived from Eq. (9). Examples of
the mapped circles at z ¼ zsp are shown in Fig. 7(e), as four circles
with various radii. The largest circle in panel (e) is the mapping from
the circle with vx0 ¼ 0 in panel (c), and smaller circles in panel (e) are
mapped from other circles for each vx0 in panel (c). The vx plane
corresponding to vx0 ¼ 0 is vx ¼ 1:75vA, and the plane corresponding

to vx0 ¼ 2:4vA is vx ¼ 4:15vA, according to Eq. (9) and using the
position zsp ¼ 0:4di (the lower z boundary of the bin to measure this
VDF in Fig. 7) and run 2 parameters in Table I. In this panel (e), we
also plotted multiple parabolas based on Eq. (5), using the correspond-
ing four vx values. The leftmost magenta curve is the parabola for
vx ¼ 1:75vA, corresponding to vx0 ¼ 0, and the rightmost is for
vx ¼ 4:15vA, corresponding to vx0 ¼ 2:4vA.

Now, we are ready to discuss the inner boundary of the reduced
VDF in the vy-vz plane, by superposing each layer of a constant vx
plane. Each vx layer has the parabolic boundary of Eq. (5) and the cir-
cle of Eq. (11), and both curves depend on the vx value. As vx increases,
the circle becomes smaller, and the parabola shifts rightward. In each
vx plane, particles must be within the circle and to the left of the parab-
ola. For example, in the plane of vx ¼ 1:75vA, which corresponds to
vx0 ¼ 0, the particles in that velocity plane must be within the light-
blue crescent in panel (f). In the same way, as vx increases, particles
must be within the light green crescent for vx ¼ 2:55vA, the orange
crescent for vx ¼ 3:35vA, and the purple crescent for vx ¼ 4:15vA. As
shown in panel (f), the parabolic boundary in each crescent from light
blue to purple is gradually shifted rightward as vx increases, and
the entire region is the superposition of these different crescents. We
compose the inner boundary of the crescent in the reduced VDF by
connecting the crossing point of the parabola and the circle in each vx
layer, as seen in blue crossing points in Fig. 7(e).

Solving the system of equations of the circle Eq. (11) and the
parabola Eq. (5), we can obtain those crossing points. Each blue cross
in vz > 0 in panel (e) shows the crossing point of the circle and the
parabola in each vx-plane. Connecting the crossing points in multiple
vx-layers gives the inner boundary of the crescent in the reduced VDF.
In other words, if we eliminate vx from the system of equations of the
circle Eq. (11) and the parabola Eq. (5), we obtain a single equation
with variables of vy and vz, which represents the inner boundary of the
crescent VDF. The opening angle of the blue curve for the crescent in
the reduced VDF in panel (e) is larger than that of each magenta
curve, which is the crescent in each vx-layer.

To obtain the analytical expression of the crescent in the reduced
VDF, i.e., vy as a function of vz, we combine the parabola Eq. (5) and
the circle Eq. (11) to eliminate vx from those system of equations.
From Eq. (11), we obtain

vx ¼ sv0 þ ðs2 þ 1Þ eBg

m
zsp � s v2y þ v2z � /þ ðs2 þ 1Þ eBg

m

� �2

z2sp

"

þ 2sv0
eBg

m
zsp

#1=2
; ð12Þ

where the minus sign before the brackets in the right-hand side is
because the right-hand side of Eq. (10) needs to be positive, i.e., vr0 > 0.
Substituting this vx into Eq. (5), changing the inequality to the equality
and using z ¼ zsp, we obtain the following quadratic equation for vy

A0v
2
y þ 2A1vy þ A2

1 � A2 ¼ 0; (13)

where A0, A1, and A2 are

A0 ¼ 1� 4s2
Bg

bz

� �2
" #

; (14)
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A1 ¼ �
m
eb

z�2sp v2z þ
1
4
eb
m
z2sp � 2s

Bg

bzsp
v0 � ð2s2 þ 1Þ

eBg

m

Bg

b

� 2
k
b
zc
zsp
þ k
b
; (15)

A2 ¼ 4s2
Bg

bzsp

� �2

2s
eBg

m
zspv0 þ ðs2 þ 1Þ

eBg

m

� �2

z2sp � /þ v2z

" #
:

(16)

Therefore, the inner boundary of the crescent in the reduced VDF is
given as

vy ¼ �
A1

A0
�

A2
1 � A0ðA2

1 � A2Þ
� �1=2

A0
: (17)

The right-hand side of this equation represents a function of vz.
Although the first term in the right-hand side, �A1=A0, is written in
the form of a parabola, the entire theoretical curve is not a parabola,
because the second term in the right-hand side includes A1 and A2,
both of which are functions of vz. The crescent curve in a reduced
VDF, represented by Eq. (17), depends on the guide field Bg.

In Fig. 7(d), the blue curve shows the theoretical curve Eq. (17).
The theory well explains the crescent boundary, and the opening angle
of the crescent is larger than the prediction for zero-guide field recon-
nection, which is drawn as the orange dashed line, obtained by taking
Bg ! 0 and zc ! 0 in Eq. (17). Note that in the limit of Bg ! 0, we
recover the same parabola as in the zero-guide-field reconnection:2

vy ¼ �A1 ¼ ðm=ebÞz�2sp v2z � ðeb=4mÞz2sp � k=b, because A0 ! 1;
A2 ! 0, and zc ! 0.

The above derivation for the VDF at x¼ 0 and z ¼ zsp is based
on a 1-D assumption, in which fields are independent from the x
position, and electrons are coming to z ¼ zsp from both positive x and
negative x regions, with both positive vx and negative vx values.
However, the crescent boundary is determined by only the positive vx
particles, as discussed in the above, because the shift of the parabola in
each vx-layer is rightward as vxð> 0Þ increases, as seen in Fig. 7(e). In
Sec. IVA, we discuss reduced VDFs in general x positions, but this
treatment, considering electrons with vx > 0, is valid only in x � 0,
and, the crescent shape in reduced VDFs in x< 0 becomes different
from Eq. (17).

Figure 8 compares reduced VDFs in the vy-vz plane on the line
x ¼ xX for various guide fields from BG ¼ 0:1B0 (run 1) to 0:4B0

(run 4). As we move from z ¼ zX þ 0:1di to z ¼ zX þ 0:7di, the
opening angle of the theoretical parabolalike curve becomes wider.
Also, there is a tendency that the opening angle of the parabolalike
curve widens as the guide field increases, if we compare VDFs at the
same z position, from the left panel to the right panel. Those two
tendencies, z dependence and Bg dependence, are consistent with
the theory Eq. (17). The theoretical curves for z ¼ zX þ 0:5di and
z ¼ zX þ 0:7di match the inner boundary of the reduced VDFs in all
the guide fields. At z ¼ zX þ 0:3di, the theory and the simulations
agree except for the region near vz ¼ 0. There is a relatively large
gap between the magenta curve and the crescent inner boundary near
vz ¼ 0. This can be attributed to the effect of Ey, acceleration of elec-
trons to more negative vy, which is omitted in deriving Eq. (17). The
Ey-effect becomes the most significant in the VDFs at z ¼ zX þ 0:1di.
The lack of particles in the negative vz region near the center of the
crescent, i.e., a large gap between the magenta curve and the negative

vz side of the VDF boundary, in each plot is discussed in our previous
study6 as a U-shaped VDF near the X-line.

C. Reduced VDF in the vy-vx plane

Let us discuss the reduced VDF in the vy-vx plane, at
z ¼ zsp > 0. As seen in Figs. 3(f)–3(h), each vz-cut shows a linear cut-
off predicted by Eq. (5), whose direction is nonparallel to the magnetic
field. However, the projection of each vz-cut on the vy-vx plane gives a
different shape of the reduced VDF boundary as seen in Fig. 3(e). We
will show that the guide-field effect on the reduced VDF in the vy-vx
plane can be understood based on the translational mapping from the
X-line VDF.

