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Abstract 
The digestive enzyme carboxyl ester lipase (CEL) is mainly expressed in the acinar cells of the 

exocrine pancreas. The protein contains a variable number of tandem repeats (VNTR) region, 

and the most common human form includes 16 VNTR repeats. We have previously identified 

disease-causing variants of CEL. One example is CEL-HYB1, which contains only 3 VNTR 

repeats and results in a truncated protein. Cellular studies of CEL-HYB1 have shown reduced 

secretion, intracellular accumulation and elevated ER stress compared to the normal CEL 

protein. Interestingly, CEL-HYB1 is a genetic risk factor for chronic pancreatitis that act 

together with other risk factors to trigger disease development. 

In this study, the main objective was to gain more insight into the disease mechanism of the 

CEL-HYB1 protein. More specifically, our aims were to study if environmental factors such as 

alcohol and cigarette smoking had any effect on the CEL-HYB1 protein by using both cellular 

and mouse models. Furthermore, we wanted to optimize a newly developed CEL-HYB1 

specific antibody for immunostaining. 

For most cellular studies on CEL, HEK-293 cells have been used, and with success. In this 

project, however, we wanted to use the mouse acinar cell line (266-6). But we found that both 

transfecting and detecting CEL protein expression in the 266-6 cells were challenging. 

Therefore, we optimized our research approach by transfecting the cells with V5-tagged CEL 

plasmids instead of untagged plasmids. By Western blotting we observed that CEL-HYB1 was 

less secreted compared to normal CEL, and also detected in the insoluble pellet fraction of 

transfected cells. By immunofluorescence, more intense intracellular signals were observed for 

CEL-HYB1 than for normal CEL. When the transfected 266-6 cells were treated with cigarette 

smoke extract (CSE) or ethanol (EtOH), there was a tendency of CEL-HYB1 increase in the 

pellet fraction when exposed to CSE. In contrast, we found no effect with EtOH.  

In addition to cellular models, we used a humanized CEL-HYB1 knock-in mouse strain to do a 

pilot experiment by subjecting the animals to ethanol feeding. After 3 weeks of exposure, we 

observed no features of chronic pancreatitis when analyzing the mouse pancreas histology. 

Furthermore, we detected no signs of increased ER-stress when analyzing pancreatic lysates by 

Western blotting.  

We tested the CEL-HYB antibody on cellular lysates from transfected 266-6 and HEK-293 

cells, and from mice pancreases by Western blotting. In addition, mouse and human pancreatic 
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tissue was analyzed by immunohistochemistry. After optimization, the antibody worked for all 

experiments, except for analysis of the 266-6 cells by immunoblotting.  

To summarize, we found reduced secretion and intracellular retention of CEL-HYB1 protein 

when expressed in 266-6 cells. This is similar to what has been reported in HEK-293 cells. We 

also observed CEL-HYB1 in the cell pellet fraction indicating CEL-HYB1 protein aggregation. 

When exposed to CSE, the level of CEL-HYB1 aggregation slightly increased. Finally, the 

CEL-HYB antibody was found to be specific for both Western blotting and 

immunohistochemistry and will serve as a useful tool for further CEL-HYB1 studies. 
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1. Introduction  
1.1 The pancreas-anatomy and function 

1.1.1The human pancreas  

The human pancreas is a glandular organ located in the upper left part of the abdominal cavity, 

lying horizontally behind the stomach (Figure 1.1A). The gland has an elongated structure and 

can be divided into a head, body and tail region (Kumar et al., 2017). The pancreas can weigh 

85-100 g (Caglar et al., 2014) and have a length of 15-20 cm in adults (Holck, 2019). It is the 

only organ in the body that contains an endocrine and an exocrine part. The endocrine pancreas 

consists of the islets of Langerhans, which produce hormones that are secreted into the 

bloodstream. The exocrine pancreas consists of acinar cells and the ductal system which 

produce, store and secrete digestive enzymes that are transported to the duodenum (Figure 1.1 

B and C) (Kumar et al., 2017).  

 

 

 

Figure 1.1 Anatomical overview, characteristics and histology of the pancreas. A) The human 
pancreas (yellow) is situated in the upper part of the abdominal cavity behind the stomach. Image from: 
https://www.mayoclinic.org/diseases-conditions/pancreatic-cancer/symptoms-causes/syc-20355421 B) 
The pancreas is divided into the endocrine and exocrine pancreas. The endocrine part consists of islets 
of Langerhans and secretes hormones while the exocrine part secretes digestive enzymes. Image from: 
https://socratic.org/questions/what-organ-functions-as-both-an-endocrine-and-exocrine-organ C) The 
image shows the histology of the pancreas where an islet of Langerhans (light pink) is surrounded by 
the acinar cells (dark pink/purple) of the exocrine pancreas.  
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1.1.2 The endocrine pancreas 

The endocrine pancreas consists of groups of specialized cells arranged in clusters called islets 

of Langerhans (Kumar et al., 2017). The islets make up around 1-2 % of the total organ and are 

scattered within the exocrine tissue. The main function of the endocrine pancreas is to secrete 

hormones into the bloodstream (Roder et al., 2016). Each islet has a central core of beta cells 

(60 %) surrounded by alfa (30 %), delta, gamma and epsilon (together 10 %) cells (Figure 1.2) 

(Da Silva Xavier, 2018). The beta cells are responsible for the expression and secretion of the 

peptide hormone insulin while the alfa cells produce and release the peptide hormone glucagon. 

Both insulin and glucagon work to maintain a stable blood-glucose level. When the blood-

glucose level rises, this will triggers the secretion of insulin to the bloodstream. The release of 

insulin stimulates an increased glucose uptake in muscle and other tissues and promotes the 

storage of glucose as glycogen in the liver. The result is a lowered blood-glucose level. 

Opposite, when the blood-glucose is low, glucagon is secreted. This results in the breakdown 

of glycogen into glucose to increase the concentration of blood-glucose (Lodish et al., 2016). 

The remaining cells of the islet of Langerhans, the delta, gamma and epsilon cells, produce the 

hormones somatostatin, pancreatic polypeptide and ghrelin, respectively (Da Silva Xavier, 

2018). 

 

 

 

 

 

 

 

 

 

Figure 1.2 Schematic representation of the endocrine pancreas. Each islet of Langerhans is 
embedded within the exocrine tissue and consists of alfa, beta, gamma, delta and epsilon cells. The beta 
cells are the most abundant cell type and secrete and produce the hormone insulin, while the alfa cells 
secrete its antagonist glucagon. Figure adapted from: Bardeesy, N et al., 2002. Nat Rev Cancer  
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1.1.3 The exocrine pancreas 

The exocrine part of the pancreas makes up around 95 % of the total organ and consists of acini 

and a ductal system (Das et al., 2014). Acini are clusters of acinar cells which are responsible 

for the production and secretion of digestive enzymes. The acinar cells produce digestive 

enzymes in an inactive form (zymogens) to prevent autodigestion and the enzymes are stored 

in zymogen granules before they are released (Figure 1.3). The digestive enzymes are classified 

based on their target substrates and include amylases, lipases, proteases and nucleases which 

break down carbohydrates, fats, proteins and nucleic acids, respectively. The enzymes are 

secreted from the acinar cells into ducts via interlobular ducts (Pandol., 2011). The ductal cells 

produce and secrete bicarbonate and water, which together with the digestive enzymes 

constitute the pancreatic juice. This juice is transported to the duodenum where it mixes with 

bile from the liver and chyme from the stomach (Lopez et al., 2019), having a key role in the 

digestion of food. Each day, the pancreas produces 2-3 liters of juice in an adult (Ishiguro et 

al., 2012). The exocrine cells in the pancreas has the highest level of protein synthesis in the 

adult body. Thus, the acinar cells have an extensive endoplasmic reticulum (ER) network 

(Logsdon et al., 2013).  

Figure 1.3 Schematic representation of the exocrine pancreas. A) An acinus is a cluster of acinar 
cells, which are in contact with the ductal system. The digestive enzymes are secreted into the lumen of 
the acinus and transported to the duodenum via the ducts. Figure adapted from: Bardeesy, N et al., 2002. 
Nat Rev Cancer. B) The acinar cells contain an extensive network of ER and mitochondria located at 
the basal pole. The digestive enzymes are stored in the zymogen granules located at the apical pole. 
Figure adapted from: www.zoology.ubc.ca//~berger/B200sample/unit_9_secretion/workshope9-htm 
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1.2. Diseases of the pancreas  

The most common diseases of the pancreas are diabetes mellitus (commonly referred to as 

diabetes), neoplasms and inflammation (commonly referred to as pancreatitis).  

1.2.1 Diabetes mellitus 

Diabetes affects the endocrine part of the pancreas and is a group of metabolic diseases 

characterized by chronic hyperglycemia (Kumar et al., 2017). The disease is caused by defects 

in insulin secretion, insulin action or both. The majority of cases fall within two categories: 

type 1 diabetes (T1D) and type 2 diabetes (T2D) (American Diabetes Association, 2010). T1D 

makes up 5-10 % of all cases of diabetes and is an autoimmune disease resulting in beta-cell 

destruction and insufficient insulin production. Patients who suffer from T1D are often young 

when diagnosed (< 20 years) and they are dependent on insulin injections throughout life to 

control blood-glucose level (Kharroubi et al., 2015). Symptoms of T1D include increased thirst 

and appetite, fatigue and weight loss (Kahanovitz et al., 2017).  

T2D is a multifactorial disease that accounts for about 90 % of all cases of diabetes cases. Both 

genetics and an unhealthy lifestyle are well-known risk factors and the disease is characterized 

by an onset between the ages of 30-40 years and a relative insulin deficiency (American 

Diabetes Association, 2010). Often, patients with T2D do not need insulin replacements to 

survive. A healthy diet and physical activity can be enough, especially at disease onset. Still,  

many T2D patients require medications to lower blood-glucose level (Marin-Peñalver et al., 

2016). In addition to T1D and T2D, there are other forms of diabetes including gestational 

diabetes and monogenic diabetes. In gestational diabetes, hyperglycemia is detected during 

pregnancy whilst monogenic diabetes is caused by mutations in a single gene (American 

Diabetes Association, 2010).  

Diabetes is the fifth leading cause of death worldwide and as of 2019, 422 million individuals 

worldwide suffers from this disease (World Health Organization., 2020). Within 2035, 

researchers believe this number will rise to almost 600 million (Forouhi et al., 2014).  

 

1.2.2 Neoplasms of the pancreas  

Neoplasms are divided into benign and malignant, where malignant neoplasm are collectively 

referred to as cancers. Neoplasms of the pancreas can originate from both the exocrine and the 

endocrine pancreas (Kumar et al., 2017). The most common type of pancreatic cancer is 
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pancreatic adenocarcinoma, which arise from the exocrine part and accounts for about 85 % of 

all cases (Hidalgo et al., 2015). Risk factors associated with pancreatic cancer are divided into 

two categories: modifiable and non-modifiable. The modifiable risk factors include smoking, 

alcohol, obesity and toxic substances. Smoking and alcohol are also risk factors for other 

pancreatic diseases including pancreatitis. Some of the non-modifiable risk factors are gender, 

age, ethnicity, diabetes, family history and certain gene variants (Rawla et al., 2019). 

Worldwide, pancreatic cancer constitutes the seventh leading cause of cancer related deaths 

(Bray et al., 2018). In 2018, pancreatic cancer was the cause of more than 400,000 deaths 

worldwide accounting for 4.5 % of all cancer-related mortality. The prognosis for pancreatic 

cancer is poor as only 24 % of the patients survive one year after diagnosis (Rawla et al., 2019). 

Symptoms often include include jaundice, abdominal pain and weight loss (Kumar et al., 2017). 

Treatments for pancreatic cancer include surgical resection of the tumor, chemotherapy, 

radiation therapy and pain management (Vincent et al., 2011).  

1.2.3 Pancreatitis  

Pancreatitis is inflammation of the pancreas. The disease is usually divided into an acute and a 

chronic form (Kumar et al., 2017). The risk factors for acute pancreatitis include gallstones, 

alcohol, certain drugs, genetics and trauma, of which gallstones and alcohol abuse are the most 

common in adults (Forsmark et al., 2016). Acute pancreatitis is characterized by pancreatic 

swelling, fluid retention and pancreatic necrosis (Whitcomb, 2006). The pathogenesis of acute 

pancreatitis includes the autodigestion of the pancreas due to premature or inappropriately 

activation of digestive enzymes (Whitcomb, 2013).  

Worldwide, the yearly incidence of acute pancreatitis is 34 per 100 000 in the general 

population (Petrov et al., 2019). An increase in acute pancreatitis incidences have been reported 

(Yadav et al., 2013). This may be due to more obesity as this condition can promote gallstone 

formation. The mortality of acute pancreatitis is about 2 % but this can increase to 30 % if 

patients are older and suffers from other diseases (Forsmark et al., 2016., Yadav et al., 2013). 

The symptoms of acute pancreatitis include abdominal pain, nausea and vomiting (Chatila et 

al., 2019). Patients with acute pancreatitis are given appropriate nutrition, pain management 

and intravenous hydration (Forsmark et al., 2016; Chatila et al., 2019). If a patient is suffering 

from several attacks from acute pancreatitis, this is called recurrent acute pancreatitis. Recurrent 

acute pancreatitis is again risk factor for developing chronic pancreatitis (Yadav et al., 2009) 

which will be described in detailed in the next section. 
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1.3 Chronic pancreatitis  

Chronic pancreatitis is irreversible, long-standing inflammation of the pancreas that leads to 

permanent destruction of the pancreas parenchyma (Kleeff et al., 2017). The disorder is 

characterized by fibrosis, duct distortions, calcifications as well as pancreatic endocrine and 

exocrine dysfunction (Gardner et al., 2020). Symptoms of chronic pancreatitis are abdominal 

pain, weight loss, jaundice and maldigestion but the disease can also be clinically silent (Kumar 

et al., 2017). Patients who suffer from this disease also have an increased risk for the 

development of both diabetes and pancreatic cancer (Yadav et al., 2013). Treatment of chronic 

pancreatitis involves pain management, pancreatic enzyme replacements and proper diet. If the 

patient is smoking and/or suffering from alcohol abuse, cessation is necessary (Pham and 

Forsmark, 2018). However, currently, there is no cure for chronic pancreatitis (Kleeff et al., 

2017). 

The most common risk factors for chronic pancreatitis are recurrent attacks of acute 

pancreatitis, alcohol abuse, cigarette smoking and genetic predisposition (Kleeff et al., 2017). 

In western countries, alcohol abuse accounts for 40-70 % of all cases while cigarette smoking 

increases the risk for disease development in a dose-dependent manner (Lew et al., 2017). A 

study conducted by Yadav et al, found that five units of alcohol a day or more increased the 

disease risk (Yadav et al., 2009). In contrast, less than two drinks per day may have a protective 

effect against chronic pancreatitis as it has shown to inhibit a pro-inflammatory transcription 

factor (Lew et al., 2017).  

