
University of Bergen
Department of informatics

An Effective Generic Lasso Selection

Tool for Multiselection

Author: Ole Magnus Lie

Supervisor: Jaakko Järvi

June, 2020



Abstract

Multiselection is widely available in the graphical user interfaces of common applica-

tions, often through rectangular or row-wise selection tools. Lasso selection, though often

provided in image manipulation applications, is uncommon in applications of everyday

selection tasks. Lasso selection would be a useful addition for many applications.

This thesis presents an effective and generic implementation of lasso selection. Its effec-

tiveness is achieved by making the computation incremental: only the elements affected

by the extension of the selection path are inspected. The solution is generic, easily reused

in new selection contexts.



Acknowledgements

First, I would like to thank my knowledgeable supervisor, Jaakko Järvi, for your insight

and helpful ideas when developing this thesis.

Second, a thanks to the friends I have aquired during my five years at the Department

of Informatics, University of Bergen. It has been a truly motivational environment for

studying, not to mention procrastinating.

Last, a special thanks to my family for your continuous support and help.

Ole Magnus Lie

2 June, 2020



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Goal of work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Key challenges and solution . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 3

2.1 Multiselection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 MultiselectJS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2.1 Concepts of multiselection . . . . . . . . . . . . . . . . . . . . . . 4

2.2.2 Selection geometries . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.3 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Lasso selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Lasso selection compared to rectangular selection . . . . . . . . . 12

2.3.2 Lasso selection algorithms . . . . . . . . . . . . . . . . . . . . . . 13

2.3.3 Lasso selection in common applications . . . . . . . . . . . . . . . 15

3 Implementation 17

3.1 Selectable element contained by selection path . . . . . . . . . . . . . . . 18

3.2 Non-incremental lasso selection . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Incremental lasso selection . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Speeding up selection . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Visualizing lasso selection . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Programmers guide to adopting lasso selection 30

4.1 Accessing the implemented functionality . . . . . . . . . . . . . . . . . . 30

4.2 Initializing the implemented functionality . . . . . . . . . . . . . . . . . . 31

5 Experiments 33

ii



5.1 Performance tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1.1 Selecting all elements with four clicks . . . . . . . . . . . . . . . . 35

5.1.2 Selecting all elements with 400 clicks . . . . . . . . . . . . . . . . 37

5.1.3 Selecting a random lasso with 500 clicks . . . . . . . . . . . . . . 39

5.1.4 Selecting a large lasso with random number of clicks . . . . . . . 41

5.2 Discussion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Related work 45

6.1 Usability of lasso selection . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2 Alternatives to lasso selection . . . . . . . . . . . . . . . . . . . . . . . . 46

7 Conclusions 48

Bibliography 50

iii



List of Figures

2.1 A snapshot of rectangular selection demonstrating concepts of multiselection. 4

2.2 Rectangular selection geometry. . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Row-wise selection geometry. . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Snake selection geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 Point-wise selection geometry. . . . . . . . . . . . . . . . . . . . . . . . . 8

2.6 Mixed selection geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.7 Rectangular selection and lasso selection of the same elements. . . . . . . 13

2.8 Lasso selection supports the selection of a set of arbitrarily placed elements. 13

2.9 Ray-intersection point-in-polygon idea. . . . . . . . . . . . . . . . . . . . 14

3.1 Bounding box expands for each new point. . . . . . . . . . . . . . . . . . 23

3.2 Bounding box surrounding the affected triangle. . . . . . . . . . . . . . . 26

3.3 Affected triangle with addition of new points. . . . . . . . . . . . . . . . 26

5.1 Performance of the lasso selection implementations while selecting all ele-

ments with four shift-clicks. . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 Performance of the lasso selection implementations while selecting all ele-

ments in 400 shift-clicks, 100 clicks near each edge. . . . . . . . . . . . . 38

5.3 Performance of the lasso selection implementations while selecting a ran-

dom polygon constructed by 500 shift-clicks. . . . . . . . . . . . . . . . . 40

5.4 Performance of the lasso selection implementations while selecting a ran-

dom polygon constructed by a random number of clicks. . . . . . . . . . 42

iv



Listings

3.1 Element-in-polygon algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Initialization of cache. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Example representation of subareas. . . . . . . . . . . . . . . . . . . . . . 22

3.4 Computation of the selection domain. . . . . . . . . . . . . . . . . . . . . 25

3.5 Incremental computation of the selection domain. . . . . . . . . . . . . . 28

4.1 Import CommonJS modules. . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Import scripts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Initializing the selection geometry. . . . . . . . . . . . . . . . . . . . . . . 31

4.4 Initializing the SelectionState class. . . . . . . . . . . . . . . . . . . . . . 32

4.5 Setup canvas, mouse and keyboard events. . . . . . . . . . . . . . . . . . 32

v



Chapter 1

Introduction

1.1 Motivation

Lasso selection is a well known selection tool. It is widely used in image editing, but

less common in applications for everyday selection tasks, such as selecting files or image

thumbnails. Lasso selection is perceived as non-trivial to implement [14]. Performance

is a concern: the polygon representing the lasso can become humongous, consisting of a

large number of line segments, which adds to the fact that there could be a large number

of selectable elements.

Implementations of lasso selection in different applications work differently. Some provide

a free hand selection, others a selection made up of line segments defined by mouse

clicks. Some applications show which elements become selected while a lasso selection is

in progress, but it is also common that the selected state is not shown until the lasso is

closed.

We can sum up the motivation for this thesis as follows:

• Lasso selection is often not available where it would be useful.

• There is unnecessary variation in different realizations of lasso selection.

• Implementing a correct and efficient lasso selection is difficult.

1



1.2 Goal of work

The goal of this thesis is to make it trivial to implement an efficient lasso selection, so that

any application programmer could offer lasso selection as one of the standard selection

tools in practically any graphical user interface (GUI). We achieve this goal with a generic

implementation that is easy to adopt to varying selection tasks.

An application programmer can take advantage of this generic implementation and deliver

an efficient lasso selection for pixels in an image, file icons, image thumbnails, points in a

scatter plot or even characters or words in a document. The application programmer must

of course deal with application-specific details, but our approach gives clear guidance on

how.

1.3 Key challenges and solution

This thesis presents solutions to the lasso selection problem based on the generic multis-

election model MultiselectJS [17] by J. Järvi and S. Parent. In this model, the structure

for handling input, the selection state and changes to the state are already in place; the

contribution of this thesis is the design and implementation of an effective generic lasso

selection algorithm for this context.

The goal of this work was to develop a lasso selection algorithm that is both generic

and efficient. There are two main performance challenges: both the number of selectable

elements and line segments in the lasso can become arbitrarily large. This work overcomes

those challenges through an incremental lasso selection algorithm. The algorithm is

incremental in that for each update to the lasso, we quickly identify the elements that

could have changed their selection state, and inspect those elements only. All other

elements are excluded from inspection.

We implemented the framework presented in this thesis in JavaScript for multiselec-

tion of HTML elements. Obviously the JavaScript implementation is not suitable for

all purposes, for example if the application programmer needs the functionality to be

implemented natively, or if the JavaScript engine does not have the required efficiency.

The proposed approach is in no way tied to JavaScript; the same generic lasso selection

algorithms can be implemented in any language.

2



Chapter 2

Background

This chapter introduces the concepts that are necessary for describing the contributions of

this work. We first define the concept of multiselection. Second, we describe the library

on which this thesis builds on. We explain the concepts of MultiselectJS [17] and its

structures that are needed for creating new multiselection tools. Last, we discuss lasso

selection, compare it to a more common multiselection tool, the rectangular selection.

We discuss different lasso selection algorithms and explore existing lasso selection tools

in common applications.

2.1 Multiselection

Multiselection is a concept where a user has the ability to select or deselect multiple

elements rapidly, using a mouse or a keyboard. There are several different tools that

deliver such functionality. Most common are rectangular selection and row-wise selection

tools. Section 2.2.2 describes both of these tools, and others.

2.2 MultiselectJS

This thesis adds to the MultiselectJS library [17] constructed by J. Järvi and S. Parent.

The library is described in the paper One Way To Select Many [14]. It provides an

application programmer different selection tools, and structures for creating new multi-

selection tools. This section discusses the different concepts the library is based on, its

API, and how a new tool can be implemented in this context.

3



2.2.1 Concepts of multiselection

The library is built with the following concepts in mind. The concepts are commonly

mentioned throughout this thesis, so understanding them is essential.

Figure 2.1: A snapshot of rectangular selection demonstrating concepts of multiselection.

Selection state

MultiselectJS assumes that each selectable element has a unique index. The selection

state is thus a mapping from indices to a boolean value. The value true indicates that

the element is selected, and the value false indicates that the element is not selected.

The grey elements in Figure 2.1 all map to true, while the white ones map to false.

Selection space

The coordinate space where the selectable elements reside in. Points in this space can be

represented as X- and Y-coordinate points, indices, or any other data representation that

makes it convenient to identify the position of an element in the selection space.

Selection path

The sequence of points in a selection space, indicated by the user with a keyboard or a

mouse, representing the selected area. The selection path is showed with the dotted line

in Figure 2.1.

