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Abstract

Structures are everywhere around us—from chemical formulas to biological systems or
musical works. In this thesis, we focus on composite structures that appear in graphical
user interfaces (GUI), such as lists, tables, or tabs. GUIs often support changes to these
structures—be it rearranging elements or appending new ones—in order to facilitate a
more productive interaction between the user and the software system.

In general, making structural changes that involve GUI components is non-trivial:
because the program state is stored and represented both in an object model and view
widgets, structural changes to either representation should be reflected in the other.
Furthermore, components in GUIs can be connected, and these connections must be
updated whenever the structure of the components change. Ultimately, the intent of the
operation, a structural change, is lost in the clutter of imperative statements that update
the view, model, and connections between the components.

In this thesis, we define a framework that lets programmers specify possible structural
changes in programs declaratively. We show how programmers can put these declarative
specifications to use in JavaScript applications using a custom DSL we have implemented
for the framework. To test our framework and demonstrate the clarity that it can bring to
managing the dynamic structure of GUIs, we implemented an event scheduling application
based on a library for defining and solving multi-way dataflow constraint systems in GUIs.
The application has a sequence of timed events, and each event has a start time, duration,
and end time. Whenever the user updates an event’s duration, the start and end time
of all the events are updated accordingly. The application supports structural changes,
such as adding, removing, and reordering of events. We explain how components in these
GUIs are connected and how we utilize our framework to correctly update the connections
whenever structural changes are made.
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Chapter 1

Introduction

Structures are everywhere around us — from chemical formulas, biological systems, mu-
sical works to graphical user interfaces. Some structures can be altered without altering
the items of the structure: for instance, in a file explorer showing all the files and fold-
ers in a specific folder, we can move files from one folder to another. This changes the
structure of the file system, but leaves the files unaltered.

In programming, we often find representations of data where we can make a dis-
tinction between elements, atomic data items, and the structure, how the elements are
organized. By a structural change we refer to a change in the latter aspect, a change
in how elements are organized. Examples of structural changes are adding elements to
a structure, removing elements from a structure, swapping elements in a structure, and
moving an element to a specific position in the structure. A structural change leaves the
internals of the elements in a structure unchanged; only the relations between elements
in the structure are changed.

In many cases, structural changes are easy to implement. For instance, adding ele-
ments to and removing elements from a list usually requires just one statement. Swapping
two elements in a list might require three statements. In these examples, the structure
is a carefully designed data structure—the list. Often the structures a programmer en-
counters are not carefully designed, but are instead quite ad-hoc. Such structures are
commonly found, often as lists or grids, in graphical user interfaces (GUI). For example,
multi-city reservations in a flight booking application have several flight segments; the
segments are listed, with each segment displaying the departure and arrival information.
In a flexible GUI, the customer would be able to remove and insert segments anywhere
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in the list. Another example is that of task organization applications, which let users
manage tasks in lists, and move tasks between the lists. A typical alarm application is
yet another example: users add, remove and edit alarms, and the list of alarms should be
automatically sorted on the alarm time. A further example is that of invoice generators
in financial applications, where an invoice is a list of items and each item consists of a
unit price, VAT, quantity, and a total price. Again, similarly to the previous examples,
the user expects that items can be rearranged. The GUIs in all these examples have
dynamic structures: elements can be added, moved, and removed on user interaction.

Making changes to ad-hoc GUI structures is often involved: data exists in both a
model and a view and, thus, if the programmer changes the structure of either the model
or the view, the structure of the other must also change. Elements in the structure can
be complex, and the operation of moving one element may consist of several smaller op-
erations. Furthermore, there are often various bindings (e.g. registered event handlers)
between components in GUIs, and when making a structural change in such GUIs, the
programmer must also update the relevant bindings. Ultimately, the intent of the opera-
tion, a structural change, is lost in the clutter of statements that update the view, model,
and bindings between components.

The goal of this thesis is to introduce an abstraction layer for declaratively specifying
changes to the structure of complex representations of data, without manually manag-
ing the lower-level connections between the components in the structure. The declarative
specifications of structural changes are expected to make code easy to read and maintain.
We aim at designing and implementing a framework where the programmer first defines
the relations between the components that form a structure, together with lower-level
operations involved in establishing or unestablishing these relations, and then specifies
the structural changes by declaring how the relations between the components change.
To make the specifications of structural changes concise, we designed and implemented a
DSL, WarmDrink, for our framework. The framework transpiles the DSL to JavaScript,
providing the programmer with JavaScript functions for making structural changes ef-
fortlessly. The framework is independent of GUIs, but the application we have in mind
is GUIs, or more precisely, constraint system based GUIs.

Dependencies between variables in GUIs are common: when a user changes one GUI
element, others need to be updated too. Multi-way dataflow constraint system-powered
GUIs [25, 18] enlist constraint systems to manage such dependencies. When develop-
ing constraint system-GUIs, the programmer defines a property model [17] for the GUI,
a specification of the constraints between the variables of the GUI. These constraints
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constitute a constraint system that is invalidated when variables change. The system is
solved by updating the variables in a way that enforces all the constraints. Constraint
systems can be solved by generic algorithms, making the tedious task of understanding
the details of how a change in one variable affects other variables in a GUI unnecessary.

Whenever a variable in a constraint system-based GUI is updated, the mechanics of
the GUI updates the dependencies automatically. It does so by listening to each of the
variables so that whenever one is changed, the rest are immediately updated.

Setting up dependencies between variables in a GUI is messy when the structures of
the GUI changes. GUIs are hierarchies of components, and variables of separate compo-
nents can have dependencies on each other, creating connections between components.
Whenever a component is inserted into, removed from, or moved inside a structure of
connected components, the connections between the components must update accord-
ingly.

We give an example to showcase how components are connected and why the con-
nections must update on structural changes: consider a component A with a property
x, and a component B with some number properties y and z; these are denoted as A.x,
B.y, and B.z, respectively. The three properties have numerical values. We define a
constraint on the properties: the value of A.x is the product of B.y and B.z. Because the
constraint is defined on properties of both A and B, the constraint connects A and B.
Assume that in addition to the components A and B we introduce a new component C
with property x, similarly to A. Then, a structural change that replaces A with C in the
GUI would involve disconnecting A from B and connecting C to B. In other words, the
constraint on A.x, B.y and B.z would be replaced with the same constraint on C.x, B.y

and B.z. Our framework helps programmers to largely ignore setting up dependencies
between properties of components when changing the structure of the components.

The structure of the thesis is as follows. In Chapter 2, we overview previous results
that relate to specifications of structural changes. In Chapter 3, we sketch the ideas
of a framework that lets programmers declare structural changes in programs, as well
as discuss how programmers can adopt these ideas in JavaScript applications using a
custom DSL we developed for the framework. We describe the implementation details of
the framework and the DSL in Chapter 4. Next, in Chapter 5, we implement an event
scheduling application based on a library for defining and solving multi-way dataflow
constraint systems in GUIs. We explain how components in such GUIs are connected
and how our framework can be utilized to correctly update the connections on changes
to widgets in the GUIs. We discuss future work in Chapter 6.
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Chapter 2

Related Work

Our work has connections with several areas of programming and programming research.
Our goal is to separate the structure of data into an isolated concern and, thus, we can see
a connection to aspect-oriented programming [21]. Our approach involves developing a
(relatively simple) specification language, so we lean on DSL technologies. We primarily
aim to make GUI programming easier and more manageable, so we ought to explain how
our work relates to the latest GUI programming approaches. Our work, at a general
level, is about describing quite arbitrary structures and modifications to them. Graphs
and hypergraphs are what can be used in such representations and, therefore, our work
is connected to topics like hypergraph grammars and graph algebras. In this section, we
elaborate on these themes, and structure this section accordingly.

React

Plenty of JavaScript libraries for building user interfaces have emerged the last decade,
and many of them share similar approaches to update GUIs: programmers make changes
to the model of the GUI and the library takes care of updating the view accordingly. One
such library is React [3]: React is component-based, where each component manages its
own state and view, and the entire UI is a composition of components. More specifically,
each component object is an instance of the class Component. Component has two fields:
state holds the internal state of the component and props holds data, or properties,
that is provided and managed by other components. To render a component, the class
Component has a method render() that each component overrides to return an HTML
DOM representation of the component.
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Here is an example of the JavaScript render()-method in a simple component defi-
nition:

class HelloWorld extends React.Component {
render() {

return (
<div>
Hello World!
</div>

);
}

}

The HelloMessage component’s render()-method returns the DOM node div with the
text content ”Hello World!”. The DOM representation returned by the render()-method
of a component can contain data from the state and properties of that component. When-
ever the state or properties of the component change, the component is re-rendered. Thus,
the render()-function of a component is a projection from the component’s state and
properties.

Each component manages its own state; a component cannot change the state of other
components. A React component can listen to interactive HTML components, such as
text inputs and buttons, and update its state on user interaction. The programmer
changes the state of a React component by using the component’s setState()-method,
which also triggers a re-render of that component.

React components are hierarchical: a component can contain child components that
are rendered inside their parent component. Even though components cannot access
other components, components can pass data down to their child components’ props-
fields. The data of a child component can, therefore, change due to a state change in one
of the (transitive) parents of the component.

React reacts to state updates by updating the view. Making updates directly to the
DOM in the browser is inefficient and React, therefore, uses a virtual DOM to update
the view. A virtual DOM is a copy of the real DOM that the browser renders for the user
to see. The virtual DOM is used to compute the minimum changes React has to make
to the real DOM to re-render a component. A component needs to be re-rendered if its
state has changed, or if its properties have changed due to a state change in a parent
component. Thus, whenever the state of a component is updated, the component and
all its transitive child components are re-rendered. React runs the render-method of the
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component in which the state changed, and the method returns a virtual DOM that is
the new DOM representation of that component and its children. It then computes the
minimum edit distance from the old virtual DOM to the new virtual DOM. An edit is
a deletion or insertion of a DOM node, and the minimum edit distance is the minimum
number of edits needed to update the old virtual DOM to match the new virtual DOM.
React finishes re-rerendering by performing these edits to the real DOM.

