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Chapter 1

Introduction and perspectives

This introduction provides background material for the articles [3], [1], and
[2] which respectively constitute Chapters 2 to 4 in this thesis. Section 1.1
contains notation and terminology used in the introduction. In Section 1.2
we present background material for the article [3]. This article contains new
characterizations of thick and weak*-thick sets. Subsection 1.2.2 contains a
generalization of the notion of thick sets. New results and open problems are
also presented here. In Section 1.3 background material for the articles [1] and [2]
is presented. These articles contain new results about approximation properties
and u-ideals. In subsection 1.3.2 we discuss some open problems related to the
notion of u-ideals.

1.1 Notation and terminology

The notation and terminology used throughout this introduction is standard
(see e.g. [57]). We will write N, R, and C for the sets of natural numbers, real
numbers, and complex numbers, respectively. K will denote a set that can be
either R or C. The letters X, Y, and Z will denote Banach spaces unless oth-
erwise stated. The letters E, F, and G will typically denote finite dimensional
Banach spaces. The closed unit ball of a Banach space X is denoted by Bx and
the unit sphere of X is denoted by Sx. We will write X™* for the dual space
of X. The sets of extreme points, exposed points, and strongly exposed points
of Bx are respectively denoted by ext By, exp By, and str-exp Bx. Similarly
w"-exp Bx- and w"-str-exp Bx- denote the sets of weak*-exposed and weak*-
strongly exposed points of Bxx.

Let A be a subset, of a Banach space X. Then its norm closure, convex hull,
absolutely convex hull, and linear span will be denoted by A4, convA, absconvA,
and spanA, respectively. We will write A" for the weak closure of A. Similarly,

if A is a subset of a dual space X, A" denotes the weak*-closure of A.

Let X and Y be Banach spaces. We will write £(Y, X) for the Banach
space of bounded linear operators from Y to X, and F(Y, X), (Y, X), and
W(Y, X) for its subspaces of finite rank operators, compact operators, and
weakly compact operators, respectively. If Z is a subspace of X, then we will
write iz : Z — X for the canonical embedding of Z into X. Ix will denote the
identity operator on X. If no confusion is possible, we will sometimes also write



I for the identity operator on a Banach space. The natural embedding of X
into its bidual will be denoted by kx : X — X**. kerT will denote the kernel
of a bounded linear operator 7.

1.2 Background on thick and weak*-thick sets in
Banach spaces

The Banach-Steinhaus Uniform Boundedness Principle (see e.g. [69, p. 43]) is
one of the cornerstones in the theory of Banach spaces. Special cases of the
theorem dates back to those of Lebesgue [43] in 1909 for the function spaces
Ls[a,b], Lia,b], Loo|a,b], Helly [36] in 1912 for the function space C|a,b], and
Toeplitz [77] and Schur [71] in 1913 and 1920 for the sequence space c¢. The
abstract version of the Banach-Steinhaus Uniform Boundedness Principle was
published independently by Hahn [34], Banach [6], and Hildebrant [38] in the
years 1922 — 1923. Banach and Steinhaus [8] proved a more general version of
the principle for second category sets in 1927. The proof of this theorem was
modern because it used Baire’s Category Theorem [5] (cf. [58, p. 37]) instead
of the gliding hump technique (cf. [17, pp. 138-142]) used before. This general
version of the Banach-Steinhaus Uniform Boundedness Principle essentially tells
us that whenever (T,) is a family of bounded linear operators on some Banach
space X, which is pointwise bounded on a set A of the second category in X,
then the family is bounded. However, in some cases, boundedness can be ob-
tained from pointwise boundedness on a “smaller set” than the second category.
Indeed, the Nikodym-Grothendieck Boundedness Theorem (see e.g. [16, p. 14]
or [15, p. 80]) says that if a family (T,,) of bounded linear operators is pointwise
bounded on the set of characteristic functions in the unit sphere of the space
B(X) (see text above Theorem 1.2.5), then this family is bounded. This set of
characteristic functions is certainly not of the second category, it is even nowhere
dense. Thus it is natural to ask: How can we sharpen the Banach-Steinhaus
Uniform Boundedness Principle in the sense of weakening the restrictions on
the set A on which to test pointwise boundedness?

Building on a result of Kadets and Fonf [26, Proposition 1], Nygaard pro-
posed a property, that he called thickness, which is weaker than the second
category, so that the conclusion of the Banach-Steinhaus Uniform Boundedness
Principle still holds [59]. Further, Nygaard showed that thickness is the ultimate
property in the sense that if a subset B of a Banach space X is not thick, then
it is always possible to find an unbounded family of bounded linear operators on
X which is pointwise bounded on B. Nygaard noticed also that the thickness
property is equivalent to another fundamental property in the theory of linear
operators. The property is the one that guarantees that if a bounded linear
operator T : Y — X is onto a subset B of X, then it is onto X.

The paper [3], which is presented in Chapter 2 in this thesis, contains new
characterizations of the thickness property, and a weaker dual companion called
the weak*-thickness property, in terms of integrability of vector-valued func-
tions.



1.2.1 Basic results on thick and weak*-thick sets

Suppose X and Y are topological vector spaces. The following two problems
are of fundamental importance in the theory of linear operators:

Problem 1.2.1. Assume A is a subset of Y. Find a property on A such that
every continuous linear operator T : X — Y is onto Y if and only if the range
of the operator contains A.

Problem 1.2.2. Assume A is a subset of Y and that A is a subset of the space
of all continuous linear operators from Y into X. Find a property on A such
that A is bounded if and only if the set {Ty : T € A} is bounded for each y € A
(A is pointwise bounded on'Y).

If Y is of finite dimension, the answer to both problems is of course that A
has to contain as many independent vectors as the dimension of Y. When Y is
of infinite dimension there is, on the contrary, no simple answer to any of the
problems.

However, from a classical theorem that appeared already in Théorie des
Opérations Linéaires [7], the following result is known.

Theorem 1.2.3 (Banach, 1932). If T is a bounded linear operator from a
Banach space into a normed linear space, then the range of T is either of first
category or equal to the range space itself.

Another classical theorem, the famous category version of the Banach-Steinhaus
Uniform Boundedness Principle [8], which appeared in a joint paper of Banach
and Steinhaus as early as 1927, reads:

Theorem 1.2.4 (Banach and Steinhaus, 1927). Let (T),) be a sequence of
bounded linear operators from a Banach space Y into a Banach space X. Sup-
pose sup,, | Tny|| < oo for every y € A where A is a set of the second category
in Y. Then sup,, sup,cp, [Tyl < oc.

Thus Theorem 1.2.3 and Theorem 1.2.4 tell us that the property second
category is sufficiently strong to obtain implication in one direction in both
Problems 1.2.1 and 1.2.2 when X and Y are Banach spaces. However, there
are examples which show that this property is indeed too strong for the reverse
implications to hold. In the case of Problem 1.2.1, the spectacular theorem of
Seever shows this [72] (see also [16, p. 17]). (B(X) denotes here the Banach
space of uniform limits of simple functions modeled on the o-algebra 3.)

Theorem 1.2.5 (Seever, 1968). Let X be a o-algebra of subsets of a set  and
let X be a Banach space. Let T : X — B(X) be a bounded linear operator whose
range includes the set {xg : E € ¥}. Then TX = B(X).

In particular Seever’s theorem says that if an operator is onto the set of 0-1
sequences in £, then it is onto f.

In the case of Problem 1.2.2, the Nikodym-Grothendieck Boundedness Theo-
rem (see below) shows that second category is a too strong property. Indeed, this
is easily seen from Corollary 1.2.7 below which is an immediate consequence of
the Nikodym-Grothendieck Boundedness Theorem. (Use the fact that for each
bounded linear operator T' : B(X) — X there corresponds a vector measure
F:%¥ — X defined by F(E) =T(xg) and then apply Theorem 1.2.6.)

3



Theorem 1.2.6 (Nikodym and Grothendieck). Let ¥ be a o-algebra of subsets
of a set Q, let X be a Banach space, and let {F; : 7 € T} be a family of X -valued
bounded vector measures defined on X. If sup, || F-(E)|| < oo for each E € %,
then the family {F; : 7 € T} is uniformly bounded, i.e. sup, . ||F-||(Q) < co.

Corollary 1.2.7. Let 3 be a o-algebra of subsets of a set Q). Suppose {T, : @ €
A} is a collection of bounded linear operators from B(X) to a Banach space X
such that supyc 4 | TaxEl < 00 for each E € . Then sup,, || Ta|| < oo.

It is clear from the theorems above, that if X and Y are Banach spaces and
if A is a subset of Y, then the property on A that solves both Problem 1.2.1
and Problem 1.2.2, is strictly between A being span dense in Y and A being of
the second category in Y. But still, what characterizes such a property?

In [26], Kadets and Fonf encovered a property which in fact solves Problem
1.2.1 in the case Y is a Banach space and A is a bounded subset of Y.

Theorem 1.2.8 (Kadets and Fonf, 1983). Let Y be a Banach space and suppose
A C Sy. The following are equivalent statements:

(a) For any Banach space X and any bounded linear operator T : X — Y
such that T(X) D A, one has T(X) =Y.

(b) For every representation of A as the union of an increasing sequence of
sets, A =UX,A;, (A; 1), there is an index j such that

inf sup |y*(y)| > 0.
Y ESy* yeA,

Theorem 1.2.8 suggests the following definition (cf. [26], [25], and [59]).

Definition 1.2.9. Let Y be a normed linear space. A subset A C Y is said to
have the surjectivity property if for every Banach space X, every T € L(X,Y),
such that T'(X) D A, we have that 7" is onto Y. If the same conclusion holds for
a subset A C £(X,Y), we say that A has the A-restricted surjectivity property.
For the special case when A C Y* and A is the space of adjoints in L(X*,Y™*),
we say that A has the weak™-surjectivity property.

Note that Theorem 1.2.3 of Banach, says that every second category set in
a Banach space has the surjectivity property.

Before we go into a further discussion of Problems 1.2.1 and 1.2.2, we need
to agree on some more definitions (cf. [26], [25], and [59]).

Definition 1.2.10. A subset A of a Banach space Y (resp. a dual Banach space
Y*) is said to be norming (resp. weak*-norming) if infy-cs . sup,c 4 [y*(y)| > 0
(resp. infyes, supy.c 4 [y*(y)| > 0). The subset A is called thin (resp. weak”-
thin) if it can be written as a countable increasing union of non-norming (resp.
non-weak*-norming) sets. If A is not thin (resp. weak*-thin) it is called thick
(resp. weak*-thick).

The following geometrical lemmas [59, Lemmas 2.2 and 2.3] are easy conse-
quences of the Hahn-Banach separation Theorem.

Lemma 1.2.11. Let Y be a real normed space and A a subset of Y. The
following statements are equivalent.



(a) A is norming.
(b) conv(+A) is norming.
(c) There exists 6 > 0 such that conv(+A) D IBy .

Lemma 1.2.12. Let Y be a real normed space and A a subset of Y*. The
following statements are equivalent.

(a) A is weak*-norming.
(b) conv®” (+A) is weak*-norming.
(c) There exists 6 > 0 such that conv® (£A) D 6By-.

We remark that if the space Y is complex, Lemma 1.2.11 and Lemma 1.2.12
hold if we replace ¢o(+£A) with €6(U|,=17A) where 7 is a complex number.

Of course a norming set in a dual space is weak*-norming. However, it does
not need to be weak*-thick. The set of extreme points of the unit ball of ¢ is
such an example since it is countable. (Indeed, it is clear that every countable
set is thin, or weak*-thin if it is in a dual space). There are also weak*-thick
sets which are not norming. The unit ball of every non-reflexive Banach space,
considered as a subset of the bidual, is such an example. Next we give an
example of a set which is both norming and weak*-thick.

Example 1.2.13. Let H*°(D) denote the space of bounded analytic functions
on the open unit disk. The Blaschke products in H>(D) is a weak*-thick and
norming set [59, Corollary 3.7]. See [70, p. 310] for a definition of Blaschke
products. It is unknown whether the Blaschke products forms a thick set.

It is immediate from the definitions that every thick set in a dual space is
weak*-thick. From the definitions it is also straightforward to verify that sets of
the second category are thick [59, Lemma 3.4]. General examples of thick and
weak*-thick sets are given by the results [27, Theorem 4.3], [60, Corollary 2.2],
[24, Theorem 1], and [25, Theorem 3*].

Theorem 1.2.14 (Fonf and Lindenstrauss, 2003). Let X be a separable non-
reflexive Banach space. Then the set of functionals in X* which do not attain
their maximum on Bx is a thick set.

Theorem 1.2.15 (Nygaard, 2006). Let X be a Banach space. If z** € X**\ X,
then ker x** is a weak*-thick subset of X*.

Recall that a subset B of the unit sphere Sx- of the dual of a Banach space
X is called a James boundary of X, if for every z € X, there exists * € B such
that z*(z) = ||z||.

Theorem 1.2.16 (Fonf, 1989). Let X be a Banach space. If X does not contain
a copy of cg, then every James boundary of X is weak*-thick.

Theorem 1.2.17 (Fonf, 1996). Let X be a separable Banach space. If X does
not contain a copy of co, then w”-exp Bx« is weak*-thick.



Definition 1.2.18. Let Y be a normed linear space. A subset A C Y is said to
have the boundedness property if for every normed linear space X, every family
(Tn) C L(Y,X), which is pointwise bounded on A, is bounded. If the same
conclusion holds for a subset A C L(Y, X), we say that A has the A-restricted
boundedness property. For the special case when A C Y* and A is the space of

adjoints in L(Y™*, X*), we say that A has the weak*-boundedness property.

From the Banach-Steinhaus Uniform Boundedness Principle [8] (see also
[69, p. 43]) we have that sets of the second category in Banach spaces have the
boundedness property. Note also that Theorem 1.2.5 of Seever and Corollary
1.2.7 of Nikodym and Grothendieck say that the characteristic functions in the
unit sphere of B(X) both have the surjectivity property and the boundedness
property.

Nygaard proved in [59] the following general result.

Theorem 1.2.19 (Nygaard, 2002). Suppose A is a subset of a Banach space
Y. The following statements are equivalent.

(a) A has the surjectivity property.

(b) For every Banach space X, every injection T : X — Y which is onto A is
an isomorphism.

(c) A has the boundedness property.

(d) Every sequence (yX) C Y™ which is pointwise bounded on A is a bounded
sequence in Y.

(e) A is thick.

Note that from Theorem 1.2.19 it follows that Seever’s theorem and the
Nikodym-Grothendieck Boundedness Theorem are the same.

In [59] another special case of Problem 1.2.1 was considered, that is the case
when A is a subset of the dual of a Banach space X and the operators are
adjoints into X*.

Theorem 1.2.20 (Nygaard, 2002). Suppose A is a subset of the dual of a
Banach space Y. The following statements are equivalent.

(a) A has the weak*-surjectivity property.

(b) For every Banach space X, every dual injection T : X* — Y™ which is
onto A is an isomorphism.

(c) A has the weak*-boundedness property.

(d) Every sequence (yn) C Y which is pointwise bounded on A is a bounded
sequence in Y.

(e) A is weak*-thick.

The notion of weak*-thick sets also turns up in the theory of vector measures.
Let us recall the basic definitions from this theory (cf. e.g. [16]).

Let X be a Banach space and let % be an algebra of subsets of a set Q.
A set function F : % — X is called a vector measure if whenever F; and Ey



are disjoint members of .#, then F(Ey U Ey) = F(E1) + F(E3). If, in addition
F(U2 Ey) = > 02 F(E,), with convergence in the norm-topology of X, for
all sequences (E,,) of pairwise disjoint members of # such that U E, € %,
then F' is said to be a countably additive vector measure. Moreover, a vector
measure F': F# — X is said to be bounded if supgc 4 || F(E)| < oo.

If 3 is a o-algebra of subsets of a set {2, and g a measure on X, then a
function f : Q — X is called weakly p-measurable if for every x* € X* the
scalar valued function x* f is p-measurable.

The following theorem was proved by Dunford already in 1937 (cf. [16,

p. 52]).

Theorem 1.2.21 (Dunford, 1937). Let X be a Banach space, ¥ a o-algebra
of subsets of a set Q, and i a measure. If f:Q — X is a function such that
x*f € Li(u) for every x* € X*, then for each E € ¥ there exists 3 € X**
satisfying

oE ) = [ () (1.2.1)

for all x* € X*.
Based on this result, we can define the Dunford integral.

Definition 1.2.22. A weakly y-measurable function f : Q — X is called Dun-
ford integrable if x* f € L1(u) for every x* € X*. The Dunford integral of f over
E € ¥ is defined by the element z7 of X** in (1.2.1). We denote this integral
by (D) — [, fdu.

Moreover, if (D) — fQ fdp € X, then f is called Pettis integrable.

In [18] and [14] Dimitrov and Diestel independently proved the following
result.

Theorem 1.2.23 (Dimitrov, 1971 and Diestel, 1973). Let X be a separable
Banach space which does not contain isomorphic copies of ¢y and let (2, %, 1)
be a finite measure space. Then every Dunford integrable function f:Q — X
is Pettis integrable.

Using this theorem of Dimitrov and Diestel, in combination with the fact
that when a Banach space X is ¢y free, the set ext By~ is weak*-thick [24,
Theorem 1] (cf. Theorem 1.2.16), Fonf obtained the following theorem.

Theorem 1.2.24 (Fonf, 1989). Let X be a separable Banach space which does
not contain isomorphic copies of co. Then, whenever (Q, %, 1) is a finite measure
space and a function f : Q — X is such that x*f € Ly(n) for every z* €
ext Bx«, we have ©*f € L1(u) for every x* € X* and f is Pettis integrable.

The main objective of the article [3] (cf. Chapter 2) is to generalize the
above result of Fonf. We do this by giving the following characterization of
weak*-thick sets (cf. Chapter 2, Main theorem).

Theorem 1.2.25 (Abrahamsen, Nygaard, and Poldvere, 2006). Let X be a
Banach space. A subset A C X* is weak*-thick if and only if whenever (2, %, 1)
is a measure space and f : Q — X is an essentially separable valued function
such that z*f € Li(u) for all x* € A, then x*f € Li(n) for all x* € X*.

7



Let (z,,) be a sequence in a Banach space X. Observe that, for any 2* € X*,
we have Y | |x*(x,)| = [y |z fldc, where ¢ is the counting measure on the
o-algebra P(N) of all subsets of N and f : N — X is the function defined by
f = 301 X{n}®n. Now, using Theorem 1.2.25, (b) = (a) in the following
characterization of weak*-thin sets, is immediate (cf. Corollary 2.2.4). The
reverse implication is proved by using a “gliding hump” argument.

Corollary 1.2.26 (Abrahamsen, Nygaard, and Poldvere, 2006). Let X be a
Banach space and A C X*. The following statements are equivalent.

(a) A is weak*-thin.

(b) There ezists a sequence (z,) C X and z* € X*\ A such that Y, |2*(zy,)]

diverges, but >, |z*(zn)| < oo for all z* € A.
In [19] Elton proved the theorem stated below.

Theorem 1.2.27 (Elton, 1981). Let X be a Banach space. The following
statements are equivalent.

(a) X contains a copy of cq.

(b) There exists a divergent series Y - xy in X such that > o7 | |a*(x,)| <
oo for all x* € ext Bx~.

Fonf proved in [25, Theorem 3*] that a separable Banach space X contains
co whenever the set w*—exp Bx+ is weak*-thin. He then combined this result
with the well known Bessaga-Petczynski Theorem [10] and deduced that the set
ext Bx- can be replaced by the set w*-exp Bx~ in the above theorem of Elton
[25, Theorem 6].

Using the Nikodym-Grothendieck Boundedness Theorem one can prove the
following important result of Dieudonné and Grothendieck (cf. [16, p. 16]).

Theorem 1.2.28 (Dieudonné and Grothendieck). Let X be a Banach space
and let F' be an X -valued set function defined on a o-algebra . Suppose that
x*F is bounded and finitely additive for each x* belonging to some total subset
A of X*. Then F is a bounded vector measure.

Note that the additivity of F' is immediate from the totality of I".

