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Chapter 1Introdu
tion and perspe
tivesThis introdu
tion provides ba
kground material for the arti
les [3℄, [1℄, and[2℄ whi
h respe
tively 
onstitute Chapters 2 to 4 in this thesis. Se
tion 1.1
ontains notation and terminology used in the introdu
tion. In Se
tion 1.2we present ba
kground material for the arti
le [3℄. This arti
le 
ontains new
hara
terizations of thi
k and weak∗-thi
k sets. Subse
tion 1.2.2 
ontains ageneralization of the notion of thi
k sets. New results and open problems arealso presented here. In Se
tion 1.3 ba
kgroundmaterial for the arti
les [1℄ and [2℄is presented. These arti
les 
ontain new results about approximation propertiesand u-ideals. In subse
tion 1.3.2 we dis
uss some open problems related to thenotion of u-ideals.1.1 Notation and terminologyThe notation and terminology used throughout this introdu
tion is standard(see e.g. [57℄). We will write N, R, and C for the sets of natural numbers, realnumbers, and 
omplex numbers, respe
tively. K will denote a set that 
an beeither R or C. The letters X , Y , and Z will denote Bana
h spa
es unless oth-erwise stated. The letters E, F , and G will typi
ally denote �nite dimensionalBana
h spa
es. The 
losed unit ball of a Bana
h spa
e X is denoted by BX andthe unit sphere of X is denoted by SX . We will write X∗ for the dual spa
eof X . The sets of extreme points, exposed points, and strongly exposed pointsof BX are respe
tively denoted by extBX , expBX , and str-expBX . Similarly
ω*-expBX∗ and ω*-str-expBX∗ denote the sets of weak∗-exposed and weak∗-strongly exposed points of BX∗ .Let A be a subset of a Bana
h spa
e X . Then its norm 
losure, 
onvex hull,absolutely 
onvex hull, and linear span will be denoted by A, 
onvA, abs
onvA,and spanA, respe
tively. We will write Aw for the weak 
losure of A. Similarly,if A is a subset of a dual spa
e X∗, Aw∗ denotes the weak∗-
losure of A.Let X and Y be Bana
h spa
es. We will write L(Y,X) for the Bana
hspa
e of bounded linear operators from Y to X , and F(Y,X), K(Y,X), and
W(Y,X) for its subspa
es of �nite rank operators, 
ompa
t operators, andweakly 
ompa
t operators, respe
tively. If Z is a subspa
e of X , then we willwrite iZ : Z → X for the 
anoni
al embedding of Z into X . IX will denote theidentity operator on X . If no 
onfusion is possible, we will sometimes also write1



I for the identity operator on a Bana
h spa
e. The natural embedding of Xinto its bidual will be denoted by kX : X → X∗∗. kerT will denote the kernelof a bounded linear operator T .
1.2 Ba
kground on thi
k and weak∗-thi
k sets inBana
h spa
esThe Bana
h-Steinhaus Uniform Boundedness Prin
iple (see e.g. [69, p. 43℄) isone of the 
ornerstones in the theory of Bana
h spa
es. Spe
ial 
ases of thetheorem dates ba
k to those of Lebesgue [43℄ in 1909 for the fun
tion spa
es
L2[a, b], L1[a, b], L∞[a, b], Helly [36℄ in 1912 for the fun
tion spa
e C[a, b], andToeplitz [77℄ and S
hur [71℄ in 1913 and 1920 for the sequen
e spa
e c. Theabstra
t version of the Bana
h-Steinhaus Uniform Boundedness Prin
iple waspublished independently by Hahn [34℄, Bana
h [6℄, and Hildebrant [38℄ in theyears 1922 − 1923. Bana
h and Steinhaus [8℄ proved a more general version ofthe prin
iple for se
ond 
ategory sets in 1927. The proof of this theorem wasmodern be
ause it used Baire's Category Theorem [5℄ (
f. [58, p. 37℄) insteadof the gliding hump te
hnique (
f. [17, pp. 138-142℄) used before. This generalversion of the Bana
h-Steinhaus Uniform Boundedness Prin
iple essentially tellsus that whenever (Tα) is a family of bounded linear operators on some Bana
hspa
e X , whi
h is pointwise bounded on a set A of the se
ond 
ategory in X ,then the family is bounded. However, in some 
ases, boundedness 
an be ob-tained from pointwise boundedness on a �smaller set� than the se
ond 
ategory.Indeed, the Nikodým-Grothendie
k Boundedness Theorem (see e.g. [16, p. 14℄or [15, p. 80℄) says that if a family (Tα) of bounded linear operators is pointwisebounded on the set of 
hara
teristi
 fun
tions in the unit sphere of the spa
e
B(Σ) (see text above Theorem 1.2.5), then this family is bounded. This set of
hara
teristi
 fun
tions is 
ertainly not of the se
ond 
ategory, it is even nowheredense. Thus it is natural to ask: How 
an we sharpen the Bana
h-SteinhausUniform Boundedness Prin
iple in the sense of weakening the restri
tions onthe set A on whi
h to test pointwise boundedness?Building on a result of Kadets and Fonf [26, Proposition 1℄, Nygaard pro-posed a property, that he 
alled thi
kness, whi
h is weaker than the se
ond
ategory, so that the 
on
lusion of the Bana
h-Steinhaus Uniform BoundednessPrin
iple still holds [59℄. Further, Nygaard showed that thi
kness is the ultimateproperty in the sense that if a subset B of a Bana
h spa
e X is not thi
k, thenit is always possible to �nd an unbounded family of bounded linear operators on
X whi
h is pointwise bounded on B. Nygaard noti
ed also that the thi
knessproperty is equivalent to another fundamental property in the theory of linearoperators. The property is the one that guarantees that if a bounded linearoperator T : Y → X is onto a subset B of X , then it is onto X .The paper [3℄, whi
h is presented in Chapter 2 in this thesis, 
ontains new
hara
terizations of the thi
kness property, and a weaker dual 
ompanion 
alledthe weak∗-thi
kness property, in terms of integrability of ve
tor-valued fun
-tions. 2



1.2.1 Basi
 results on thi
k and weak∗-thi
k setsSuppose X and Y are topologi
al ve
tor spa
es. The following two problemsare of fundamental importan
e in the theory of linear operators:Problem 1.2.1. Assume A is a subset of Y . Find a property on A su
h thatevery 
ontinuous linear operator T : X → Y is onto Y if and only if the rangeof the operator 
ontains A.Problem 1.2.2. Assume A is a subset of Y and that A is a subset of the spa
eof all 
ontinuous linear operators from Y into X. Find a property on A su
hthat A is bounded if and only if the set {Ty : T ∈ A} is bounded for ea
h y ∈ A(A is pointwise bounded on Y ).If Y is of �nite dimension, the answer to both problems is of 
ourse that Ahas to 
ontain as many independent ve
tors as the dimension of Y . When Y isof in�nite dimension there is, on the 
ontrary, no simple answer to any of theproblems.However, from a 
lassi
al theorem that appeared already in Théorie desOpérations Linéaires [7℄, the following result is known.Theorem 1.2.3 (Bana
h, 1932). If T is a bounded linear operator from aBana
h spa
e into a normed linear spa
e, then the range of T is either of �rst
ategory or equal to the range spa
e itself.Another 
lassi
al theorem, the famous 
ategory version of the Bana
h-SteinhausUniform Boundedness Prin
iple [8℄, whi
h appeared in a joint paper of Bana
hand Steinhaus as early as 1927, reads:Theorem 1.2.4 (Bana
h and Steinhaus, 1927). Let (Tn) be a sequen
e ofbounded linear operators from a Bana
h spa
e Y into a Bana
h spa
e X. Sup-pose supn ‖Tny‖ < ∞ for every y ∈ A where A is a set of the se
ond 
ategoryin Y . Then supn supy∈BY
‖Tny‖ <∞.Thus Theorem 1.2.3 and Theorem 1.2.4 tell us that the property se
ond
ategory is su�
iently strong to obtain impli
ation in one dire
tion in bothProblems 1.2.1 and 1.2.2 when X and Y are Bana
h spa
es. However, thereare examples whi
h show that this property is indeed too strong for the reverseimpli
ations to hold. In the 
ase of Problem 1.2.1, the spe
ta
ular theorem ofSeever shows this [72℄ (see also [16, p. 17℄). (B(Σ) denotes here the Bana
hspa
e of uniform limits of simple fun
tions modeled on the σ-algebra Σ.)Theorem 1.2.5 (Seever, 1968). Let Σ be a σ-algebra of subsets of a set Ω andlet X be a Bana
h spa
e. Let T : X → B(Σ) be a bounded linear operator whoserange in
ludes the set {χE : E ∈ Σ}. Then TX = B(Σ).In parti
ular Seever's theorem says that if an operator is onto the set of 0-1sequen
es in ℓ∞, then it is onto ℓ∞.In the 
ase of Problem 1.2.2, the Nikodým-Grothendie
k Boundedness Theo-rem (see below) shows that se
ond 
ategory is a too strong property. Indeed, thisis easily seen from Corollary 1.2.7 below whi
h is an immediate 
onsequen
e ofthe Nikodým-Grothendie
k Boundedness Theorem. (Use the fa
t that for ea
hbounded linear operator T : B(Σ) → X there 
orresponds a ve
tor measure

F : Σ → X de�ned by F (E) = T (χE) and then apply Theorem 1.2.6.)3



Theorem 1.2.6 (Nikodým and Grothendie
k). Let Σ be a σ-algebra of subsetsof a set Ω, let X be a Bana
h spa
e, and let {Fτ : τ ∈ T } be a family of X-valuedbounded ve
tor measures de�ned on Σ. If supτ ‖Fτ (E)‖ < ∞ for ea
h E ∈ Σ,then the family {Fτ : τ ∈ T } is uniformly bounded, i.e. supτ∈T ‖Fτ‖(Ω) <∞.Corollary 1.2.7. Let Σ be a σ-algebra of subsets of a set Ω. Suppose {Tα : α ∈
A} is a 
olle
tion of bounded linear operators from B(Σ) to a Bana
h spa
e Xsu
h that supα∈A ‖TαχE‖ <∞ for ea
h E ∈ Σ. Then supα ‖Tα‖ <∞.It is 
lear from the theorems above, that if X and Y are Bana
h spa
es andif A is a subset of Y , then the property on A that solves both Problem 1.2.1and Problem 1.2.2, is stri
tly between A being span dense in Y and A being ofthe se
ond 
ategory in Y . But still, what 
hara
terizes su
h a property?In [26℄, Kadets and Fonf en
overed a property whi
h in fa
t solves Problem1.2.1 in the 
ase Y is a Bana
h spa
e and A is a bounded subset of Y .Theorem 1.2.8 (Kadets and Fonf, 1983). Let Y be a Bana
h spa
e and suppose
A ⊂ SY . The following are equivalent statements:(a) For any Bana
h spa
e X and any bounded linear operator T : X → Ysu
h that T (X) ⊃ A, one has T (X) = Y .(b) For every representation of A as the union of an in
reasing sequen
e ofsets, A = ∪∞

i=1Ai, (Ai ↑), there is an index j su
h that
inf

y∗∈SY ∗

sup
y∈Aj

|y∗(y)| > 0.Theorem 1.2.8 suggests the following de�nition (
f. [26℄, [25℄, and [59℄).De�nition 1.2.9. Let Y be a normed linear spa
e. A subset A ⊂ Y is said tohave the surje
tivity property if for every Bana
h spa
e X , every T ∈ L(X,Y ),su
h that T (X) ⊃ A, we have that T is onto Y . If the same 
on
lusion holds fora subset A ⊂ L(X,Y ), we say that A has the A-restri
ted surje
tivity property.For the spe
ial 
ase when A ⊂ Y ∗ and A is the spa
e of adjoints in L(X∗, Y ∗),we say that A has the weak∗-surje
tivity property.Note that Theorem 1.2.3 of Bana
h, says that every se
ond 
ategory set ina Bana
h spa
e has the surje
tivity property.Before we go into a further dis
ussion of Problems 1.2.1 and 1.2.2, we needto agree on some more de�nitions (
f. [26℄, [25℄, and [59℄).De�nition 1.2.10. A subsetA of a Bana
h spa
e Y (resp. a dual Bana
h spa
e
Y ∗) is said to be norming (resp. weak∗-norming) if infy∗∈SY ∗

supy∈A |y∗(y)| > 0(resp. infy∈SY
supy∗∈A |y∗(y)| > 0). The subset A is 
alled thin (resp. weak∗-thin) if it 
an be written as a 
ountable in
reasing union of non-norming (resp.non-weak∗-norming) sets. If A is not thin (resp. weak∗-thin) it is 
alled thi
k(resp. weak∗-thi
k).The following geometri
al lemmas [59, Lemmas 2.2 and 2.3℄ are easy 
onse-quen
es of the Hahn-Bana
h separation Theorem.Lemma 1.2.11. Let Y be a real normed spa
e and A a subset of Y . Thefollowing statements are equivalent. 4



(a) A is norming.(b) 
onv(±A) is norming.(
) There exists δ > 0 su
h that 
onv(±A) ⊃ δBY .Lemma 1.2.12. Let Y be a real normed spa
e and A a subset of Y ∗. Thefollowing statements are equivalent.(a) A is weak∗-norming.(b) 
onvw∗

(±A) is weak∗-norming.(
) There exists δ > 0 su
h that 
onvw∗

(±A) ⊃ δBY ∗ .We remark that if the spa
e Y is 
omplex, Lemma 1.2.11 and Lemma 1.2.12hold if we repla
e 
o(±A) with 
o(∪|r|=1rA) where r is a 
omplex number.Of 
ourse a norming set in a dual spa
e is weak∗-norming. However, it doesnot need to be weak∗-thi
k. The set of extreme points of the unit ball of ℓ1 issu
h an example sin
e it is 
ountable. (Indeed, it is 
lear that every 
ountableset is thin, or weak∗-thin if it is in a dual spa
e). There are also weak∗-thi
ksets whi
h are not norming. The unit ball of every non-re�exive Bana
h spa
e,
onsidered as a subset of the bidual, is su
h an example. Next we give anexample of a set whi
h is both norming and weak∗-thi
k.Example 1.2.13. Let H∞(D) denote the spa
e of bounded analyti
 fun
tionson the open unit disk. The Blas
hke produ
ts in H∞(D) is a weak∗-thi
k andnorming set [59, Corollary 3.7℄. See [70, p. 310℄ for a de�nition of Blas
hkeprodu
ts. It is unknown whether the Blas
hke produ
ts forms a thi
k set.It is immediate from the de�nitions that every thi
k set in a dual spa
e isweak∗-thi
k. From the de�nitions it is also straightforward to verify that sets ofthe se
ond 
ategory are thi
k [59, Lemma 3.4℄. General examples of thi
k andweak∗-thi
k sets are given by the results [27, Theorem 4.3℄, [60, Corollary 2.2℄,[24, Theorem 1℄, and [25, Theorem 3*℄.Theorem 1.2.14 (Fonf and Lindenstrauss, 2003). Let X be a separable non-re�exive Bana
h spa
e. Then the set of fun
tionals in X∗ whi
h do not attaintheir maximum on BX is a thi
k set.Theorem 1.2.15 (Nygaard, 2006). Let X be a Bana
h spa
e. If x∗∗ ∈ X∗∗\X,then kerx∗∗ is a weak∗-thi
k subset of X∗.Re
all that a subset B of the unit sphere SX∗ of the dual of a Bana
h spa
e
X is 
alled a James boundary of X , if for every x ∈ X , there exists x∗ ∈ B su
hthat x∗(x) = ‖x‖.Theorem 1.2.16 (Fonf, 1989). Let X be a Bana
h spa
e. If X does not 
ontaina 
opy of c0, then every James boundary of X is weak∗-thi
k.Theorem 1.2.17 (Fonf, 1996). Let X be a separable Bana
h spa
e. If X doesnot 
ontain a 
opy of c0, then ω*-expBX∗ is weak∗-thi
k.5



De�nition 1.2.18. Let Y be a normed linear spa
e. A subset A ⊂ Y is said tohave the boundedness property if for every normed linear spa
e X , every family
(Tα) ⊂ L(Y,X), whi
h is pointwise bounded on A, is bounded. If the same
on
lusion holds for a subset A ⊂ L(Y,X), we say that A has the A-restri
tedboundedness property. For the spe
ial 
ase when A ⊂ Y ∗ and A is the spa
e ofadjoints in L(Y ∗, X∗), we say that A has the weak∗-boundedness property.From the Bana
h-Steinhaus Uniform Boundedness Prin
iple [8℄ (see also[69, p. 43℄) we have that sets of the se
ond 
ategory in Bana
h spa
es have theboundedness property. Note also that Theorem 1.2.5 of Seever and Corollary1.2.7 of Nikodým and Grothendie
k say that the 
hara
teristi
 fun
tions in theunit sphere of B(Σ) both have the surje
tivity property and the boundednessproperty.Nygaard proved in [59℄ the following general result.Theorem 1.2.19 (Nygaard, 2002). Suppose A is a subset of a Bana
h spa
e
Y . The following statements are equivalent.(a) A has the surje
tivity property.(b) For every Bana
h spa
e X, every inje
tion T : X → Y whi
h is onto A isan isomorphism.(
) A has the boundedness property.(d) Every sequen
e (y∗n) ⊂ Y ∗ whi
h is pointwise bounded on A is a boundedsequen
e in Y ∗.(e) A is thi
k.Note that from Theorem 1.2.19 it follows that Seever's theorem and theNikodým-Grothendie
k Boundedness Theorem are the same.In [59℄ another spe
ial 
ase of Problem 1.2.1 was 
onsidered, that is the 
asewhen A is a subset of the dual of a Bana
h spa
e X and the operators areadjoints into X∗.Theorem 1.2.20 (Nygaard, 2002). Suppose A is a subset of the dual of aBana
h spa
e Y . The following statements are equivalent.(a) A has the weak∗-surje
tivity property.(b) For every Bana
h spa
e X, every dual inje
tion T : X∗ → Y ∗ whi
h isonto A is an isomorphism.(
) A has the weak∗-boundedness property.(d) Every sequen
e (yn) ⊂ Y whi
h is pointwise bounded on A is a boundedsequen
e in Y .(e) A is weak∗-thi
k.The notion of weak∗-thi
k sets also turns up in the theory of ve
tor measures.Let us re
all the basi
 de�nitions from this theory (
f. e.g. [16℄).Let X be a Bana
h spa
e and let F be an algebra of subsets of a set Ω.A set fun
tion F : F → X is 
alled a ve
tor measure if whenever E1 and E26



are disjoint members of F , then F (E1 ∪ E2) = F (E1) + F (E2). If, in addition
F (∪∞

n=1En) =
∑∞
n=1 F (En), with 
onvergen
e in the norm-topology of X , forall sequen
es (En) of pairwise disjoint members of F su
h that ∪∞

n=1En ∈ F ,then F is said to be a 
ountably additive ve
tor measure. Moreover, a ve
tormeasure F : F → X is said to be bounded if supE∈F ‖F (E)‖ <∞.If Σ is a σ-algebra of subsets of a set Ω, and µ a measure on Σ, then afun
tion f : Ω → X is 
alled weakly µ-measurable if for every x∗ ∈ X∗ thes
alar valued fun
tion x∗f is µ-measurable.The following theorem was proved by Dunford already in 1937 (
f. [16,p. 52℄).Theorem 1.2.21 (Dunford, 1937). Let X be a Bana
h spa
e, Σ a σ-algebraof subsets of a set Ω, and µ a measure. If f : Ω → X is a fun
tion su
h that
x∗f ∈ L1(µ) for every x∗ ∈ X∗, then for ea
h E ∈ Σ there exists x∗∗E ∈ X∗∗satisfying

x∗∗E (x∗) =

∫

E

x∗(f)dµ (1.2.1)for all x∗ ∈ X∗.Based on this result, we 
an de�ne the Dunford integral.De�nition 1.2.22. A weakly µ-measurable fun
tion f : Ω → X is 
alled Dun-ford integrable if x∗f ∈ L1(µ) for every x∗ ∈ X∗. The Dunford integral of f over
E ∈ Σ is de�ned by the element x∗∗E of X∗∗ in (1.2.1). We denote this integralby (D) −

∫

Ω fdµ.Moreover, if (D) −
∫

Ω
fdµ ∈ X , then f is 
alled Pettis integrable.In [18℄ and [14℄ Dimitrov and Diestel independently proved the followingresult.Theorem 1.2.23 (Dimitrov, 1971 and Diestel, 1973). Let X be a separableBana
h spa
e whi
h does not 
ontain isomorphi
 
opies of c0 and let (Ω,Σ, µ)be a �nite measure spa
e. Then every Dunford integrable fun
tion f : Ω → Xis Pettis integrable.Using this theorem of Dimitrov and Diestel, in 
ombination with the fa
tthat when a Bana
h spa
e X is c0 free, the set extBX∗ is weak∗-thi
k [24,Theorem 1℄ (
f. Theorem 1.2.16), Fonf obtained the following theorem.Theorem 1.2.24 (Fonf, 1989). Let X be a separable Bana
h spa
e whi
h doesnot 
ontain isomorphi
 
opies of c0. Then, whenever (Ω,Σ, µ) is a �nite measurespa
e and a fun
tion f : Ω → X is su
h that x∗f ∈ L1(µ) for every x∗ ∈

extBX∗ , we have x∗f ∈ L1(µ) for every x∗ ∈ X∗ and f is Pettis integrable.The main obje
tive of the arti
le [3℄ (
f. Chapter 2) is to generalize theabove result of Fonf. We do this by giving the following 
hara
terization ofweak∗-thi
k sets (
f. Chapter 2, Main theorem).Theorem 1.2.25 (Abrahamsen, Nygaard, and Põldvere, 2006). Let X be aBana
h spa
e. A subset A ⊂ X∗ is weak∗-thi
k if and only if whenever (Ω,Σ, µ)is a measure spa
e and f : Ω → X is an essentially separable valued fun
tionsu
h that x∗f ∈ L1(µ) for all x∗ ∈ A, then x∗f ∈ L1(µ) for all x∗ ∈ X∗.7



Let (xn) be a sequen
e in a Bana
h spa
e X . Observe that, for any x∗ ∈ X∗,we have ∑∞
n=1 |x∗(xn)| =

∫

N
|x∗f |dc, where c is the 
ounting measure on the

σ-algebra P(N) of all subsets of N and f : N → X is the fun
tion de�ned by
f =

∑∞
n=1 χ{n}xn. Now, using Theorem 1.2.25, (b) ⇒ (a) in the following
hara
terization of weak∗-thin sets, is immediate (
f. Corollary 2.2.4). Thereverse impli
ation is proved by using a �gliding hump� argument.Corollary 1.2.26 (Abrahamsen, Nygaard, and Põldvere, 2006). Let X be aBana
h spa
e and A ⊂ X∗. The following statements are equivalent.(a) A is weak∗-thin.(b) There exists a sequen
e (xn) ⊂ X and x∗ ∈ X∗\A su
h that ∑∞

n=1 |x∗(xn)|diverges, but ∑∞
n=1 |x∗(xn)| <∞ for all x∗ ∈ A.In [19℄ Elton proved the theorem stated below.Theorem 1.2.27 (Elton, 1981). Let X be a Bana
h spa
e. The followingstatements are equivalent.(a) X 
ontains a 
opy of c0.(b) There exists a divergent series ∑∞

n=1 xn in X su
h that ∑∞
n=1 |x∗(xn)| <

∞ for all x∗ ∈ extBX∗ .Fonf proved in [25, Theorem 3*℄ that a separable Bana
h spa
e X 
ontains
c0 whenever the set ω*-expBX∗ is weak∗-thin. He then 
ombined this resultwith the well known Bessaga-Peª
zy«ski Theorem [10℄ and dedu
ed that the set
extBX∗ 
an be repla
ed by the set ω*-expBX∗ in the above theorem of Elton[25, Theorem 6℄.Using the Nikodým-Grothendie
k Boundedness Theorem one 
an prove thefollowing important result of Dieudonné and Grothendie
k (
f. [16, p. 16℄).Theorem 1.2.28 (Dieudonné and Grothendie
k). Let X be a Bana
h spa
eand let F be an X-valued set fun
tion de�ned on a σ-algebra Σ. Suppose that
x∗F is bounded and �nitely additive for ea
h x∗ belonging to some total subset
A of X∗. Then F is a bounded ve
tor measure.Note that the additivity of F is immediate from the totality of Γ.Theorem 1.2.28 may fail for algebras whi
h are not σ-algebras. A strongerproperty is needed in this 
ase. Indeed, if �total� is repla
ed by �weak∗-thi
k�in this Theorem 1.2.28, then we get a test for boundedness of ve
tor measuresde�ned merely on algebras. In fa
t, we also get a new 
hara
terization of weak∗-thi
k sets (
f. Propositions 2.3.2 and 2.3.3)Theorem 1.2.29 (Abrahamsen, Nygaard, and Põldvere, 2006). Let X be aBana
h spa
e and A a subset of X∗. The following statements are equivalent.(a) For every algebra F and every set fun
tion F : F → X, the fun
tion Fis a bounded ve
tor measure whenever the fun
tion x∗F is bounded and�nitely additive for ea
h x∗ ∈ A.(b) A is weak∗-thi
k. 8