The VDF mapping from z¼ 0 to z ¼ zsp is a simple translational
shift, vx0 ! vx ¼ vx0 þ ðeBg=mÞzsp and vy0 ! vy ¼ vy0
�ðeb=2mÞz2sp, based on Eqs. (1) and (2), which are two constants of
motion due to the canonical momentum conservation. Figures 9(a)
and 9(b) show the reduced VDFs of meandering electrons at the X-
line, z ¼ zX, and at z ¼ zX þ 0:45di, respectively. The translational
mapping is seen in the bottom (green) and the right (pink) boundaries
because the vx-shift is in the positive direction, and the vy-shift is in
the negative direction. To draw the theoretical curves, we used
vx0 ¼ 5vA � vy0, as seen in the pink curve based on Eq. (6) only in the
region vx � 0, and vx0 ¼ �½ð5v0Þ2 � v2y0�

1=2, as in the green curve in
panel (a), and we used zsp ¼ 0:45di to compute the translational shifts
in vx and vy directions, ðeBg=mÞzsp and �ðeb=2mÞz2sp, respectively, for
panel (b). The pink and green thick curves are the theoretical curves
using the translational shift denoted by the white arrows from the the-
oretical curves in panel (a). The dashed curves in panel (b) are the
same theoretical curves in panel (a).

The direction of the VDF translation is perpendicular to the lin-
ear VDF cut-off in each vz-plane cut, discussed in Sec. IIIA, and in
Figs. 3, 5, and 6. The velocity translation vector, which is denoted as
vt , based on Eqs. (1) and (2) is vt ¼ ½ðeBg=mÞzsp;�ðeb=2mÞz2sp�. Since
Eq. (5) shows that vy � ð2Bg=bzspÞvx , the direction of the boundary
line of the VDF in each vz-cut denoted as vb is vb ¼ ½1; 2ðBg=bzspÞ�.
Thus, vt � vb ¼ 0, and the translational direction of the mapping is
perpendicular to the boundary line of VDF cuts.

The left and top boundaries of the reduced VDF at z ¼ zsp > 0
are determined by the accessibility of X-line particles. We need to first
determine the left and top boundaries of the domain in the X-line
VDF for particles that can reach z ¼ zsp from z¼ 0. Whether X-line
electrons can reach z ¼ zsp is constrained by the energy conservation.
The required condition for particles at z¼ 0 to reach z ¼ zsp is that
the particles at z¼ 0 have enough energy so that v2z � 0 at z ¼ zsp.
From Eq. (7), we have the condition

v2z ¼ v2r0 þ v2x0 � v2x þ /� v2y � 0; (18)

which gives the region in the vy0-vx0 plane for particles at the X-line,
z¼ 0. Another condition for the X-line electrons is that they are
confined in the following velocity space:

v2r0 � ðs�1vx0 � v0Þ2 ðfor vx0 � 0Þ; (19)

vx0 � �ðv20 � v2r0Þ
1=2 ðfor vx0 < 0Þ; (20)

where Eq. (19) represents the inside of the cone in vx0 � 0, and
Eq. (20) represents the inside of the hemisphere in vx0 < 0.
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We combine the above conditions to discuss the particles at z¼ 0
that reach z ¼ zsp. First, we consider particles with vx0 � 0 in Eq. (19).
Substituting vx and vy from Eqs. (1) and (2) into Eq. (18), and consid-
ering Eq. (19), the inequality Eq. (18) becomes the following:

s�1vx0 � v0 � s
eBg

m
zsp

� �2

� vy0 �
eb
2m

z2sp

� �2

� 2sv0
eBg

m
zsp þ ðs2 þ 1Þ eBg

m

� �2

z2sp � /: (21)

This represents a hyperbola for the X-line VDF. In addition, in the
vy0-vx0 plane, particles are bounded by the cone Eq. (19), equivalent to
the following inequalities for vx0 and vy0:

vx0 � sv0 � svy0 � �vx0 þ sv0: (22)

Therefore, in the reduced X-line VDF for vx0 � 0, the particles below
these curves, Eqs. (21) and (22), can reach z ¼ zsp. See the magenta
curve in Fig. 9(c) for Eq. (21), and the pink curve for Eq. (22), and
particles surrounded by these and vx0 � 0 can reach z ¼ zsp
¼ zX þ 0:45di. The particles whose vx0 and vy0 do not satisfy the
above inequalities, Eqs. (21) and (22), will turn back in the z direction
before reaching z ¼ zsp.

Next, for the X-line electrons with vx0 < 0, we can determine the
boundaries of particles that can reach z ¼ zsp in the same way, consid-
ering the energy conservation Eq. (18) and the region Eq. (20). From

FIG. 8. Dependence of reduced VDFs in the vy-vz plane on z positions and various guide field strength (0:1B0 to 0:4B0). Magenta parabolas are Eq. (17). The opening angle
of the parabola depends on guide field strength, and the opening angle becomes wider as BG increases.
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Eq. (20), we have v2r0 þ v2x0 � v20, and substituting this into Eq. (18)
and using Eqs. (1) and (2), we have

vx0 þ
eBg

m
zsp

� �2

þ vy0 �
eb
2m

z2sp

� �2

� v20 þ /: (23)

In addition, from Eq. (20) itself, we have

vx0 � �ðv20 � v2y0Þ
1=2: (24)

Therefore, particles of vx0 < 0 in the X-line VDF within these two
boundaries, Eqs. (23) and (24), can reach z ¼ zsp. See the green curve
for Eq. (24) and the blue curve for Eq. (23) in Fig. 9(c).

Now we have the four boundary curves, Eqs. (21), (22), (23), and
(24), corresponding to magenta, pink, blue, and green curves in Fig.
9(c), respectively, to discuss the VDF at the X-line, and the shaded
region in Fig. 9(c) surrounded by those four curves represents the par-
ticles that can reach the position z ¼ zX þ 0:45di.

Let us then obtain the corresponding four boundaries at the
mapped position z ¼ zsp. Again, we will first obtain the mapped
boundaries at z ¼ zsp due to particles for vx0 � 0 at z¼ 0. From Eqs.
(21) and (22), we can obtain the boundaries of the VDF at z ¼ zsp by
translating vx0 and vy0 to vx and vy, respectively, using Eqs. (1) and (2):

s�1vx � v0 � s�1ðs2 þ 1Þ eBg

m
zsp

� �2
� v2y

� 2sv0
eBg

m
zsp þ ðs2 þ 1Þ eBg

m

� �2

z2sp � /: (25)

vx � sv0 �
eBg

m
zsp � s

eb
2m

z2sp � svy � �vx þ sv0 þ
eBg

m
zsp � s

eb
2m

z2sp:

(26)

Since we limit vx0 � 0 for the above derivation, Eqs. (25) and (26)
apply to only the region vx � ðeBg=mÞzsp, as seen in Eq. (1).

Finally, let us obtain the mapped boundaries at z ¼ zsp due to
particles for vx0 < 0 at z¼ 0. From Eqs. (23) and (24), we obtain the
boundaries of the VDF at z ¼ zsp by translating vx0 and vy0 to vx and
vy, respectively, using Eqs. (1) and (2)

v2x þ v2y � v20 þ /; (27)

vx � � v20 � vy þ
eb
2m

z2sp

� �2
" #1=2

þ
eBg

m
zsp: (28)

These are obtained from the condition that vx0 < 0, i.e.,
vx < ðeBg=mÞzsp, as seen in Eq. (1).

For the VDF at z ¼ zsp, we have the four boundary curves,
Eqs. (25)–(28), corresponding to magenta, pink, blue, and green
curves in Fig. 9(d), respectively, and the shaded region sur-
rounded by those four curves in Fig. 9(d) describes the region
of the velocity space at z ¼ zX þ 0:45di mapped from the X-line
VDF.