Genetic risk factors for chronic pancreatitis include variants of the PRSS1 (cationic 

trypsinogen), CFTR (cystic fibrosis transmembrane conductance regulator), SPINK1 (serine 

protease), CPA1 (carboxypeptidase A), CTRC (chymotrypsinogen C), and CEL (carboxyl ester 

lipase) genes (Mayerle et al., 2019). These risk factors can be further divided into various 

pathogenic pathways driving disease development and will be described in more detail in 

section 1.3.1. Among the genes listed above, three mutations in PRSS1 are known to cause 

autosomal dominant hereditary pancreatitis (Saluja et al., 2019). The others are genetic risk 

variants that together with other risk factors (e.g. cigarette smoking or alcohol abuse) cause 

disease. Thus, most often, it is not a single factor but the combination of several risk factors 

that leads to chronic pancreatitis (Kleeff et al., 2017). 
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1.3.1 Disease mechanism of genetic risk in chronic pancreatitis  

For more than a century, premature activation of pancreatic digestive enzymes was proposed 

to be the causative for pancreatitis (Saluja et al., 2019). In particular, inappropriate trypsin 

activity was the cornerstone for our understanding of pancreatitis as a disease characterized by 

autodigestion of the pancreatic tissue. Recently, new research has implemented new theories 

on the disease mechanism of chronic pancreatitis. These include risk factors that drive disease 

development through pathways alternative to uncontrolled digestive enzyme activation. 

Currently, three pathways are characterized namely the trypsin-dependent pathway, the 

misfolding-dependent pathway and the ductal pathway (Mayerle et al., 2019).  

The trypsin-dependent pathway 

This pathway involves pathogenic gene variants of PRSS1, SPINK1 and CTRC that result in 

increased activation of trypsinogen, the precursor of trypsin, in the pancreas (Sahin-Toth, 2017, 

Hegyi and Sahin-Toth, 2017). PRSS1 gene variants are often gain-of-function mutations that 

stimulate activation of trypsinogen either directly and indirectly (Hegyi and Sahin-Toth, 2017). 

Interestingly, three gene variants of PRSS1 have shown to cause hereditary pancreatitis 

(Mayerle et al., 2019). Protective mechanisms that prevent trypsinogen activation include 

trypsin inhibition by SPINK1 and degradation of trypsinogen by CTRC. Consequently, loss-of 

function variants of both SPINK1 and CTRC have shown to be associated with inappropriate 

trypsinogen activation and chronic pancreatitis development (Mayerle et al., 2019) . 

The misfolding-dependent pathway 

This pathway is related to gene variants that result in protein misfolding and endoplasmic 

reticulum (ER) stress (Mayerle et al., 2019). Elevated ER stress occurs when there is an 

imbalance between the folding of proteins and the functional demand that is placed on the ER. 

The stress may stem from alcohol, smoking, trauma or genetics, but either way it leads to an 

increase of BIP (GRP78) that binds to misfolded proteins within the ER lumen (Waldron et al., 

2018). BIP sends downstream signal to three pathways: PERK (PKR like ER kinase), IRE1 

(inositol-requiring protein-1) and ATF6 (activating transcription factor 6) which activate and 

promote the degradation of misfolded proteins, production of molecular chaperons and cell 

death (Cnop et al., 2017). These pathways all aid to restore homeostasis and are called the 

unfolded protein responses (UPR) (Alberts et al., 2015). Variants of PRSS1, CPA1 and CEL 

have all been implicated in the misfolding-dependent pathway of chronic pancreatitis risk. In 

addition to increased ER-stress, expression of these genes leads to decreased protein secretion 

and intracellular protein retention in cellular systems (Mayerle et al., 2019).  
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The ductal pathway 

The last pathway, namely the ductal pathway involves the CFTR, claudin 2 (CLDN2 ) and 

calcium-sensing receptor (CASR) gene variants. All these genes are expressed in pancreatic 

ductal cells (Mayerle et al., 2019). The CFTR gene encodes a chloride-bicarbonate channel and 

pathogenic variants in this gene disrupts the channel activity. The CLDN2 encodes a tight 

junction protein in pancreatic ducts (Mayerle et al., 2019). Both, CFTR and CLDN2 are 

important for secretion of chloride ions- and bicarbonate. The CASR gene, encoding a receptor, 

responds to high levels of calcium in the pancreatic juice by increasing the secretion of ductal 

fluid (LaRusch and Whitcomb, 2011). Experimental evidence suggests that all three genes are 

important for proper secretion of the pancreatic juice. However, further studies are needed to 

fully understand their association with chronic pancreatitis (Derikx et al., 2015).  

1.3.2 Model systems for studying chronic pancreatitis  

Experimental research into chronic pancreatitis involves both cellular and animal models. The 

cellular models that are most commonly used are human embryonic kidney cells 293 (HEK-

293) and rodent acinar cells (266-6: from mouse, AR42J: from rat). The HEK-293 cells have 

been a valuable tool since they are of human origin, easy to culture, maintain and transfect 

(Thomas et al., 2005). The downside of using HEK-293 is that they are not acinar cells. 

Furthermore, they are constitutively secretory cells and do not contain any zymogen granules 

or digestive enzymes. Therefore, the mouse tumor acinar (266-6) and the rat tumor acinar 

(AR42J) cell lines are in many respects more suitable model systems. These cell lines secrete 

digestive enzymes, can be transfected and provide a more suitable environment to study chronic 

pancreatitis However, as 266-6 and AR42J are cancer cell lines, they may exhibit different 

characteristics than normal acinar cells (Derikx et al., 2015) 

Most of the animal models established to study chronic pancreatitis are rodents. The models of 

chronic pancreatitis can be divided into obstructive, environmental, chemical and genetic 

models (Lerch and Gorelick, 2013). Both partial, selective or complete pancreatic duct 

obstruction have been used to develop chronic pancreatitis in animals. The progression of 

disease is dependent on the species used and sometimes needs to be combined with stimulation 

of pancreatic secretion (Lerch and Gorelick, 2013). Chemical models for chronic pancreatitis 

involve the caerulein-induced method where rodents are injected with caerulein for several 

weeks (Lerch and Gorelick, 2013). Here, high frequency of caerulein injections causes 

pancreatic fibrosis (Aghdassi et al,. 2011). Intraperitoneal injections of ethanol to rodents can 

be used as an environmental model to study chronic pancreatitis. This method, however, does 
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not cause features characteristic of chronic pancreatitis alone, even with long-term 

administration. The administration of ethanol has to be combined with caerulein injections to 

cause pancreatic fibrosis (Lerch and Gorelick, 2013). This model has yet to be fully 

characterized but has proven to be an interesting in terms of understanding alcohol-induced 

effects on chronic pancreatitis.  

Genetic models are important tools to study chronic pancreatitis (Lerch and Gorelick, 2013). 

Although some genetic manipulations can recapitulate the features shown in patients, the effects 

can be complex and vary greatly among species (Lerch and Gorelick, 2013). In a study by Geisz 

and Sahin-Toth, they analyzed knock-in mice with a variant of the cationic trypsinogen gene 

(Geisz and Sahin-Toth, 2018). They found many of the histological criteria for chronic 

pancreatitis in mouse including fibrosis, atrophy, metaplasia, dilated ducts and destruction of 

the acini. Eventually, they also observed destruction of the islets of Langerhans as shown in 

Figure 1.4 (Geisz and Sahin-Toth, 2018). 

Figure 1.4 Histology of a genetic mouse model of chronic pancreatitis. In contrast to the control 
mouse (left), fibrosis, dilated ducts and fatty replacement was seen in both the early (middle) and late 
(right) stages of chronic pancreatitis. Figure adapted from: Geisz and Sahin-Toth, 2018. Nat 
Communications.  

Another genetic model is the CPA1 knock-in mouse which develops chronic pancreatitis  

(Hegyi and Sahin-Toth., 2018). In a follow up study by Orekhova et al, they used CPA1 

homozygous mouse and exposed them to ethanol-feeding. Here, the CPA1 mutant mice fed 

with ethanol showed an accelerated disease progression with a 2-fold higher histological score 

when comparing acinar cell loss  (Orekhova et al., 2020).  

1.4 Carboxyl ester lipase  

Carboxyl ester lipase (CEL), a digestive enzyme also known as bile salt-stimulated lipase 

(BSSL) and bile salt-dependent lipase (BSDL) (Johansson et al., 2018), is mainly expressed in 

the acinar cells of the pancreas. CEL is one of three lipases secreted from this organ and it 
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makes up around 4 % of the total protein content of the pancreatic juice (Lombardo et al., 1978). 

The protein is synthesized and modified before stored in zymogen granules within the acinar 

cells. CEL is then secreted in an inactive form and transported to the duodenum (Whitcomb et 

al., 2007). Here, the enzyme is stimulated by bile salts and hydrolyses various substrates such 

as phospholipids, triacylglycerides, fat-soluble vitamins and cholesteryl esters (Lombardo and 

Guy, 1980). It has also been proposed that the CEL can degrade branched fatty acid esters of 

hydroxyl fatty acids, which are metabolites with anti-inflammatory and anti-diabetic effects 

(Kolar et al., 2016). In addition, CEL is expressed in lactating mammary glands and secreted 

with the mother’s milk. Here, CEL has shown to be important for the digestion of fat in 

newborns (Blackberg et al., 1987, Lindquist and Hernell, 2010). CEL expression has also been 

detected at lower levels in macrophages (Kodvawala et al., 2005), eosinophils (Holtsberg et al., 

1995) and endothelial cells (Li and Hui, 1998).  

 

1.4.1 The human CEL gene 

The human CEL gene is about 10 kb in size and located on the long arm of chromosome 

9q34.13. The gene consists of 11 exons (Figure 1.5) where the last exon contains a variable 

number of tandem repeat (VNTR) region (Taylor et al., 1991, Lidberg et al., 1992). The repeats 

are nearly identical 33 bp segments that encode 11 amino acids each. The most common number 

of VNTR repeats is 16, although it ranges between 3 to 23 repeats (Torsvik et al., 2010, Fjeld 

et al., 2016).  

 

Situated 11 kb downstream of the CEL gene is the CEL pseudogene (CELP) (Lidberg et al., 

1992). Compared to CEL, the CELP gene is missing exon 2-7 of CEL and contains a stop codon 

in exon 8 (Figure 1.5). Otherwise, the two genes share 97 % sequence similarities. The CELP 

gene is probably not transcribed into a protein due to the premature stop codon in exon 7.  
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Figure 1.5 The gene structure of CEL and its neighboring pseudogene CELP. The CEL gene (blue) 
is about 10 kb in size and is situated next to its pseudogene CELP (green). The genes are located on 
chromosome 9. Exons 2-7 are only present in the CEL gene as indicated in the figure. VNTR; variable 
number of tandem repeat region. Drawn after:  Fjeld et al., 2015. Nat Genet 

 

 

1.4.2 The CEL protein and secretion 

The CEL protein has two structural domains; an N-terminal globular domain that contains the 

catalytic site, bile salt binding sites and a signaling peptide, and a C-terminal region with the 

VNTR domain  (Figure 1.6) (Reue et al., 1991, Terzyan et al., 2000, Holmes and Cox, 2011). 

The bile salt binding sites are located within the globular domain of the protein as is the catalytic 

triad of Ser194-His435-Asp320 (Holmes and Cox, 2011). The VNTR region contains 

enrichments of the amino acids proline (P), glutamate (E), serine (S) and threonine (T) (Figure 

1.6). This is known as a PEST sequence and is found to play a key role in protein degradation 

as it is observed in many short-lived proteins (Rogers et al., 1986).  

Figure 1.6 The protein structure of CEL. The protein comprises two structural domains: the N-
terminal globular domain containing both the signaling peptide (green) and the catalytic domain (blue), 
and the C-terminal VNTR region (grey). The figure also shows binding sites for bile salts, O-
glycosylation, N-glycosylation, phosphorylation, and the PEST sequence. Drawn after: Johansson et al., 
2018. Pancreatology 
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CEL is found to be a conserved protein that is a member of the α/β hydrolase family (More et 

al., 2011). Around 11 β-sheets makes up the core, which is surrounded by 15 α-helices (De Jaco 

et al., 2016). The CEL protein has a predicted molecular weight of 79 kDa and contains the 

distinctive C-terminal tail sequence KEAQMPAVIRF (Johansson et al., 2018). 

In the acinar cells, CEL follows the classical pathway of secretory proteins (Lombardo, 2001). 

The N-terminal hydrophobic signaling peptide of CEL directs the protein from the nucleus to 

the ER. Here, CEL is N-glycosylated at asparagine position 210, N210 (Figure. 1.6) (Aboukali 

et al., 1993). The protein is then relocated to the Golgi in association with a protein complex 

that contains the molecular chaperone GRP94 (glucose regulated protein, 94 kDa) (Bruneau et 

al., 1995). In the Golgi apparatus the protein is heavily O-glycosylated at both serine and 

threonine residues within the PEST sequence (Bruneau et al., 1997) (Figure. 1.6). The O-

glycosylation of CEL is important for the protein’s integrity as proteins lacking O-glycosylation 

are less secreted and more prone for degradation (Bruneau et al., 1997). As PEST sequences 

are observed in many short-lived proteins, there is a possibility that O-glycosylation is most 

likely masking the PEST sequences in CEL to prevent degradation (Rogers et al., 1986, Loomes 

et al., 1999).   

Once phosphorylated on threonine residue 340, CEL is released from the Golgi and stored as 

an inactive enzyme in the zymogen granules (Pasqualini et al., 2000). Upon stimulation, CEL 

is excreted from the luminal face of the acinar cells and transported to the duodenum. 

 

1.5 Pathogenic variants of CEL  

1.5.1 CEL-MODY 

CEL-MODY (MODY8) is an autosomal dominant inherited disease. In addition to diabetes, 

the patients are clinically characterized by a slowly progressing pancreatic exocrine dysfunction 

that includes both lipomatosis and the development of pancreatic cysts (Johansson et al., 2018). 

CEL-MODY is caused by single-base deletions in the first or fourth repeat within the CEL-

VNTR region. The mutations lead to a frameshift and a premature stop codon in VNTR repeat 

11 and 13, respectively (Ræder et al., 2006). The variants were identified in two independent 

families from Norway. However, CEL-MODY is a very rare disease. In addition to the 

Norwegian pedigrees, only two other families have been discovered: one from Sweden and one 

from the Czech Republic (unpublished). 
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Compared to the CEL-WT protein with a theoretical size of 79 kDa, the CEL-MODY proteins 

have a truncated C-terminal and a predicted size of about 73 kDa. Cellular studies from our 

research group indicate that CEL-MODY variants cause a protein-misfolding disease as this 

variant has a tendency to form aggregates both inside and outside the cell (Johansson et al., 

2011, Torsvik et al., 2014, Gravdal et al, unpublished). In addition, the CEL-MODY protein is 

less secreted and induces ER-stress when expressed in both HEK-293 and rat AR42J acinar 

cells (Xiao et al., 2016, Gravdal et al,unpublished). Recent studies have also shown that once 

secreted, the CEL-MODY protein can be taken up by neighboring cells and induce cell death 

(Torsvik et al., 2014, Dalva et al., 2020).  

 

1.5.2 CEL-HYB 

In 2015, our research group reported CEL-HYB as a novel genetic risk factor for chronic 

pancreatitis (Fjeld et al., 2015). In this study, cohorts of idiopathic chronic pancreatitis from 

both France and Germany were analyzed and CEL-HYB was overrepresented by five-fold in 

cases compared to healthy controls. The CEL-HYB allele was also found to be enriched in 

patients with alcohol-induced chronic pancreatitis (Fjeld et al., 2015).  