1.2.2 Further results and a generalized thi
kness notionLet | · | denote the distan
e fun
tion on K. Re
all that a fun
tion f froma topologi
al linear spa
e X into the real numbers is said to be lower semi-
ountinuous if f(x) ≤ lim infα f(xα) whenever (xα) is a net in X 
onvergingto some element x ∈ X . A fun
tion f is 
alled 
onvex if f(tx + (1 − t)y) ≤
tf(x) + (1 − t)f(y) for every x, y ∈ X and 0 ≤ t ≤ 1.It is not di�
ult to see that Theorem 1.2.19 
an be 
ontinued by(f) Whenever a sequen
e of fun
tions {fn : Y → K}, with the properties thatfor every natural number n, | · | ◦ fn is lower semi-
ontinuous and 
onvex,is pointwise bounded on A, then this sequen
e is uniformly bounded on

BY .Evidently every linear fun
tional in a dual Bana
h spa
e is lower semi-
ontinuous and 
onvex when left 
omposed with |·|, so (f) implies (d) in Theorem1.2.19 above. The fa
t that (e) in Theorem 1.2.19 implies (f), follows from thesame argument as in (e) implies (d) in Theorem 1.2.19. Indeed, assume that Ais thi
k and put An = {y ∈ Y ∩A : supk |fk(y)| ≤ n}. By the pointwise bound-edness, (An) form an in
reasing, 
ountable 
overing of A. Sin
e A is thi
k, thereexists a natural number m su
h that Am is norming. By Lemma 1.2.11, thereexists a real number δ > 0 su
h that abs
onv(Am) ⊃ δBY . Finally, observe thatwe only need | · | ◦ fn to be 
onvex and lower semi-
ontinuous, to 
on
lude that
supk supy∈BY

|fk(y)| ≤ m
δ .A similar argument as in the pre
eding paragraph proves that Theorem1.2.20 
an be 
ontinued by(f) Whenever a sequen
e of fun
tions {fn : Y ∗ → K}, with the propertiesthat for every natural number n, | · | ◦ fn is weak∗-lower semi-
ontinuousand 
onvex, is pointwise bounded on A, then this sequen
e is uniformlybounded on BY ∗ .As already mentioned, se
ond 
ategory sets in a Bana
h spa
e are thi
k. The
onverse is not true. A standard 
ounterexample is the set of 0-1 sequen
es in ℓ∞whi
h is thi
k by Nikodým-Grothendie
k Boundedness Theorem and Theorem1.2.19. The set is nowhere dense, so it is trivially of the �rst 
ategory. Based onthis on 
an ask: Whi
h Bana
h spa
es 
ontain thi
k sets of the �rst 
ategory?The interesting and surprising answer is that indeed every Bana
h spa
e does.This follows from the fa
t that every Bana
h spa
e 
ontains a Hamelbasis ofthe �rst 
ategory [9, Proposition 3.2℄ and Theorem 1.2.19. In other words we
an 
on
lude from this that every Bana
h spa
e 
ontains a set on whi
h (the
ategory version of) the Bana
h-Steinhaus Uniform Boundedness Prin
iple doesnot apply, but Theorem 1.2.19 does.Let X be a Bana
h spa
e and assume F is a subset of X∗. Suppose we wantto determine whether F is bounded or not. From Theorem 1.2.19, we knowthat F is bounded if and only if it is pointwise bounded on a thi
k set A in X .But suppose we know in addition that F belongs to some (weak∗-dense linear)subset Γ of X∗. Can we then weaken the restri
tions on A and still have anequivalen
e as in Theorem 1.2.19? We 
an state the following problem.Problem 1.2.30. Let A be a subset of a Bana
h spa
e X and let F ⊂ Γ where

Γ is a weak∗-dense linear subset of X∗. Whi
h 
ondition (PΓ) must A ful�ll so9



that boundedness of F 
an be dedu
ed from testing pointwise boundedness of Fon A?Note that for A ⊂ X in 
ase Γ = X ⊂ X∗∗, (PΓ) is exa
tly the weak∗-boundedness property for A.Let A be a subset of a Bana
h spa
e X . The following list of examples arespe
ial 
ases of the problem above:(a) If Y and Z are Bana
h spa
es, X = L(Y, Z), and Γ = Y ⊗ Z∗.(b) If Γ is the (norm 
losed) linear span of the extreme points of BX∗ (or ofany James boundary).(
) If X has a S
hauder basis and Γ is the (norm 
losed) linear span of thebiorthogonal fun
tionals in X∗ asso
iated with the basis.(d) If Y is a Bana
h spa
e and T : X → Y is a bounded linear inje
tion and
Γ = T ∗(Y ∗).(e) If X is a dual Y ∗ and Γ is the Baire fun
tionals, Ba(Y ), in Y ∗∗.Motivated by Problem 1.2.30 and the de�nitions of norming and weak∗-norming and thin and weak∗-thin sets, we make the following de�nition.De�nition 1.2.31. Let X be a Bana
h spa
e and Γ a weak∗-dense linear sub-set of X∗. A subset A of X is 
alled Γ-norming if inf{supx∈A |x∗(x)| : x∗ ∈

SX∗ ∩ Γ} > 0. If the set A is not Γ-norming, then it is 
alled non-Γ-norming.Moreover, A is said to be Γ-thin if it 
an be written as a 
ountable in
reasingunion of non-Γ-norming sets. If it is not Γ-thin, then it is 
alled Γ-thi
k.Note that a bounded set is Γ-norming if and only if it is Γ-norming (norm
losure in X∗). Thus a set Γ and its norm 
losure share the same thi
k sets.However, is the 
onverse true, i.e. is it so that two sets Γ1,Γ2 ⊂ X∗ whi
h sharethe same thi
k sets have the same norm 
losures? Indeed, the following resultanswers this question in the a�rmative, and hen
e provides a good reason tostudy the spe
ial 
ases of Problem 1.2.30 listed above.Theorem 1.2.32. Let X be a Bana
h spa
e and let Γ1 ⊂ Γ2 be weak∗-denselinear subspa
es of X∗. Then Γ1 and Γ2 share the same thi
k sets if and only if
Γ1 and Γ2 have the same norm-
losure.We sket
h a proof of this result.Proof. As noted in the paragraph above Γ1 and Γ2 share the same thi
k setsif they have the same norm 
losures. For the 
onverse one 
an assume that Γ1is not norm-dense in Γ2, then 
hoose x∗ ∈ Γ2 \ Γ1 and put A = kerx∗. It isevident that A now is Γ2-thin and not to hard to show using [16, Lemma 2℄ that
A is Γ1-norming. This latter fa
t in 
ombination with Bana
h's lemma (see e.g.[33, Lemma 82℄), is then used to prove that A is Γ1-thi
k.From the proof of Theorem 1.2.32, the next 
orollary follows.Corollary 1.2.33. Let X be a Bana
h spa
e. Suppose Γ is a weak∗-dense linearsubspa
e of X∗ and Γ 6= X∗. If x∗ ∈ X∗ \ Γ, then kerx∗ is a thin, but Γ-thi
k,set.Note that this result generalizes [60, Corollary 2.2℄ of Nygaard presented inTheorem 1.2.15. 10



1.3 Ba
kground on approximation properties and
u-idealsA fundamental question in fun
tional analysis is whether 
ompa
t operators,from a Bana
h spa
e Y into a Bana
h spa
e X , 
an be approximated in normby sequen
es of �nite rank operators. (This has been 
alled the approximationproblem for obvious reasons.) A Bana
h spa
e X for whi
h this is true for everyBana
h spa
e Y , is said to have the approximation property. The �rst formaltreatment of the approximation property was done by Grothendie
k [32℄ in hisdo
toral thesis from 1955. In his thesis he produ
ed equivalent formulations ofthe approximation property. It is, however, 
lear from [67℄ that Bana
h and his
ollaborators, knew many of these equivalen
es.In [32℄, Grothendie
k de�ned stronger forms of the approximation property,e.g. the bounded approximation property and the metri
 approximation prop-erty. A powerful and important result 
on
erning the latter of these two prop-erties, says that for separable dual spa
es, the approximation property impliesthe metri
 approximation property. This result has never been generalized tonon-separable Bana
h spa
es. However, in some unpublished le
ture notes (see[16, p. 256℄), Rosenthal has shown that for a Bana
h spa
e with the Radon-Nikodým property whi
h is 1-
omplemented in its bidual, the approximationproperty implies the metri
 approximation property. Thus for a dual Bana
hspa
e with the Radon-Nikodým property, the approximation property impliesthe metri
 approximation property. The result of Rosenthal is a
tually alsoimpli
it in Grothendie
k's thesis [32℄.Lima and Oja [55℄ have re
ently made a new approa
h to answer the prob-lem of whether Grothendie
k's result holds for non-separable spa
es. They didso by introdu
ing the weak metri
 approximation property. The weak metri
approximation property is weaker than the metri
 approximation property andstri
tly stronger than the approximation property [55, Proposition 2.2℄. Fordual spa
es, however, Lima and Oja has proved that the approximation prop-erty implies the weak metri
 approximation property [55, Corollary 3.4℄. Sothe problem of determining whether Grothendie
k's result generalizes to non-separable spa
es still remains, but now we are left with the question of whetherthe weak metri
 approximation property implies the metri
 approximation prop-erty for non-separable dual spa
es.Most re
ently [44℄ the weak metri
 approximation property has been 
har-a
terized in terms of ideals of �nite rank operators and Hahn-Bana
h extensionoperators. The arti
le [1℄, whi
h 
onstitutes Chapter 3 in this thesis, 
ontainsgeneralized forms of 
hara
terizations of the weak metri
 approximation prop-erty obtained in [55℄ and [44℄.The study of u-ideals and the un
onditional metri
 approximation property,emerged from the arti
le [11℄ by Casazza and Kalton. Casazza and Kaltonproved that for a separable re�exive Bana
h spa
e X with the approximationproperty, K(X,X) is a u-ideal in L(X,X) if and only if X has the un
on-ditional metri
 approximation property. Lima [50℄ generalized this result byshowing that it holds when the un
onditional metri
 approximation property isrepla
ed by the un
onditional metri
 
ompa
t approximation property and whenonly assuming X to have the Radon-Nikodým property. However, removing theRadon-Nikodým property from the assumption, Lima and Lima [45℄ showed11



that the above result is equivalent to K(Y,X) being a u-ideal in L(Y,X) forevery Bana
h spa
e Y whi
h in turn is equivalent to K(X̂,X) being a u-idealin L(X̂,X) for every equivalent renorming X̂ of X . A similar result for dualspa
es having the un
onditional metri
 
ompa
t approximation property with
onjugate operators, was also obtained in [45℄.In the arti
le [2℄, whi
h 
onstitutes Chapter 4 in this thesis, we look at the�nite rank operators and obtain 
hara
terizations for when they are u-ideals inthe spa
e of weakly 
ompa
t operators.1.3.1 Basi
 results on approximation properties and u-idealsA sequen
e (xn) in a Bana
h spa
e X is 
alled a S
hauder basis for X if forea
h x ∈ X there is a unique sequen
e (αn) of s
alars su
h that
x = lim

n

n
∑

k=1

αkxk.On page 111 in the famous book Théorie des Opération Linéaires [7℄ from1932, the following problem appears: �Does every separable Bana
h spa
e havea S
hauder basis?� This problem, known as the basis problem, remained openfor a long time and was solved in the negative by En�o [20℄ in 1973. En-�o 
onstru
ted a separable, re�exive Bana
h spa
e without the approximationproperty, and by doing so he also solved the approximation problem.De�nition 1.3.1 (Grothendie
k, 1955). A Bana
h spa
e X has the approxima-tion property (AP) if for every 
ompa
t set K in X and every ε > 0, there is anoperator T : X → X of �nite rank su
h that ‖Tx− x‖ < ε, for every x ∈ K. Ifthese approximating �nite rank operators 
an be 
hosen with ‖T ‖ ≤ λ, for some
λ ≥ 1, then X is said to have the λ-bounded approximation property (λ-BAP).A Bana
h spa
e is said to have the bounded approximation property (BAP) if ithas λ-BAP for some λ. We say that X has the metri
 approximation propertyif it has 1-BAP.A Bana
h spa
e with a S
hauder basis has the BAP and hen
e the AP. SoEn�o's spa
e is, in parti
ular, an example of a separable Bana
h spa
e withouta S
hauder basis. Right after En�o's 
onstru
tion was published, Davie [12℄simpli�ed it and showed that c0 and ℓp, for p > 2, have subspa
es without theAP. Later the same de
ade, Szankowski [74℄ proved that also ℓp, for 1 ≤ p < 2,have subspa
es without the AP. Szankowski [75℄ has also proved that the spa
eof bounded linear operators on an in�nite dimensional Hilbert spa
e fails theAP.In 1973, using En�o's example, Figiel and Johnson [23℄ showed that there isa Bana
h spa
e with the AP whi
h fails the BAP. In 1987 Szarek [76℄ showedthat there exists a re�exive Bana
h spa
e without a basis whi
h has the BAP.It has also been proved that there are Bana
h spa
es with the BAP whi
h failthe MAP (
f. e.g. [57, p. 42℄).In many 
ases, however, the AP implies the MAP. A powerful and surprisingresult of Grothendie
k [32℄ (see e.g. [57, p. 39℄ for a ni
e proof of this) reads.12



Theorem 1.3.2 (Grothendie
k, 1955). Let X be a separable Bana
h spa
ewhi
h is isometri
 to a dual spa
e and whi
h has the AP. Then X has theMAP.It is, however, still an open problem whether this result holds for non-separable spa
es.Problem 1.3.3. Does the AP of the dual spa
e X∗ of a Bana
h spa
e X implythe MAP?The obvious reason why it is still unknown whether Theorem 1.3.2 holdsfor non-separable spa
es, is that the proof does not generalize to su
h spa
es.The fa
t that in a separable dual Bana
h spa
e X∗, the sets BX∗ and BX∗∗ are
ompa
t metri
 in their 
orresponding weak∗ topologies, are 
ru
ial parts of theproof.In 1974 Davis, Figiel, Johnson, and Peª
zy«ski [13, Corollary 1℄ proved thatevery weakly 
ompa
t operator fa
tors through a re�exive Bana
h spa
e. Lima,Nygaard, and Oja later improved this result in [51, Theorems 2.3 and 2.4℄ byshowing that the fa
torization 
an by done isometri
ally and even uniformly withrespe
t to �nite dimensional subspa
es. Their proof is based on the Davis-Figiel-Johnson-Peª
zy«ski 
onstru
tion. However, in the Lima-Nygaard-Oja version ofthe Davis-Figiel-Johnson-Pe¨
zy«ski 
onstru
tion, the number 2 is repla
ed by√
a for a > 1. This seemingly minor 
hange, turns out to be important.Let a > 1 and let K be a 
losed absolutely 
onvex subset of the unit ball

BX of a Bana
h spa
e X . For ea
h positive integer n, put Bn = a
n
2K+a−

n
2 BXand denote by ‖ · ‖n the equivalent norm on X de�ned by the gauge on Bn. Let

‖x‖K = (
∑∞

n=1 ‖x‖n)
1

2 , XK = {x ∈ X : ‖x‖K < ∞}, CK = {x ∈ X : ‖x‖K ≤
1}, and let JK denote the identity embedding of XK into X . Finally, de�ne
f : (1,∞) → R by

f(a) =
(

∞
∑

n=1

an

(an + 1)2

)1/2

.It 
an be shown that there is a unique ã ∈ (1,∞) su
h that f(ã) = 1. For this�xed number ã, Lima, Nygaard, and Oja proved in Lemmas 1.1 and 2.1 in [51℄,the following isometri
 version of Lemma 1 in [13℄.Lemma 1.3.4 (Lima, Nygaard, and Oja, 2000). Let K be a 
losed absolutely
onvex subset of the unit ball BX of a Bana
h spa
e X. If a ∈ (1,∞) is su
hthat f(a) = 1, then(a) K ⊂ CK ⊂ BX(b) (XK , ‖ · ‖K) is a Bana
h spa
e with 
losed unit ball CK , and JK ∈
L(XK , X) with ‖JK‖ ≤ 1.(
) J∗∗
K is inje
tive.(d) XK is re�exive if and only if K is weakly 
ompa
t.(e) The X-norm and the XK-norm topologies 
oin
ide on K.(f) The weak topologies de�ned by X∗ and X∗

K 
oin
ide on CK .13



(g) CK as a subset of X is 
ompa
t, weakly 
ompa
t, or separable if and onlyif K has the same property.Davis, Figiel, Johnson, and Peª
zy«ski used their version of the pre
edingresult to prove that every weakly 
ompa
t operator fa
tors through a re�exivespa
e. Similarly Lima, Nygaard, and Oja applied their quantitative modi�edversion to prove that the fa
torization 
an be done isometri
ally and uniformlyin the following way.Theorem 1.3.5 (Lima, Nygaard, and Oja, 2000). Let F be a �nite dimensionalsubspa
e of W(Y,X). Then there exist a re�exive spa
e Z, a norm one operator
J : Z → X, and a linear isometry Φ : F → W(Y, Z) su
h that T = J ◦Φ(T ) forall T ∈ F . Moreover,(a) Z = XK and J = JK for the weakly 
ompa
t absolutely 
onvex set K =

conv{Ty : T ∈ BF and y ∈ BY } whenever the number a is �xed so that
f(a) = 1.(b) T is 
ompa
t if and only if Φ(T ) is 
ompa
t.(
) T has �nite rank if and only if Φ(T ) has �nite rank.Corollary 1.3.6 (Lima, Nygaard, and Oja, 2000). Let F be a �nite dimensionalsubspa
e of W(X,Y ). Then there exist a re�exive spa
e Z, a norm one operator

J : X → Z, and a linear isometry Φ : F → W(Z, Y ) su
h that T = Φ(T ) ◦ Jfor all T ∈ F . Moreover,(a) T is 
ompa
t if and only if Φ(T ) is 
ompa
t.(b) T has �nite rank if and only if Φ(T ) has �nite rank.Using their version of the Davis-Figiel-Johnson-Peª
zy«ski 
onstru
tion, Lemma1.3.4, Lima, Nygaard, and Oja proved in [51, Corollary 1.5℄ that the approxi-mation property has a �metri
� equivalent.Theorem 1.3.7 (Lima, Nygaard, and Oja, 2000). Let X be a Bana
h spa
e.The following statements are equivalent.(a) X has the approximation property.(b) For every Bana
h spa
e Y and every T ∈ W(Y,X), there is a net (Tα) in
F(Y,X) with supα ‖Tα‖ ≤ ‖T ‖ su
h that Tα → T in the strong operatortopology.(
) For every separable re�exive Bana
h spa
e Y and every T ∈ K(Y,X),there is a net (Tα) in F(Y,X) with supα ‖Tα‖ ≤ ‖T ‖ su
h that Tα → Tin the strong operator topology.One 
an show that Theorem 1.3.7 
an be 
ontinued by(d) For every Bana
h spa
e Y and every T ∈ W(Y,X), there is a net (Sα)in F(X,X) with supα ‖SαT ‖ ≤ ‖T ‖ su
h that Sα → IX uniformly on
ompa
t sets in X. 14



(e) For every separable re�exive Bana
h spa
e Y and every T ∈ K(Y,X),there is a net (Sα) in F(X,X) with supα ‖SαT ‖ ≤ ‖T ‖ su
h that Sα → IXuniformly on 
ompa
t sets in X.Proof. We only need to show that (b) ⇒ (d). To this end, �rst note thatthe net (Tα) in (b) may be assumed to 
onverge uniformly on 
ompa
t sets in
Y . Now, let ε > 0 and T ∈ W(Y,X) of norm one. Let uk =

∑∞
n=1 x

∗
k,n ⊗

xk,n ∈ X∗⊗̂πX = (L(X,X), τ)∗ for k = 1, ...,m where τ is the topology ofuniform 
onvergen
e on 
ompa
t sets in X (see e.g. [57, Proposition 1.e.3℄).Assume ∑∞
n=1 ‖x∗k,n‖ < ∞ and 1 ≥ ‖xk,n‖ → 0 for ea
h k = 1, ...,m. Put

K = 
onv{±T (BY ) ∪ {xk,n} : k = 1, ...,m;n = 1, 2, ...} ⊂ BX . Let Z be theBana
h spa
e 
onstru
ted from K in Lemma 1.3.4, and let J : Z → X be theidentity embedding of Z into X . Now Z is re�exive and J ∈ W(Z,X) is ofnorm one. From (b) in Theorem 1.3.7 and the two �rst lines in this paragraph,there is a net (Jα) ⊂ F(Z,X) with supα ‖Jα‖ ≤ ‖J‖ = 1 su
h that Jα → Juniformly on 
ompa
t sets in Z. By Lemma 1.3.4 J∗X∗ is norm-dense in Z∗and thus we 
an write Jα = SαJ where Sα is in F(X,X). For ea
h xk,n and
k = 1, ...,m, n = 1, ... 
hoose zk,n ∈ BZ and S in (Sα) su
h that Jzk,n = xk,nand

ε > max
1≤k≤m

|
∞
∑

n=1

〈

SJzk,n, x
∗
k,n

〉

−
∞
∑

n=1

〈

Jzk,n, x
∗
k,n

〉

|

= max
1≤k≤m

|
∞
∑

n=1

〈

Sxk,n, x
∗
k,n

〉

−
∞
∑

n=1

〈

xk,n, x
∗
k,n

〉

|.Thus (d) follows from (b).In [55℄ Lima and Oja introdu
ed the weak metri
 approximation property.De�nition 1.3.8. A Bana
h spa
e X has the weak metri
 approximation prop-erty (weak MAP) if for every Bana
h spa
e Y and for every T ∈ W(X,Y ), thereis a net (Sα) in F(X,X) with supα ‖TSα‖ ≤ ‖T ‖ su
h that Sα → IX uniformlyon 
ompa
t sets in X .Note that the only di�eren
e between De�nition 1.3.8 and statement (d)in Theorem 1.3.7 is that the roles of X and Y are inter
hanged. Comparingde�nitions it is immediate that MAP ⇒ weak MAP ⇒ AP. The fa
t that theweak MAP is stri
tly stronger than the AP follows from [55, Proposition 2.1℄.Re
ently, Oja [66, Corollary 1℄ showed that if a Bana
h spa
e has the weakMAP, then it has the MAP if either its dual or its bidual have the Radon-Nikodým property. It is still unknown if the weak MAP implies the MAP ingeneral. However, in [55, Corollary 3.4℄ it is shown that for dual spa
es the APimplies the weak MAP. Hen
e Problem 1.3.3 
an be restated as follows.Problem 1.3.9. Does the weak MAP of the dual spa
e X∗ of a Bana
h spa
e
X imply the MAP?In [55, Theorem 2.4℄ Lima and Oja proved the following 
hara
terization ofthe weak MAP.Theorem 1.3.10 (Lima and Oja, 2005). Let X be a Bana
h spa
e. The fol-lowing statements are equivalent. 15