Comparing Figs. 9(c) and 9(d), we can see the translational
mapping between z ¼ zX and z ¼ zX þ 0:45di. Note that in
Fig. 9(d), there are particles outside the boundaries by Eqs. (27) and
(28), left to the blue curve in vy < 0. These particles exist, because
of acceleration by the reconnection electric field Ey, which we
neglected in this analysis.

As seen in the theory and simulation results, the guide-field effect
is the translational shift of electron motion in the vx direction, and this
shift in the vx positive direction results from electron gyration in a
positive guide field By. When electrons are moving from z¼ 0 to
z ¼ zsp > 0, there is a conversion of velocity from a positive vz to a
positive vx during the gyration. Therefore, for the positive z region in
the magnetospheric side, the translational shift in vx is always positive.
In contrast, the transnational shift in the vy direction is due to particle
motion in the magnetic field Bx. Since vz (>0) is converted to negative
vy during the electron meandering motion in z> 0, the shift of vy
always occurs in the negative direction.

Figure 10 shows reduced VDFs in the vy-vx plane on the line
x ¼ xX for various z positions and guide fields. In each panel, the
magenta, pink, blue, and green curves show the prediction curves
based on Eqs. (25)–(28), respectively. The theory predicts that particles
surrounded by those four curves are mapped from the corresponding
part of the VDF at z ¼ zX (in the theory, z¼ 0), due to the transla-
tional mapping. In VDFs at z ¼ zX þ 0:7di, most of the particles in
each plot are confined in the region surrounded by the four theoretical
curves. In VDFs at z ¼ zX þ 0:5di, there are some electrons outside
the region surrounded by the four theoretical curves, in particular, in
the left side of the blue theoretical curve. These are particles considered
to be accelerated by the reconnection electric field Ey. In the smaller z
positions, z ¼ zX þ 0:3di and z ¼ zX þ 0:1di, there are many elec-
trons outside the blue curve and the magenta curve. They tend to be
shifted to the negative vy side, which is also due to the effect of the
acceleration by Ey. Overall, the theory and simulations are in good
agreement.

FIG. 9. Reduced VDFs in the vy-vx plane for run 2. (a)(c) VDF at the X-line. (b)(d)
VDF at x ¼ xX and z ¼ zX þ 0:45di . Four curves (magenta, pink, blue, and green)
are Eqs. (21)–(24), respectively, in panel (c), and Eqs. (25)–(28), respectively, in
panel (d). The shaded area shows a translational mapping.
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IV. THEORY OF ELECTRON VDFS IN GENERAL x-z
POSITIONS
A. Reduced VDF in the velocity plane perpendicular to
the magnetic field

We have discussed so far the boundaries of crescent VDFs along
x¼ 0, where the normal magnetic field, Bz, is zero. The theory in
Sec. III is based on a 1-D model with Bz ¼ 0, and this approximation
is valid around x¼ 0. However, in a general x-z position in the EDR at
a nonzero x position, the crescent structure in the vy-vz plane is slightly

deformed (data not shown) from the one expressed in Eq. (17) as we
move away from the x¼ 0 line, because of the normal magnetic field
Bz, which is an increasing function of x. In other words, the gyration
around Bz and the parallel motion along Bz will modify the shape of a
VDF in the vy-vz plane.

If jBzj in the EDR is much smaller than jBxj, the effects of the
gyration and the parallel motion due to Bz are considered secondary
effects, and we expect that the same crescent structure perpendicular
to the magnetic field holds in a general x position in the EDR. In this
section, we will derive a theory to describe a VDF in a general x-z

FIG. 10. Dependence of reduced VDFs in the vy-vx plane on z positions and various guide field strength (0:1B0 to 0:4B0). Four theoretical curves (magenta, pink, blue, and
green) are Eqs. (25)–(28), respectively. Translational mapping can explain each shape of the reduced VDF.
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position under such a case. We will use the velocity plane perpendicu-
lar to the magnetic field, denoted by the v?1-v?2 plane, the same field-
aligned coordinates used in space observations, such as Refs. 9, 10, 13,
and 14. We define vectors v?1 and v?2 as v?1 ¼ b� ðVe � bÞ and
v?2 ¼ �V e � b, respectively, with b the unit vector parallel to the
magnetic field, and the electron fluid velocity V e. The velocity compo-
nents v?1 and v?2 for a particle are obtained as v?1 ¼ vp � v?1=jv?1j
and v?2 ¼ vp � v?2=jv?2j, respectively, where vp is particle’s velocity.

Before discussing VDFs in general positions, let us derive the
form of the VDFs at x¼ 0 in the v?1-v?2 plane. We rotate a coordi-
nate system vx-vy into vxr-vyr around the vz axis, where the subscript r
represents the rotated system. Since the region we discuss is near the
electron stagnation point, the fluid velocityVez is negligibly small com-
pared with other components. Neglecting Vez, we rotate the coordi-
nates vx-vy around the vz axis, so that vxr becomes vk, the velocity
parallel to the magnetic field, which results in vyr and vzr being �v?1
and �v?2, respectively. Note that vzr ¼ vz , and see Fig. 11(a) for this
rotation. The relationship between the original vx-vy coordinates and
the vxr-vyr coordinates is

vxr ¼ vx cos hþ vy sin h; (29)

vyr ¼ �vx sin hþ vy cos h; (30)

where h is the angle between the vx axis and the magnetic field B, i.e.,
cos h ¼ Bx=B and sin h ¼ Bg=B, where B ¼ ðB2

x þ B2
gÞ

1=2. Note that
Bz is zero at x¼ 0. Using the above rotation, let us obtain the shape of a
reduced VDF at x¼ 0, the same reduced VDF as discussed in Eq. (17),
in the v?1-v?2 plane. The velocity vx is obtained from Eq. (5), changing
the inequality to the equality, and vy satisfies Eq. (17). Using the expres-
sion of vy in Eq. (17) as a function of vz, we can express vx obtained
from Eq. (5) as a function of vz. We substitute these vx and vy, expressed
as functions of vz, to Eq. (30) to obtain the relationship between vyr and
vzr, considering the relationship vz ¼ vzr . Since vyr ¼ �v?1 and
vzr ¼ �v?2, we obtain the relationship between v?1 and v?2 as follows:

v?1 ¼
bzsp
2Bg

vy �
m
eb

z�2sp v2?2 þ
1
4
eb
m
z2sp þ

k
b
� 2

k
b
zc
zsp

�

þ
eBg

m

Bg

b

�
sin h� vy cos h; (31)

where vy is given as Eq. (17), replacing vz with�v?2. Note that we can
obtain the same v?1-v?2 relationship in a different way, similar to the
derivation of Eq. (17), by converting vx and vy in Eqs. (5) and (11) into
vxr and vyr using Eqs. (29) and (30), and then eliminating vxr (¼vk) in
the system of equations to obtain the vyr-vzr relation, equivalently the
v?1-v?2 relation, which is expressed as a more complex equation than
Eq. (31), as seen in Appendix B, Eq. (B3). We numerically confirmed
that Eqs. (31) and (B3) represent exactly the same curve.

Figure 11(g) shows an example of a VDF in the v?1-v?2 plane at
z ¼ zX þ 0:45di and x¼ xX, corresponding to x¼ 0 in the theory. We
converted the velocity plane from the vx-vy-vz coordinates to the vk-
v?1-v?2 coordinates; therefore, the crescent appears in the right side of
the v?1-v?2 plane. The theoretical curve of Eq. (31) is drawn as the
magenta curve, and the theory and simulation are in good agreement.