 

CEL-HYB is a deletion hybrid variant that has most likely originated from a process called non-

allelic homologous recombination (NAHR) between the CEL gene and the CEL pseudogene 

(CELP) (Fjeld et al., 2015). NAHR is a mechanism in which the cells aim to repair broken 

chromosomes resulting in gross genome rearrangements (Parks et al., 2015). NAHR usually 

happens between two genes that share a high sequence similarity, which is the case for CEL 

and CELP that share about 97 % sequence similarity in the common sequences. In addition to 

the deletion hybrid allele (CEL-HYB), the process has led to the formation of a reciprocal 

duplication allele (CEL-DUP) as illustrates in Figure 1.7 (Fjeld et al., 2015).  
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Figure 1.7. Proposed mechanism of how the CEL-HYB1 gene originated through non-allelic 
homologous recombination. The X symbolizes the crossover event in the exon 10–exon 11 regions of 
CEL and CELP. The resulting alleles are the duplication hybrid allele (CEL-DUP) and the deletion 
hybrid allele (CEL-HYB). Drawn after:  Fjeld et al., 2015. Nat Genet.  

 

The CEL-HYB gene encodes a chimeric protein where the globular domain is identical to the 

CEL-WT protein while the C-terminal VNTR region with only three repeats originates from 

CELP (Fjeld et al., 2015). When expressed in HEK-293 cells the CEL-HYB protein showed 

impaired secretion, induced autophagy and intracellular accumulation compared to CEL-WT 

(Fjeld et al., 2015). CEL-HYB was also found to have a 40 % reduced enzyme activity level 

compared to CEL-WT (Fjeld et al., 2015). Furthermore, in an unpublished study by our group, 

CEL-HYB showed induced ER-stress when expressed in HEK-293 cells (Tjora et al., 

unpublished). Based on these recent findings, we can now conclude that CEL-HYB belongs to 

the misfolding-dependent pathway of genetic risk in chronic pancreatitis (Tjora et al., 

unpublished). 

In contrast to the European cohorts, the CEL-HYB allele was not found to be associated with 

chronic pancreatitis in three independent cohorts from Japan, India and China, respectively 

(Zou et al., 2016). Actually, they found no CEL-HYB positive samples, but discovered an 

alternative CEL-HYB allele which they designated CEL-HYB2 (to distinguish it from the first 

identified CEL-HYB allele, which was renamed CEL-HYB1). The CEL-HYB2 allele was 

detected in all three Asian populations but exhibited no association with chronic pancreatitis. 

Compared to CEL-HYB1, CEL-HYB2 has a premature stop codon located in exon 10 that most 

likely results in nonsense-mediated mRNA decay (Nickless et al., 2017). Consequently, the 

expression and secretion of the CEL-HYB2 protein is predicted to be reduced as illustrated in 

Figure 1.8 (Zou et al., 2016, Molven et al., 2016).  
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Figure 1.8. C-terminal and cellular characteristics of CEL-HYB1 and CEL-HYB2 compared to 
CEL-WT. The most common CEL-WT protein usually consists of 16 repeats in the VNTR region. The 
CEL-HYB1 variant contains only 3 VNTR repeats that originates from the CEL pseudogene. CEL-
HYB1 is not secreted efficiently and leads to an increased risk for chronic pancreatitis. The CEL-HYB2 
variant has a premature stop-codon before the VNTR region. This results in nonsense-mediated mRNA 
decay and probably a reduced protein expression. The CEL-HYB2 variant is not associated with chronic 
pancreatitis. Figure is adapted from: Molven et al., 2016. Gastroenterology. 

 

Based on the results from the Asian populations, Zou et al suggested that the CEL-HYB1 allele 

is an ethnic-specific risk factor for chronic pancreatitis (Zou et al., 2016). To follow up on that, 

a recent study analyzed the CEL-HYB1 allele in a cohort consisting of pediatric chronic 

pancreatitis patients from Poland. Here, the frequency of CEL-HYB1 was found to be twice as 

high in cases compared with the control group although the difference did not reach statistical 

significance (Oracz et al., 2019).  

Compared to CEL-MODY, which results in a dominantly inherited, high-penetrant disease, 

CEL-HYB1 is “only” a risk factor for chronic pancreatitis. Thus, in CEL-HYB1 positive families 

the allele follows an autosomal dominant inheritance pattern with incomplete penetrance (Fjeld 

et al., 2015, Oracz et al., 2019). Furthermore, a relatively large number of healthy individuals 

are CEL-HYB1 positive. In the European populations studied so far, between 0.3 - 2.5% of the 

general population is estimated to carry the risk allele without being sick (Fjeld et al., 2015, 

(Dalva et al., 2016, Oracz et al., 2019). This indicates that it is not CEL-HYB alone that causes 

disease – it is CEL-HYB1 in combination with other chronic pancreatitis risk factors that 

triggers disease.  



 20 

2. Aims 

The overall aim of this study was to gain more insight into the disease mechanism of the CEL-

HYB1 protein.  

The specific aims were:  

1. To investigate the effect of cigarette smoking extract and alcohol on CEL-HYB1- 

transfected mouse acinar cells  

 

2. To examine the effect of ethanol-feeding on a humanized CEL-HYB1 knock-in mouse 

strain.   

 

3. To test the specificity of a newly developed CEL-HYB antibody by using cell lysates, 

and mouse and human tissue samples 
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3. Materials  
Table 3.1 Plasmids 

Plasmid* Encoding Description 

pcDNA 3.1-CEL-WT/V5-His  CEL-WT Plasmid expressing the CEL wild type (WT) 
protein containing 16 VNTR repeats 
(Johansson et al., 2011) 

pcDNA 3.1-CEL-HYB1/V5-His  CEL-HYB1 Plasmid expressing the CEL-HYB1 protein 
(Fjeld et al., 2015) 

pcDNA 3.1CEL-TRUNC/V5-
His B 

CEL-TRUNC Plasmid expressing CEL-TRUNC, an 
artificial CEL protein lacking the VNTR 
domain (Johansson et al., 2011)  

pcDNA 3.1.CEL-HYB1N/V5-
His  

CEL-HYB1N Plasmid expressing CEL-HYB1 where an 
N-glycosylation site has been mutated in the 
C-terminal of the protein. New name: CEL-
HYB1N (unpublished) 

pcDNA 3.1/V5-His  EV Empty vector 

*All plasmids are based on the mammalian expression vector pcDNA3.1/V5-His B from 
Invitrogen 

Table 3.2 DNA methods 

Product Catalog number Supplier 

Ampicillin A9518-5G Sigma Aldrich 

BamHI restriction enzyme R0136S New England BioLabs 

CutSmart Buffer B7204S New England BioLabs 

OneShot TOP10 Chemically 
Competent E.coli cells 

C4040-03 Invitrogen 

Ethidium bromide E1510-10ml Sigma Aldrich 

Gel Loading Dye, Blue (6X) B7021S New England BioLabs 

imMedia Amp Agar 45-0034 Invitrogen 

Lysogeny broth (LB) medium SLBQ7430V Sigma Aldrich 

NuSieve  3-1 Agarose 7894 Lonza 

QIAfilterPlasmid Midi Kit (100) 12245 Qiagen 

TE buffer (pH 8.0) AM9849 Invitrogen 
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Table 3.3 Cell lines 

Cell line Description Catalog 
number 

Supplier 

266-6 Mouse pancreatic acinar tumor cell CRL-2151 ATCC 

HEK-293 Human embryonic kidney cells 293 632180 

 

CloneTech 
Laboratories 

 

Table 3.4 Cell culturing 

Product Catalog number Supplier 

Antibiotic Antimycotic 15240062 Thermo Fischer Scientific 

Dimethyl sulfoxide (DMSO) D8418-250ml  Sigma-Aldrich 

Dexamethasone D4902-25MG Sigma-Aldrich 

Dulbeccos Modified Eagles medium 41966-029-500ml Gbco by Life Technologies 

Dulbeccos Phosphate Buffered Saline RNBH2629 Sigma Aldrich 

Fetal Bovine Serum (FBS) F7524-500ml Sigma Aldrich 

0.05 % Trypsin EDTA (1x) 253000-054 -50ml Gibco by Life Technologies 

 

Table 3.5 Transient transfection and treatment of cells 

Product Catalog number Supplier 

Amaxa  SF Cell line 4D Nucleofector X Kit 
L 

V4XC-2024 Lonza 

Cigarette smoke extract (CSE) - Murty Pharmaceuticals 

Lipofectamine 2000 Reagent 11668019 Invitrogen 

Nunclon Delta Surface 6 well plates 140675 Thermo Scientific 

Opti-MEM Reduced Serum Medium 31985062 Thermo Fisher Scientific 

RPMI 1640 Medium 11875093-500ml Thermo Fisher Scientific 
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Table 3.6 Cell lysis, SDS-PAGE and Western blotting 

Product Catalog number Supplier 

Amersham Hybond 0.45 µm PVDF 
membrane 

10600029 GE Healthcare Life Science 

Blocking grade blocker nonfat-dry milk 170-6404 BioRad 

Blotto, nonfat-dry milk sc-2324 Santa Cruz Biotechnology Inc 

Magic Mark XP Western Protein Standard LC6502 Invitrogen 

Methanol 67-56-1 Merck Millipore 

NuPAGE LDS sample buffer (4x) NP0007 Thermo Fisher Scientific 

NuPAGE  MOPS SDS running buffer (20x) NP0001-01 Thermo Fisher Scientific 

NuPAGE  Novex 4-12 % Bis-Tris protein 
gels (1 mm, 10 wells) 

NP0321BOX Thermo Fisher Scientific  

NuPAGE Novex 10% Bis-Tris protein gels 
(1 mm, 10 wells) 

NP0301BOX Thermo Fisher Scientific 

NuPage Transfer Buffer (20X) NP0006-1 Thermo Fisher Scientific 

NuPAGE Sample reducing agent (10x) NP0009 Thermo Fisher Scientific 

Phosphate buffer saline (PBS) tablets 18912-014 Gibco 

Pierce BCA protein assay kit 23225 Thermo Scientific  

Pierce ECL Plus Western Blotting Substrate 32132 Thermo Scientific  

Precision Plus Protein  dual color standard 161-0374 Biorad 

Restore Western blot stripping buffer 21059 Thermo Scientific 

β-mecaptoethanol ) 60-24-2 Sigma Aldrich  

RIPA lysis buffer (10x) 20-188 Merck Millipore 
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Table 3.7 Immunofluorescence 

Product Catalog number Supplier 

ProLong Gold Antifade Mountant with 
DAPI 

P36935 Molecular Probes 

Normal goat serum 1000C Invitrogen 

Nunclon Delta Surface 12 well plates 150628 Thermo Scientific 

Paraformaldehyde (PFA) 818715 Merck Millipore 

Poly-L-Lysine RNBD9368-10ml Gibco by Life Technologies 

Duran group microscope slides 23 550 13 Duran Group 

 

Table 3.8 Immunohistochemistry  

Product Catalog number Supplier 

DAKO pen S2002 Agilent DAKO 

Envision Flex Hematoxylin K8008 Agilent DAKO 

Normal goat serum (10 %) 50197Z Thermo Fisher Scientific 

Pertex Mounting Media  00811-EX Histolab 

Liquid DAB+ Substrate 
Chromogen System 

K3468 Agilent DAKO 

Target Retrieval Solution, pH 9.0, 
10x  

S2367 DAKO 

Target Retrieval Solution, Citrate 
pH 6.0 10x  

S2031 DAKO 
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Table 3.9 Primary antibodies  

Antibody Catalog 
number 

Supplier Method 

Anti-CEL  
(rabbit polyclonal) 

Gift (Xiao et al., 
2016) 

Prof. Mark E. Lowe, 
Washington University 
School of Medicine, St. 
Louis, USA 

Western Blot 
 

Anti-CEL  
(rabbit polyclonal) 

SAB2103782 Sigma-Aldrich Western Blot 

 

Anti-CEL  
(rabbit polyclonal) 

HPA052701 Sigma-Aldrich Immunohistochemistry 

 

Anti-BIP 
(rabbit polyclonal) 

Ab21685 Abcam Western Blot 

 

Anti-GAPDH 
(goat polyclonal) 

Sc-47724 Santa Cruz Biotechnology 
Inc 

Western Blot 

 

Anti-V5  
(mouse monoclonal) 

46-0705 Invitrogen  Western Blot and 
Immunofluorescence  

Anti-CEL-HYB 
(rabbit polyclonal) 

Designed by the 
Bergen group 

Davids Biotechlogie Western Blot and 
Immunohistochemistry 

Anti-Actin  
(mouse monoclonal) 

A5441 Sigma Aldrich Western blot 
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Table 3.10 Secondary antibodies 

Antibody Catalog 
number 

Supplier Method 

Goat anti-Rabbit IgG 
HRP 

65-6120 Thermo Fisher Western Blot 

Donkey anti-Mouse 
IgG HRP 

Sc-2306 Santa Cruz Biotechnology 
Inc 

Western Blot 

Mouse anti-Goat IgG 
HRP 

Sc-2354 Santa Cruz Biotechnology 
Inc 

Western Blot 

Donkey anti-Goat IgG 
HRP 

Sc-2020 Santa Cruz Biotechnology 
Inc 

Western Blot 

F(ab´)2-Goat anti 
Mouse IgG (H+L) 
Cross-Adsorbed 
Secondary Antibody, 
Alexa Fluor 488 

A-11017 Thermo Fischer Scientific   Immunofluorescence  

 

MACH3 Rabbit HRP-
conjugated Polymer 

RH531H Biocare Medical   Immunohistochemistry 

 

MACH3 Rabbit Probe RP531H Biocare Medical Immunohistochemistry 

 

Table 3.11 Buffers and solutions 

Buffer Method Composition 

TBE buffer (pH 8.3) Gel electrophoresis Tris-borate (45 mM) and EDTA (1 mM) 

NuPAGE MOPS SDS 
running buffer (1x) 

SDS-PAGE For 1 L: 50 ml NuPAGE ® MOPS 20x in 
950 ml dH20. 

NuPAGE Transfer Buffer 
(1x) 

Western Blot For 1L: 50ml NuPAGE ® Transfer buffer 
(20x) in 850 ml dH2O and 100 ml 
methanol. 

5 % milk in PBS-T  
(0.05 %) 

Western blot 2.5 g blocking grade blocker nonfat-dry 
milk in 50 ml PBS-T (0.05 %).  

PBS-T (0.05 %) Western blot For 1 L: 2 tablets of PBS dissolved in 1L 
dH2O with 0.05% Tween ® 20. 

RIPA lysis buffer Cell lysis  
(cells) 

10x RIPA lysis buffer (0.5 M Tris-HCl, 1.5 
M NaCL, 2.5 % deoxycholic acid, 10 % 
NP-40, 10 mM EDTA, pH 7.4) + 1 tablet 
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CompleteTM Mini EDTA-free protease 
inhibitors cocktail tablet  

RIPA lysis buffer Cell lysis 

(tissue) 

1x RIPA lysis buffer (25 mM Tris, 150 
mM NaCl, 1 % Triton X-100, 1 % sodium 
deoxycholate, 1 % SDS, pH 7.6) + 1 tablet 
Complete Mini EDTA-free protease 
inhibitors cocktail tablet 

Blocking buffer Immunofluorescence 5 % normal goat serum in washing buffer 

Washing buffer Immunofluorescence For 1 L: 2 tablets of PBS in 1 L dH2O. 

Permeabilization buffer Immunofluorescence 15 µl Triton X-100 and 15 µl Tween 20 
dissolved in 14.7 ml PBS.  

Fixative Immunofluorescence 6 % paraformaldehyde in 3 ml 1x 
Phosphate buffered saline 

Citrate-EDTA buffer  
(10 mM citric acid, 2 mM 
EDTA and 0.05 % Tween)   

Immunohistochemistry For 1 L: 1.92 g citric acid and 0.74 g EDTA 
in 1000 ml dH20. pH adjusted to 6.2 and 
addition of 0.5 ml Tween 

Sodium citrate buffer (10 
mM sodium citrate and 
0.05 % Tween) 

Immunohistochemistry For 1 L: 2.94 g tri-sodium citrate added to 
1000 ml dH20. pH adjusted to 6 and 
addition of 0.5 ml Tween.  