Selection operation

One action of selecting or deselecting a group of elements. The selection state is formed

as a composition of selection operations. In Figure 2.1 the items 2, 3 and 5 are affected

by the selection operation.

4



Selection domain

The set of elements that are affected by a selection operation.

Selection storage

Selection storage is an object that maintains the selection state. It stores it as a compo-

sition of selection operations, and provides methods for manipulating that composition.

It also has methods for querying the selection state.

Selection geometry

A selection geometry is a set of functions that defines a selection tool. Different selection

tools are defined through their implementation of the selection geometry. The central

concept of a selection geometry is the sdom function, which defines the mapping from a

selection path to selection domain, i.e., how the points a user indicates with a mouse or

a finger determine which elements should be selected or deselected. Figure 2.1 shows the

common rectangular selection geometry, where the sdom function interprets the first and

last point of the selection path as a rectangle and determines which elements intersects

with that rectangle.

Anchor and active end

The first point in the selection path is called the anchor, visualized as the black dot

in Figure 2.1. The last point is called the active end, showed as a white dot in Fig-

ure 2.1. Some selection geometries, e.g. the rectangular selection geometry, determine

the selection domain based on just these two points.

Mouse clicks

There are three types of mouse clicks. Click deselects all elements and discards the

existing selection path. A new selection path is created with the clicked point as the

anchor, and a new selection domain is computed. Shift-click adds a point to the existing

selection path. Command-click (Ctrl-click on Windows) creates a new selection domain,

while retaining the current selection state.

Rubber band selection

Rubber band selection refers to dragging the mouse to construct a selection path. Every

mouse location recorded during a drag is added to the selection path, effectively working

as consecutive shift-clicks.

5



Keyboard cursor

Keyboard commands can be used as an alternative to mouse clicks, e.g. finding the

next element in an ordered grid based on an arrow key press. The keyboard cursor is the

computed point in the selection space that is associated with a keyboard command.

Active domain

The selection domain computed based on the current selection path. Scenarios with

multiple selection domains appear when using command-click.

Undo and redo stacks

Selection operations are pushed on a stack, so that they can be undone. Undone opera-

tions are pushed to a redo stack, so that they can be redone.

2.2.2 Selection geometries

A selection geometry captures what is specific to a particular selection tool. MultiselectJS

already provides multiple selection geometries, which can be explored in the MultiselectJS

Demo Application [18]. We discuss the provided selection geometries below. For each we

describe the sdom function, which defines how the selection path determines the selection

domain.

Rectangular selection

Rectangular selection is one of the most common tools for multiselection. It appears

in file managers and desktops in most common operating systems. Image manipulation

programs and other creative applications offer rectangular selection for quickly selecting

groups of elements, be it figures or pixels in an image.

In rectangular selection, a rectangle is constructed with the anchor and active end as

opposite corners, and every element whose bounding box intersects with this rectangle is

selected or deselected. In this selection geometry the elements’ positions can be arbitrary;

6



mouse coordinates are used as the selection space.

Figure 2.2: Rectangular selection geometry.

Row-wise selection

In row-wise selection, elements are sorted row-wise. Every element that lies between the

element at the anchor and the one at the active end are the selection domain.

Figure 2.3: Row-wise selection geometry.

Snake selection

In snake selection, the user draws a selection path using a mouse, and every element

whose bounding box intersects with the so constructed selection path is included in the

selection domain.

Figure 2.4: Snake selection geometry.

7



Point-wise selection

The user adds points to the selection path with a mouse drag or a shift-click, and every

element that touches any of the points in the selection path are included in the selection

domain.

Figure 2.5: Point-wise selection geometry.

Mixed selection

This is a combination of the rectangular and row-wise selection. If the anchor is placed on

an element, row-wise selection is applied. If the anchor is outside any element, rectangular

selection is applied.

Figure 2.6: Mixed selection geometry.

2.2.3 API

MultiselectJS provides the following API, which we define based on the previously de-

fined concepts. This API allows a programmer to implement multiselection in an appli-

cation.

Selection state

The SelectionState class controls the selection state, selection path, undo and redo stacks,

selection storage and which selection geometry is used. We explain all these concepts

below, each in its turn.

8



The selection state is controlled by storing the composition of selection operations.

The selection path is controlled by storing a list of points in the selection space. The

SelectionState class also stores undo and redo stacks. The undo function removes the

outermost selection operation, and stores it in a redo stack. The selection path is also

cleared to make a subsequent shift-click predictable, i.e. working as a click rather than

extending the undone selection operation. When a selection operation is placed in the

redo stack, the redo function recomposes said selection operation.

When constructing a SelectionState object, five parameters can be passed: the selection

geometry, a refresh callback function, a flag turning change tracking on or off, the max-

imum number of undo states and the selection storage. The selection geometry is the

only thing that must be specified. Every other parameter has a default value.

The refresh callback is executed after every selection operation, passing the selected

elements as an argument. This allows a client programmer to define what should happen

when an element’s selection state changes. If change tracking is turned on, a list of the

changed elements is also passed to the refresh callback, allowing the function to just

iterate over the changed elements. The default values of refresh and change tracking is

an empty function and false, respectively.

The default implementation of selection storage is a JavaScript Map. It stores the selection

state as a mapping from the unique indices of the elements to the corresponding selection

state. The user can supply another implementation of storage if the default one is not

sufficient. If a user decides to do this, the new storage has to implement the same

functions as the default one. The API for implementing storage is described later.

The SelectionState class provides functions for accessing and modifying the selection of

elements, selection geometry, storage and selection path. Functions defining the default

behaviour of different mouse clicks are also available.

Selection geometry

The selection geometry classes are what define a selection tool. Therefore, to implement

lasso selection means implementing a new selection geometry class. Every selection ge-

ometry has to define methods for handling mouse clicks, adding points to the selection

path, computing the selection domain from a selection path, moving around with the

keyboard and filtering elements based on a predicate function. The methods that handle

mouse clicks are called from event handlers in the client, while the other functions are

callbacks, only called from the library.

9



MultiselectJS provides an extendable class DefaultGeometry. Every selection geome-

try, such as the ones discussed in Section 2.2.2, implements its own extension of

DefaultGeometry. The rest of this section describes the functions that allow an appli-

cation programmer to create a new multiselection tool using the library.

The points in the selection path are not necessarily in the same coordinate system as

mouse coordinates are. The m2v(mpoint) method converts the coordinates of the mouse

click events’ positions into coordinates in the selection space. This function has a default

implementation that just returns mpoint. The m2v function is useful with selection geome-

tries that do not rely upon the exact mouse position but instead, for example, the index

of the element the mouse pointer lands on.

The handling of extending the selection path is done by implementing the

extendPath(path, vpoint, cache, cursor) function. It adds vpoint, the new point in the

selection space, to the selection path array. The cache parameter is an object used for

storing information between calls to extendPath. The cache parameter can store anything,

giving the application programmer the freedom to store application-specific information

that helps in calculating the selection domain efficiently. The keyboard cursor can also

be modified.

Computing the selection domain is done with selectionDomain(path, J, cache). The func-

tion is called immediately after the selection path has been extended by extendPath. It

creates the new selection domain based on the arguments. The path argument is the

updated selection path. J is the previous selection domain, supplied to allow faster com-

putation of the new selection domain. The cache argument is again for storing arbitrary

information that should be preserved between subsequent calls to selectionDomain. Both

extendPath and selectionDomain get passed the same cache object. The cache and the pre-

vious selection domain J are only preserved after a shift-click or a mouse drag — when

the selection path is extended. When a new selection path is started, through a click or

a command-click, both cache and J are undefined.

The step(dir, vpoint) method computes a new point that is ”one step” from vpoint, in

the direction that dir, one of the four directions corresponding to the arrow keys, defines.

This function is used in keyboard selection to specify how the arrow keys modify the

keyboard cursor. It returns undefined if the proposed step is not allowed.

The defaultCursor(dir) method returns the default location of the cursor when selecting

with the keyboard. Again, dir is one of the four directions corresponding to the arrow

keys.

10



The filter(pred) method returns a new selection domain consisting of the elements that

satisfy the predicate function pred. This method allows for selecting elements based

on other information than their position — selecting all files of type .pdf is a typical

example.

Selection storage

As previously mentioned, the SelectionState class contains a default implementation of

storage, using a JavaScript Map to store the selection state. However, an application

programmer can supply another selection storage. For a selection storage object to be

valid, it must implement the same functions as the default one:

• storage.at(i) — a function returning the selection state of the element with index

i.

• storage.selected() — a function returning the indices of all selected elements.

• storage.push(op, changed) — a function adding a new selection operation op to the

composition of selection operations. The op argument is the selection operation

that specifies the elements to be selected or deselected. The changed argument can

be undefined, but if it is not, changed.value needs to represent the changed indices

from the preceding change to the composition of selection operations.

• storage.pop(changed) — a function removing and returning the previous selection

operation. The composition of selection operations cannot be empty when running

this function. If the changed argument is defined, it should contain the changed

indices from the previous selection operation.

• storage.top() — a function returning a reference to the latest selection operation.