Now, let us discuss crescent electrons at a finite x position. First,
we consider a mapping of a reduced VDF in the v?1-v?2 at x¼ 0 to a
position x ¼ xr > 0, right side of the X-line. To reach the region
x> 0, particles at x¼ 0 need to have a positive vx. As seen in the

derivation of Eq. (17), the crescent boundary at x¼ 0 is determined by
particles with vx0 > 0, i.e., vx > ðeBg=mÞzsp, which is derived from
Eq. (1). As long as the position z ¼ zsp is positive in the magneto-
spheric side, the particles that determine the crescent boundary moves
in the region x> 0. Therefore, this boundary Eq. (17) at x¼ 0 due to
particles with vx > 0 can be mapped into the reduced VDF at
x ¼ xr > 0. If there is no Bz in the x> 0 region, we expect that there is
an identity mapping of the VDF from x¼ 0 to a position x ¼ xr > 0.
If there is a small Bz, which is a linear function of x, electrons gyrate
around Bz; however, we expect that meandering motion is almost the
same as the zero Bz case, but the plane of the meandering is perpendic-
ular to the local magnetic field, which is the v?1-v?2 plane. The simu-
lations show that jBzj in jx � xX j < 1:0di in the EDR is about an
order of magnitude smaller than Bx at the z-directional edge ðz > zXÞ
of the EDR; therefore, we can treat the meandering motion almost
the same as the zero Bz case, and only rotate the meandering into the
v?1-v?2 plane. In other words, we assume that there is, approximately,
an identity mapping of the VDF in the v?1-v?2 plane from x¼ 0 to
x¼ xr. Under this assumption, Eq. (31) represents the crescent bound-
ary of the reduced VDF in the v?1-v?2 plane in a general x-z position,
but x> 0, of the EDR.

In the above discussion, we consider a mapping from the VDF at
x¼ 0 to x ¼ xr using only particles with vx > 0. In reality, the VDF at
x ¼ xr is composed of particles not only with vx > 0, which come
from x¼ 0 and also 0 < x < xr , but also particles with vx < 0, which
come from the region x > xr . We will see later in the simulation result
that the effect of the particles from x > xr with vx < 0 on the crescent
boundary of the VDF at x ¼ xr is negligibly small, and using only
vx > 0 particles as in the above-mentioned mapping is sufficient to
explain the crescent at x¼ xr.

Next, we will discuss a reduced VDF in the v?1-v?2 plane at a
position x ¼ xl < 0, left side of the X-line. If we consider a mapping
from x¼ 0 to x ¼ xlð< 0Þ, only particles with negative vx at x¼ 0 can
reach the region x< 0. Since the boundary determined by Eq. (17) is
due to particles with positive vx, in order to discuss the boundary of a
VDF at x ¼ xl < 0, we need to replace Eq. (17) with a different
boundary curve determined by particles with vx < 0, which will be
substituted into Eq. (30).

The new crescent boundary due to particles with vx < 0 is
obtained by applying a similar way to derive Eq. (17). The reason
why the crescent boundary by Eq. (17), for a reduced VDF of par-
ticles with vx > 0, is different from the parabola represented by
Eq. (5), for a vx-cut of a VDF, is because the radius of the cross sec-
tion circle, Eq. (7), decreases as vx increases, while the parabola
Eq. (5) is shifted rightward, as seen in Figs. 7(e) and 7(f). For negative
vx particles, as jvxj increases (vx decreases), the radius of the cross
section circle also decreases, as seen in Figs. 11(b) and 11(c), but the
parabola Eq. (5) is shifted leftward, as seen in Fig. 11(d). Therefore,
the crescent boundary in the vy-vz plane is determined by the right-
most boundary curve of Eq. (5), which corresponds to the curve of
Eq. (5) with vx¼ 0.

To see this, and to understand how the VDF boundary is deter-
mined by particles with vx < 0, let us discuss more details based on
Figs. 11(b)–11(d). Figure 11(b) shows the X-line VDF at z¼ 0 in the
vy0-vx0, where three dashed lines are three cuts of the VDF at constant
vx0ð< 0Þ. Each cut has a circular cross section. The top dashed line is
at vx0 ¼ �1:75vA, which maps to vx ¼ 0 at z ¼ zsp ¼ 0:4di, and
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the other two cuts, vx0 ¼ �3:4vA, and �4:5vA, map to negative
vx-values, based on Eq. (1) using zsp ¼ 0:4di and Bg ¼ 0:175B0 for
run 2. Figure 11(c) shows the X-line VDF in the vy0-vz0 plane, and the
three circles correspond to the cross section at each vx0-cut. In Fig.
11(d), the three circles are the mapped circles based on Eqs. (7)

and (1), where v2r0 þv2x0 ¼ v20 with v0 ¼ 5vA. The outermost circle is
the one mapped from vx0 ¼ �1:75vA, and the innermost circle is the
one mapped from vx0 ¼ �4:5vA. In addition to those circles, we plot-
ted three parabolas, each of which corresponds to the parabola based
on Eq. (5). The rightmost parabola is the one for vx0 ¼ �1:75vA,

FIG. 11. (a) Rotation from vx-vy to vxr-vyr. The angle h is between the vx axis and the magnetic field B. The vxr axis is parallel to the magnetic field, and the vyr axis is parallel
to �b� ðVe � bÞ. (b)–(e) Mapping from z¼ 0 to z ¼ zsp for particles in x< 0. (b) and (c) X-line VDF. Three dashed lines in (b) are cuts in various vx0 planes. Cross sec-
tions in those cuts are shown in (c). (d) and (e) Mapped cross sections at z ¼ zsp. Three circles correspond to the original circles at z¼ 0. Three magenta parabolas are Eq.
(5) based on corresponding vx. Panel (e) shows regions where electrons can exist. Since the light blue crescent includes the entire mapped crescents, the parabola boundary
for vx ¼ 0 gives the boundary of the crescent electrons in x< 0. (f)–(h) Crescent VDFs in the velocity plane perpendicular to the magnetic field (in the v?1-v?2 plane) at
x ¼ xX � 1di , x ¼ xX, and x ¼ xX þ 1di , respectively, and z ¼ zX þ 0:45di . Magenta curves are Eq. (31), while green curves are Eq. (33). There is asymmetry in the
reduced VDF shape between the right side of the X-line (h) and the left side of the X-line (f).
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corresponding to vx ¼ 0, and the leftmost parabola is the one for
vx0 ¼ �4:5vA. As jvx0j increases (vx0 decreases), the parabola is shifted
leftward, and the radius of the mapped circle decreases. Electrons need
to be within the region surrounded by the circle and the parabola in
each vx-cut plane, as seen in the light blue, light green, and orange
curves in Fig. 11(e), and we see that the outermost region, surrounded
by the light blue boundaries, determines the crescent of the reduced
VDF. Therefore, the rightmost parabola, Eq. (5) by vx ¼ 0, corre-
sponding to vx0 ¼ �1:75vA, represents the boundary of the VDF in
the region x< 0.

Based on the above, to discuss a reduced VDF in the v?1-v?2
plane at x ¼ xl < 0, we will use Eq. (5) with vx ¼ 0, from which we
obtain

vy ¼
m
eb

z�2sp v2z �
1
4
eb
m
z2 � k

b
þ 2

k
b
zc
zsp
� eBg

m

Bg

b
; (32)

and we substitute this vy and vx ¼ 0 into Eq. (30). As a result, after
using vy ¼ �v?1 and vz ¼ �v?2, we obtain the crescent boundary in
the v?1-v?2 plane at x ¼ xl < 0, due to particles with vx < 0 as

v?1 ¼ �
m
eb

z�2sp v2?2 �
1
4
eb
m
z2sp �

k
b
þ 2

k
b
zc
zsp
� eBg

m

Bg

b

 !
cos h: (33)

Again, we assume an identity mapping from x¼ 0 to x ¼ xl < 0, and
we can use Eq. (33) to describe the crescent boundary of the reduced
VDF in the v?1-v?2 plane in a general x-z position in x< 0.

In the above discussion for a VDF at x ¼ xl < 0, we consider a
mapping from x¼ 0 to x ¼ xl, only using particles with vx < 0. In
reality, the VDF at x ¼ xl < 0 is composed of particles not only with
vx < 0, which come from x¼ 0 and also xl < x < 0, but also particles
with vx > 0, which come from x < xl . If the effect of particles with
vx > 0 coming from x < xl is significant, the boundary of the VDF at
x ¼ xl becomes different from Eq. (33). We will see later in simulation
results that the effect of particles vx > 0 on the boundary of the VDF
at x ¼ xl is minor, and the mapping by particles with vx < 0 well
explains the VDF at x¼ xl.