From a programmer’s point of view, structural changes, such as reordering of list
items, are easy in React: the programmer performs changes directly to the model, and
the view is automatically updated. More specifically, the model in a React GUI is a
composition of the state of all the components, and thus the programmer changes the
model by changing the state of the components. Changing the state of a component
triggers a re-rendering of that component, as described above. DOM nodes are removed
and inserted until the component is rendered and the view matches the state of the
components. When making these changes, the programmer only cares about the model,
and React updates the view accordingly. Such simplicity, however, only manifests when
the structure being modified is itself simple.

Structural changes in GUIs can involve components with connections, such as depen-
dencies between variables of the components. For example, assume two components A

and B whose states contain the numerical variables vA and vB, respectively. Assume
further that vB is twice the value of vA. Because vB has a dependency on vA, the
two components A and B are connected. If a structural change removed A and replaced
it with another component C, we would have to tear down the connection between A

and B and set up a similar connection between C and B. React, and other popular,
component-based frameworks have no mechanisms for tearing down and setting up con-
nections between components in this manner. Therefore, on structural changes that
involve changes to component connections, the programmer must manage component
connections manually.

Our abstraction enables the programmer to specify structural changes to both the
model and the view of the GUI at a higher level, instead of having to make changes directly
to the model and the view. When applying the specifications for structural changes in
GUIs, the programmer should not have to manage connections between components; the
specifications are an abstraction layer over component connections. In the example above,
the programmer would use such a specification to replace A with C, without having to
manually disconnect A from B and connect C to B.
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Hypegraph Edge Replacement Grammar

A possible approach to specifying structural changes is using Hypergraph Edge Replace-
ment Grammar (HERG) [10]. A Hypergraph is a generalization of a graph where the
edges, which are named hyperedges, connect any number of vertices. Hypergraph edge
replacement grammars define production rules for replacing hyperedges in hypergraphs
with new hypergraphs and, by that, expand the hypergraph. The hyperedges that can be
replaced with hypergraphs are called expansion points, and are similar to non-terminals
in context-free grammars.

We considered using HERGs to specify structural changes in GUIs. We could describe
GUIs as hypergraphs where the vertices are components and the hyperedges are connec-
tions between components. We could then specify insertions of components into the
GUI with HERGs, by using expansion points in the GUI hypergraph where components
were allowed to be inserted. By executing a production rule to the GUI hypergraph, a
component would be inserted into the view and model of the GUI.

While HERGs enable us to generate and expand hypergraphs, HERGs are less suit-
able for removing (sub)hypergraphs from the hypergraph and exchanging subgraphs in
the hypergraph. Thus, HERGs are not suitable for specifying some types of structural
changes that are encountered in GUI programming, such as removals and reorderings of
components. Still, in our approach, we draw inspiration from HERGs and the idea of
representing components and their connections as hypergraphs.
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Chapter 3

Declarative Specification of
Structural Changes

As discussed above, imperatively performing structural changes in a GUI is messy. Each
structural change involves adding, removing, or reorganizing GUI elements, and also
unestablishing and establishing various relations between them — for example, event
handlers may need to be removed or registered. Such relations are implicit in code, and
the intention is easily lost in the clutter of statements.

We made these relations explicit with a framework for describing structural changes
on component graphs in a declarative manner. In this framework, changes are described
using transformation rules from one set of relations to another. Using relation specifi-
cations that specify how relations are established and unestablished, generic algorithms
can perform structural changes by first unestablishing the relations that are to be un-
established and then establishing those that are to be established.

3.1 Definitions

3.1.1 Defining relation specifications

A component in our framework is any value associated with a type. It can be one
JavaScript object, part of one object, or a composition of many objects. A relation
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specification R is a 4-tuple ⟨V, r, e, u⟩, where V is a k-element sequence of typed compo-
nent variables, r is a k-ary relation on V and e and u are procedures, each taking V as
its parameter list. If r does not hold on V , then calling e with V will establish r on V .
If r holds on V , then calling u with V will unestablish r on V . We say that R holds for
some V iff r holds for that V .

The procedures e and u are optional, and either may be empty if establishing or
unestablishing is not applicable for the relation. If both e and u are empty, however, the
relation specification is of no use.

3.1.2 Example of a relation specification

In the next example, we define a relation specification for a relation between HTML
Document Object Model (DOM) nodes. The DOM-model is a tree data structure
where each node can have a finite sequence of child nodes. Each node has a pointer,
nextElementSibling, to the next element in the sequence. This pointer is null if the
element it belongs to is the last element in the sequence. Each node also has a pointer,
parentElement, to its parent node. In the following example of a relation specification
we use JavaScript to act on an HTML DOM.

We define the relation precedes for two DOM-nodes a, b ∈ C: ⟨a, b⟩ ∈ precedes iff a

and b are in the same sequence and b directly follows a. To establish this relation, we use
the procedure establishPrecedes. It is an ordinary JavaScript arrow function that inserts
b after a in the sequence containing a:

(a,b) => a.parentElement.insertBefore(b, a.nextElementSibling)

In this relation specification we choose to leave the unestablish procedure empty. If
necessary, we could define it to remove b from the sequence that b’s parent maintains.

With the establishing procedure available, we can define the precedesSpec relation
specification. We use square brackets to denote sequences.

precedesSpec = ⟨[a, b], precedes, establishPrecedes, empty⟩ (3.1)

The meaning of the relation specification is as follows. Assuming two components x and
y whose types correspond to the types of a and b, respectively, one can establish the
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relation precedes on x and y by executing the procedure establishPrecedes with x and y

as the arguments.

As mentioned, the relation specification has no unestablish procedure to unestablish
the relation on the two components if precedes is established on x and y. The relation is,
however, unestablished as a side-effect of establishing precedes on x and another compo-
nent or establishing precedes on another component and y; for instance, if one establishes
precedes on x and another component z, z is moved in between x and y and thus, precedes
no longer holds on x and y.

3.1.3 Defining rules

Denote by R the set of all relation specifications. Let c1, ..., cn ∈ C be components. A
transformation rule on c1, c2, ..., cn is a triple ⟨[c1, c2, ..., cn],Pre,Post⟩ where Pre ⊆ R is a
conjunction of relation specifications that hold on c1, c2, ..., cn before the transformation
and Post ⊆ R is a conjunction of relation specifications that hold on c1, c2, ..., cn after the
transformation. An application of a transformation rule unestablishes all the relations in
Pre and establishes all the relations in Post. The relation specifications in Pre must have
a non-empty unestablish procedure. Likewise, the relation specifications in Post must
have a non-empty establish procedure.

Given a transformation rule and a list of components whose types respectively conform
to the types of the arguments of the rule, a generic algorithm can perform the transfor-
mation of the rule by first unestablishing the relations in Pre and then establishing the
relations in Post.

3.1.4 Adjacent components in lists

We give an example of a transformation rule in our framework. The example rule swaps
adjacent nodes in a sequence of HTML DOM nodes. Using the relation precedes defined
above, the rule to swap two adjacent HTML nodes a and b is very simple:

swap = ⟨[a, b], {⟨a, b⟩ ∈ precedes}, {⟨b, a⟩ ∈ precedes}⟩
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The first component of swap states that swap is a rule defined for two components
a, b ∈ C. The second part, Pre, states that a is expected to precede b before the trans-
formation. The last part, Post, states that b should precede a after the transformation.

The rule swap is declared using only relations expected to hold before or after the
transformation. We will discuss in Chapter 4 how a generic algorithm can apply this
transformation on two given components a and b by first running the unestablish proce-
dures of the relation specifications in Pre and then the establish procedures of the relation
specifications in Post.

In our case, since the relation specification precedesSpec in Pre has an empty unestab-
lish operation, no procedure is run from Pre. The procedure from Post that is run is
the establish code in precedesSpec, which happens to be the only procedure needed to
perform the transformation:

b.parentElement.insertBefore(a, b.nextElementSibling)

The point of this very simple example is merely to explain the structure of rules. Many of
the relation specifications and transformations rules we define below will result in more
procedures being run when the transformation rules are applied.

3.2 A DSL for structural changes

We now introduce a domain-specific language (DSL) for defining relation specifications
and rules as code. The DSL is transpiled to the language the programmer uses to write
GUI code. The DSL consists of five sections: the code section, components section,
placeholders section, relations section and rules section. The code section is optional, it
allows for arbitrary code to be written and copied into the generated code, which is useful
for imports, constants, and helper functions.

3.2.1 Components

The components section is where components’ types are defined. Each type t has a name
and a procedure to test whether a component complies with t. The framework uses the
procedure to type-check the component parameters involved in a structural change and
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warns the programmer if the parameters do not conform to the expected component type.
The procedure is wrapped in triple quotes (''') and the component is referred to by using
the name of the type in Guillemets («»). Components themselves are constructed outside
of the framework and are only manipulated by the framework when they are involved in
a structural change.

Here are two examples of component type definitions in the DSL:

components
Text <-> '''typeof «Text» === "string"'''
Li <-> '''«Li» instanceof HTMLLiElement'''

The code defines the two component types Text and Li and the codes for testing com-
pliance to these types. The test codes differ because JavaScript uses different means for
inspecting the type of values (typeof) and objects (instanceof).