Theorem 1.2.28 may fail for algebras which are not o-algebras. A stronger
property is needed in this case. Indeed, if “total” is replaced by “weak*-thick”
in this Theorem 1.2.28, then we get a test for boundedness of vector measures
defined merely on algebras. In fact, we also get a new characterization of weak*-
thick sets (cf. Propositions 2.3.2 and 2.3.3)

Theorem 1.2.29 (Abrahamsen, Nygaard, and Poldvere, 2006). Let X be a
Banach space and A a subset of X*. The following statements are equivalent.

(a) For every algebra F and every set function F : F — X, the function F
is a bounded vector measure whenever the function x*F is bounded and
finitely additive for each z* € A.

(b) A is weak*-thick.



1.2.2 Further results and a generalized thickness notion

Let | - | denote the distance function on K. Recall that a function f from
a topological linear space X into the real numbers is said to be lower semi-
countinuous if f(z) < liminf, f(z,) whenever (z,) is a net in X converging
to some element x € X. A function f is called convez if f(tz + (1 — t)y) <
tf(z)+ (1 —t)f(y) for every z,y € X and 0 < ¢t < 1.

It is not difficult to see that Theorem 1.2.19 can be continued by

(f) Whenever a sequence of functions {f, : Y — K}, with the properties that

for every natural number n, |- |o f, is lower semi-continuous and convez,
is pointwise bounded on A, then this sequence is uniformly bounded on
By.

Evidently every linear functional in a dual Banach space is lower semi-
continuous and convex when left composed with |-|, so (f) implies (d) in Theorem
1.2.19 above. The fact that (e) in Theorem 1.2.19 implies (f), follows from the
same argument as in (e) implies (d) in Theorem 1.2.19. Indeed, assume that A
is thick and put A, = {y € Y N A : sup, |fx(y)| < n}. By the pointwise bound-
edness, (A,) form an increasing, countable covering of A. Since A is thick, there
exists a natural number m such that A, is norming. By Lemma 1.2.11, there
exists a real number § > 0 such that absconv(A,,) D dBy. Finally, observe that
we only need |- | o f,, to be convex and lower semi-continuous, to conclude that
supy supy s, |fi(y)] < 2.

A similar argument as in the preceding paragraph proves that Theorem
1.2.20 can be continued by

*

(f) Whenever a sequence of functions {f, : Y* — K}, with the properties
that for every natural number n, |- | o f, is weak™-lower semi-continuous
and conver, is pointwise bounded on A, then this sequence is uniformly
bounded on By .

As already mentioned, second category sets in a Banach space are thick. The
converse is not true. A standard counterexample is the set of 0-1 sequences in £,
which is thick by Nikodym-Grothendieck Boundedness Theorem and Theorem
1.2.19. The set is nowhere dense, so it is trivially of the first category. Based on
this on can ask: Which Banach spaces contain thick sets of the first category?
The interesting and surprising answer is that indeed every Banach space does.
This follows from the fact that every Banach space contains a Hamelbasis of
the first category [9, Proposition 3.2] and Theorem 1.2.19. In other words we
can conclude from this that every Banach space contains a set on which (the
category version of) the Banach-Steinhaus Uniform Boundedness Principle does
not apply, but Theorem 1.2.19 does.

Let X be a Banach space and assume F is a subset of X*. Suppose we want
to determine whether F is bounded or not. From Theorem 1.2.19, we know
that F is bounded if and only if it is pointwise bounded on a thick set A in X.
But suppose we know in addition that F belongs to some (weak*-dense linear)
subset I" of X*. Can we then weaken the restrictions on A and still have an
equivalence as in Theorem 1.2.197 We can state the following problem.

Problem 1.2.30. Let A be a subset of a Banach space X and let F C I where
T is a weak*-dense linear subset of X*. Which condition (Pr) must A fulfill so

9



that boundedness of F can be deduced from testing pointwise boundedness of F
on A?

Note that for A C X in case I' = X C X**, (Pr) is exactly the weak*-
boundedness property for A.

Let A be a subset of a Banach space X. The following list of examples are
special cases of the problem above:

(a) If'Y and Z are Banach spaces, X = L(Y,Z), and ' =Y ® Z*.

(b) If T is the (norm closed) linear span of the extreme points of By« (or of
any James boundary).

(c) If X has a Schauder basis and T is the (norm closed) linear span of the
biorthogonal functionals in X* associated with the basis.

(d) If Y is a Banach space and T': X — Y is a bounded linear injection and
L=T*Y"*).

(e) If X is a dual Y* and T is the Baire functionals, Ba(Y’), in Y**.

Motivated by Problem 1.2.30 and the definitions of norming and weak*-
norming and thin and weak*-thin sets, we make the following definition.

Definition 1.2.31. Let X be a Banach space and I' a weak*-dense linear sub-
set of X*. A subset A of X is called I'-norming if inf{sup,c 4 [2*(z)| : 2* €
Sx+ NI} > 0. If the set A is not I-norming, then it is called non-I'-norming.
Moreover, A is said to be I'-thin if it can be written as a countable increasing
union of non-I'-norming sets. If it is not I'-thin, then it is called I'-thick.

Note that a bounded set is ['-norming if and only if it is T-norming (norm
closure in X*). Thus a set I" and its norm closure share the same thick sets.
However, is the converse true, i.e. is it so that two sets I'y,I's C X* which share
the same thick sets have the same norm closures? Indeed, the following result
answers this question in the affirmative, and hence provides a good reason to
study the special cases of Problem 1.2.30 listed above.

Theorem 1.2.32. Let X be a Banach space and let I'y C I'y be weak™-dense
linear subspaces of X*. Then I'y and I's share the same thick sets if and only if
T'1 and 'y have the same norm-closure.

We sketch a proof of this result.

Proof. As noted in the paragraph above I'; and I's share the same thick sets
if they have the same norm closures. For the converse one can assume that I'y
is not norm-dense in I's, then choose z* € T’y \ T; and put A = kerz*. It is
evident that A now is I's-thin and not to hard to show using [16, Lemma 2| that
Ais T'y-norming. This latter fact in combination with Banach’s lemma (see e.g.
[33, Lemma 82]), is then used to prove that A is I';-thick. O

From the proof of Theorem 1.2.32, the next corollary follows.

Corollary 1.2.33. Let X be a Banach space. Suppose I is a weak*-dense linear
subspace of X* and I' # X*. If x* € X*\ T, then kerz* is a thin, but I'-thick,

set.

Note that this result generalizes [60, Corollary 2.2] of Nygaard presented in
Theorem 1.2.15.
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1.3 Background on approximation properties and
u-ideals

A fundamental question in functional analysis is whether compact operators,
from a Banach space Y into a Banach space X, can be approximated in norm
by sequences of finite rank operators. (This has been called the approximation
problem for obvious reasons.) A Banach space X for which this is true for every
Banach space Y, is said to have the approximation property. The first formal
treatment of the approximation property was done by Grothendieck [32] in his
doctoral thesis from 1955. In his thesis he produced equivalent formulations of
the approximation property. It is, however, clear from [67] that Banach and his
collaborators, knew many of these equivalences.

In [32], Grothendieck defined stronger forms of the approximation property,
e.g. the bounded approximation property and the metric approximation prop-
erty. A powerful and important result concerning the latter of these two prop-
erties, says that for separable dual spaces, the approximation property implies
the metric approximation property. This result has never been generalized to
non-separable Banach spaces. However, in some unpublished lecture notes (see
[16, p. 256]), Rosenthal has shown that for a Banach space with the Radon-
Nikodym property which is 1-complemented in its bidual, the approximation
property implies the metric approximation property. Thus for a dual Banach
space with the Radon-Nikodym property, the approximation property implies
the metric approximation property. The result of Rosenthal is actually also
implicit in Grothendieck’s thesis [32].

Lima and Oja [55] have recently made a new approach to answer the prob-
lem of whether Grothendieck’s result holds for non-separable spaces. They did
so by introducing the weak metric approximation property. The weak metric
approximation property is weaker than the metric approximation property and
strictly stronger than the approximation property [55, Proposition 2.2]. For
dual spaces, however, Lima and Qja has proved that the approximation prop-
erty implies the weak metric approximation property [55, Corollary 3.4]. So
the problem of determining whether Grothendieck’s result generalizes to non-
separable spaces still remains, but now we are left with the question of whether
the weak metric approximation property implies the metric approximation prop-
erty for non-separable dual spaces.

Most recently [44] the weak metric approximation property has been char-
acterized in terms of ideals of finite rank operators and Hahn-Banach extension
operators. The article [1], which constitutes Chapter 3 in this thesis, contains
generalized forms of characterizations of the weak metric approximation prop-
erty obtained in [55] and [44].

The study of u-ideals and the unconditional metric approximation property,
emerged from the article [11] by Casazza and Kalton. Casazza and Kalton
proved that for a separable reflexive Banach space X with the approximation
property, (X, X) is a wu-ideal in £(X,X) if and only if X has the uncon-
ditional metric approximation property. Lima [50] generalized this result by
showing that it holds when the unconditional metric approximation property is
replaced by the unconditional metric compact approximation property and when
only assuming X to have the Radon-Nikodym property. However, removing the
Radon-Nikodym property from the assumption, Lima and Lima [45] showed
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that the above result is equivalent to K(Y, X) being a wu-ideal in £(Y, X) for
every Banach space Y which in turn is equivalent to IC(X,X) being a u-ideal
in E(X,X) for every equivalent renorming X of X. A similar result for dual
spaces having the unconditional metric compact approximation property with
conjugate operators, was also obtained in [45].

In the article [2], which constitutes Chapter 4 in this thesis, we look at the
finite rank operators and obtain characterizations for when they are u-ideals in
the space of weakly compact operators.

1.3.1 Basic results on approximation properties and u-
ideals

A sequence (z,) in a Banach space X is called a Schauder basis for X if for
each x € X there is a unique sequence («;,) of scalars such that

n
r = lim E QRTE.
n
k=1

On page 111 in the famous book Théorie des Opération Linéaires [7] from
1932, the following problem appears: “Does every separable Banach space have
a Schauder basis?” This problem, known as the basis problem, remained open
for a long time and was solved in the negative by Enflo [20] in 1973. En-
flo constructed a separable, reflexive Banach space without the approximation
property, and by doing so he also solved the approximation problem.

Definition 1.3.1 (Grothendieck, 1955). A Banach space X has the approzima-
tion property (AP) if for every compact set K in X and every € > 0, there is an
operator T : X — X of finite rank such that |Tx — z|| < ¢, for every x € K. If
these approximating finite rank operators can be chosen with ||T|| < A, for some
A > 1, then X is said to have the A-bounded approximation property (A-BAP).
A Banach space is said to have the bounded approxzimation property (BAP) if it
has A-BAP for some A. We say that X has the metric approzimation property
if it has 1-BAP.

A Banach space with a Schauder basis has the BAP and hence the AP. So
Enflo’s space is, in particular, an example of a separable Banach space without
a Schauder basis. Right after Enflo’s construction was published, Davie [12]
simplified it and showed that ¢y and ¢,, for p > 2, have subspaces without the
AP. Later the same decade, Szankowski [74] proved that also £, for 1 < p < 2,
have subspaces without the AP. Szankowski [75] has also proved that the space
of bounded linear operators on an infinite dimensional Hilbert space fails the
AP.

In 1973, using Enflo’s example, Figiel and Johnson [23] showed that there is
a Banach space with the AP which fails the BAP. In 1987 Szarek [76] showed
that there exists a reflexive Banach space without, a basis which has the BAP.
It has also been proved that there are Banach spaces with the BAP which fail
the MAP (cf. e.g. [57, p. 42]).

In many cases, however, the AP implies the MAP. A powerful and surprising
result of Grothendieck [32] (see e.g. [57, p. 39] for a nice proof of this) reads.
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Theorem 1.3.2 (Grothendieck, 1955). Let X be a separable Banach space
which is isometric to a dual space and which has the AP. Then X has the
MAP.

It is, however, still an open problem whether this result holds for non-
separable spaces.

Problem 1.3.3. Does the AP of the dual space X* of a Banach space X imply
the MAP?

The obvious reason why it is still unknown whether Theorem 1.3.2 holds
for non-separable spaces, is that the proof does not generalize to such spaces.
The fact that in a separable dual Banach space X*, the sets Bx+ and Bx«~ are
compact metric in their corresponding weak* topologies, are crucial parts of the
proof.

In 1974 Davis, Figiel, Johnson, and Petczynski [13, Corollary 1] proved that
every weakly compact operator factors through a reflexive Banach space. Lima,
Nygaard, and Oja later improved this result in [51, Theorems 2.3 and 2.4] by
showing that the factorization can by done isometrically and even uniformly with
respect to finite dimensional subspaces. Their proof is based on the Davis-Figiel-
Johnson-Pelczyniski construction. However, in the Lima-Nygaard-Oja version of
the Davis-Figiel-Johnson-Pelczytiski construction, the number 2 is replaced by
Va for a > 1. This seemingly minor change, turns out to be important.

Let a > 1 and let K be a closed absolutely convex subset of the unit ball
By of a Banach space X. For each positive integer n, put B, = a? K +a~ % Bx
and denote by || - ||, the equivalent norm on X defined by the gauge on B,,. Let
lzlx = (Zoii llln)?, Xk = {z € X : ||z x < o0}, Cx = {z € X : ||z x <
1}, and let Jx denote the identity embedding of Xk into X. Finally, define
f:(1,00) = R by

o) = (ni_oj1 )

It can be shown that there is a unique a € (1, 00) such that f(a) = 1. For this
fixed number @, Lima, Nygaard, and Oja proved in Lemmas 1.1 and 2.1 in [51],
the following isometric version of Lemma 1 in [13].

Lemma 1.3.4 (Lima, Nygaard, and Oja, 2000). Let K be a closed absolutely
convex subset of the unit ball Bx of a Banach space X. If a € (1,00) is such
that f(a) =1, then

(a) K cCkg C Bx

(b) (Xk,| - k) is a Banach space with closed unit ball Cx, and Jx €
L( Xk, X) with ||Jk]|| < 1.

Ji is injective.

(c
(

d) Xg is reflexive if and only if K is weakly compact.

e) The X-norm and the X -norm topologies coincide on K.

)
)
)
)

(
(t

The weak topologies defined by X* and X coincide on Ck.
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(g) Ck as a subset of X is compact, weakly compact, or separable if and only
if K has the same property.

Davis, Figiel, Johnson, and Pelczyniski used their version of the preceding
result to prove that every weakly compact operator factors through a reflexive
space. Similarly Lima, Nygaard, and Oja applied their quantitative modified
version to prove that the factorization can be done isometrically and uniformly
in the following way.

Theorem 1.3.5 (Lima, Nygaard, and Oja, 2000). Let F' be a finite dimensional
subspace of W(Y, X). Then there exist a reflexive space Z, a norm one operator
J:Z — X, and a linear isometry ® : F — W(Y, Z) such that T = J o ®(T) for
all T € F. Moreover,

(a) Z = Xk and J = Ji for the weakly compact absolutely convexr set K =
conv{Ty : T € Br and y € By} whenever the number a is fixed so that

fla) =1.
(b) T is compact if and only if ®(T) is compact.
(¢) T has finite rank if and only if ®(T') has finite rank.

Corollary 1.3.6 (Lima, Nygaard, and Oja, 2000). Let F be a finite dimensional
subspace of W(X,Y'). Then there exist a reflexive space Z, a norm one operator
J: X — Z, and a linear isometry ® : F' — W(Z,Y) such that T = ®(T) o J
for all T € F. Moreover,

(a) T is compact if and only if ®(T) is compact.
(b) T has finite rank if and only if ®(T') has finite rank.

Using their version of the Davis-Figiel-Johnson-Pelczyriski construction, Lemma
1.3.4, Lima, Nygaard, and Oja proved in [51, Corollary 1.5] that the approxi-
mation property has a “metric” equivalent.

Theorem 1.83.7 (Lima, Nygaard, and Oja, 2000). Let X be a Banach space.
The following statements are equivalent.

(a) X has the approximation property.

(b) For every Banach space Y and every T € W(Y, X), there is a net (Ty,) in
F(Y,X) with sup,, |Tull < |T|| such that To, — T in the strong operator
topology.

(¢) For every separable reflexive Banach space Y and every T € K(Y,X),
there is a net (Ty,) in F(Y, X) with sup,, ||Tull < |T|| such that T, — T
in the strong operator topology.

One can show that Theorem 1.3.7 can be continued by

(d) For every Banach space Y and every T € W(Y, X), there is a net (Sq)
in F(X,X) with sup,, [|S.T| < ||T| such that S, — Ix uniformly on
compact sets in X.
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(e) For every separable reflexive Banach space Y and every T € K(Y,X),
there is a net (Sy) in F(X, X) with sup,, ||SoT|| < ||T|| such that S, — Ix
uniformly on compact sets in X.

Proof. We only need to show that (b) = (d). To this end, first note that
the net (T, ) in (b) may be assumed to converge uniformly on compact sets in
Y. Now, let ¢ > 0 and T € W(Y, X) of norm one. Let up = Y07, x5, ®
Thn € X*®,X = (L(X,X),7)* for k = 1,...,m where 7 is the topology of
uniform convergence on compact sets in X (see e.g. [57, Proposition 1.e.3]).
Assume 3 |lzg |l < oo and 1 > |[lzgn| — O for each k = 1,...,m. Put
K =conv{xT(By) U{zkn}: k=1,..,m;n =1,2,..} C Bx. Let Z be the
Banach space constructed from K in Lemma 1.3.4, and let J : Z — X be the
identity embedding of Z into X. Now Z is reflexive and J € W(Z, X) is of
norm one. From (b) in Theorem 1.3.7 and the two first lines in this paragraph,
there is a net (Jo) C F(Z,X) with sup, ||Jo|| < ||J|| = 1 such that J, — J
uniformly on compact sets in Z. By Lemma 1.3.4 J*X* is norm-dense in Z*
and thus we can write J, = SoJ where S, is in F(X,X). For each z, and
k=1,...,m,n=1,.. choose z;,, € Bz and S in (S,) such that Jzx, = zin
and

o0
€> max |Z (ST 2k ms T ) — Z (Jzkm, o) |
n=1

8 :

- @?m'Z@kawZn =2 (@hn 7o) |

n=1 n=1
Thus (d) follows from (b). O
In [55] Lima and Oja introduced the weak metric approximation property.

Definition 1.3.8. A Banach space X has the weak metric approzimation prop-
erty (weak MAP) if for every Banach space Y and for every T' € W(X,Y), there
is a net (S,) in F(X, X) with sup, ||T'Sall < ||T|| such that S, — Ix uniformly
on compact sets in X.

Note that the only difference between Definition 1.3.8 and statement (d)
in Theorem 1.3.7 is that the roles of X and Y are interchanged. Comparing
definitions it is immediate that MAP = weak MAP = AP. The fact that the
weak MAP is strictly stronger than the AP follows from [55, Proposition 2.1].
Recently, Oja [66, Corollary 1] showed that if a Banach space has the weak
MAP, then it has the MAP if either its dual or its bidual have the Radon-
Nikodym property. It is still unknown if the weak MAP implies the MAP in
general. However, in [55, Corollary 3.4] it is shown that for dual spaces the AP
implies the weak MAP. Hence Problem 1.3.3 can be restated as follows.

Problem 1.3.9. Does the weak MAP of the dual space X* of a Banach space
X imply the MAP?

In [55, Theorem 2.4] Lima and Oja proved the following characterization of
the weak MAP.

Theorem 1.3.10 (Lima and Oja, 2005). Let X be a Banach space. The fol-
lowing statements are equivalent.
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(a) X has the weak MAP.

(b) For every separable reflexive Banach space Y and for every operator T €
K(X,Y), there exists a net (Sq) C F(X, X) with sup,, ||T'Sa| < |T|| such
that S, — Ix in the strong operator topology.

(c) For every separable reflexive Banach space Y and for every operator T €
K(X,Y), there exists a net (Sq) C F(X, X) with sup, ||T'Sa| < |T|| such
that TS, — T in the strong operator topology.

(d) For every Banach space Y, for every operator T € W(X,Y) with ||T|| =1,
and for all sequences (x,,) C X, and (y;,) CY* with Y >~ [|@,||||y}]] < oo,
one has the inequality

1> yn(Tan)| < sup 1> (TS|,
n=1

ITS|I<1,SeF(X,X) =5

In [29] Godefroy, Kalton, and Saphar introduced the notion of an ideal.

Definition 1.3.11. A closed subspace X of a Banach space Y is an ideal in Y
if the annihilator X is the kernel of a linear norm one projection on Y*. Such
a projection is called an ideal projection.