Figures 11(f) and 11(h) show the reduced VDFs at z ¼ zX
þ 0:45di and x ¼ xX � 1:0di, and z ¼ zX þ 0:45di and x ¼ xX
þ 1:0di, respectively. In the positive x side, Fig. 11(h), the boundary of
the VDF is well explained by Eq. (31), drawn by the magenta curve.
On the other hand, in the negative x side, Fig. 11(f), the boundary of
the VDF matches Eq. (33), drawn by the green curve.

Figure 12 shows reduced VDFs in the v?1-v?2 plane in general
x-z positions in the diffusion region for run 2 (BG ¼ 0:2B0). The top
panel shows the contour of Ez, and multiple red and pink boxes where
VDFs are measured. The top right panel represents an example of a
reduced VDF in the v?1-v?2 plane, where the magenta curve and the
green curve represent the theoretical curves Eqs. (31) and (33), respec-
tively, which are the mapping for the positive and the negative x
regions, respectively. The multiple panels below the Ez panel show
reduced VDFs in the v?1-v?2 plane, and each panel corresponds to
the position of a red or a pink box in the top panel. The x positions are
shown in the top of the multiple VDF panels, and the z positions are
shown in the left panels. In each VDF, either the theoretical curve Eq.
(31) or Eq. (33) is drawn, depending on whether the x position is in
the positive side from the X-line, x � xX , or the negative side, x � xX .
On the VDFs at x ¼ xX, both theoretical curves are drawn. To plot

each VDF, we converted the coordinate system from vx-vy-vz into
vk-v?1-v?2, using local Ve and b. There are matches between the
theory and the boundaries of VDFs in red boxes, as seen in the top Ez
plot, which reside outside the separatrices in the magnetospheric side
of the EDR. The pink boxes are where the theory and the boundaries
of VDFs show some disagreement, and those boxes are located, basi-
cally, on the separatrices in the magnetospheric side. In the VDF pan-
els, the pink lines separate the group of VDFs in which the theory and
the simulation have agreement (outside the separatrices) and the group
in which the theory and the simulation have differences. The region of
the red boxes, the outside of the separatrices, is where electrons are
meandering; therefore, the theoretical curves and the VDFs show good
agreement. In contrast, the region of pink boxes (inside those separatri-
ces) is where outflows are generated, and reconnected field lines are
convected from the X-line. In that region, we expect that there are
many electrons that are not only meandering but also magnetized and
moving along magnetic field lines. Since the theory assumes that all the
electrons are unmagnetized in the EDR and they are meandering across
the current sheet, the theory can be applied only to VDFs outside the
separatrices, which is the region with red boxes.

Figure 13 shows reduced VDFs in the v?1-v?2 plane for run 4,
which has a larger guide field BG ¼ 0:4B0. There is agreement between
the theory and simulation VDFs in the region outside the separatrices,
corresponding to the red box region, while there are some discrepan-
cies between them in the region near the separatrices, corresponding
to the pink box region. However, compared with the case in Fig. 12 for
BG ¼ 0:2B0, there are a couple of different features. One is that the
pink regions, where the theory does not match the boundaries of
the VDFs, are not on the separatrices in the magnetospheric side of
the EDR, but there are pink boxes slightly away from the separatrices,
and the red region, where the theory matches the VDFs, becomes nar-
rower in the x direction than that in a smaller guide field case, Fig. 12.
Another difference between a case with a larger guide field
BG ¼ 0:4B0 and that with BG ¼ 0:2B0 is that VDFs along x ¼ xX
� 0:5di do not match the theory of green curves, and there are many
electrons inside the green crescent boundaries. Instead, one can say
that they match the theory of magenta curves better, even though there
are small gaps between the curves and the VDFs. The exact reason for
these differences is still unknown; however, as we see in Subsection
IVB and Fig. 16, the VDFs along x ¼ xX � 0:5di contain small num-
bers of electrons with vx < 0, and there are many vx > 0 electrons,
which were discussed when deriving the magenta theory curves.
Therefore, the theory with vx > 0, for magenta curves, works well in
the region close to x¼ xX even slightly in the negative x side. The over-
all tendency that the theory agrees with simulation VDFs outside the
separatrices holds in this large guide field case and in the small guide
field case.

In both runs, Fig. 12 for run 2 (BG ¼ 0:2B0) and Fig. 13 for run 4
(BG ¼ 0:4B0), some VDFs show multiple components. For example,
in Fig. 13 for run 4, double stripes along the crescent are seen in the
VDFs at ðx;zÞ¼ðxXþ0:5di;zXþ0:25diÞ; ðxXþ1:0di;zXþ0:25diÞ;
ðxXþ0:5di;zXþ0:35diÞ, and ðxXþ1:0di;zXþ0:35diÞ. Those multi-
ple stripes may be due to acceleration by the reconnection electric field
to the v?1-direction, perpendicular to the magnetic field, as discussed
in Ref. 6. Also, three blobs are seen in the VDFs at ðx;zÞ¼ðxX ;zX
þ0:25diÞ; ðxX�0:5di;zXþ0:25diÞ, and ðxX�1:0di;zXþ0:25diÞ,
which may indicate that the acceleration history varies in each
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component. Further studies by particle tracing in PIC simulations are
necessary to understand these detailed structures in VDFs.

B. Cut of VDF in the v?-vk plane

Finally, let us focus on cuts of VDFs in the v?1-vk plane, and dis-
cuss the guide field effect, the formation of a straight-line cut-off of a
VDF nonparallel to the magnetic field. In Sec. IIIA, we showed that a
cut of a VDF in the vy-vx plane has a straight-line cut-off,
vy � ð2Bg=BxÞvx , whose slope is twice larger than the slope deter-
mined by the direction parallel to the magnetic field Bg=Bx , and this is
because electrons meander across the current sheet in a linearly
increasing magnetic field Bx ¼ bz. To derive that straight-line cut-off,
Eq. (5) was applied only to VDFs on the line x¼ 0, but using the same

concept, an identity mapping from x¼ 0 to a general x position, as in
the previous Subsection IV A for reduced VDFs in the v?1-v?2 plane,
let us discuss a cut of an VDF in the v?1-vk plane in a general x-z posi-
tion in the EDR.

We will convert the vy-vx coordinate into the v?1-vk coordinate,
based on Eqs. (29) and (30), using vxr ¼ vk; vyr ¼ �v?1, and
vzr ¼ �v?2. From Eqs. (29) and (30), we obtain the reverse conversion
relationship as

vx ¼ vk cos hþ v?1 sin h; (34)

vy ¼ vk sin h� v?1 cos h: (35)

Substituting these Eqs. (34) and (35) into Eq. (5), we obtain the
inequality for v?1 and vk as

FIG. 12. Crescent boundaries in general x-z positions in run 2 (BG ¼ 0:2B0). Top left: Ez contour and multiple regions where VDFs are measured (each box size is 0:5di in x
and 0:1di in z). Red boxes are where theory and simulations are in good agreement, while pink boxes are where there are differences between theory and simulations. Top
right: An example of a reduced VDF in the v?1-v?2 plane. The magenta curve is Eq. (31), and the green curve is Eq. (33). Lower multiple panels: Reduced VDFs in the
v?1-v?2 plane. Pink lines between panels divide VDFs into the red box group and the pink box group. VDFs and theory are in good agreement (red box group) outside the
magnetospheric separatrices.
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v?1 � �
2
Bg

bzsp
cos h� sin h

cos hþ 2
Bg

bzsp
sin h

vk

�

m
eb

z�2sp v2?2 �
1
4
eb
m
z2sp �

k
b
þ 2

k
b
zc
zsp
�
eBg

m

Bg

b

cos hþ 2
Bg

bzsp
sin h

; (36)

where cos h and sin h are cos h ¼ Bx=B and sin h ¼ Bg=B with
B ¼ ðB2

x þ B2
gÞ

1=2, respectively, and we replaced vz with �v?2. Note
that the denominator, cos hþ 2ðBg=bzspÞ sin h, is always positive if
zsp > 0. If we specify a v?2 value, Eq. (36) will give a straight-line

cut-off of a VDF in the v?1-vk plane. Equation (36) shows a straight
line inclined from the vk axis because electrons are meandering in a
linearly increasing magnetic field Bx ¼ bz, instead of gyrating around
the magnetic field.