The composition of selection operations cannot be empty when running this func-

tion.

• storage.top2() — a function returning a reference to the penultimate selection op-

eration added to the composition. The composition cannot consist of less than two

selection operations when running this function.

• storage.size() — a function returning the number of selection operations in the

composition.

• storage.bake() — a function applying the latest selection operation to the base

selection mapping, resulting in a new base. The applied selection operation is

removed from the composition. The function has no effect if there are no selection

operations stored in the composition.

11



• storage.onSelected(J) — a function determining if a selection domain J indicates

exactly one selected element.

• storage.modifyStorage(cmd) — a function used to modify the storage, e.g. selecting,

deselecting or toggling elements. The cmd parameter is the command that indicates

how storage should be modified. The commands and their effects are defined by

the client.

• storage.equalDomains(J1, J2) — a function determining if two selection domains J1

and J2 are equal.

• storage.isEmpty(J) — a function determining if a selection domain J is empty.

2.3 Lasso selection

This section first compares lasso selection to a comparable multiselection tool: rectangular

selection. Second, we explore different lasso selection algorithms. Last, implementations

of lasso selection in common applications are discussed.

2.3.1 Lasso selection compared to rectangular selection

Lasso selection is a free hand selection tool where a user constructs a selection path using

rubber band selection. It can be seen as a generalization of the more common rectangular

selection, where the user specifies a rectangle using a mouse and every element that is

inside, wholly or partially, becomes selected.

In rectangular selection, the inner points of the selection path do not matter: the se-

lected area is the rectangle constructed based on the anchor and the active end. In lasso

selection, however, the selected area is the polygon determined by the entire selection

path. Figure 2.7 shows the selection of the same elements using the two different tools.

In both graphics, the solid black dot is the anchor, the white dot is the active end, while

the dotted line is the selection path. In the rectangular selection graphic the solid black

line represents the selected area. In the lasso selection graphic, the solid line is the last

12



line segment of the polygon, the line from the active end back to the anchor.

Figure 2.7: Rectangular selection and lasso selection of the same elements.

Lasso selection gives the user more freedom to specify which elements should be selected.

While rectangular selection is effective in selecting large numbers of elements when they

are organized in a row, column or a grid, a lasso is more effective when selecting smaller

subsets of elements whose placement is irregular. Lasso selection supports the selectable

elements being of varying shapes without any difficulty.

Lasso selection is sometimes more convenient even when elements are organized in a grid.

Figure 2.8 shows an example. Rectangular selection limits the shape of the selected area,

while lasso selection lets the user include exactly the desired elements.

Figure 2.8: Lasso selection supports the selection of a set of arbitrarily placed elements.

2.3.2 Lasso selection algorithms

The workhorse of lasso selection is an algorithm that solves the following prob-

lem: for a point p, check if it lies inside the polygon defined by the line segments

[(p1, p2), (p2, p3)...(pn, p1)]. Such a point-in-polygon algorithm is performed on a point

that lies within the selectable element in question. There are multiple algorithms that

solve this kind of a problem. J. Hao et al. [8] discusses and compares the different al-

gorithms in their article. We present some known point-in-polygon algorithms that can

handle both concave and self-intersecting polygons.

13



Ray-intersection

Ray-intersection [8], also known as ray-crossing [8, 10], crossings-count [7, 8], odd par-

ity [8, 9], odd-even [8, 9] or even-odd [6, 8, 10] is a thorougly studied point-in-polygon

algorithm. It is based on a simple idea: cast an infinite, horizontal ray from the point

p, and count how many of the polygon’s line segments the ray intersects with. If the

number of intersections is even, the point is outside of the polygon. If the number is odd,

the point is inside of it.

Figure 2.9 shows the idea the ray-intersection point-in-polygon algorithm is based on.

The line from the green point has one intersection with the polygon, an odd number, and

is deemed inside the polygon. Both red points, however, have two intersections with the

polygon, an even number, and are not inside the polygon.

Figure 2.9: Ray-intersection point-in-polygon idea.

The algorithm is stable for all kinds of polygons, both concave and self-intersecting, but it

is well documented that simplistic implementations of the algorithm can have problems

finding the correct number of intersections if the point lies directly on or close to the

polygon’s edge [8].

Sum of angles

The sum of angles algorithm [8, 15, 11], or angle summation algorithm [8, 10, 7], solves

the point-in-polygon problem by computing the angles where lines from each point in all

the line segments [(p1, p2), (p2, p3)...(pn, p1)] intersect through p, adding the signed angles

together. If the total angle sum is zero, or close to zero, the point is outside the polygon.

If it is anything other than that, the point is inside [7].

This algorithm has some obvious drawbacks: computing the angles is not efficient, and

the algorithm is susceptible to rounding errors.

14



Winding number

The winding number algorithm [8, 10], or non-zero winding number algorithm [8, 9],

counts how many times the polygon revolves counterclockwise around a point p. Thus, one

needs to compute the direction of each line segment — either through angle calculations

that are expensive, or through cross and dot products. If the number of counterclockwise

revolutions is zero, p is outside of the polygon.

The winding number algorithm classifies points in self-intersecting areas as inside.

2.3.3 Lasso selection in common applications

Many variants of lasso selection appear in commonly used software. In this Section

we describe some of these variants, and highlight some of their drawbacks and peculiar

behaviours, if any.

jQuery

The JavaScript library jQuery supplies a plugin called Selectable Widget [16]. The li-

brary’s documentation states that this widget provides lasso selection. While they may

classify it as such, in our terminology jQuery’s Selectable Widget provides a regular rect-

angular selection tool; free hand lasso selection is not available.

Adobe Photoshop

Adobe Photoshop has three different lasso selection tools [1]. All three support four

operations to manipulate selection paths. New creates a new selection domain. Add to

expands an existing selection domain. Subtract from removes the selected area from an

existing selection domain. Intersect with creates a new selection domain consisting of the

intersection of multiple selected areas.

Adobe’s Lasso tool is a free hand selection tool. An anchor is defined with a mouse click,

and the selection path is extended with a mouse drag. When the mouse is released, a

line segment from the active end to the anchor is added, resulting in a closed selection

path.

The Polygonal lasso tool is used for creating straight-lined polygons representing the

selected area. The user constructs a polygon with mouse clicks, where each click defines

the end of one line segment and the start of a new one. The polygon is closed when a

line segment returns to the anchor, or with a double-click.

15



The Magnetic lasso tool is used for selecting complex objects against high-contrast back-

grounds. The user defines the selected area using a free hand lasso tool with a mouse,

and the tool snaps the added points to the desired edge. If it does not position correctly,

anchors are available for modifications of the selection path. There is no public docu-

mentation on the implementation of this tool, but if we were to hazard a guess, edge

detection is probably used.

GNU Image Manipulation Program

GNU Image Manipulation Program, GIMP, provides a lasso selection tool [23]. The user

creates an anchor by clicking the starting position with a mouse. From there, the user

can either use a mouse drag to construct a free hand polygon, or continue by clicking,

defining straight line segments with each click. The polygon is closed when it is connected

to the anchor, or with a double-click. There is no visual representation of the selection

domain while selecting, only the selection path that is being constructed is visible.

Social Explorer

Social Explorer is a tool for creating reports and selections based on geography. In this

software, a lasso selection tool is available for selecting countries or states.

There are three different variations of the lasso tool [5]. Touching selects every country

that touches, or is enclosed by, the selection path. Enclosed selects every country that

is completely enclosed by the lasso polygon defined by the selection path. That means

that countries that have even one pixel outside of the lasso are not selected. Centroid

selects every country where the center point is enclosed by the lasso. This seems like an

arbitrary criterion, chosen for ease of implementation. We are left to wonder if there are

countries whose center point is not within its own boundaries.

Social Explorer’s lasso tool has some drawbacks [4]. First, if a region is selected and

one wishes to create a new one, every selected element has to be manually removed —

just creating a new selection domain will not deselect the old one. Second, there are no

dynamic updates to the selection domain while the user performs the selection — only the

selection path is shown while selecting, leaving the user without confirmation of whether

the selection path specifies the desired elements. The user has to close the polygon, by

double-clicking the mouse, before the selected elements are highlighted.

16



Chapter 3

Implementation

The lasso selection tool is essentially an adaptation of the snake selection tool defined

in MultiselectJS. While the snake selection selects all elements that touch the selection

path, lasso selection selects all elements that lie inside or on the polygon defined by the

selection path. The lasso selection algorithm essentially determines whether two polygons,

the element and the lasso, intersect. This can become a very expensive computation with

arbitrarily large numbers of both line segments and elements. Throughout this chapter

we present heuristics that mitigate the cost of the computation.

This chapter first presents the workhorse of the lasso selection: the point-in-polygon

algorithm. We explain how we can use the functionality of snake selection to keep the

point-in-polygon algorithm as simple as possible, while making the drawbacks it presents

irrelevant. The element-in-polygon algorithm was implemented for use on rectangular

HTML elements. We describe how the algorithm might need modification if the shapes

of the elements are irregular.