(a) X has the weak MAP.(b) For every separable re�exive Bana
h spa
e Y and for every operator T ∈
K(X,Y ), there exists a net (Sα) ⊂ F(X,X) with supα ‖TSα‖ ≤ ‖T ‖ su
hthat Sα → IX in the strong operator topology.(
) For every separable re�exive Bana
h spa
e Y and for every operator T ∈
K(X,Y ), there exists a net (Sα) ⊂ F(X,X) with supα ‖TSα‖ ≤ ‖T ‖ su
hthat TSα → T in the strong operator topology.(d) For every Bana
h spa
e Y , for every operator T ∈ W(X,Y ) with ‖T ‖ = 1,and for all sequen
es (xn) ⊂ X, and (y∗n) ⊂ Y ∗ with ∑∞

n=1 ‖xn‖‖y∗n‖ <∞,one has the inequality
|

∞
∑

n=1

y∗n(Txn)| ≤ sup
‖TS‖≤1,S∈F(X,X)

|
∞
∑

n=1

y∗n(TSxn)|.In [29℄ Godefroy, Kalton, and Saphar introdu
ed the notion of an ideal.De�nition 1.3.11. A 
losed subspa
e X of a Bana
h spa
e Y is an ideal in Yif the annihilator X⊥ is the kernel of a linear norm one proje
tion on Y ∗. Su
ha proje
tion is 
alled an ideal proje
tion.It is straightforward to show that ideals 
an be expressed in terms of Hahn-Bana
h extension operators.De�nition 1.3.12. LetX be a subspa
e of a Bana
h spa
e Y . A linear operator
φ : X∗ → Y ∗ is 
alled a Hahn-Bana
h extension operator if φ(x∗)(x) = x∗(x)and ‖φ(x∗)‖ = ‖x∗‖ for every x ∈ X and x∗ ∈ X∗. We write HB(X,Y ) for theset of all Hahn-Bana
h extension operators from X∗ into Y ∗.The justi�
ation for this terminology 
omes from the Hahn-Bana
h Theo-rem, whi
h tells us that every element x∗ ∈ X∗ has a norm-preserving extensionto Y . A Hahn-Bana
h extension operator extends all elements in X∗ linearly.The 
onne
tion between ideals and Hahn-Bana
h extension operators wasannoun
ed above. Indeed, if iX : X → Y is the natural in
lusion and φ ∈HB(X,Y ), then the operator P = φ ◦ i∗X is an ideal proje
tion on Y ∗ with
kerP = X⊥ (P is usually 
alled the 
orresponding ideal proje
tion to φ). Con-versely, if X is an ideal in Y with an ideal proje
tion P , then φ : X∗ → Y ∗de�ned by φx∗ = Py∗, where y∗ ∈ HB(x∗), the set of norm-preserving extensionsof x∗ to Y, is a Hahn-Bana
h extension operator (φ is 
alled the 
orrespondingHahn-Bana
h extension operator to P ). Thus HB(X,Y ) 6= ∅ if and only if X isan ideal in Y .Lima [44, Theorem 2.6 and Proposition 3.1℄ has showed that the weak MAP
an be 
hara
terized in terms of ideals of �nite rank operators and Hahn-Bana
hextension operators.Theorem 1.3.13 (Lima). Let X be a Bana
h spa
e. The following statementsare equivalent.(a) X has the weak MAP.(b) For every Bana
h spa
e Y , F(Y,X) is an ideal in W(Y,X∗∗).16



(
) For every separable re�exive Bana
h spa
e Y , F(Y,X) is an ideal in
K(Y,X∗∗).(d) There exists a Hahn-Bana
h extension operator φ ∈ HB(X,X∗∗) su
h thatfor every 
hoi
e of sequen
es (x∗n)

∞
n=1 ⊂ X∗ and (x∗∗n )∞n=1 ⊂ X∗∗ with

∑∞
n=1 ‖x∗n‖‖x∗∗n ‖ <∞ and ∑∞

n=1 x
∗
n(x)x∗∗n = 0, for all x ∈ X we have

∞
∑

n=1

φ(x∗n)(x∗∗n ) = 0.(e) There exists a Hahn-Bana
h extension operator φ ∈ HB(X,X∗∗) su
h thatfor every re�exive Bana
h spa
e Y and operator T ∈ W(Y,X∗∗) we have
φ∗|X∗∗T ∈ F(Y,X)∗∗.(f) There exists a Hahn-Bana
h extension operator φ ∈ HB(X,X∗∗) su
h thatfor every re�exive Bana
h spa
e Y and operator T ∈ K(Y,X∗∗) we have
φ∗|X∗∗T ∈ F(Y,X)∗∗.In [1℄ (
f. Theorem 3.2.4) we generalize Theorem 1.3.13 by proving that theextension operator φ ∈ HB(X,X∗∗), 
an be repla
ed by an extension operator

φP ∈ HB(X,X∗∗) su
h that P = φ∗P |X∗∗ is a proje
tion on X∗∗. The fa
t thatthis 
an be done, follows from the result below (
f. Theorem 3.2.1). We stateTheorem 3.2.1 in a slightly di�erent manner here.Theorem 1.3.14 (Abrahamsen, 2007). Let X be a Bana
h spa
e.(a) If P is a norm one proje
tion on X∗∗ with X ⊂ P (X∗∗), then ϕP =
P ∗kX∗ ∈ HB(X,X∗∗).(b) If there exists a Hahn-Bana
h extension operator ϕ ∈ HB(X,X∗∗) su
hthat ϕ∗|X∗∗ is in the weak∗-
losure of F(X,X) in L(X∗∗, X∗∗), then thereexists a norm one proje
tion P on X∗∗ with X ⊂ P (X∗∗) su
h that P isin the weak∗-
losure of F(X,X) in L(X∗∗, X∗∗).Using Theorem 1.3.14 in 
ombination with Lemma 1.3.4 and a result ofGodefroy and Saphar [30, Theorem 1.5℄, one 
an prove that the following holds(
f. Proposition 3.2.2).Proposition 1.3.15 (Abrahamsen, 2007). Let X be a Bana
h spa
e with theweak MAP. Then there exists a proje
tion P on X∗∗ with X ⊂ P (X∗∗) su
hthat for every re�exive Bana
h spa
e Y and for every T ∈ W(X,Y ), there existsa net (Sα) ⊂ F(X,X) with lim supα ‖TSα‖ ≤ ‖T ‖ su
h that Sα → P weak∗ in

L(X∗∗, X∗∗).Of 
ourse Proposition 1.3.15 holds for every Bana
h spa
e Y and not justfor re�exive Y . Indeed, this is immediate from Corollary 1.3.6 by putting F =
span{T } for T ∈ W(X,Y ). On the basis of this, Proposition 1.3.15 should be
ompared with De�nition 1.3.8.Prior to the notion an ideal, Alfsen and E�ors had introdu
ed the notionof an M -ideal in a Bana
h spa
e in their fundamental arti
le [4℄ from 1972.Part of their aim was to generalize stru
ture theories for C∗-algebras and L1-preduals. This be
omes transparent from the de�nition below and the fa
t thatin C∗-algebras M -ideals are exa
tly the 
losed two-sided algebrai
 ideals.17



De�nition 1.3.16. Let Y be a Bana
h spa
e. A linear proje
tion P on Y is
alled an L-proje
tion if
‖y‖ = ‖Py‖ + ‖y − Py‖ for all y ∈ Y.A 
losed subspa
e X ⊂ Y is 
alled an L-summand in Y if it is the range of an

L-proje
tion. If the annihilator X⊥ ⊂ Y ∗ of X is an L-summand, then X is
alled an M -ideal in Y .Vaguely spoken, if X is anM -ideal in Y , then the norm of Y ∗ resembles the
ℓ1-norm and the norm of Y thus ought to resemble the max-norm. M -idealshave been thoroughly studied in many arti
les. The reader should 
onfer thebook [35℄ for a ni
e and exhaustive presentation of M -ideal theory.From the de�nitions it is immediate thatM -ideals are stronger forms of ide-als. Also properties intermediate that of being an M -ideal and that of being anideal, have been studied in the literature (see e.g. [37℄, [62℄). An un
onditionalideal is one su
h property. The notion of an un
onditional ideal was introdu
edby Kalton and Casazza in [11℄.De�nition 1.3.17. A 
losed subspa
e X of a Bana
h spa
e Y is an un
on-ditional ideal (u-ideal) in Y if there exists a linear proje
tion P on Y ∗ with
kerP = X⊥ su
h that ‖I − 2P‖ = 1.It is straightforward to show that this de�nition is equivalent to ‖v+x⊥‖ =
‖v − x⊥‖ for every v ∈ P (Y ∗) and x⊥ ∈ X⊥. Thus, if X is a u-ideal in Y , thenorm on Y ∗ ful�lls a symmetry 
ondition.In [56℄ Lindenstrauss and Rosenthal showed that �nite dimensional sub-spa
es of the bidual of a Bana
h spa
e X , are more or less the same as those of
X . This fa
t is 
ommonly referred to as the Prin
iple of Lo
al Re�exivity. Theversion of this prin
iple listed below was proved in [41℄ and is a slightly strongerform of that of Lindenstrauss and Rosenthal.Theorem 1.3.18 (Prin
iple of Lo
al Re�exivity, 1969). Let X be a Bana
hspa
e, and let E and F be �nite dimensional subspa
es of X∗∗ and X∗, respe
-tively. Then, for ea
h ε > 0 there is an inje
tive operator L : E → X with thefollowing properties:(a) L(x) = x for all x ∈ E ∩X,(b) ‖L‖ · ‖L−1‖ ≤ 1 + ε,(
) 〈Lx∗∗, x∗∗〉 = 〈x∗∗, x∗〉 for all x∗∗ ∈ E and x∗ ∈ F .Every Bana
h spa
e X is an ideal in its bidual, sin
e the natural embedding
kX∗ : X∗ → X∗∗∗ is a Hahn-Bana
h extension operator. In fa
t, every ideal ina Bana
h spa
e 
an be 
hara
terized in terms of lo
al stru
ture similarly to thePrin
iple of Lo
al Re�exivity. This follows from results of Fakhoury [21℄ andKalton [42℄. Of 
ourse Fakhoury and Kalton did not use the term �ideal� whi
hwas introdu
ed later, as mentioned above.Theorem 1.3.19 (Fakhoury, 1972 and Kalton, 1984). Let X be a subspa
e ofa Bana
h spa
e Y . Then the following statements are equivalent.(a) X is an ideal in Y . 18



(b) For every �nite dimensional subspa
e E of Y and every ε > 0, there existsa linear operator L : E → X su
h that(i) L(x) = x for all x ∈ E ∩X,(ii) ‖L‖ ≤ 1 + ε.Godefroy, Kalton, and Saphar showed that also u-ideals have a lo
al 
hara
-terization. From [29, Lemma 2.2 and Proposition 3.6℄ and we have the followingresult.Theorem 1.3.20 (Godefroy, Kalton, and Saphar, 1993). Let Y be a Bana
hspa
e and let X be a subspa
e of Y . The following statements are equivalent.(a) X is a u-ideal in Y .(b) There exists a Hahn Bana
h extension operator φ ∈ HB(X,Y ) su
h thatfor every y ∈ Y there is a net (xα) in X su
h that φ∗(y) = limα xα in theweak∗-topology and lim supα ‖y − 2xα‖ ≤ ‖y‖.(
) For every �nite dimensional subspa
e E of Y and every ε > 0, there is alinear map L : E → X su
h that(1) L(y) = y for every y ∈ E ∩X, and(2) ‖y − 2L(y)‖ ≤ (1 + ε)‖y‖ for every y ∈ E.There are approximation properties linked to the notion of u-ideals.De�nition 1.3.21. A Bana
h spa
e X has the un
onditional metri
 approxi-mation property (UMAP) if there is a net (Tα) in F(X,X) with lim supα ‖I −
2Tα‖ ≤ 1 su
h that Tαx → x for every x ∈ X . If the net (Tα) is in K(X,X)instead of F(X,X) we say that X has the un
onditional metri
 
ompa
t ap-proximation property (UMKAP).The obvious reason for this terminology is given by the following result ofCasazza and Kalton [11, Theorem 3.8℄.Theorem 1.3.22 (Casazza and Kalton, 1990). A separable Bana
h spa
e X hasthe UMAP if and only if for every ε > 0 there exists a sequen
e (Tn) ∈ F(X,X)with supn ‖Tn‖ <∞ and Tnx→ x for all x ∈ X, so that if An = Tn− Tn−1 for
n ∈ N (with T0 = 0) then for every N ∈ N and all ηi = ±1, i = 1, 2, ..., N wehave

‖
N

∑

n=1

ηiAi‖ ≤ 1 + ǫ.In [29, Theorem 8.1℄ Godefroy, Kalton, and Saphar showed that Theorem1.3.22 holds when UMAP and F is repla
ed by UMKAP and K respe
tively.Casazza and Kalton also proved in [11, Theorem 3.9℄ that UMAP is relatedto u-ideals of 
ompa
t operators in the following way.Theorem 1.3.23 (Casazza and Kalton, 1990). Let X be a separable re�exiveBana
h spa
e with the approximation property. Then the following statementsare equivalent. 19



(a) X has UMAP.(b) K(X,X) is a u-ideal in L(X,X).In [29, Theorem 8.3℄ Godefroy, Kalton, and Saphar showed that Theorem1.3.23 holds when UMAP is repla
ed by UMKAP without assuming X to havethe AP. Lima soon generalized this result by showing that the assumptions 
anbe redu
ed to X having the RNP or BX∗ = 
onv(ω*-str-expBX∗) [50, The-orem 4.3℄. Note that if X has the AP, then K(X,X) is the norm 
losure of
F(X,X). Thus [50, Theorem 4.3℄ of Lima also generalize Theorem 1.3.23. The-orems 5.2 and 6.1 in [45℄ show that the following holds without any assumptionson the Bana
h spa
e X .Theorem 1.3.24 (Lima and Lima, 2004). Let X be a Bana
h spa
e. Thefollowing statements are equivalent.(a) X has UMKAP.(b) K(Y,X) is a u-ideal in L(Y,X) for every Bana
h spa
e Y .(
) K(X̂,X) is a u-ideal in L(X̂,X) for every equivalent renorming X̂ for X.Theorem 1.3.25 (Lima and Lima, 2004). Let X be a Bana
h spa
e. Thefollowing statements are equivalent.(a) X∗ has UMKAP with 
onjugate operators.(b) K(X,Y ) is a u-ideal in L(X,Y ) for every Bana
h spa
e Y .(
) K(X, X̂) is a u-ideal in L(X, X̂) for every equivalent renorming X̂ for X.The results also hold when 
ompa
t operators and UMKAP are repla
ed by�nite rank operators and UMAP respe
tively.The next result was proved is Theorem 3.3 in [51℄.Theorem 1.3.26 (Lima, Nygaard, and Oja, 2000). Let X be a Bana
h spa
e.The following statements are equivalent.(a) X has the AP.(b) F(Y,X) is an ideal in W(Y,X) for every Bana
h spa
e Y .(
) F(Y,X) is an ideal in K(Y,X) for every separable re�exive Bana
h spa
e

Y .Next we prove that Theorem 1.3.26 
an be 
ontinued by the following state-ments:(d) F(Y,X) is an ideal in span (F(Y,X), {T }) for every Bana
h spa
e Y andevery T ∈ W(Y,X).(e) F(Y,X) is an ideal in span (F(Y,X), {T }) for every separable re�exiveBana
h spa
e Y and every T ∈ K(Y,X).20



Proof. We only have to prove (e) ⇒ (
). To do this, we use the ideas from theproofs of [51, Lemma 1.4℄ and [2, Proposition 2.5℄.Let Y be a separable re�exive Bana
h spa
e and let T ∈ K(Y,X). Wewant to show that HB(F(Y,X),K(Y,X)) 6= ∅. Sin
e F(Y,X) is an ideal in
B =span (F(Y,X), {T }) we 
an, by using Goldstine's theorem, �nd a net (Tα) ⊂
F(Y,X) with supα ‖Tα‖ ≤ ‖T ‖ su
h that Tα → Φ∗

T (T ) weak∗, where ΦT ∈HB(F(Y,X),B) is the extension operator. Now, assume that y ∈ BY is a stronglyexposed point. Then by Lemma 3.4 in [50℄ x∗⊗ y has a unique norm-preservingextension from F(Y,X) to L(Y,X) and hen
e ΦT (x∗ ⊗ y) = x∗ ⊗ y. Sin
e Yhas the RNP we get ΦT (x∗ ⊗ y) for every x∗ ∈ X∗ and y ∈ Y by linearity and
ontinuity. By a theorem of Feder and Saphar [22, Theorem 1℄ F(Y,X)∗ is aquotient of X∗⊗̂πY and it follows that ΦT is just the identity and hen
e unique.A straightforward 
al
ulation shows that Φ∗
T (T ) = T . Thus the operator Ψ =

IX∗ ⊗ IY ∈ HB(F(Y,X),K(Y,X)) and (
) follows.If the roles of X and Y are inter
hanged in Theorem 1.3.26, we get a 
har-a
terization of the dual of X having the AP [51, Theorem 3.4℄.The metri
 approximation property has also been 
hara
terized in terms ofideals of operators similarly to the approximation property.Theorem 1.3.27 (Lima and Lima, 2004). Let X be a Bana
h spa
e. Thefollowing statements are equivalent.(a) X has the MAP.(b) F(Y,X) is an ideal in L(Y,X) for every Bana
h spa
e Y .(
) F(Y,X) is an ideal in L(Y,X) for every separable Bana
h spa
e Y .(d) F(X̂,X) is an ideal in L(X̂,X) for every equivalent renorming X̂ of X.If the roles of X and Y are inter
hanged in Theorem 1.3.27, we get a 
har-a
terization of the dual of X having the MAP with 
onjugate operators [45,Theorem 1.2℄.From [52, Theorem 5.1℄ and [53, Theorem 4.4℄ (resp. [53, Theorem 4.3℄) wehave the following result when the spa
e of 
ompa
t operators is 
onsidered asa subspa
e of the spa
e of weakly 
ompa
t operators.Theorem 1.3.28 (Lima and Oja, 1999 and 2004). Let X be a 
losed subspa
eof a Bana
h spa
e Z. Then F(Y,X) is a u-ideal in W(Y, Z) (resp. K(Y, Z))for all Bana
h spa
es Y if and only if F(Y,X) is a u-ideal in W(Y, Z) (resp.
K(Y, Z)) for all (resp. separable) re�exive Bana
h spa
es Y .In [2℄, whi
h is presented in Chapter 4 in this thesis, we study when thespa
e of �nite rank operators is a u-ideal in the spa
e of 
ompa
t and weakly
ompa
t operators as in Theorems, 1.3.29, 1.3.30, 1.3.31, and 1.3.32 below (
f.Theorems 4.3.2, 4.3.8, 4.4.4, and 4.4.6 respe
tively).Theorem 1.3.29 (Abrahamsen, Lima, and Lima). Let X be a Bana
h spa
e.The following statements are equivalent.(a) F(Y,X) is a u-ideal in W(Y,X) for every Bana
h spa
e Y .(b) F(Y,X) is a u-ideal in span (F(Y,X), {T }) for every T ∈ W(Y,X) andfor every re�exive Bana
h spa
e Y .21



(
) For every re�exive Bana
h spa
e Y there exists a Hahn-Bana
h extensionoperator Ψ ∈ HB(F(Y,X),W(Y,X)) su
h that for every T ∈ W(Y,X)there is a net (Tα) ⊂ F(Y,X) with lim supα ‖T − 2Tα‖ ≤ ‖T ‖ su
h that
Tα → Ψ∗(T ) = T weak∗ in F(Y,X)∗∗.(d) For every weakly 
ompa
t set K ⊂ X there is a net (Sα) ⊂ F(X,X) with
limα supx∈K ‖x − 2Sαx‖ ≤ supx∈K ‖x‖ su
h that Sα → IX uniformly on
ompa
t subsets of K.(e) For every Bana
h spa
e Y and T ∈ W(Y,X) there is a net (Sα) ⊂
F(X,X) with lim supα ‖T − 2SαT ‖ ≤ ‖T ‖ su
h that Sα → IX uniformlyon 
ompa
t sets in X.(f) For every Bana
h spa
e Y and T ∈ W(Y,X) there is a net (Sα) ⊂
F(X,X) with lim supα ‖T − 2SαT ‖ ≤ ‖T ‖ su
h that Sα → IX in thestrong operator topology.(g) For every re�exive Bana
h spa
e Y and T ∈ W(Y,X) there is a net (Sα) ⊂
F(X,X) with lim supα ‖T − 2SαT ‖ ≤ ‖T ‖ su
h that SαT → T in thestrong operator topology.Theorem 1.3.30 (Abrahamsen, Lima, and Lima). Let X be a Bana
h spa
e.The following statements are equivalent.(a) F(X,Y ) is a u-ideal in W(X,Y ) for every Bana
h spa
e Y .(b) F(X,Y ) is a u-ideal in W(X,Y ) for every re�exive Bana
h spa
e Y .(
) F(X,Y ) is a u-ideal in span (F(X,Y ), {T }) for every T ∈ W(X,Y ) andfor every re�exive Bana
h spa
e Y .(d) For every re�exive Bana
h spa
e Y there exists a Hahn-Bana
h extensionoperator Ψ ∈ HB(F(X,Y ),W(X,Y )) su
h that for every T ∈ W(X,Y )there is a net (Tα) ⊂ F(X,Y ) with lim supα ‖T − 2Tα‖ ≤ ‖T ‖ su
h that
Tα → Ψ∗(T ) = T weak∗ in F(X,Y )∗∗.(e) For every weakly 
ompa
t 
ompa
t set K ⊂ X∗ there is a net (Sα) ⊂
F(X,X) with limα supx∗∈K ‖x∗−2S∗

αx
∗‖ ≤ supx∗∈K ‖x∗‖ su
h that S∗

α →
IX∗ uniformly on 
ompa
t subsets of K.(f) For every Bana
h spa
e Y and T ∈ W(X,Y ) there is a net (Sα) ⊂
F(X,X) su
h that lim supα ‖T − 2TSα‖ ≤ ‖T ‖ and S∗

α → IX∗ uniformlyon 
ompa
t sets in X∗.(g) For every Bana
h spa
e Y and T ∈ W(X,Y ) there is a net (Sα) ⊂
F(X,X) su
h that lim supα ‖T − 2TSα‖ ≤ ‖T ‖ and S∗

α → IX∗ in thestrong operator topology.(h) For every re�exive Bana
h spa
e Y and T ∈ W(X,Y ) there is a net
(Sα) ⊂ F(X,X) su
h that lim supα ‖T − 2TSα‖ ≤ ‖T ‖ and S∗

αT
∗ → T ∗in the strong operator topology.Theorem 1.3.31 (Abrahamsen, Lima, and Lima). Let X be a Bana
h spa
e.The following statements are equivalent.22



(a) F(Y,X) is a u-ideal in W(Y,X∗∗) for every Bana
h spa
e Y .(b) X is a u-ideal in its bidual with un
onditional Hahn-Bana
h extensionoperator ψ ∈ HB(X,X∗∗) su
h that for every Bana
h spa
e Y and T ∈
W(Y,X∗∗) there is a net (Sα) ⊂ F(X,X) with lim supα ‖T − 2S∗∗

α T ‖ ≤
‖T ‖ su
h that S∗∗

α T → ψ∗T weak∗ in L(Y,X∗∗).(
) There exists a Hahn-Bana
h extension operator ψ ∈ HB(X,X∗∗) su
h thatfor every Bana
h spa
e Y and T ∈ W(Y,X∗∗) there is a net (Sα) ⊂
F(X,X) with lim supα ‖T − 2S∗∗