We here again assume an identity mapping from the cut of an
VDF at x¼ 0 to a cut of an VDF with a finite x position. The mapping
to the positive x region requires the condition that vx > 0. From Eq.
(34) and considering vx > 0, we obtain the following condition for vk
and v?1 as

v?1 > �vk coth: (37)

Therefore, in the positive x region, both Eqs. (36) and (37) need to be
satisfied. On the other hand, to discuss the negative x region, which
requires vx < 0, we obtain the condition from Eq. (34) as

FIG. 13. Crescent boundaries in general x-z positions in run 4 (BG ¼ 0:4B0). Same format as Fig. 12.
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v?1 < �vkcoth: (38)

In the negative x region, both Eqs. (36) and (38) need to be satisfied.
Figures 14(a)–14(c) compare the prediction by Eq. (36), drawn

by the magenta lines, with simulation VDFs at x ¼ xX � 1:0di, x
¼ xX, and x ¼ xX þ 1:0di, respectively, for z ¼ zX þ 0:45di. They are
the cuts of the same VDFs in Figs. 11(f)–11(h) at the v?2 ¼ 0 plane,
using a particle velocity range �0:5vA � v?2 � 0:5vA to make these
plots. In the panels (a) and (c), the lines for Eqs. (37) and (38) are plot-
ted by the light blue lines. The theory Eq. (36) matches well the VDF
at x ¼ xX in panel (b). In panel (c) for the positive x side, the region
determined by Eq. (37) is above the light blue line; therefore,
meandering electrons should appear in the region above both the
magenta line and the light blue line, which is the region with the
solid light blue dot. The VDF at x ¼ xX þ 1:0di matches the theo-
retical prediction. Note that particles below the light blue line cor-
respond to vx < 0, which come from the region x > xX þ 1:0di,
and their contribution to determine the crescent boundary, dis-
cussed in Subsection IV A, is minor, and negligible in this v?2 ¼ 0
case, and generally small in other v?2 planes as well as other x-z
positions. In contrast, in panel (a) for the negative x side, the
region determined by Eq. (38) is below the light blue line; there-
fore, meandering electrons should appear in the region above the
magenta line, but below the light blue line, which is the region with
the solid light blue dot in panel (a). In the region above the light
blue line, which is the region excluded from Eq. (38), meandering
electrons coming from x > xX � 1:0di should not appear.
Therefore, we interpret that particles appearing above both the
magenta curve and the light blue curve in panel (a) are either
meandering particles from x < xX � 1:0di or magnetized electrons,
which are gyrating along the magnetic field. Since the VDF in the
velocity region above both the magenta line and the light blue line
extends almost in the vertical direction, parallel to the magnetic
field, these electrons may be magnetized to some degree and mov-
ing along the magnetic field. However, this component also has a
positive constant v?1, and v?1 is much larger than the E�B drift
speed, which is around 0:6vA at this position. Therefore, they are
not perfectly magnetized electrons. Overall, the three panels

(a)–(c) indicate that the theoretical predictions by Eqs. (36)–(38)
show agreement with VDFs in general positions of x.

Figures 15 and 16 show cuts of VDFs in the v?1-vk plane in gen-
eral x-z positions for run 2 (BG ¼ 0:2B0) and run 4 (BG ¼ 0:4B0),
respectively, for the z positions z ¼ 0:35di and z ¼ 0:65di. The v?2
value is shown in each panel, and the range of v?2 is 60:5vA around
the specified v?2. The magenta lines represent Eq. (36), and the light
blue lines represent Eqs. (37) or (38). In the positive and the negative x
regions, the velocity domain indicated by a light blue dot is where the
theory predicts that meandering particles exist. In Fig. 15, most par-
ticles in the velocity domain indicated by a light blue dot in each panel
are bounded by the theoretical lines. However, a large number of par-
ticles appear outside the predicted boundaries on the negative side of
the X-line, x < xX , for a higher Bg ¼ 0:4B0 (run 4) as shown in Fig.
16. In this negative domain, there are electrons along the vertical direc-
tion with a constant positive v?1, suggesting partially magnetized elec-
trons, mainly above the light-blue-dot region. This tendency is
conspicuous at x ¼ xX � 1:0di, and the parallel extending component
appears even in the light-blue-dot region in some panels. In run 4
(BG ¼ 0:4B0, Fig. 16), the negative x region shows small numbers of
electrons in the light-blue-dot regions, corresponding to vx < 0. At
x ¼ xX � 1:0di, most of the electrons appear as the parallel extending
component, with a constant v?1, above the light-blue-dot regions.
This suggests that in a larger guide field run (run 4), many electrons in
the negative x region are coming from the left to each VDF measure-
ment point, with vx > 0, not from the right side including the X-line,
with vx < 0. At x ¼ xX � 0:5di, in the region above the light blue dot,
electrons are not aligned parallel to the magnetic field, but they extend
along the magenta theoretical curve, suggesting that they are unmag-
netized and meandering across the current sheet. Since they appear
above the light-blue-dot regions, they are not from the X-line, with
vx < 0, but from the left to each VDF measurement point with
vx > 0. Therefore, if we look into the VDF in the v?1-v?2 in Fig. 13,
the crescent boundary in each panel at x ¼ xX � 0:5di does not match
the green theoretical curve, Eq. (33), which assumes electrons with
vx < 0, but match the magenta theoretical curve, Eq. (31), which
assumes electrons with vx > 0.

FIG. 14. (a)-(c) Cuts of VDFs in the velocity plane coplanar with the magnetic field (in the v?1-vk plane) at x ¼ xX � 1di , x ¼ xX, and x ¼ xX þ 1di , respectively, and
z ¼ zX þ 0:45di . Magenta lines are Eq. (36), and light blue lines are Eqs. (37) and (38). The closed light blue dot indicates the region where electrons from x¼ 0 can reach.
Panels (b) and (c) show agreement between the theory and the VDFs. Panel (a) shows a vertical (parallel) component above the light blue line.
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In Table II, to facilitate comparisons of our theoretical and simu-
lation results with space observations of electron distribution functions
from magnetopause diffusion regions, we summarize all the obtained
theoretical VDF boundaries for meandering electrons in this study,
using L-M-N coordinates by minimum variance analysis,23 where L is
the outflow direction, M is the out-of-plane direction, and N is the
direction normal to the current sheet. The coordinates L, M, and N
correspond to x, y, and z, respectively, and BL > 0 in N> 0.

In the theory, we assume that the guide field strength is not
too large, in the range 0:5B0 > Bg . If the guide field strength is
much larger than 0:5B0, we expect that electrons become more
magnetized than those in this study, and the theory obtained in
this paper may need modification. Roughly speaking, the threshold
of the guide field can be estimated as follows. When electron

meandering motion is dominant compared with the gyromotion in
the guide field, an inequality ðebv0=mÞ1=2 > eBg=m is expected to
be satisfied, where the left-hand side is the characteristic frequency
of the meandering motion (see Eq. (17) in Ref. 6), and the right-
hand side is the gyro frequency in the guide field. The velocity v0 is
a typical meandering speed at z¼ 0. Substituting simulation values
of b � 1B0=di based on Table I, v0 � 5vA based on the X-line distri-
bution in Fig. 2, and mi=me ¼ 25 used in this study, we obtain that
0:45B0 > Bg . We expect that if Bg is much greater than 50% of the
reconnecting field, the gyration effect due to Bg dominates over the
meandering motion in Bx, and the theory may need modification.
Note that in the above estimate, fixed values of b and v0 are used
under a fixed mass ratio. Further studies are needed to obtain a pre-
cise guide field threshold.