We then present a non-incremental lasso selection implementation using the API pre-

sented in Chapter 2. We explain how the methods of the SelectionGeometry class are

implemented, and the thinking behind our design choices. We describe this implementa-

tion of lasso selection as non-incremental because the selection domain is computed by

running the point-in-polygon algorithm on all elements whose bounding box intersects

with the bounding box of the selection path. Similar to the snake selection geometry, the

implemented lasso selection tool supports the removal of points at the end of the selection

path, in essence undoing a part of the lasso, by following the path backwards.

17



At last, we describe how the implementation can be made more efficient by making it

incremental. Simple geometrical observations help us further eliminate lots of elements

when computing the selection domain.

The implemented functionality presented in this chapter can be accessed at

https://github.com/omlie/multiselectjs. The code exists in the ./multiselectjs/js/

folder. The selection geometries are implemented and exported from ../js/html geometries.js.

The selection geometries imports the utilities module, containing multiple helper func-

tions, from ../js/utilities.js. The MultiselectJS Demo Application [18] has been modified

to include the lasso selection tools. The demo application can be run locally by cloning

the repository and accessing ../examples/demo/multiselect-demo.html in a browser.

3.1 Selectable element contained by selection path

Determining if an element is contained by a selection path, and should be selected, is

accomplished with a simple ray-intersection algorithm. The algorithm presented is a

modified version of the one presented by P. Bourke in 1987 [2]. It has similarities to

the ray-intersection algorithm presented by J. Hao et al. [8], which they found to be

the optimal point-in-polygon algorithm. P. Bourke’s point-in-polygon algorithm might

struggle to correctly classify the point if it lies on the selection path. This worry is solved

by using the function the snake selection geometry uses in MultiselectJS [17] to determine

if an element intersects with a line segment of the selection path. If the element does

not touch the selection path, every coordinate of the bounding box is either completely

contained by the polygon, or completely outside of it. This allows us to apply the point-

in-polygon algorithm to just one coordinate of the element.

The point-in-polygon algorithm requires a closed polygon to determine if an element is

contained by a lasso. This is achived by adding to the processed polygon the line segment

from the active end to the anchor, i.e. from the last point of the selection path to the

first point.

The element-in-polygon algorithm presented in Listing 3.1 takes a path and the bounding

box of an element as arguments. The pathRectIntersect function determines if the element

intersects with the path, and allows us to run the point-in-polygon algorithm on just one

coordinate of the element. The inspected point can be any point that lies within the

element — we choose the top left corner of the bounding box as a representative point of

it. This is the point p. The following steps are applied to p, to determine if p is contained

by the polygon, or if the element touches the path.

18

https://github.com/omlie/multiselectjs


19

Listing 3.1: Element-in-polygon algorithm.

1 const rectangleInPolygon = (path , rectangle) => {

2 let counter = 0;

3 let p1 = path [0];

4 const p = topLeftCorner(rectangle);

5 for (let i = 1; i <= path.length; i++) {

6 let p2 = path[i % path.length ];

7
8 if (p.y > Math.min(p1.y, p2.y)) {

9 if (p.y <= Math.max(p1.y, p2.y)) {

10 if (p.x <= Math.max(p1.x, p2.x)) {

11 if (p1.y !== p2.y) {

12 const xIntersect =

13 ((p.y - p1.y) * (p2.x - p1.x)) / (p2.y - p1.y) + p1.x;

14 if (p1.x === p2.x || p.x <= xIntersect) counter ++;

15 }

16 }

17 }

18 }

19 p1 = p2;

20 }

21
22 if (counter % 2 !== 0) return true;

23 return pathRectIntersect(path , rectangle);

24 };

25
26 const pathRectIntersect = (path , rectangle) => {

27 let p1 = path [0];

28 for (let i = 1; i <= path.length; i++) {

29 let p2 = path[i % path.length ];

30 if (lineRectIntersect(p1 , p2 , rectangle)) return true;

31 p1 = p2;

32 }

33 return false;

34 };



1. Loop through the path, starting and ending at the anchor, checking the following

to determine if a ray through p intersects with the line segment defined by two

consequtive points p1 and p2. When finished, continue to step 2.

1.1. Lines 8 and 9: if the Y-coordinate of p is between the smallest and largest

Y-coordinates of p1 and p2, continue to step 1.2. If not, the line segment is not

relevant — the horizontal line segment starting from p cannot intersect with

line segment defined by p1 and p2.

1.2. Line 10: if the X-coordinate of p is smaller than the largest X-coordinate of

p1 and p2, continue to step 1.3. If not, there is no possible intersection to the

right of p and the line segment is not relevant.

1.3. Line 11: if the line segment defined by p1 and p2 is not horizontal, continue

to step 1.4. If it is horizontal, p lies on the line segment and an intersection is

not possible.

1.4. Line 13: calculate the point of intersection of a line horizontally from p, and

the line segment defined by p1 and p2. Continue to step 1.5.

1.5. Line 14: if p1 and p2 have the same X-coordinate, intersection is guaranteed

based on line 10; increase the counter. If the X-coordinate of p is smaller than

the point of intersection, the two lines intersect; increase the counter.

2. Line 22: if the counter is odd, the element is inside the polygon. If not, continue

to step 3.

3. Line 23: the inspected point is outside of the path, but other parts of the elements

might touch it. Check if the element intersects with the path, and return the

corresponding boolean value.

The element-in-polygon algorithm is available from the utilities module in the repository.

Note that the algorithm is implemented for use on rectangular elements, where elements

are guaranteed to fill their entire bounding box. If the shapes of the elements are irregular,

there is no guarantee that the top left corner of the bounding box lies within the inspected

element. There is also no guarantee that an element intersects with the path even though

its bounding box does. In such cases, this algorithm can be used as inspiration, but the

application programmer has to ensure that the inspected point lies within the element,

and that detecting intersections with the path is handled correctly.

20



3.2 Non-incremental lasso selection

This section describes a non-incremental implementation of lasso selection. We construct

a new selection geometry, LassoGeometry, and implement the methods of the API that need

overriding. The cache is used to store information that helps us compute the selection

domain faster. How the implementation handles the extension of the selection path is

presented before describing how the selection domain is computed.

Methods with default implementations

There is no ordering of elements in lasso selection — they can be positioned arbitrarily.

We therefore use mouse coordinates as our selection space, making use of the default

implementation of the m2v method.

Using the lasso selection with a keyboard is hardly useful. Lasso selection is meant to

be used with a mouse, and therefore the step and defaultCursor methods need not be

implemented.

Cache

Minimizing the amount of potentially selected elements is essential in making the com-

putation fast. The cache is used to store information that helps eliminate elements that

need not be inspected. It is initialized when the first point is added to the selection path,

be it through a click or a command-click. Listing 3.2 shows the initialization of the cache

object.

Upon initialization of the cache, a number of fields in the cache object are created:

• removing — a flag indicating if points should be removed, defaulting to false.

• prevp — a field for storing the previous point in the selection path, used when

determining if points should be added or removed.

• subAreas — an object that essentially works as a mapping from a position to the

indices of nearby elements.

• rectangles — a list of bounding boxes that surround the selection path.

• pqueue — a list of objects representing a queue of update commands.

One way to reduce the number of elements that must be inspected is to quickly identify

elements that are positioned far away from the selection path, and ignore those elements.

21



Listing 3.2: Initialization of cache.

1 LassoGeometry.prototype._initCacheIfEmpty = function(cache) {

2 if (Object.keys(cache).length == 0) {

3 cache.removing = false;

4 cache.prevp = undefined;

5 cache.subAreas = util.splitSelectableArea(this.parent ,

↪→ this.elements);

6 cache.rectangles = [

7 {

8 left: Number.MAX_SAFE_INTEGER ,

9 right: Number.MIN_SAFE_INTEGER ,

10 top: Number.MAX_SAFE_INTEGER ,

11 bottom: Number.MIN_SAFE_INTEGER ,

12 }

13 ];

14 cache.pqueue = [];

15 }

16 this._cache = cache;

17 };

For this purpose, the subAreas field in the cache object are created. It gets initialized using

the splitSelectableArea function. This function splits the selectable area into smaller

areas with a height of 100 pixels. Each subarea can be accessed by looking up the upper

limit of said area, i.e. for the area ranging from 0px to 100px, the key is 100. This

enables us to look up the subarea for any point in the selection space, be it mouse event

coordinates or the position of an element. Each subarea stores a list containing the indices

of the elements that lie within said area. In the case of an element overlapping multiple

subareas it is added to all of them. Note that a subarea is only created if an element lies

within it. Listing 3.3 shows an example of how the subareas are represented. We use the

subAreas object to quickly access the elements that lie near the selection path.

Listing 3.3: Example representation of subareas.

1 {

2 100: [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ],

3 200: [ 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 ],

4 300: [ 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ],

5 }

The splitting of the selectable area is not a necessary optimization when there are only a

few elements. However, when the number of elements is large, this optimization signifi-

cantly speeds up performance.

Another heuristic that reduces the number of elements that need inspection is to check

if candidate elements intersect with the bounding box of the selection path. Candidate

22



elements are efficiently eliminated — every element that does not intersect with the

bounding box does not intersect with the polygon defined by the selection path. For

every update to the selection path, the corresponding bounding box is added to the

rectangles list. Figure 3.1 shows how the bounding box expands when new points are

added.