Glycine buffer (0.05 mM 
glycine) 

Immunohistochemistry For 1 L: 3.75 g glycine to 1000 ml dH20 
(pH 3.5). Mix 200 ml glycine buffer with 
5.7 ml 1M HCl.  

High salt antibody diluent  Immunohistochemistry 0.05 M Tris, 0.15 M NaCl, 1 % BSA, 0.015 
M Na-azide and 0.05 % Tween. Adjust pH 
to 7.4 

Low salt antibody diluent Immunohistochemistry 0.05 M Tris, 0.075 M NaCl, 1 % BSA, 
0.015 M Na-azide and 0.05 % Tween. 
Adjust pH to 7.4 

Endogen peroxidase 
blocking solution 

Immunohistochemistry 3 % (v/v) H2O2 in dH2O 

 

3.1 Animals 

Our research group has recently developed a humanized knock-in CEL-HYB1 mouse strain. 

The transgenic strain was made on the C57BL/6J background by GenoWay, Lyon, France, by 

using the Cre/LoxP system.  

A schematic representation of how the CEL-HYB1 strain was generated is shown in Figure 3.1. 

Only heterozygous CEL-HYB1 mice were used in this project. C57BL/6J (0/0) was used as 
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controls. Heterozygous CEL-HYB1 mice (0/ki) harbor the three VNTR repeats from the human 

CEL-HYB allele on one Cel allele and a normal mouse Cel gene on the other.  

 

 

 

 

 

 

 

 

Figure 3.1 Schematic representation of how the CEL-HYB1 mouse strain was generated. The 
mouse Cel VNTR was replaced by the human VNTR of CEL-HYB1 (Fjeld et al., 2015). 

 

Table 3.12 Mice work  

Product Catalog number Supplier 

Trident RIPA lysis buffer  GTX400005 100 ml GenTex 

Rodent Liquid Diet Lieber-DeCarli 82 Shake and 
Pour Control Diet 

F1259SP Bio-Serv 

Rodent Liquid Diet Lieber-DeCarli 82 Shake and 
Pour Ethanol Diet 

F1258SP Bio-Serv 

Liquid Diet Feeding Tubes #9019 Bio-Serv 
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Table 3.13 Technical equipment  

Product Supplier 

NanoDrop ND-1000 Thermo Scientific 

Sceptre 2.0 handheld automated cell counter Millipore  

Countess II Automated Cell counter Thermo Fisher Scientific  

Leica Confocal SP8 Leica Microsystems 

Leica DM200 LED Leica Microsystems 

ChemiDoc MP Imaging System BioRad 

Gen 5 2.06 software Biotek 

Eppendorf centrifuge 5417C A/B Phil 

Heraeus multifuge 3S-R  Thermo Electron corporation  

Heraeus Fresco  21 Microcentrifuge Thermo Fisher Scientific  

Heraeus Megafuge 1.0 Thermo Fisher Scientific 

4D-Nucleofector  System Lonza 

Virsonic 300 UltrasonicCell Disrupter, 1/8” micro probe tip, 
400W 

Virtis 

 

 

Table 3.14 Analytical software  

Product Supplier 

LASV4.8 Leica Microsystems  

FIJI software ImageJ 

LAS X software Leica Microsystems 

Image Lab 6.0.1 Software BioRad 
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4. Methods  
4.1 Plasmid preparation  

4.1.1 Transformation of OneShot TOP10 Chemically Competent E.Coli cells 

Transformation was conducted by a rapid chemical procedure as described by the manufacturer 

(Invitrogen). In brief, pcDNA3.1 plasmids encoding different CEL-variants (Table 3.1) were 

transformed into OneShot TOP10 Chemically Competent E. coli cells. One µl of plasmid (500-

1000 ng) was added to 25 µl of E. coli cells. The cells were spread onto pre-warmed (37 °C) 

agar plates containing the selection marker ampicillin (100 µg/ml) and incubated overnight 

(o/n) at 37 °C. 

4.1.2 Bacterial glycerol stocks and plasmid purification 

For each transformation, a single bacteria colony was picked and inoculated into a 25 ml culture 

of lysogenic broth (LB) medium containing ampicillin (100 µg/ml). The culture was incubated 

o/n at 37 °C with shaking at 250 rpm. A bacterial glycerol stock was made for each plasmid by 

diluting 500 µl of the bacteria culture with 500 µl of 50 % glycerol. The stocks were stored at 

-80 °C. For plasmid preparation, the bacterial culture was harvested by centrifugation at 4570 

x g for 40 min at 4 °C. Plasmid purification was performed according to the Qiagen Plasmid 

Midi Kit (100) protocol. The DNA pellet was added 150 µl of TE buffer (Table 3.2) and left 

o/n at room temperature (RT) to ensure that the pellet was properly dissolved. 

4.1.3 Determination of plasmid concentration and quality  

After purification, the DNA concentration and quality of the plasmids were determined by 

optical density (OD) and agarose gel electrophoresis.  

4.1.3.1 OD measurements  

The absorbance of 1.0 µl solution was measured by a NanoDrop ND-1000 spectrophotometer 

at 260 nm to determine the plasmid concentration. The 260/280 ratio was considered to estimate 

the DNA purity. A ratio of approximately 1.8 indicates a pure sample as RNA and DNA absorb 

at 260 nm. A ratio lower than 1.8 indicates protein or phenol contamination, while a ratio higher 

than 1.8 can indicate RNA contamination. The 260/230 ratio should range between 2.0-2.2 to 

indicate a pure DNA sample. A lower ratio could indicate impurities such as phenol or 

guanidine residues (Thermo Fisher Scientific, 2015). 
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4.1.3.2 Agarose gel electrophoresis  

To verify the quality of the DNA, the CEL plasmids were separated on a 1 % agarose gel. The 

gel contained 0.5 µg/ml ethidium bromide to visualize the DNA. Before loading the gel, a 

restriction digestion was set up for each plasmid using the enzyme BamHI (Table 3.2). The 

reaction was incubated at 37 °C for 1 h and then left at 80 °C for 20 min for inactivation. Both 

digested and undigested plasmids (500-1000 ng) were loaded onto the gel. 10 µl sample was 

mixed with 2 µl of Gel Loading dye Blue (6x) before loaded adjacent to a 10 kb molecular size 

marker. The gel was run in 1x TBE buffer (Table 3.11) at 90 V for 2 h. The ChemiDoc MP 

Imaging System was used for visualization.  

Table 4.1 Restriction digestion with BamHI 

Reagents Amount  

Plasmid DNA  1 µg 

10X CutSmart Buffer 5 µl 

BamHI  1 µl 

dH2O 43 µl 

Total volume 50 µl 

 

4.2 Cell culturing, transfection and treatment of cells 

4.2.1 Cell culturing  

Mouse pancreatic acinar cells, 266-6 (ATCC) and human embryonic kidney cells, HEK-293 

(CloneTech) were cultured in Dulbeccos Modified Eagle’s Medium (DMEM) with high 

glucose (4500 mg/ml) supplemented with 10 % fetal bovine serum and 100 U/ml Antibiotics 

Antimycotic. The cells were grown in a humidified atmosphere with 5 % CO2 at 37 °C in T75 

cm2 flasks if not stated otherwise.  

4.2.2 Passaging and seeding of cells  

Sub-culturing was done by removing the growth medium and washing the cells with 3 ml pre-

warmed PBS. Next, 1 ml 0.05 % Trypsin-EDTA was added for the cells to detach from the 

surface. Subsequently the cells were resuspended in growth media and an appropriate dilution 

of cells was transferred to a new T75 cm2 flask and added a total of 13 ml growth media. For 

experiments that required an exact number of cells, an aliquot of the resuspended cells (5 µl) 
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were diluted 1:100 in PBS before counted using a Scepter 2.0 cell counter or a Countess II 

Automated Cell Counter following the manufacturer’s protocol. 

4.2.3 Cell freezing and thawing 

Cells were grown to 80-90 % confluency in a T75 cm2 flask prior to freezing. The cells were in 

log phase growth when freezing to ensure recovery and optimum health when thawed (ATCC, 

2010). The cells were trypsinized as described above (section 4.2.2) and transferred to a 15 ml 

Falcon tube before centrifuged at 1000 x g for 4 min. The supernatant was removed, and the 

pellet resuspended in 5 ml freezing medium (10 % DMSO in complete growth medium). The 

cell suspension was aliquoted in cryo vials and placed in a container with isopropanol at -80 

°C. After 72 h, the vials were transferred to a nitrogen tank for long-term storage.   

Rapid thawing of cells is important to avoid DMSO to destroy the cell membrane (Baboo et al., 

2019). A cryo vial containing 1 ml of cells were thawed by rubbing between palms, resuspended 

in 5 ml pre-warmed complete growth medium and transferred to a T25 cm2 flask. The next day, 

medium was removed, and cells were added fresh growth medium to remove debris and DMSO 

residue.  

4.2.4 Transient transfection of 266-6 cells by nucleofection 

Prior to transfection, cells were grown to 70-80 % confluency in T75-flasks. Also, 72 h before 

transfection, 100 nM dexamethasone was added to the cells for proper differentiation of the 

266-6 cells into an acinar like-phenotype (Derikx et al., 2015).  

Transfection was performed using the Nucleofector 4D technology by Lonza according to the 

manufacturer’s protocol. Nucleofection, which is a sophistical form of electroporation, uses a 

combination of electrical parameters and solutions that need to be optimized specifically for 

each cell line. The transfection protocol presented here was carefully optimized for the 266-6 

cell line. An overview of the protocol is presented in Figure 4.2. In brief, cells were washed, 

trypsinated, resuspended in 5 ml DMEM and counted using the CellCountess II apparatus (step 

1). The cells (9 x 106) were centrifuged at 90 x g for 10 min at RT and the supernatant was 

removed. The cell pellet was resuspended in transfection mix consisting of 1 µg DNA, 82 µl 

SF solution and 18 µl S1 supplement. The transfection mix was transferred to cuvettes and 

pulsed by the DN-100 program (step 3). Next, 400 µl of low-calcium RPMI media was added 

to cuvettes and left to incubate at 37 °C for 10 min (step 4). 2/3 of the pulsed cell suspension 

was transferred to one well of the 6-well plate for Western blot analysis, whereas 1/3 of the cell 
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suspension was transferred to one well of the 12-well plates for immunostaining and confocal 

analysis (step 5). The transfected cells were grown for 48 h at 37 °C before further analysis. 

 

 

 

 

 

 

 

 

 

 

Fig 4.2 Transfection of 266-6 cells by nucleofection. Figure is taken from the Lonza 4D 
nucleofection protocol. 

 

4.2.5 Transient transfection of HEK-293 cells by Lipofectamine 

Prior to transfection, HEK-293 cells were seeded in a 6-well plate (4 x 106 cells per well) and 

grown to 60-70 % confluency. The transfection was executed as described by the Lipofectamine 

2000 manufacturer protocol. For each transfection, 4 µg DNA was diluted in 250 µl Opti-MEM 

media and incubated for 5 min at RT. Similarly, 10 µl Lipofectamine was diluted in 250 µl 

Opti-MEM media and subsequently the DNA mix was added to the Lipofectamine mix and 

incubated at RT for 20 min. Next, the lipid-DNA solution was added to the cells and incubated 

at 37 °C. After 4-6 h, the growth medium was replaced, and the cells further incubated for 48 h 

before SDS-PAGE and Western blot analysis. 

4.2.6 Treatment of 266-6 cells 

266-6 cells were treated with cigarette smoking extract (CSE) or ethanol. According to Murty 

Pharmaceuticals, the CSE is made by burning University of Kentucky 3R4F standard research 

cigarettes on a filter smoke machine. The cigarette smoke is condensed, stored and further 

extracted with DMSO by soaking and sonication. The CSE is packaged as 40 mg/ml (equivalent 
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to 3.6 cigarettes per ml). For treatment of our cells, 4 or 40 µg/ml CSE were used as these 

concentrations fall within the range of light smoking (equivalent to 5 cigarettes a day) and heavy 

smoking (equivalent to 25 cigarettes per day), respectively. For treatment with ethanol, 

concentrations of 10 mM or 50 mM were used. Ethanol at 10 mM corresponds to two drinks a 

day while 50 mM represents alcohol consumption typical of alcoholics. The cells were added 

CSE or ethanol 24 h post-transfection. The cells were grown for additional 24 h before further 

analysis.  

4.3 Preparation of cellular fractions  

4.3.1 Preparation of lysate, pellet and medium fractions 

Forty-eight hours post transfection analytical fractions were prepared from cells seeded in 6-

well plates. From each well, one ml medium was collected and centrifuged for 5 min at 14 000 

x g at 4 °C. The supernatant was transferred to a new tube and analyzed as the medium fraction. 

The cells were washed with 1 ml PBS and lysed in ice-cold 150 µl RIPA lysis buffer (Table 

3.11). The lysate was collected by a cell scrapper and sonicated on ice for 10 s x 5 with a 10 s 

interval. The tube was centrifuged for 20 min at 14 0000 x g at 4 °C. The supernatant was 

collected and analyzed as the soluble lysate fraction. The pellet was washed in 1 ml PBS 

centrifuged for 5 min at 14 000 x g and 4 °C. This step was performed twice. The PBS was 

removed, and the pellet was added 100 µl 2 x LDS loading buffer and 5 % β-mercaptoethanol, 

denatured at 95 °C for 5 min and analyzed as the insoluble lysate/pellet fraction. If not used 

immediately, all fractions were stored at -80 °C until further analysis.  

4.3.2 Determination of protein concentration  

The protein concentration of the lysate fractions was determined by using the Pierce BCA 

Protein Assay. Between 4-20 µg of total protein was used for SDS-PAGE and Western blot 

analysis. For the pellet and medium fraction, the volume loaded onto the SDS gel was identical 

to that of the corresponding lysate.  

 

4.4 SDS-PAGE and Western blotting 

4.4.1 SDS-PAGE 

For the lysate and media fractions, 20 µl samples were prepared as described in Table 4.3. 

Before loading the SDS-gel, the samples were denatured for 15 min at 56 °C. The insoluble 

pellet fractions were prepared as described above (section 4.3.1). All samples were loaded onto 
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10 % NuPage Bis-Tris gels (1.0 mm, 10 wells) and separated by electrophoresis in a XCell 

SureLock Mini-Cell system. As molecular weight markers, 2 µl of Magic Mark XP and 4 µl of 

Precision Plus Marker were loaded onto the gels. The gels run in a 1x 3-(N-morpholino) 

propanesulfonic acid (MOPS) buffer at 90 V for 15 min and then at 180 V for 1 h.  

Table 4.3 Content of lysate and media fractions loaded onto the SDS-gel.  

Reagents Volume 

Sample/dH2O 12 µl 

β-mercaptoethanol (14.3 M)  1 µl 

Sample Buffer (x4) 2 µl 

Reducing Agent (x10) 5 µl 

Total volume 20 µl 

 

4.4.2 Western blotting 

After SDS-PAGE, the proteins were transferred to polyvinylidene fluoride (PVDF) membranes 

using the XCell Blot Module system as described by Invitrogen. Prior to transfer, the 

membranes were activated in 100 % methanol for 1 min, followed by 1 min rinse in dH2O. 