Tt is straightforward to show that ideals can be expressed in terms of Hahn-
Banach extension operators.

Definition 1.3.12. Let X be a subspace of a Banach space Y. A linear operator
¢ : X* — Y™ is called a Hahn-Banach extension operator if ¢(x*)(x) = z*(x)
and [|¢(x*)]| = ||z*| for every x € X and z* € X*. We write BB(X,Y") for the
set of all Hahn-Banach extension operators from X* into Y*.

The justification for this terminology comes from the Hahn-Banach Theo-
rem, which tells us that every element z* € X* has a norm-preserving extension
to Y. A Hahn-Banach extension operator extends all elements in X* linearly.

The connection between ideals and Hahn-Banach extension operators was
announced above. Indeed, if ix : X — Y is the natural inclusion and ¢ €
B(X,Y), then the operator P = ¢ o i% is an ideal projection on Y* with
ker P = X+ (P is usually called the corresponding ideal projection to ¢). Con-
versely, if X is an ideal in Y with an ideal projection P, then ¢ : X* — Y*
defined by ¢z* = Py*, where y* € HB(z*), the set of norm-preserving extensions
of z* to Y, is a Hahn-Banach extension operator (¢ is called the corresponding
Hahn-Banach extension operator to P). Thus BB(X,Y") # 0 if and only if X is
an ideal in Y.

Lima [44, Theorem 2.6 and Proposition 3.1] has showed that the weak MAP
can be characterized in terms of ideals of finite rank operators and Hahn-Banach
extension operators.

Theorem 1.3.13 (Lima). Let X be a Banach space. The following statements
are equivalent.

(a) X has the weak MAP.
(b) For every Banach space Y, F(Y,X) is an ideal in W(Y, X**).
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(c) For every separable reflexive Banach space Y, F(Y,X) is an ideal in
K(Y, X*).

(d) There exists a Hahn-Banach extension operator ¢ € HB(X, X**) such that
for every choice of sequences (z})re, C X* and (z}*)52; C X** with

S ek llllasr] < oo and D07 @k (z)ak* =0, for all v € X we have
> o) (@) =0.
n=1

(e) There exists a Hahn-Banach extension operator ¢ € HB(X, X**) such that
for every reflexive Banach space Y and operator T € W(Y, X**) we have
| xT € F(Y, X)**.

(f) There exists a Hahn-Banach extension operator ¢ € H3(X, X**) such that
for every reflexive Banach space Y and operator T € K(Y, X**) we have
Q| xT € F(Y, X)**.

In [1] (cf. Theorem 3.2.4) we generalize Theorem 1.3.13 by proving that the
extension operator ¢ € HB(X, X**), can be replaced by an extension operator
¢p € B(X, X*) such that P = ¢} |x-~ is a projection on X**. The fact that
this can be done, follows from the result below (cf. Theorem 3.2.1). We state
Theorem 3.2.1 in a slightly different manner here.

Theorem 1.3.14 (Abrahamsen, 2007). Let X be a Banach space.

(a) If P is a norm one projection on X** with X C P(X™**), then op =
Ptkx- € BB(X, X*).

(b) If there exists a Hahn-Banach extension operator ¢ € HB(X, X**) such
that ©*| x =« is in the weak*-closure of F(X, X) in L(X**, X**), then there
exists a norm one projection P on X** with X C P(X™**) such that P is
in the weak*-closure of F(X,X) in L(X**, X**).

Using Theorem 1.3.14 in combination with Lemma 1.3.4 and a result of
Godefroy and Saphar [30, Theorem 1.5], one can prove that the following holds
(cf. Proposition 3.2.2).

Proposition 1.3.15 (Abrahamsen, 2007). Let X be a Banach space with the
weak MAP. Then there exists a projection P on X** with X C P(X™**) such
that for every reflexive Banach spaceY and for every T € W(X,Y), there exists
a net (So) C F(X, X) with limsup,, || TS| < |T|| such that S, — P weak® in
L(X** X*).

Of course Proposition 1.3.15 holds for every Banach space Y and not just
for reflexive Y. Indeed, this is immediate from Corollary 1.3.6 by putting F' =
span{T'} for T € W(X,Y). On the basis of this, Proposition 1.3.15 should be
compared with Definition 1.3.8.

Prior to the notion an ideal, Alfsen and Effors had introduced the notion
of an M-ideal in a Banach space in their fundamental article [4] from 1972.
Part of their aim was to generalize structure theories for C*-algebras and L;-
preduals. This becomes transparent from the definition below and the fact that
in C*-algebras M-ideals are exactly the closed two-sided algebraic ideals.
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Definition 1.3.16. Let Y be a Banach space. A linear projection P on Y is
called an L-projection if

lyll = [IPyll + [ly — Pyl| for all y € Y.

A closed subspace X C Y is called an L-summand in Y if it is the range of an
L-projection. If the annihilator X+ C Y* of X is an L-summand, then X is
called an M-ideal in Y.

Vaguely spoken, if X is an M-ideal in Y, then the norm of Y* resembles the
¢1-norm and the norm of Y thus ought to resemble the max-norm. M-ideals
have been thoroughly studied in many articles. The reader should confer the
book [35] for a nice and exhaustive presentation of M-ideal theory.

From the definitions it is immediate that M-ideals are stronger forms of ide-
als. Also properties intermediate that of being an M-ideal and that of being an
ideal, have been studied in the literature (see e.g. [37], [62]). An unconditional
ideal is one such property. The notion of an unconditional ideal was introduced
by Kalton and Casazza in [11].

Definition 1.3.17. A closed subspace X of a Banach space Y is an uncon-
ditional ideal (u-ideal) in Y if there exists a linear projection P on Y* with
ker P = X~ such that || — 2P| = 1.

It is straightforward to show that this definition is equivalent to ||v + % =
|lv — xt|| for every v € P(Y*) and 2+ € X*. Thus, if X is a u-ideal in Y, the
norm on Y* fulfills a symmetry condition.

In [56] Lindenstrauss and Rosenthal showed that finite dimensional sub-
spaces of the bidual of a Banach space X, are more or less the same as those of
X . This fact is commonly referred to as the Principle of Local Reflezivity. The
version of this principle listed below was proved in [41] and is a slightly stronger
form of that of Lindenstrauss and Rosenthal.

Theorem 1.3.18 (Principle of Local Reflexivity, 1969). Let X be a Banach
space, and let E and F be finite dimensional subspaces of X** and X*, respec-
tively. Then, for each € > 0 there is an injective operator L : E — X with the
following properties:

(a) L(z) =z forallz e EN X,
() ILI-IL7H < 1 +e,
(¢) (La**, ™) = (™, 2*) for all z™* € E and z* € F.

Every Banach space X is an ideal in its bidual, since the natural embedding
kx+« : X* — X*** is a Hahn-Banach extension operator. In fact, every ideal in
a Banach space can be characterized in terms of local structure similarly to the
Principle of Local Reflexivity. This follows from results of Fakhoury [21] and
Kalton [42]. Of course Fakhoury and Kalton did not use the term “ideal” which
was introduced later, as mentioned above.

Theorem 1.3.19 (Fakhoury, 1972 and Kalton, 1984). Let X be a subspace of
a Banach space Y. Then the following statements are equivalent.

(a) X is an ideal inY .
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(b) For every finite dimensional subspace E of Y and every ¢ > 0, there exists
a linear operator L : E — X such that

(i) L(z) = forallz € EN X,
(i) | L] <1+e.

Godefroy, Kalton, and Saphar showed that also u-ideals have a local charac-
terization. From [29, Lemma 2.2 and Proposition 3.6] and we have the following
result.

Theorem 1.3.20 (Godefroy, Kalton, and Saphar, 1993). Let Y be a Banach
space and let X be a subspace of Y. The following statements are equivalent.

(a) X is a u-ideal inY .

(b) There exists a Hahn Banach extension operator ¢ € HB(X,Y) such that
for every y €Y there is a net (z4) in X such that ¢*(y) = lim, z,, in the
weak” -topology and limsup,, |y — 2z < ||lyl|-

(c) For every finite dimensional subspace E of Y and every € > 0, there is a
linear map L : E — X such that

(1) L(y) =y for everyy € EN X, and
(2) lly =2L)l < (X +)llyll for every y € E.

There are approximation properties linked to the notion of u-ideals.

Definition 1.3.21. A Banach space X has the unconditional metric approxi-
mation property (UMAP) if there is a net (T,,) in F(X, X) with limsup,, || —
2T, || < 1 such that Tya — z for every z € X. If the net (7,) is in (X, X)
instead of F(X,X) we say that X has the unconditional metric compact ap-
prozimation property (UMKAP).

The obvious reason for this terminology is given by the following result of
Casazza and Kalton [11, Theorem 3.8].

Theorem 1.3.22 (Casazza and Kalton, 1990). A separable Banach space X has
the UMAP if and only if for every e > 0 there exists a sequence (T,,) € F(X, X)
with sup,, |Tn|| < oo and Tpx — x for all x € X, so that if Ay, =T, — Ty for
n € N (with To = 0) then for every N € N and all n; = +1,i=1,2,..., N we
have

el

N
| ZU@AiH <l+e.

n=1

In [29, Theorem 8.1] Godefroy, Kalton, and Saphar showed that Theorem
1.3.22 holds when UMAP and F is replaced by UMKAP and K respectively.

Casazza and Kalton also proved in [11, Theorem 3.9] that UMAP is related
to u-ideals of compact operators in the following way.

Theorem 1.3.23 (Casazza and Kalton, 1990). Let X be a separable reflexive
Banach space with the approzimation property. Then the following statements
are equivalent.
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(a) X has UMAP.
(b) K(X,X) is a u-ideal in L(X, X).

In [29, Theorem 8.3] Godefroy, Kalton, and Saphar showed that Theorem
1.3.23 holds when UMAP is replaced by UMKAP without assuming X to have
the AP. Lima soon generalized this result by showing that the assumptions can
be reduced to X having the RNP or By. = tonv(w -str-exp Bx~) [50, The-
orem 4.3]. Note that if X has the AP, then K(X, X) is the norm closure of
F(X,X). Thus [50, Theorem 4.3] of Lima also generalize Theorem 1.3.23. The-
orems 5.2 and 6.1 in [45] show that the following holds without any assumptions
on the Banach space X.

Theorem 1.3.24 (Lima and Lima, 2004). Let X be a Banach space. The
following statements are equivalent.

(a) X has UMKAP.
(b) K(Y,X) is a u-ideal in L(Y,X) for every Banach space Y .
(c) IC(X, X) is a u-ideal in C(X, X)) for every equivalent renorming X for X.

Theorem 1.3.25 (Lima and Lima, 2004). Let X be a Banach space. The
following statements are equivalent.

(a) X* has UMKAP with conjugate operators.
(b) K(X,Y) is a u-ideal in L(X,Y) for every Banach space Y.
(c) K(X, X) is a u-ideal in L(X,X) for every equivalent renorming X for X.

The results also hold when compact operators and UMKAP are replaced by
finite rank operators and UMAP respectively.
The next result was proved is Theorem 3.3 in [51].

Theorem 1.3.26 (Lima, Nygaard, and Oja, 2000). Let X be a Banach space.
The following statements are equivalent.

(a) X has the AP.
(b) F(Y,X) is an ideal in W(Y, X) for every Banach space Y.

(¢c) F(Y,X) is an ideal in KC(Y, X) for every separable reflexive Banach space
Y.

Next we prove that Theorem 1.3.26 can be continued by the following state-
ments:

(d) F(Y, X) is an ideal in span (F(Y,X),{T}) for every Banach spaceY and
every T e W(Y, X).

(e) F(Y,X) is an ideal in span (F(Y,X),{T}) for every separable reflexive
Banach space Y and every T € K(Y, X).
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Proof. We only have to prove (e) = (c). To do this, we use the ideas from the
proofs of [51, Lemma 1.4] and [2, Proposition 2.5].

Let Y be a separable reflexive Banach space and let T € K(Y, X). We
want to show that BB(F(Y, X),K(Y, X)) # 0. Since F(Y,X) is an ideal in
B =span (F(Y, X),{T}) we can, by using Goldstine’s theorem, find a net (T,,) C
F(Y,X) with sup,, [|[To| < ||T|| such that T, — ®5(T") weak*, where @ €
B(F(Y, X), B) is the extension operator. Now, assume that y € By is a strongly
exposed point. Then by Lemma 3.4 in [50] 2* ® y has a unique norm-preserving
extension from F(Y, X) to L(Y, X) and hence ®r(z* @ y) = 2* ® y. Since Y
has the RNP we get &7 (z* ® y) for every z* € X* and y € Y by linearity and
continuity. By a theorem of Feder and Saphar [22, Theorem 1] F(Y, X)* is a
quotient of X*®,Y and it follows that ® is just the identity and hence unique.
A straightforward calculation shows that ®%.(7') = T". Thus the operator ¥ =
Ix« @Iy € B(F(Y,X),K(Y, X)) and (c) follows. O

If the roles of X and Y are interchanged in Theorem 1.3.26, we get a char-
acterization of the dual of X having the AP [51, Theorem 3.4].

The metric approximation property has also been characterized in terms of
ideals of operators similarly to the approximation property.

Theorem 1.3.27 (Lima and Lima, 2004). Let X be a Banach space. The
following statements are equivalent.

(a) X has the MAP.

(b) F(Y,X) is an ideal in L(Y,X) for every Banach space Y.

(c) F(Y,X) is an ideal in L(Y, X) for every separable Banach space Y .

(d) f(X,X) is an ideal in L(X,X) for every equivalent renorming X of X.

If the roles of X and Y are interchanged in Theorem 1.3.27, we get a char-
acterization of the dual of X having the MAP with conjugate operators [45,
Theorem 1.2].

From [52, Theorem 5.1] and [53, Theorem 4.4] (resp. [53, Theorem 4.3]) we
have the following result when the space of compact operators is considered as
a subspace of the space of weakly compact operators.

Theorem 1.3.28 (Lima and Oja, 1999 and 2004). Let X be a closed subspace
of a Banach space Z. Then F(Y,X) is a u-ideal in W(Y, Z) (resp. K(Y,Z))
for all Banach spaces Y if and only if F(Y,X) is a u-ideal in W(Y, Z) (resp.
K(Y,Z)) for all (resp. separable) reflexive Banach spaces Y .

In [2], which is presented in Chapter 4 in this thesis, we study when the
space of finite rank operators is a u-ideal in the space of compact and weakly
compact operators as in Theorems, 1.3.29, 1.3.30, 1.3.31, and 1.3.32 below (cf.
Theorems 4.3.2, 4.3.8, 4.4.4, and 4.4.6 respectively).

Theorem 1.3.29 (Abrahamsen, Lima, and Lima). Let X be a Banach space.
The following statements are equivalent.

(a) F(Y,X) is a u-ideal in W(Y, X) for every Banach space Y.
(b) F(Y,X) is a u-ideal in span (F(Y,X),{T}) for every T € W(Y,X) and

for every reflexive Banach space Y .
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(c) For every reflexive Banach space Y there exists a Hahn-Banach extension
operator ¥ € HB(F(Y,X), W(Y, X)) such that for every T € W(Y,X)
there is a net (T,) C F(Y,X) with limsup, |T — 2T,| < ||T|| such that
To — Y*(T) =T weak* in F(Y,X)**.

(d) For every weakly compact set K C X there is a net (S,) C F(X,X) with
lim, sup, e |& — 2Saz|| < sup,ci ||z|| such that So — Ix uniformly on
compact subsets of K.

(e) For every Banach space Y and T € W(Y,X) there is a net (S,) C
F(X,X) with limsup,, ||T — 2S,T|| < ||T|| such that S, — Ix uniformly
on compact sets in X.

(f) For every Banach space Y and T € W(Y,X) there is a net (S,) C
F(X,X) with limsup, | T — 2S.T|| < ||T|| such that So — Ix in the

strong operator topology.

(g) For every reflexive Banach spaceY and T € W(Y, X)) there is a net (S,) C
F(X,X) with limsup,, |T — 25.T| < ||T| such that ST — T in the
strong operator topology.

Theorem 1.3.30 (Abrahamsen, Lima, and Lima). Let X be a Banach space.
The following statements are equivalent.

(a) F(X,Y) is a u-ideal in W(X,Y) for every Banach space Y.
(b) F(X,Y) is a u-ideal in W(X,Y) for every reflexive Banach space Y .
(c) F(X,Y) is a u-ideal in span (F(X,Y),{T}) for every T € W(X,Y) and

for every reflexive Banach space Y .

(d) For every reflexive Banach space Y there exists a Hahn-Banach extension
operator ¥ € HB(F(X,Y),W(X,Y)) such that for every T € W(X,Y)
there is a net (T,) C F(X,Y) with limsup,, ||T — 2T, | < ||T]| such that
T, — U*(T) =T weak* in F(X,Y)**.

(e) For every weakly compact compact set K C X* there is a net (So) C
F(X,X) with limg sup,.c g [|2* —2S52* || < sup,.cg ||2*| such that S} —
Ix~ uniformly on compact subsets of K.

(f) For every Banach space Y and T € W(X,Y) there is a net (S,) C
F (X, X) such that limsup,, [|T' — 2T'S,|| < ||T|| and S}, — Ix~ uniformly
on compact sets i X*.

(g) For every Banach space Y and T € W(X,Y) there is a net (S,) C
F(X,X) such that limsup, T — 2TS,| < ||T|| and S}, — Ix- in the
strong operator topology.

(h) For every reflexive Banach space Y and T € W(X,Y) there is a net
(Sa) € F(X,X) such that limsup, | T — 2T S| < ||T|| and SET* — T*
in the strong operator topology.

Theorem 1.3.31 (Abrahamsen, Lima, and Lima). Let X be a Banach space.
The following statements are equivalent.
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(a)
(b)

(f)

F(Y,X) is a u-ideal in W(Y, X**) for every Banach space Y.

X is a u-ideal in its bidual with unconditional Hahn-Banach extension
operator ¢ € HB(X,X**) such that for every Banach space Y and T €
W(Y, X**) there is a net (So) C F(X,X) with limsup, || T — 255 T <
IT|| such that SE*T — *T weak* in L(Y, X**).

There exists a Hahn-Banach extension operator v € HB(X, X**) such that
for every Banach space Y and T € W(Y, X**) there is a net (So) C
F(X,X) with limsup,, |T —2S5T|| < ||T| such that ST — *T weak*
in LY, X**).

For every weakly compact compact set K C X** there is a net (So) C
F(X, X) with limg sup .- || — 255%™ || < supge-c i ||€**|| such that
So — Ix uniformly on compact subsets of K N X.

For every Banach space Y and T € W(Y, X*), there is a net (S,) C
F(X,X) with imsup,, ||[T — 252 T|| < ||T|| such that Sq — Ix uniformly
on compact sets in X.

For every reflexive Banach space Y and T € W(Y, X**), there is a net
(Sa) C F(X,X) with limsup, |T — 25T\ < |T|| such that S, — Ix

uniformly on compact sets in X.

Theorem 1.3.32 (Abrahamsen, Lima, and Lima). Let X be a Banach space.
The following statements are equivalent.

(a)
(b)

(c)

(d)

(e)

F(Y,X) is a u-ideal in (Y, X**) for every Banach space Y.

X is a u-ideal in X** with unconditional Hahn-Banach extension ¢ such
that Y*|x«« is in the weak*-closure of the F(X, X) in L{(X**, X**).

X is a u-ideal in its bidual with unconditional Hahn-Banach extension
operator ¥ € HB(X,X**) such that for every Banach space Y and T €
K(Y, X**) there is a net (S,) C F(X, X) with limsup,, || T—2S5*T|| < ||T||
such that SX*T — *T weak™ in LY, X**).

For every Banach space Y and T € K(Y,X**) there is a net (So) C
F(X,X) with imsup, ||T — 2S5*T|| < ||T|| such that Sq — Ix uniformly
on compact sets in X.

For every separable reflezive Banach space Y and T € K(Y, X**) there is a
net (So) C F(X, X) with limsup,, | T —2S5*T|| < |T|| such that S, — Ix
uniformly on compact sets in X.