Figure 3.1: Bounding box expands for each new point.

Passing information about the extension of the selection path to the computation of the

selection domain is done by storing a queue of objects in the cache, the pqueue field.

The objects represent commands that the sdom function processes to determine the

selection domain. Each command contains information that helps computing the selection

domain efficiently. The updated selection path and its bounding box is stored in the

object, ensuring immutability of the information between the calls to the extendPath and

selectionDomain functions. The subAreas object is used to get elements that potentially

lie inside the bounding box. The indices of the elements to be inspected are found by

concatenating all subareas that the bounding box lies within, removing all duplicate

elements, and storing the list in the command.

Extend path

For every new point p added to the selection path during a lasso selection, extendPath(path,

↪→ p, cache) is called. The function determines if p implies removal of points in the path,

or if p should be added to the selection path.

This function is also where point removal is realized. The point p indicates removal

of the selection path if p makes the path turn more than 135 degrees. This will set

the cache.removing flag to true. It will remove all points within 20 pixels of the point.

Removal continues until a new point moves further away from the current last point. The

cache.prevp field is updated for each new point, to determine if a new point moves further

23



away than the one that indicated removal. This is the same functionality as found in the

snake selection tool in MultiselectJS [17].

During removal of the selection path, the previously computed bounding box and the

previous point of the selection path is popped from their respective lists. The previous

rectangle, the updated selection path and the list of elements to be inspected are added

to the queue of commands in the cache that the sdom function executes.

If p is added to the selection path, the previous bounding box of the selection path is

updated to surround the updated selection path. It is added to the list of bounding

boxes, and queued as a command in the cache. Adding them to the queued command as

well as the list of bounding boxes is done to ensure immutability of the bounding boxes

used when the selection domain is computed.

Selection domain

The selectionDomain function executes each of the commands queued in the cache. It

does so by calling _forEachAffectedByLine with the following arguments:

• The bounding box of the selection path, defined in the command.

• The list containing the indices of the elements up for inspection, defined in the

command.

• The selection path defined in the command.

• A function for selecting elements: setting the selection state of an element to true.

• A function for deselecting elements: setting the selection state of an element to

false.

This method, defined in Listing 3.4, applies multiple functions to determine if the elements

up for inspection intersect with the polygon defined by the selection path.

1. Line 14: if the element intersects with the bounding box of the selection path,

continue to step 2. If not, the element is not relevant and the iteration is over.

2. Line 15: if the element intersects with the polygon defined by the selection path,

select the element. If not, deselect the element.

24



Listing 3.4: Computation of the selection domain.

1 LassoGeometry.prototype._forEachAffectedByLine = function(

2 rectangle ,

3 inspectableElements ,

4 path ,

5 select ,

6 remove

7 ) {

8 for (const index of inspectableElements) {

9 const offsetRectangle = util.getOffsetRectangle(

10 this.parent ,

11 this.elements[index]

12 );

13
14 if (util.rectangleIntersect(rectangle , offsetRectangle))

15 util.rectangleInPolygon(path , offsetRectangle)

16 ? select(index)

17 : remove(index);

18 }

19 };

3.3 Incremental lasso selection

This section describes an incremental implementation of lasso selection. We discuss

the incremental concepts and explain how they propose changes to the non-incremental

implementation.

3.3.1 Speeding up selection

This section explains approaches for speeding up selection and making the solution in-

cremental.

Making the bounding box smaller

Minimizing the number of elements that need to be inspected is done by creating a

bounding box of the triangle defined by the anchor and the two last points of the selection

path (called affected triangle from here). The elements that intersect with the affected

triangle are the only ones that can have changed during this update.

25



Figure 3.2: Bounding box surrounding the affected triangle.

Instead of updating the previous bounding box, a new one is computed. This allows

us to get the indices of the elements that are close to the new bounding box, using

the subAreas object. Instead of expanding the number of elements looked at, the only

elements inspected are the ones that potentially are affected by the change to the selection

path.

Defining the changed area

The idea in the previous section can be extended to narrow down the area even more.

The only elements that can have a change in selection state are the ones that lie in the

affected triangle defined by the anchor and the two last points of the selection path.

This area is often smaller than the corresponding bounding box. Running the point-in-

polygon algorithm on every element inside the bounding box of the triangle, with affected

triangle as the path, allows us to eliminate even more elements. If the element is inside

the affected triangle, the point-in-polygon algorithm is applied with the full selection path

supplied.

Figure 3.3: Affected triangle with addition of new points.

Figure 3.3 shows the affected triangle when new points are added. The solid black point

is the anchor, the grey ones are the inner points of the selection path, and the white one

the active end. The green area is the affected triangle.

26



The leftmost graphic in Figure 3.3 shows the affected triangle after three added points,

which is the whole polygon. The rightmost graphic shows the situation after a fourth

point is added. Only elements that intersect with the affected triangle need to be in-

spected.

3.3.2 Implementation

The implementation of an incremental lasso selection differs very little from the non-

incremental implementation proposed in the previous chapter. The difference is the

information supplied to the queued commands in the cache.

Cache

To achieve the proposed changes, a modification of the cache is required. The initializa-

tion of the cache is the same, but the information stored is different.

The stored rectangles are no longer the updated bounding boxes containing the whole

selection path, but the bounding boxes of the affected triangle.

The information supplied to the queued commands in the cache have also changed. A

bounding box is still passed, this time the one surrounding the affected triangle. The

affected triangle is also passed. The subAreas object is used to get all subareas that the

affected triangle lies within. The list containing all elements in said subareas are added

to the command.

Extend path

The method of deciding if a new point represents removal of or addition to the selection

path remains the same as defined in Section 3.2.

The only difference is that the computed bounding boxes stored in the cache are not

updated versions of the previous one. For each addition to, or removal of the selection

path, a new affected triangle appears. Every computed bounding box surrounds its

respective affected triangle, and not the updated selection path.

Selection domain

Computing the selection domain is very similar to the non-incremental version, with a

small change in _forEachAffectedByLine presented in Listing 3.5. The affected triangle is

supplied as an additional argument, and it is used to quickly deem elements relevant or

irrelevant.

27



Listing 3.5: Incremental computation of the selection domain.

1 LassoGeometry.prototype._forEachAffectedByLine = function(

2 triangle ,

3 rectangle ,

4 inspectableElements ,

5 path ,

6 select ,

7 remove

8 ) {

9 for (const index of inspectableElements) {

10 const offsetRectangle = util.getOffsetRectangle(

11 this.parent ,

12 this.elements[index]

13 );

14
15 if (util.rectangleIntersect(rectangle , offsetRectangle))

16 if (util.rectangleInPolygon(triangle , offsetRectangle))

17 util.rectangleInPolygon(path , offsetRectangle)

18 ? select(index)

19 : remove(index);

20 }

21 };

1. Line 15: if the element intersects with the bounding box of the affected triangle,

continue to step 2. If not, the element is not relevant and the iteration is over.

2. Line 16: if the element intersects with the affected triangle, continue to step 3. If

not, the element is not relevant and the iteration is over.

3. Line 17: if the element intersects with the polygon defined by the selection path,

select the element. If not, remove the element.

The addition of Step 2 drastically improves performance, further elaborated on in Chap-

ter 5.

28



3.4 Visualizing lasso selection

Both the non-incremental and incremental implementations of lasso selection implements

a drawIndicators function, allowing an application programmer easy access to visualization

on a canvas. The function takes multiple parameters that determine how the visual

representation should be.

• selection — the SelectionState class. Required to access information about the

selection, e.g. the anchor, active end and the selection path.

• canvas — the canvas to draw on.

• drawAnchor — a flag to determine if the anchor should be visualized as a red circle.

• drawCursor — a flag to determine if the cursor should be visualized as a blue circle.

• drawRubber — a flag to determine if the selection path should be visualized as a

green rubber band.

• drawPathToAnchor — a flag to determine if the auto-closing state of the lasso polygon

should be shown as a grey line from the active end to the anchor. Defaults to true.

• drawBoundingBox — a flag to determine if the current bounding box, being used to

exclude elements from inspection, should be visualized as a red rectangle. Defaults

to false.

By calling the drawIndicators method with the desired arguments after every mouse event,

a user can achieve simple visualization of the lasso selection being performed.

29



Chapter 4

Programmers guide to adopting

lasso selection

This chapter explains how an application programmer can use the presented lasso selec-

tion tool in an application.

4.1 Accessing the implemented functionality

Both the library, utilities and the selection geometries presented in this thesis are avail-

able as CommonJS modules. A programmer can use them by importing them. Listing 4.1

shows how they are aquired. Note that html_geometries gives access to all selection ge-

ometries presented in this thesis, not just the lasso selection tools.

Listing 4.1: Import CommonJS modules.

1 let multiselect = require("multiselect");

2 let multiselect_html_geometries = require("html_geometries");

3 let multiselect_utilities = require("utilities");

Alternatively, the programmer can access the modules by adding them as scripts in a

HTML file. Listing 4.2 shows how to add the modules as scripts.