3.2.2 Placeholders

The placeholders section is where placeholders are defined. Placeholders are essentially
typed variable names. They are used in the definitions of relation specifications and rules;
they represent component arguments in parameter lists. Each placeholder has a name
and a component type from the components section, as seen in this example:

placeholders
t: Text
a, b: Li

When using t in a relation specification, the specification expects its parameters to com-
ply with the component type Text. Placeholders let the application programmer define
relation specifications and rules without explicitly declaring the types of the parameters
involved. The reason for having placeholders is further demonstrated in the following
sections.
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3.2.3 Relation specifications

The relation specifications section is where relation specifications are defined. Each rela-
tion specification has a name, a list of placeholders, a test procedure, an optional establish
procedure and an optional unestablish procedure. The procedures are wrapped in triple
quotes, and placeholders are referred to in the code by using their names in guillemets
(«»). As discussed above, either the establish procedure or unestablish procedure may be
empty, but one of the two procedures has to be non-empty.

In the following example of a relation specification, we assume the class LinkedListNode
to be defined, and that instances of the class are nodes in a linked list. We assume the
instances to have the field pointer that points either to the next node in the list or has
the value null.

components
Node <-> '''«Node» instanceof LinkedListNode'''

placeholders
x, y: Node

relations
(pointsAt) x y ::=

test '''«x».pointer === «y»'''
establish '''«x».pointer = «y»'''
unestablish '''«x».pointer = null'''

The pointsAt relation specification has three procedures. The first procedure, the
test procedure, tests whether the relation holds on two given components x and y by
checking if x points to y. This procedure is used to check that the relation, in fact,
holds after it is established or does not hold after it is unestablished. This guides the
application programmer to write correct relation specifications. The second procedure,
the establish procedure, establishes the relation on x and y by referring x.pointer to y.
The third and last procedure, the unestablish procedure, unestablishes the relation for
two given components x and y by setting x.pointer to null, and thus splits the linked
list.

Note that the conceptual relation, r, of the relation specification is not explicitly given.
We could define the relation of the relation specification pointsAt to be the following:

⟨x, y⟩ ∈ pointsToRel iff the field pointer of x points to y
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This relation definition is not easily interpreted by a program. Therefore, instead of
giving a relation definition to the framework, we codify it into the test procedure of the
relation specification. The conceptual relation of any relation specification should be
obvious from the test procedure as well as from the name of the specification.

3.2.4 Rules

The rules section is where transformation rules are defined. Each rule has a name, list
of placeholders, conjunction of relations on the placeholders that should hold before the
transformation, and conjunction of relations on the placeholders that will hold after the
transformation. The relations in each list are separated by commas, and the two lists are
separated by an arrow (=>).

Here is an example of a transformation rule:

rules
flipPointer (x y) = x pointsAt y => y pointsAt x

The name of the transformation rule is flipPointer. Assume two components a and
b, where the types of a and b correspond to the types of the placeholders x and y,
respectively, and that a points at b. Applying the transformation rule flipPointer to a
and b will unestablish the relation a pointsAt b and establish the relation b pointsAt
a so that b points at a after the transformation.

3.2.5 Swapping adjacent components in linked lists

Using our DSL, we specify in Figure 3.1 the relation and rule for swapping adjacent
elements in a linked list. The code specifies how to swap two adjacent components x and
y in a linked list. Before the transformation, it expects the component a to precede x,
x to precede y, and y to precede the component b. After the transformation, a should
precede y, y should precede x, and x should precede b.
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Figure 3.1: Swapping adjacent components in linked lists.

components
Node <-> '''«Node» instanceof LinkedListNode'''

placeholders
a, x, y, b: Node

relations
(precedes) x y ::=

test '''«x».pointer === «y»'''
establish '''«x».pointer = «y»'''
no unestablish

rules
swap (a x y b) = a precedes x, x precedes y, y precedes b

=> a precedes y, y precedes x, x precedes b

3.2.6 Simultaneously swapping in two lists

The next example demonstrates how a structural change on several structures at once can
be defined using the same transformation rule. This is beneficial in GUI-programming
as changes occur to the model and view simultaneously. Furthermore, if the model
is projected to several views, a change to the model be projected to all those views
simultaneously.

Consider two linked lists of the same length that are element-wise related: if the order
of the elements changes in one, a matching change should be made to the other. Swapping
two adjacent elements in one of the lists therefore involves swapping the corresponding
elements in the other list. To define such an operation we first define a component
representing a pair of elements, one for each of the lists:

components:
Pair <->

''' «Pair».fst instanceof LinkedListNode &&
«Pair».snd instanceof LinkedListNode

'''

placeholders:
a, x, y, b: Pair
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We then define a binary relation precedesInBoth, similar to the relation precedes in
the previous example. The test procedure of precedesInBoth, however, checks that the
relation holds for both of the lists; the establish code also acts on both lists.

(precedesInBoth) x y ::=
test

''' «x».fst.pointer === «y».fst &&
«x».snd.pointer === «y».snd '''

establish
''' «x».fst.pointer = «y.fst»

«x».snd.pointer = «y.snd»
'''

no unestablish

Furthermore, the rule to swap elements in both lists swapInBoth is declared as

swapInBoth (a x y b) =
a precedesInBoth x, x precedesInBoth y, y precedesInBoth b
=> a precedesInBoth y, y precedesInBoth x, x precedesInBoth b

As rules are defined using relations, the definitions of the rules stay clean even for more
complicated components and relations. The rule in this example is no more complicated
than the rule swap from one of the previous examples.

3.2.7 Inserting between adjacent components

The next example defines a rule to insert a component between two adjacent components
in a list. To insert a component x between two adjacent components a and b in a list, we
keep the already defined relation precedes, and define a transformation rule insertBetween:

insertBetween (a x b) = a precedes b => a precedes x, x precedes b

3.2.8 Swapping elements in a linked list

Previously, we looked at swapping adjacent elements in linked lists. In this example,
we look at swapping non-adjacent elements in a linked list. This is more involved, as
we have to take into account the context. Swapping elements a and b in a linked list
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involves making changes to the predecessor and successors of the two elements, and there
are several cases: a and b can be adjacent or not, a can be before or after b in the list, a
or b can be the first element in the list or not, and a or b can be the last element in the
list or not.

The combination of all the cases would involve 32 rules and we, therefore, can intro-
duce nullable placeholders in rules to the language by giving a question mark after the
name of the placeholder. Nullable placeholders can be empty, and relations on null-
placeholders are ignored. Such a feature would allow us to define more rules in one rule
definition:

swapLinked (a? b c? x? y z?) =
a precedes b, b precedes c, x precedes y, y precedes z
=>
a precedes y, y precedes c, x precedes b, b precedes z

This would work for all the cases except when a and b are adjacent. To account for
this case, we need a second rule definition where we assume that a is before b.

swapLinkedAdj (a? b y z?) =
a precedes b, b precedes y, y precedes z
=>
a precedes y, y precedes b, b precedes z

When applying the transformation on two elements in the GUI code, we still have to
check whether the elements are adjacent or not, and which of the elements comes first
in the list. We can then choose the correct transformation rule with the correct order of
arguments. We discuss more on nullable placeholders in Chapter 6.

3.2.9 Inserting into and removing from a container

Another example of structural changes is that of inserting into and removing from a
container of elements. To define transformation rules for such structural changes, we
can specify the relations isIn and isNotIn for a container and an element with their
accompanying predicates and code blocks that define how these relations are established.
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relations
(isIn) elem cont ::=

test '''«cont».contains(«elem»)'''
establish '''«cont».insert(«elem»)'''
no unestablish

(isNotIn) elem cont ::=
test '''!«cont».contains(«elem»)'''
establish '''«cont».remove(«elem»)'''
no unestablish

We then specify for a containter and an element the rules insert and remove

rules
insert (elem cont) = elem isNotIn cont => elem isIn cont
remove (elem cont) = elem isIn cont => elem isNotIn cont

We can arguably improve the definitions of the rules by defining a procedure for
unestablishing the relation isIn; we can use the establish procedure of isNotIn. This
removes the need for isNotIn and allows us to give a simpler definition of the rules:

insert (elem cont) = => elem isIn cont
remove (elem cont) = elem isIn cont =>

3.2.10 ApplyTexas

While every example up to now has been fictional, our next example is a realistic GUI
program that lacks support for structural changes. The GUI is one of several forms found
on ApplyTexas [1], a website that provides admissions to institutions of higher education
in Texas. In this particular form, the applicant fills in his or her extracurricular activities
as part of an admission.

As seen in Figure 3.2, each activity in the form has 23 fields: text inputs, numerical
inputs, and checkboxes. There can be up to ten activities, and the instructions ask the
applicant to specify the activities in the order of importance. There are, however, no
way of reordering the activities. Thus, the easiest way to move an activity up or down
in the form, swapping it with another activity, is to manually copy and paste each field
of the two activities. If the applicant wants to make several reorderings, the person is
best off refreshing the website and starting over again. This hurts the users as they
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Figure 3.2: Form for extracurricular acitivities in the ApplyTexas application.
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either waste a lot of unnecessary time reprioritizing, or they avoid reprioritizing and
submit the activities in a suboptimal order. We conjecture that the form lacks reordering
capabilities because the developers of the application considered it to be too much work
for the benefit.

Using our framework, we introduce reordering of activities by allowing each activity to
be swapped with the activity above or below. For each activity, we create a corresponding
JavaScript object with the fields before and after. The fields before and after of an
activity a point, respectively, to the activities before and after a in the prioritized order.

In this case, the components are the activities, each consisting of both a model and
view. We represent the component using a JavaScript object with two fields: model and
view. The relation isAbove holds on two activities x and y if and only if x is directly
above y. We define swapping rules for swapping two adjacent activity items, appending
rules for appending an activity after the last activity, and removal rules for removing an
activity from the list.