α T ‖ ≤ ‖T ‖ su
h that S∗∗
α T → ψ∗T weak∗in L(Y,X∗∗).(d) For every weakly 
ompa
t 
ompa
t set K ⊂ X∗∗ there is a net (Sα) ⊂

F(X,X) with limα supx∗∗∈K ‖x∗∗ − 2S∗∗
α x

∗∗‖ ≤ supx∗∗∈K ‖x∗∗‖ su
h that
Sα → IX uniformly on 
ompa
t subsets of K ∩X.(e) For every Bana
h spa
e Y and T ∈ W(Y,X∗∗), there is a net (Sα) ⊂
F(X,X) with lim supα ‖T − 2S∗∗

α T ‖ ≤ ‖T ‖ su
h that Sα → IX uniformlyon 
ompa
t sets in X.(f) For every re�exive Bana
h spa
e Y and T ∈ W(Y,X∗∗), there is a net
(Sα) ⊂ F(X,X) with lim supα ‖T − 2S∗∗

α T ‖ ≤ ‖T ‖ su
h that Sα → IXuniformly on 
ompa
t sets in X.Theorem 1.3.32 (Abrahamsen, Lima, and Lima). Let X be a Bana
h spa
e.The following statements are equivalent.(a) F(Y,X) is a u-ideal in K(Y,X∗∗) for every Bana
h spa
e Y .(b) X is a u-ideal in X∗∗ with un
onditional Hahn-Bana
h extension ψ su
hthat ψ∗|X∗∗ is in the weak∗-
losure of the F(X,X) in L(X∗∗, X∗∗).(
) X is a u-ideal in its bidual with un
onditional Hahn-Bana
h extensionoperator ψ ∈ HB(X,X∗∗) su
h that for every Bana
h spa
e Y and T ∈
K(Y,X∗∗) there is a net (Sα) ⊂ F(X,X) with lim supα ‖T−2S∗∗

α T ‖ ≤ ‖T ‖su
h that S∗∗
α T → ψ∗T weak∗ in L(Y,X∗∗).(d) For every Bana
h spa
e Y and T ∈ K(Y,X∗∗) there is a net (Sα) ⊂

F(X,X) with lim supα ‖T − 2S∗∗
α T ‖ ≤ ‖T ‖ su
h that Sα → IX uniformlyon 
ompa
t sets in X.(e) For every separable re�exive Bana
h spa
e Y and T ∈ K(Y,X∗∗) there is anet (Sα) ⊂ F(X,X) with lim supα ‖T −2S∗∗

α T ‖ ≤ ‖T ‖ su
h that Sα → IXuniformly on 
ompa
t sets in X.Note that when �u-ideal� is repla
ed by �ideal� in statement (a) in Theorem1.3.31 and in (a) in Theorem 1.3.32, these statements are equivalent. This ispart of Theorem 1.3.13. On the basis of this, it is interesting to note that thestatements in Theorem 1.3.31 are in fa
t stri
tly stronger than those in Theorem1.3.32. Indeed, as remarked in [2℄ (see Chapter 4) the equivalently renormedversion ℓ̂2 of ℓ2 obtained by Oja in [62, Example 3℄, ful�lls the statements inTheorem 1.3.32, but fails to satisfy those of Theorem 1.3.31 (or equivalentlyTheorems 1.3.29, 1.3.30 sin
e ℓ̂2 is re�exive (see the next subse
tion)). In thenext subse
tion, this renorming is dis
ussed in more detail.23



From Theorem 1.3.26, [73℄, and [49, Corollary 2℄ (see also [42, Theorem 5.1℄,[35, p. 138℄, and [65, Proposition 2.1℄) we get the following proposition.Proposition 1.3.33 (Lima, 1993; Lima, Nygaard, and Oja, 2000). Let X be aBana
h spa
e. The following statements are equivalent.(a) F(Y,X) is an ideal in W(Y,X) for every Bana
h spa
e Y .(b) X has the AP.(
) Every separable ideal Z in X has the AP.(d) F(Y, Z) is an ideal in W(Y, Z) for every Bana
h spa
e Y and separableideal Z in X.In [2℄ (
f. Proposition 4.3.6) we were able to show that the following analogueto Theorem 1.3.33 holds for u-ideals.Proposition 1.3.34 (Abrahamsen, Lima, and Lima). Let X be a Bana
h spa
eand assume F(Y,X) is a u-ideal in W(Y,X) for every Bana
h spa
e Y . Then a
losed subspa
e Z of X has the AP if and only if F(Y, Z) is a u-ideal in W(Y, Z)for every Bana
h spa
e Y .By using Theorem 1.3.33 the next result is immediate.Corollary 1.3.35. Let X be a Bana
h spa
e. The following are equivalent.(a) F(Y,X) is a u-ideal in W(Y,X) for every Bana
h spa
e Y .(b) F(Y, Z) is a u-ideal in W(Y, Z) for every Bana
h spa
e Y and ideal Z in
X.1.3.2 U-ideals and open problemsBefore we start to dis
uss u-ideals, we will take a detour into some related prop-erties. It turns out that known results about these properties are importantalso in the setting of u-ideals.The Hahn-Bana
h theorem asserts that a linear fun
tional de�ned on a sub-spa
e of a normed linear spa
e has at least one norm-preserving extension tothe whole spa
e. In some 
ases, however, this extension is unique (e.g. re�exivespa
es). Following Phelps [68℄ we de�ne.De�nition 1.3.36. Let X be a 
losed subspa
e of a normed linear spa
e Y .Then X has property U in Y if every element x∗ ∈ X∗ has a unique norm-preserving extension y∗ to Y .Generalizing the 
on
ept of an M -ideal, Hennefeld [37℄ introdu
ed and in-vestigated the 
on
ept of HB-subspa
es.De�nition 1.3.37. A 
losed subspa
e X of a normed linear spa
e Y is saidto be an HB-subspa
e in Y (or X has property HB in Y ) if its annihilator X⊥is 
omplemented in Y ∗ by a subspa
e X∗ su
h that whenever x∗ ∈ X∗ and

x⊥ ∈ X⊥ \ {0}, then ‖x∗ + x⊥‖ ≥ ‖x⊥‖ and ‖x∗ + x⊥‖ > ‖x∗‖.24



It is straightforward to verify that an HB-subspa
e has property U. Indeed,let X be an HB-subspa
e in Y and let P be the indu
ed proje
tion on Y ∗ de�nedby P (x⊥ + x∗) = x∗. Then, for x∗ ∈ X∗ and y∗ ∈ HB(x∗), we get Py∗ = y∗sin
e Py∗ ∈ HB(x∗). Now, if y∗1 and y∗2 are in HB(x∗), then y∗1 − y∗2 ∈ kerP .Thus y∗1 = Py∗1 = Py∗2 = y∗2 whi
h shows that X has property U in Y .There are, however, subspa
es with property U whi
h fail to be HB-subspa
es.Produ
ing su
h an example took some years, but �nally Oja su

eeded in [61℄(see also Example 1 in [62℄). In fa
t, Oja showed that there is a subspa
e of
ℓ3∞ with property U whi
h fails the property SU [61℄ (see also [62, Example 1℄).The property SU is stronger than the property U. This follows by the sameargument as for HB-subspa
es.De�nition 1.3.38. Let X be a 
losed subspa
e of a normed linear spa
e Y .Then X has the property SU in Y if its annihilator X⊥ is 
omplemented in
Y ∗ by a subspa
e X∗ su
h that whenever x∗ ∈ X∗ and x⊥ ∈ X⊥ \ {0}, then
‖x∗ + x⊥‖ > ‖x∗‖.It is 
lear from the de�nitions that HB-subspa
es must have property SU, soOja's example shows in parti
ular that the property HB is stri
tly stronger thanproperty U. For a subspa
e with the property SU failing the property HB seeExample 2 in [62℄. Thus the property SU is stri
tly between the properties Uand HB.The property U is lo
ally determined in the sense that a subspa
e X of aBana
h spa
e Y has this property in Y if and only X has this property in everysubspa
e Z of Y in whi
h X has 
odimension 1. Similar results also holds forthe properties SU and HB.Theorem 1.3.39. Let X be a 
losed subspa
e of a Bana
h spa
e Y . The fol-lowing statements are equivalent.(a) X has property U (resp. SU, HB) in Y .(b) X has property U (resp. SU, HB) in Z =span (X, {y}) for every y ∈ Y .To prove this we will use results whi
h require the following de�nition [48℄.De�nition 1.3.40. Let X be a subspa
e of a Bana
h spa
e Y and let n ≥ 3be a natural number. Then X is said to have the n.Y. interse
tion property(n.Y.I.P ) if for every family (B(xi, ri))

n
i=1 of n 
losed balls with 
enters (xi)

n
i=1in X and Y ∩⋂n

i=1 B(xi, ri) 6= ∅, then X∩⋂n
i=1 B(xi, ri+ε) 6= ∅ for every ε > 0.From [48, Theorem 3.1℄, [52, Proposition 2.1℄, and [63, Theorem 1.2℄ we havethe following results.Theorem 1.3.41 (Lima, 1983; Lima and Oja, 1999). Let X be a 
losed subspa
eof a Bana
h spa
e Y . The following are equivalent.(a) X is an ideal in Z =span (X, {y}) for every y ∈ Y .(b) X has the n.Y.I.P for all n.(
) If n ∈ N x∗1, ..., x

∗
n ∈ X∗ are su
h that x∗1 + x∗2 + ... + x∗n = 0, then for

i = 1, ..., n there exist y∗i ∈ HB(x∗i ) su
h that y∗1 + ...+ y∗n = 0.25



Theorem 1.3.42 (Oja, 1991). Let X be a 
losed subspa
e of a Bana
h spa
e
Y . Then the following statements are equivalent.(a) X is an HB subspa
e of Y .(b) X has property U in Y and there exists an ideal proje
tion P on Y ∗satisfying ‖I − P‖ = 1.Proof of the U-
ase of Theorem 1.3.39 . (a) ⇒ (b). Let y ∈ Y \ X and put
Z =span (X, {y}). Let x∗ ∈ X∗ and z∗1 , z

∗
2 ∈ HB(x∗) ⊂ Z∗. Choose y∗i ∈HB(z∗i ) ⊂ Y ∗ for i = 1, 2. Then y∗1 = y∗2 ∈ HB(x∗), so z∗1 = z∗2 .(b) ⇒ (a). Let x∗ ∈ X∗. Suppose that y∗1 , y∗2 ∈ HB(x∗) ⊂ Y ∗ and that

y∗1 6= y∗2 . Choose y ∈ Y \X su
h that y∗1(y) 6= y∗2(y) and let Z =span (X, {y}).Sin
e y∗1 |Z and y∗2 |Z are extensions of x∗ to Z, they have to be equal on Z byassumption, and we get a 
ontradi
tion.Proof of the SU-
ase of Theorem 1.3.39. (a) ⇒ (b). Let y ∈ Y \ X and put
Z =span (X, {y}). Sin
e X has property U in Z and is an ideal in Z the resultfollows from [62, Theorem℄.(b) ⇒ (a). By [62, Theorem℄ it su�
es to show that X possesses properties
3.Y.I.P and U in Y . But this follows from Proposition 1.3.41 and Theorem1.3.39 (U-
ase).Proof of the HB-
ase of Theorem 1.3.39. (a) ⇒ (b). Let y ∈ Y \X , and de�ne
Z =span (X, {y}). Let z∗ ∈ Z∗, and let y∗ ∈ HB(z∗). Sin
e HB-subspa
es haveproperty SU it follows from Theorem 1.3.39 (SU-
ase) that X has property SUin Z. Denote by iX,Z : X → Z, iZ,Y : Z → Y , and iX,Y : X → Y the naturalembeddings. Then iX,Y = iZ,Y ◦ iX,Z , so (iX,Y )∗ = (iX,Z)∗ ◦ (iZ,Y )∗. Let PY ∗and PZ∗ denote the unique ideal proje
tions on Y ∗ and Z∗ respe
tively. Write
PY ∗ = φ◦(iX,Y )∗ and PZ∗ = ψ◦(iX,Z)∗ where φ ∈ HB(X,Y ) and ψ ∈ HB(X,Z).We get

‖z∗ − PZ∗z∗‖ = ‖z∗ − ψ(iX,Z)∗z∗‖ = ‖z∗ − φ(iX,Z)∗z∗|Z‖
= ‖z∗ − φ(iX,Z)∗(iZ,Y )∗y∗|Z‖ ≤ ‖y∗ − φ(iX,Y )∗y∗‖
= ‖y∗ − PY ∗y∗‖ ≤ 1.Thus the result follows from Theorem 1.3.42.(b) ⇒ (a). From Theorem 1.3.39 (SU-
ase) we get that X has property SUin Y . Let y∗ ∈ Y ∗ and y ∈ BY and put Z =span (X, {y}). Then

〈y∗ − φ(iX,Y )∗y∗, y〉 = 〈y∗ − φZ(iX,Z)∗(iZ,Y )∗y∗, y〉 = 〈(IZ∗ − PZ∗)(iZ,Y )∗y∗, y〉,and the result follows from Theorem 1.3.42.The arti
le [48℄ of Lima, left open the following two questions: Do there existBana
h spa
es X and Y , su
h that X or Y ∗ has the metri
 approximation prop-erty, for whi
h K(Y,X) has property U in L(Y,X), but is not an HB-subspa
ein L(Y,X)? Could a Bana
h spa
e have property U in its bidual without beinga HB-subspa
e in its bidual?A few years after the arti
le of Lima, both of these questions was answeredin the negative by Oja in Examples 3 and 4 in [62℄. In [62, Example 3℄, Ojade�ned a renorming ℓ̂2 of ℓ2 for whi
h K(Y, ℓ̂2) has property SU in W(Y, ℓ̂2) for26



every normed linear spa
e Y , but su
h that K(ℓ1, ℓ̂2) fails to be an HB-subspa
ein W(ℓ1, ℓ̂2). This renorming of ℓ2 is done in the following manner:
‖(ξ1, ξ2, ...)‖ = (

1

3

∞
∑

i=1

ξ2i +
2

3
sup
n≥2

(ξ21 , (
ξ1√
2

+ ξn)2))1/2,where (ξ1, ξ2, ...) ∈ ℓ2.In Example 4 in [62℄, Oja showed that for 0 < r < 1, the equivalentlyrenormed versions c0r of c0, due to Johnson and Wolfe [40℄, have property SU intheir biduals, but in fa
t fail to be HB-subspa
es in their biduals. For 0 < r ≤ 1,the Johnson-Wolfe renorming of c0 is done in the following manner:
‖(ξ1, ξ2, ...)‖ = sup{|ξ1|/r, |ξ1 − ξ2|, ...},where (ξ1, ξ2, ...) ∈ c0.Later, in [64, p. 127℄, Oja also showed that for 0 < r < 1 the spa
es

K(c0r , c0r), K(ℓ1, c0r), andK(ℓ̂2, ℓ̂2) all have property U, in fa
t SU, in L(c0r , c0r),
L(ℓ1, c0r), and L(ℓ̂2, ℓ̂2) respe
tively. However, all of them fail to be HB-subspa
es.Observe that L(ℓ̂2, ℓ̂2) = K(ℓ̂2, ℓ̂2)

∗∗, so ℓ̂2 is also an example of a Bana
h spa
efor whi
h K(ℓ̂2, ℓ̂2) has property U, a
tually SU, in its bidual, without beingan HB-subspa
e in its bidual. If we 
ombine this fa
t with Theorem 1.3.22, weget that ℓ̂2 does not have the UMAP. Thus the UMAP is not preserved underequivalent renormings sin
e ℓ2 has the UMAP.Note that, if X is a u-ideal in a Bana
h spa
e Y , and X has property U in Y ,then X is an HB-subspa
e of Y . Indeed, let P be the un
onditional proje
tionon Y ∗ satisfying ‖I − 2P‖ = 1. Then writing I − P = I
2 + I−2P

2 and usingthe triangle inequality, this follows. Sin
e K(ℓ1, ℓ̂2) is not an HB-subspa
e of
W(ℓ1, ℓ̂2), it now follows that ℓ̂2 does not ful�ll Theorem 1.3.31 as 
laimed inthe last paragraph of subse
tion 1.3.1.It now also follows from the examples in the pre
eding paragraphs that for
0 < r < 1, c0r and K(ℓ̂2, ℓ̂2) are not u-ideals in their biduals. These two exam-ples leave us with the problem of determining when Bana
h spa
es are u-idealsin their biduals. Some results in this dire
tion are known. If a Bana
h spa
e
X is a u-ideal in its bidual, then from [29, Corollary 4.1℄ we know that everyBana
h spa
e being (1+ε)-isomorphi
 to a (1+ε)-
omplemented subspa
e of X ,is a u-ideal in its bidual. In parti
ular 1-
omplemented subspa
es of X possessthis property. However, it is not known if ideals in X also possess this property.Based on this, one 
an ask:Problem 1.3.43. Suppose a Bana
h spa
e is a u-ideal in its bidual. Whi
hsubspa
es of this Bana
h spa
e inherits the property of being u-ideals in theirbiduals? In parti
ular, do we have that every ideal in a Bana
h spa
e is a u-idealin its bidual whenever the spa
e itself is?Godefroy, Kalton, and Saphar proved a result related to this problem, but forh-ideals instead of u-ideals [29, Theorem 6-7℄. H-ideals are 
omplex analoguesto u-ideals.De�nition 1.3.44. A 
losed subspa
e X of a 
omplex Bana
h spa
e Y is 
alledan h-ideal in Y if there exists a proje
tion P on Y ∗ with kerP = X⊥ su
h that
‖I − (1 + λ)P‖ = 1 for all λ with |λ| = 1.27



Theorem 1.3.45 (Godefroy, Kalton, and Saphar, 1993). Suppose X is a sepa-rable Bana
h spa
e and X is an h-ideal in its bidual. Let φ ∈ HB(X,X∗∗) be the
orresponding Hahn-Bana
h extension operator. Then every 
losed subspa
e Zof X su
h that φ∗(Z⊥⊥) ⊂ Z⊥⊥, inherits the property of being an h-ideal in itsbidual.A
tually the proof 
an be modi�ed so that the result holds for arbitraryBana
h spa
es being u-ideals in their biduals (see [2, Theorem 2.4℄)Theorem 1.3.13, Theorem 1.3.26, and its dual 
ounterpart [51, Theorem 3.4℄,gives reason to study the following statements. This is done in [2℄, whi
h 
on-stitutes Chapter 4 in this thesis.(A) F(X,Y ) is a u-ideal in W(X,Y ) for every Bana
h spa
e Y .(B) F(Y,X) is a u-ideal in W(Y,X∗∗) for every Bana
h spa
e Y .(C) F(Y,X) is a u-ideal in W(Y,X) for every Bana
h spa
e Y .If X is a re�exive Bana
h spa
e, then (A), (B), and (C) are equivalent.Indeed, this follows from [2, Theorems 3.2 and 3.5℄ and [50, Theorem 4.3℄ usingthe isometries F(X,X) = F(X∗, X∗) and W(X,X) = W(X∗, X∗).For a general Bana
h spa
e X it is evident that (B) implies (C) by using thelo
al 
hara
terization of u-ideals Theorem 1.3.19.Note that if (A) holds, then X∗ has the AP [51, Theorem 3.4℄. From [44,Proposition 3.3℄ we have that F(Y,X)∗∗ = W(Y,X∗∗) for every re�exive Bana
hspa
e Y if and only if X∗ has the AP. Thus, if (A) implies (B) and X is a spa
esatisfying (A), then F(Y,X) be
omes a u-ideal in its bidual for every re�exiveBana
h spa
e Y .From [35, Example 4.1℄, it follows that ℓp for 1 < p <∞ ful�lls (C) and thus(B) and (A) by the paragraph above. In [2℄ it is remarked that ℓ1 ful�lls (C),but fails (A). Note that this shows that the statement (A) is stri
tly strongerthan the similar statements in [51, Theorem 3.4℄ for ideals.We will now prove that also ℓ1 ful�lls statement (B). To do this we will usethe re
ently established fa
t that F(Y,X) is a u-ideal in W(Y,X∗∗) for everyBana
h spa
es Y if and only if F(Y,X) is a u-ideal in span (F(Y,X), {T }) forevery Bana
h spa
e Y and T ∈ W(Y,X∗∗) [47℄.Proof. Let Y be a Bana
h spa
e and let T ∈ W(Y, ℓ∗∗1 ). By the above paragraph,it su�
es to prove that F(Y, ℓ1) is a u-ideal in B =span (F(Y, ℓ1), {T }) for everyBana
h spa
e Y and T ∈ W(Y, ℓ1
∗∗). Let (Si)

3
i=1 ⊂ F(Y, ℓ1). Sin
e c0 is an

M -ideal in its bidual [35, p. 105℄, there exists an L-proje
tion, P , from ℓ∗∗1 onto
ℓ1. Denote by Pn : ℓ1 → ℓ1 the 
anoni
al proje
tion onto the �rst n 
oordinates.We may assume that Si = PnSi for i = 1, 2, 3 for some large n. For y ∈ BY ,using the fa
t that P and Pn are L-proje
tions, we get that
‖(T + Si − 2PnPT )y‖ = ‖Ty − PTy‖ + ‖PTy+ Siy − 2PnPTy‖

= ‖Ty − PTy‖ + ‖PTy− PnPTy‖+ ‖PnPTy − Siy‖
= ‖Ty − PTy‖ + ‖PTy− Siy‖
= ‖Ty − Siy‖ ≤ ‖T − Si‖.28



This means that 2PnPT ∈ F(Y, ℓ1)∩
⋂3
i=1 BB(T +Si, ‖T −Si‖), and the resultnow follows from [46, Theorem 1.3℄. If we have ‖Si − PnSi‖ < ε for i = 1, 2, 3,then we get 2PnPT ∈ F(Y, ℓ1) ∩

⋂3
i=1BB(T + Si, ‖T − Si‖ + 2ε).In [2℄ it is also remarked that c0 ful�lls (A), (B), and (C), but that ℓ∞ fails(C) and hen
e also (B). Note that this shows that the statements in Theorems1.3.26 and 1.3.13 are stri
tly weaker than statements (C) and (B) respe
tively.As far as the author knows, it is open whether ℓ∞ fails (A). Also, from [75℄ itfollows that X = ℓ2⊗̂πℓ2 does not ful�ll (A), but does this X ful�ll (C) or (B)?The dis
ussion in this paragraph leaves open the following problem, whi
hseems to be of some importan
e.Problem 1.3.46. Do we have that (A) ⇒ (B)? Moreover, are the impli
ations(A) ⇒ (B) ⇒ (C) stri
t?Another interesting question is whether Corollary 1.3.35 holds when �ideals�

Z in X are repla
ed by �separable ideals�. As far as the author knows thisquestion is not answered even with �M -ideal� in pla
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Chapter 2On weak integrability andboundedness in Bana
hspa
es2.1 Introdu
tionLet X be a Bana
h spa
e. A subset B ⊂ X∗ is said to be weak∗-norming if
inf
x∈SX

sup
x∗∈B

|x∗(x)| > 0. Equivalently, the set B is weak∗-norming if and onlyif its weak∗-
losed absolutely 
onvex hull 
ontains some ball. The set B issaid to be weak∗-non-norming if it is not weak∗-norming. In [9℄ Fonf de�neda set A ⊂ X∗ to be weak∗-thin if it 
an be represented as a non-de
reasing
ountable union of weak∗-non-norming sets. (Remark that Fonf used the term�thin" instead of �weak∗-thin".) As in [14℄ and [15℄, let us say that the set A isweak∗-thi
k if it is not weak∗-thin. For 
hara
terizations of weak∗-thi
k sets interms of uniform boundedness of families of fun
tionals in X , and surje
tivityof 
onjugate operators, we refer to [10, Proposition 1℄ and [15, Theorems 3.4and 4.6℄ (see also Theorem 2.4.4 of the present paper for the summary of these
hara
terizations).In [9, Theorem 1℄, Fonf proved that if X does not 
ontain any 
losed sub-spa
es isomorphi
 to c0, then extBX∗ , the set of extreme points of the dualunit ball, is weak∗-thi
k. From this he dedu
ed (see [9, Theorem 4℄) that if
X is separable and does not 
ontain any isomorphi
 
opies of c0, then when-ever (Ω,Σ, µ) is a �nite measure spa
e and a fun
tion f : Ω → X is su
h that
x∗f ∈ L1(µ) for all x∗ ∈ extBX∗ , one has x∗f ∈ L1(µ) for all x∗ ∈ X∗, i.e., fis weakly integrable (and thus Pettis integrable by a well known result of Dim-itrov and Diestel (see [4℄ or [3, Theorem 7, p. 54℄)). The main obje
tive of thispaper is to generalize this result by giving the following new 
hara
terization ofweak∗-thi
k sets.Main theorem A subset A ⊂ X∗ is weak∗-thi
k if and only if whenever (Ω,Σ, µ)is a measure spa
e and f : Ω → X is an essentially separable valued fun
tionsu
h that x∗f ∈ L1(µ) for all x∗ ∈ A, then x∗f ∈ L1(µ) for all x∗ ∈ X∗.In Se
tion 2.2, we prove the Main Theorem. As a 
orollary, it spe
ializes to35



give a 
hara
terization of weak∗-thi
k sets inX∗ in terms of weakly un
ondition-ally Cau
hy series. In Se
tion 2.3, we prove a 
hara
terization of weak∗-thi
ksets in terms of boundedness of ve
tor measures. In Se
tion 2.4, we explainhow �thi
kness", a notion dual to �weak∗-thi
kness", is related to the theory ofbarrelled spa
es.Throughout this paper, X will be a Bana
h spa
e. Our notation is standard.The unit ball and the unit sphere of X are denoted, respe
tively, by BX and
SX . For a set A ⊂ X , we denote by extA the set of extreme points of A, and byabs
onv(A) its absolutely 
onvex hull. If some subsets Aj ⊂ X , j ∈ N, are su
hthat A1 ⊂ A2 ⊂ A3 ⊂ . . ., then, for their union, we sometimes write ⋃∞

j=1 Aj ↑.2.2 Thi
kness and weak integrabilityThe �if" part of the Main Theorem is an immediate 
onsequen
e of the followinglemma whi
h will be used also in Se
tion 2.3.Lemma 2.2.1. Let a subset A ⊂ X∗ be weak∗-thin, and let αj ∈ R, αj > 0,
j ∈ N. Then there are xj ∈ X, j ∈ N, z∗ ∈ X∗ \ A, an in
reasing sequen
e ofindi
es (νj)

∞
j=1, and a real number δ > 0 su
h that

∞
∑

j=1

αj |x∗(xj)| <∞ for all x∗ ∈ A,but ανj
|z∗(xνj

)| > δ for all j ∈ N.Corollary 2.2.2. Let a subset A ⊂ X∗ be weak∗-thin, and let (Ω,Σ, µ) be ameasure spa
e su
h that there are pairwise disjoint sets Aj ∈ Σ with 0 < µ(Aj) <
∞, j ∈ N. Then there is a strongly measurable fun
tion f : Ω → X su
h that
∫

Ω
|x∗f | dµ <∞ for all x∗ ∈ A, but ∫

Ω
|z∗f | dµ = ∞ for some z∗ ∈ X∗ \A.Proof. The assertion follows by applying Lemma 2.2.1 for αj = µ(Aj), j ∈ N,and putting f =

∑∞
j=1 χAj

xj .Proof of Lemma 2.2.1. Sin
e A is weak∗-thin, it has a representationA =
⋃∞
j=1 Aj ↑where all the Aj are weak∗-non-norming, i.e., inf

x∈SX

sup
x∗∈Aj

|x∗(x)| = 0, j ∈ N.Thus we 
an pi
k a sequen
e (xj) ⊂ X with αj ‖xj‖ = 2j, j ∈ N, su
h that
sup
x∗∈Aj

αj |x∗(xj)| ≤
1

2j
for all j ∈ N.Note that whenever x∗ ∈ A, then there is some m ∈ N su
h that x∗ ∈ Aj for all

j ≥ m, and thus
∞
∑

j=1

αj |x∗(xj)| =

m−1
∑

j=1

αj |x∗(xj)| +
∞
∑

j=m

αj |x∗(xj)|

≤
m−1
∑

j=1

αj |x∗(xj)| +
∞
∑

j=m

1

2j
<∞.36



Next pi
k a sequen
e (x∗j ) ⊂ X∗ with ‖x∗j‖ ≤ 1
2j , j ∈ N, su
h that

αj |x∗j (xj)| > 1 − 1

4
, j ∈ N.Now there are two alternatives:

1) limj→∞ αj |x∗i0(xj)| 6= 0 for some i0 ∈ N;
2) limj→∞ αj |x∗i (xj)| = 0 for all i ∈ N.In the 
ase 1), 
hoose an in
reasing sequen
e of indi
es (νj) su
h that, forsome δ > 0, one has ανj

|x∗i0 (xνj
)| > δ for all j ∈ N, and put z∗ = x∗i0 .In the 
ase 2), put ν1 = 1 and pro
eed as follows. Given indi
es ν1 < ν2 <

. . . < νj−1 (j ∈ N, j ≥ 2), pi
k an index νj > νj−1 su
h that
j−1
∑

i=1

ανj
|x∗νi

(xνj
)| < 1

4
and 2νj−1

2νj
≤ 1

2j+1
.Denoting z∗ =

∑∞
i=1 x

∗
νi

(this series 
onverges be
ause it 
onverges absolutely),it remains to observe that, whenever j ∈ N and i > j, one has
ανj

|x∗νi
(xνj

)| ≤ ανj
‖xνj

‖ ‖x∗νi
‖ ≤ 2νj

2νi
≤ 2νi−1

2νi
≤ 1

2i+1
,and thus, for all j ∈ N,

ανj
|z∗(xνj

)| ≥ ανj
|x∗νj

(xνj
)| −

j−1
∑

i=1

ανj
|x∗νi

(xνj
)| −

∞
∑

i=j+1

ανj
|x∗νi

(xνj
)|

≥ 1 − 1

4
− 1

4
−

∞
∑

i=j+1

1

2i+1
≥ 1

4
.Proof of the Main Theorem. Su�
ien
y has been proven in Corollary 2.2.2.Ne
essity has been essentially proven in [9, Theorem 4℄. For the sake of
ompleteness, we shall give the details also here.Let A ⊂ X∗ be weak∗-thi
k, let (Ω,Σ, µ) be a measure spa
e, and let anessentially separable valued fun
tion f : Ω → X be su
h that x∗f ∈ L1(µ) for all

x∗ ∈ A. Denote Aj = {x∗ ∈ A :
∫

Ω |x∗f | dµ ≤ j}, j ∈ N. Then A =
⋃∞
j=1 Aj ↑,and the thi
kness of A implies the existen
e of some m ∈ N and δ > 0 su
hthat abs
onvw∗

(Am) ⊃ δBX∗ . Thus it 
learly su�
es to show that x∗f ∈ L1(µ)for all x∗ ∈ abs
onvw∗

(Am). Fix an arbitrary x∗ ∈ abs
onvw∗

(Am). Sin
e f isessentially separable valued, there is a sequen
e (y∗n) ⊂ abs
onv(Am) su
h that
y∗nf → x∗f µ-almost everywhere on Ω; hen
e x∗f is measurable. Sin
e, for any
y∗ ∈ abs
onv(Am), one has ∫

Ω
|y∗f | dµ ≤ m, by 
ourtesy of Fatou's lemma, also

∫

Ω |x∗f | dµ ≤ m; thus x∗f ∈ L1(µ).By the Bana
h-Steinhaus theorem, from [15, Theorem 3.4℄ (see also The-orem 2.4.4 of the present paper) it follows that any Bana
h spa
e is a weak∗-thi
k subset of its bidual. Thus the Main Theorem yields the following 
orollary(whi
h is probably known although the authors do not know any referen
e forit). 37



Corollary 2.2.3. Let (Ω,Σ, µ) be a measure spa
e, and let f : Ω → X∗ bean essentially separable-valued fun
tion. If xf ∈ L1(µ) for all x ∈ X, then
x∗∗f ∈ L1(µ) for all x∗∗ ∈ X∗∗.Re
all that a series ∑∞

j=1 xj inX is said to be weakly un
onditionally Cau
hyif ∑∞
j=1 |x∗(xj)| < ∞ for all x∗ ∈ X∗. Observing that, for any x∗ ∈ X∗,

∑∞
j=1 |x∗(xj)| =

∫

N
|x∗f | dc, where c is the 
ounting measure on P(N) and thefun
tion f : N → X is de�ned by f =

∑∞
j=1 χ{j}xj , then from the Main Theoremand the proof of Corollary 2.2.2 we immediately getCorollary 2.2.4. A set A ⊂ X∗ is weak∗-thi
k if and only if every series

∑∞
j=1 xj in X satisfying ∑∞

j=1 |x∗(xj)| < ∞ for all x∗ ∈ A is weakly un
ondi-tionally Cau
hy.The �only if" part of Corollary 2.2.4 gives the known link between Fonf'stheorem stating that if X does not 
ontain any isomorphi
 
opies of c0, thenextBX∗ is weak∗-thi
k (see [9, Theorem 1℄), and a theorem of Elton (see [5,Corollary℄ or [2, Theorem 15, p. 169℄).2.3 Thi
kness and bounded ve
tor measuresLet F be an algebra of subsets of a set Ω, and let F : F → X be a ve
tormeasure (i.e., let F be a �nitely additive set fun
tion). It is standard (see [3,Proposition 11, p. 4℄) that F has bounded range if and only if it is of boundedsemi-variation, i.e., ‖F‖(Ω) = supx∗∈BX∗
|x∗F |(Ω) < ∞ (see [3, p. 2℄ for thede�nitions of the variation and the semivariation of a ve
tor measure).An important 
onsequen
e of the Nikodým boundedness theorem is the fol-lowing result of Dieudonné and Grothendie
k.Proposition 2.3.1 (see [3, p. 16℄). Let F be an X-valued set fun
tion de�nedon a σ-algebra Σ of subsets of a set Ω, and suppose that, for ea
h x∗ belongingto some total subset Γ ⊂ X∗, the fun
tion x∗F is bounded and �nitely additive.Then F is a bounded ve
tor measure.The interesting part of the theorem is of 
ourse the test for boundedness: if

Σ is a σ-algebra, then it is enough to test on a total subset Γ ⊂ X∗. In general,Proposition 2.3.1 may fail for algebras that are not σ-algebras. We now showthat there is a general test for boundedness also if the ve
tor measure is de�nedmerely on an algebra.Proposition 2.3.2. Let F be an X-valued set fun
tion de�ned on an algebra
F of subsets of a set Ω, and suppose that, for ea
h x∗ belonging to some weak∗-thi
k subset Γ ⊂ X∗, the fun
tion x∗F is bounded and �nitely additive. Then Fis a bounded ve
tor measure.Proof. By the Hahn-Bana
h theorem, the additivity of F follows easily from theweak∗-denseness of span Γ in X∗, and it remains to show that F is bounded.Put Aj = {x∗ ∈ Γ: |x∗F |(Ω) ≤ j}, j ∈ N. Then Γ =

⋃∞
j=1 Aj ↑, and theweak∗-thi
kness of Γ implies that there are some m ∈ N and δ > 0 su
h thatabs
onvw∗

(Am) ⊃ δBX∗ . Thus it 
learly su�
es to show that, for all x∗ ∈abs
onvw∗

(Am), one has |x∗F |(Ω) ≤ m. Observing that the last inequality38



holds for all x∗ ∈ abs
onv(Am), it 
an be easily seen to hold also for all x∗ ∈abs
onvw∗

(Am).It is natural to ask whether Proposition 2.3.2 
hara
terizes the weak∗-thi
ksets in X∗. More pre
isely, if a subset A ⊂ X∗ is weak∗-thin, then 
an onealways �nd an algebra F and an unbounded X-valued ve
tor measure F on Fsu
h that, for all x∗ ∈ A, the s
alar valued ve
tor measure x∗F is bounded?The following proposition answers this question in the a�rmative.Proposition 2.3.3. Let a subset A ⊂ X∗ be weak∗-thin. Then there is anunbounded X-valued ve
tor measure F on the algebra FN of �nite and 
o�nitesubsets of N su
h that |x∗F |(N) <∞ for every x∗ ∈ A.Proof. Applying Lemma 2.2.1 for αj = 1, j ∈ N, produ
es some zj ∈ X ,
j ∈ N, z∗ ∈ X∗, and δ > 0 su
h that ∑∞

j=1 |x∗(zj)| < ∞ for all x∗ ∈ A, but
Re z∗(zj) > δ for all j ∈ N (just take zj =

z∗(xνj
)

|z∗(xνj
)| xνj

in Lemma 2.2.1). Itremains to de�ne the ve
tor measure F : FN → X by
F (E) =



























0, if E = ∅ or E = N,
∑

j∈E

zj, if 0 < |E| <∞,
−

∑

j∈Ec

zj, if 0 < |Ec| <∞.2.4 Notes and remarksThere is a notion dual to �weak∗-thi
kness", namely, �thi
kness". A subset
B ⊂ X is said to be norming if inf

x∗∈SX∗

sup
x∈B

|x∗(x)| > 0. Equivalently, the set Bis norming if and only if its 
losed absolutely 
onvex hull 
ontains some ball.The set B is said to be non-norming if it is not norming. In [11℄, Kadets andFonf de�ned a set A ⊂ X to be thin if it 
an be represented as a non-de
reasing
ountable union of non-norming sets. As in [14℄ and [15℄, let us say that the set
A is thi
k if it is not thin.From [11, Proposition 1℄ and [15, Theorems 3.2 and 4.2℄, one has the follow-ing 
hara
terization of thi
k sets.Theorem 2.4.1. Let A ⊂ X. The following assertions are equivalent.(i) The set A is thi
k.(ii) Whenever Y is a Bana
h spa
e and T : Y → X is a 
ontinuous linearoperator su
h that TY ⊃ A, then TY = X.(iii) Whenever a family of 
ontinuous linear operators from the spa
e X tosome Bana
h spa
e is pointwise bounded on A, then this family is normbounded.(iv) Whenever a family of fun
tionals in the dual spa
e X∗ is pointwise boundedon A, then this family is norm bounded.39



It is almost verbatim to the proof of the Main Theorem to show that Theo-rem 2.4.1 
an be 
ontinued by(v) Whenever (Ω,Σ, µ) is a measure spa
e and a fun
tion g : Ω → X∗ is su
hthat xg ∈ L1(µ) for all x ∈ A, then xg ∈ L1(µ) for all x ∈ X.The perhaps most famous thi
k set is the set A of 
hara
teristi
 fun
tions in
B(Σ), the spa
e of bounded measurable fun
tions on a measurable spa
e (Ω,Σ):Nikodym's boundedness theorem states that A satis�es the 
ondition (iv) in
B(Σ), Seever's theorem states that A satis�es the 
ondition (iii). Remark thatboth these theorems were proved before Theorem 2.4.1 was 
ommonly known.It is well known that every pointwise bounded family of 
ontinuous linearoperators from a lo
ally 
onvex spa
e (LCS) E to some other LCS is equi
ontin-uous if and only if the spa
e E is barrelled, i.e., every absolutely 
onvex 
losedabsorbing set (every barrell) in E is a neighbourhood of zero. The theory ofbarrelled LCS is by now well do
umented through many books, among them[17℄ and more re
ently [8℄ and [13℄. If an LCS is metrizable, then it is barrelledif and only if it is Baire-like, i.e., it 
an not be represented as a 
ountable non-de
reasing union of absolutely 
onvex, nowhere dense sets. In this de�ninition,one may of 
ourse assume the sets to be 
losed. Observing that whenever a sub-set of a Bana
h spa
e is thin, then its linear span is thin as well, just 
omparingthe de�nitions givesProposition 2.4.2. A subset A ⊂ X is thi
k if and only if its linear span isdense and barrelled.Thus the equivalen
es (i)⇔(iii) and (i)⇔(ii) in Theorem 2.4.1 are, respe
-tively, just a restatement for Bana
h spa
es of the above-mentioned barrelledness
riterion, and the following well-known result of Bennett and Kalton.Theorem 2.4.3 (see [1, Proposition 1℄). Let Z ⊂ X be a dense subspa
e. Then
Z is barrelled if and only if whenever Y is a Bana
h spa
e and T : Y → X is a
ontinuous linear operator su
h that TY ⊃ Z, then TY = X.From [10, Proposition 1℄ and [15, Theorems 3.4 and 4.6℄ one has the following
hara
terization of weak∗-thi
k sets.Theorem 2.4.4. Let A ⊂ X∗. The following assertions are equivalent.(i) The set A is weak∗-thi
k in X∗.(ii) Whenever Y is a Bana
h spa
e and T : X → Y is a 
ontinuous linearoperator su
h that T ∗Y ∗ ⊃ A, then T ∗Y ∗ = X∗.(iii) Whenever a family of elements of the spa
e X is pointwise bounded on A,then this family is norm bounded.On the 
ontrary to Theorem 2.4.1, Theorem 2.4.4 has nothing to do withresults from the theory of barrelled spa
es: it does not say anything about theequi
ontinuity of weak∗-
ontinuous linear fun
tionals, but it gives a test for theequi
ontinuity of norm 
ontinuous linear fun
tionals.The already mentioned theorem due to Fonf (see [9, Theorem 1℄) states thatif extBX∗ is weak∗-thin in X∗, then X 
ontains a 
opy of c0. If X is separable,40



the same is true for w∗-expBX∗ , the set of weak∗-exposed points of BX∗ , as isshown in [10, Theorem 3∗℄.Using results of Fonf, Nygaard showed in [15℄ that if both X∗ and Y are
c0-free, then the set E = extBX∗∗ ⊗ extBY ∗ is weak∗-thi
k in L(X,Y )∗. Fromthis it follows that if both X∗ and Y are c0-free, then extBK(X,Y )∗ is weak∗-thi
kin K(X,Y )∗. Note that even K(ℓ2) 
ontains a 
opy of c0.In the theory of analyti
 fun
tions, a set A satisfying the 
ondition (iv) ofTheorem 2.4.1 is 
alled a uniform boundedness de
iding set (UBD-set) (see [7℄).It has been shown by Fernandez ([6℄) that the set of inner fun
tions is a UBD-setin (H∞, w∗). Later it has been shown by H. Shapiro ([16℄) that also the set ofthe Blas
hke-produ
ts has this property. Whether the inner fun
tions form aUBD-set in (H∞, ‖ · ‖) is still unknown. In other words, it is unknown whetherthe linear span of the inner fun
tions in H∞ is barrelled. What is known from[16℄ is that this linear span is not a Baire spa
e, but the inner fun
tions form anorming set in H∞. In fa
t, the 
losed, 
onvex hull of the Blas
hke-produ
ts isexa
tly the unit ball in H∞ (see [12, Cor 2.6, p. 196℄).Bibliography[1℄ G. Bennett and N. J. Kalton, In
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Chapter 3Weak metri
 approximationproperties and ni
eproje
tions3.1 Introdu
tionLet X and Y be Bana
h spa
es. We denote by L(Y,X) the Bana
h spa
e ofbounded linear operators from Y to X , and by F(Y,X), K(Y,X), W(Y,X)its subspa
es of �nite rank operators, 
ompa
t operators, and weakly 
ompa
toperators, respe
tively.We denote by X⊗̂πY the (
ompleted) proje
tive tensor produ
t of X and
Y . Re
all that we may identify the dual of X⊗̂πY with L(Y,X∗) and that thea
tion of an operator T : Y → X∗, as a linear fun
tional on X⊗̂πY , is given by

〈

T,
∞
∑

n=1

xn ⊗ yn

〉

=
∞
∑

n=1

(Tyn)(xn).Let IX denote the identity operator on X . Re
all that X is said to have theapproximation property (AP) if there exists a net (Sα) ⊂ F(X,X) su
h that
Sα → IX uniformly on 
ompa
t sets in X . If the net (Sα) 
an be 
hosen su
hthat supα ‖Sα‖ ≤ 1, then X is said to have the metri
 approximation property(MAP).In [8℄ Lima and Oja introdu
ed and studied the weak metri
 approxima-tion property. Following Lima and Oja a Bana
h spa
e X is said to have theweak metri
 approximation property (weak MAP) if, for every Bana
h spa
e
Y and every operator T ∈ W(X,Y ), there exists a net (Sα) ⊂ F(X,X) with
supα ‖TSα‖ ≤ ‖T ‖ su
h that Sα → IX uniformly on 
ompa
t sets in X .It is immediate from the de�nitions that MAP ⇒ weak MAP ⇒ AP. How-ever, the AP does not imply the weak MAP in general as was shown in [8,Proposition 2.2℄. Re
ently it was also shown [10, Corollary 1℄ that if a Bana
hspa
e has the weak MAP then it has the MAP if either its dual or its bidualhas the Radon-Nikodým property (RNP). It is, however, not known whetherthe weak MAP and the MAP in general are equivalent properties.43



Let X be a subspa
e of a Bana
h spa
e Y . A linear operator ϕ : X∗ → Y ∗ is
alled a Hahn-Bana
h extension operator if (ϕx∗)(x) = x∗(x) and ‖ϕx∗‖ = ‖x∗‖for every x ∈ X and x∗ ∈ X∗. We denote the set of Hahn-Bana
h extension op-erators ϕ : X∗ → Y ∗ by HB(X,Y ). It is easy to show that HB(X,Y ) is non-voidif and only if X is an ideal in Y (in the sense of Godefroy, Kalton and Saphar[2℄).The following result [5, Propositions 2.1 and 2.5℄ of Lima establishes a 
on-ne
tion between the weak MAP and the existen
e of a Hahn-Bana
h extensionoperator.Theorem 3.1.1 (Lima). Let X be a Bana
h spa
e. Then X has the weak MAPif and only if there exists a Hahn-Bana
h extension operator ϕ ∈ HB(X,X∗∗)su
h that ϕ∗|X∗∗ is in the weak∗-
losure of F(X,X) in L(X∗∗, X∗∗).Note that we 
an 
onsider F(X,X) as a subspa
e of L(X∗∗, X∗∗) through theembedding operator whi
h maps an operator T ∈ F(X,X) to its se
ond adjoint
T ∗∗ ∈ L(X∗∗, X∗∗).In Se
tion 3.2 we improve Theorem 3.1.1 by showing that we 
an repla
e theHahn-Bana
h extension operator ϕ : X∗ → X∗∗∗ by a Hahn-Bana
h extensionoperator ϕP : X∗ → X∗∗∗ su
h that P = ϕ∗

P |X∗∗ is a proje
tion on X∗∗. Thisresult is then thereafter used to improve other 
hara
terizations of the weakMAP.In Se
tion 3.3 we establish similar 
hara
terizations to those in Se
tion 3.2for two, re
ently introdu
ed [6℄, natural 
ompa
t 
ompanions of the weak MAP.We will 
onsider Bana
h spa
es over the real s
alar �eld only. We use stan-dard Bana
h spa
e notation, as 
an be found e.g. in [9℄. The 
losed unit ballof a Bana
h spa
e X is denoted by BX and the unit sphere of X by SX . The
losure of a set A ⊂ X is denoted by A, its linear span by spanA, and its 
onvexhull by 
onvA. We will write X∗ for the dual of X .3.2 The weak MAPWe might ask what more 
an we say about the Hahn-Bana
h extension operatorin Theorem 3.1.1. In fa
t, by using a te
hnique of Godefroy and Kalton from[1℄, we will prove that we 
an repla
e the Hahn-Bana
h extension operator
ϕ ∈ HB(X,X∗∗) in Theorem 3.1.1 by a Hahn-Bana
h extension operator ϕP ∈HB(X,X∗∗) su
h that P = ϕ∗