Listing 4.2: Import scripts.

1 <script type="text/javascript" src="./dist/multiselect.js"></script >

2 <script type="text/javascript"

↪→ src="./dist/multiselect_html_geometries.js"></script >

3 <script type="text/javascript"

↪→ src="./dist/multiselect_utilities.js"></script >

30



4.2 Initializing the implemented functionality

Once the functionality is aquired, the user has to initialize the selection geometry to be

used. Both the LassoGeometry and IncrementalLassoGeometry selection geometries have a

constructor that takes the selectable area and the selectable elements as arguments. Both

the selectable area and the selectable elements are left for the user to define. Listing 4.3

shows how the selectable area and the selectable elements can be defined programatically,

before initializing the IncrementalLassoGeometry.

Listing 4.3: Initializing the selection geometry.

1 const selectableArea = document.createElement("div");

2 selectableArea.className = "selectable_area";

3 document.getElementsByTagName("body")[0]. appendChild(selectableArea);

4
5 for (let i = 0; i < 500; ++i) {

6 let e = document.createElement("span");

7 e.setAttribute("class", "selectable");

8 e.textContent = i;

9 selectableArea.appendChild(e);

10 }

11
12 let selectables = selectableArea.getElementsByClassName("selectable");

13
14 let incrementalLassoGeometry = new

↪→ multiselect_html_geometries.IncrementalLassoGeometry(

15 selectableArea ,

16 selectables

17 );

When the programmer has defined the selection geometry, the SelectionState class can

be initialized. As defined in Chapter 2, the constructor of the SelectionState class only

requires the selection geometry to be passed. Listing 4.4, however, shows how to use a

refresh callback function along with change tracking to quickly change the class of the

selectable elements once their selection state changes. This way their appearance can

change by applying CSS styles to the class selected.

31



Listing 4.4: Initializing the SelectionState class.

1 const refresh = (selected , changed) =>

2 changed.forEach ((value , index) =>

3 selectables[index ]. classList.toggle("selected", value)

4 );

5
6 let selectionState = new

↪→ multiselect.SelectionState(incrementalLassoGeometry , refresh ,

↪→ true);

Once the SelectionState class is defined, the application programmer needs to handle

mouse clicks and keyboard events, and call the corresponding functions in SelectionState

accordingly. Visual representation of the anchor, the active end, the selection path and

other visualizations that help the user determine the selection domain also need to be

defined. However, all selection geometries in html_geometries implement a default visual

representation. They can be used through the utilities module. The module contains

example functions to initialize a canvas in the selectable area, as well as setup of mouse

and keyboard events that trigger changes to the selection state and uses the default

implementation of visualization in the selection geometry. Listing 4.5 shows how to use

the example functions to handle mouse and keyboard events, as well as initialize the

canvas used to provide a visual representation of the selection.

Listing 4.5: Setup canvas, mouse and keyboard events.

1 let canvas = multiselect_utilities.createCanvas(selectableArea);

2
3 multiselect_utilities.setupMouseEvents(selectableArea , canvas ,

↪→ selection);

4 multiselect_utilities.setupKeyboardEvents(selectableArea , canvas ,

↪→ selection);

As can be seen, all code is more or less boilerplate. The programmer does not have to

think about geometry, interaction protocols or other difficult aspects.

32



Chapter 5

Experiments

5.1 Performance tests

To test the performance of the proposed lasso selection algorithms, a simple JavaScript

test bed was constructed. We recorded the performance of multiple use cases of the

lasso tools that we implemented. For each selection case, the results were stored in a

JSON file. Every file contains performance data for 500 selections. For each selection, we

recorded the total number of selectable elements, total number of performed clicks, total

time elapsed in milliseconds, mean time per click and the percentage of selected elements

of all selectable elements.

We wanted to test the performance of the implementations relative to the number of

both elements and points in the selection path. Measuring how the number of elements

impacts the performance, a randomly chosen number of selectable elements were created,

between 0 and 10,000. Keeping the number of clicks constant allowed us to see how

the number of elements impacts performance. For testing how the number of points in

the selection path affect the performance, we used a constant number of elements and a

random number of points in the selection path, between 3 and 10,000.

Every performance test first generates the selectable area and the selectable elements.

The clicks are generated and stored in an array. This is done before measuring the time

elapsed. Once the timing starts, every click in the array is processed and the time to

compute the selection domain, determined by the constructed selection path, is measured.

The only difference between the different performance tests are the number of elements

and how the clicks are generated.

33



The results are visualized using matplotlib [12] in Python. The variable number — the

number of elements or the number of points in the selection path — is plotted against

the X-axis, while the mean time per click is plotted against the Y-axis. A red regression

line shows the general slope of the results.

The test bed, results and visualization script can be found in our repository at

GitHub [20].

34



5.1.1 Selecting all elements with four clicks

This section discusses the performance of lasso selection tools in a scenario where all

elements are selected. The lasso polygon is formed by simulating a shift-click in each

corner of the selectable area.

Motivation

This performance test was done to explore if there is any change in performance between

the non-incremental and the incremental lasso selection, and how the number of elements

impacts performance.

Discussion

Comparing the graphics in Figure 5.1, one can see that on average the performance

of both implementations are close to equal. However, the incremental implementation

is both a bit faster and more stable, and has fewer outliers than the non-incremental

implementation.

The reason for the similar performance of the two implementations is obvious: after the

second click the bounding box is just a straight line, but after the third and fourth click

the bounding box contains all elements. The only difference between the implementations

is the incremental implementation’s exclusion of elements that do not intersect with the

affected triangle. This means that the incremental version runs the element-in-polygon

algorithm on about half of the elements on the third click, and the other half on the fourth

click. The non-incremental implementation, however, runs the element-in-polygon algo-

rithm on all elements twice. This explains the tiny performance boost of the incremental

implementation.

An interesting observation is that neither tests show any noticable increase in running

time based on the number of elements before it reaches 2000.

35



0 2000 4000 6000 8000 10000

Number of elements

0

100

200

300

400

500

T
im

e
p
er

cl
ic
k
in

m
il
li
se
co
n
d
s

(a) Non-incremental lasso selection.

0 2000 4000 6000 8000 10000

Number of elements

0

100

200

300

400

500

T
im

e
p
er

cl
ic
k
in

m
il
li
se
co
n
d
s

(b) Incremental lasso selection.

Figure 5.1: Performance of the lasso selection implementations while selecting all elements
with four shift-clicks.

36



5.1.2 Selecting all elements with 400 clicks

This section explores if the incremental lasso selection tool is faster than the non-

incremental one with smaller and more realistic increments to the selection path. For

this purpose, we constructed a test where all elements were selected, now using 100

shift-clicks along each edge of the selectable area.

Motivation

Since the incremental lasso selection tool inspects only a small number of elements for

each addition to the selection path, the test should favor the incremental implementation

over the non-incremental. We record the performance of the two implementations with

smaller increments to the selection path to explore if the incremental implementation has

the desired effect.

Discussion

Figure 5.2 shows where the incremental lasso tool thrives — smaller increments to the

selection path reduces the number of inspected elements. The performance is both faster

and more stable compared to the non-incremental implementation. The reason for this is

that the non-incremental lasso tool inspects an ever-increasing number of elements, while

the incremental one only inspects elements in the affected triangle.

37



0 2000 4000 6000 8000 10000

Number of elements

0

10

20

30

40

50

60

70

T
im

e
p
er

cl
ic
k
in

m
il
li
se
co
n
d
s

(a) Non-incremental lasso selection.

0 2000 4000 6000 8000 10000

Number of elements

0

10

20

30

40

50

60

70

T
im

e
p
er

cl
ic
k
in

m
il
li
se
co
n
d
s

(b) Incremental lasso selection.

Figure 5.2: Performance of the lasso selection implementations while selecting all elements
in 400 shift-clicks, 100 clicks near each edge.

38



5.1.3 Selecting a random lasso with 500 clicks

While recording the performance of selecting all elements is useful in exploring the effi-

ciency of the algorithm, it is not a realistic use of lasso selection. Other selection tools,

rectangular rubber band selection, in particular, are more useful in performing such a

task. We want to record how the lasso selection performs while processing selection tasks

that are analogous to those that would occur in practice. For this purpose we generate

lasso polygons by choosing points at random, but with restrictions that ensure realistic

polygons.

Motivation

To mimic a realistic use of a lasso selection, a user drawing a large polygon during a

mouse drag, we constructed a test that used lassos generated by 500 random shift-clicks.

We compared the performance of the non-incremental and incremental implementations

on these selection tasks.

To ensure that the randomly generated points form a realistic lasso, we picked each new

point within 100 pixels of the previous point. The clicks might trigger both addition and

removal of points in the selection path. They might also lead to self-intersecting lasso

polygons.

Discussion

Studying Figure 5.3 we can see that the performance is less stable than in the previous

sections. This is to be expected — random selection paths lead to more spread in the

running times. What is important to note is how the number of elements affect the

running time. The non-incremental implementation has a steeper increase in running

time, a higher minimum, and more outliers than the incremental solution.

Having a considerable amount of spread no matter how many elements there are in the

selectable area is reassuring: it means that the performance is not halted by the number

of elements, but rather the complexity of the selection path.