Blotting was performed at 30 V for 1 h in 1X NuPage transfer buffer containing 10 % methanol. 

The membranes were blocked in 5 % milk in PBS-T (0.05 %) at RT for 1 h before incubated 

with primary antibodies diluted in 1% milk in PBS-T (0.05 %) o/n at 4 °C. The primary 

antibodies used were anti-V5 (1:10 000), anti-CEL (1:5000, St. Louis), anti-CEL (1:5000, 

Sigma), anti-CEL-HYB (1:300) or anti-BIP (1:5000). Also, primary antibodies against the 

housekeeping proteins GAPDH (1:2000) and anti-actin (1:1000) were included as loading 

controls. The following day, the membranes were washed 3x 5 min in PBS-T (0.05 %) before 

incubated with HRP-conjugated secondary antibodies diluted 1:5000 in 1 % milk PBS-T (0.05 

%) for 1 h at RT. Next, the membranes were washed 1x 15 min and 3x 5 min in PBS-T (0.05 

%) before developed using the Pierce ECL Plus Western Blotting Substrate kit. For detection, 

the ChemiDocTM MP Imaging System was used. 

4.5 Immunostaining and confocal imaging 

266-6 cells were transfected by nucleofection (section 4.2.4) and seeded on coverslips coated 

with poly-L-lysine in 12 well plates. After 48 h, the cells were washed with pre-warm PBS (37 

°C) and fixed in 500 µl of 3% paraformaldehyde for 30 min. After fixation, the cells were 
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washed twice with PBS followed by storage in PBS at 4°C or staining as described below. All 

buffers used for immunostaining are described in Table 3.11, and all incubations were 

performed at RT if not stated otherwise. 

4.5.1 Immunostaining  

Cells were incubated for 3x 5 min in washing buffer before permeabilized for 20 min. Next, the 

cells were washed 3x 5 min and further incubated for 30 min in blocking buffer. For primary 

antibody incubation, the coverslips were added 40 µl of anti-V5 (1:1000 in blocking buffer) 

and incubated for 2 h. Cells were washed o/n at 4 °C and incubated with Alexa Fluor 488 anti-

mouse HRP-conjugated secondary antibody (1:200 in blocking buffer) for 1 h. After a second 

washing step o/n at 4 °C, the coverslips were rinsed in PBS before mounting onto objective 

slides in 10 µl of Prolong Gold Antifade solution with DAPI. The slides were set to harden o/n 

and then further stored at -20 °C.  

4.5.2 Confocal imaging 

Images were obtained using a Leica TCS SP8 STED 3x confocal microscope (Leica 

Microsystems) equipped with an HCX PL APO CS 100x objective (NA 1.4) using oil as 

immersion medium. The scan speed was set to 600 Hz and bidirectional X scanning was on. 

Diode 405 and Argon 488 lasers were used, and the zoom factor was set to 1.4 for all images. 

The microscope software LAS X was used for image acquisition. 

4.6 Immunohistochemistry 

Formalin Fixed Paraffin Embedded (FFPE) human or mouse pancreatic tissue sections (3-5 

µm) were placed onto Klinpath slides and dried o/n at 58 °C. Slides were stored at 4 °C until 

further analysis.  Human pancreatic tissue sections were obtained from a biobank at the 

Department of Clinical Medicine, University of Bergen. The biobank consists of biological 

material sampled from patients with pancreatic cancer and other diseases of the exocrine 

pancreas. The study has been approved from the Regional Ethical Committee of Western 

Norway (REK 2013/1772).  

Before starting, the slides were incubated once more at 58 °C for 5 min. Next, the slides were 

deparaffinized in xylene for 2x 5 min, rehydrated with decreasing ethanol concentrations (100 

%, 96 % and 80 %) for 2x 2 min each and washed in dH2O for 1 min while shaking. All washing 

steps were performed while shaking. The tissue sections were further incubated with retrieval 

buffer in a pressure cooker at 120 °C for 1 min and cooled down with running tap water. 
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Sections incubated with the anti-CEL antibody (1:200, Sigma) were retrieved in Tris-EDTA 

buffer (pH 9.0) whereas sections incubated with the CEL-HYB antibody (5 µg/ml) were 

retrieved in a sodium citrate buffer (pH 6.0, Table 3.11). Sections were washed 3x 5 min with 

PBS-T (0.05 %) and further blocked for 30 min at RT in 10 % goat serum (Table 3.8). Next, 

tissues were delineated with a DAKO pen and incubated with primary antibody in a humidified 

chamber o/n at 4 °C.  

The following day, the primary antibody was removed, and the sections were washed 3x 15 

min in PBS-T (0.05 %) and blocked with 3 % endogenous peroxidase (Table 3.11) for 10 min 

at RT. Detection of the primary antibody was performed with MACH3 anti-rabbit kit. First, 

sections were incubated with the probe followed by an HRP-conjugated polymer. Both 

incubations was performed at RT for 20 min and washing steps of 3x 5 min was done with 

PBS-T (0.05 %) after each step. Visualization was done with 3,3´-diaminobenzidine (DAB) as 

substrate. The sections were also stained for 10 min with hematoxylin to visualize the nuclei. 

Finally, the sections were dehydrated in increasing ethanol concentrations (80, 96 and 100 %) 

1 min each, followed by xylene for 2x 2 min. The sections were mounted in permanent 

mounting media and visualized using a Leica DM2000LED microscope with a LASV4.8 

software.  

4.7 Mice work 

4.7.1 Animals 

The mice were housed and bred at the Laboratory Animal Facility, Department of Clinical 

Medicine, University of Bergen. The mice were kept under standard conditions with a 

temperature of 21 °C, a humidity of 55 %, a light/dark cycle of 12 h and they were fed normal 

chow diet. During the experimental period, however, the animals were fed with liquid diets as 

described in more detailed in section 4.7.3. Only CEL-HYB1 heterozygous and control male 

mice were used in this study. 

4.7.2 Study approval 

Both animal breeding and the animal experiment were approved by the Norwegian Animal 

Welfare Agency (Mattilsynet) in December 2017 (FOTS IDs 13902 and 13510, respectively).  

4.7.3 Rodent liquid diets 

Two rodent liquid diets were used in this study, namely the Lieber-DeCarli Shake and Pour ´82 

Control diet and the Lieber-DeCarli Shake and Pour ´82 Ethanol diet. Both the control and 
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ethanol diet were prepared every second day, and the ingredients and amount needed to prepare 

the diets are listed in Table 4.6. In short, dry mix was added to autoclaved tap water and mixed 

with and without 95 % ethanol by vigorous shaking. The two diets here were again mixed as 

further described in the next section. If not used immediately, the diets were stored at 4 °C o/n. 

Table 4.6 Ingredients and amount needed to prepare the Lieber-DeCarli (LDC) Control 
and Ethanol diet 

Ingredients For 200 ml diet 

LDC-Control diet: 

RT tap water (autoclaved) 

Dry mix food 

 

172 ml 

45.11 g 

 

LDC-Ethanol diet 

RT tap water (autoclaved) 

Dry mix food 

95% ethanol 

 

178 ml 

26.7 g 

13.4 ml 

 

4.7.4 Ethanol feeding of mice 

At the start of the experiments, the mice were 29 weeks old. The mice were housed in individual 

cages, and the liquid diets were their only source of food and water. Furthermore, the diets were 

given in glass feeding tubes as shown in Figure 4.7.  

 

 

Figure 4.7: Mice fed the 
liquid diet. All diets were 
prepared as described in 
section 4.7.3 and were given 
in a glass feeding tube. An 
adequate amount of diets were 
given daily.  



 39 

The mice were pair-fed meaning that one mouse was given the control diet, the other the ethanol 

diet. For ethanol feeding of mice, it is obligatory to introduce the alcohol gradually and to start 

with an adaption week (Guo et al., 2018). During the first two days, the ethanol group was fed 

with the control diet to get used to the liquid diet and the feeding tubes. The following days of 

the adaption week, the ethanol group was given an increasing amount of ethanol as shown in 

Figure 4.8. For the last two weeks, the mice were fed with a 5 % ethanol diet. The ethanol diet 

was prepared by mixing LCD-Control diet and LDC-Ethanol diet (Table 4.6) as shown in Table 

4.7. The control mice were maintained on the control diet from the first to the last day of the 

experiment. 

Figure 4.8 An experimental outline for ethanol and control-feeding of mice. The ethanol fed group 
was given an increasing percentage of ethanol in their diet for the first week before maintained at 5 % 
ethanol diet for the last two weeks. The control group was fed on an isocaloric adjusted control diet (see 
Table 4.7) 

 

Another important principle for this experiment, is that the paired mice are fed the same 

amounts of calories (Guo et al., 2018). To ensure that, the food intake was measured daily (in 

ml) and corrected. Consequently, pair-fed mice were given the same amount of diet based on 

the lowest intake from the day before.  

The liquid diet was changed every day between 4 and 5 pm. At the end of week 3, all mice were 

euthanized by CO2. The pancreas and liver were isolated and flash-frozen on liquid nitrogen or 

fixed in 4 % paraformaldehyde for Western blot (section 4.4.2) and histology analysis (section 

4.5.7), respectively. 
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Table 4.7 Isocaloric adjustment during the adaptation week with diet mixture principle 

Days Portion of  
LDC-Control diet (%)  

Portion of  
LDC-Ethanol diet (%) 

1-2 100 0 

3-4 75 25 

5-6 50 50 

7 25 75 

To the end of feeding 0 100 

 

4.7.5 Histology 

Pancreas tissues were fixed in 4 % formalin before paraffin-embedded sectioning (3-5 µm) was 

performed. The sectioning, embedding and hematoxylin-eosin staining was performed by the 

histology laboratory at the Department of Pathology, Haukeland University Hospital.  

4.7.6 Lysis of mouse pancreatic tissue   

After the mice were sacrificed, ¼ of the pancreas was cut and put in 500 µl of ice-cold 1 X 

RIPA buffer and placed on ice (Table 3.12). The tissue was homogenized by a pestle (ten times) 

before placed on a rotating wheel for 20 min at 4 0C. Next, the tissue was centrifuged at 14 000 

x g for 15 min at 4 0C. The supernatant was collected and analyzed as the lysate fraction. The 

pellet was washed twice in 1 ml PBS and centrifuged for 5 min at 14 000 x g at 4 °C. Next, the 

pellet was added with 100 µl of 2x loading buffer with 2x reducing agent. The fractions were 

stored at -80 0C until analyzed by SDS-PAGE and Western blotting as described in section 

4.4.2. Before loaded onto the SDS-gel, the pellet was incubated at 95 0C for 15 min. For the 

lysate, the samples loaded were prepared as described in section 4.4.1 except that no β-

mercaptoethanol was added. 
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5. Results  
5.1 Isolation of plasmids and determination of DNA quality  

Plasmids encoding CEL-WT, CEL-HYB1, CEL-TRUNC or EV (empty vector) were 

transformed into E.coli bacteria and further purified by using a Qiagen Plasmid Midi Kit 

(sections 4.1.1 and 4.1.2, respectively). Next, OD measurements were performed to estimate 

DNA concentration and quality. In addition, the plasmids were analyzed by agarose gel 

electrophoresis to confirm purification success. The plasmids were linearized with the 

restriction enzyme BamHI, and both cut and uncut plasmids were analyzed on the gel (Figure. 

5.1). For the digested plasmids we observed the expected band sizes around  7.3 kb for CEL-

WT, 7.1 kb  for CEL-HYB1, 6.8 kb for CEL-TRUNC and 5.5 kb bp for EV, respectively. For 

all undigested plasmids, the supercoiled form of the plasmid was detected as a strong band a 

bit lower than the respective linearized sample. In addition, a very weak upper band was seen 

that most likely represent open circular forms of the plasmids. Taken together, these results 

confirmed that the plasmids were intact and of good quality. 

Figure 5.1 Verification of plasmids by agarose gel electrophoresis. Plasmids (500-1000 ng) were 
loaded and separated on a 1 % agarose gel before stained with ethidium bromide. The plasmids were 
linearized with BamHI and digested/undigested plasmids are indicated with (+)/(-), respectively. Arrows 
point to weak bands that may correspond to open circular plasmids of undigested samples. 

 

5.2 Protein structure of CEL variants 

The plasmids used in this study are encoding different CEL variants, and a schematic overview 

of these proteins is presented in Figure 5.2. For CEL-WT, we used the variant with 16 VNTR 

repeats, which is the most common CEL protein in the general population. In addition to CEL-

WT and CEL-HYB1, we included an artificial CEL variant; CEL-TRUNC. This variant only 



 42 

harbors the first four amino acids of the first VNTR. This variant was included as a control to 

study the biological effect of an absent VNTR region  

 

Figure 5.2. Schematic overview of CEL protein variants employed in this study. CEL protein 
variants are presented with their functional domains and sites, theoretical size (kDa) and VNTR length 
indicated. All variants share identical signaling peptide (green) and globular domain (blue). The CEL-
WT protein has 16 VNTR repeats (grey), CEL-HYB1 has three VNTR repeats (red) whereas CEL-
TRUNC lacks the VNTR region expect for four amino acids of the first repeat (dark blue). Drawn after: 
Fjeld et al., 2015. Nat Genet and Johansson et al., 2018. Pancreatology.  

 

5.3 Expression of CEL protein variants in cell model systems 

All functional studies on the CEL-HYB1 protein has been performed using non-pancreatic 

human HEK-293 cells by our group (Fjeld et al., 2015, Tjora et al., unpublished). Now, we 

wanted to use the 266-6, which is a mouse acinar cell model, to study the CEL-HYB1 protein 

in a more suitable environment. Previous attempts to use the 266-6 cells have proven difficult 

using transfection by Lipofectamine as the transfection efficiency was only ~20 %. We 

therefore set out to try nucleofection as a new transfection approach.   

5.3.1 Optimization of cell transfection using nucleofection 

For optimization, 266-6 cells were transiently transfected with a vector encoding green 

fluorescent protein (GFP). GFP is often used as a reporter to determine transfection efficiency 

(Zizzi et al., 2010) and the percentage of cells expressing GFP in a population can be determined 
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by microscopy. Different amounts of cells were seeded to determine optimal transfection 

efficiency for immunofluorescence (IF) and Western blot (WB) experiments (section 4.5.1 and 

4.4.2, respectively). Forty-eight h post transfection, images were taken to determine the 

transfection efficiency.  

For IF, cells were seeded in 12-well plates at different densities as indicated in Figure 5.3A. 

The best transfection efficiency was observed with 6 million cells/well. However, we decided 

to use 3 million cells/well to avoid confluent cells for proper staining and visualization. For 

WB, cells were seeded in 6-well plates (Figure 5.3B). Here, best transfection efficiency was 

seen for 6 or 9 million cells/well. Since 9 million cells/well showed more cell death than 6 

million cells/well, the latter was used for further experiments.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Optimization of nucleofection of 266-6 cells. A titration of different number of cells/well 
were performed to determine optimal transfection efficiency for 266-6 cells. The cells were transfected 
with a vector encoding GFP. Cells expressing GFP are seen in green. A) For immunofluorescence, 
500,000, 1.5 million, 3 million or 6 million transfected cells were seeded per/well in 12-well plates. B) 
For Western blot, 4, 6, 8 or 9 million transfected cells were seeded per/well in 6-well plates. This 
experiment was conducted once. 



 44 

5.3.2 Expression of CEL in 266-6 and HEK-293 cells 

Once the nucleofection method was optimized for the 266-6 cells, they were transiently 

transfected for investigation of CEL protein expression and secretion with plasmids encoding 

CEL-WT, CEL-HYB1 or CEL-TRUNC. Empty vector (EV) was included as a negative control. 