P |X∗∗ is a proje
tion on X∗∗. More expli
itly wehave the following theorem.Theorem 3.2.1. Let X be a Bana
h spa
e.(a) If P is a norm one proje
tion on X∗∗ with X ⊂ P (X∗∗) su
h that Pis in the weak∗-
losure of F(X,X) in L(X∗∗, X∗∗), then there exists aHahn-Bana
h extension operator ϕ ∈ HB(X,X∗∗) su
h that ϕ∗|X∗∗ is inthe weak∗-
losure of F(X,X) in L(X∗∗, X∗∗).(b) If there exists a Hahn-Bana
h extension operator ϕ ∈ HB(X,X∗∗) su
hthat ϕ∗|X∗∗ is in the weak∗-
losure of F(X,X) in L(X∗∗, X∗∗), then thereexists a norm one proje
tion P on X∗∗ with X ⊂ P (X∗∗) su
h that P isin the weak∗-
losure of F(X,X) in L(X∗∗, X∗∗).44



Proof. (a) Assume that there exists a norm one proje
tion P on X∗∗ with
X ⊂ P (X∗∗) su
h that P is in the weak∗-
losure of F(X,X) in L(X∗∗, X∗∗).Then put ϕP = P ∗iX∗ where iX∗ : X∗ → X∗∗∗ is the natural embedding of X∗into X∗∗∗. Finally observe that ϕP : X∗ → X∗∗∗ is a Hahn-Bana
h extensionoperator su
h that ϕ∗

P |X∗∗ = P .(b) We use an argument from the proof of [1, Theorem III.1℄. Assumethat there exists a Hahn-Bana
h extension operator ϕ ∈ HB(X,X∗∗) su
h that
ϕ∗|X∗∗ is in the weak∗-
losure of F(X,X) in L(X∗∗, X∗∗). Now, pi
k a net
(Sα) ⊂ F(X,X) su
h that S∗∗

α → ϕ∗|X∗∗ weak∗ in L(X∗∗, X∗∗). Let S be the
onvex semi-group generated by the net (S∗∗
α ), i.e. the smallest 
onvex semi-group that 
ontains (S∗∗

α ). Let S∗ denote the weak∗-
losure of S. Now S∗ is a
onvex semi-group. To see this let U and V be in S∗ and write
U = ω*- limU∗∗

α

V = ω*- limV ∗∗
β ,where U∗∗

α and V ∗∗
β are in S. Choose u =

∑∞
n=1 x

∗
n⊗x∗∗n ∈ X∗⊗̂πX∗∗ arbitrarily.Then it follows that

UV (u) = lim
α

∞
∑

n=1

〈x∗n, U∗∗
α V x∗∗n 〉 = lim

α

∞
∑

n=1

〈U∗
αx

∗
n, V x

∗∗
n 〉 (3.2.1)

= lim
α

lim
β

∞
∑

n=1

〈

U∗
αx

∗
n, V

∗∗
β x∗∗n

〉

= lim
α

lim
β

(UαVβ)
∗∗(u).Hen
e UV is in the weak∗-
losure of F(X,X) in L(X∗∗, X∗∗). It is obvious that

S∗ is 
onvex.Now put S0
∗ = {T ∈ S

∗ : T |X = IX , ‖T ‖ = 1}. Note that S0
∗ 6= ∅ sin
e

ϕ∗|X∗∗ ∈ S0
∗. Sin
e S0

∗ is 
losed under 
omposition, it is a semi-group. It isstraightforward to show that it is 
onvex and weak∗-
losed.Equip S0
∗ with the order-relation ≤ de�ned by S ≤ T if ‖Sx∗∗‖ ≤ ‖Tx∗∗‖for every x∗∗ ∈ X∗∗. Now let N be any maximal 
hain in (S0

∗,≤) and for
S ∈ N let NS = {T ∈ N : T ≤ S}. We 
an write N =

⋃

S∈N NS . Note thatea
h NS is weak∗-
losed. Indeed, 
hoose a net (Vα) in NS and assume Vα →
α
V ′weak∗, where V ′ ∈ S∗

0. Then for every x∗∗ ∈ X∗∗ we get
‖V ′x∗∗‖ ≤ lim inf

α
‖Vαx∗∗‖ ≤ ‖Sx∗∗‖.By the maximality of N it follows that V ′ ∈ N so NS is weak∗-
losed. Now
hoose (Si)

n
i=1 ⊂ N arbitrarily. Then (NSi

)ni=1 is a �nite family of weak∗-
losedsets and
n
⋂

i=1

NSi
= {T ∈ N : T ≤ min

1≤i≤n
Si} 6= ∅.Sin
e S0

∗ is weak∗-
ompa
t, every family of 
losed sets having the �nite in-terse
tion property has a non-void interse
tion. Hen
e ⋂

S∈N NS 6= ∅. By theHausdor� maximality theorem every 
hain is 
ontained in a maximal 
hain.Hen
e, by the above argument, every 
hain in S0
∗ has a lower bound. It nowfollows by Zorn's lemma that S0

∗ has a minimal element. Denote su
h a mini-mal element by P . 45



We now show that P is a proje
tion of norm one. Sin
e P is minimal and
‖S‖ = 1 for all S ∈ S0

∗ we have ‖SPx∗∗‖ = ‖Px∗∗‖ for all S ∈ S0
∗ and all

x∗∗ ∈ X∗∗. Applying this observation to
Sn =

1

n
(

n
∑

i=1

P i),whi
h by 
onvexity is in S0
∗, gives

‖(SnP 2 − SnP )x∗∗‖ = ‖SnP (Px∗∗ − x∗∗)‖
= ‖P (Px∗∗ − x∗∗)‖
= ‖P 2x∗∗ − Px∗∗‖.Sin
e we have that

SnP
2 − SnP =

1

n
(Pn+2 − P 2),we get that ‖P 2x∗∗ −Px∗∗‖ ≤ 2

n for all n ≥ 1. It follows that P is a proje
tionon X∗∗ su
h that P is in the weak∗-
losure of F(X,X) in L(X∗∗, X∗∗). By thede�nition of S0
∗, P is of norm one and X ⊂ P (X∗∗).In fa
t we 
an do slightly better than Theorem 3.2.1. The result below tellsus that we may assume that the net 
onverging weak∗ to the proje
tion, satis�essome boundedness property.Proposition 3.2.2. Let X be a Bana
h spa
e with the weak MAP. Then thereexist a proje
tion P on X∗∗ with X ⊂ P (X∗∗) su
h that for every re�exiveBana
h spa
e Y and for every T ∈ W(X,Y ), there exists a net (Sα) ⊂ F(X,X)with lim supα ‖TSα‖ ≤ ‖T ‖ su
h that Sα → P weak∗ in L(X∗∗, X∗∗).Proof. Let ǫ > 0, let Y be a re�exive Bana
h spa
e, and let T ∈ W(X,Y ) ofnorm one. Let uk =

∑∞
n=1 x

∗
k,n ⊗ x∗∗k,n ∈ X∗⊗̂πX∗∗ for k = 1, ...,m. Assume

∑∞
n=1 ‖x∗∗k,n‖ < ∞ and 1 ≥ ‖x∗k,n‖ → 0 for ea
h k = 1, ...,m. Put K =
onv{±x∗k,n : k = 1, ...,m;n = 1, 2, ...} ⊂ BX∗ . Let Z be the Bana
h spa
e
onstru
ted from K in the fa
torization lemma [7, Lemma 1.1℄, and let J :

Z → X∗ be the identity embedding of Z into X∗. Now Z is separable, re�exiveand J ∈ K(Z,X∗) is of norm one. De�ne a map V : X → Z∗ ⊕∞ Y by
V x = (J∗x, Tx). Note that V ∈ W(X,Z∗ ⊕∞ Y ). By Theorem 3.1.1 andTheorem 3.2.1 there exists a norm one proje
tion P on X∗∗ with X ⊂ P (X∗∗)su
h that P is in the weak∗-
losure of F(X,X) in L(X∗∗, X∗∗). Note that
V ∗∗P is in the weak∗-
losure of the 
onvex set {V ∗∗S∗∗ : S ∈ F(X,X)} in
W(X∗∗, Z∗ ⊕∞ Y ). Sin
e Z∗ ⊕∞ Y is re�exive we have, by [3, Theorem 1.5℄,that V ∗∗P is in the weak∗-
losure of

{V ∗∗S∗∗ : S ∈ F(X,X), ‖V ∗∗S∗∗‖ < ‖V ∗∗P‖ + ǫ}in W(X∗∗, Z∗ ⊕∞ Y ), whi
h again is a subset of the weak∗-
losure of
{V ∗∗S∗∗ : S ∈ F(X,X), ‖V S‖ < 1 + ǫ}46



in W(X∗∗, Z∗ ⊕∞ Y ). Now 
hoose zk,n ∈ BZ su
h that Jzk,n = x∗k,n for all kand n. Find S in the above set su
h that
ǫ > max

1≤k≤m
|V ∗∗S∗∗(

∞
∑

n=1

(zk,n, 0) ⊗ x∗∗k,n) − V ∗∗P (

∞
∑

n=1

(zk,n, 0) ⊗ x∗∗k,n)|

= max
1≤k≤m

|
∞
∑

n=1

〈

zk,n, J
∗S∗∗x∗∗k,n

〉

−
∞
∑

n=1

〈

zk,n, J
∗Px∗∗k,n

〉

|

= max
1≤k≤m

|
∞
∑

n=1

〈

x∗k,n, S
∗∗x∗∗k,n

〉

−
∞
∑

n=1

〈

x∗k,n, Px
∗∗
k,n

〉

|.Sin
e ‖TS‖ ≤ ‖V S‖ ≤ 1 + ǫ, the result follows.When the spa
e X is separable and does not 
ontain a 
opy of ℓ1, we knoweven more about the proje
tion.Corollary 3.2.3. Let X be a separable Bana
h spa
e not 
ontaining ℓ1. Thenthere exists a Hahn-Bana
h extension operator ϕ ∈ HB(X,X∗∗) su
h that ϕ∗|X∗∗is in the weak∗-
losure of F(X,X) in L(X∗∗, X∗∗) if and only if there exist anorm one proje
tion P on X∗∗ with weak∗-
losed kernel and with X ⊂ P (X∗∗)su
h that P is in the weak∗-
losure of F(X,X) in L(X∗∗, X∗∗).Proof. This follows dire
tly from Theorem 3.2.1 and [1, Claim III.2℄.Building on Theorem 3.2.1, we arrive at the result below. This improves [5,Propositions 2.5 and 3.1℄ in the way that the Hahn-Bana
h extension operator
ϕ : X∗ → X∗∗∗, in ea
h of these results, is repla
ed by Hahn-Bana
h extensionoperator ϕP : X∗ → X∗∗∗ su
h that P = ϕ∗

P |X∗∗ is a proje
tion on X∗∗.Theorem 3.2.4. Let X be a Bana
h spa
e. The following statements are equiv-alent.(a) X has the weak-MAP.(b) There exists a norm one proje
tion P on X∗∗ with X ⊂ P (X∗∗) su
h that
P is in the weak∗-
losure of F(X,X) in L(X∗∗, X∗∗).(
) There exists a norm one proje
tion P on X∗∗ with X ⊂ P (X∗∗) su
h that,for every re�exive Bana
h spa
e Y and every operator T ∈ W(Y,X∗∗), onehas PT ∈ F(Y,X)∗∗.(d) There exists a norm one proje
tion P on X∗∗ with X ⊂ P (X∗∗) su
hthat, for every separable re�exive Bana
h spa
e Y and every operator T ∈
K(Y,X∗∗), one has PT ∈ F(Y,X)∗∗.Proof. (a)⇔(b) follows from Theorem 3.1.1 and Theorem 3.2.1.(b)⇒(
) is obtained by the same reasoning as in [5, Proposition 3.1 (a)⇒(b)℄.(
)⇒(d) is trivial.(d)⇒(a) is obtained by the same reasoning as in [5, Proposition 3.1 (
)⇒(a)℄.47



3.3 The weak MCAP and the very weak MCAPRe
ently Lima and Lima [6℄ introdu
ed and investigated two approximationproperties that are natural 
ompa
t 
ompanions of the weak MAP. Following[6℄, a Bana
h spa
e X has the weak metri
 
ompa
t approximation property(weak MCAP) if, for every Bana
h spa
e Y and every operator T ∈ W(X,Y ),there exists a net (Sα) ⊂ K(X,X) with supα ‖TSα‖ ≤ ‖T ‖ su
h that Sα →
IX uniformly on 
ompa
t sets in X . Moreover, X is said to have the veryweak metri
 
ompa
t approximation property (very weak MCAP) if for everyBana
h spa
e Y and every operator T ∈ W(X,Y ) there exists a net (Sα) ⊂
K(X,X∗∗) with supα ‖T ∗∗Sα‖ ≤ ‖T ‖ su
h that limα tr(Sαu) = tr(IXu) forevery u ∈ X∗⊗̂πX . By 
omparing the de�nitions, it is immediate that thefollowing impli
ations hold: weak MAP ⇒ weak MCAP ⇒ very weak MCAP.As pointed out in [6, Remark 5.2℄, there is a spa
e with the very weak MCAP,but without the weak MCAP. Moreover, the spa
e of Willis [11, Proposition 4℄has the weak MCAP, but not the weak MAP.It should be noted that similar results to Theorem 3.2.1 also hold for theweak MCAP and the very weak MCAP. The results di�er from Theorem 3.2.1only in the way that F(X,X) is repla
ed by K(X,X) in the weak MCAP 
ase,and K(X,X∗∗) in the very weak MCAP 
ase. The proofs of these results areverbatim to that of Theorem 3.2.1, using K(X,X) and K(X,X∗∗) instead of
F(X,X) respe
tively. The reason why the arguments work, is that the imageof the se
ond adjoint of a 
ompa
t operator is a subspa
e of the range spa
e ofthe operator itself. Hen
e the 
al
ulation in (3.2.1) holds.Proposition 3.3.1. Let X be a Bana
h spa
e.(a) If P is a norm one proje
tion on X∗∗ with X ⊂ P (X∗∗) su
h that P isin the weak∗-
losure of K(X,X) [K(X,X∗∗)℄ in L(X∗∗, X∗∗), then thereexists a Hahn-Bana
h extension operator ϕ ∈ HB(X,X∗∗) su
h that ϕ∗|X∗∗is in the weak∗-
losure of K(X,X) [K(X,X∗∗)℄ in L(X∗∗, X∗∗).(b) If there exists a Hahn-Bana
h extension operator ϕ ∈ HB(X,X∗∗) su
hthat ϕ∗|X∗∗ is in the weak∗-
losure of K(X,X) [K(X,X∗∗)℄ in L(X∗∗, X∗∗),then there exists a norm one proje
tion P on X∗∗ with X ⊂ P (X∗∗) su
hthat P is in the weak∗-
losure of K(X,X) [K(X,X∗∗)℄ in L(X∗∗, X∗∗).By applying these results in 
ompanion with the proof of [5, Proposition 3.1℄and the proofs of [6, Theorem 4.3℄ and [6, Theorem 5.3℄, we obtain the followingstrengthenings of [6, Theorem 4.3℄ for the weak MCAP 
ase, and [6, Theorem5.3℄ for the very weak MCAP 
ase. The results improve [6, Theorem 4.3℄ and [6,Theorem 5.3℄ in the way that the Hahn-Bana
h extension operator ϕ : X∗ →
X∗∗∗ in ea
h of these theorems is repla
ed by a Hahn-Bana
h extension operator
ϕP : X∗ → X∗∗∗ su
h that P = ϕ∗

P |X∗∗ is a proje
tion on X∗∗.Theorem 3.3.2. Let X be a Bana
h spa
e. The following statements are equiv-alent.(a) X has the weak MCAP.(b) There exists a norm one proje
tion P on X∗∗ with X ⊂ P (X∗∗) su
h that
P is in the weak∗-
losure of K(X,X) in L(X∗∗, X∗∗).48



(
) There exists a norm one proje
tion P on X∗∗ with X ⊂ P (X∗∗) su
hthat, for every re�exive Bana
h spa
e Y and every T ∈ W(Y,X∗∗), onehas PT ∈ E∗∗ where E = {S∗∗T : S ∈ K(X,X)} ⊂ K(Y,X).(d) There exists a norm one proje
tion P on X∗∗ with X ⊂ P (X∗∗) su
h that,for every separable re�exive Bana
h spa
e Y and every T ∈ K(Y,X∗∗),one has PT ∈ E∗∗ where E is as in (
).(e) There exists a norm one proje
tion P on X∗∗ with X ⊂ P (X∗∗) su
h that,for all sequen
es (x∗n) ⊂ X∗ and (x∗∗n ) ⊂ X∗∗ with ∑∞
n=1 ‖x∗n‖‖x∗∗n ‖ < ∞and ∑∞

n=1 x
∗∗
n (S∗x∗n) = 0 for all S ∈ K(X,X), one has ∑∞

n=1 x
∗∗
n (P ∗x∗n) =

0.Proof. (a)⇔(b) follows from [6, Theorem 4.3 (a)⇔(b)℄ and Proposition 3.3.1.(b)⇒(
) is similar to the proof of [5, Proposition 3.1 (a)⇒(b)℄.(
)⇒(d) is trivial.(d)⇒(e) is similar to the proof of [6, Theorem 4.3 (f)⇒(g)℄.(e)⇒(b) is trivial.Theorem 3.3.3. Let X be a Bana
h spa
e. The following statements are equiv-alent.(a) X has the very weak MCAP.(b) There exists a norm one proje
tion P on X∗∗ with X ⊂ P (X∗∗) su
h that
P is in the weak∗-
losure of K(X,X∗∗) in L(X∗∗, X∗∗).(
) There exists a norm one proje
tion P on X∗∗ with X ⊂ P (X∗∗) su
hthat, for every re�exive Bana
h spa
e Y and every T ∈ W(X,Y ), one has
T ∗∗P ∈ E∗∗, where E = {T ∗∗S : S ∈ K(X,X∗∗)} ⊂ K(X,Y ).(d) There exists a norm one proje
tion P on X∗∗ with X ⊂ P (X∗∗) su
hthat, for every re�exive Bana
h spa
e Y and every T ∈ K(X,Y ), thereexists a net (Sα) ⊂ K(X,X∗∗), with supα ‖T ∗∗Sα‖ ≤ ‖T ‖, su
h that
ω*- limα S

∗
αT

∗y = P ∗T ∗y∗ in X∗∗∗ for all y∗ ∈ Y ∗.(e) There exists a norm one proje
tion P on X∗∗ with X ⊂ P (X∗∗) su
hthat, for every re�exive Bana
h spa
e Y and every T ∈ K(X,Y ), thereexists a net (Sα) ⊂ K(X,X∗∗), with supα ‖T ∗∗Sα‖ ≤ ‖T ‖, su
h that
T ∗∗S∗∗

α → T ∗∗P in the strong operator topology.(f) There exists a norm one proje
tion P on X∗∗ with X ⊂ P (X∗∗) su
h that,for all sequen
es (x∗n) ⊂ X∗ and (x∗∗n ) ⊂ X∗∗ with ∑∞
n=1 ‖x∗n‖‖x∗∗n ‖ < ∞and ∑∞

n=1 x
∗∗
n (S∗x∗n) = 0 for all S ∈ K(X,X∗∗), one has ∑∞

n=1 x
∗∗
n (P ∗x∗n) =

0.Proof. (a)⇔(b) follows from [6, Theorem 5.3 (a)⇔(b)℄ and Proposition 3.3.1.(b)⇒(
)⇒(d)⇒(e) are similar to the proofs of (b)⇒(
)⇒(d)⇒(e) in [6, The-orem 5.3℄ respe
tively.(e)⇒(f). Let ǫ > 0, let u =
∑∞
n=1 x

∗
n ⊗ x∗∗n ∈ X∗⊗̂πX∗∗, and assume

∑∞
n=1 ‖x∗∗n ‖ <∞ and 1 ≥ ‖x∗n‖ → 0. Put K = 
onv{±x∗n : n = 1, 2, ...} ⊂ BX∗ .Let Z be the Bana
h spa
e 
onstru
ted from K in the fa
torization lemma [7,Lemma 1.1℄, and J : Z → X∗ the identity embedding of Z into X∗. Now Z isseparable, re�exive and J ∈ K(Z,X∗) is of norm one. Choose zn ∈ BZ su
h49



that Jzn = x∗n for every n ∈ N. From the assumption it follows that there existsa norm one proje
tion P on X∗∗ with X ⊂ P (X∗∗) and a net (Sα) ∈ K(X,X∗∗)with supα ‖(J∗|X)∗∗Sα‖ ≤ 1 su
h that (J∗|X)∗∗S∗∗
α → (J∗|X)∗∗P in the strongoperator topology. Sin
e ((J∗|X)∗∗Sα) is bounded, we may assume that the net
onverges to (J∗|X)∗∗P in the topology τ of uniform 
onvergen
e on 
ompa
tsets in X∗∗. By the des
ription of (L(X∗∗, Z∗), τ)∗, due to Grothendie
k [4℄ (seei.e. [9, Proposition 1.e.3℄), it now follows that there exists an S ∈ K(X,X∗∗)su
h that

ǫ > |
∞
∑

n=1

〈(J∗|X)∗∗S∗∗x∗∗n , zn〉 −
∞
∑

n=1

〈(J∗|X)∗∗Px∗∗n , zn〉 |

= |
∞
∑

n=1

〈S∗∗x∗∗n , Jzn〉 −
∞
∑

n=1

〈Px∗∗n , Jzn〉 |

= |
∞
∑

n=1

〈S∗∗x∗∗n , x
∗
n〉 −

∞
∑

n=1

〈Px∗∗n , x∗n〉 |,and we are done.(f)⇒(b) is 
lear by using the Hahn-Bana
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Chapter 4Un
onditional ideals of �niterank operators4.1 Introdu
tionA 
losed subspa
e Z of a Bana
h spa
e X is an ideal in X if the annihi-lator Z⊥ is the kernel of a norm one proje
tion on X∗. A linear operator
ϕ : Z∗ → X∗ is 
alled a Hahn-Bana
h extension operator if ϕ(z∗)(z) = z∗(z)and ‖ϕ(z∗)‖ = ‖z∗‖ for every z ∈ Z and z∗ ∈ Z∗. We write HB(Z,X) for theset of all Hahn-Bana
h extension operators from Z∗ into X∗. It is not di�
ultto see that HB(Z,X) 6= ∅ if and only if Z is an ideal in X . If Z is a subspa
e ofa normed spa
e X , we say that Z is an ideal in X if Z is an ideal in X . Thenotion of an ideal was introdu
ed and studied by Godefroy, Kalton, and Sapharin [5℄.The stronger notion of an un
onditional ideal (u-ideal for short) was intro-du
ed and studied by Casazza and Kalton in [2℄. If Z is an ideal in X su
h thatthe 
orresponding proje
tion P on X∗ satis�es ‖I − 2P‖ = 1, then Z is 
alleda u-ideal in X . The proje
tion is 
alled a u-proje
tion and the 
orresponding
ϕ ∈ HB(Z,X) is 
alled an un
onditional Hahn-Bana
h extension operator. FromLemma 2.2 and Proposition 3.6 in [5℄, we 
an state the following result.Theorem 4.1.1 (Godefroy, Kalton, and Saphar). Let X be a Bana
h spa
e andlet Z be a subspa
e of X. The following statements are equivalent.(a) Z is a u-ideal in X.(b) There exists a Hahn Bana
h extension operator ϕ ∈ HB(Z,X) su
h thatwhenever ε > 0, x ∈ X and A is a 
onvex subset of Z su
h that ϕ∗(x) isin the weak∗-
losure of A then there exists z ∈ A with ‖x− 2z‖ < ‖x‖+ ε.(
) There exists a Hahn Bana
h extension operator ϕ ∈ HB(Z,X) su
h thatfor every x ∈ X there is a net (zα) in Z su
h that ϕ∗(x) = limα zα in theweak∗-topology and lim supα ‖x− 2zα‖ ≤ ‖x‖.(d) For every �nite dimensional subspa
e F of X and every ε > 0, there is alinear map L : F → Z su
h that(1) L(x) = x for every x ∈ F ∩ Z, and53