39



0 2000 4000 6000 8000 10000

Number of elements

0

2

4

6

8

10

12

14

T
im

e
p
er

cl
ic
k
in

m
il
li
se
co
n
d
s

(a) Non-incremental lasso selection.

0 2000 4000 6000 8000 10000

Number of elements

0

2

4

6

8

10

12

14

T
im

e
p
er

cl
ic
k
in

m
il
li
se
co
n
d
s

(b) Incremental lasso selection.

Figure 5.3: Performance of the lasso selection implementations while selecting a random
polygon constructed by 500 shift-clicks.

40



5.1.4 Selecting a large lasso with random number of clicks

This section explores how both implementations of the lasso selection tools perform with

a variable number of line segments in the selection path.

Motivation

We want the lasso selection tools to be efficient no matter how large the selection path is.

We perform selection with random selection paths constructed with a variable number of

points, between 3 and 10,000. A random starting point in the selectable area is generated,

and each new point lies in a radius of 100 pixels from the previous point. Every selection

task is performed on a selectable area with 2000 selectable elements.

Discussion

Incremental lasso selection comes to its right with large selection paths, as shown in

Figure 5.4. It has a slight decrease in performance when the path grows, but compared

to the non-incremental version the performance degradation is miniscule.

The reason for the significant difference in performance between the two implementations

is obvious: when the lasso covers a large area, the non-incremental version has to run

the element-in-polygon algorithm on every element, while the incremental version only

does so on elements in the affected area. This leads to fewer iterations over the selection

path.

41



0 2000 4000 6000 8000 10000

Number of clicks

0

20

40

60

80

100

120

140

T
im

e
p
er

cl
ic
k
in

m
il
li
se
co
n
d
s

(a) Non-incremental lasso selection.

0 2000 4000 6000 8000 10000

Number of clicks

0

20

40

60

80

100

120

140

T
im

e
p
er

cl
ic
k
in

m
il
li
se
co
n
d
s

(b) Incremental lasso selection.

Figure 5.4: Performance of the lasso selection implementations while selecting a random
polygon constructed by a random number of clicks.

42



5.2 Discussion and future work

This section discusses the results of the different performance tests, before defining aspects

of the implementation that can be explored in the future.

5.2.1 Discussion

By constructing the test bed, we aimed to explore if the incremental implementation of

lasso selection achieved the desired boost in efficiency compared to the non-incremental

implementation.

It is apparent that the heuristics we have chosen have had the desired effect on per-

formance — the incremental implementation is both more stable and efficient than the

non-incremental implementation. It handles a large number of both selectable elements

and points in the selection path.

It is important to note that these performance tests do not necessarily mirror the expe-

rienced efficiency when actually using the lasso selection tool, as all these performance

tests have been performed programatically, ignoring a number of factors that may impact

performance. For example, there is no guarantee that the browser can handle such a large

number of elements.

The running times of the performance tests are also not completely comparable to actual

usage of the lasso tool: they are performed with a sequential implementation of extending

the path, while the one provided in MultiselectJS adds every call to extendPath to a queue.

The queue is processed at predefined intervals. This lead to the performance test finishing

immediately, so the functionality had to be removed to get precise timing results. This

does not mean that the recorded performance tests are wrong, it means that recorded

performance might be slower than the actual experienced efficiency, when one does not

always wait for every call to extendPath to finish before computing the next one.

5.2.2 Future work

There are additional heuristics that we have not explored. This thesis explains how we

split the selectable area into subareas to minimize the number of elements inspected. Fu-

ture studies can include experiments based on this idea applied also to the selection path.

This way irrelevant line segments could be excluded even before running the element-in-

polygon algorithm.

43



The implementation presented above might perform poorly if the selectable elements are

small and in very large numbers, such as is the case with pixels in a picture. If the

selectable area is 500 pixels wide and the subareas are hundred pixels high, each subarea

contains 50,000 selectable elements. Making the subareas vary in size based on the size

of the elements might improve performance. Future studies could explore the option to

give the programmer freedom to define how large each subarea should be. This way the

number of elements in each subarea could be kept lower.

Another option to be explored is to only compute the selection domain when the selection

path is finished, removing the dynamic aspect of the solution. This way the selection

domain is computed only once, making it very efficient. This would lead to the same

drawback as in other solutions to the lasso selection problem: no visual representation of

how the selection path determines the selection domain. For large amounts of elements

it might be a hit worth taking.

Performance is not the only concern, functionality is another. Future studies could extend

the proposed lasso tool with similar functionality to the one found in Social Explorer [4, 5]:

allowing the user to define if the lasso should select all elements that intersect with the

area defined by it, all elements that are contained by it, or all elements whose center

point is contained by it.

44



Chapter 6

Related work

There are not many works that study how to implement an effective lasso selection

generically. In this thesis we focus mostly on efficiency and ease of implementation,

though most existing works study the usability of different multiselection tools, lasso

selection included. User studies are performed to compare these tools. The goal, however,

is the same: effective ways to select many elements.

Some works look into other multiselection tools that can serve the same purpose as the

lasso selection tool, but may be better suited for pen-based selection, such as selecting

graphics on interactive whiteboards. Lasso selection is often compared to these variations

of multiselection, and are found to be more time-consuming and fatigue-inducing.

6.1 Usability of lasso selection

S. Mizobuchi and M. Yasumura [22] performed a study comparing the effectiveness of

circling selection1 to tapping selection2. Tapping requires that each element to be selected

is clicked. S. Mizobuchi and M. Yasumura hypothesized that circling was faster and more

accurate than tapping overall, but that hypothesis was rejected. What they did find,

however, was that the difference in selection time between the performed selection tasks

varied less while circling, compared to tapping. Circling selection was not very efficient

when performing selection tasks on elements with a low level of cohesiveness, i.e. elements

were not adjacent to each other.

1Some papers classify lasso selection as circling selection.
2Tapping and clicking mean the same thing: interacting with an element by clicking it with a mouse

or tapping on touch screens.

45



A similar study was performed by J. C. Jackson and R. J. Roske-Hofstrand [13]. Circling1

was compared to clicking selection2, but with simpler tests than S. Mizobuchi and M. Ya-

sumura [22] performed. In the study of J. C. Jackson and R. J. Roske-Hofstrand, a

participant had to select either a single element or pairs of elements, using either clicking

or circling. The results showed that lasso selection were significantly slower at select-

ing a single element, but close to equal in selecting a pair of elements. J. C. Jack-

son and R. J. Roske-Hofstrand go on to conclude with the following statement:

Circling seems to present a reasonable alternative to traditional clicking for

selection of objects in mouse-based environments, and is particularly well-

suited for selecting several objects in proximity to one another. It could

certainly be considered as a supplemental selection technique in almost any

interactive graphics display application.

This thesis can be considered a step towards making J. C. Jackson’s and R. J. Roske-

Hofstrand’s suggestion a reality.

6.2 Alternatives to lasso selection

Harpoon selection tool, presented by J. Leitner and M. Haller [19], is a pen-based selection

tool designed for interactive whiteboards. It is similar to snake selection in Multiselec-

tJS [17], in that every element that touches the constructed selection path is selected. It

differs from snake selection in that each point represents a selected area, differentiating

coarse and fine-grained selection: the size of each area is defined dynamically based on

the speed of selection. This is useful when selecting hand writing, for example grouping

the dot and the line together in an ”i”. A user study was conducted where participants

performed different selection tasks using multiple selection tools, Harpoon and lasso in-

cluded. The study showed that the Harpoon selection tool significantly out-performed

lasso selection in the speed of which the participants conducted the different selection

tasks. However, when the participants were asked to name their overall favorite tool, the

lasso selection tool came out on top.

M. Haller et al. [21] also present another tool to be used in conjunction with the Harpoon

selection tool: Suggero. It is designed for interactive whiteboards. Based on the selection

of one or more elements, using the Harpoon or another tool, it presents the user with

a list of pre-computed perceptual groups containing, or being similar to, the selected

content. This allows the user to quickly select similar elements or groups of elements.

M. Haller et al. conducted a study which showed that Suggero decreased selection effort,

46



interactions and stylus movement. All factors decrease fatigue when performing selections

on interactive whiteboards.

H. Dehmeshki and W. Stuerzlinger [3] presents a multiselection approach designed with

Gestalt grouping, the way human perception naturally groups objects together, in mind.

The Gestalt multiselection approach groups elements together through a nearest neigh-

bour graph, and detects groups based on proximity and good continuity. A user selects

the desired elements by performing clicks, double-clicks, shift-clicks and alt-clicks. A con-

ducted user study, with users performing different selection tasks with different selection

tools, revealed that the Gestalt approach to multiselection surpassed both lasso selection

and rectangular selection in selection time.

47



Chapter 7

Conclusions

Our motivation in this thesis were described through three simple bullet points:

• Lasso selection is often not available where it would be useful.

• There is unnecessary variation in different realizations of lasso selection.

• Implementing a correct and efficient lasso selection is difficult.