FIG. 15. Cuts of VDFs in the v?1-vk plane in general x-z positions for run 2 (BG ¼ 0:2B0). Top two rows: cuts of VDFs at z ¼ zX þ 0:65di , for v?2 ¼ 0 and �4vA. The bin
size to measure VDFs is 0:5di in x and 0:1di in z. Bottom two rows: Cuts of VDFs at z ¼ zX þ 0:35di , for v?2 ¼ 0 and �4vA. Magenta lines are Eq. (36), while light blue
lines are Eqs. (37) and (38). The light blue dot represents the region where electrons from x¼ 0 can reach. In the positive x region, theory and simulations agree well. In the
negative x region, there are vertical (parallel) components in the velocity region above the region with the light blue dot.
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FIG. 16. Cuts of VDFs in the v?1-vk plane in general x-z positions for run 4 (BG ¼ 0:4B0). Same format as Fig. 15.

TABLE II. Summary of the theory to compare with the space observation data.

Distribution cuts, along the L ¼ 0 line
Cut of VDF in the vM-vN plane at vL ¼ vLa

vM �
m
eb

N�2v2N �
1
4
eb
m
N2 � k

b
þ 2
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bN
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kNc

Bg

 !
� eBg

m
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b

See Eq. (5) and Fig. 4

Cut of VDF in the vM-vL plane at vN ¼ vNa vM � 2
Bg

bN
vL þ

m
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N�2v2Na �
1
4
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m
N2 � k

b
þ 2

k
b
Nc

N
� eBg

m
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b
See Eq. (5) and Fig. 5
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V. CONCLUSION

We have studied electron VDFs, focusing on meandering elec-
trons from the magnetosheath, in the EDR of asymmetric reconnec-
tion with guide fields. The effects of a guide field on crescent electron

VDFs due to meandering electrons are summarized as follows: (1) A
guide field changes the vy-intercept of the crescent-shaped boundary
in a vx-cut of a VDF. (2) Because of a guide field and meandering
motion, a vz-cut of an VDF has a linear line cut-off whose slope is
nonparallel to the local magnetic field. (3) A reduced VDF integrated

TABLE II. (Continued.)

Reduced distributions, along the L ¼ 0 line
Reduced VDF in the vM-vN plane

vM � �
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See Eq. (17) and Fig. 8
Reduced VDF in the vM-vL plane For the region vL � eBg=m
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See Eqs. (25), (26), (27) and (28) and Fig. 10

Distributions in a general L position
Reduced VDF in the v?1-v?2 plane For L > 0:
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where vM is given in the row “Reduced VDF in the vM-vN plane” (with the equal sign).
See Eq. (31) and Fig. 11(h).

For L < 0:
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See Eq. (33) and Fig. 11(f).
Cut of VDF in the v?1-vk plane at v?2 ¼ v?2a
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and
v?1 > �vkcoth in L > 0,

or
v?1 < �vkcoth in L < 0

See Eqs. (36), (37) and (38) and Fig. 14
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along vx shows a larger opening angle of the crescent under a guide
field, compared with a zero-guide field case. The dependence of the
crescent opening angle in a reduced VDF on a guide field is more
noticeable than the dependence of the vy-intercept in a cut of a VDF.
(4) A reduced VDF integrated along vz shows a translational mapping
from the VDF at the X-line, in which the translational direction is
perpendicular to the cut-off line of a vz-cut of a VDF. (5) In general
positions of x-z, crescent electron VDFs perpendicular to the magnetic
field show an identity mapping from VDFs at x¼ 0, as long as the
position is outside the magnetospheric separatrices. (6) In general
positions of x-z, the cut of an VDF with a constant perpendicular
velocity (a constant v?2) shows a linear cut-off that is not parallel to
the magnetic field, and an identity mapping is seen.

The above results are useful for space measurements of EDRs of
reconnection by spacecraft in Earth’s magnetosphere, such as NASA’s
MMS mission. There are a number of EDR events observed by MMS,
with various strengths of guide fields, and we expect that our theoreti-
cal predictions of the boundary shapes of crescent electron VDFs can
be applied to those events. In this study, we have derived theoretical
prediction curves for general positions in the x-z plane, which is one of
the major advancements over our previous studies focusing on the
x¼ 0 line. In this study, we have investigated up to the strength of a
guide field 40% of the asymptotic magnetic field, and we have
confirmed that within this range of the guide field, our theory is valid
if reconnection is laminar.

Furthermore, we have newly shown that meandering elec-
trons exhibit a VDF cut-off nonparallel to the magnetic field, as
explained in the above summaries (2) and (6), about the cut of an
VDF in the vy-vx plane with a constant vz or the vk-v?1 plane with
a constant v?2. This feature will be useful to identify meandering
and unmagnetized electrons in an EDR to distinguish a crescent
VDF structure due to meandering from the ones due to magne-
tized electrons.22 If we observe a crescent electron VDF with a
slope, in the velocity plane coplanar with a magnetic field, differ-
ent from the magnetic field direction, they can be unmagnetized
meandering electrons.
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APPENDIX A: THE CONDITION FOR vzd0 TO DERIVE
EQ. (5)

To derive Eq. (5), we applied the condition v2zd0 � 0 to Eq. (4).
The crescent boundary of a VDF, which is a parabola represented
by Eq. (5), is determined by the particles with vzd0 ¼ 0. However,
this condition is valid only for vxd0 < 0, which is seen in the discus-
sion below, and we need to use a different condition v2zd0 � cz when
vxd0 � 0, where cz is a positive function of vxd0 and vyd0. In this sec-
tion, we will derive this cz, and show that the correction to the curve
Eq. (5) due to cz is minor and can be neglected.

Since there is a guide field By ¼ Bg, the magnetic force in the z
direction for an electron at z¼ 0 is �evxd0Bg in the drifting frame,
where Ez disappears. When vxd0 < 0, this force is positive; therefore,
particles vzd0 ¼ 0 can move into the region z> 0. However, if
vxd0 � 0, the force �evxd0Bg � 0, and the particles with vzd0 ¼ 0
cannot enter the region z> 0. Therefore, when vxd0 � 0, the par-
ticles with vzd0 ¼ 0 cannot determine the parabolic boundary Eq.
(5), but there should be a lower limit of vzd0ð> 0Þ that constitutes
the crescent boundary of a VDF.

Let us obtain cz, which is the lower bound of v2zd0 for the cres-
cent boundary, from the z motion of particles. From Eq. (4), using
Eqs. (1) and (2), we obtain the following:

v2zd þ UðzÞ ¼ 0; (A1)

where U(z) represents a quartic potential for z, defined as

UðzÞ ¼ 1
4

eb
m

� �2

z4 � eb
m

� �
vyd0 �

eBg

m

Bg

b

� �
z2 þ 2

eBg

m
vxd0z � v2zd0;