Note that when “u-ideal” is replaced by “ideal” in statement (a) in Theorem
1.3.31 and in (a) in Theorem 1.3.32, these statements are equivalent. This is
part of Theorem 1.3.13. On the basis of this, it is interesting to note that the
statements in Theorem 1.3.31 are in fact strictly stronger than those in Theorem
1.3.32. Indeed, as remarked in [2] (see Chapter 4) the equivalently renormed
version f5 of ¢, obtained by Oja in [62, Example 3], fulfills the statements in
Theorem 1.3.32, but fails to satisfy those of Theorem 1.3.31 (or equivalently
Theorems 1.3.29, 1.3.30 since {5 is reflexive (see the next subsection)). In the
next subsection, this renorming is discussed in more detail.

23



From Theorem 1.3.26, [73], and [49, Corollary 2] (see also [42, Theorem 5.1],
[35, p. 138], and [65, Proposition 2.1]) we get the following proposition.

Proposition 1.3.33 (Lima, 1993; Lima, Nygaard, and Oja, 2000). Let X be a
Banach space. The following statements are equivalent.

(a) F(Y,X) is an ideal in W(Y, X) for every Banach space Y.
(b) X has the AP.
(c) Ewvery separable ideal Z in X has the AP.

(d) F(Y,Z) is an ideal in W(Y, Z) for every Banach space Y and separable
ideal Z in X.

In |2] (cf. Proposition 4.3.6) we were able to show that the following analogue
to Theorem 1.3.33 holds for u-ideals.

Proposition 1.3.34 (Abrahamsen, Lima, and Lima). Let X be a Banach space
and assume F(Y, X) is a u-ideal in W(Y, X) for every Banach space Y. Then a
closed subspace Z of X has the AP if and only if F(Y, Z) is a u-ideal in W(Y, Z)
for every Banach space Y .

By using Theorem 1.3.33 the next result is immediate.
Corollary 1.3.35. Let X be a Banach space. The following are equivalent.
(a) F(Y,X) is a u-ideal in W(Y, X) for every Banach space Y.

(b) F(Y,Z) is a u-ideal in W(Y, Z) for every Banach space Y and ideal Z in
X.

1.3.2 U-ideals and open problems

Before we start to discuss u-ideals, we will take a detour into some related prop-
erties. It turns out that known results about these properties are important,
also in the setting of u-ideals.

The Hahn-Banach theorem asserts that a linear functional defined on a sub-
space of a normed linear space has at least one norm-preserving extension to
the whole space. In some cases, however, this extension is unique (e.g. reflexive
spaces). Following Phelps [68] we define.

Definition 1.3.36. Let X be a closed subspace of a normed linear space Y.
Then X has property U in Y if every element z* € X* has a unique norm-
preserving extension y* to Y.

Generalizing the concept of an M-ideal, Hennefeld [37] introduced and in-
vestigated the concept of HB-subspaces.

Definition 1.3.37. A closed subspace X of a normed linear space Y is said
to be an IB-subspace in Y (or X has property FB in Y) if its annihilator X+
is complemented in Y* by a subspace X, such that whenever x, € X, and
ot € X\ {0}, then ||z, + 2| > ot and [z, + 2| > [|2. |-
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It is straightforward to verify that an HB-subspace has property U. Indeed,
let X be an HBB-subspace in Y and let P be the induced projection on Y* defined
by P(z* + x.) = z.. Then, for 2* € X* and y* € B(z*), we get Py* = y*
since Py* € BB(z*). Now, if y] and yj are in BB(z*), then y7 — y3 € ker P.
Thus y; = Py] = Py3 = y5 which shows that X has property Uin Y.

There are, however, subspaces with property U which fail to be HB-subspaces.
Producing such an example took some years, but finally Oja succeeded in [61]
(see also Example 1 in [62]). In fact, Oja showed that there is a subspace of
¢3_ with property U which fails the property SU [61] (see also [62, Example 1]).
The property SU is stronger than the property U. This follows by the same
argument as for HB-subspaces.

Definition 1.3.38. Let X be a closed subspace of a normed linear space Y.
Then X has the property SU in Y if its annihilator X' is complemented in
Y* by a subspace X, such that whenever z, € X, and z+ € X+ \ {0}, then
2 + 2t >z

It is clear from the definitions that H3-subspaces must have property SU, so
Oja’s example shows in particular that the property BB is strictly stronger than
property U. For a subspace with the property SU failing the property H see
Example 2 in [62]. Thus the property SU is strictly between the properties U
and IB.

The property U is locally determined in the sense that a subspace X of a
Banach space Y has this property in Y if and only X has this property in every
subspace Z of Y in which X has codimension 1. Similar results also holds for
the properties SU and HB.

Theorem 1.3.39. Let X be a closed subspace of a Banach space Y. The fol-
lowing statements are equivalent.

(a) X has property U (resp. SU, BB) inY.
(b) X has property U (resp. SU, HBB) in Z =span (X,{y}) for every y € Y.
To prove this we will use results which require the following definition [48].

Definition 1.3.40. Let X be a subspace of a Banach space Y and let n > 3
be a natural number. Then X is said to have the n.Y. intersection property
(n.Y.I.P) if for every family (B(z;,7:))", of n closed balls with centers (x;)
in X and YNN_, B(zi,7:) # 0, then XN, B(wi,r;+¢) # 0 for every e > 0.

From [48, Theorem 3.1], [52, Proposition 2.1], and [63, Theorem 1.2] we have
the following results.

Theorem 1.3.41 (Lima, 1983; Lima and Oja, 1999). Let X be a closed subspace
of a Banach space Y. The following are equivalent.

(a) X is an ideal in Z =span (X, {y}) for every y € Y.

(b) X has the n.Y.I.P for all n.

(¢) If n € N a7, ...,x} € X* are such that 7 + a5 + ... + x}, = 0, then for
t=1,...,n there exist y} € HB(x}) such that yi + ... +y) = 0.
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Theorem 1.3.42 (Oja, 1991). Let X be a closed subspace of a Banach space
Y. Then the following statements are equivalent.

(a) X is an B subspace of Y.

(b) X has property U in Y and there exists an ideal projection P on Y*
satisfying ||I — P|| = 1.

Proof of the U-case of Theorem 1.8.89 . (a) = (b). Let y € Y \ X and put
Z =span (X,{y}). Let 2* € X* and 27,25 € BB(2*) C Z*. Choose yf €
B(z}) C Y* for i = 1,2. Then yj = y5 € B(z*), so 2§ = z3.

(b) = (a). Let z* € X*. Suppose that yi,y5 € B(z*) C Y* and that
Y7 # y3. Choose y € Y \ X such that yi(y) # y3(y) and let Z =span (X, {y}).
Since yi|z and y3|z are extensions of z* to Z, they have to be equal on Z by
assumption, and we get a contradiction. O

Proof of the SU-case of Theorem 1.3.39. (a) = (b). Let y € Y \ X and put
Z =span (X, {y}). Since X has property U in Z and is an ideal in Z the result
follows from [62, Theorem)].

(b) = (a). By [62, Theorem] it suffices to show that X possesses properties
3.Y.I.P and U in Y. But this follows from Proposition 1.3.41 and Theorem
1.3.39 (U-case). O

Proof of the HB-case of Theorem 1.3.39. (a) = (b). Let y € Y \ X, and define
Z =span (X, {y}). Let z* € Z*, and let y* € BB(z*). Since HB-subspaces have
property SU it follows from Theorem 1.3.39 (SU-case) that X has property SU
in Z. Denote by ix,z: X — Z,izy : Z =Y, and ixy : X — Y the natural
embeddings. Then ixy =izy oix,z, s0 (ix,y)* = (ix,z)* o (izy)*. Let Py~
and Pz- denote the unique ideal projections on Y* and Z* respectively. Write
Py« = ¢o(ix,y)" and Pz- =o(ix,z)* where ¢ € BB(X,Y) and ¢ € BB(X, Z).
We get

2% = Pz«2"|| = ||2% = 9(ix,2) 2" = [|2" — ¢(ix,z)"2"|z]
= 2" = élix.z)" (izy) Yy |zl < [lv* — dlix,y) y"|
=ly* = Pr-y"| < 1.

Thus the result follows from Theorem 1.3.42.
(b) = (a). From Theorem 1.3.39 (SU-case) we get that X has property SU
inY. Let y* € Y* and y € By and put Z =span (X, {y}). Then

W —olixy) 'y, y) = W —oz(ixz)" (izy) v, y) = (Uz- — Pz+)(izy)"y",y),
and the result follows from Theorem 1.3.42. O

The article [48] of Lima, left open the following two questions: Do there exist
Banach spaces X and Y, such that X or Y* has the metric approximation prop-
erty, for which (Y, X) has property U in £(Y, X), but is not an HB-subspace
in £(Y, X)? Could a Banach space have property U in its bidual without being
a BB-subspace in its bidual?

A few years after the article of Lima, both of these questions was answered
in the negative by Oja in Examples 3 and 4 in [62]. In [62, Example 3], Oja
defined a renorming (5 of ¢ for which K(Y,¢;) has property SU in W(Y, £3) for
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every normed linear space Y, but such that (¢, ég) fails to be an HB-subspace
in W(¢1,£s). This renorming of ¢5 is done in the following manner:

oo

G2¢ —sgg (6 (S5 + &),

oal»—n

||(£1;£2; . ” -

where (&1, &2, ...) € lo.

In Example 4 in [62], Oja showed that for 0 < r < 1, the equivalently
renormed versions ¢, of ¢y, due to Johnson and Wolfe [40], have property SU in
their biduals, but in fact fail to be HB-subspaces in their biduals. For 0 < r <1,
the Johnson-Wolfe renorming of ¢g is done in the following manner:

(61,82, --) [l = sup{[&1]/m, [€1 — &2l -,

where (£1,&,...) € co.

Later, in [64, p. 127], Oja also showed that for 0 < r < 1 the spaces
K(cor, cor), K(£1, cor), and K (€5, €5) all have property U, in fact SU, in £(coy, cor),
L(¢1, cor), and C([g, 62) respectlvely However, all of them fail to be HB-subspaces.
Observe that E(Zg, 62) IC(EQ, 62)** S0 f5 is also an example of a Banach space
for which IC((AQ,KAQ) has property U, actually SU, in its bidual, without being
an HB-subspace in its bidual. If we combine this fact with Theorem 1.3.22, we
get that {5 does not have the UMAP. Thus the UMAP is not preserved under
equivalent renormings since £ has the UMAP.

Note that, if X is a u-ideal in a Banach space Y, and X has property U in Y,
then X is an H3-subspace of Y. Indeed, let P be the unconditional projection
on Y* satisfying ||/ — 2P|| = 1. Then writing I — P = £ + 2222 and using
the triangle inequality, this follows. Since K((l,ég) is not an HB-subspace of
W([l,ég), it now follows that f5 does not fulfill Theorem 1.3.31 as claimed in
the last paragraph of subsection 1.3.1.

It now also follows from the examples in the preceding paragraphs that for
0<r<l1,cy and ’C(KAQ, é\Q) are not u-ideals in their biduals. These two exam-
ples leave us with the problem of determining when Banach spaces are u-ideals
in their biduals. Some results in this direction are known. If a Banach space
X is a wu-ideal in its bidual, then from [29, Corollary 4.1] we know that every
Banach space being (1+¢)-isomorphic to a (14 ¢)-complemented subspace of X
is a u-ideal in its bidual. In particular 1-complemented subspaces of X possess
this property. However, it is not known if ideals in X also possess this property.
Based on this, one can ask:

Problem 1.3.43. Suppose a Banach space is a u-ideal in its bidual. Which
subspaces of this Banach space inherits the property of being u-ideals in their
biduals? In particular, do we have that every ideal in a Banach space is a u-ideal
in its bidual whenever the space itself is?

Godefroy, Kalton, and Saphar proved a result related to this problem, but for
h-ideals instead of u-ideals [29, Theorem 6-7]. H-ideals are complex analogues
to u-ideals.

Definition 1.3.44. A closed subspace X of a complex Banach space Y is called
an h-ideal in Y if there exists a projection P on Y* with ker P = X such that
[T = (1+AN)P| =1 for all A with |\ =1.
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Theorem 1.3.45 (Godefroy, Kalton, and Saphar, 1993). Suppose X is a sepa-
rable Banach space and X is an h-ideal in its bidual. Let ¢ € BB(X, X**) be the
corresponding Hahn-Banach extension operator. Then every closed subspace Z
of X such that ¢*(Z+1+) C Z+L, inherits the property of being an h-ideal in its
bidual.

Actually the proof can be modified so that the result holds for arbitrary
Banach spaces being u-ideals in their biduals (see [2, Theorem 2.4])

Theorem 1.3.13, Theorem 1.3.26, and its dual counterpart [51, Theorem 3.4],
gives reason to study the following statements. This is done in [2], which con-
stitutes Chapter 4 in this thesis.

(A) F(X,Y) is a u-ideal in W(X,Y) for every Banach space Y .
(B) F(Y,X) is a u-ideal in W(Y, X**) for every Banach space Y.

(C) F(Y,X) is a u-ideal in W(Y, X) for every Banach space Y.

If X is a reflexive Banach space, then (A), (B), and (C) are equivalent.
Indeed, this follows from [2, Theorems 3.2 and 3.5] and [50, Theorem 4.3] using
the isometries F(X, X) = F(X*, X*) and W(X, X) = W(X*, X*).

For a general Banach space X it is evident that (B) implies (C) by using the
local characterization of u-ideals Theorem 1.3.19.

Note that if (A) holds, then X* has the AP [51, Theorem 3.4]. From [44,
Proposition 3.3] we have that F(Y, X)** = W(Y, X**) for every reflexive Banach
space Y if and only if X* has the AP. Thus, if (A) implies (B) and X is a space
satisfying (A), then F(Y, X) becomes a wu-ideal in its bidual for every reflexive
Banach space Y.

From [35, Example 4.1], it follows that ¢, for 1 < p < oo fulfills (C) and thus
(B) and (A) by the paragraph above. In [2] it is remarked that ¢, fulfills (C),
but fails (A). Note that this shows that the statement (A) is strictly stronger
than the similar statements in [51, Theorem 3.4] for ideals.

We will now prove that also ¢; fulfills statement (B). To do this we will use
the recently established fact that F(Y, X) is a u-ideal in W(Y, X**) for every
Banach spaces Y if and only if F(Y, X) is a u-ideal in span (F(Y, X),{T'}) for
every Banach space Y and T € W(Y, X**) [47].

Proof. Let Y be a Banach space and let ' € W(Y, £7*). By the above paragraph,
it suffices to prove that F(Y, ¢1) is a u-ideal in B =span (F(Y, ¢1), {T'}) for every
Banach space Y and T € W(Y,¢1**). Let (S;)3_, C F(Y,¢1). Since co is an
M-ideal in its bidual [35, p. 105], there exists an L-projection, P, from ¢;* onto
£1. Denote by P, : £1 — {1 the canonical projection onto the first n coordinates.
We may assume that S; = P,S; for i = 1,2,3 for some large n. For y € By,
using the fact that P and P, are L-projections, we get that

(T +8; = 2P, PT)y|| = Ty — PTy|| + |[PTy + Siy — 2P, PTy||
=Ty — PTy|| + ||PTy — P, PTy| + | P.PTy — Siyl|
=Ty — PTy[| + [|[PTy — Siyl|
= [Ty — Siyl| < [IT — Sil|.
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This means that 2P, PT € F(Y,£1)N ﬂ?zl Bp(T + S;, ||T — S;||), and the result
now follows from [46, Theorem 1.3]. If we have ||.S; — P, S;|| < ¢ for i =1,2,3,
then we get 2P, PT € F(Y,¢1) N (o_y Bs(T + Si, | T — Si|| + 2). O

In [2] it is also remarked that ¢ fulfills (A), (B), and (C), but that ¢, fails
(C) and hence also (B). Note that this shows that the statements in Theorems
1.3.26 and 1.3.13 are strictly weaker than statements (C) and (B) respectively.
As far as the author knows, it is open whether £, fails (A4). Also, from [75] it
follows that X = f5®,f2 does not fulfill (A), but does this X fulfill (C) or (B)?

The discussion in this paragraph leaves open the following problem, which
seems to be of some importance.

Problem 1.3.46. Do we have that (A) = (B)? Moreover, are the implications
(A) = (B) = (C) strict?

Another interesting question is whether Corollary 1.3.35 holds when “ideals”
Z in X are replaced by “separable ideals”. As far as the author knows this
question is not answered even with “A-ideal” in place of "u-ideal”.
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Chapter 2

On weak integrability and
boundedness 1in Banach
spaces

2.1 Introduction

Let X be a Banach space. A subset B C X* is said to be weak*-norming if

inf sup |z*(z)| > 0. Equivalently, the set B is weak*-norming if and only
xESx r*€B
if its weak*-closed absolutely convex hull contains some ball. The set B is

said to be weak*-non-norming if it is not weak*-norming. In [9] Fonf defined
aset A C X* to be weak*-thin if it can be represented as a non-decreasing
countable union of weak*-non-norming sets. (Remark that Fonf used the term
“thin" instead of “weak*-thin".) As in [14] and [15], let us say that the set A is
weak* -thick if it is not weak*-thin. For characterizations of weak*-thick sets in
terms of uniform boundedness of families of functionals in X, and surjectivity
of conjugate operators, we refer to [10, Proposition 1] and [15, Theorems 3.4
and 4.6] (see also Theorem 2.4.4 of the present paper for the summary of these
characterizations).

In [9, Theorem 1], Fonf proved that if X does not contain any closed sub-
spaces isomorphic to ¢y, then extBx«, the set of extreme points of the dual
unit ball, is weak*-thick. From this he deduced (see [9, Theorem 4]) that if
X is separable and does mot contain any isomorphic copies of co, then when-
ever (2,%, 1) is a finite measure space and a function f: Q — X is such that
x*f € LY (u) for all * € ext Bx~, one has *f € LY (u) for all x* € X*, i.e., f
is weakly integrable (and thus Pettis integrable by a well known result of Dim-
itrov and Diestel (see [4] or [3, Theorem 7, p. 54])). The main objective of this
paper is to generalize this result by giving the following new characterization of
weak*-thick sets.

Main theorem A subset A C X* is weak®-thick if and only if whenever (2, %, 1)
is a measure space and f: Q — X is an essentially separable valued function

such that z* f € L'(pn) for all x* € A, then z* f € L'(p) for all x* € X*.

In Section 2.2, we prove the Main Theorem. As a corollary, it specializes to
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give a characterization of weak*-thick sets in X* in terms of weakly uncondition-
ally Cauchy series. In Section 2.3, we prove a characterization of weak*-thick
sets in terms of boundedness of vector measures. In Section 2.4, we explain
how “thickness", a notion dual to “weak*-thickness", is related to the theory of
barrelled spaces.

Throughout this paper, X will be a Banach space. Our notation is standard.
The unit ball and the unit sphere of X are denoted, respectively, by Bx and
Sx. For aset A C X, we denote by extA the set of extreme points of A, and by
absconv(A) its absolutely convex hull. If some subsets A; C X, j € N, are such
that Ay C Ay C A3 C ..., then, for their union, we sometimes write | J;Z, 4; 1.

2.2 Thickness and weak integrability

The “if" part of the Main Theorem is an immediate consequence of the following
lemma which will be used also in Section 2.3.

Lemma 2.2.1. Let a subset A C X* be weak*-thin, and let a; € R, a; > 0,
j € N. Then there are x; € X, j € N, z* € X* \ A, an increasing sequence of

indices ()52, and a real number § > 0 such that

Zaj |z*(z;)| < oo for all 2" € A,
j=1
but o, |2*(x,,)| > 6 for all j € N.

Corollary 2.2.2. Let a subset A C X* be weak®-thin, and let (2,2, 1) be a
measure space such that there are pairwise disjoint sets A; € ¥ with 0 < p(A4;) <
o0, j € N. Then there is a strongly measurable function f: Q — X such that
Jolz* fldp < oo for all z* € A, but [, |2*f|dp = oo for some z* € X*\ A.