Using the DSL of our framework, we define the components and relations in the
program in Figure 3.3, and in Figure 3.4 we define the transformation rules. Implementing
reordering is now trivial: one can swap two adjacent activities a and b by applying one
of the specified swapping transformations to the two components. If a and b are the only
activities in the list, one can call the generated JavaScript function swapAdjacentOnly
with the two components as the arguments. If there are more activities in the list, one of
the other generated swapping functions can be called, such as swapAdjacentAtBeginning
or swapAdjacentInBetween.

In the establish procedure of the relation isAbove, we position the view of the second
placeholder y after the view of the first placeholder x. When we swap two activities,
we move their entire HTML div-nodes without modifying the content of the nodes.
Another way to perform the swap operation would be to swap the values of the 23 fields
of the two activities involved, instead of swapping the DOM nodes corresponding to
them. Implementing this would involve changing the establish procedure of the relation
isAbove, and no changes to the swapping rules would be required. In both cases, the
programmer can treat the activities and relations between them as a “list of elements”,
even though the operations of rearranging the elements have different semantics. This
enables the programmer to view the dynamic structure in a uniform way, abstracting
from the implementation details of relations between components.
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Figure 3.3: Structural changes in the ApplyTexas GUI: specification of components,
placeholders and relations.

components
Activity <-> ''' 'before' in «Activity».model

&& 'after' in «Activity».model
&& «Activity».view instanceof HTMLDivElement '''

Container <-> ''' «Container» instanceof HTMLDivElement '''

placeholders
x, y, a, b: Activity
cont: Container

relations
(isAbove) x y ::=

test '''«x».model.after === «y» && «y».model.before === «x»'''
establish '''

«x».model.after = «y»
«y».model.before = «x»
«x».view.parentElement = «y».view
«x».view.parentElement

.insertBefore(«y».view, «x».view.nextElementSibling) '''
unestablish '''

«x».model.after = null
«y».model.before = null '''

(isIn) x cont ::=
test '''«cont».contains(«x».view)'''
establish '''«cont».append(«x».view)'''
unestablish '''«x».view.remove()'''
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Figure 3.4: Structural changes in the ApplyTexas GUI: specification of transformation
rules.

rules
init (cont x) =

=> x isIn cont

append (a x) =
=> a isAbove x

swapAdjacentOnly (x y) =
x isAbove y => y isAbove x

swapAdjacentAtBeginning (x y b) =
x isAbove y, y isAbove b
=> y isAbove x, x isAbove b

swapAdjacentInBetween (a x y b) =
a isAbove x, x isAbove y, y isAbove b
=> a isAbove y, y isAbove x, x isAbove b

removeOnly (cont x) =
x isIn cont =>

removeAtBeginning (cont x a) =
x isIn cont, x isAbove a =>

removeAtEnd (cont a x) =
x isIn cont, a isAbove x =>

removeInBetween (cont a x b) =
x isIn cont, a isAbove x, x isAbove b
=> a isAbove b
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3.3 Summary

By defining rules as a transformation of relations, the rules are abstracted away from the
mechanics of managing connections between components. Therefore, the rules clearly
communicate the structural changes they are representing.

The beginning of this chapter discussed the problems of implementing structural
changes in GUIs: components are connected to each other in ad-hoc ways, both in the
GUIs model and view. A structural change must break and rebuild such connections;
without guidance, this typically leads to unstructured code.

Our framework codifies the connections between components as relations and struc-
tural changes in a GUI as transformations of relations.
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Chapter 4

Implementation

We built a working implementation of WarmDrink, our framework for specifying struc-
tural changes. In this chapter, we explain the implementation details as well as the
development tools involved in the process.

4.1 Eclipse and Xtext

We developed a DSL, together with an accompanying integrated development environment
(IDE), for writing WarmDrink programs. Programming languages have accompanying
IDEs to improve the language users’ development experience; IDEs provide syntax high-
lighting of code, code completion suggestions, error messages at the position of the errors
in the code, analysis of code, and refactoring tools. Instead of implementing the en-
tire IDE ourselves, we use a language workbench [12] to develop the IDE. A language
workbench is a program for defining languages and IDEs for them, examples of language
workbenches are Racket [14], JetBrains MPS [8], and Spoofax [20]. For our DSL, we use
the language workbench Eclipse Xtext [13].

The first step to define a DSL in Xtext is to define a grammar using Extended Backus-
Naur form [6] (EBNF). The grammar should be compliant to ANTLR’s recursive descent
parsing algorithm [24]; for instance, one of the limitations of these grammars is that left-
recursive production rules, such as Expr → Expr + Expr, are not allowed.

Consider the following example of a grammar rule in Xtext:
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Relation: "(" name=ID ")" args+=[Placeholder]* "::="
"test" testCode=JavaScriptCode
("establish" establishCode=JavaScriptCode)?
("unestablish" unestablishCode=JavaScriptCode)?

;

The name of the rule is Relation, as seen in the left-hand side above, and the right-hand
side is the body of the rule. In Xtext grammar, we write asterisks (*) for expressions
that occur zero to many times, question marks for optional expressions, and parentheses
to group consecutive expressions. The elements args, testCode, establishCode, and
unestablishCode are features of the rule. Features act as variables in rules, and they are
populated with expressions for later access. The feature testCode, for instance, will be
populated with a JavaScriptCode expression. Xtext allows specifying cross-references
in grammar rules; [Placeholder] refers to an existing instance of Placeholder.

From a language grammar Xtext generates an Eclipse Modelling Framework [16] Ecore
model. This model is an object model and is populated during parsing of the code. Using
a general-purpose JVM language, such as Java or Xtend [7], the language developer can
process the model further and, for instance, define code validations that report on issues
in the code and define quickfixes that edit the code whenever they are triggered. One can
also define code generators that perform model-to-model or model-to-text transforma-
tions [22]. In our case, we want to transpile our DSL to JavaScript code and, therefore,
we use a model-to-text transformation. To transform the model, we use Xtend’s template
strings: inside a string, we define expressions that evaluate to strings; these expressions
are wrapped in guillemet quotes («»). On the evaluation of a template string, its in-
ner expressions are evaluated to strings and inserted into the final string at their initial
positions.

Based on the grammar for our DSL and the Ecore model-to-JavaScript transformation
we defined, Xtext builds an Eclipse-based IDE.

4.2 Code generation

Our implementation of WarmDrink targets JavaScript because of the popularity of the
language in GUI programming [2]. However, the concepts of WarmDrink are not specific
to any language, and we can target other imperative languages by implementing code
generators for those languages.
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In this section, we will explain how each part of a WarmDrink DSL program is tran-
spiled to JavaScript. For each class in the model, we define a compile-method that
returns the generated code for an instance of that class. If an instance contains child
nodes, the compile-method of the instance generates the code for the child nodes by
calling their compile-methods. The code for the entire program is, thus, generated by
calling compile on the root of the model. We implemented the code generator using
Xtend, an imperative programming language similar to Java.

4.2.1 Specification of procedures

JavaScript procedures in the WarmDrink DSL are instances of the class RichString [11],
and each RichString contains a list of expression-nodes. Each expression node
has the subtype RichStringParts if it is a reference to a placeholder, or the sub-
type RichStringLiteral if it is a plain JavaScript code fragment. WarmDrink
transpiles RichStringLiterals by removing any triple quotes and guillemets, and
RichStringParts to the name of their placeholders.

def CharSequence compile(RichString richString) {
''' «FOR expression : richString.expressions»

«switch expression {
RichStringLiteral: expression.compile
RichStringPart: expression.compile

}»
«ENDFOR»'''

}
def CharSequence compile(RichStringLiteral richStringLiteral) {

richStringLiteral.value.replaceAll("«", "")
.replaceAll("»", "").replaceAll("'''", "")

}
def CharSequence compile(RichStringPart richStringPart) {

richStringPart.ref.name
}

Thus, the JavaScript procedure

'''referToSameValue(«b».model.vs.prev, «a».model.vs.end)'''

is parsed to the object model
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RichString
[ RichStringLiteral("referToSameValue(")

RichStringPart (Ref "b")
, RichStringLiteral ".model.vs.prev.value, "
, RichStringPart (Ref "a")
, RichStringLiteral ".model.vs.end)"]

which, in turn, is transpiled to

referToSameValue(b.model.vs.prev, a.model.vs.end)

Note that the JavaScript code in the DSL and the transpiled code are almost the same,
but having the placeholders in guillemets in the DSL allows the programmer to use IDE
tools on the placeholders. For instance, our IDE can rename placeholders and report on
invalid references to placeholders in JavaScript procedures.

4.2.2 Specification of JavaScript code blocks

The first part of a WarmDrink DSL program is an optional JavaScript code block con-
taining imports and helper functions. The purpose of this code block is to keep the other
procedures concise, as they can take advantage of predefined classes and functions. To
define a JavaScript code block, the programmer writes the keyword javascript, followed
by JavaScript code wrapped in triple quotes ('''). The JavaScript code is parsed as an
instance of RichString.

The code block is (trivially) transpiled to JavaScript by calling the compile-method
on the RichString-instance as described above. We give an example of a code block and
the resulting generated JavaScript code:

javascript
''' require('someModule') '''

transpiles to

require('someModule')
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Figure 4.1: Transpiling components to JavaScript.

def CharSequence compile(Component component) {
'''
function $WD_expect_«component.name»(«component.name») {

if ( !(«component.jsCode.code.compile») )
throw Error(

"Expected component '«component.name»', " +
"but component of other type passed");

}
'''

}

4.2.3 Specification of components

In the component section of a WarmDrink DSL program, the programmer declares the
component types that are used in the program. Each component type t has an accompa-
nying type-checking procedure, which is a boolean function that returns true if and only
if its parameter is a component of type t. The procedure is transpiled to a JavaScript
function $WD_expect_t that takes a component as its parameter and throws an error
if the component has the wrong type. Whenever WarmDrink rule transformations are
applied to JavaScript objects, the objects are type-checked by passing them as arguments
to the type-checking functions.