(A2)

and we omitted the subscript d for position z. For particles to enter
z> 0 and reach z ¼ zsp; v2zd � 0 needs to be satisfied in the range
0 � z � zsp; therefore, the required condition is that UðzÞ � 0 for
0 � z � zsp. To satisfy this condition, UðzspÞ � 0 is necessary.
UðzspÞ � 0 can be rewritten using a parabola in the initial velocity
plane vyd0-vzd0

vyd0 � �
m
eb

z�2sp v2zd0 þ
1
4
eb
m
z2sp þ 2

Bg

bzsp
vxd0 þ

eBg

m

Bg

b
; (A3)

and we can consider the mapping between the vyd0-vzd0 plane and
the vy-vz plane. If particles are on this parabola at t¼ 0 at z¼ 0,
which means UðzspÞ ¼ 0, these particles are mapped into vz ¼
vzd ¼ 0 in the vy-vz plane at z ¼ zsp, and to left of the parabola by
Eq. (5). See also Fig. 3(b) in Ref. 2, green segments in that figure
represent the mapping. The parabola of Eq. (5) itself is mapped
from the particles on the line vzd0 ¼ 0 in the right of the vyd0-inter-
cept of Eq. (A3). See the yellow segments in Fig. 3(b) in Ref. 2. If
U(z) is a monotonically increasing function of z in the range of
0 � z � zsp and if vzd0 > 0, which gives Uð0Þ ¼ �v2zd0 < 0, par-
ticles can reach z ¼ zsp without reflection as long as UðzspÞ � 0,
equivalently, Eq. (A3). In this case, vzd0 > 0 and UðzspÞ � 0 mean
that particles satisfy the inequality Eq. (A3), but not on the vzd0 ¼ 0
line, and the mapped particles should be to the left of the parabola
by (5), which are not related to the crescent boundary parabola.
Therefore, to discuss the value of cz, we need to consider the condi-
tion that U(z) is not a monotonically increasing function but has an
extremum value in 0 � z � zsp. In that case, UðzspÞ � 0 is a neces-
sary condition but not a sufficient condition to satisfy UðzÞ � 0
in 0 � z � zsp. In the following, we will consider the conditions to
satisfy UðzÞ � 0 in 0 � z � zsp.

Case 1: when vxd0 < 0
dUðzÞ=dz ¼ 0 occurs only at a single point in z> 0 or at two

points in z< 0 and at a single point in z> 0. In both cases, U(z) has
a single minimum in z> 0. Therefore, as long as vzd0 � 0 and
UðzspÞ � 0, particles can reach z ¼ zsp. Hence, the value cz ¼ 0; in
other words, the condition is v2zd0 � cz ¼ 0.

Case 2: when vxd0 � 0
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(i) when vyd0 � ðeBg=mÞðBg=bÞ � 0
dUðzÞ=dz ¼ 0 occurs only at a single point in z � 0, and the
potential U(z) is increasing in 0 � z � zsp. Therefore, the par-
ticles with vyd0 � ðeBg=mÞðBg=bÞ � 0 are not related to the
crescent boundary.

(ii) when vyd0 � ðeBg=mÞðBg=bÞ > 0
U(z) has two inflection points, where d2UðzÞ=dz2 ¼ 0, and
which are given as follows:

z6 ¼ 6
2
3
m
eb

vyd0 �
eBg

m

Bg

b

� �� �1=2
: (A4)

We will consider the following three cases.

(ii-A) when dUðzÞ=dz ¼ 0 has only one solution:
If dUðzþÞ=dz > 0; i.e., if ð3=2Þ½ðeBg=mÞðBg=bÞ�1=3v2=3xd0 > vyd0
�ðeBg=mÞðBg=bÞ, the derivative of potential dUðzÞ=dz becomes zero
only at a single point in z< 0. In this case, the situation is the same as
case (i), and particles are not related to the crescent boundary.
(ii-B) when dUðzÞ=dz ¼ 0 has two solutions:
If dUðzþÞ=dz ¼ 0, i.e., if ð3=2Þ½ðeBg=mÞðBg=bÞ�1=3v2=3xd0 ¼ vyd0
�ðeBg=mÞðBg=bÞ, the potential U(z) is increasing in 0 � z � zsp, even
though dUðzÞ=dz becomes zero at z ¼ zþ > 0. Therefore, particles are
not related to the crescent boundary.
(ii-C) when dUðzÞ=dz ¼ 0 has three solutions:
If dUðzþÞ=dz < 0; i.e., ð3=2Þ½ðeBg=mÞðBg=bÞ�1=3v2=3xd0 < vyd0 �ðeBg=mÞ
ðBg=bÞ, the potential U(z) has three extremum points, say, z ¼ z1, z
¼ z2, and z ¼ z3, assuming z1 < z2 < z3, which are the solutions of
dUðzÞ=dz ¼ 0.

If zsp � z2, U(z) is increasing in the range 0 � z � zsp. In that
case, particles in this condition are not related to the crescent
boundary.

If z2 < zsp; Uðz2Þ � 0 and UðzspÞ � 0 are the required condi-
tions for particles to reach z ¼ zsp. From Uðz2Þ � 0, we have the
value of cz as follows:

cz ¼
1
4

eb
m

� �2

z42 �
eb
m

� �
vyd0 �

eBg

m

Bg

b

� �
z22 þ 2

eBg

m
vxd0z2: (A5)

In conclusion, from the above discussions of case 1 and case 2,
we only need to consider the condition v2zd0 > cz with Eq. (A5), for
vxd0 � 0.

Let us see the correction for the intercept of Eq. (5) by cz in Eq.
(A5). Rigorously speaking, the solution z ¼ z2 is a function of vy
and vx, and we need to solve Eq. (5) simultaneously with Eq. (A5);
however, assuming that the correction due to cz is the secondary
effect, we can estimate the correction term by substituting the lead-
ing order values of vy and vx into Eq. (A5). For example, let us
examine the crescent curve in Fig. 3(d), the cut of VDF for run 2
(BG ¼ 0:2B0) at the vx ¼ 4vA plane at z ¼ zX þ 0:45di. Using the
parameters in Table I, and z ¼ 0:4di, we compute the correction for
the vy-intercept, �ðm=ebÞz�2cz . To compute cz, let us use the
vy-intercept of the parabola Eq. (5) in Fig. 3(d), vy ¼ �0:12vA, at
the left tip of the magenta curve. Using Eqs. (1) and (2), and
vxd ¼ vx þ kzc=Bg and vyd ¼ vy þ k=b, we can obtain the solutions
of dUðzÞ=dz ¼ 0 numerically. Using the second largest solution,
z ¼ z2, we obtain cz from Eq. (A5). The correction due to cz is
�ðm=ebÞz�2cz ¼ �0:09vA, and this is negligibly small. Therefore,
Eq. (5), which is obtained by neglecting cz, is practically valid to dis-
cuss the boundaries of VDFs.

APPENDIX B: CRESCENT CURVE IN v?1-v?2 FOR
x5xr>0

Equation (31) represents a crescent boundary curve in the
v?1-v?2 plane for x ¼ xr > 0, expressed using vy in Eq. (17). We
can derive an alternative equation for the same boundary curve,
directly converting ðvx; vy; vzÞ in Eq. (5) and Eq. (11) into
ðvk; v?1; v?2Þ, and eliminating vk from the two converted equations.
Using Eqs. (29) and (30), and rewriting vxr, vyr, and vz as vk;�v?1
and �v?2, respectively, we obtain the following two converted
equations from Eqs. (5) and (11):

vk sinh�v?1 cosh¼
m
eb
z�2sp v2?2�

1
4
eb
m
z2sp�

k
b
þ2

Bg

bzsp

� vk coshþv?1 sinh
� 	

þ2kzc
bzsp
� eBg

m

Bg

b
; (B1)

vk sin h� v?1 cos h
� 	2 þ v2?2

¼ s�2 vk cos hþ v?1 sin h� sv0 � ðs2 þ 1Þ
eBg

m
zsp

� �2

þ/� ðs2 þ 1Þ eBg

m
zsp

� �2

� 2sv0
eBg

m
zsp; (B2)

where we changed the inequality in Eq. (5) to the equality, and used
z ¼ zsp. If we eliminate vk from those two equations, the boundary
of the reduced VDF in the v?1-v?2 plane is obtained. The result is
given as follows:

v?1 ¼
�A01 þ ðA021 � A00A

0
2Þ

1=2

A00
; (B3)

where A00; A
0
1, and A02 are

A00 ¼ 1� 4s2
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; (B4)
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Equation (B3) looks more complex than Eq. (31), but they
actually represent the same curve. We numerically verified that
both Eq. (B3) and Eq. (31) give the same curve.
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