We have achieved what we set out to do: a generic efficient implementation of a lasso

selection tool. It tolerates large numbers of both elements and points in the selection

path. Two implementations were created, both very similar. Changing how the selection

domain is computed resulted in a more stable, incremental lasso selection algorithm.

Any programmer can take the implemented lasso selection tool to use through the library

MultiselectJS, allowing easy access to lasso selection in applications where it would be

useful. Any programmer wishing to create a lasso selection tool can also take inspiration

from this work — the heuristics presented should give a clear idea of how to mitigate the

cost of computation.

While we have found multiple heuristics that mitigate the cost of lasso computations,

there are others that have not been explored. Being able to limit the portion of the

selection path that needs to be inspected seems particularly promising for increasing the

efficiency of the algorithm.

48



49



Bibliography

[1] Adobe. Adobe Photoshop Lasso Tools, accessed: 5 April, 2020.

URL: https://helpx.adobe.com/photoshop/using/selecting-lasso-tools.html.

[2] Paul Bourke. Determining if a point lies on the interior of a polygon, 1987, accessed:

8 April, 2020.

URL: http://paulbourke.net/geometry/polygonmesh/#insidepoly.

[3] Hoda Dehmeshki and Wolfgang Stuerzlinger. Intelligent Mouse-Based Object Group

Selection. In Proceedings of the 9th International Symposium on Smart Graphics,

SG ’08, page 33–44, Berlin, Heidelberg, 2008. Springer-Verlag. ISBN 9783540854104.

doi: 10.1007/978-3-540-85412-8 4.

URL: https://doi.org/10.1007/978-3-540-85412-8 4.

[4] Social Explorer. Explore Maps, accessed: 5 April, 2020.

URL: https://www.socialexplorer.com/explore-maps.

[5] Social Explorer. Polygon Selection Tool, accessed: 5 April, 2020.

URL: https://www.socialexplorer.com/help/guides-videos/using-the-selection-

toolbox.

[6] Michael Galetzka and Patrick O. Glauner. A Simple and Correct Even-Odd Algo-

rithm for the Point-in-Polygon Problem for Complex Polygons. In Proceedings of

the 12th International Joint Conference on Computer Vision, Imaging and Com-

puter Graphics Theory and Applications (VISIGRAPP 2017), volume 1: GRAPP,

pages 175–178, 2017.

[7] Eric Haines. Point in Polygon Strategies, page 24–46. Academic Press Professional,

Inc., USA, 1994. ISBN 0123361559.

[8] Jian-Qiang Hao and Jianzhi Sun. Optimal Reliable Point-in-Polygon Test and Dif-

ferential Coding Boolean Operations on Polygons. Symmetry, 10:1–16, 10 2018.

50

https://helpx.adobe.com/photoshop/using/selecting-lasso-tools.html
http://paulbourke.net/geometry/polygonmesh/#insidepoly
https://doi.org/10.1007/978-3-540-85412-8_4
https://www.socialexplorer.com/explore-maps
https://www.socialexplorer.com/help/guides-videos/using-the-selection-toolbox
https://www.socialexplorer.com/help/guides-videos/using-the-selection-toolbox


[9] Donald Hearn and M. Pauline Baker. Computer Graphics, C Version, pages 24–41.

Prentice-Hall, Inc., USA, 1997. ISBN 0135309247.

[10] Kai Hormann and Alexander Agathos. The Point in Polygon Problem for Arbitrary

Polygons. Comput. Geom. Theory Appl., 20(3):131–144, November 2001. ISSN 0925-

7721. doi: 10.1016/S0925-7721(01)00012-8.

URL: https://doi.org/10.1016/S0925-7721(01)00012-8.

[11] Chong-Wei Huang and Tian-Yuan Shih. On the Complexity of Point-in-Polygon

Algorithms. Comput. Geosci., 23(1):109–118, February 1997. ISSN 0098-3004. doi:

10.1016/S0098-3004(96)00071-4.

URL: https://doi.org/10.1016/S0098-3004(96)00071-4.

[12] J. D. Hunter. Matplotlib: A 2D graphics environment. Computing in Science &

Engineering, 9(3):90–95, 2007. doi: 10.1109/MCSE.2007.55.

[13] J. C. Jackson and R. J. Roske-Hofstrand. Circling: A Method of Mouse-Based

Selection without Button Presses. In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, CHI ’89, page 161–166, New York, NY,

USA, 1989. Association for Computing Machinery. ISBN 0897913019. doi: 10.1145/

67449.67483.

URL: https://doi.org/10.1145/67449.67483.

[14] Jaakko Järvi and Sean Parent. One Way to Select Many. In Shriram Krish-

namurthi and Benjamin S. Lerner, editors, 30th European Conference on Object-

Oriented Programming (ECOOP 2016), volume 56 of Leibniz International Pro-

ceedings in Informatics (LIPIcs), pages 14:1–14:26, Dagstuhl, Germany, 2016.

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN 978-3-95977-014-9. doi:

10.4230/LIPIcs.ECOOP.2016.14.

URL: http://drops.dagstuhl.de/opus/volltexte/2016/6108.

[15] Juan José Jiménez-Delgado, Francisco R. Feito-Higueruela, and Rafael Jesús Segura.

Robust and Optimized Algorithms for the Point-in-Polygon Inclusion Test without

Pre-processing. Comput. Graph. Forum, 28:2264–2274, 2009.

[16] jQuery. Selectable Widget, accessed: 5 April, 2020.

URL: https://api.jqueryui.com/selectable/.

[17] Jaakko Järvi and Sean Parent. MultiselectJS, 2016, accessed: 5 April, 2020.

URL: https://github.com/HotDrink/MultiselectJS.

51

https://doi.org/10.1016/S0925-7721(01)00012-8
https://doi.org/10.1016/S0098-3004(96)00071-4
https://doi.org/10.1145/67449.67483
http://drops.dagstuhl.de/opus/volltexte/2016/6108
https://api.jqueryui.com/selectable/
https://github.com/HotDrink/MultiselectJS


[18] Jaakko Järvi and Sean Parent. MultiselectJS Demo Application, 2016, accessed: 6

May, 2020.

URL: http://hotdrink.github.io/multiselectjs/examples/demo/multiselect-demo.html.

[19] Jakob Leitner and Michael Haller. Harpoon Selection: Efficient Selections for Un-

grouped Content on Large Pen-Based Surfaces. In Proceedings of the 24th An-

nual ACM Symposium on User Interface Software and Technology, UIST ’11, page

593–602, New York, NY, USA, 2011. Association for Computing Machinery. ISBN

9781450307161. doi: 10.1145/2047196.2047275.

URL: https://doi.org/10.1145/2047196.2047275.

[20] Ole Magnus Lie. omlie/lasso-testing: Lasso testing, results and script for plotting

data, May 2020.

URL: https://doi.org/10.5281/zenodo.3842702.

[21] David Lindlbauer, Michael Haller, Mark Hancock, Stacey D. Scott, and Wolfgang

Stuerzlinger. Perceptual Grouping: Selection Assistance for Digital Sketching. In

Proceedings of the 2013 ACM International Conference on Interactive Tabletops and

Surfaces, ITS ’13, page 51–60, New York, NY, USA, 2013. Association for Computing

Machinery. ISBN 9781450322713. doi: 10.1145/2512349.2512801.

URL: https://doi.org/10.1145/2512349.2512801.

[22] Sachi Mizobuchi and Michiaki Yasumura. Tapping vs. Circling Selections on Pen-

Based Devices: Evidence for Different Performance-Shaping Factors. In Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’04, page

607–614, New York, NY, USA, 2004. Association for Computing Machinery. ISBN

1581137028. doi: 10.1145/985692.985769.

URL: https://doi.org/10.1145/985692.985769.

[23] GNU Image Manipulation Program. GIMP Free Selection (Lasso), accessed: 5 April,

2020.

URL: https://docs.gimp.org/2.10/en/gimp-tool-free-select.html.

52

http://hotdrink.github.io/multiselectjs/examples/demo/multiselect-demo.html
https://doi.org/10.1145/2047196.2047275
https://doi.org/10.5281/zenodo.3842702
https://doi.org/10.1145/2512349.2512801
https://doi.org/10.1145/985692.985769
https://docs.gimp.org/2.10/en/gimp-tool-free-select.html

	Introduction
	Motivation
	Goal of work
	Key challenges and solution

	Background
	Multiselection
	MultiselectJS
	Concepts of multiselection
	Selection geometries
	API

	Lasso selection
	Lasso selection compared to rectangular selection
	Lasso selection algorithms
	Lasso selection in common applications


	Implementation
	Selectable element contained by selection path
	Non-incremental lasso selection
	Incremental lasso selection
	Speeding up selection
	Implementation

	Visualizing lasso selection

	Programmers guide to adopting lasso selection
	Accessing the implemented functionality
	Initializing the implemented functionality

	Experiments
	Performance tests
	Selecting all elements with four clicks
	Selecting all elements with 400 clicks
	Selecting a random lasso with 500 clicks
	Selecting a large lasso with random number of clicks

	Discussion and future work
	Discussion
	Future work


	Related work
	Usability of lasso selection
	Alternatives to lasso selection

	Conclusions
	Bibliography