Proof. The assertion follows by applying Lemma 2.2.1 for a; = p(4;), j € N,

and putting f = ZFl XA;Tj O

Proof of Lemma 2.2.1. Since A is weak*-thin, it has a representation A = U;’il AT

where all the A; are weak*-non-norming, i.e., inf sup [z"(z)] =0, j € N.
TESx g+ €A,

Thus we can pick a sequence (z;) C X with a; ||z;| = 27, j € N, such that

1
sup a;j|z*(z;)| < o for all j € N.
T*EA;

Note that whenever * € A, then there is some m € N such that z* € A; for all
j > m, and thus

e} m—1
Zaj 2" ()] = ZO‘J 2" (2 |+ZO‘J " (;)]
j=1 _]:1 j=m

m—

_Za”x xj|—|—Z—<oo
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Next pick a sequence (z}) C X™* with [|2}]| < 2. j € N, such that

. 1
ajlal(z;) > 1 -~

j € N.
1’ J

Now there are two alternatives:

1) lim o0 oy |2} (75)] # 0 for some iy € N;
2) lim; o aj |2} (x;)] =0 for all ¢ € N.
In the case 1), choose an increasing sequence of indices (v;) such that, for
some § > 0, one has oy, |7} (2,,)] > § for all j € N, and put 2* =z}, .
In the case 2), put v; = 1 and proceed as follows. Given indices 11 < vy <
... <wvj_1 (j €N, j > 2), pick an index v; > v;_; such that

Jj—1 ;
3 . 1 vi-1 1
— CVl/j |xu,; (xl/j )| < 1 a‘nd 2Vj S 2]+1 .

3

Denoting z* = Y%« (this series converges because it converges absolutely)
it remains to observe that, whenever j € N and ¢ > j, one has
v v 1

Ay, |xz*/, (ij)| < Qy; ||xl’7|| ||33§,|| < 27 < Qv < 2i+1’

and thus, for all j € N,

J—1 [e%s)
an |Z*(xl/7)| Z an |x;k/7 (xl/j)| - Zauj |$T,1 (ij)| - Z an |$;7 (ij)|
i=1 i=j+1
11 &1 1
S S ey
i=j+1

O

Proof of the Main Theorem. Sufficiency has been proven in Corollary 2.2.2.

Necessity has been essentially proven in [9, Theorem 4]. For the sake of
completeness, we shall give the details also here.

Let A C X* be weak*-thick, let (2,%, ) be a measure space, and let an
essentially separable valued function f: Q — X be such that z* f € L!(p) for all
z* € A. Denote A; = {z* € A: [ |a*fldp < j}, j€N.Then A=J7Z, A; 1,
and the thickness of A implies the existence of some m € N and § > 0 such
that absconv' (Am) D 0Bx-. Thus it clearly suffices to show that z* f € L' (1)

*

for all z* € absconv' (An,). Fix an arbitrary 2* € absconv' (A,,). Since f is
essentially separable valued, there is a sequence (y;;) C absconv(A4,,) such that
yr f — «* f p-almost everywhere on €; hence z* f is measurable. Since, for any
y* € absconv(A,,), one has [, [y* f| du < m, by courtesy of Fatou’s lemma, also
Jo lz* fldp < m; thus z* f € L* (). O

By the Banach-Steinhaus theorem, from [15, Theorem 3.4] (see also The-
orem 2.4.4 of the present paper) it follows that any Banach space is a weak*-
thick subset of its bidual. Thus the Main Theorem yields the following corollary
(which is probably known although the authors do not know any reference for
it).
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Corollary 2.2.3. Let (2,3, 1) be a measure space, and let f: Q — X* be
an essentially separable-valued function. If xf € L'(u) for all x € X, then
x** f € LY (n) for all x** € X**.

Recall that a series Z;’;l x; in X is said to be weakly unconditionally Cauchy
if Z;‘;l |z*(z;)| < oo for all z* € X*. Observing that, for any z* € X*,
Z;’il |z* ()| = [y |2* f| dc, where ¢ is the counting measure on P(N) and the
function f: N — X is defined by f = Z;’;l X{;j}%;, then from the Main Theorem
and the proof of Corollary 2.2.2 we immediately get

Corollary 2.2.4. A set A C X* is weak™-thick if and only if every series
Z;‘i1 xj in X satisfying Z;’il |z*(z;)| < oo for all z* € A is weakly uncondi-
tionally Cauchy.

The “only if" part of Corollary 2.2.4 gives the known link between Fonf’s
theorem stating that if X does not contain any isomorphic copies of ¢y, then
extBx« is weak*-thick (see [9, Theorem 1]), and a theorem of Elton (see [5,
Corollary] or |2, Theorem 15, p. 169]).

2.3 Thickness and bounded vector measures

Let F be an algebra of subsets of a set 2, and let F': F — X be a wvector
measure (i.e., let F' be a finitely additive set function). It is standard (see [3,
Proposition 11, p. 4]) that F' has bounded range if and only if it is of bounded
semi-variation, i.e., [[F[[(Q2) = sup,.cp,. [z F[() < co (see [3, p. 2| for the
definitions of the variation and the semivariation of a vector measure).

An important, consequence of the Nikodym boundedness theorem is the fol-
lowing result of Dieudonné and Grothendieck.

Proposition 2.8.1 (see [3, p. 16]). Let F be an X -valued set function defined
on a o-algebra X of subsets of a set Q, and suppose that, for each x* belonging
to some total subset I' C X*, the function x*F is bounded and finitely additive.
Then F is a bounded vector measure.

The interesting part, of the theorem is of course the test for boundedness: if
Y. is a o-algebra, then it is enough to test on a total subset I' C X*. In general,
Proposition 2.3.1 may fail for algebras that are not o-algebras. We now show
that there is a general test for boundedness also if the vector measure is defined
merely on an algebra.

Proposition 2.3.2. Let F' be an X -valued set function defined on an algebra
F of subsets of a set 2, and suppose that, for each x* belonging to some weak”-
thick subset I' C X*, the function x*F is bounded and finitely additive. Then F
is a bounded vector measure.

Proof. By the Hahn-Banach theorem, the additivity of F' follows easily from the
weak*-denseness of spanI’ in X*, and it remains to show that F' is bounded.
Put A; = {z* € T: [2*F|(Q) < j}, j € N. Then I’ = [J;2, 4; 1, and the
weak*-thickness of I" implies that there are some m € N and § > 0 such that
absconv' (Ap) O 6Bx-. Thus it clearly suffices to show that, for all z* €

absconv' (A,), one has |z*F|(Q) < m. Observing that the last inequality
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holds for all z* € absconv(A4,,), it can be easily seen to hold also for all z* €
absconv' (Ap,). O

It is natural to ask whether Proposition 2.3.2 characterizes the weak*-thick
sets in X*. More precisely, if a subset A C X* is weak*-thin, then can one
always find an algebra F and an unbounded X-valued vector measure F' on F
such that, for all z* € A, the scalar valued vector measure x*F' is bounded?
The following proposition answers this question in the affirmative.

Proposition 2.3.3. Let a subset A C X* be weak*-thin. Then there is an
unbounded X -valued vector measure F on the algebra Fy of finite and cofinite
subsets of N such that |z*F|(N) < oo for every z* € A.

Proof. Applying Lemma 2.2.1 for o; = 1, j € N, produces some z; € X,
j €N, z" € X*, and § > 0 such that 327 [2*(2;)] < oo for all z* € A, but

Rez*(z;) > § for all j € N (just take z; = wa in Lemma 2.2.1). Tt

ERCI

remains to define the vector measure F': Fy — X by
0, ifE=0or E=N,

>z, if0<|E| < oo,
F(E) = J€E

— Yz, if0<|E <.
jeEE®C

2.4 Notes and remarks

There is a notion dual to “weak*-thickness", namely, “thickness". A subset
B C X is said to be norming if xlensf sup |z*(x)| > 0. Equivalently, the set B
xX* xeB
is norming if and only if its closed absoelutely convex hull contains some ball.
The set B is said to be non-norming if it is not norming. In [11], Kadets and
Fonf defined a set A C X to be thin if it can be represented as a non-decreasing
countable union of non-norming sets. As in [14] and [15], let us say that the set

A is thick if it is not thin.
From [11, Proposition 1] and [15, Theorems 3.2 and 4.2], one has the follow-
ing characterization of thick sets.

Theorem 2.4.1. Let A C X. The following assertions are equivalent.

(i) The set A is thick.

(ii) Whenever Y is a Banach space and T:Y — X is a continuous linear
operator such that TY D A, then TY = X.

(iii) Whenever a family of continuous linear operators from the space X to
some Banach space is pointwise bounded on A, then this family is norm
bounded.

(iv) Whenever a family of functionals in the dual space X* is pointwise bounded
on A, then this family is norm bounded.

39



It is almost verbatim to the proof of the Main Theorem to show that Theo-
rem 2.4.1 can be continued by

(v) Whenever (2, X, 1) is a measure space and a function g: Q@ — X* is such
that xg € L*(p) for all & € A, then xg € L*(p) for all x € X.

The perhaps most famous thick set is the set A of characteristic functions in
B(X), the space of bounded measurable functions on a measurable space (2, X):
Nikodym’s boundedness theorem states that A satisfies the condition (iv) in
B(X), Seever’s theorem states that A satisfies the condition (iii). Remark that
both these theorems were proved before Theorem 2.4.1 was commonly known.

Tt is well known that every pointwise bounded family of continuous linear
operators from a locally convex space (LCS) E to some other LCS is equicontin-
uous if and only if the space E is barrelled, i.e., every absolutely convex closed
absorbing set (every barrell) in E is a neighbourhood of zero. The theory of
barrelled L.CS is by now well documented through many books, among them
[17] and more recently [8] and [13]. If an LCS is metrizable, then it is barrelled
if and only if it is Baire-like, i.e., it can not be represented as a countable non-
decreasing union of absolutely convex, nowhere dense sets. In this defininition,
one may of course assume the sets to be closed. Observing that whenever a sub-
set of a Banach space is thin, then its linear span is thin as well, just comparing
the definitions gives

Proposition 2.4.2. A subset A C X is thick if and only if its linear span is
dense and barrelled.

Thus the equivalences (i)«<(iii) and (i)<(ii) in Theorem 2.4.1 are, respec-
tively, just a restatement for Banach spaces of the above-mentioned barrelledness
criterion, and the following well-known result of Bennett and Kalton.

Theorem 2.4.3 (see [1, Proposition 1]). Let Z C X be a dense subspace. Then
Z is barrelled if and only if whenever Y is a Banach space and T:Y — X is a
continuous linear operator such that TY D Z, then TY = X.

From [10, Proposition 1] and [15, Theorems 3.4 and 4.6] one has the following
characterization of weak*-thick sets.

Theorem 2.4.4. Let A C X*. The following assertions are equivalent.
(i) The set A is weak*-thick in X*.

(ii) Whenever Y is a Banach space and T: X — Y is a continuous linear
operator such that T*Y™* D A, then T*Y™* = X*.

(iii) Whenever a family of elements of the space X is pointwise bounded on A,
then this family is norm bounded.

On the contrary to Theorem 2.4.1, Theorem 2.4.4 has nothing to do with
results from the theory of barrelled spaces: it does not say anything about the
equicontinuity of weak*-continuous linear functionals, but it gives a test for the
equicontinuity of norm continuous linear functionals.

The already mentioned theorem due to Fonf (see [9, Theorem 1]) states that
if ext Bx« is weak*-thin in X*, then X contains a copy of ¢y. If X is separable,
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the same is true for w*-expBx~, the set of weak*-exposed points of Bx«, as is
shown in [10, Theorem 3*|.

Using results of Fonf, Nygaard showed in [15] that if both X* and Y are
co-free, then the set £ = extBx++ ® extBy» is weak*-thick in £(X,Y)*. From
this it follows that if both X* and Y are co-free, then ext Bic(x y)- is weak™-thick
in £(X,Y)*. Note that even K(¢3) contains a copy of ¢g.

In the theory of analytic functions, a set A satisfying the condition (iv) of
Theorem 2.4.1 is called a uniform boundedness deciding set (UBD-set) (see [7]).
It has been shown by Fernandez ([6]) that the set of inner functions is a UBD-set
in (H*,w*). Later it has been shown by H. Shapiro ([16]) that also the set of
the Blaschke-products has this property. Whether the inner functions form a
UBD-set in (H®, | - ||) is still unknown. In other words, it is unknown whether
the linear span of the inner functions in H is barrelled. What is known from
[16] is that this linear span is not a Baire space, but the inner functions form a
norming set in H>°. In fact, the closed, convex hull of the Blaschke-products is
exactly the unit ball in H* (see [12, Cor 2.6, p. 196]).
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Chapter 3

Weak metric approximation
properties and nice
projections

3.1 Introduction

Let X and Y be Banach spaces. We denote by L£(Y, X) the Banach space of
bounded linear operators from Y to X, and by F(Y,X), K(Y,X), W(Y, X)
its subspaces of finite rank operators, compact operators, and weakly compact,
operators, respectively.

We denote by X®,Y the (completed) projective tensor product of X and
Y. Recall that we may identify the dual of X®,Y with £(Y, X*) and that the
action of an operator 7 : Y — X*, as a linear functional on X®,Y, is given by

<T, Y an® yn> = > (Tyn)(wn)-
n=1 n=1

Let Ix denote the identity operator on X. Recall that X is said to have the
approzimation property (AP) if there exists a net (S,) C F(X, X) such that
Sa — Ix uniformly on compact sets in X. If the net (S,) can be chosen such
that sup,, ||Sa|| < 1, then X is said to have the metric approximation property
(MAP).

In [8] Lima and Oja introduced and studied the weak metric approxima-
tion property. Following Lima and Oja a Banach space X is said to have the
weak metric approzimation property (weak MAP) if, for every Banach space
Y and every operator T € W(X,Y), there exists a net (S,) C F(X,X) with
sup, |[T'Sall < ||T|| such that S, — Ix uniformly on compact sets in X.

It is immediate from the definitions that MAP = weak MAP = AP. How-
ever, the AP does not imply the weak MAP in general as was shown in [8,
Proposition 2.2]. Recently it was also shown [10, Corollary 1] that if a Banach
space has the weak MAP then it has the MAP if either its dual or its bidual
has the Radon-Nikodym property (RNP). It is, however, not known whether
the weak MAP and the MAP in general are equivalent properties.
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Let X be a subspace of a Banach space Y. A linear operator ¢ : X* — Y™ is
called a Hahn-Banach extension operator if (pz*)(z) = «*(z) and ||ox*|| = ||z*||
for every x € X and z* € X*. We denote the set of Hahn-Banach extension op-
erators ¢ : X* — Y* by BB(X,Y). It is easy to show that HB(X,Y") is non-void
if and only if X is an ideal in Y (in the sense of Godefroy, Kalton and Saphar
2)).

The following result [5, Propositions 2.1 and 2.5] of Lima establishes a con-
nection between the weak MAP and the existence of a Hahn-Banach extension
operator.

Theorem 3.1.1 (Lima). Let X be a Banach space. Then X has the weak MAP
if and only if there exists a Hahn-Banach extension operator ¢ € HB(X, X™**)
such that ©*|x« is in the weak*-closure of F(X, X) in L{(X**, X**).

Note that we can consider F(X, X) as a subspace of £(X**, X**) through the
embedding operator which maps an operator 7' € F (X, X) to its second adjoint

In Section 3.2 we improve Theorem 3.1.1 by showing that we can replace the
Hahn-Banach extension operator ¢ : X* — X*** by a Hahn-Banach extension
operator ¢p : X* — X*** guch that P = ¢}|x-+ is a projection on X**. This
result is then thereafter used to improve other characterizations of the weak
MAP.

In Section 3.3 we establish similar characterizations to those in Section 3.2
for two, recently introduced [6], natural compact companions of the weak MAP.

We will consider Banach spaces over the real scalar field only. We use stan-
dard Banach space notation, as can be found e.g. in [9]. The closed unit ball
of a Banach space X is denoted by Bx and the unit sphere of X by Sx. The
closure of a set A C X is denoted by A, its linear span by spanA, and its convex
hull by convA. We will write X* for the dual of X.

3.2 The weak MAP

We might ask what more can we say about the Hahn-Banach extension operator
in Theorem 3.1.1. In fact, by using a technique of Godefroy and Kalton from
[1], we will prove that we can replace the Hahn-Banach extension operator
v € B(X, X**) in Theorem 3.1.1 by a Hahn-Banach extension operator pp €
B(X, X**) such that P = ¢}|x+~ is a projection on X**. More explicitly we
have the following theorem.

Theorem 3.2.1. Let X be a Banach space.

(a) If P is a norm one projection on X** with X C P(X**) such that P
is in the weak*-closure of F(X,X) in L(X**, X**), then there exists a
Hahn-Banach extension operator ¢ € HB(X, X™*) such that ¢*|x« is in
the weak*-closure of F(X, X) in L(X**, X**).

(b) If there exists a Hahn-Banach extension operator ¢ € HB(X, X™*) such
that ©* | x«« is in the weak®-closure of F(X, X) in L(X**, X**), then there
exists a norm one projection P on X** with X C P(X™**) such that P is
in the weak*-closure of F(X, X) in L(X**, X*).
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Proof. (a) Assume that there exists a norm one projection P on X** with
X C P(X**) such that P is in the weak*-closure of F(X,X) in L(X™**, X**).
Then put pp = P*ix~ where ix- : X* — X*™* is the natural embedding of X*
into X***. Finally observe that pp : X* — X*** is a Hahn-Banach extension
operator such that ¢} |x« = P.

(b) We use an argument from the proof of [1, Theorem IIL.1]. Assume
that there exists a Hahn-Banach extension operator ¢ € HBB(X, X**) such that
©*|x*+ is in the weak*-closure of F(X,X) in L£(X™**, X**). Now, pick a net
(Sa) C F(X,X) such that S&* — | x»« weak™ in L(X**, X**). Let & be the
convex semi-group generated by the net (S%*), i.e. the smallest convex semi-
group that contains (S%*). Let &* denote the weak*-closure of &. Now &* is a
convex semi-group. To see this let U and V be in 6* and write

U=w"-limU**
V =w -lim V}*,

where Ug" and V" arein &. Choose u = Yoo eyt € X*®, X arbitrarily.
Then it follows that

o0 o0
UV(u) =lm Y (z}, UsVay) =lim > (Uzah, Vay’) (3.2.1)
n=1 n=1

= lién lién Z (Ui, Vi*ay') = lién H};D(UO‘VB)**(u).
n=1

Hence UV is in the weak*-closure of F(X, X) in £(X**, X**). It is obvious that

&* is convex.

Now put &o* = {T" € 6* : T'|x = Ix, ||T|| = 1}. Note that &o* # 0 since
©*|x € Gp*. Since Sp" is closed under composition, it is a semi-group. It is
straightforward to show that it is convex and weak*-closed.

Equip 6" with the order-relation < defined by S < T if | Sz**|| < ||T'z**||
for every z** € X**. Now let N be any maximal chain in (&%, <) and for
SeNlet Ng={T € N:T < S}. We can write N = [Jgcn Ns. Note that
each Ng is weak*-closed. Indeed, choose a net (V) in Ng and assume V, . %

weak*, where V'’ € &§. Then for every z** € X** we get
[V'2**| < liminf||Vaa™ | < ||Sz**].
(0%

By the maximality of N it follows that V' € N so Ng is weak*-closed. Now
choose (S;)_; C N arbitrarily. Then (Ng,)? , is a finite family of weak*-closed
sets and

= I < i ; .
QNSL {TeN:T< 1221”51} #0

Since Go* is weak*-compact, every family of closed sets having the finite in-
tersection property has a non-void intersection. Hence gy Ns # (). By the
Hausdorff maximality theorem every chain is contained in a maximal chain.
Hence, by the above argument, every chain in &y* has a lower bound. Tt now
follows by Zorn’s lemma that Gy* has a minimal element. Denote such a mini-
mal element by P.
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We now show that P is a projection of norm one. Since P is minimal and
[IS]| = 1 for all S € &¢" we have ||[SPz**|| = |Pz**| for all S € &p* and all
** € X**. Applying this observation to

1 n )
Sn - _(Z Pz)a
[
which by convexity is in &y*, gives

(S0 P? = SpP)a™ || = [|Sn P(Pz** — z**)]|
= [[P(Pz™ — 2™
= ||P2x** — Pz™||.

Since we have that

1
SpP? = S, P = —(P""* — P?),
n
we get that ||[P2z** — Pz**|| < 2 for all n > 1. Tt follows that P is a projection
on X** such that P is in the weak*-closure of (X, X) in £L(X**, X**). By the
definition of &¢*, P is of norm one and X C P(X**). O

In fact we can do slightly better than Theorem 3.2.1. The result below tells
us that we may assume that the net converging weak* to the projection, satisfies
some boundedness property.