The need for such type-checking functions comes from the fact that JavaScript is a
dynamically typed language. If WarmDrink targeted a statically typed language, such as
Java or TypeScript [9], the application programmer would specify the component types
directly, making the type-checking procedures redundant.

Note that many of the functions generated by WarmDrink, including the function
$WD_expect_t, are prefixed with $WD_. These functions are not intended to be called
by application programmers, and they are only called from within other WarmDrink-
generated functions. The prefix serves as a warning to the programmer and prevents
name collisions between WarmDrink-generated code and the user code.

The function for transpiling WarmDrink component types to type-checking functions
is defined in Figure 4.1. The parameter of the type-checking function uses the same
name as the type that is being defined. Thus, in the JavaScript code, the programmer
refers to the parameter by using that name. For example, the following component type
declaration
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Event <->
'''

«Event».model.constructor.name === "Component"
&& «Event».view instanceof HTMLDivElement

'''

generates the following type-checking function:

function $WD_expect_Event(Event) {
if ( !(

Event.model.constructor.name === "Component"
&& Event.view instanceof HTMLDivElement

))
throw Error(

"Expected component 'Event', " +
"but component of other type passed");

}

In the generated code, the type-checking procedure for Event is used as a condition in
the if-statement.

4.2.4 Specification of placeholders

In the placeholders section of a WarmDrink DSL program, the application programmer
defines component placeholders that are used as parameters in the relation specifications
and transformation rules. Below is an example of the placeholders section:

placeholders
a: Event
b: Event

This code snippet declares the placeholders a and b, both standing for components of
type Event.

We discuss below how WarmDrink generates JavaScript functions for relation speci-
fications and transformation rules. Those functions expect their parameters to be com-
ponents that the types of their placeholders specify. When WarmDrink generates those
functions, the placeholders’ types determine which type-checking function to call on each
parameter. No JavaScript code is generated for the placeholders themselves.
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4.2.5 Specification of relations

In the relation section of a WarmDrink DSL program, the application programmer defines
the relation specifications. A relation specification contains a list of component place-
holders, a test procedure testing whether the relation holds, an optional establish
procedure that establishes the relation and an optional unestablish procedure that un-
establishes the relation. The example below showcases a specification of a relation myRel
defined on two placeholders a and b.

relations
(myRel) a b ::=

test '''
�� ��JavaScript test code here (1) '''

establish '''
�� ��JavaScript establish code here (2) '''

unestablish '''
�� ��JavaScript unestablish code here (3) '''

The following Xtext grammar rule is used to parse relation specifications:

Relation:
"(" name=ID ")" args+=[Placeholder]* "::="
"test" testCode=JavaScriptCode
("establish" establishCode=JavaScriptCode)?
("unestablish" unestablishCode=JavaScriptCode)?

;

The feature args here is a list of placeholders, and the features testCode, establishCode
and unestablishCode hold the code procedures associated with a relation specification.

For each relation specification r, WarmDrink generates three JavaScript functions
$WD_test_r, $WD_establish_r and $WD_unestablish_r. Below we give listings of the
functions that will be generated for the sample relation myRel, and explain the code
generation process in Xtend.

function $WD_test_
�� ��myRel (

�� ��a ,
�� ��b ) {

// check arguments
$WD_expect_

�� ��Event (
�� ��a );

$WD_expect_
�� ��Event (

�� ��b );

// test relation predicate
return

�� ��JavaScript test code here (1) ;
}
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The function $WD_test_myRel generated from the relation myRel has two parameters, a
and b. The function checks that the parameters have the same type as their corresponding
placeholders, in both cases the expected type is Event. The function performs the type-
checks by calling $WD_expect_Event on both a and b, so that an error is thrown if the
type-check fails. Then, the function checks whether myRel holds by running the test
JavaScript code provided in the relation specification. The function returns true if the
relation holds, and false otherwise.

Below is the code to generate the test function for a relation specification:

1 def CharSequence compile(Relation relation) {
2 '''
3 function $WD_test_«relation.name»(
4 «FOR arg : relation.args SEPARATOR ','»«arg.name»«ENDFOR») {
5
6 // check arguments
7 «FOR arg : relation.args»
8 $WD_expect_«arg.component.name»(«arg.name»);
9 «ENDFOR»

10
11 // test relation predicate
12 return «relation.testCode.code.compile»;
13 }
14 ...

The name of the relation is used in the name of the generated test function, as seen at
line 3. At line 4, the parameters of the generated function are generated using the names
of the placeholders. Those parameters are type-checked by the code generated at lines
7–9. Line 12 outputs the statement to check whether the relation holds using the given
test code.

Figures 4.2 and 4.3 show the generated establish and unestablish functions, re-
spectively, for the relation myRel. The bodies of the two generated functions are quite
similar and, therefore, we only explain the establish function and how it is generated.
The function $WD_establish_myRel establishes the relation myRel on the two param-
eters a and b. First, it type-checks a and b by passing them as arguments to their
type-checking functions. It then establishes the relation on the two parameters by run-
ning the establish code given in the specification of myRel. Finally, the generated
function checks that myRel has indeed been established by calling the testing function
$WD_test_myRel generated for the relation. An error is thrown if the relation does not
hold.
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Figure 4.2: The generated JavaScript function for establishing the relation myRel.

function $WD_establish_myRel(a, b) {

// check arguments
$WD_expect_Event(a);
$WD_expect_Event(b);

// establish relation�� ��JavaScript establish code here (2)

// test relation predicate
if (! $WD_test_myRel(a, b) ) {

throw Error("Relation predicate not satisfied "
+ "after the relation has been established");

}
}

Figure 4.3: The generated JavaScript function for unestablishing the relation myRel.

function $WD_unestablish_myRel(a, b) {

// check arguments
$WD_expect_Event(a);
$WD_expect_Event(b);

// unestablish relation�� ��JavaScript unestablish code here (3)

// test relation predicate
if ( $WD_test_myRel(a, b) ) {

throw Error("Relation predicate still satisfied "
+ "after the relation was unestablished");

}
}
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Below is the Xtend code that generates the establish function for a relation speci-
fication:

1 '''
2 ...
3 function $WD_establish_«relation.name»(
4 «FOR arg : relation.args SEPARATOR ','»«arg.name»«ENDFOR») {
5
6 // check arguments
7 «FOR arg : relation.args»
8 $WD_expect_«arg.component.name»(«arg.name»);
9 «ENDFOR»

10
11 // establish relation
12 «relation.establishCode.code.compile»
13
14 // test relation predicate
15 if (! $WD_test_«relation.name»
16 («FOR arg : relation.args SEPARATOR ','»«arg.name»«ENDFOR»)
17 ) {
18 throw Error("Relation predicate not satisfied "
19 + "after the relation has been established");
20 }
21 }
22 ...

The function signature is generated at lines 3–4 using the relation name and the place-
holder names. Lines 6–9 output calls to the type-checking functions for the placeholders.
Lines 11–12 generate the code for establishing the relation using the establish part of
the relation specification. The code for testing whether the relation holds is generated at
lines 14–20.

4.2.6 Specifications of transformation rules

In the rules section of a WarmDrink DSL program, the programmer defines the rule
transformations for the components. A transformation rule is comprised of a list of
placeholders, a list of pre-connections, and a list of post-connections. Pre-connections
are the relations that should hold before the transformation, and post-connections are
the relations that should hold after the transformation. The example below showcases
a definition of a transformation rule tr defined on three placeholders a, b, and c of the
type Event, assuming the relation myRel from above was defined:
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rules
myRule (a b c) = a myRel c => a myRel b, b myRel c

Transformation rules are parsed according to the following Xtext grammar rule:

Rule: name=ID "("args+=[Placeholder]*")" "="
(preConnections += Connection ("," preConnections +=

↪→ Connection)*)?
"=>"
(postConnections += Connection ("," postConnections +=

↪→ Connection)*)?
;

The feature args contains the placeholders of the rule, and the features preConnections
and postConnections contain the pre-connections and post-connections of the rule, re-
spectively. Both preConnections and postConnections can be empty.

The generated JavaScript function from the sample rule myRule is given in Figure 4.4.
It takes three parameters a, b, and c, and type-checks them. It checks that the relation
myRel holds for a and c, and aborts the operation otherwise. Then, it unestablishes the
relation myRel on a and c, and establishes myRel on a and b and on b and c. Finally,
the function checks that the established relations hold, and prints a warning otherwise.

Figure 4.5 contains the code for transpiling transformation rules into JavaScript func-
tions. Unlike JavaScript functions generated from the previous WarmDrink DSL sections,
JavaScript functions generated from transformation rules are intended to be invoked by
the application programmer. Therefore, the generated function has no $WD_-prefix, and
the name of the generated function is the same as the name of the transformation rule.

As before, lines 2–3 generate the function signature, and lines 4–7 output code for
type-checking the parameters. Lines 9–19 generate code for testing the pre-connections
that are later unestablished by the code generated by lines 21–26. Establishing the post-
connections of the transformation rule is handled by the code in lines 28–33. Finally, lines
35–43 generate JavaScript code that checks whether the post-connections have indeed
been established.