(2) ‖x− 2L(x)‖ ≤ (1 + ε)‖x‖ for every x ∈ F .Note that (1) 
an be substituted by the inequality ‖L(x)− x‖ ≤ ε‖x‖ for every
x ∈ F ∩ Z. We will sometimes use this fa
t.Let X and Y be Bana
h spa
es. We denote by L(Y,X) the Bana
h spa
e ofbounded linear operators from Y to X , and by F(Y,X), K(Y,X), and W(Y,X)its subspa
es of �nite rank operators, 
ompa
t operators, and weakly 
ompa
toperators, respe
tively.In Se
tion 4.2 we show that the set of Hahn-Bana
h extension operatorsHB(X,Y ) is a fa
e in the unit ball of L(X∗, Y ∗). We show in Proposition 4.2.2that an un
onditional Hahn-Bana
h extension operator has to be a 
enter ofsymmetry in HB(X,Y ). If X 
ontains a 
opy of ℓ1 and is a u-ideal in its bidual,then we show that the diamHB(X,X∗∗) = 2. We also show that in some im-portant 
ases the set HB(X,Y ) 
onsists of a single element. The subspa
es Z of
X su
h that ϕ∗|X∗∗(Z⊥⊥) ⊂ Z⊥⊥ where ϕ ∈ HB(X,X∗∗) is un
onditional are
hara
terized.In Se
tion 4.3 we establish in Theorem 4.3.2 
hara
terizations of the 
asewhen F(Y,X) is a u-ideal in W(Y,X) for every Bana
h spa
e Y . The 
hara
-terizations in
lude a statement similar to Theorem 4.1.1 (b) involving a Hahn-Bana
h extension operator, a statement whi
h is an approximation propertyfor X and statements about approximating weakly 
ompa
t operators by �niterank operators. In Theorem 4.3.8 we give similar 
hara
terizations of the 
asewhen F(X,Y ) is a u-ideal in W(X,Y ) for every Bana
h spa
e Y .In Se
tion 4.4 we 
hara
terize the property that F(Y,X) is a u-ideal in
W(Y,X∗∗) for every Bana
h spa
e Y in Theorem 4.4.4, and the property that
F(Y,X) is a u-ideal in K(Y,X∗∗) for every Bana
h spa
e Y in Theorem 4.4.6 bystatements similar to those in Theorems 4.3.2 and 4.3.8. An example due to Oja[25, Example 3℄ shows that the latter property is stri
tly weaker (see Remark4.4.7 below). We de�ne an un
onditional version of the weak metri
 approxi-mation property. We show by giving an example that this property is stri
tlyweaker than F(Y,X) being a u-ideal in K(Y,X∗∗) for every Bana
h spa
e Y .We will frequently use the isometri
 version of the Davis-Figiel-Johnson-Peª
zy«ski fa
torization lemma [3℄ due to Lima, Nygaard, and Oja [16℄. Let Xbe a Bana
h spa
e and let K be a 
losed absolutely 
onvex subset of the unitball BX of X . If Z is the Bana
h spa
e 
onstru
ted from K in the fa
torizationlemma and J is the norm one identity embedding of Z into X (see [16, Lemma1.1℄), we will write

[Z, J ] = DFJP(K).From the fa
torization lemma we know that Z is re�exive if and only if K isweakly 
ompa
t. The fa
torization lemma also says that if K is 
ompa
t, then
Z is separable and J is 
ompa
t.From the isometri
 version of the fa
torization lemma proved by Lima, Ny-gaard, and Oja [16, Theorem 2.3℄ we get that if G ⊂ W(Y,X) is a �nite dimen-sional subspa
e, then there exist a re�exive Bana
h spa
e Z, a norm one operator
J : Z → X , and a linear isometry Φ : G→ W(Y, Z) su
h that T = J ◦Φ(T ) forevery T ∈ G. We will write

[Z, J,Φ] = DFJP(G), (4.1.1)54



for this 
onstru
tion. Similarly, using [16, Corollary 2.4℄, we get that if G ⊂
W(X,Y ) is a �nite dimensional subspa
e, then there exists a re�exive Bana
hspa
e Z, a norm one operator J : X → Z, and a linear isometry Φ : G →
W(Z, Y ) su
h that T = Φ(T ) ◦ J for every T ∈ G. We will write

[Z,Φ, J ] = DFJP(G), (4.1.2)for this 
onstru
tion.We use standard Bana
h spa
e notation as used by Lindenstrauss and Tzafririin [23℄. Only real Bana
h spa
es are 
onsidered unless otherwise stated. The
losed unit ball of a Bana
h spa
e X is denoted by BX and the identity operatoron X is denoted by IX . We will write X∗ for the dual spa
e of X . If Z ⊂ X isa subspa
e of X , then we will write iZ : Z → X for the 
anoni
al embedding.We will write kX : X → X∗∗ for the natural embedding of X into its bidual.
extBX denotes the set of extreme points in BX . If T : X → Y is an operatorand x ∈ X , then we will write Tx instead of T (x) when there is no danger of
onfusion.4.2 Un
onditional Hahn-Bana
h extension oper-atorsLet us start with a general result about the lo
ation and the size of the set ofHahn-Bana
h extension operators.Proposition 4.2.1. Let Y be a Bana
h spa
e. If X is an ideal in Y , thenHB(X,Y ) is a fa
e in BL(X∗,Y ∗).Proof. Let φ1, φ2 ∈ BL(X∗,Y ∗) and suppose ϕ = φ1+φ2

2 ∈ HB(X,Y ). We thenget that
i∗Xφ1 + i∗Xφ2

2
= i∗Xϕ = IX∗ ∈ extBL(X∗,X∗).Thus i∗Xφi = IX∗ and φi ∈ HB(X,Y ) for i = 1, 2.In Lemma 3.1 in [5℄ there is an algebrai
 proof of the fa
t that an un
on-ditional Hahn-Bana
h extension operator is unique. Next we have a geometri
proof. (Re
all that x is a 
enter of symmetry in a subset A of a linear spa
e Xif 2x− y ∈ A for every y ∈ A.)Proposition 4.2.2. Let X be a u-ideal in Y with un
onditional ϕ ∈ HB(X,Y ).For x∗ ∈ X∗, let HB(x∗) ⊂ Y ∗ be the set of norm preserving extensions of x∗ to

Y . Then ϕ(x∗) is the 
enter of symmetry in HB(x∗) for every x∗ ∈ X∗.In parti
ular, the un
onditional Hahn-Bana
h extension operator ϕ is unique,and ϕ is a 
enter of symmetry in HB(X,Y ).Proof. Let y∗ ∈ HB(x∗) and let Pϕ = ϕi∗X be the u-proje
tion. Then ‖x∗‖ =
‖y∗‖ = ‖(I − 2Pϕ)y∗‖ = ‖y∗ − 2ϕ(x∗)‖, so that 2ϕ(x∗) − y∗ ∈ HB(x∗). Hen
e
ϕ(x∗) is a 
enter of symmetry in HB(x∗). Sin
e a 
enter of symmetry in a
onvex bounded set is unique, it follows that there is at most one un
onditionalextension operator in HB(X,Y ). 55



If ψ ∈ HB(X,Y ) and x∗ ∈ X∗, then ψ(x∗) ∈ HB(x∗). Using that ϕ(x∗) is a
enter of symmetry in HB(x∗) we get 2ϕ(x∗) − ψ(x∗) ∈ HB(x∗). Hen
e we get
2ϕ− ψ ∈ HB(X,Y ) and ϕ is a 
enter of symmetry in HB(X,Y ).The following result shows that if a Bana
h spa
e X 
ontains a subspa
eisomorphi
 to ℓ1 and is a u-ideal in its bidual, then the diameter of HB(X,X∗∗)is as large as possible.Proposition 4.2.3. Let X be a Bana
h spa
e whi
h 
ontains a subspa
e iso-morphi
 to ℓ1. If X is a u-ideal in its bidual, then diamHB(X,X∗∗) = 2.Proof. Let π = kX∗k∗X and Pϕ = ϕk∗X respe
tively be the 
anoni
al proje
tionand the u-proje
tion on X∗∗∗. By Proposition 4.2.2 the un
onditional Hahn-Bana
h extension operator ϕ is a 
enter of symmetry in HB(X,X∗∗), i.e. ψ =
2ϕ− kX∗ ∈ HB(X,X∗∗). Let Pψ = ψk∗X and note that Pψ is an ideal proje
tionon X∗∗∗. By Proposition 2.6 in [5℄ we have ‖I − 2π‖ = 3, so

2 ≥ ‖Pψ − π‖ = ‖2Pϕ − 2π‖ ≥ ‖I − 2π‖ − ‖I − 2Pϕ‖ = 2.Hen
e ‖ψ − kX∗‖ = ‖Pψ − π‖ = 2, so diamHB(X,X∗∗) = 2.Note that the proof of Proposition 1 in [1℄ shows that if a non-re�exive Ba-na
h spa
eX is 1-
omplemented in its bidual by a proje
tion P , then HB(X,X∗∗)
onsists of at least two elements.One dire
tion of the following theorem was proved for separable h-ideals in[5, Theorem 6.7℄. Our argument, as the proof of Theorem 6.7 in [5℄, is based onan appli
ation of Theorem 4.1.1 (b).Theorem 4.2.4. Let X be a Bana
h spa
e. Assume that X is a u-ideal in
X∗∗ with un
onditional ϕ ∈ HB(X,X∗∗). Let Z be a 
losed subspa
e of X.Then ϕ∗(Z⊥⊥) ⊂ Z⊥⊥ if and only if Z is a u-ideal in Z∗∗ with un
onditionalHahn-Bana
h extension operator ψ ∈ HB(Z,Z∗∗) su
h that i∗∗Z ψ∗|Z∗∗ = ϕ∗i∗∗Z .Proof. Suppose ϕ∗(Z⊥⊥) ⊂ Z⊥⊥. iZ : Z → X is the natural embedding, so i∗Zis the restri
tion and i∗∗Z is weak∗-weak∗ 
ontinuous, isometri
, and onto Z⊥⊥.De�ne ψ : Z∗ → Z∗∗∗ by

ψ(z∗) = ψ(x∗ + Z⊥) = i∗∗∗Z ϕ(x∗)for z∗ = x∗ + Z⊥ ∈ Z∗. Sin
e i∗∗Z (Z∗∗) ⊂ Z⊥⊥ we get that ψ is well-de�ned:
〈ψ(z∗), z∗∗〉 = 〈x∗ + Z⊥, ϕ∗(i∗∗Z (z∗∗))〉 = 〈x∗, ϕ∗(i∗∗Z (z∗∗))〉 = 〈i∗∗∗Z ϕ(x∗), z∗∗〉for z∗∗ ∈ Z∗∗. Thus we have ψ(i∗Z(x∗) = i∗∗∗Z ϕ(x∗) for all x∗ ∈ X∗. Takingadjoints we get i∗∗Z ψ∗|Z∗∗ = ϕ∗i∗∗Z .Let us show that ψ is an un
onditional Hahn-Bana
h extension operator.Clearly ψ is linear with norm at most one. For z ∈ Z and z∗ = x∗ + Z⊥ ∈ Z∗we have

ψ(z∗)(z) = 〈ϕ(x∗), iZ(z)〉 = 〈x∗, iZ(z)〉 = z∗(z).Let z∗∗ ∈ BZ∗∗ and ε > 0. Sin
e X is a u-ideal in X∗∗ and ϕ∗(i∗∗Z (z∗∗)) is inthe w∗-
losure of BZ in X∗∗ there exists a z ∈ BZ su
h that
‖z∗∗ − 2z‖ = ‖i∗∗Z (z∗∗) − 2iZ(z)‖ < ‖z∗∗‖ + ε56



by Theorem 4.1.1 (b). Thus there is a net (zα) ⊂ BZ with lim supα ‖z∗∗−2zα‖ ≤
‖z∗∗‖ su
h that zα → ψ∗(z∗∗) weak∗ in Z∗∗ (here we used i∗∗Z ψ∗|Z∗∗ = ϕ∗i∗∗Z ).Hen
e ‖z∗∗ − 2k∗∗Z (ψ(z∗∗))‖ ≤ ‖z∗∗‖ and ψ is un
onditional.For the 
onverse assume that Z is a u-ideal in Z∗∗ with un
onditional ψ ∈HB(Z,Z∗∗) su
h that i∗∗Z ψ∗|Z∗∗ = ϕ∗i∗∗Z . Let x∗∗ ∈ Z⊥⊥ in X∗∗ and 
hoose
z∗∗ ∈ Z∗∗ su
h that i∗∗Z (z∗∗) = x∗∗, then ϕ∗(x∗∗) = i∗∗Z (ψ∗z∗∗) ∈ Z⊥⊥.Re
all that a Bana
h spa
e X is said to have the approximation property(AP) if there exists a net (Sα) ⊂ F(X,X) su
h that Sα → IX uniformly on
ompa
t sets in X . Lima, Nygaard, and Oja have proved [16, Theorem 3.3℄ thata Bana
h spa
e X has the AP if and only if the set HB(F(Y,X),W(Y,X)) ofHahn-Bana
h extension operators is non-empty for every Bana
h spa
e Y .In some 
ases the set of Hahn-Bana
h extension operators 
onsists of a singleelement. For example if X is an M-ideal in a Bana
h spa
e Y , then HB(X,Y )
ontains a single element (see [7, Proposition 1.2℄. Cf. [7, p. 1℄ for de�nitionof an M-ideal). A Bana
h spa
e X su
h that HB(X,X∗∗) 
onsists of a singleelement is said to have the unique extension property (UEP). This notion wasintrodu
ed and studied by Godefroy and Saphar in [6℄. They proved in [6,Corollary 5.4℄ that if X and Y are Bana
h spa
es su
h that X is re�exive and
Y ∗ has the Radon-Nikodým property (RNP) and 
ontains no proper normingsubspa
e, then X ⊗ε Y and K(X,Y ) have the UEP. (Re
all that a subspa
e Zof Y ∗ is norming if ‖y‖ = sup{y∗(y) : y∗ ∈ Z, ‖y∗‖ ≤ 1} for y ∈ Y .)From [24℄ we also know that HB(F(Y,X),L(Y,X)) 
ontains a single elementfor every Bana
h spa
e Y whenever X is either ℓp or the Lorentz sequen
espa
e d(ω, p) for 1 < p < ∞ (see also [7, Example 4.1℄ for the 
ase X = ℓp and
Y = ℓq where 1 < q ≤ p <∞). Dually we also have that HB(F(X,Y ),L(X,Y ))
ontains a single element for every Y whenever X is either ℓp or d(ω, p)∗ for
1 < p < ∞. From [26, Theorem 3℄ we have in addition that the above holds if
X is a 
losed subspa
e of either ℓp, d(ω, p) or d(ω, p)∗ with the AP. Also theset HB(F(Y, c0),L(Y, c0)) 
onsists of a single element for every Bana
h spa
e Y(F(Y, c0) is an M-ideal in L(Y, c0), see [7, Example 4.1℄). The next results tellus that in many more 
ases the set of Hahn-Bana
h extension operators 
onsistsof a single element.Proposition 4.2.5. Let X and Y be Bana
h spa
es. If X has the AP and Yis re�exive, then HB(F(Y,X),W(Y,X)) 
onsists of one element only.Proof. Let Φ ∈ HB(F(Y,X),W(Y,X)), let x∗ ∈ X∗ and y ∈ BY . Assume that yis a strongly exposed point. Then by Lemma 3.4 in [15℄ x∗⊗y has a unique norm-preserving extension from F(Y,X) to W(Y,X) and hen
e Φ(x∗ ⊗ y) = x∗ ⊗ y.Sin
e Y has the RNP we get Φ(x∗⊗y) for every x∗ ∈ X∗ and y ∈ Y by linearityand 
ontinuity. By a theorem of Feder and Saphar [4, Theorem 1℄ F(Y,X)∗is a quotient of X∗ ⊗ Y and it follows that Φ is just the identity and hen
eunique.A Bana
h spa
e X has the AP if and only if F(Y,X) is dense in K(Y,X) forevery Bana
h spa
e Y (
f. e.g. [23, Theorem 1.e.4℄). By [17, Theorem 5.1℄ Xhas the AP if and only if F(Y,X) is a (trivially un
onditional) ideal in K(Y,X)for every Bana
h spa
e Y .For Y re�exive, we 
an 
ombine Proposition 4.2.5 with the isometriesF(X,Y ) =
F(Y ∗, X∗) and W(X,Y ) = W(Y ∗, X∗) and we get the following 
orollary.57



Corollary 4.2.6. Let X and Y be Bana
h spa
es. If X∗ has the AP and Y isre�exive, then HB(F(X,Y ),W(X,Y )) 
onsists of one element only.The dual of a Bana
h spa
e X has the AP if and only if F(X,Y ) is densein K(X,Y ) for every Bana
h spa
e Y (
f. e.g. [23, Theorem 1.e.5℄). By [17,Theorem 5.2℄ X∗ has the AP if and only if F(X,Y ) is a (trivially un
onditional)ideal in K(X,Y ) for every Bana
h spa
e Y .4.3 F(Y, X) as a u-ideal in W(Y, X)From [17, Theorem 5.1℄ and [19, Theorem 4.4℄ (resp. [19, Theorem 4.3℄) we havethe following result.Theorem 4.3.1 (Lima and Oja). Let X be a 
losed subspa
e of a Bana
h spa
e
Z. Then F(Y,X) is a u-ideal in W(Y, Z) (resp. K(Y, Z)) for all Bana
h spa
es
Y if and only if F(Y,X) is a u-ideal in W(Y, Z) (resp. K(Y, Z)) for all (resp.separable) re�exive Bana
h spa
es Y .The next theorem 
hara
terizes the property that F(Y,X) is a u-ideal in
W(Y,X) for every Bana
h spa
e Y in terms of 
onvergen
e of nets of �nite rankoperators. The statements should be 
ompared with their prototypes in similarresults on ideals (see [11, Theorem 5.2℄ and [20, Theorem 2.3℄).Theorem 4.3.2. Let X be a Bana
h spa
e. The following statements are equiv-alent.(a) F(Y,X) is a u-ideal in W(Y,X) for every Bana
h spa
e Y .(b) F(Y,X) is a u-ideal in span(F(Y,X), {T }) for every T ∈ W(Y,X) andfor every re�exive Bana
h spa
e Y .(
) For every re�exive Bana
h spa
e Y there exists a Hahn-Bana
h extensionoperator Ψ ∈ HB(F(Y,X),W(Y,X)) su
h that for every T ∈ W(Y,X)there is a net (Tα) ⊂ F(Y,X) with lim supα ‖T − 2Tα‖ ≤ ‖T ‖ su
h that

Tα → Ψ∗(T ) = T weak∗ in F(Y,X)∗∗.(d) For every weakly 
ompa
t set K ⊂ X there is a net (Sα) ⊂ F(X,X) with
limα supx∈K ‖x − 2Sαx‖ ≤ supx∈K ‖x‖ su
h that Sα → IX uniformly on
ompa
t subsets of K.(e) For every Bana
h spa
e Y and T ∈ W(Y,X) there is a net (Sα) ⊂
F(X,X) with lim supα ‖T − 2SαT ‖ ≤ ‖T ‖ su
h that Sα → IX uniformlyon 
ompa
t sets in X.(f) For every Bana
h spa
e Y and T ∈ W(Y,X) there is a net (Sα) ⊂
F(X,X) with lim supα ‖T − 2SαT ‖ ≤ ‖T ‖ su
h that Sα → IX in thestrong operator topology.(g) For every re�exive Bana
h spa
e Y and T ∈ W(Y,X) there is a net (Sα) ⊂
F(X,X) with lim supα ‖T − 2SαT ‖ ≤ ‖T ‖ su
h that SαT → T in thestrong operator topology. 58



Proof. (a) ⇒ (b) is immediate from the lo
al 
hara
terization of u-ideals, The-orem 4.1.1.(b) ⇒ (
). Assume that Y is re�exive and let T ∈ W(Y,X). Sin
e F(Y,X)is a u-ideal in B = span(F(Y,X), {T }) we 
an, using the lo
al 
hara
terizationof u-ideals Theorem 4.1.1, �nd a net (Tα) ⊂ F(Y,X) with lim supα ‖T −2Tα‖ ≤
‖T ‖ su
h that Tα → Φ∗

T (T ) weak∗, where ΦT ∈ HB(F(Y,X),B) is the un-
onditional extension operator. From the argument in the proof of Proposi-tion 4.2.5 ΦT is unique and of the form ΦT = IX∗ ⊗ IY . A straightforward
al
ulation shows that Φ∗
T (T ) = T . Thus the operator Ψ = IX∗ ⊗ IY ∈HB(F(Y,X),W(Y,X)) satis�es (
) in Theorem 4.1.1.(
) ⇒ (d). Let K ⊂ X be weakly 
ompa
t, ε > 0, and u =

∑∞
n=1 x

∗
n ⊗ xn ∈

X∗⊗̂πX . Assume that K is a symmetri
 subset of BX . Assume also that 1 ≥
‖xn‖ → 0 and that ∑∞

n= ‖x∗n‖ < ∞. Put [Z, J ] = DFJP(
onv{±K ∪ xn : n =
1, ...,∞}). Now Z is re�exive, J ∈ W(Z,X), and ‖J‖ ≤ 1. Find zn ∈ BZ su
hthat xn = Jzn. Choose a net (Jα) ⊂ F(Z,X) with lim supα ‖J − 2Jα‖ ≤ ‖J‖su
h that Jα → J weak∗ in F(Z,X)∗∗. Sin
e J∗X∗ is norm-dense in Z∗ [16,Lemma 1.1℄ we 
an write Jα = SαJ where (Sα) ⊂ F(X,X) (see the proof of[21, Theorem 3.2℄). Now we 
an �nd an S among the Sα's su
h that

ε > |
∞
∑

n=1

〈SJzn, x∗n〉 −
∞
∑

n=1

〈Jzn, x∗n〉 | = |
∞
∑

n=1

〈Sxn, x∗n〉 −
∞
∑

n=1

〈xn, x∗n〉 |and supx∈K ‖x− 2Sx‖ ≤ supz∈BZ
‖Jz − 2SJz‖ ≤ ‖J − 2SJ‖ < 1 + ε.(d) ⇒ (e). Let Y be a Bana
h spa
e and let T ∈ W(Y,X) of norm one. Let

C ⊂ BX be 
ompa
t and let ε > 0. De�ne K = 
onv(±(C ∪ T (BY ))) and notethat K ⊂ BX and weakly 
ompa
t. By assumption there is S ∈ F(X,X) with
supx∈K ‖x− 2Sx‖ < 1 + ε and supx∈C ‖x− Sx‖ < ε. From this (e) follows.(e) ⇒ (f) and (f) ⇒ (g) are trivial.(g) ⇒ (a). Let Y be a Bana
h spa
e, let ε > 0, and 
hoose a �nite dimen-sional subspa
e F ⊂ W(Y,X). Put [Z, J,Φ] = DFJP(F ) (see (4.1.1)) and let
G = F ∩ F(Y,X). Then