Proposition 3.2.2. Let X be a Banach space with the weak MAP. Then there
exist a projection P on X** with X C P(X**) such that for every reflexive
Banach space Y and for every T € W(X,Y'), there exists a net (S,) C F(X, X)
with imsup,, || T'Sa|| < |T|| such that So — P weak™ in L(X**, X**).

Proof. Let € > 0, let Y be a reflexive Banach space, and let T € W(X,Y) of
norm one. Let up = > 0, Ti, @ TS, € X*@.X** for k = 1,...,m. Assume
Yoy il < oo and 1 > |[jzf | — 0 for each k = 1,..,m. Put K =
conv{+tay, k= 1,..,min =1,2,..} C Bx«. Let Z be the Banach space
constructed from K in the factorization lemma [7, Lemma 1.1], and let J :
Z — X™* be the identity embedding of Z into X*. Now Z is separable, reflexive
and J € K(Z,X*) is of norm one. Define a map V : X — Z* & Y by
Vo = (J*z,Tz). Note that V € W(X,Z* ®« Y). By Theorem 3.1.1 and
Theorem 3.2.1 there exists a norm one projection P on X** with X C P(X**)
such that P is in the weak*-closure of F(X,X) in £(X**, X**). Note that
V**P is in the weak*-closure of the convex set {V**S** : S € F(X,X)} in
W(X*, Z* B Y). Since Z* @ Y is reflexive we have, by [3, Theorem 1.5],
that V**P is in the weak™*-closure of

(V75705 € F(X, X, [[VS™ | < (VP + ¢}
in W(X*, Z* ® Y), which again is a subset of the weak*-closure of
{Vv==§=: S e F(X,X),|[VS|| <1+¢}
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in W(X*™,Z* & Y). Now choose zj , € Bz such that Jzy , = Th o, for all &
and n. Find S in the above set such that

oo o0
e>12r}€a<xm|V**S**§ 2kn, 0) @ 237, ) — V**PE (2k,n,0) @ 217, )|

= max |Z Zlon, ST XL i zkn,J*Px >|
n=1

1<k<m 4=
2 3 ) 32 o ) |
Since ||TS|| < |[VS]| < 1+ ¢, the result follows. O

When the space X is separable and does not contain a copy of #1, we know
even more about the projection.

Corollary 3.2.3. Let X be a separable Banach space not containing £1. Then
there exists a Hahn-Banach extension operator ¢ € HB(X, X**) such that ¢*|x+-
is in the weak*-closure of F(X, X) in L(X**, X**) if and only if there exist a
norm one projection P on X** with weak*-closed kernel and with X C P(X™**)
such that P is in the weak*-closure of F(X,X) in L(X**, X**).

Proof. This follows directly from Theorem 3.2.1 and [1, Claim III.2]. O

Building on Theorem 3.2.1, we arrive at the result below. This improves [5,
Propositions 2.5 and 3.1] in the way that the Hahn-Banach extension operator
@ X* — X in each of these results, is replaced by Hahn-Banach extension
operator gp : X* — X*** such that P = ¢} |x«+ is a projection on X**.

Theorem 3.2.4. Let X be a Banach space. The following statements are equiv-
alent.

(a) X has the weak-MAP.

(b) There exists a norm one projection P on X** with X C P(X**) such that
P is in the weak*-closure of F(X, X) in L(X**, X**).

(c) There exists a norm one projection P on X** with X C P(X™**) such that,
for every reflexive Banach space Y and every operator T € W(Y, X**), one
has PT € F(Y, X)**.

(d) There exists a norm one projection P on X** with X C P(X™**) such
that, for every separable reflexive Banach space Y and every operator T €

K(Y,X*), one has PT € F(Y, X)**.

Proof. (a)<(b) follows from Theorem 3.1.1 and Theorem 3.2.1.
(b)=(c) is obtained by the same reasoning as in [5, Proposition 3.1 (a)=(b)].
(c)=(d) is trivial.
(d)=(a) is obtained by the same reasoning as in [5, Proposition 3.1 (c¢)=-(a)].
O
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3.3 The weak MCAP and the very weak MCAP

Recently Lima and Lima [6] introduced and investigated two approximation
properties that are natural compact companions of the weak MAP. Following
[6], a Banach space X has the weak metric compact approzimation property
(weak MCAP) if, for every Banach space Y and every operator T' € W(X,Y),
there exists a net (S,) C K(X,X) with sup,, ||TSa|| < ||T]| such that S, —
Ix uniformly on compact sets in X. Moreover, X is said to have the wvery
weak metric compact approzimation property (very weak MCAP) if for every
Banach space Y and every operator T € W(X,Y') there exists a net (S,) C
K(X, X*) with sup,, |T**Sa| < ||T|| such that lim, tr(Squ) = tr(Ixu) for
every u € X*®,X. By comparing the definitions, it is immediate that the
following implications hold: weak MAP = weak MCAP = very weak MCAP.
As pointed out in [6, Remark 5.2|, there is a space with the very weak MCAP,
but without the weak MCAP. Moreover, the space of Willis [11, Proposition 4]
has the weak MCAP, but not the weak MAP.

Tt should be noted that similar results to Theorem 3.2.1 also hold for the
weak MCAP and the very weak MCAP. The results differ from Theorem 3.2.1
only in the way that F(X, X) is replaced by (X, X) in the weak MCAP case,
and (X, X**) in the very weak MCAP case. The proofs of these results are
verbatim to that of Theorem 3.2.1, using IC(X, X) and K(X, X**) instead of
F(X, X) respectively. The reason why the arguments work, is that the image
of the second adjoint of a compact operator is a subspace of the range space of
the operator itself. Hence the calculation in (3.2.1) holds.

Proposition 3.3.1. Let X be a Banach space.

(a) If P is a norm one projection on X** with X C P(X™**) such that P is
in the weak*-closure of K(X,X) [IK(X,X**)] in L(X**, X**), then there
exists a Hahn-Banach extension operator ¢ € HB(X, X**) such that ©*|x ==
is in the weak*-closure of K(X, X) [IK(X, X**)] in L(X**, X**).

(b) If there exists a Hahn-Banach extension operator ¢ € HB(X,X™*) such
that *|x== is in the weak*-closure of IC(X, X) [IC(X, X**) [ in L(X**, X*¥),
then there exists a norm one projection P on X** with X C P(X™**) such
that P is in the weak”-closure of K(X, X) [IC(X, X**)] in L(X**, X**).

By applying these results in companion with the proof of [5, Proposition 3.1]
and the proofs of [6, Theorem 4.3] and [6, Theorem 5.3], we obtain the following
strengthenings of [6, Theorem 4.3] for the weak MCAP case, and [6, Theorem
5.3] for the very weak MCAP case. The results improve [6, Theorem 4.3] and [6,
Theorem 5.3] in the way that the Hahn-Banach extension operator ¢ : X* —
X*** in each of these theorems is replaced by a Hahn-Banach extension operator
wp : X* — X*** such that P = ¢}|x=~ is a projection on X**.

Theorem 3.3.2. Let X be a Banach space. The following statements are equiv-
alent.

(a) X has the weak MCAP.

(b) There ezists a norm one projection P on X** with X C P(X™**) such that
P is in the weak*-closure of (X, X) in L(X**, X**).
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(c) There ezxists a norm one projection P on X** with X C P(X™) such
that, for every reflexive Banach space Y and every T € W(Y, X**), one
has PT € & where € = {S™*T: S5 € K(X,X)} Cc LY, X).

(d) There exists a norm one projection P on X** with X C P(X™*) such that,
for every separable reflexive Banach space Y and every T € K(Y, X*),
one has PT € &** where € is as in (c).

(e) There exists a norm one projection P on X** with X C P(X™**) such that,
for all sequences (z}) C X* and (z}*) C X** with Yo~ [Jak ||||z5*]| < oo
and > 07 i (S*xk) =0 forall S € K(X, X), one has Y o ai*(P*z}) =
0.

Proof. (a)<(b) follows from [6, Theorem 4.3 (a)«<(b)] and Proposition 3.3.1.
b)=-(c) is similar to the proof of [5, Proposition 3.1 (a)=-(b)].

¢)=(d) is trivial.

d)=>(e) is similar to the proof of [6, Theorem 4.3 (f)=-(g)].

e)=(b) is trivial. O

Y~ N N S

Theorem 3.3.3. Let X be a Banach space. The following statements are equiv-
alent.

(a) X has the very weak MCAP.

(b) There exists a norm one projection P on X** with X C P(X**) such that
P is in the weak*-closure of K(X, X**) in L(X**, X**).

(c) There ezxists a norm one projection P on X** with X C P(X™*) such
that, for every reflexive Banach space Y and every T € W(X,Y'), one has
T**P € &, where € = {T**S:5 e K(X,X*™)} C K(X,Y).

(d) There exists a mnorm one projection P on X** with X C P(X™**) such
that, for every reflexive Banach space Y and every T € K(X,Y), there
exists a net (S,) C K(X,X*), with sup, |[T**Sal| < [T, such that
w'-limg, SET*y = P*T*y* in X*** for all y* € Y*.

(e) There exists a norm one projection P on X** with X C P(X™**) such
that, for every reflexive Banach space Y and every T € K(X,Y), there
exists a net (S,) C K(X,X™), with sup, |[T**Sal| < [T, such that
T**S** — T**P in the strong operator topology.

(f) There ezists a norm one projection P on X** with X C P(X**) such that,
for all sequences (x3) € X* and (¢77) € X** with S0 || [l < o0
and Y07 2 (S*xk) = 0 for all S € K(X, X**), one has >0, ai*(P*x?)

nln nln
0.

Proof. (a)<(b) follows from [6, Theorem 5.3 (a)<(b)] and Proposition 3.3.1.

(b)=-(c)=(d)=-(e) are similar to the proofs of (b)=(c)=(d)=-(e) in |6, The-
orem 5.3] respectively.

(e)=(f). Let e > 0, let u = > 77 2% ® 23" € X*®.X**, and assume
S llaifl < coand 1> ||zk|| — 0. Put K =conv{+z} :n=1,2,..} C Bx~.
Let Z be the Banach space constructed from K in the factorization lemma [7,
Lemma 1.1], and J : Z — X* the identity embedding of Z into X*. Now Z is
separable, reflexive and J € K(Z, X*) is of norm one. Choose z, € By such
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that Jz, =z}, for every n € N. From the assumption it follows that there exists
a norm one projection P on X** with X C P(X**) and a net (S,) € K(X, X**)
with sup,, |[(J*|x)**Sall < 1 such that (J*|x)**S&* — (J*|x)**P in the strong
operator topology. Since ((J*|x)**S4) is bounded, we may assume that the net
converges to (J*|x)** P in the topology 7 of uniform convergence on compact
sets in X **. By the description of (L(X™**, Z*),7)*, due to Grothendieck [4] (see
i.e. |9, Proposition 1.e.3]), it now follows that there exists an S € (X, X**)
such that

e> [ Y AT x)" S @ zn) = Y (T |x) " Payy, za) |
n=1

n=1

e 00
=Y e = > (P, Tz |
n=1 n=1
=D an) = Y (P an |,
n=1 n=1
and we are done.
(f)=-(b) is clear by using the Hahn-Banach theorem. O
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Chapter 4

Unconditional 1deals of finite
rank operators

4.1 Introduction

A closed subspace Z of a Banach space X is an ideal in X if the annihi-
lator Z+ is the kernel of a norm one projection on X*. A linear operator
p: Z* — X*is called a Hahn-Banach extension operator if p(z*)(z) = 2*(2)
and ||¢(z*)|| = ||z*|| for every z € Z and z* € Z*. We write BB(Z, X) for the
set of all Hahn-Banach extension operators from Z* into X*. It is not difficult
to see that BB(Z, X) # 0 if and only if Z is an ideal in X. If Z is a subspace of
a normed space X, we say that Z is an ideal in X if Z is an ideal in X. The
notion of an ideal was introduced and studied by Godefroy, Kalton, and Saphar
in [5].

The stronger notion of an unconditional ideal (u-ideal for short) was intro-
duced and studied by Casazza and Kalton in [2]. If Z is an ideal in X such that
the corresponding projection P on X* satisfies || — 2P|| = 1, then Z is called
a wu-ideal in X. The projection is called a u-projection and the corresponding
p € B(Z, X) is called an unconditional Hahn-Banach extension operator. From
Lemma 2.2 and Proposition 3.6 in [5], we can state the following result.

Theorem 4.1.1 (Godefroy, Kalton, and Saphar). Let X be a Banach space and
let Z be a subspace of X. The following statements are equivalent.

(a) Z is a u-ideal in X.

(b) There exists a Hahn Banach extension operator ¢ € HB(Z,X) such that
whenever € >0, x € X and A is a convez subset of Z such that ©*(x) is
in the weak*-closure of A then there exists z € A with ||x —2z| < ||lz| +¢€.

(c) There exists a Hahn Banach extension operator ¢ € HB(Z,X) such that
for every x € X there is a net (zo) in Z such that ¢*(z) = limy 2o in the
weak” -topology and limsup,, ||z — 2z4| < ||z||.

(d) For every finite dimensional subspace F of X and every € > 0, there is a
linear map L : F — Z such that

(1) L(z) =z for everyx € FN Z, and

53



(2) ||z —2L(z)|| < (1 +¢)||x|| for every x € F.

Note that (1) can be substituted by the inequality ||L(x) — x| < ¢||z|| for every
x € FNZ. We will sometimes use this fact.

Let X and Y be Banach spaces. We denote by £(Y, X) the Banach space of
bounded linear operators from Y to X, and by F(Y, X), £(Y, X), and W(Y, X)
its subspaces of finite rank operators, compact operators, and weakly compact,
operators, respectively.

In Section 4.2 we show that the set of Hahn-Banach extension operators
B(X,Y) is a face in the unit ball of £(X*, Y*). We show in Proposition 4.2.2
that an unconditional Hahn-Banach extension operator has to be a center of
symmetry in BB(X,Y). If X contains a copy of ¢; and is a u-ideal in its bidual,
then we show that the diam BB(X, X**) = 2. We also show that in some im-
portant cases the set BB(X,Y) consists of a single element. The subspaces Z of
X such that ¢*|x-(Z++) € Z++ where ¢ € HB(X, X**) is unconditional are
characterized.

In Section 4.3 we establish in Theorem 4.3.2 characterizations of the case
when F(Y, X) is a u-ideal in W(Y, X) for every Banach space Y. The charac-
terizations include a statement similar to Theorem 4.1.1 (b) involving a Hahn-
Banach extension operator, a statement which is an approximation property
for X and statements about approximating weakly compact operators by finite
rank operators. In Theorem 4.3.8 we give similar characterizations of the case
when F(X,Y) is a u-ideal in W(X,Y) for every Banach space Y.

In Section 4.4 we characterize the property that F(Y, X) is a u-ideal in
W(Y, X**) for every Banach space Y in Theorem 4.4.4, and the property that
F(Y, X) is a u-ideal in (Y, X**) for every Banach space Y in Theorem 4.4.6 by
statements similar to those in Theorems 4.3.2 and 4.3.8. An example due to Oja
[25, Example 3| shows that the latter property is strictly weaker (see Remark
4.4.7 below). We define an unconditional version of the weak metric approxi-
mation property. We show by giving an example that this property is strictly
weaker than F (Y, X) being a u-ideal in K(Y, X**) for every Banach space Y.

We will frequently use the isometric version of the Davis-Figiel-Johnson-
Petczynski factorization lemma [3] due to Lima, Nygaard, and Oja [16]. Let X
be a Banach space and let K be a closed absolutely convex subset of the unit
ball Bx of X. If Z is the Banach space constructed from K in the factorization
lemma and J is the norm one identity embedding of Z into X (see [16, Lemma
1.1]), we will write

[Z,J] = DFJP(K).

From the factorization lemma we know that Z is reflexive if and only if K is
weakly compact. The factorization lemma also says that if K is compact, then
Z is separable and J is compact.

From the isometric version of the factorization lemma proved by Lima, Ny-
gaard, and Oja [16, Theorem 2.3] we get that if G C W(Y, X) is a finite dimen-
sional subspace, then there exist a reflexive Banach space Z, a norm one operator
J:Z — X, and a linear isometry ® : G — W(Y, Z) such that T = J o ®(T) for
every T € G. We will write

[Z,J,®] = DFJP(G), (4.1.1)
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for this construction. Similarly, using [16, Corollary 2.4], we get that if G C
W(X,Y) is a finite dimensional subspace, then there exists a reflexive Banach
space Z, a norm one operator J : X — Z, and a linear isometry ® : G —
W(Z,Y) such that T = ®(T) o J for every T € G. We will write

(Z,®,J] = DFIP(G), (4.1.2)

for this construction.

We use standard Banach space notation as used by Lindenstrauss and Tzafriri
in [23]. Only real Banach spaces are considered unless otherwise stated. The
closed unit ball of a Banach space X is denoted by Bx and the identity operator
on X is denoted by Ix. We will write X* for the dual space of X. If Z C X is
a subspace of X, then we will write iz : Z — X for the canonical embedding.
We will write kx : X — X** for the natural embedding of X into its bidual.
ext Bx denotes the set of extreme points in Bx. If T': X — Y is an operator
and z € X, then we will write Tz instead of T'(z) when there is no danger of
confusion.

4.2 Unconditional Hahn-Banach extension oper-
ators

Let us start with a general result about the location and the size of the set of
Hahn-Banach extension operators.

Proposition 4.2.1. Let Y be a Banach space. If X is an ideal in Y, then
IB(X,Y) is a face in Brx« y+).

Proof. Let ¢1, ¢2 € Br(x+ y-) and suppose ¢ = @ € B(X,Y). We then
get that

%P1 + 1% P2

5 ZZ}(IO:IX* EextBE(X*’X*).

Thus i%¢; = Ix~ and ¢; € B(X,Y) for i =1,2. O

In Lemma 3.1 in [5] there is an algebraic proof of the fact that an uncon-
ditional Hahn-Banach extension operator is unique. Next we have a geometric
proof. (Recall that x is a center of symmetry in a subset A of a linear space X
if 2 —y € A for every y € A.)

Proposition 4.2.2. Let X be a u-ideal in Y with unconditional p € B(X,Y).
For z* € X*, let lB(x™) C Y™ be the set of norm preserving extensions of x* to
Y. Then @(x*) is the center of symmetry in HB(x*) for every z* € X*.

In particular, the unconditional Hahn-Banach extension operator ¢ is unique,
and ¢ is a center of symmetry in B(X,Y).

Proof. Let y* € BB(z*) and let P, = ¢i% be the u-projection. Then ||z*|| =
ly* Il = I = 2P, )y | = lly* — 26(a")]l, 50 that 2¢(a*) — y* € BB(a*). Hence
o(z*) is a center of symmetry in HB(z*). Since a center of symmetry in a
convex bounded set is unique, it follows that there is at most one unconditional
extension operator in BB(X,Y).
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If v € B(X,Y) and z* € X*, then ¢(z*) € BB(z*). Using that ¢(z*) is a
center of symmetry in BB(z*) we get 2p(z*) — ¢(2*) € B(2*). Hence we get
2¢0 — 1 € B(X,Y) and ¢ is a center of symmetry in BB(X,Y). O

The following result shows that if a Banach space X contains a subspace
isomorphic to ¢; and is a u-ideal in its bidual, then the diameter of HB(X, X**)
is as large as possible.

Proposition 4.2.3. Let X be a Banach space which contains a subspace iso-
morphic to 1. If X is a u-ideal in its bidual, then diam HB(X, X**) = 2.

Proof. Let m = kx+k% and P, = ¢k’ respectively be the canonical projection
and the u-projection on X***. By Proposition 4.2.2 the unconditional Hahn-
Banach extension operator ¢ is a center of symmetry in HB(X, X**), i.e. ¢ =
20 —kx+ € BB(X, X**). Let Py = ¢k% and note that P, is an ideal projection
on X***. By Proposition 2.6 in [5] we have ||I — 27| = 3, so

2> [Py — | = [12P, = 2x|| = [T = 27| — [I — 2Pl = 2.
Hence || — kx+|| = || Py — 7| = 2, so diam HB(X, X**) = 2. O

Note that the proof of Proposition 1 in [1] shows that if a non-reflexive Ba-
nach space X is 1-complemented in its bidual by a projection P, then HB(X, X**)
consists of at least two elements.

One direction of the following theorem was proved for separable h-ideals in
[5, Theorem 6.7]. Our argument, as the proof of Theorem 6.7 in [5], is based on
an application of Theorem 4.1.1 (b).