Note that at lines 12, 24, 31 and 38, we output JavaScript code that tests, establishes,
and unestablishes relations. We explain now how the method compile is defined for the
variable connection in each of these lines. This variable has the type BinaryConnection,
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Figure 4.4: The JavaScript function generated from the rule myRule.

function
�� ��myRule (

�� ��a ,
�� ��b ,

�� ��c ) {
// typecheck arguments
$WD_expect_

�� ��Event (
�� ��a );

$WD_expect_
�� ��Event (

�� ��b );
$WD_expect_

�� ��Event (
�� ��c );

// test preconditions
preConditions = true

&& $WD_test_
�� ��myRel (

�� ��a ,
�� ��c )

if (!preConditions) {
console.log("One of the preconditions doesn't hold in

�� ��myRule ");
return;

}

// unestablishing old relations
$WD_unestablish_

�� ��myRel (
�� ��a ,

�� ��c )

// establish new relations
$WD_establish_

�� ��myRel (
�� ��a ,

�� ��b )
$WD_establish_

�� ��myRel (
�� ��b ,

�� ��c )

// test postconditions
postConditions = true

&& $WD_test_
�� ��myRel (

�� ��a ,
�� ��b )

&& $WD_test_
�� ��myRel (

�� ��b ,
�� ��c )

if (!postConditions) {
console.log("Postcondition doesn't hold in rule

�� ��myRule ");
}

}
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Figure 4.5: Transpiling rules to JavaScript.

1 def CharSequence compile(Rule rule) {'''
2 function «rule.name»(
3 «FOR arg : rule.args SEPARATOR ','»«arg.name»«ENDFOR») {
4 // typecheck arguments
5 «FOR arg : rule.args»
6 $WD_expect_«arg.component.name»(«arg.name»);
7 «ENDFOR»
8
9 // test preconditions

10 preConditions = true
11 «FOR connection : rule.preConnections»
12 && «connection.compile("test")»
13 «ENDFOR»;
14
15 if (!preConditions) {
16 console.log(
17 "One of the preconditions doesn't hold in rule

↪→ '«rule.name»'");
18 return;
19 }
20
21 // unestablishing old relations
22 «FOR connection : rule.preConnections»
23 «IF connection.getRel().unestablishCode !== null»
24 «connection.compile("unestablish")»;
25 «ENDIF»
26 «ENDFOR»
27
28 // establish new relations
29 «FOR connection : rule.postConnections»
30 «IF connection.getRel().establishCode !== null»
31 «connection.compile("establish")»;
32 «ENDIF»
33 «ENDFOR»
34
35 // test postconditions
36 postConditions = true
37 «FOR connection : rule.postConnections»
38 && «connection.compile("test")»
39 «ENDFOR»;
40
41 if (!postConditions) {
42 console.log("Postcondition doesn't hold in rule

↪→ '«rule.name»'");
43 }
44 } '''
45 }
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which represents a relation on two component placeholders. The following Xtext grammar
rule is used to parse such binary relations; it has the feature rel that represents the
relation, as well as the features arg1 and arg2 that represent the placeholders.

BinaryConnection:
arg1=[Placeholder] rel=[Relation] arg2=[Placeholder]

;

The Xtend function compile given below takes a BinaryConnection and a string
modifier as arguments, where modifier is either "test", "establish" or "unestablish".
The function generates a JavaScript function call by using the modifier, name of the rela-
tion, and name of the placeholders. For instance, to generate the function call to establish
the connection "a precedes b", we call the compile function on the connection with
the string "establish" as argument: connection.compile("establish"). The func-
tion returns the string "$WD_establish_precedes(a, b)".

def dispatch CharSequence compile(BinaryConnection binaryConnection ,
String modifier) {
'''$WD_«modifier»_«binaryConnection.rel.name»(

«binaryConnection.arg1.name»,
«binaryConnection.arg2.name»

)'''
}

We have thus explained the implementation details of the WarmDrink DSL parser,
Eclipse-based IDE, and code generator to JavaScript.
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Chapter 5

Structural changes in constraint
system-powered GUIs

In this chapter, we will explain howWarmDrink is harnessed to manage structural changes
in GUI applications based on constraint systems. We first explain what a constraint
system is and introduce HotDrink, a software library for defining and solving constraint
systems in GUIs. We then describe an example application that showcases the use of
HotDrink and WarmDrink together.

5.1 Multi-way dataflow constraint systems

The dataflow of a program is a graph of variables, where directed edges between variables
express flows of data, or dependencies between variables. More specifically, if a variable
a is involved in the computation of a variable b, and b must be updated whenever a is
updated, then b is dependent on a; we say that data flows from a to b.

GUI programs with interactive forms often exhibit dataflow. An example of such a
GUI is the interactive tax calculator on Skatteetatens website [4], where users fill infor-
mation about their personal economics in a form to calculate their total taxes. Whenever
fields in the form are updated, a table of intermediate results, such as common tax and
national insurance contributions, is updated. The total tax, which is the sum of all the
intermediate results, is also computed. In the calculator, data flows from the input fields
in the form to the table of intermediate results, and subsequently from the table to the
tax result.
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Figure 5.1: Example GUI form for rectangle measurements.

In dataflow programming, the programmer can specify such functional dependencies
between variables, also called one-way dataflow constraints [25]. Sometimes programs
exhibit dataflows to multiple directions: at one point of a program execution a depends
on b but at another point b depends on a. If variables are dependent on each other so
that data flows more than one way, the flow is a multi-way dataflow.

We give in Figure 5.1 an example GUI that exhibits multi-way dataflow: an interactive
form for detecting the measurements of a rectangle. The GUI’s model has three variables:
width, height and area, and for each variable, the view, a simple form, has a corresponding
numerical input field. There is a binding between the input fields and the variables; users
can edit the value of a variable by editing the number in the corresponding input field.
When users edit one of the variables, the other two variables are automatically updated
so that the equation

area = width ∗ height

is satisfied. The mechanics of the GUI can update any of the three variables to satisfy
the equation.

Assuming that width, height and area are 3, 5 and 15, respectively, imagine the follow-
ing user scenario: a user edits area to be 30, and thus the mechanics of the GUI satisfies
the equation by updating width to be 6 and leaving height at 5. Then, the user updates
the width to be 10. One way the mechanics can satisfy the equation at this point is by
updating area. Since changes to width can affect area and changes to area can affect
width, data flows in both directions between width and area. The dataflow of this GUI
is, therefore, a multi-way dataflow.
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A dependency cycle in the dataflow occurs if a value a (transitively) depends on
another value b, and b (transitively) depends on a. If there are no such cycles, the
dataflow graph has the structure of a directed acyclic graph (DAG).

A common approach for defining the reaction to user input in graphical user interfaces
is using event listeners. Event listeners are methods attached to widgets or components
that users interact with, such as text inputs and buttons. On user interaction, these
methods are triggered with the interaction event as the argument, and they define the
desired behavior for that interaction; it can be, for instance, updating the internal data
model, making an update to other widgets in the user interface, or sending a request to
a server.

We can use event listeners to propagate data in one-way dataflows. If a user interacts
with some widget w, the event listener of w can take care of updating the widgets ws that
depend on w. This will trigger the event listeners of ws to in turn update the widgets that
depend on ws. These updates continue transitively until there are no more dependencies.

Propagating data in a multi-way dataflow, however, is complex using event listeners.
Event listeners cannot push data to their dependents, as data may end up propagating in
a cycle. Each listener, therefore, needs to update all the transitive dependents whenever
it is triggered. This breaks the separation of concerns [23, p. 5], a design principle of
programming that states that each section of a program should only have one concern.
Programs that adhere to this principle have the advantage of being modular; changes
can easily be made to one section, or module, of the program without the need for other
modules to change. If a GUI has an event listener bound to a variable v in a module m,
and the listener method updates all the transitive dependents on v, including a variable
w in another module n, the program is not modular: a change can be made to the module
n that affects w. Consequently, the event listener method for v in the module m needs
to change, and thus the program does not adhere to the separation of concerns principle.

Furthermore, it is nontrivial in the listener methods to determine which way data
should flow if there are multiple alternatives. The program could remember the most
recently edited variables so that it can prioritize flows that update less recently edited
variable, if such flows exist. For instance, in the rectangle example above, a user may
first update height, then area, and then width; the intuitive behavior would likely be that
the mechanics update height, and not area, after the last update. Finally, if concurrency
is in play — event listeners can run asynchronously — ensuring that unpredictable and
erroneous dataflows cannot occur becomes difficult.
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Since using event listeners to propagate data in GUIs that exhibit multi-way dataflows
is complex, it is better to have multi-way constraint systems propagate data in these
GUIs. A constraint is a relation defined on a set of variables. When the relation holds
on the variables, the constraint is enforced. More specifically, for a constraint r on a
set of variables v1, ..., vn, r is enforced iff the values a1, ..., an of the variables v1, ..., vn,
respectively, are such that ⟨a1, ..., an⟩ ∈ r. An example of a constraint is found in our
example GUI above: the constraint on the variables area, width and height is defined
using the following relation rect:

⟨area,width, height⟩ ∈ rect ⇐⇒ area = width ∗ height

Thus, whenever area is the product of width and height, the constraint is enforced.

A constraint system is a set of constraints, and the constraint system is solved when-
ever all the constraints in the system are enforced. Constraint systems in GUIs are solved
repeatedly; each time a variable in a constraint system is updated, leading to one or more
constraints being violated, the constraint system has to be solved by updating the other
variables in the system.