48 h post transfection, cell fractionation was performed for isolation and analysis of lysate, 

pellet and media fraction by Western blotting (section 4.3.1 and 4.4.2). Protein expression was 

detected by using either the anti-CEL (Sigma, cat.nr.  SAB2103782) antibody or anti-CEL (St. 

Louis) antibody (Figure 5.4). Anti-GAPDH was used as a loading control for the lysates.  

When using the CEL antibody from Sigma, only the CEL-WT protein was detected (Figure 5.3 

A, left panel). This was expected since the antibody recognizes the VNTR region of the CEL-

WT protein. The WT protein was observed in both the lysate and media fraction. In the media 

fraction, two bands were detected between 120 and 100 kDa. In the lysate fraction, one strong 

CEL-WT band was seen close to 100 kDa. These CEL-WT bands represent different 

glycosylated forms of the protein (Johansson et al., 2011, Torsvik et al., 2014). In addition, one 

unspecific band between 60 and 80 kDa was detected in all wells.  

The Western blot results when using the anti-CEL (St. Louis) antibody are shown in Figure 

5.3A (right panel). This antibody recognizes the globular domain of the CEL protein and was 

therefore expected to detect all CEL variants. To our surprise, however, only CEL-WT was 

detected here as well, in the medium and the pellet fractions.  

In previous experiments done by our research group, the anti-CEL (St. Louis) antibody worked 

well to detected various CEL proteins including CEL-HYB1 and CEL-TRUNC by Western 

blotting (unpublished data). The only difference was that the expression system had been HEK-

293 and not  266-6 cells which were used in the present study. To test if the lack of CEL protein 

detection in our study was due to the choice of cell model or a possible error in the CEL-

expressing plasmids, HEK-293 cells were transiently transfected with Lipofectamine using the 

same constructs as described above (section 4.2.5). Western blot analysis of the three cellular 

fractions is shown in Figure 5.4B. Now, all CEL variants could be detected. In the media 

fraction, only the CEL-WT protein was detected (between 100 and 120 kDa). In the pellet 

fraction, however, strong bands were observed for both CEL-HYB1 (about 65 kDa) and CEL-

TRUNC (about 60 kDa). In the same fraction, also a weak band was seen for the CEL-WT 

protein (about 80 kDa). In the lysate, a strong CEL-WT band and more faint CEL-HYB1 and 
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CEL-TRUNC bands were seen at similar sizes as described above. Similar to the left panel of 

Figure 5.4A, there were unspecific bands detected in the lysate fractions for all variants.  

Figure 5.4. Expression of CEL in 266-6 cells and HEK-293 cells.  A) The 266-6 cells were transiently 
transfected by nucleofection with plasmids encoding CEL-WT, CEL-HYB1, CEL-TRUNC or EV. 
Media, pellet and lysate fractions were analyzed by SDS-PAGE and Western blotting using an antibody 
that recognizes the VNTR region of the CEL-WT protein (Sigma) or an antibody that that recognizes 
the globular domain of the CEL protein (St. Louis). GAPDH was used as a loading control. B) HEK-
293 cells were transiently transfected by Lipofectamine with the same plasmids as in A. Media, lysate 
and pellet fractions were isolated and analyzed by SDS-PAGE and Western blotting by using the anti-
CEL (St. Louis) antibody and GAPDH as a loading control. This experiment was conducted one time. 

 

Taken together, the three tested CEL variants were detected at the expected molecular size when 

expressed in HEK-293 cells but not 266-6 cells. This indicates that the constructs were fine, 

and that the differences observed was due to the choice of cell line. The CEL-HYB1 was only 

observed in the pellet fraction in HEK-293 cells. Further, CEL-HYB  has been reported to be 

more insoluble in previous studies (Tjora et al., unpublished).  

 

5.4 Expression of V5-tagged CEL variants in 266-6 cells 

Since we failed to detect CEL expression in transfected 266-6 cells, we decided to change 

approach by transfecting the cells with V5-tagged plasmids. Our research group have made 

such plasmids for several CEL variants including CEL-WT, CEL-HYB1 and CEL-TRUNC, 

and they have all been used with success (Johansson et al., 2011, Fjeld et al., 2015). A schematic 

overview of the CEL protein variants encoded by the V5-tagged plasmids is presented in 
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Appendix 1. The V5-tag is located in the  C-terminal of CEL and is attached to the protein by 

a linker region.  

Now, we also included a second CEL-HYB1 plasmid for some of our experiments, to 

investigate if there was any difference in expression or intracellular distribution between the 

two CEL-HYB1 variants. In the new CEL-HYB1 variant (denoted CEL-HYB1N, see Appendix 

1), two serine residues was mutated in the linker region between the protein and the V5-tag. 

These two residues were introduced into the original CEL-HYB1 construct by accident (Fjeld 

et al., 2015), and since they could introduce an extra N-glycosylation they were now changed 

to alanine and glycine, respectively. Thus, CEL-HYB1N was included in this study to 

investigate the effect of the potential N-glycosylation site introduced to the C-terminal of CEL-

HYB1 

5.4.1 Western blot analysis of different CEL protein variants in 266-6 cells 

The 266-6 cells were nucleofected and fractionated 48 h post transfection as previously 

described. The cell fractions were isolated and analyzed by Western blotting using an anti-V5 

antibody and GAPDH as loading control.  

Figure 5.5 displays the Western blot analysis of V5-tagged CEL variants. In the media and 

lysate fractions, CEL-WT and CEL-HYB1 proteins were detected. In addition, a faint CEL-

TRUNC band was observed in the media fraction. Furthermore, unspecific signals were seen 

in the media and could be IgG heavy chain bands at around 50 kDa. Only the CEL-HYB1 

protein was observed in the insoluble pellet fraction indicating that this variant is less soluble 

than the normal protein also when expressed in acinar cell. 

 

 

Figure 5.5 Expression of different CEL protein 
variants in 266-6 cells. The 266-6 cells were 
nucleofected with plasmids encoding CEL-WT, CEL-
HYB1, CEL-TRUNC or EV containing a V5-tag. 
Media, pellet and lysate fractions were analyzed by 
SDS-PAGE and Western blot using an anti-V5 
antibody. As a loading control GAPDH was used. The 
figure is representative for three individual 
experiments.  
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Based on these results, we decided to use the V5-tagged plasmids for transfection of 266-6 cell 

throughout this master project. 

 

5.4.2 Immunofluorescence and confocal analysis of 266-6 cells 

To further investigate how the CEL protein variants distributes in the 266-6 cells, 

immunofluorescence and confocal imaging was performed on transiently transfected cells. The 

cells were fixed and stained 48 h after transfection and CEL proteins were detected by using an 

anti-V5 primary antibody and the secondary antibody Alexa Fluor 488 (green). DAPI was used 

to visualize the nuclei. (section 4.5.1 and 4.5.2.) 

In this experiment, the cells were transfected with plasmids encoding CEL-WT, CEL-HYB1, 

CEL-TRUNC and EV. In addition, the CEL-HYB1N variant was included to investigate if there 

was a difference between the two CEL-HYB1 variants.  

Confocal images of the immunostainings are presented in Figure 5.6. Interestingly, we saw that 

many of the cells clustered together to form acini-like structures. For the CEL-WT expressing 

cells, the protein was weakly detected within the lumen of such an acinus. A similar expression 

pattern was observed for both CEL-HYB1 variants, however with much stronger signals. 

Furthermore, CEL-HYB1 showed a more intense signal than the CEL-HYB1N variant. The 

CEL-TRUNC variant displayed a different expression pattern than the other variants. Here, less 

signals were observed, and the protein formed small clusters close to the nuclei.  

Interestingly, more cell death was observed for the CEL-HYB1 variant than for the CEL-WT, 

CEL-TRUNC and the CEL-HYB1N variant. The transfection efficiency, in all three 

experiments, were considered to be low, especially for the CEL-TRUNC variant (~ 10 % 

transfection efficiency). 
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Figure 5.6 Intracellular distribution of CEL variants in 266-6 cells. Transiently transfected 266-6 
cells expressing different CEL variants were fixed and stained 48 h post transfection using an anti-V5 
antibody followed by a secondary antibody (Alexa Fluor 488, green) for detection. DAPI was used to 
visualize the cell nuclei (blue). Cells were analyzed by a Leica SP8 confocal microscope at 100x 
magnification. The scale bar is set to 10 µm. The figure is representative for three individual 
experiments. 
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5.5 The impact of ethanol and cigarette smoke extract on CEL-HYB1 protein expression  

To investigate the effect of CEL-HYB1 in combination with environmental factors, we exposed 

acinar 266-6 cells to ethanol (EtOH) and smoke extract (CSE). Dexamethasone treated 266-6 

cells were nucleofected with plasmids encoding CEL-WT, CEL-HYB1, CEL-TRUNC, CEL-

HYB1N and EV (section 4.1.1). Twenty-four h post transfection, the cells were treated with low 

or high doses of CSE (4 and 40 µg/ml) or ethanol (10 and 50 mM), respectively. The cells were 

incubated for additional 24 h, fractionated into lysate, pellet and media fractions and analyzed 

by Western blotting (section 4.2.4. and 4.4.). As controls, untreated cells and/or cells treated 

with DMSO (equal to 40 µg/ml CSE) were used.   

Figure 5.7 shows the Western blot analysis of cells treated with CSE. For the control panel, one 

strong CEL-WT band and two weaker bands for CEL-HYB1 and CEL-HYB1N, respectively, 

were observed in the media fraction. In the pellet, only the CEL-HYB1 variant was detected. 

The CEL-HYB1N was not observed which could be due to an air bubble. In the lysate fraction, 

all CEL variants were detected.  

For the DMSO treated cells, the CEL-WT variant showed a strong band in the media and a 

fainter signal in the lysate fraction. For the CEL-HYB1 variants, they were only observed in 

the pellet. As for CEL-TRUNC, it was not detected at all.  

The cells exposed to low dose of CSE (4 µg/ml) showed a similar expression pattern as the cells  

treated with DMSO, except that the CEL-HYB1N had a stronger band than CEL-HYB1 in the 

pellet. In contrast, cells exposed to 40 µg/ml CSE showed CEL-WT, CEL-HYB1 and CEL-

HYB1N in the media fraction. In the lysate fraction, all variants were detected, and in the pellet 

fraction the CEL-HYB1 and CEL-HYB1N variants were observed more intense bands.  
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Figure 5.7 The effect of CSE on CEL protein variants. Dexamethasone treated 266-6 cells were 
transfected with V5-tagged constructs encoding CEL-WT, CEL-HYB1, CEL-HYB1N, CEL-TRUNC or 
EV. Twenty-four h post transfection, cells were exposed to 4 or 40 µg/ml CSE for 24 h. As controls, 
untreated and DMSO treated cells were used. The cells were fractionated into media, pellet and lysate 
fractions and analyzed by SDS-PAGE and Western blotting using an antibody that recognizes the V5-
tag. Anti-GAPDH antibody was used for loading control. The experiment was performed once. 

 

The effect of ethanol on CEL variants is shown in Figure 5.8. The control panel displayed 

different patterns compared to the control panel for CSE treated cells (Figure 5.7). Here, only 

the CEL-WT was observed in the media while CEL-HYB1N and a faint CEL-HYB1 band were 

seen in the pellet fraction. In the lysate fraction, none of the variants were detected.  

The same expression pattern was observed in the cells exposed to 10 mM EtOH. After treatment 

with 50 mM EtOH, however, none of the variants were observed in the media and lysate 

fractions. Weak bands of CEL-HYB1 and CEL-HYB1N were observed in the pellet fraction 

whereas CEL-TRUNC was not detected in any fractions during this experiment.  
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Figure 5.8 The effect of EtOH on CEL protein variants. The 266-6 cells were transfected with V5-
tagged constructs encoding CEL-WT, CEL-HYB1, CEL-HYB1N, CEL-TRUNC or EV. Twenty-four h 
post transfection, cells were treated with 10 or 50 mM EtOH. As a control, untreated cells were used. 
Twenty-four h post treatment, cells were fractionated into media, pellet and lysate fractions and analyzed 
by SDS-PAGE and Western blotting and detected by anti-V5 antibody. GAPDH was used as a loading 
control. One parallel of this experiment was conducted 

 

In summary, the CEL-HYB1 variants tended to have stronger bands in the pellet fractions for 

cells treated with 4 and 40 µg/ml CSE compared to DMSO. In addition, the CEL-HYB1N 

variant exhibited stronger bands than the CEL-HYB1 variants when exposed to CSE. This 

pattern was not detected for the EtOH treated cells. However, CEL-HYB1N showed a stronger 

band than CEL-HYB1 in all pellet fractions.  

 

5.6 The effect of ethanol on transgenic CEL-HYB knock-in mice 

To study the effect of EtOH on transgenic CEL-HYB1 (0/ki) mice, we used 29-week-old male 

animals. C57BL/6N (0/0) mice were included as controls. The mice were pair-fed with control 

or EtOH-containing liquid diet as described in section 4.7.3. In short, after a 7-day 

acclimatization period (see Figure 4.8) the mice were fed a Lieber-DeCarli ethanol-containing 

(5 % v/v) liquid diet for 2 weeks. The pair-fed control group received an ethanol-free liquid 

diet for 2 weeks. The mice were sacrificed after 3-week with liquid feeding. This experiment 

was set up as a pilot and we included 3 pairs of mice: two controls (0/0, pair 1 and 2) and one 

CEL-HYB1 (0/ki, pair 3).  
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5.6.1 Food consumption and body weight 

Average food consumption was around 20 ml when the experiment started. Then, the  food 

intake decreased to about 15 ml when the ethanol diet was introduced and remained at this level 

throughout the experiment. Daily weighing showed that the control fed group gained weight 

during the three weeks while the EtOH fed group lost weight. (see Appendix 2 for growth 

curves).  

5.6.2 Pancreas histology of EtOH-fed mice 

After sacrificing the mice, one part of the pancreas was isolated and fixed for histological 

analysis (section 4.7.5.). Hematoxylin-eosin staining of pancreas sections from control- and 

ethanol-fed mice are shown in Figure 5.9. The histology of the pancreas in all mice, independent 

of diet, appeared normal. There was no sign of fibrosis or other features indicating chronic 

pancreatitis. The 0/ki mice fed with the control diet showed some fat in the pancreas. However, 

this is most likely due to body weight as this mouse was heavier than the other animals (see 

Appendix 1 for growth curve).   

 

 

 

 

 

 

 

 

 

 

Figure 5.9 Effect of EtOH-feeding on pancreas histology. Pancreas sections from controls (0/0, pair 
1 and 2) and CEL-HYB1 (0/ki, pair 3) mice were stained with hematoxylin-eosin. Upper panel: Control 
mice; Lower panel: EtOH treated mice. I; Islets of Langerhans, E; exocrine pancreas D; Duct, F; Fat, B; 
Blood vessel. All images are 20x magnification and this experiment was performed once. Control, 
control liquid diet; EtOH, ethanol-containing diet. The experiment was performed once.  
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5.6.3 CEL and BIP expression in the pancreas of ethanol-fed mice  

Even though we found no signs of histological changes in the pancreas of ethanol-fed mice, we 

wanted to investigate if ethanol could induce cellular stress in the organ. To do so, we isolated 

pancreatic lysates and insoluble pellet fractions from both control and ethanol-fed mice (section 

4.7.6), and these fractions were further analyzed by Western blotting (Figure 5.10). As a stress 

marker, we used an antibody towards the ER-chaperone BIP. BIP is a master regulator of the 

unfolded protein response and is responsible for proper folding and assembly of proteins. The 

predicted molecular weight of BIP is 78 kDa. In addition, we analyzed CEL expression in the 

mice using the anti-CEL (St. Louis) antibody.  