Theorem 4.2.4. Let X be a Banach space. Assume that X is a u-ideal in
X** with unconditional p € HB(X,X**). Let Z be a closed subspace of X.
Then o*(Z++) € Z++ if and only if Z is a u-ideal in Z** with unconditional

Hahn-Banach extension operator o € HB(Z, Z**) such that i3 ¢* |z« = @i}

Proof. Suppose ¢*(Z++) Cc Z1+. iz : Z — X is the natural embedding, so i,

is the restriction and 77" is weak*-weak® continuous, isometric, and onto Z++.

Define ¢ : Z* — Z*** by
Y(2*) = (a” + Z7) = iy " p(a”)
for z* = 2* + Z+ € Z*. Since i3 (Z**) C Z++ we get that ¢ is well-defined:
(W(27),2") = (2" + 27, 9" (i (™)) = (", " (i (z"))) = (i7" p("), 2™)

for z** € Z**. Thus we have ¢ (i} (2z*) = i5*p(2*) for all z* € X*. Taking
adjoints we get i3 Y% |7+« = @™ i3 .
Let us show that ¢ is an unconditional Hahn-Banach extension operator.

Clearly % is linear with norm at most one. For z € Z and z* = z* + Z+ € Z*

we have
Y(2")(2) = (p(a"),iz(2)) = (&",iz(2)) = 2" (2).

Let z2** € Bz« and € > 0. Since X is a u-ideal in X** and ¢* (i3 (2**)) is in
the w*-closure of Bz in X™** there exists a z € By such that

127 = 22| = [liZ"(z™") = 2iz(2)|| <[]z + ¢
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by Theorem 4.1.1 (b). Thus thereis anet (z,) C Bz with limsup,, [|2**—2z,| <
[lz**|| such that z, — ¥*(2**) weak™ in Z** (here we used i} ¢)* |z = p*i}).
Hence ||2** — 2k% (¢ (2*))|| < ||z**|| and ¢ is unconditional.

For the converse assume that Z is a u-ideal in Z** with unconditional ¢ €
B(Z, Z**) such that i} 9y*|z« = p*i%. Let 2** € Z++ in X** and choose
2** € Z** such that i (2**) = 2**, then *(2**) = i} (V*2**) € Z++. O

Recall that a Banach space X is said to have the approximation property
(AP) if there exists a net (S,) C F(X,X) such that S, — Ix uniformly on
compact sets in X. Lima, Nygaard, and Oja have proved [16, Theorem 3.3] that
a Banach space X has the AP if and only if the set BB(F(Y, X), W(Y, X)) of
Hahn-Banach extension operators is non-empty for every Banach space Y.

In some cases the set of Hahn-Banach extension operators consists of a single
element. For example if X is an M-ideal in a Banach space Y, then BB(X,Y)
contains a single element (see [7, Proposition 1.2]. Cf. [7, p. 1] for definition
of an M-ideal). A Banach space X such that HB(X, X**) consists of a single
element is said to have the unique extension property (UEP). This notion was
introduced and studied by Godefroy and Saphar in [6]. They proved in [6,
Corollary 5.4] that if X and Y are Banach spaces such that X is reflexive and
Y™ has the Radon-Nikodym property (RNP) and contains no proper norming
subspace, then X ®. Y and K£(X,Y") have the UEP. (Recall that a subspace Z
of Y* is norming if ||yl = sup{y*(y) : y* € Z,|ly*|| < 1} fory € Y.)

From [24] we also know that BB(F (Y, X), L(Y, X)) contains a single element
for every Banach space Y whenever X is either ¢, or the Lorentz sequence
space d(w,p) for 1 < p < oo (see also [7, Example 4.1] for the case X = ¢, and
Y = ¢, where 1 < ¢ < p < 00). Dually we also have that BB(F(X,Y), L(X,Y))
contains a single element for every Y whenever X is either ¢, or d(w,p)* for
1 < p < co. From [26, Theorem 3] we have in addition that the above holds if
X is a closed subspace of either ¢,, d(w,p) or d(w,p)* with the AP. Also the
set BB(F(Y, co), L(Y, o)) consists of a single element for every Banach space Y
(F(Y, co) is an M-ideal in L(Y, cp), see |7, Example 4.1]). The next results tell
us that in many more cases the set of Hahn-Banach extension operators consists
of a single element.

Proposition 4.2.5. Let X and Y be Banach spaces. If X has the AP and Y
is reflexive, then HBB(F(Y, X)), W(Y, X)) consists of one element only.

Proof. Let ® € BB(F(Y, X),W(Y, X)), let 2* € X* and y € By. Assume that y
is a strongly exposed point. Then by Lemma 3.4 in [15] * ®y has a unique norm-
preserving extension from F (Y, X) to W(Y, X) and hence ®(z* @ y) = 2* Q y.
Since Y has the RNP we get ®(z*®y) for every z* € X* and y € Y by linearity
and continuity. By a theorem of Feder and Saphar [4, Theorem 1] F(Y, X)*
is a quotient of X* ® Y and it follows that & is just the identity and hence
unique. ([l

A Banach space X has the AP if and only if F(Y, X) is dense in (Y, X) for
every Banach space Y (cf. e.g. [23, Theorem 1.e.4]). By [17, Theorem 5.1] X
has the AP if and only if F(Y, X) is a (trivially unconditional) ideal in (Y, X)
for every Banach space Y.

For Y reflexive, we can combine Proposition 4.2.5 with the isometries F(X,Y) =
F(Y*, X*) and W(X,Y) = W(Y™*, X*) and we get the following corollary.
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Corollary 4.2.6. Let X and Y be Banach spaces. If X* has the AP and Y is
reflexive, then lB(F(X,Y),W(X,Y)) consists of one element only.

The dual of a Banach space X has the AP if and only if F(X,Y) is dense
in £(X,Y) for every Banach space Y (cf. e.g. [23, Theorem 1.e.5]). By [17,
Theorem 5.2] X* has the AP if and only if 7(X,Y) is a (trivially unconditional)
ideal in K(X,Y") for every Banach space Y.

4.3 F(Y,X) as a u-ideal in W(Y, X)

From [17, Theorem 5.1] and [19, Theorem 4.4] (resp. [19, Theorem 4.3]) we have
the following result.

Theorem 4.3.1 (Lima and Oja). Let X be a closed subspace of a Banach space
Z. Then F(Y,X) is a u-ideal in W(Y, Z) (resp. K(Y,Z)) for all Banach spaces
Y if and only if F(Y, X) is a u-ideal in W(Y, Z) (resp. K(Y,Z)) for all (resp.
separable) reflexive Banach spaces Y .

The next theorem characterizes the property that F(Y, X) is a u-ideal in
W(Y, X) for every Banach space Y in terms of convergence of nets of finite rank
operators. The statements should be compared with their prototypes in similar
results on ideals (see [11, Theorem 5.2] and [20, Theorem 2.3]).

Theorem 4.3.2. Let X be a Banach space. The following statements are equiv-
alent.

(a) F(Y,X) is a u-ideal in W(Y, X) for every Banach space Y.

(b) F(Y,X) is a u-ideal in span(F(Y,X),{T}) for every T € W(Y, X) and
for every reflexive Banach space Y .

(¢) For every reflexive Banach space Y there exists a Hahn-Banach extension
operator ¥ € HB(F(Y,X),W(Y, X)) such that for every T € W(Y,X)
there is a net (T,) C F(Y,X) with limsup,, |T — 2T4|| < ||T|| such that
To — Y*(T) =T weak* in F(Y,X)*".

(d) For every weakly compact set K C X there is a net (So) C F(X,X) with
lim, sup, ek | — 2Saz|| < sup,cg ||z|| such that S — Ix uniformly on
compact subsets of K.

(e) For every Banach space Y and T € W(Y,X) there is a net (S,) C
F (X, X) with limsup,, ||T — 25,T|| < ||T|| such that S, — Ix uniformly
on compact sets in X.

(f) For every Banach space Y and T € W(Y,X) there is a net (S,) C
F(X,X) with limsup, |T — 2S.T|| < ||T|| such that So — Ix in the

strong operator topology.

(g) For every reflexive Banach spaceY and T € W(Y, X)) there is a net (S,) C
F(X,X) with limsup, |T — 25,T| < ||T| such that ST — T in the

strong operator topology.
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Proof. (a) = (b) is immediate from the local characterization of u-ideals, The-
orem 4.1.1.

(b) = (c). Assume that Y is reflexive and let T € W(Y, X). Since F(Y, X)
is a u-ideal in B = span(F (Y, X),{T}) we can, using the local characterization
of u-ideals Theorem 4.1.1, find a net (T,) C F(Y, X) with limsup,, |7 — 2T, <
IT|| such that T, — ®5(T) weak*, where &y € B(F (Y, X),B) is the un-
conditional extension operator. From the argument in the proof of Proposi-
tion 4.2.5 ®7 is unique and of the form & = Ix- ® Iy. A straightforward
calculation shows that ®%(T) = T. Thus the operator ¥ = Ix- ® Iy €
B(F(Y, X),W(Y, X)) satisfies (c) in Theorem 4.1.1.

(¢c) = (d). Let K C X be weakly compact, e >0, and u =Y - 2} @z, €
X*®,X. Assume that K is a symmetric subset of Bx. Assume also that 1 >
lzn]| — 0 and that > [ja%|| < co. Put [Z,J] = DFJP(conv{+K Uz, : n =
1,...,00}). Now Z is reflexive, J € W(Z, X), and ||J|| < 1. Find z, € Bz such
that x,, = Jz,. Choose a net (J,) C F(Z,X) with limsup,, ||J — 2J| < ||J]|
such that J, — J weak* in F(Z, X)**. Since J*X* is norm-dense in Z* [16,
Lemma 1.1] we can write J, = SoJ where (S,) C F(X,X) (see the proof of
[21, Theorem 3.2]). Now we can find an S among the S,’s such that

e> Y (STznan) = D (Jzmai) | = 1) (Sanay) =Y (wn,27,)]
n=1 n=1 n=1 n=1

and sup,c g ||z — 2Sz|| <sup,cp, [|[Jz — 257z < ||J —28J|| <1+e.

(d) = (e). Let Y be a Banach space and let T € W(Y, X) of norm one. Let
C C Bx be compact and let € > 0. Define K = conv(+(C UT(By))) and note
that K C Bx and weakly compact. By assumption there is S € F(X, X) with
SUp,ex || — 25z|| < 1+ ¢ and sup, ¢ | — Sz| < e. From this (e) follows.

(e) = (f) and (f) = (g) are trivial.

(g) = (a). Let Y be a Banach space, let € > 0, and choose a finite dimen-
sional subspace F C W(Y, X). Put [Z,J,®] = DFJP(F) (see (4.1.1)) and let
G=FnZFXY,X). Then

K= ] T(By)
TeBg

is a compact subset of X and of Z. It follows from the assumptions that we
can find an S € F(X, X) with ||J —25J| < 1+ ¢ such that ||z — Sz|| < e for
every z € K. Define L : F — F(Y,X) by L(T) = ST. Then |T — L(T)|| <
(M|l — SJT|| < e|T| for every T € G and |T —2L(T)|| = ||T — 25T <
(DI —28J|| < (1 +¢)||T|| for T € F. The result now follows from local
characterization of u-ideals in Theorem 4.1.1. O

Remark 4.3.3. Let {5 be the equivalently renormed version of {5 defined by Oja
and denoted F' in Example 3 in [25]. The space F(Kl,gg) is not a u-ideal in
W(fl,ég) (by [25, Example 3| and [27, Theorem 1.2] or [28, Proposition 1]).
Since 5 has the AP, F(Y,/5) is an ideal in W(Y, /) for all Banach spaces Y
(see [25, Example 3] or [16, Theorem 3.3]). Thus statement (a) in Theorem 4.3.2
is strictly stronger than statement (a) in Proposition 4.3.5 below. Note that this
implies that the bound limsup,, |7 — 25,T|| < ||T|| in statement (f) in 4.3.2 is
strictly stronger than the bound limsup,, | To|| < ||7]] in (iii) in Corollary 1.5
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in [16].

Since /5 is reflexive, we also get that F(£3, £o,) is not a u-ideal in W(3, (o).
Hence, also £ is an example of a Banach space X such that F(Y, X) is an ideal
in W(Y, X) for all Banach spaces Y, without being a u-ideal for all Y. Also,
if for 0 < r < 1, Y, are the equivalently renormed versions of ¢y defined in [§],
then F(¢1,Y,) is not a u-ideal in W(¢1,Y;) for any 0 < r < 1, even though
F(Y,Y,) is an ideal in W(Y,Y,) for all Banach spaces Y and 0 < r < 1 (see last
paragraph in [25]).

Remark 4.3.4. Let X be a Banach space and let K C Bx be a weakly com-
pact subset. If X has the AP, then there is a net (S,) C F(X,X) with
sup,c [|Sax|| < 1 such that S, — Ix uniformly on compact sets in X. In-
deed, put [Z, J] = DFJP(conv(£K)). Using [4, Theorem 1] we get that Br(z x)
cannot be strongly separated from conv(S,J). This should be compared with
statement (d) in Theorem 4.3.2.

A Banach space X is said to have the unconditional metric approximation
property (UMAP) if there is a net (T,) C F(X, X) with limsup,, [|[Ix —2T,| <1
such that T,(x) — « for all z € X. Like u-ideals, also the notion of the UMAP
(for separable spaces using sequences) was introduced by Casazza and Kalton
in [2].

In Theorem 5.2 in [11] it was proved that X has the UMAP if and only if
F(Y,X) is a u-ideal in L(Y, X) for every Banach space Y.

If X is reflexive, then (d) in Theorem 4.3.2 says that X has the UMAP. By
[2, Theorem 3.9], it follows that in this case F(Y, X) is a u-ideal in W(Y, X) for
all Banach spaces Y if and only if F(X, X) is a u-ideal in W(X, X).

From [16, Theorem 3.3| and [14, Corollary 2] (see also [9, Theorem 5.1], [30,
Proposition 2.1]) we get the following proposition.

Proposition 4.3.5. Let X be a Banach space. The following are equivalent.

a) F(Y,X) is an ideal in W(Y, X) for every Banach space Y.

(
(b) X has the AP.

)
)

(¢) Ewvery separable ideal Z in X has the AP.
)

(d) F(Y,Z) is an ideal in W(Y, Z) for every Banach space Y and separable

zdeal Z in X.
For u-ideals we have the following result.

Proposition 4.3.6. Let X be a Banach space and assume F(Y, X) is a u-ideal
in W(Y, X) for every Banach space Y. Then a closed subspace Z of X has the
AP if and only if F(Y, Z) is a u-ideal in W(Y, Z) for every Banach space Y .

Proof. One direction is immediate from Proposition 4.3.5.

For the reverse direction let Y be a reflexive Banach space, Z a subspace of
X with the AP, and T € W(Y, Z). Put T =iz oT, choose a compact subset
K of Z, and let € > 0. By Theorem 4.3.2 there is a net (S,) C F(X,X) with
limsup,, | T — 25,7 < |T|| = ||T|| such that S, — Ix uniformly on compact
sets. Since Z has the AP, there is a net (Ug) C F(Z,Z) such that Us — Iz
uniformly on compact sets. After switching to the product index set we may
suppose that (Ug) is indexed by the same set as (S,). Hence we shall write
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(Uy) from now on.

Now let u € F(Y, X)*. Since Y is reflexive and X has the AP F(Y, X)* is
isometrically isomorphic to a quotient of X*®,Y by a theorem of Feder and
Saphar [4, Theorem 1]. Choose a representation > -, 2% ® y,, for u. For the
net T, = SoizT —izU,T, we have

(u,Ta) =Y (@, (SaizT — izUsT)(yn))

n

Il
—

—

M8

(i, Tyn) — Y (igah, Tyn) = 0.
n=1

n=1

Hence T,, — 0 weakly in F(Y, X). Consequently a suitable net of convex com-
binations of T, converges in norm to 0. Thus there exist «y, S'QD € co{Sa, :
a > ag}, and f]ao € co{U, : a > ap} such that ||5’a0iZT - iZUaoTH < g,
sUp, e i |0 (2) — 2| < &, and | T — 28, T|| < ||T|| +&. We get that

lizT — 2izUnT|| < |lizT — 280yizT|| + 2||SagizT — izUa T < ||| + 3e.

Hence | T — 2U,,T|| < ||T|| + 3¢, and the result follows from the local charac-
terization of u-ideals Theorem 4.1.1.
([l

Remark 4.3.7. If F(Y,Z) is a u-ideal in W(Y, Z) for every Banach space Y
and subspace Z of X with the AP, then F(Y, X) is not necessarily a u-ideal in
W(Y, X) for every Banach space Y. Indeed, for 1 < p < oo, choose a subspace
X of £, such that X does not have the AP (cf. e.g. [23, p. 91]). X cannot be
complemented and hence is not an ideal in £,. It is probably well known that
F(Y,4p,) is a u-ideal in W(Y, ¢,,) for all Banach spaces Y. (It can be proved by
using that the standard basis of £, is 1-unconditional and then Theorem 4.3.2
(g).) By Proposition 4.3.6 F(Y, Z) is a u-ideal in W(Y, Z) for every subspace
Z of X with the AP. But X does not have the AP so F(Yp, X) is not even an
ideal in W(Yp, X)) for some Banach space Y by [16, Theorem 3.3].

Let X be a Banach space. In the next theorem we want to study when
F(X,Y) is a u-ideal in W(X,Y") for all Banach spaces Y. In Theorem 6.5 in
[11] it was proved that (a) K(X,Y) is a u-ideal in £(X,Y") for all Banach spaces
Y is equivalent to (c) there is a net (T,) C K(X, X) with limsup,, [|[I—2T,| <1
such that T,z — z for all z € X and T2* — z* for all z* € X* which in turn
is equivalent to (e) X has the metric compact approximation property and X
has property (wM™*). Note that the equivalence of (c) and (e) follows from
the equivalence of (3°) and (2°) in Corollary 4.5 in [29] by taking @ = 1 and
B = {—2}. In all these statements (X, X) (resp. K(X,Y)) may be replaced
by F(X,X) (resp. F(X,Y)) (see the text after Corollary 4.6 in [29]).

Theorem 4.3.8. Let X be a Banach space. The following statements are equiv-
alent.

(a) F(X,Y) is a u-ideal in W(X,Y) for every Banach space Y.
(b) F(X.,Y) is a u-ideal in W(X,Y') for every reflexive Banach space Y.
(c) F(X,Y) is a u-ideal in span(F(X,Y),{T}) for every T € W(X,Y) and

for every reflexive Banach space Y .
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(d) For every reflexive Banach space Y there exists a Hahn-Banach extension
operator ¥ € HB(F(X,Y),W(X,Y)) such that for every T € W(X,Y)
there is a net (T,) C F(X,Y) with limsup,, ||T — 2T, | < ||T|| such that
To — Y*(T) =T weak in F(X,Y)**.

(e) For every weakly compact compact set K C X* there is a net (S,) C
F(X, X) with limg sup,. c g ||o* —2S%2*|| < supy-cx ||a*|| such that S} —
Ix~ uniformly on compact subsets of K.

(f) For every Banach space Y and T € W(X,Y) there is a net (S,) C
F(X,X) such that limsup,, | T — 2T'S,|| < |T|| and S% — Ix~ uniformly
on compact sets in X*.

(g) For every Banach space Y and T € W(X,Y) there is a net (S,) C
F(X,X) such that limsup, ||T — 2TSs| < |T|| and S% — Ix« in the
strong operator topology.

(h) For every reflexive Banach space Y and T € W(X,Y) there is a net
(Sa) C F(X, X) such that limsup, | T — 2T S| < ||T|| and SET* — T*

in the strong operator topology.

Proof. IfY is a reflexive Banach space, we have isometries 7(X,Y) = F(Y™*, X*)
and W(X,Y) = W(Y™*, X*). Using this observation, Theorem 4.3.8, for reflex-
ive spaces Y, follows from Theorem 4.3.2.

Tt now suffices to show that the statements in (a) and (f) hold whenever they
hold for reflexive spaces Y. Indeed, to see that (a) holds we can use the local
characterization of u-ideals in Theorem 4.1.1 and an argument similar to (g) =
(a) in Theorem 4.3.2 (use (4.1.2) instead of (4.1.1)).