5.2 HotDrink

HotDrink [15] is a JavaScript library for GUI programming with a hierarchical multi-way
dataflow constraint system as a core. To utilize HotDrink in GUI programs, a programmer
defines the variables and constraints of the GUI and adds them to a constraint system
managed by the library. The variables and constraints are defined either in JavaScript or
in a custom DSL for HotDrink that transpiles to JavaScript. When a variable in the GUI
is updated, possibly violating a constraint, the library automatically solves the constraint
system [19] by finding a dataflow that updates all the variables that need to be updated
to enforce all the constraints. The library then computes new values to those variables
according to the dataflow. If the library finds more than one such dataflow, it chooses
the dataflow that leaves the most recently edited variables unchanged; the behavior of
keeping the most recent edits is often intuitive and preferred by the user. If no such
dataflow can be found, then there are no ways to solve the constraint system, and thus
none of the variables are updated.
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A variable in HotDrink contains a value, and the application programmer can update
a variable v with a new value newValue by calling the method v.set(newValue). To
get notified of updates to v, the programmer can subscribe to v by calling the method
v.subscribe(cb), where cb is a callback function; the cb-function is called with a new
value as its argument whenever the variable is updated. The programmer can establish a
binding between a variable and a GUI component so that either the variable is updated
whenever the component is updated, or the component is updated whenever the variable
is updated. For a component to update whenever a variable is updated, the programmer
subscribes to the variable and updates the component in the callback function of the
subscription. For a variable to update whenever the user interacts with a component,
the programmer attaches an event listener to the component and updates the variable in
the event listener method. If there is a binding between a variable and a component such
that whenever one of them updates the other one is updated, we say there is a two-way
binding between the variable and the component.

Variable declarations in the HotDrink DSL are similar to variable declarations in
JavaScript: a variable is declared using the keyword var followed by the name of the
variable. A value is, then, optionally assigned to the variable using an equals sign and
the value, and the statement ends with a semicolon. More variables can be declared
in one statement by comma-separating the variable declarations. In the following code
example, we declare the variable x and y using the HotDrink DSL:

var x=5, y;

The variable x has initially the value 5, and y is initially undefined.

A constraint on a set of variables is specified using constraint satisfaction methods
in HotDrink. Assuming a constraint c on a set of variables vs, a constraint satisfaction
method of c is a method that enforces c when it is executed. In the specification of the
method, the programmer specifies two subsets input and output of vs; the method will
take input as its argument set and the values that the method returns are used to update
output. We say that the method reads from input and writes to output.

As an example on declaring constraints in HotDrink, consider the constraint rect
from the example above defined on the variables width, height and area: rect is enforced
whenever area is the product of width and height. By knowing the value of two of the
three variables, we can compute a new value for the third variable such that rect becomes
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enforced. For instance, if we know area and height, we can update width to be area
divided by height. Thus, we have three ways, or methods, to enforce rect. We declare
the constraint rect with the three methods using the HotDrink DSL:

var width=3, height=5 , area=15;
constraint rect {

m1 (width, height -> area) => width * height;
m2 (area, width -> height) => area / width;
m3 (area, height -> width) => area / height;

}

In the DSL code, the constraint rect has three constraint satisfaction methods m1, m2
and m3. The code in the parenthesis, after the method names, defines the input and
output variables of the methods; m1, for instance, reads from width and height and writes
to area. The code after the double arrow is the body of the method. The return value of
the method is written to the output variables of the method. If there are more than one
output variable, the method must return an array. HotDrink can enforce the constraint
rect by executing either m1, m2 or m3. Note that HotDrink can enforce rect without
knowing the conceptual relation of rect; it only knows how to enforce the relation.

What methods the programmer uses in the constraint declarations depends on how
the programmer wants data to flow; the programmer could, in the example above, declare
the constraint rect to only contain the method m1, that is, only telling how to compute
the area when width or height change. In that case, regardless of whether the user edits
width or height, area will always be updated.

A component in HotDrink is a composition of variables and constraints, and a com-
ponent typically corresponds to a group of GUI widgets. Each variable and constraint
in HotDrink is defined in a component, and they are owned by it too. A programmer
can create a copy of a component by cloning it. Cloning a component is useful when
the component corresponds to a GUI widget that has multiple occurrences, such as list
items.

In addition to variables and constraints, components can have variable references.
Variable references are nullable references to variables. They can be used in constraint
methods as if they were variables, but whenever a variable reference is null, the constraints
that use the reference are inactive and ignored by the constraint solver. Whenever all
variable references in a constrain refer to a variable, the constraint is active. The pro-
grammer can connect two components by referring a variable reference in one component
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Figure 5.2: Connected HotDrink components.

to a variable in the other. Syntactically, variable references are declared as variables,
except that the name of a variable reference is prefixed with an ampersand sign. Variable
references cannot be initialized with values.

We provide an example to show the use of variable references: assume a sequence of
HotDrink components c1, ..., cn, where each component has a variable v with a number,
and we want to accummulate the sum of all the numbers in the sequence. In other words,
each component ck, where 1 ≤ k ≤ n, should hold the the sum of the v variables of
c1, ..., ck. We do this by adding a variable reference acc, a variable sum and a constraint
accumulate in each of the components:

var v=0, &acc, sum;
constraint accumulate {

m (acc, v -> sum) => acc + v;
}

In the component specification above, we initialise the value of v to 0, and we initialise acc
to null and sum is left undefined. Whenever the variable reference acc refers to a variable,
the constraint accumulate is activated and the variable sum is updated to be acc + v.
We connect each component ck, where 1 < k ≤ n, to the preceding component ck−1 by
referring the variable reference acck to the variable sumk−1, as illustrated in Figure 5.2.
In order to compute sum of the first component in the sequence, we refer prev of c1 to
a fixed variable with the value 0. Whenever v in any component is updated, the sum of
that component and the rest of the components in the sequence are updated as well.

When a HotDrink component has a variable reference that refers to a variable in
another component, we say that there is a connection between these components. Struc-
tural changes in GUIs with connected HotDrink components involve disconnecting and
connecting components. This is inconvenient for the programmer: structural changes are
high-level operations, but the programmer must manage low-level connections to perform
these operations.
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Figure 5.3: The GUI of the event scheduler example.

5.3 Example

We have made a constraint system-powered GUI that supports structural changes. The
components in the GUI have connections to other components, and the structural changes
in the GUI affect these connections: they tear down old and set up new connections be-
tween components. We use HotDrink to specify the constraints of the GUI and to enforce
the constraints, and to specify how components are connected. We use WarmDrink to
specify the structural changes in the GUI.

5.3.1 The scheduler

The GUI program is an event scheduler: the GUI is illustrated in Figure 5.3. The
scheduler has a sequence of days, and each day has a sequence of events. The user can
add new events to the schedule, remove events, and reorder the events. Each event has
a duration which can be edited by the user, and the event has a start time and end
time that are updated when the user edits the durations of the events. Each day in the
scheduler has a start time and end time; the start time can be edited by the user, and
the end time shows the end time of the last event of the day. If the last event of a day
ends after midnight, it is automatically moved to the following day.

The GUI is implemented using the two libraries HotDrink and WarmDrink. The
variables of the GUI and the constraints between the variables are specified with and
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managed by HotDrink; HotDrink solves the constraint system of the GUI whenever a
variable is updated by the user, and the library automatically updates the variables that
need to change in order to solve the constraint system. The structural changes that
the GUI supports, such as inserting events and swapping events, are implemented using
WarmDrink. We specify the relations between the components and the transformation
rules using the WarmDrink DSL. WarmDrink generates JavaScript functions that we call
with component arguments to perform transformations.

5.3.2 Setup constraint system using HotDrink

There are two main types of components in the scheduler: the components day and event.
The variables, variable references, and constraints of the components are specified using
the HotDrink DSL.

Here is the specification of a day component in the HotDrink DSL, excluding irrelevant
parts of the specification:

const day = hd.component `
var start=new Time("00:00"), end, &lastEvent , ...;
constraint lastToEnd {

m1(lastEvent -> end) => lastEvent;
}
...

`;

The code specifies the component day to have the variables start and end, and the
variable reference lastEvent. We want the value of end to be equal to the end time
of the last event, and we do this by using the variable reference lastEvent with the
constraint lastToEnd: we intend lastEvent to refer to the ending time of the last event of
the day. If the sequence of events is empty, lastEvent is null. We specify the constraint
lastToEnd, which is a constraint on lastEvent and end, to be enforced by setting end

equal to lastEvent. Thus, the value of the end time of the last event is forwarded to the
variable end.

Figure 5.4 show the specification of an event component in the HotDrink DSL. The
component event has the variables start, duration and end: we want the value of start
to be the end time of the event that precedes this event or, if this event is the first event
of the day, the start time of the day. Similarly as in the day component, we forward
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Figure 5.4: Specification of an event component in the HotDrink DSL.

const event = hd.component `
var &prev, start, duration=new Time("00:30"), end, title=10;
constraint prevToStart {

m1(prev -> start) => prev;
}
constraint sde {

m1(start, duration -> end) => start.add(duration);
}

`;

the start time to the variable start by using a variable reference prev and the constraint
prevToStart, and we refer prev to the correct variable. The variable duration is the
duration of the event and can be edited by the user. The variable end is the ending time
of the event, it is computed from the variables start and durations; end is the time in
start added to the time in duration. This dependency is handled by the constraint sde.

From the specifications above, we see that there are connections between the compo-
nents in our GUI: the first event of each day is connected to the day through the variable
reference prev of the event component, and rest of the events are connected to the pre-
vious events that day through the same variable reference prev. Furthermore, days are
connected to the last event in that day through the variable reference lastEvent of the
day component. Whenever we add, remove or reorder events we have to update these
connections.

5.3.3 Implementing structural changes with WarmDrink

While there is a one-to-one mapping between the HotDrink components and the Warm-
Drink components in our GUI, the HotDrink component and WarmDrink component are
not the same: a WarmDrink component in our GUI contains both a model and a view;
the WarmDrink component is, conceptually, a pair consisting of a HotDrink component
and a group of HTML DOM nodes. Concretely, a WarmDrink component is a JavaScript
object with three properties: the property type is a string containing the type name, such
as "Event" or "Day". The property model is the HotDrink component, and the property
view is the HTML DOM node of the component.