The lysate fractions were analyzed for CEL expression. Here, we observed endogenous Cel 

expression in all mice at expected size around 66 kDa. The mouse Cel protein has a shorter 

VNTR region (only 3 repeats) and is therefore smaller in size compared to the normal human 

CEL protein (16 VNTR repeats). For the CEL-HYB1 mice, we observed an additional band 

(marked with an arrow in Figure 5.11). This corresponds to the humanized CEL-HYB1 protein 

at about 64 kDa.  

 

 

 

 

 

 

 

 

 

Figure 5.10. The effect of EtOH on CEL and BIP expression in the pancreas from EtOH-fed mice. 
Mouse pancreatic lysates and pellet fractions were analyzed by Western blotting. Both endogenous and 
exogenous CEL expression was detected using a CEL specific antibody (St. Louis) whereas an anti- BIP 
antibody was used to detect ER-stress. Anti-β-actin was used as a loading control. Arrow indicates CEL-
HYB1 (64 kDa). This experiment was performed once. 

 



 54 

The pellet fractions were analyzed for the ER stress marker BIP. A band around 80 kDa was 

observed for all samples, with a varying intensity.  However, the introduction of EtOH exposure 

did not have an obvious impact on BIP or CEL protein expression compared to the untreated 

mice.  

 

5.7 Testing of a new CEL-HYB specific antibody 

5.7.1 The CEL-HYB antibody  

The hybrid-specific antibody was designed by our research group and further developed by 

Davids Biotechnologie GmbH (Regensburg, Germany). The antibody is a rabbit polyclonal 

antibody that targets the C-terminal of the CEL-HYB1 protein. More specifically, it recognizes 

a 10 amino acids sequence located in the VNTR region of the protein as illustrated in Figure 

5.11 

Figure 5.11 The epitope of the CEL-HYB specific antibody. The new antibody recognizes the 10 
amino acid sequence DRQLRVCPRP located in the VNTR region of the CEL-HYB1 protein  

 

5.7.2 Testing the CEL-HYB antibody on transfected HEK-293 and 266-6 cells 

To test the CEL-HYB antibody on cellular models, HEK-293 and the 266-6 cells were 

transfected by using Lipofectamine and nucleofection, respectively. The cells were transfected 

with plasmids encoding V5-tagged CEL-WT, CEL-HYB1, CEL-TRUNC or EV. Forty-eight h 

after transfection, the cellular fractions were prepared and analyzed by Western blotting. The 

blots were first incubated with the CEL-HYB antibody, then stripped and incubated with either 

the anti-V5 or the anti-CEL (St. Louis) antibody. The expression of GAPDH was used as a 

loading control.  
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Western blots of transfected 266-6 cells are shown in Figure 5.12A. The left panel shows 

incubation with the CEL-HYB antibody. No signal was observed for the CEL-HYB1 protein 

in any of the fractions. In the right panel, the same blot incubated with the anti-V5 antibody is 

presented. Here,  similar to Figure 5.5, all CEL variants were detected: CEL-WT, CEL-HYB1 

and CEL-TRUNC in the media, CEL-HYB1 in the pellet, and CEL-WT and CEL-HYB1 in the 

lysate fraction.  

Figure 5.12B displays the Western blots of transfected HEK-293 cells incubated with the CEL-

HYB antibody (left panel) and the anti-CEL (St. Louis) antibody (right panel). In the left panel, 

the CEL-HYB1 protein (about 64 kDa) was observed in the pellet fraction together with a high 

molecular band. The same CEL-HYB1 bands were observed in the pellet fraction in the right 

panel, when incubating with the anti-CEL antibody. In addition, CEL-TRUNC and a lower 

CEL-WT band (90 kDa) were seen in the pellet fraction. In the lysate, all three variants were 

present but only CEL-WT were detected in the media. 

Figure 5.12 Testing the CEL-HYB antibody on transfected 266-6 and HEK-293 cells. Both cell 
lines were transfected with plasmids encoding V5-tagged CEL-WT, CEL-HYB1, CEL-TRUNC or EV. 
Cellular factions were analyzed by Western blotting and incubated with the CEL-HYB antibody, 
stripped and incubated with anti-V5 antibody or anti-CEL (St. Louis) antibody. GAPDH was used as a 
loading control. The experiment was performed once. A) Analysis of cellular fraction from transfected 
266-6 cells using anti-HYB (left panel) and anti-V5 (right panel) antibodies. B) Analysis of cellular 
fractions from transfected HEK-293 cells using anti-HYB (left panel) and anti-CEL (St. Louis, right 
panel) antibodies.  

 

Based on these results, the CEL-HYB antibody works very well for the HEK-293 cells but not 

the 266-6 cells. 
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5.7.3 Testing the CEL-HYB antibody on mouse pancreatic lysates  

Next, the CEL-HYB antibody was tested on pancreatic lysates isolated from transgenic mice 

(section 4.7.6). Mice with different CEL genotypes were used: control mice (C57BL/6N (0/0)), 

heterozygous (0/ki) and homozygous (ki/ki) CEL-HYB1 knock-in mice (Section 3.1), and 

heterozygous (0/ki) 16R mice. For the latter, the mice are knocked-in with the 16 VNTR repeats 

most commonly found in the human CEL protein. The pancreatic lysates were analyzed by 

Western blotting. The membrane was first incubated with the CEL-HYB antibody, then 

stripped and incubated with the anti-CEL (St. Louis) antibody. Here, β-actin was used as 

loading control.  

As seen in Figure 5.13, only pancreatic lysates from mice containing the CEL-HYB1 knock-in 

allele tested positive when incubated with the CEL-HYB antibody. The expected band at about 

64 kDa was detected for each lysate. In contrast, when incubating with the anti-CEL antibody, 

all lysates displayed bands. The 0/0 mice lysates showed the endogenous Cel protein band at 

about 66 kDa. The heterozygous 16R mice lysates displayed two bands corresponding to the 

endogenous Cel protein (66 kDa) and the humanized 16R variant (100 -120 kDa). Similarly, 

the heterozygous CEL-HYB1 (0/ki) mice showed two bands. Here, the lower band (about 64 

kDa) is the knocked-in CEL-HYB1 protein while the upper band (about 66 kDa) is the mouse 

Cel protein. The homozygous (ki/ki) mice lysates only displayed one band at about 64 kDa. 

Figure 5.13 Testing the CEL-HYB 
antibody on mouse pancreatic lysates 
of different genotypes. Mice pancreatic 
lysates were analyzed by 
immunoblotting and incubated first with 
the hybrid-specific antibody and further 
with the anti-CEL (St. Louis) antibody. 
β-actin was used as loading control. In 
this experiment, lysates were obtained 
from control 0/0 mice, heterozygous 
(0/ki) and homozygous (ki/ki) CEL-
HYB1 knock-in mice as well as the 
heterozygous (0/ki) CEL-16R mice were 
included. The 16R mice are transgenic 
mice knocked-in with the 16 VNTR 
repeats found in the human CEL protein. 
Only the knock-in CEL-HYB1 mice 
displayed bands when incubated with 
the hybrid antibody. The experiment was 
performed once.  
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Taken together, the CEL-HYB antibody worked specifically to detect the CEL-HYB1 protein 

only in pancreatic lysates from CEL-HYB1 transgenic mice. 

 

5.8 Testing the CEL-HYB antibody on pancreatic tissue by immunohistochemistry 

During this test, we did a range of optimization steps before ending up with the optimal 

conditions for the CEL-HYB antibody. Different techniques, buffers and solutions were tested 

to determine the optimal conditions for the antibody (see Appendix 3). Briefly, we found that 

a heat-induced epitope retrieval method and the sodium-citrate buffer (pH 6.0) were best suited 

for the antibody (see Appendix 4). In addition, a high salt-containing (150 mM NaCl) antibody 

diluent enhanced the staining compared to a low salt-containing (75 mM NaCl) antibody diluent 

(see Appendix 5).  

In addition to CEL-HYB1 staining, we included staining with an anti-CEL antibody (Sigma) 

as a control. The protocol for CEL-staining was previously been optimized by our group (El 

Jellas et al., 2018). For all staining’s, we used formalin fixed and paraffin embedded mouse or 

human pancreatic tissue. 

 

5.8.1 Testing the CEL-HYB antibody on mouse pancreatic tissue 

Figure 5.14 shows CEL-HYB and CEL staining of control mice ((C57BL/6N (0/0)) and 

heterozygous (0/ki) CEL-HYB1 mice. Positive staining was shown in brown while the nuclei 

are stained blue with hematoxylin. The anti-CEL-HYB antibody showed strong and specific 

staining for the 0/ki mice in the acinar cells of the CEL-HYB1 mice whereas the control mice 

displayed a very weak background staining in the exocrine pancreas.  

As the anti-CEL antibody from Sigma recognizes amino acids within the globular domain of 

the protein, the antibody showed positive staining of the exocrine tissue in both 0/0 and 0/ki 

mice. The islets of Langerhans were negative for both antibodies, indicating that both antibodies 

were CEL specific since the CEL proteins are only expressed in the acinar cells of the pancreas. 
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Figure 5.14. CEL staining of mouse pancreatic tissue. Pancreas sections from control (C57BL/6N 
(0/0)) and heterozygous (0/ki) CEL-HYB1 mice were subjected to immunohistochemistry and analyzed 
with the anti-CEL-HYB antibody (upper panel) or the anti-CEL (Sigma) antibody (lower panel). Images 
were acquired with a Leica DM2000LED microscope with a 20x magnification. The experiment was 
performed twice.  

 

 

5.8.2 Testing the CEL-HYB antibody on human pancreatic tissue 

The CEL-HYB antibody was also tested on human pancreatic tissue, using the optimized 

protocol developed for immunohistochemistry on pancreatic mouse tissue. Human tissue from 

one patient with normal pancreas and three CEL-HYB positive pancreatic cancer patients were 

tested.  

The results are shown in Figure 5.15. Except for the control sample, all tissue showed some 

degree of positive staining for the CEL-HYB1 protein. Subject 1 showed a more intense and 

concentrated staining in the exocrine tissue than subject 2. As for the subject 3 sample, it 

exhibited an expression pattern similar to subject 1. The control tissue showed no positive 

staining for CEL-HYB1.  
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Figure 5.15. Testing the CEL-HYB antibody on human pancreatic tissue. The panel includes three  
samples of HYB1 positive origin and  one control sample. All CEL-HYB samples showed positive 
staining and the control was negative. Images were acquired with a Leica DM2000 LED microscope 
with a 20x magnification. The experiment was performed twice.  
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6. Discussion  
CEL-HYB1 has been identified as a genetic risk factor for chronic pancreatitis (Fjeld et al., 

2015). However, a large number of healthy individuals are carrying the CEL-HYB1 allele 

without being sick. Thus, CEL-HYB1 alone is not enough to cause chronic pancreatitis; the 

allele must act in combination with other risk factors to trigger disease development.  

 

In this study, our main objective was to gain more insight into the disease mechanism of the 

CEL-HYB1 protein. We wanted to examine if environmental factors such as alcohol and 

cigarette smoking could have any effects on the CEL-HYB1 protein in cellular and mouse 

models. In addition, a newly produced CEL-HYB1 specific antibody was tested on cellular 

fractions and tissue samples by immunoblotting and immunohistochemistry, respectively. The 

main findings and the challenges we met during this study are discussed below. 

 

6.1 The effect of CEL-HYB1 in combination with environmental factors 

 

6.1.1 The effect of alcohol and CSE on CEL-HYB1 in 266-6 cells 

We performed one parallel of CSE and EtOH treatment of transfected 266-6 cells. We used two 

concentrations of CSE (4 and 40 µg/ml) and two concentrations of EtOH (10 and 50 mM), and 

analyzed the effect by Western blotting. The concentrations were chosen based on literature. 

Concentrations of 4 and 40 µg/ml corresponding to light smoking (5 cigarettes a day) and heavy 

smoking (25 cigarettes a day), respectively. The EtOH concentrations of 10 and 50 mM 

correlate with social drinking (2 glasses a day) and heavy drinking (equivalent to ethanol 

concentration found in alcoholics) respectively (Lee and Apte, 2015, Srinivasan et al., 2015).  

First of all, when we expressed CEL-HYB1 in the 266-6 cells, we observed reduced protein 

secretion compared to CEL-WT, and CEL-HYB1 protein was detected in the insoluble pellet 

fraction (Figure 5.5).  This is similar to what we see in HEK-293 cells (Fjeld et al., 2015, Tjora 

et al., unpublished), suggesting that the protein has a tendency to aggregate also in acinar cells. 

Interestingly, when exposed to CSE, the level of CEL-HYB1 increased in the pellet fractions 

compared to cells treated with DMSO (Figure 5.7). This may suggest that the CSE have a 

negative effect on CEL-HYB1, making it more prone to protein misfolding and aggregation. 
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Also, when exposed to CSE, the CEL-HYB1N variant showed stronger bands in the pellet 

fractions than CEL-HYB1. This may suggest that the potential N-glycosylation site introduced 

to the CEL-HYB1 construct has an effect on the protein by making it more soluble. Thus, the 

CEL-HYB1N construct should selected for further analysis.  

Taken together, these results are very interesting as they indicate an interplay between CEL-

HYB1 and cigarette smoking that can trigger or accelerate chronic pancreatitis disease 

development. However, our findings need to be replicated before we draw any conclusions. An 

interesting follow up study would be to investigate the downstream effects of CEL-HYB1 and 

CSE, e.g on ER-stress. A study has shown that the effect of CSE and alcohol in combination 

induces ER-stress and cell death in both AR42J cells and primary acinar cells (Lugea et al., 

2017). Thus, they see an effect even without a genetic risk factor but only when the cells are 

exposed to both environmental factors. For additional follow up, it would be interesting to see 

if we could detect a link between CEL-HYB1 and cigarette smoking also in patients.  

We did not observe any effect of ethanol on the CEL-HYB1 protein. However, a study 

conducted by Waldron et al, detected Cel protein aggregation and increased ER-stress in 

ethanol fed mice and in AR42J cells exposed to ethanol (Waldron et al., 2018). Thus, we need 

to repeat our experiment to investigate the effect of ethanol on CEL-HYB1. We will also use 

our CEL-HYB1 mouse model as further discussed below. 

6.1.2 Ethanol feeding of heterozygous CEL-HYB1 knock-in mice  

We performed a three-week pilot experiment by exposing transgenic CEL-HYB1 knock-in mice 

to ethanol. We used the 0/0 mice as controls and the mice were pair-fed for comparison. The 

effect of the ethanol was analyzed by harvesting the pancreas for histology and Western blot 

analysis.  

During our pilot experiment, an article by Orekhova et al (Orekhova et al., 2020) was published 

on ethanol exposure using CPA1 mutant mice. Like CEL-HYB1, this CPA1 gene is implicated 

in the misfolding-dependent pathway of genetic risk in chronic pancreatitis (Mayerle et al., 

2019). The CPA1 mouse model was generated on a C57BL/6N background and they performed 

pair-feeding with the same Lieber-DeCarli diets as we did. However, their results differed from 

ours as they could clearly identify characteristics of chronic pancreatitis in their CPA1 mice. 