To see that (f) holds we put [Z,®, J] = DFJP(span({T'}) where Y is a Ba-
nach space and T' € W(X,Y). Since Z is reflexive and J € W(X, Z) there is
a net (o) C F(X,X) with limsup, ||J —2J5,| < ||J|| = 1 such that S} —
Ix+ uniformly on compact sets in X*. Finally, write limsup,, ||T — 2TS,| <
limsup,, |®(T)||||J —2JSa]| < ||T|| and we are done. O

Remark 4.3.9. By [16, Theorem 3.4] we get that F(¢1,Y) is an ideal in W({1,Y)
for every Banach space Y. In Remark 4.3.3 we noticed that F(f1,05) is not a
u-ideal in W(Zl,gg) where /5 is the equivalent renorming of /5 constructed by
Oja in [25]. Thus ¢ does not fulfill statement (a) in Theorem 4.3.8.

Note that Proposition 2.3 in [22] for M-ideals also holds for u-ideals by using
the local characterization of u-ideals in Theorem 4.1.1 instead of the 3-ball-
property used in [22, Proposition 2.3| (see [13, Theorem 6.17], [7, Theorem 1.2.2]
or [22, Theorem 2.1]). Thus if a dual space X* contains a copy of ¢y, then
F(£1,Y) is a u-ideal in W(¢1,Y) whenever F(X,Y) is a u-ideal in W(X,Y).
If /5 is the equivalently renormed version of /5 constructed by Oja, it follows
from the preceding paragraph that F(X, /5) fails to be a u-ideal in W(X, f5)
whenever X* contains a copy of c¢g.

Remark 4.3.10. Recall that a u-ideal Z in X is strict if the u-complement of
Z+ in X* is a norming subspace for X, i.e. if ¢(Z*) is a norming subspace of
X* where ¢ € BB(Z, X) is the unconditional Hahn-Banach extension operator.

If Y is a reflexive Banach space and F(Y, X) is a u-ideal in W(Y, X) then
it is in fact a strict u-ideal. This is easily seen from the proof of Proposition
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4.2.5. Indeed, in this case there is a unique Hahn-Banach extension operator
¢ € B(F(Y, X),W(Y, X)) which is of the form & = Ix«®Iy. Since Bx«®By C
W(Y, X)* is norming for W(Y, X) the claim follows. Similarly by Corollary
4.2.6, if Y is reflexive, then F(X,Y) is a strict u-ideal in W(X,Y) whenever it
is a u-ideal.

If X is a Banach space it follows from [16, Theorem 3.4] and [12, Proposition
2.5] that F(X,Y) is an ideal in W(X,Y") for every Banach space Y if and only if
F(Z,Y) is an ideal in W(Z,Y") for every Banach space Y and for every separable
ideal Z in X. For u-ideals we have the following result.

Proposition 4.3.11. Let X be a Banach space. If F(X,Y) is a u-ideal in
W(X,Y) for every Banach space Y, then F(Z,Y) is a u-ideal in W(Z,Y") for
every tdeal Z in X and Banach space Y .

Proof. Let Y be a Banach space and let Z be an ideal in X with corresponding
Hahn-Banach extension operator ¢ € BB(Z, X). Let G be a finite dimensional
subspace of W(Z,Y) and define the map L : G — W(X,Y) by

L(T) =T o¢*|x, Te€G.

Let ¢ > 0. By the local characterization of u-ideals, Theorem 4.1.1, there
is an operator M : L(G) — F(X,Y) such that M(S) = S for every S €
F(X,Y)NL(G) and ||S—2M(S)|| < (1+¢)||S| for every S € L(G). Now define
an operator N : G — F(Z,Y) by

N(T) = M(L(T)) o i.

Tt is straightforward to verify that the operator N fulfills (d) in Theorem 4.1.1
and the result follows. O

4.4 F(Y,X) asau-ideal in (Y, X**) and W(Y, X*)
From [17, Theorem 5.1] and [19, Proposition 2.10] we have the following result.

Proposition 4.4.1 (Lima and Oja). Let X be a closed subspace of a Banach
space Y. If F(Z,X) is a u-ideal in K(Z,Y") for every reflexive Banach space Z,
then X is a u-ideal in'Y .

The next result tells us more.

Proposition 4.4.2. Let X be a closed subspace of a Banach space Y and let
Z be a reflexive Banach space. Assume F(Z,X) is a u-ideal in K(Z,Y) with
unconditional extension operator V. Then X is a u-ideal in'Y with unconditional
extension operator ¥ satisfying

V(" ©z) = (Ya*) @z

forall z € Z and z* € X*.
Moreover, if the above assumption holds for every separable reflexive Banach
space Z, then ¥*|y is in the w*-closure of F(Y,X) in L(Y, X™).
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Proof. We proceed as in the proof of [18, Theorem 2.3]. Let ¥ € B(F(Z, X),K(Z,Y))
be the unconditional Hahn-Banach extension operator and denote the corre-
sponding ideal projection on K(Z,Y)* by Py. Since Z is reflexive, it follows
from [18, Theorem 1.3| that there exist {¢; : i = 1,...,n} C B(X,Y) such that

Z = ZG%Z\MH Zyy, # {0} for all1 <i<mn,

=1
where
Z\pwi = {Z € Z: \I/((E* & Z) = (wlx*) ®Z,V{E* S X*}

Let (Py,) be the corresponding ideal projections on Y*. It now follows that for
2 € Lyy, and y* € Y™

Izllly™ll = lly" @zl = [(I = 2Pe)(y" @ 2)|| = [ly" @ 2 = 2Pu(y" @ 2)|
=lly" @z =2(Pyy") © 2| = I(y" = 2Py,y") © 2| = [I2[l[ly" — 2Py, y7]|-

Hence every 1; is unconditional and by uniqueness, see Proposition 4.2.2, they
are all equal. With ¢ =1); we have Z = Zy,.

Furthermore, if F(Z, X) is a u-ideal in X(Z, X) for all separable reflexive Z,
then by Lemma 2.1 in [20] there is for every such Z and T' € K(Z,Y) anet (T,)
in F(Z, X) with sup,, || Ta|| < ||T|| such that T — T*¢ in the strong operator
topology. By boundedness we may also assume that (u,T,) — (u,T) for all
uwe X*®2.

Choose u = Y. 7} @ y, € X*®,Y and assume that > |jz%| = 1 and
1 > |lynll — 0 and put [Z,J] = DFJP(conv{ty, : n = 1,...,00}). Then Z
is a separable reflexive Banach space and J € K(Z,Y) with ||J|| < 1. Pick a
net (Jo) C F(Z,X) with sup,, ||Jo| < ||J|| such that J: — J*3 uniformly on
compact sets. As in the proof of (c)= (d) in Theorem 4.3.2 we may assume that
each J* = J*S* for some S, € F(Y,X). Now choose € > 0 and let z, € Bz
such that y, = Jz,. Since J; — J*1 uniformly on compact sets, it follows that
there is an operator S € F(Y, X) such that

e> Y (IS wn, zm) = ) (Tl za) | = 1) (an, Syn) = D (e, ¥ ) |-
n=1 n=1

n=1 n=1

Hence 9*|y is in the w*-closure of F(Y, X) in L(Y, X**).
O

Remark 4.4.3. f Y = X** in Proposition 4.4.2 we actually have that *|x« is
in the weak*-closure of set F(X,X) in L(X**, X**). In this case J*(X*) and
not just J*(X***) is norm-dense in Z* (see the proof of [10, Proposition 2.1]).
Thus we can write each J: = J*S* for some S, in F(X,X) (and not only in
F(X*, X)).

Let X be a Banach space. From Theorem 4.3.1 we have that F(Y, X) is a
u-ideal in W(Y, X**) for every Banach space Y if and only if F(Y,X) is a u-
ideal in W(Y, X**) for every reflexive Banach space Y. The next results contain
other characterizations of these statements.

Theorem 4.4.4. Let X be a Banach space. The following statements are equiv-
alent.
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(a) F(Y,X) is a u-ideal in W(Y, X**) for every Banach space Y.

(b) X is a u-ideal in its bidual with unconditional Hahn-Banach extension
operator ¢ € HB(X,X™) such that for every Banach space Y and T €
W(Y, X**) there is a net (S,) C F(X,X) with limsup, ||T — 255 T <
IT|| such that SE*T — *T weak* in L(Y, X**).

(c) There exists a Hahn-Banach extension operator v € HB(X, X**) such that
for every Banach space Y and T € W(Y,X**) there is a net (So) C
F(X,X) with limsup, ||T — 2S5 T|| < ||T| such that S*T — *T weak*
in L(Y, X**).

(d) For every weakly compact compact set K C X** there is a net (S,) C
F(X, X) with limg sup . || — 255%™ || < supge-c i ||2**|| such that
Sa — Ix uniformly on compact subsets of K N X.

(e) For every Banach space Y and T € W(Y,X™**), there is a net (So) C
F(X,X) with imsup,, ||T — 2S5 T|| < ||T|| such that Sq — Ix uniformly
on compact sets in X.

(f) For every reflexive Banach space Y and T € W(Y, X™**), there is a net
(Sa) C F(X,X) with limsup, |T — 25T < ||T|| such that S, — Ix
uniformly on compact sets in X.

Proof. (a) = (b). Let Y be a Banach space and let T € W(Y, X**). Put
G = span({T'}) and let [Z,J,®] = DFJP(G). Now Z is reflexive and J €
W(Z, X**)is of norm 1. Let ¥ : F(Z, X)* — W(Z, X**)* be the unconditional
Hahn-Banach extension operator. As in the proof of Proposition 4.4.2 we can
show that X is a u-ideal in X** with ¢y € BB(X, X**) unconditional such that
U(z* @2z) =19(z*) ®z for every " € X* and z € Z. By Theorem 4.1.1 there is
anet (J,) C F(Z,X) such that limsup,, ||J—2J,| <1 and J, — ¥*(J) weak*.
Since J*(X™*) is norm dense in Z* we can assume that each Ja = S}*J where
(Sa) C F(X,X). Since | T — 285°T|| = |JO(T) — 285 J(T)| < |T]|J —
285 J|| we get limsup,, ||T"—2S5*T|| < ||T|-

Letu =3 2} @y, € X*®,;Y. Thenv =3 2 @ (®(T)y,) € X*®Z.
We get that

(u, " T) =Y (s, JO(T)yn) = (¥(0), J) = (v, ¥7(J))

n

=lim(v, S2*J) = lim Z(mﬁl, S Typ) = lim(u, SE*T).

This shows that S5*T — ¢*T weak* in L(Y, X**).
(b) = (c) is trivial.

(c) = (d) is similar to the proof of (c¢) = (d) in Theorem 4.3.2.

(d) = (e) is similar to the proof of (d) = (e) in Theorem 4.3.2.

(e) = (f) is trivial.

(f) = (a) is similar to the proof of (f) = (a) in Theorem 4.3.2. O

Remark 4.4.5. Note that X = ¢ fulfills Theorem 4.4.4 since cg an M., space
(see [7] p. 306) and [7, Proposition 5.6].

Theorem 4.4.6. Let X be a Banach space. The following statements are equiv-
alent.
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(a) F(Y,X) is a u-ideal in K(Y, X**) for every Banach space Y.

(b) X is a u-ideal in X** with unconditional Hahn-Banach extension v such
that ™| x«= is in the weak™-closure of the F(X,X) in L(X**, X**).

(¢) X is a u-ideal in its bidual with unconditional Hahn-Banach extension
operator ¥ € HB(X,X*™) such that for every Banach space Y and T €
K(Y, X**) there is a net (So) C F(X, X) withlimsup,, || T—252T|| < || Tl
such that S**T — *T weak* in LY, X**).

(d) For every Banach space Y and T € K(Y,X**) there is a net (So) C
F(X,X) with limsup, |T — 2S5*T| < ||T|| such that S, — Ix uniformly
on compact sets in X.

(e) For every separable reflexive Banach spaceY and T € IC(Y, X**) there is a
net (So) C F(X, X) with imsup,, ||T—2S5*T|| < ||T|| such that S, — Ix
uniformly on compact sets in X.

Proof. (a) = (b) follows from Proposition 4.4.2.

(b) = (c). Let Y be a Banach space and let T' € K(Y, X**). Put G =
span({T'}) and write [Z, J, ®] = DFJP(G). Now Z is reflexive and J € K(Z, X**)
has norm one. Let ¢ € BB(X, X**) be the unconditional Hahn-Banach exten-
sion operator and choose a net (S,) C F(X, X) such that S** — ¢*|x« weak*
in £(X**, X**). Since Z is reflexive, K(Z, X**)* is a quotient, of X ***®, Z by [4,
Theorem 1] of Feder and Saphar. Now let ¢ > 0 and let u € X***®,Z. Choose
a representation > >~ | 2%** ® z, for u such that > 7 (|25 ||| 20| < [Jullx + &
and write z = z**|x. We get that

(@, (] =287 Dza) | = | ) {an™ = 2855, T z0) |

n=1

M8

| (u, J =257 ) | = |

Il
-

n

*
M8

o0
(= 2y, Jan) < D [l (1T zall < Jullx +e.
n=1

n=1

Hence conv(.JJ—2S53*J) can not be strongly separated from By (7 x++). By taking
successive convex combinations we get a new net, also denoted (S, ), such that
limsup,, ||J — 2S5%*J|| < 1. Thus

limsup |7 — 253°7| < limsup [0(T)[|J — 255" < |7
(6% «

Obviously S**T — *T weak™ in L(Y, X**).
(¢) = (d). Argue as in the proof of (d) = (e) in Theorem 4.4.4.
(d) = (e) is trivial.
(e) = (a). Argue as in the proof of (g) = (a) in Theorem 4.3.2. O

Remark 4.4.7. In [10, Proposition 2.1] it is proved that F (Y, X) is an ideal
in W(Y, X**) for every Banach space Y if and only if F(Y, X) is an ideal in
K(Y, X**) for every Banach space Y. This fails if we replace “ideal” with “u-
ideal”. Indeed, if we let X = /5, the equivalent renorming of /5 obtained by
Oja (see Remark 4.3.3), then we have a counterexample. This proves that the
statements in Theorem 4.4.6 are strictly weaker than those in Theorem 4.4.4.
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The next result shows that F(Y, X) being a u-ideal in W(Y, X**) for all
Banach spaces Y is inherited by some subspaces of X.

Proposition 4.4.8. Suppose F(Y,X) is a u-ideal in W(Y, X**) for every Ba-
nach space Y and let o € B(X, X**) be the unconditional Hahn-Banach ezxten-
sion operator. Then F(Y,Z) is a u-ideal in W(Y, Z**) for every Banach space
Y and ideal Z in X such that p*(Z++) c Z++.

Proof. Let Y be a reflexive Banach space and let Z be an ideal in X such
that ¢*(Z++) C Z++. Denote by iz : Z — X the natural embedding. Since
o*(Z+1) ¢ Z+4, it follows from Theorem 4.2.4 that Z is a u-ideal in its bidual
with an unconditional extension operator ¢ € HB(Z, Z**) such that i3*¢)*| 7« =
p*i%. From Theorem 4.4.6 we have ¢*|x«~ in the weak*-closure of F(X, X) in
L(X**, X**). By the Principle of Local Reflexivity it is routine to check that
1*|z+« is in the weak*-closure of L£(Z**, Z**).

Choose a compact subset K of Z and an operator T € W(Y, Z**). Put
T =iy oT € W(Y,X**). By Theorem 4.4.4 there is a net (S,) C F(X, X)
with limsup,, |7 — 28*T|| < ||T|| = ||T| such that S**T — ¢*|x--T weak*
in L(X**, X**). From the first paragraph there is a net (U;) C F(Z, Z) such
that U* — ¢*|z+« weak® in £(Z**, Z**). Assume (S,) and (U;) have the same
index set. Thus we will write (U,) for the net in F(Z, Z). Note that U, — I
uniformly on compact sets in Z. Now let u = Yz} @ y, € F(Y,X)* and
To = S5315T —1;UT. From this we get that

(u,Ta) = Y (@5, (S57i7 — 7 U (Tyn))
= Z(mfl,Sz* i Tyn)) Z iyar, U (Tyn))

n

=Y {ah, @ (15 Tyn) = > (i5ah, v (Tya)) = 0.

Hence T,, — 0 weakly in F(Y, X). Consequently a suitable net of convex com-
binations of T, converges in norm to 0. Thus there exist ag, Sa, € co{S:* :
o > ag}, and Uy, € co{U*™ : a > ag} such that |7 — 25,,T| < |T| +e,
SUp, e i 1Uapz — 2|| < &, and ||Suy iy T — i Un, T)|| < &. We get

liZ T = 2057 Uay T\l < |iZ T — 280,05 Tl + 2| Sasiz T — i Uay Tl < 17| + 3e.

Hence || T — 2U,,T|| < ||T|| + 3¢, and the result follows. O

In [21] Lima and Oja introduced and studied the weak metric approximation
property. Following Lima and Oja a Banach space X is said to have the weak
metric approximation property (weak MAP) if for every Banach space Y and
operator T' € W(X,Y) there is a net (So) C F(X, X) with sup, ||TSa| < |7l
such that S, — Ix uniformly on compact subsets in X. It is easy to see that
the MAP implies the weak MAP. In [31, Corollary 1] it is shown that the weak
MAP and the MAP are indeed equivalent for a Banach space for which either
its dual or its bidual has the RNP.

Lima proved in [10] that X has the weak MAP if and only if (Y, X) is an
ideal in IC(Y, X**) for every Banach space Y. Based on this, it is natural to guess
that an “unconditional version” of the weak MAP could be the property that for
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every Banach space Y and operator T' € K(X,Y) there is a net (S,) C F(X, X)
with limsup,, |7 —2T'S.|| < ||T|| such that S, — Ix uniformly on compact sets
in X. As remarked below, this property is strictly weaker than the statements
in Theorem 4.4.6.

Proposition 4.4.9. Let X be a Banach space. The following statements are
equivalent.

(a) For every Banach space Y and operator T € K(X,Y), there is a net
(So) C F(X,X) such that limsup,, |T — 2T'S,|| < ||IT|| and S, — Ix
uniformly on compact sets.

(b) For every reflexive Banach space Y and operator T € K(X,Y), there is a
net (Sq) C F(X, X) such that limsup, ||T — 2T S| < ||T|| and TSo — T
uniformly on compact sets.

(c) There is a Hahn-Banach extension operator ¢ € HB(X, X**) with || Ix+ —
2¢% ..l = 1 such that ¢*|x« is in the weak"-closure of F(X,X) in
E(X**, X**).

Proof. (a) = (b) is trivial.
(b) = (c). The proof is essentially that of [10, Proposition 2.5].
(c) = (a) is similar to Theorem 4.4.6 (¢) = (d). O

Remark 4.4.10. If ¢ € BB(X, X**) is an unconditional extension operator then
([ {xxx —200% | xx || = |[Ixc%=x —29pk% || = 1. To see this, first note that 1 = || Ixxxx—
k% || = |[Ixwwex — 2k%Fp*||. Write the identity operator on the dual X* as
Ix- = k% kx- and the identity operator on bidual X** as Ix« = k%.kx--. By
taking adjoints we obtain from the first equality that Ix« = (Ix-)* = k% .k¥.
Tt follows that

Txer — 20" kixee

= (ke kxee — 2k% kY x e

<1

Proposition 4.4.11. Let X be a Banach space. If every equivalent renorming
of X is a u-ideal in its bidual, then X is a strict u-ideal in its bidual.

Proof. Let z*** € X*** z* = k% (2***), and let ¢ > 0. By [11, Lemma 2.4|
there is an equivalent renorming X; of X which is locally uniformly rotund at
x* such that Bx C Bx, C Bx(0,1+¢). Let |- | be the norm on X; and let
P X7 — X{** be the u-ideal projection. Then P(z***) = z* and

which shows that ||I — 27| = 1 where 7 = kx-k% so X is a strict u-ideal in its
bidual. ]

Remark 4.4.12. The statements in Proposition 4.4.9 are strictly weaker than
those in Theorem 4.4.6. Indeed, as noted in [5] (see p. 29) ¢; is not a strict
u-ideal in its bidual. Thus it follows from Proposition 4.4.11 that there exists an
equivalent renorming, [1’ of ¢; for which ¢; is not a u-ideal in its bidual. Since
/1 has the AP, Proposition 4.4.9 (c) is fulfilled with ¢ = ké’{'
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