Here, we define the component Event in the WarmDrink DSL:
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Event <->
'''

«Event».type === "Event"
&& «Event».model.constructor.name === "Component"
&& «Event».view instanceof HTMLDivElement

'''

The component specification above has a procedure which (dynamically) type-checks
event components: a JavaScript value is of type Event if it is a JavaScript object with
the three properties type, model and view, where all three have the correct types, and
the propery type of the object has the value "Event".

The other component specifications in this example are similar to the specification of
Event; the only difference is the content of the property type. Here is the specification
of the component Day.

Day <->
'''

«Day».type === "Day"
&& «Day».model.constructor.name === "Component"
&& «Day».view instanceof HTMLDivElement

'''

Using these component specifications, we define some placeholders that we can use in
the relation specifications and transformation rules:

placeholders
a, b, c, d: Event
day: Day

The relation between a day and its first event is defined here in the WarmDrink DSL:

(firstOf) a day ::=
test

'''referToSameValue(«a».model.vs.prev, «day».model.vs.start)'''
establish

'''
«a».model.vs.prev = «day».model.vs.start;
cs.update();
const eventList = «day».view.querySelector("[data-event]");
eventList.insertBefore(«a».view, eventList.firstElementChild);

'''
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Figure 5.5: The relation specification precedes.

(precedes) a b ::=
test

'''referToSameValue(«b».model.vs.prev, «a».model.vs.end)'''
establish

'''
«b».model.vs.prev = «a».model.vs.end;
cs.update();
«a».view.parentElement

.insertBefore(«b».view, «a».view.nextElementSibling);
'''

The name of the relation is firstOf, and the relation is defined for the placeholders a and
day, which have the component types Event and Day, respectively. The test procedure
of the relation tests whether the relation holds by checking if the value of the variable
reference prev of a is the same as the value of the variable start of day. Because the
property value of a HotDrink variable is a JavaScript object, we are, in fact, checking
that the memory addresses of the two objects are the same. To establish the relation
firstOf, we first point the variable reference prev of a to the variable start of day and
notify the constraint system cs of the change. Then we acquire the DOM node that
contains the event views of day, and insert the view of a as the first child of the DOM
node. If the view of a already existed somewhere else in the DOM, it would automatically
be removed from its previous position as DOM nodes only exists at one position at a time.
We do not specify an unestablish procedure in this relation specification.

Another relation specification in our application is precedes defined in Figure 5.5.
The relation precedes is defined for two placeholders a and b that both have the com-
ponent type Event. The test and establish procedures are defined similarly as in the
previous relation: the test procedure checks whether the relation holds by checking if
the variable reference prev of b refers to the same value as the variable end of a. The
establish procedure points prev of b to end of a, and inserts the view of b so that it
follows the view of a.

In addition to the relation specifications firstOf and precedes, we specify other
relations, such as eventEndOf. We use similar code as with firstOf and precedes to
specify the rest of the relations between our components.

Using the placeholders and relation specifications defined above, we specify the trans-
formation rules for our application. The code block in Figure 5.6 contains a few of the
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Figure 5.6: Transformation rules in the event scheduler.

rules
addEventToEmpty (day a) =

=> a firstOf day, a eventEndOf day

insertEventAtBeginning (day a b) = b firstOf day
=> a firstOf day, a precedes b

addBetweenEvents (a b c) = a precedes c
=> a precedes b, b precedes c

...

swapEvents (a b c d) =
a precedes b, b precedes c, c precedes d
=> a precedes c, c precedes b, b precedes d

...

transformation rules in the application. The first transformation rule of the code block,
addEventToEmpty, specifies how events are added to days that have no events: the trans-
formation is defined for two placeholders day of component type Day and a of component
type Event. Before the transformation, we assume no relations on day and a and, there-
fore, the set of relations Pre of the rule is empty. After the transformation, a should
both be the first and last event of the day, as specified with the relations a firstOf day
and a eventEndOf day.

The second transformation rule, insertEventAtBeginning, specifies how to insert an
event a to the beginning of a day day, assuming that day starts with the event b. Before
the transformation, b should be the first event of day. After the transformation, a should
be the first event of day and a should precede b.

The third transformation rule, addBetweenEvents, specifies how to insert an event b
in between two events a and b. Before the transformation, we assume that a precedes
c. After the transformation, a should precede b and b should precede c. Note that a or
c is possibly connected to a day, but because the transformation does not affect these
connections, the transformation rule has no placeholder for the day of the events.

The last rule of the code block, swapEvents, specifies one of the structural changes in
our application that involves swapping of events. The transformation rule swapEvents
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swaps two adjacent events b and c where a initially precedes b and c initially precedes
d. We also define other swapping transformations for events at the beginning or end of a
day.

For each of the transformation rules we specify, WarmDrink generates a JavaScript
function. The function generated from a rule has the same name as the rule. Therefore,
using JavaScript, we can pass WarmDrink components to these functions to make struc-
tural changes to our GUI: the function will dynamically type-check the components and
check that the pre-connections of the transformation initially hold. The function then
performs the transformation on the components.

5.4 Summary

We have used WarmDrink to implement dynamic structural changes in a constraint
system-powered GUI. The relations between the components, that is, the constraints
between the variables of the components, are described in the relation specifications.
The transformation rules use these relation specifications to change the structure of the
components. Because we manage the lower-level connections between components, such
as variable references, in the relation specifications, we can describe structural changes
in our application by declaring how relations between components should change.
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Chapter 6

Discussion and future work

The goal of this thesis is to create an abstraction layer over structures of components,
those appearing in GUIs in particular, so that programmers can express changes to the
structures without worrying about the internals of the components. We have developed a
framework, WarmDrink, that enables programmers to specify transformations on struc-
tures by only describing how the relations between components in the structure change.
Such specifications are declarative and ignore lower-level properties of components.

While the framework, already in its current state, allows specifying non-trivial struc-
tural changes in GUIs, we see a potential for improvements. We describe below possible
directions for further research.

Modularity WarmDrink DSL programs are not encapsulated, and in a program with
several WarmDrink programs, we have no control over which components are accessed
from within a particular WarmDrink program. More than one WarmDrink program
can describe relations that act on the same components, and therefore it is possible
that the establishing or unestablishing of relations in one of the WarmDrink programs,
unintentionally, change relations that are concerns of other WarmDrink programs.

Nullable placeholders As described in Section 3.2.8, in some cases a large number
of rules is needed to fully specify a structural change; which rule the programmer calls
depends on where in the structure the change should be made. As an example from the
event scheduling program in Section 5.3, the structural change of swapping two events
requires four transformation rules: the two events that are to be swapped may be the
only events that day, they may be the first events that day and have succeeding events,
they may be the last events that day and have preceding events, or they may have both
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preceding and succeeding events. Each rule defines swapping in one of the four cases,
and the only difference between the rules is whether some of the components that the
rule refers to are present or not. For more complicated structures than sequences and
lists, the number of rules needed to fully define a structural change can be considerably
higher, because of all the cases the rules must cover. A possible solution is to explore the
concept of nullable placeholders and introduce the concept to the framework. We already
used this concept in Section 3.2.8, but it is not yet fully implemented in WarmDrink. A
nullable placeholder in a rule is a placeholder that may or may not hold a component
when the rule is applied; if the placeholder is empty in a rule application, the relations
that involve the placeholder are ignored. In our example we can denote a placeholder
as nullable by attaching a question mark to it. Using nullable placeholders, a swapping
transformation can be defined using a single rule:

swap (a? b c d?) = a precedes b, b precedes c, c precedes d
=> a precedes c, c precedes b, b precedes d

In the case that the events b and c are the only events that day, a and c are empty.
Therefore, WarmDrink will only apply the transformation by unestablishing b precedes
c and establishing c precedes b. However, this does not take into account that events
have connections to days, and more investigation is therefore needed to correctly express
the change using nullable placeholders.

Generic rules A way to lift the abstraction level of the framework further is to
introduce generic rules, i.e., rules parameterized on component types and relations. If
transformation rules differ only by renaming the placeholders and the relations in the
rule, defining one generic rule suffices. The rule could then be instantiated with different
component types and relations. There are several ways generic rules can be added to a
WarmDrink implementation that targets JavaScript. One way is to transpile each generic
rule to a JavaScript function that, when called at runtime, decides which instantiation of
the rule to use. Another approach is to generate one function for each of the instantiations
of the generic rule, and then have the programmer choose the appropriate instantiation
at development time. The latter approach would be a good choice in a WarmDrink
implementation targeting a strongly typed language with overloading; we could generate
a function for each rule instantiation and let the type system choose the correct function.

Algebraic properties Another feature we want to explore is annotating relations
with algebraic properties, such as symmetry, transitivity, or reflexivity. These annotations
would further allow the framework to do static analysis on transformation rules and
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report to the programmers if an algebraic property of a relation is invalidated. We give a
simple example of such an invalidation: a programmer annotates a relation specification
precedes as being anti-symmetric. In the rules section, the programmer wrongly defines
a transformation rule where the two relations a precedes b and b precedes a are to
be established. Because precedes is marked as being anti-symmetric, the framework can
report on the rule and inform the programmer about the error.

Data Dependency Algebras Another direction for further research is to explore
whether Data Dependency Algebras (DDA) [5] could be applied to structural changes
in GUIs. DDAs are originally designed to decouple computations from hardware, and
they are useful in the domain of parallel programming: by expressing a parallel program
using DDAs, its computations can run on any (distributed) hardware where there is an
embedding from the DDA into the hardware. We are curious whether DDAs could be
used to map the structure of a GUI’s model to the widgets in its view.
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