They concluded that ethanol feeding accelerated disease progression in the ethanol fed CPA1 

mice compared control fed CPA1 mice. A major difference between our study and Orekhova’s 
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was that they used homozygous CPA1 mice, while we used heterozygous CEL-HYB mice. In 

addition, they started the ethanol-feeding on mice at 5 weeks of age and the experiment lasted 

for 5 weeks. Orekhova et al. chose this early age as the pancreatic damage was minimal in the 

CPA1 mice at this stage and therefore the effect of ethanol could be more easily observed. In 

contrast, we used 29 weeks old mice and they were ethanol-feed for only three weeks.  

Based on these observations, we will use younger, homozygous CEL-HYB1 mice when we 

plan our next experiment. In addition, we will perform ethanol feeding for a longer period to 

investigate if this could accelerate progression of chronic pancreatitis in our CEL-HYB knock-

in mice.  

 

6.2 The specificity of the new CEL-HYB antibody 

The newly produced CEL-HYB antibody directed towards the HYB C-terminal peptide 

DRQLRVCPRP was tested for both Western blotting and immunohistochemistry. After 

optimizing the protocols thoroughly, we were excited to see that the antibody could recognize 

the CEL-HYB protein both in transfected cells, and in mouse and human pancreatic tissue.  

For the human tissues, we analyzed three CEL-HYB positive patients by 

immunohistochemistry. Subject 1 and 2 were DNA sequenced and identified as two different 

CEL-HYB forms, namely CEL-HYB1 and CEL-HYB2 (Fjeld et al., 2005, Zou et al., 2016). 

As for subject 3, DNA sequencing could not be performed as DNA was not available.  

The CEL-HYB1 sample showed strong but somewhat patchy staining in the pancreatic acinar 

cells (Figure 5.15). This could correlate with our observations of the HYB1 protein in 

transfected HEK-293 cells where it tends to accumulate within the cell (Fjeld et al., 2015). In 

contrast, the CEL-HYB2 sample displayed a more diffuse and even staining pattern. The CEL-

HYB2 gene has a premature stop codon in exon 10 leading to reduced protein expression due 

to nonsense-mediated mRNA decay (Zou et al., 2016). The observed diffuse staining pattern 

can therefore correspond to reduced protein expression. The last CEL-HYB sample, from 

subject 3, showed a strong staining pattern similar to CEL-HYB1. However, this sample needs 

to be DNA sequenced to get the exact genotype to distinguish between CEL-HYB1 and CEL-

HYB2, although the pattern was most reminiscent of the CEL-HYB1 staining pattern. 
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6.3 Study limitations and challenges 

 

6.3.1 The 266-6 cells as a model system 

Our research team have previously performed cellular experiments on the CEL-HYB1 protein 

in HEK-293 cells (Fjeld et al., 2015, Dalva et al., 2020). These cells are a reliable tool within 

experimental research, as they are easy to maintain, culture and transfect as well as having a 

high expression level of exogenously expressed proteins (Thomas et al., 2005).  Furthermore, 

the HEK-293 cells are of human origin which is important for proper post-translational 

modification of the human CEL protein (Hu et al., 2018). As a model system for pancreatic 

research, however, the main limitation of the HEK-293 cells is that they do not provide the 

proper physiological conditions as they lack the specific secretion machinery of the pancreatic 

acinar cells (Derikx et al., 2015).   

To this date there are no commercially available human acinar cell lines. Still, alternatives of 

mouse and rat origin exists. Other options are to use murine and human primary murine acinar 

cells but these are difficult to maintain for long-term cell culture experiments and they lose their 

secretory characteristics easily (Blinman et al., 2000). For this project, we chose the mouse 

acinar cell line (266-6) as a model system to study the CEL-HYB1 protein in a more proper 

environment. The 266-6 cell line endogenously expresses the mouse Cel protein and other 

digestive enzymes (Derikx et al., 2015). Our group has previously used these cells with success 

for endocytosis experiments (Torsvik et al., 2014, Dalva et al., 2020), but they have proven 

difficult to transfect as further discussed below. Furthermore, the 266-6 cells need treatment 

with dexamethasone to mature their secretory characteristics (Derikx et al., 2015). So, to study 

the expression and secretion pattern of CEL variants in 266-6 cells, the cells were stimulated 

with dexamethasone both before and after transfection of CEL constructs to ensure a proper 

acinar cell phenotype.  

In addition to the murine 266-6 cells, a rat acinar cell line (AR42J) is available that has been 

widely used in pancreatic research (examples are studies by Srinivasan et al., 2015, Xiao et al., 

2016). The AR42J-cells have also been tested by our research group. However, they lost their 

acinar specific phenotype during culturing and were therefore not used for further analysis.  

There are both pros and cons for most model system used in research and therefore one has to 

be aware of the limitations and challenges that comes with the systems. The disadvantage of 

using 266-6 cells for CEL related research is that the mouse Cel protein only contains 3 VNTR 
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repeats while the human CEL protein has 16 VNTR repeats. Therefore, translation of the human 

CEL protein in mouse acinar could be difficult due to differences in VNTR repeats. 

Furthermore, the mouse Cel protein differs from the human CEL protein with regard to post-

translation modifications like O-glycosylation (Holmes and Cox, 2011).  

6.3.2 Nucleofection and transfection efficiency  

Previously, we have transfected the 266-6 cells with Lipofectamine, but the transfection 

efficiency was quite low (~20 %). Therefore, for this project, we used nucleofection as 

transfection method. Nucleofection is a form of electroporation that allows for direct transfer 

of DNA into the nucleus. We used specific solutions and the plasmid pMAX-GFP provided by 

the manufacturers (Lonza) to optimize the nucleofection protocol for the 266-6 cells. The 

results looked very promising as we observed around 80-90 % transfection efficiency (Figure 

5.3). However, when transfecting the cells with our CEL constructs, analysis by 

immunostaining and confocal analysis revealed a transfection efficiency closer to 10-15%.  

Due to the low transfection efficiency of the CEL constructs, we contacted Lonza and they 

provided us with some troubleshooting ideas and tips (Lonza, 2012). First, they pointed out that 

the vector backbone can influence the gene expression level. They had transfected two cell lines 

(THP-1 and HUVEC cells, respectively) and tested ten different expression vectors by 

conducting a luciferase expression assay, and the pcDNA3.1 vector used in this study was 

included. They found that the pcDNA3.1 vector displayed a very poor gene expression activity 

after 48 h (our conditions) while the highest expression level was observed after 4 h. Another 

thing to consider is the vector promoter. Our pcDNA3.1-constructs includes a CMV promoter 

which is a strong promoter in many mammalian cells such as HeLa and HEK-293 cells. 

However, the CMV promoter strength has not been tested in the 266-6 cells.  

Since we do not know if the pcDNA3.1 vector backbone or promoter is appropriate for the 266-

6 cells, one way to optimize our nucleofection protocol could be to use a pcDNA3.1 construct 

that expresses GFP. Another possibility would be to clone our CEL construct into another 

vector with properties better suited for the 266-6 cells. Yet another way to improve transfection 

efficiency is to use another approach. Viral transfection has been successfully performed using 

the rat AR42J acinar cells and might be the most optimal transfection method also for the 266-

6 cells (Szmola and Sahin-Toth., 2010, Xiao et al., 2016).  
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6.3.3 The use of epitope tagged proteins 

Epitope tags fused with recombinant proteins are widely used and they are great research tools. 

Epitope tags allow for the detection of a target protein and can be used in methods such as 

immunoblotting, immunofluorescence and immunoprecipitation. Moreover, some tags are 

traceable by live-imaging allowing for in vivo localization of proteins (Lodish et al., 2013). A 

number of tags are available with different sizes and properties, and they can be coupled to the 

C-terminal or the N-terminal end of the protein depending on the protein`s function (Palmer et 

al., 2004). Unfortunately, the use of tags can also influence the experimental results and be a 

study limitation. The tags can alter the chemical properties of the protein of interest and thus 

the results obtained can either be under-or-overestimated (Booth et al., 2018).  

A study performed by our research team compared the expression of CEL protein variants with 

and without a C-terminal V5-tag in HEK-293 cells (Gravdal et al., unpublished). Here, the 

disease-causing CEL-MODY protein showed increased solubility and secretion when 

expressed with the tag compared to untagged CEL-MODY, which had a stronger tendency to 

form intracellular protein aggregates. Thus, the CEL-MODY variant showed a stronger 

pathogenic effect when expressed without the tag (Gravdal et al., unpublished). In another 

study, detection of CEL variants in the media fraction was found to be difficult when CEL was 

expressed with a C-terminal FLAG-tag (Dalva et al., 2020).   

Based on the observations above, we set out to analyze our CEL proteins variants without an 

epitope tag in this study. However, when expressed in 266-6 cells, only the CEL-WT protein 

was detected by Western blotting. CEL-HYB1 and CEL-TRUNC were not observed in any of 

the cellular fractions (Figure 5.4A). In contrast, signals for all three CEL variants were detected 

in HEK-293 cells transfected with the same untagged CEL-construct (Figure 5.4B). 

Consequently, we ended up by using V5-tagged CEL constructs also for the 266-6 cells. With 

this approach we were able to detect all CEL variants by Western blotting (Figure 5.5) and 

immunofluorescence (Figure 5.6). This is most likely due to the V5-tag making the CEL 

proteins more soluble and/or the V5-tag is easily available for the anti-V5 antibody to recognize 

the protein. 

6.3.4 Cell fractionation 

Another explanation why the CEL-HYB1 protein was not detected in the 266-6 cells could be 

due to our cell fractionation protocol. A research team in St. Louis kindly provided us with a 

protocol for cell fractionation which have proven successful for the rat acinar cell line (AR42J). 
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However, the protocol did not work well on the mouse acinar cell line as we only detected the 

CEL-WT variant. An optimal cell fractionation protocol is therefore needed to detect all CEL 

variants in 266-6 cells by immunoblotting. One more thing, the CEL-HYB1 protein is known 

to be implicated in the misfolding-dependent pathway and possibly aggregates inside the cell 

(Fjeld et al., 2015, Tjora et al., unpublished, Mayerle et al., 2019). Therefore, the antibody may 

not be able to bind to the epitope when expressed in the acinar cells.   

 

6.4 How the COVID-19 pandemic had an impact on my master project 

In spring 2020, the spread of the COVID-19 virus led to a worldwide pandemic and this virus 

had a great impact on the every-day life of most people. However, with the necessary 

restrictions put on us by the Norwegian Government, the infection was brought under control.  

For students at the University of Bergen, the restrictions involved a temporary lockdown of all 

laboratory work. The lockdown lasted for 6 weeks and consequently some of the experiments 

planned for this thesis were not performed. This mainly relates to the cellular effect of CSE and 

EtOH on CEL-HYB1. In this thesis, the results from only one experiment was presented (Figure 

5.7 and 5.8). Cellular fractions from two additional parallels were prepared but not analyzed 

due to lack of time. The plan was to conduct three parallels and to present the results with 

quantification data. With only one experiment, no strong conclusions can be drawn.  
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7. Conclusions 

The main purpose of this study was to gain knowledge into the disease mechanism of the 

pathogenic CEL-HYB1 variant, a novel risk factor for chronic pancreatitis. Based on the 

findings the following conclusions can be drawn:  

 

• A protocol for successful transfection of 266-6 cells by nucleofection is established 

 

• The CEL-HYB antibody has been verified on mouse pancreatic lysates and on HEK-

293 lysates by immunoblotting 

 

• Optimization of the newly produced CEL-HYB specific antibody on mouse and human 

pancreatic tissue by immunohistochemistry has been conducted successfully 

 

 

• CSE treated CEL-HYB1N variant showed a higher propensity to accumulate in the 

insoluble pellet fraction when expressed in 266-6 cells compared to the CEL-WT 

protein 
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8. Future perspectives  
To gain more knowledge about CEL-HYB1, and to follow up on the results from this study, we 

will focus on the experiments listed below 

 

• Further optimize the transfection efficiency/cellular fractionation protocol of the 266-6 

cells 

 

• Repeat the study on ethanol and cigarette smoking extract exposure of CEL-HYB1 

transfected 266-6 cells  

 

• Set up a new experiment for ethanol-feeding of transgenic CEL-HYB1 knock-in mice 

using younger as well as homozygous CEL-HYB1 mice, and the exposure to ethanol 

will be extended from three to five weeks 

 

• Test the CEL-HYB antibody for immunofluorescence analysis 

 

• Determine the genotype (CEL-HYB1 or CEL-HYB2) of the human sample (subject 3) 

by DNA sequencing 
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Appendix 
Appendix 1. CEL protein variants expressed with the V5-tag. All variants share identical 

signaling peptide (green) and globular domain (blue). The CEL-WT protein has 16 repeats in 

the VNTR region (grey), CEL-HYB1 variants has three repeats (red) and the CEL-TRUNC 

consists of four amino acids of the first VNTR repeat (dark blue). In contrast to CEL-HYB1, 

the CEL-HYB1N variant has a mutated N-glycosylation site within the linker region located 

between the protein and the V5/His-tag. Drawn after: Fjeld et al., 2015. Nat Genet and 

Johansson et al., 2018. Pancreatology. 
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Appendix 2. Growth curves of mice fed with liquid diet. The control mice had a starting 

weight of 34-39 g while the heterozygous CEL-HYB1 mice had a starting weight of 39-40 g. 

At the end of the experiment, the control fed animals had an overall increased body weight 

ranging from 40-45 g (right panel). The trend for the ethanol fed mice was different as a 

decrease in weight was observed (left panel). Here, the final weight ranged from 34-36 g. Pair 

1 and 2; controls. Pair 3; 0/ki.  
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Appendix 3. Testing different epitope retrieval techniques for the CEL-HYB antibody. 

The heat-induced epitope retrieval (HIER), proteolytic induced epitope retrieval (PIER) and a 

detergent based epitope retrieval protocol using SDS were tested for the CEL-HYB antibody 

(5 µg/ml) on control (0/0) and CEL-HYB1 (0/ki) mouse pancreatic tissue. Brown indicated 

positive staining and the nuclei are stained blue with hematoxylin. To test the HIER method, a 

tris (pH 9), a citrate (pH 6) and a glycine buffer (pH 3.5) was used, as this covers a wide pH 

range. Here, the citrate-based buffer showed strong and specific staining compared to the tris 

and glycine buffer. Proteinase K of two concentrations (2 and 20 µg/ml) was also tested in 

addition to 1 % SDS. All images were acquired with a Leica DM2000LED microscope with 

20x magnification.  
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Appendix 4. Effect of different salt concentrations in the antibody diluent. . Epitope 

retrieval was performed using a citrate buffer (see Appendix 3) and the CEL-HYB antibody 

was diluted in either low salt (75 mM NaCl) or high salt (150 mM NaCl). Here, a big difference 

was observed for high and low salt. The staining was enhanced with a high salt containing 

antibody diluent and the background detected was higher with low salt. Therefore, a high salt-

containing diluent was selected for further use. All images are taken with a Leica DM2000LED 

microscope with 20x magnification. 
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Appendix 5. Testing different citrate-based buffers for optimization of CEL-HYB 

antibody. Three buffers; citrate (commercial), citrate-EDTA and a sodium-citrate buffer were 

tested on pancreatic tissue from control (0/0) and CEL-HYB1 (0/ki) mouse. This experiment 

concluded that the sodium-citrate buffer was most optimal for the antibody as the commercial 

citrate buffer had a higher degree of background and the citrate-EDTA buffer resulted in 

staining within the islets.  All images are taken by a Leica 2000LED microscope with 20x 

magnification unless otherwise indicated in the figure.  

 

 