K =
⋃

T∈BG

T (BY )is a 
ompa
t subset of X and of Z. It follows from the assumptions that we
an �nd an S ∈ F(X,X) with ‖J − 2SJ‖ ≤ 1 + ε su
h that ‖z − Sz‖ ≤ ε forevery z ∈ K. De�ne L : F → F(Y,X) by L(T ) = ST . Then ‖T − L(T )‖ ≤
‖Φ(T )‖‖J − SJ‖ ≤ ε‖T ‖ for every T ∈ G and ‖T − 2L(T )‖ = ‖T − 2ST ‖ ≤
‖Φ(T )‖‖J − 2SJ‖ ≤ (1 + ε)‖T ‖ for T ∈ F . The result now follows from lo
al
hara
terization of u-ideals in Theorem 4.1.1.Remark 4.3.3. Let ℓ̂2 be the equivalently renormed version of ℓ2 de�ned by Ojaand denoted F in Example 3 in [25℄. The spa
e F(ℓ1, ℓ̂2) is not a u-ideal in
W(ℓ1, ℓ̂2) (by [25, Example 3℄ and [27, Theorem 1.2℄ or [28, Proposition 1℄).Sin
e ℓ̂2 has the AP, F(Y, ℓ̂2) is an ideal in W(Y, ℓ̂2) for all Bana
h spa
es Y(see [25, Example 3℄ or [16, Theorem 3.3℄). Thus statement (a) in Theorem 4.3.2is stri
tly stronger than statement (a) in Proposition 4.3.5 below. Note that thisimplies that the bound lim supα ‖T − 2SαT ‖ ≤ ‖T ‖ in statement (f) in 4.3.2 isstri
tly stronger than the bound lim supα ‖Tα‖ ≤ ‖T ‖ in (iii) in Corollary 1.559



in [16℄.Sin
e ℓ̂2 is re�exive, we also get that F(ℓ̂∗2, ℓ∞) is not a u-ideal in W(ℓ̂∗2, ℓ∞).Hen
e, also ℓ∞ is an example of a Bana
h spa
e X su
h that F(Y,X) is an idealin W(Y,X) for all Bana
h spa
es Y , without being a u-ideal for all Y . Also,if for 0 < r < 1, Yr are the equivalently renormed versions of c0 de�ned in [8℄,then F(ℓ1, Yr) is not a u-ideal in W(ℓ1, Yr) for any 0 < r < 1, even though
F(Y, Yr) is an ideal in W(Y, Yr) for all Bana
h spa
es Y and 0 < r < 1 (see lastparagraph in [25℄).Remark 4.3.4. Let X be a Bana
h spa
e and let K ⊂ BX be a weakly 
om-pa
t subset. If X has the AP, then there is a net (Sα) ⊂ F(X,X) with
supx∈K ‖Sαx‖ ≤ 1 su
h that Sα → IX uniformly on 
ompa
t sets in X . In-deed, put [Z, J ] = DFJP(
onv(±K)). Using [4, Theorem 1℄ we get that BF(Z,X)
annot be strongly separated from 
onv(SαJ). This should be 
ompared withstatement (d) in Theorem 4.3.2.A Bana
h spa
e X is said to have the un
onditional metri
 approximationproperty (UMAP) if there is a net (Tα) ⊂ F(X,X) with lim supα ‖IX−2Tα‖ ≤ 1su
h that Tα(x) → x for all x ∈ X . Like u-ideals, also the notion of the UMAP(for separable spa
es using sequen
es) was introdu
ed by Casazza and Kaltonin [2℄.In Theorem 5.2 in [11℄ it was proved that X has the UMAP if and only if
F(Y,X) is a u-ideal in L(Y,X) for every Bana
h spa
e Y .If X is re�exive, then (d) in Theorem 4.3.2 says that X has the UMAP. By[2, Theorem 3.9℄, it follows that in this 
ase F(Y,X) is a u-ideal in W(Y,X) forall Bana
h spa
es Y if and only if F(X,X) is a u-ideal in W(X,X).From [16, Theorem 3.3℄ and [14, Corollary 2℄ (see also [9, Theorem 5.1℄, [30,Proposition 2.1℄) we get the following proposition.Proposition 4.3.5. Let X be a Bana
h spa
e. The following are equivalent.(a) F(Y,X) is an ideal in W(Y,X) for every Bana
h spa
e Y .(b) X has the AP.(
) Every separable ideal Z in X has the AP.(d) F(Y, Z) is an ideal in W(Y, Z) for every Bana
h spa
e Y and separableideal Z in X.For u-ideals we have the following result.Proposition 4.3.6. Let X be a Bana
h spa
e and assume F(Y,X) is a u-idealin W(Y,X) for every Bana
h spa
e Y . Then a 
losed subspa
e Z of X has theAP if and only if F(Y, Z) is a u-ideal in W(Y, Z) for every Bana
h spa
e Y .Proof. One dire
tion is immediate from Proposition 4.3.5.For the reverse dire
tion let Y be a re�exive Bana
h spa
e, Z a subspa
e of
X with the AP, and T ∈ W(Y, Z). Put T̂ = iZ ◦ T , 
hoose a 
ompa
t subset
K of Z, and let ε > 0. By Theorem 4.3.2 there is a net (Sα) ⊂ F(X,X) with
lim supα ‖T̂ − 2SαT̂‖ ≤ ‖T̂‖ = ‖T ‖ su
h that Sα → IX uniformly on 
ompa
tsets. Sin
e Z has the AP, there is a net (Uβ) ⊂ F(Z,Z) su
h that Uβ → IZuniformly on 
ompa
t sets. After swit
hing to the produ
t index set we maysuppose that (Uβ) is indexed by the same set as (Sα). Hen
e we shall write60



(Uα) from now on.Now let u ∈ F(Y,X)∗. Sin
e Y is re�exive and X has the AP F(Y,X)∗ isisometri
ally isomorphi
 to a quotient of X∗⊗̂πY by a theorem of Feder andSaphar [4, Theorem 1℄. Choose a representation ∑∞
n=1 x

∗
n ⊗ yn for u. For thenet Tα = SαiZT − iZUαT , we have

〈u, Tα〉 =

∞
∑

n=1

〈x∗n, (SαiZT − iZUαT )(yn)〉

→
∞
∑

n=1

〈i∗Zx∗n, T yn〉 −
∞
∑

n=1

〈i∗Zx∗n, T yn〉 = 0.Hen
e Tα → 0 weakly in F(Y,X). Consequently a suitable net of 
onvex 
om-binations of Tα 
onverges in norm to 0. Thus there exist α0, Ŝα0
∈ 
o{Sα :

α > α0}, and Ûα0
∈ 
o{Uα : α > α0} su
h that ‖Ŝα0

iZT − iZÛα0
T ‖ ≤ ε,

supz∈K ‖Ûα0
(z) − z‖ ≤ ε, and ‖T̂ − 2Ŝα0

T̂‖ ≤ ‖T̂‖ + ε. We get that
‖iZT − 2iZÛα0

T ‖ ≤ ‖iZT − 2Ŝα0
iZT ‖ + 2‖Ŝα0

iZT − iZÛα0
T ‖ ≤ ‖T̂‖ + 3ε.Hen
e ‖T − 2Ûα0

T ‖ ≤ ‖T ‖ + 3ε, and the result follows from the lo
al 
hara
-terization of u-ideals Theorem 4.1.1.Remark 4.3.7. If F(Y, Z) is a u-ideal in W(Y, Z) for every Bana
h spa
e Yand subspa
e Z of X with the AP, then F(Y,X) is not ne
essarily a u-ideal in
W(Y,X) for every Bana
h spa
e Y . Indeed, for 1 < p < ∞, 
hoose a subspa
e
X of ℓp su
h that X does not have the AP (
f. e.g. [23, p. 91℄). X 
annot be
omplemented and hen
e is not an ideal in ℓp. It is probably well known that
F(Y, ℓp) is a u-ideal in W(Y, ℓp) for all Bana
h spa
es Y . (It 
an be proved byusing that the standard basis of ℓp is 1-un
onditional and then Theorem 4.3.2(g).) By Proposition 4.3.6 F(Y, Z) is a u-ideal in W(Y, Z) for every subspa
e
Z of X with the AP. But X does not have the AP so F(Y0, X) is not even anideal in W(Y0, X) for some Bana
h spa
e Y0 by [16, Theorem 3.3℄.Let X be a Bana
h spa
e. In the next theorem we want to study when
F(X,Y ) is a u-ideal in W(X,Y ) for all Bana
h spa
es Y . In Theorem 6.5 in[11℄ it was proved that (a) K(X,Y ) is a u-ideal in L(X,Y ) for all Bana
h spa
es
Y is equivalent to (
) there is a net (Tα) ⊂ K(X,X) with lim supα ‖I−2Tα‖ ≤ 1su
h that Tαx→ x for all x ∈ X and T ∗

αx
∗ → x∗ for all x∗ ∈ X∗ whi
h in turnis equivalent to (e) X has the metri
 
ompa
t approximation property and Xhas property (wM∗). Note that the equivalen
e of (
) and (e) follows fromthe equivalen
e of (3o) and (2o) in Corollary 4.5 in [29℄ by taking a = 1 and

B = {−2}. In all these statements K(X,X) (resp. K(X,Y )) may be repla
edby F(X,X) (resp. F(X,Y )) (see the text after Corollary 4.6 in [29℄).Theorem 4.3.8. Let X be a Bana
h spa
e. The following statements are equiv-alent.(a) F(X,Y ) is a u-ideal in W(X,Y ) for every Bana
h spa
e Y .(b) F(X,Y ) is a u-ideal in W(X,Y ) for every re�exive Bana
h spa
e Y .(
) F(X,Y ) is a u-ideal in span(F(X,Y ), {T }) for every T ∈ W(X,Y ) andfor every re�exive Bana
h spa
e Y .61



(d) For every re�exive Bana
h spa
e Y there exists a Hahn-Bana
h extensionoperator Ψ ∈ HB(F(X,Y ),W(X,Y )) su
h that for every T ∈ W(X,Y )there is a net (Tα) ⊂ F(X,Y ) with lim supα ‖T − 2Tα‖ ≤ ‖T ‖ su
h that
Tα → Ψ∗(T ) = T weak∗ in F(X,Y )∗∗.(e) For every weakly 
ompa
t 
ompa
t set K ⊂ X∗ there is a net (Sα) ⊂
F(X,X) with limα supx∗∈K ‖x∗−2S∗

αx
∗‖ ≤ supx∗∈K ‖x∗‖ su
h that S∗

α →
IX∗ uniformly on 
ompa
t subsets of K.(f) For every Bana
h spa
e Y and T ∈ W(X,Y ) there is a net (Sα) ⊂
F(X,X) su
h that lim supα ‖T − 2TSα‖ ≤ ‖T ‖ and S∗

α → IX∗ uniformlyon 
ompa
t sets in X∗.(g) For every Bana
h spa
e Y and T ∈ W(X,Y ) there is a net (Sα) ⊂
F(X,X) su
h that lim supα ‖T − 2TSα‖ ≤ ‖T ‖ and S∗

α → IX∗ in thestrong operator topology.(h) For every re�exive Bana
h spa
e Y and T ∈ W(X,Y ) there is a net
(Sα) ⊂ F(X,X) su
h that lim supα ‖T − 2TSα‖ ≤ ‖T ‖ and S∗

αT
∗ → T ∗in the strong operator topology.Proof. If Y is a re�exive Bana
h spa
e, we have isometriesF(X,Y ) = F(Y ∗, X∗)and W(X,Y ) = W (Y ∗, X∗). Using this observation, Theorem 4.3.8, for re�ex-ive spa
es Y , follows from Theorem 4.3.2.It now su�
es to show that the statements in (a) and (f) hold whenever theyhold for re�exive spa
es Y . Indeed, to see that (a) holds we 
an use the lo
al
hara
terization of u-ideals in Theorem 4.1.1 and an argument similar to (g) ⇒(a) in Theorem 4.3.2 (use (4.1.2) instead of (4.1.1)).To see that (f) holds we put [Z,Φ, J ] = DFJP(span({T }) where Y is a Ba-na
h spa
e and T ∈ W(X,Y ). Sin
e Z is re�exive and J ∈ W(X,Z) there isa net (Sα) ⊂ F(X,X) with lim supα ‖J − 2JSα‖ ≤ ‖J‖ = 1 su
h that S∗

α →
IX∗ uniformly on 
ompa
t sets in X∗. Finally, write lim supα ‖T − 2TSα‖ ≤
lim supα ‖Φ(T )‖‖J − 2JSα‖ ≤ ‖T ‖ and we are done.Remark 4.3.9. By [16, Theorem 3.4℄ we get that F(ℓ1, Y ) is an ideal inW(ℓ1, Y )for every Bana
h spa
e Y . In Remark 4.3.3 we noti
ed that F(ℓ1, ℓ̂2) is not au-ideal in W(ℓ1, ℓ̂2) where ℓ̂2 is the equivalent renorming of ℓ2 
onstru
ted byOja in [25℄. Thus ℓ1 does not ful�ll statement (a) in Theorem 4.3.8.Note that Proposition 2.3 in [22℄ for M-ideals also holds for u-ideals by usingthe lo
al 
hara
terization of u-ideals in Theorem 4.1.1 instead of the 3-ball-property used in [22, Proposition 2.3℄ (see [13, Theorem 6.17℄, [7, Theorem I.2.2℄or [22, Theorem 2.1℄). Thus if a dual spa
e X∗ 
ontains a 
opy of c0, then
F(ℓ1, Y ) is a u-ideal in W(ℓ1, Y ) whenever F(X,Y ) is a u-ideal in W(X,Y ).If ℓ̂2 is the equivalently renormed version of ℓ2 
onstru
ted by Oja, it followsfrom the pre
eding paragraph that F(X, ℓ̂2) fails to be a u-ideal in W(X, ℓ̂2)whenever X∗ 
ontains a 
opy of c0.Remark 4.3.10. Re
all that a u-ideal Z in X is stri
t if the u-
omplement of
Z⊥ in X∗ is a norming subspa
e for X , i.e. if ϕ(Z∗) is a norming subspa
e of
X∗ where ϕ ∈ HB(Z,X) is the un
onditional Hahn-Bana
h extension operator.If Y is a re�exive Bana
h spa
e and F(Y,X) is a u-ideal in W(Y,X) thenit is in fa
t a stri
t u-ideal. This is easily seen from the proof of Proposition62



4.2.5. Indeed, in this 
ase there is a unique Hahn-Bana
h extension operator
Φ ∈ HB(F(Y,X),W(Y,X))whi
h is of the form Φ = IX∗⊗IY . Sin
e BX∗⊗BY ⊂
W(Y,X)∗ is norming for W(Y,X) the 
laim follows. Similarly by Corollary4.2.6, if Y is re�exive, then F(X,Y ) is a stri
t u-ideal in W(X,Y ) whenever itis a u-ideal.If X is a Bana
h spa
e it follows from [16, Theorem 3.4℄ and [12, Proposition2.5℄ that F(X,Y ) is an ideal in W(X,Y ) for every Bana
h spa
e Y if and only if
F(Z, Y ) is an ideal inW(Z, Y ) for every Bana
h spa
e Y and for every separableideal Z in X . For u-ideals we have the following result.Proposition 4.3.11. Let X be a Bana
h spa
e. If F(X,Y ) is a u-ideal in
W(X,Y ) for every Bana
h spa
e Y , then F(Z, Y ) is a u-ideal in W(Z, Y ) forevery ideal Z in X and Bana
h spa
e Y .Proof. Let Y be a Bana
h spa
e and let Z be an ideal in X with 
orrespondingHahn-Bana
h extension operator ϕ ∈ HB(Z,X). Let G be a �nite dimensionalsubspa
e of W(Z, Y ) and de�ne the map L : G→ W(X,Y ) by

L(T ) = T ∗∗ ◦ ϕ∗|X , T ∈ G.Let ε > 0. By the lo
al 
hara
terization of u-ideals, Theorem 4.1.1, thereis an operator M : L(G) → F(X,Y ) su
h that M(S) = S for every S ∈
F(X,Y )∩L(G) and ‖S−2M(S)‖ ≤ (1+ε)‖S‖ for every S ∈ L(G). Now de�nean operator N : G→ F(Z, Y ) by

N(T ) = M(L(T )) ◦ iZ .It is straightforward to verify that the operator N ful�lls (d) in Theorem 4.1.1and the result follows.4.4 F(Y, X) as a u-ideal in K(Y, X∗∗) andW(Y, X∗∗)From [17, Theorem 5.1℄ and [19, Proposition 2.10℄ we have the following result.Proposition 4.4.1 (Lima and Oja). Let X be a 
losed subspa
e of a Bana
hspa
e Y . If F(Z,X) is a u-ideal in K(Z, Y ) for every re�exive Bana
h spa
e Z,then X is a u-ideal in Y .The next result tells us more.Proposition 4.4.2. Let X be a 
losed subspa
e of a Bana
h spa
e Y and let
Z be a re�exive Bana
h spa
e. Assume F(Z,X) is a u-ideal in K(Z, Y ) withun
onditional extension operator Ψ. Then X is a u-ideal in Y with un
onditionalextension operator ψ satisfying

Ψ(x∗ ⊗ z) = (ψx∗) ⊗ zfor all z ∈ Z and x∗ ∈ X∗.Moreover, if the above assumption holds for every separable re�exive Bana
hspa
e Z, then ψ∗|Y is in the w∗-
losure of F(Y,X) in L(Y,X∗∗).63



Proof. We pro
eed as in the proof of [18, Theorem 2.3℄. Let Ψ ∈ HB(F(Z,X),K(Z, Y ))be the un
onditional Hahn-Bana
h extension operator and denote the 
orre-sponding ideal proje
tion on K(Z, Y )∗ by PΨ. Sin
e Z is re�exive, it followsfrom [18, Theorem 1.3℄ that there exist {ψi : i = 1, ..., n} ⊂ HB(X,Y ) su
h that
Z =

n
∑

i=1

⊕1ZΨψi
, ZΨψi

6= {0} for all 1 ≤ i ≤ n,where
ZΨψi

= {z ∈ Z : Ψ(x∗ ⊗ z) = (ψix
∗) ⊗ z, ∀x∗ ∈ X∗}.Let (Pψi

) be the 
orresponding ideal proje
tions on Y ∗. It now follows that for
z ∈ ZΨψi

and y∗ ∈ Y ∗

‖z‖‖y∗‖ = ‖y∗ ⊗ z‖ ≥ ‖(I − 2PΨ)(y∗ ⊗ z)‖ = ‖y∗ ⊗ z − 2PΨ(y∗ ⊗ z)‖
= ‖y∗ ⊗ z − 2(Pψi

y∗) ⊗ z‖ = ‖(y∗ − 2Pψi
y∗) ⊗ z‖ = ‖z‖‖y∗ − 2Pψi

y∗‖.Hen
e every ψi is un
onditional and by uniqueness, see Proposition 4.2.2, theyare all equal. With ψ = ψi we have Z = ZΨψ.Furthermore, if F(Z,X) is a u-ideal in K(Z,X) for all separable re�exive Z,then by Lemma 2.1 in [20℄ there is for every su
h Z and T ∈ K(Z, Y ) a net (Tα)in F(Z,X) with supα ‖Tα‖ ≤ ‖T ‖ su
h that T ∗
α → T ∗ψ in the strong operatortopology. By boundedness we may also assume that 〈u, Tα〉 → 〈u, T 〉 for all

u ∈ X∗⊗̂πZ.Choose u =
∑

n x
∗
n ⊗ yn ∈ X∗⊗̂πY and assume that ∑

n ‖x∗n‖ = 1 and
1 ≥ ‖yn‖ → 0 and put [Z, J ] = DFJP(
onv{±yn : n = 1, ...,∞}). Then Zis a separable re�exive Bana
h spa
e and J ∈ K(Z, Y ) with ‖J‖ ≤ 1. Pi
k anet (Jα) ⊂ F(Z,X) with supα ‖Jα‖ ≤ ‖J‖ su
h that J∗

α → J∗ψ uniformly on
ompa
t sets. As in the proof of (
)⇒ (d) in Theorem 4.3.2 we may assume thatea
h J∗
α = J∗S∗

α for some Sα ∈ F(Y,X). Now 
hoose ε > 0 and let zn ∈ BZsu
h that yn = Jzn. Sin
e J∗
α → J∗ψ uniformly on 
ompa
t sets, it follows thatthere is an operator S ∈ F(Y,X) su
h that

ε > |
∞
∑

n=1

〈J∗S∗x∗n, zn〉 −
∑

n=1

〈J∗ψx∗n, zn〉 | = |
∑

n=1

〈x∗n, Syn〉 −
∑

n=1

〈x∗n, ψ∗yn〉 |.Hen
e ψ∗|Y is in the w∗-
losure of F(Y,X) in L(Y,X∗∗).Remark 4.4.3. If Y = X∗∗ in Proposition 4.4.2 we a
tually have that ψ∗|X∗∗ isin the weak∗-
losure of set F(X,X) in L(X∗∗, X∗∗). In this 
ase J∗(X∗) andnot just J∗(X∗∗∗) is norm-dense in Z∗ (see the proof of [10, Proposition 2.1℄).Thus we 
an write ea
h J∗
α = J∗S∗

α for some Sα in F(X,X) (and not only in
F(X∗∗, X)).Let X be a Bana
h spa
e. From Theorem 4.3.1 we have that F(Y,X) is au-ideal in W(Y,X∗∗) for every Bana
h spa
e Y if and only if F(Y,X) is a u-ideal in W(Y,X∗∗) for every re�exive Bana
h spa
e Y . The next results 
ontainother 
hara
terizations of these statements.Theorem 4.4.4. Let X be a Bana
h spa
e. The following statements are equiv-alent. 64



(a) F(Y,X) is a u-ideal in W(Y,X∗∗) for every Bana
h spa
e Y .(b) X is a u-ideal in its bidual with un
onditional Hahn-Bana
h extensionoperator ψ ∈ HB(X,X∗∗) su
h that for every Bana
h spa
e Y and T ∈
W(Y,X∗∗) there is a net (Sα) ⊂ F(X,X) with lim supα ‖T − 2S∗∗

α T ‖ ≤
‖T ‖ su
h that S∗∗

α T → ψ∗T weak∗ in L(Y,X∗∗).(
) There exists a Hahn-Bana
h extension operator ψ ∈ HB(X,X∗∗) su
h thatfor every Bana
h spa
e Y and T ∈ W(Y,X∗∗) there is a net (Sα) ⊂
F(X,X) with lim supα ‖T − 2S∗∗

α T ‖ ≤ ‖T ‖ su
h that S∗∗
α T → ψ∗T weak∗in L(Y,X∗∗).(d) For every weakly 
ompa
t 
ompa
t set K ⊂ X∗∗ there is a net (Sα) ⊂

F(X,X) with limα supx∗∗∈K ‖x∗∗ − 2S∗∗
α x

∗∗‖ ≤ supx∗∗∈K ‖x∗∗‖ su
h that
Sα → IX uniformly on 
ompa
t subsets of K ∩X.(e) For every Bana
h spa
e Y and T ∈ W(Y,X∗∗), there is a net (Sα) ⊂
F(X,X) with lim supα ‖T − 2S∗∗

α T ‖ ≤ ‖T ‖ su
h that Sα → IX uniformlyon 
ompa
t sets in X.(f) For every re�exive Bana
h spa
e Y and T ∈ W(Y,X∗∗), there is a net
(Sα) ⊂ F(X,X) with lim supα ‖T − 2S∗∗

α T ‖ ≤ ‖T ‖ su
h that Sα → IXuniformly on 
ompa
t sets in X.Proof. (a) ⇒ (b). Let Y be a Bana
h spa
e and let T ∈ W(Y,X∗∗). Put
G = span({T }) and let [Z, J,Φ] = DFJP(G). Now Z is re�exive and J ∈
W(Z,X∗∗) is of norm 1. Let Ψ : F(Z,X)∗ → W(Z,X∗∗)∗ be the un
onditionalHahn-Bana
h extension operator. As in the proof of Proposition 4.4.2 we 
anshow that X is a u-ideal in X∗∗ with ψ ∈ HB(X,X∗∗) un
onditional su
h that
Ψ(x∗ ⊗ z) = ψ(x∗)⊗ z for every x∗ ∈ X∗ and z ∈ Z. By Theorem 4.1.1 there isa net (Jα) ⊂ F(Z,X) su
h that lim supα ‖J−2Jα‖ ≤ 1 and Jα → Ψ∗(J) weak∗.Sin
e J∗(X∗) is norm dense in Z∗ we 
an assume that ea
h Jα = S∗∗

α J where
(Sα) ⊂ F(X,X). Sin
e ‖T − 2S∗∗

α T ‖ = ‖JΦ(T ) − 2S∗∗
α JΦ(T )‖ ≤ ‖T ‖‖J −

2S∗∗
α J‖ we get lim supα ‖T − 2S∗∗

α T ‖ ≤ ‖T ‖.Let u =
∑

n x
∗
n ⊗ yn ∈ X∗⊗̂πY . Then v =

∑

n x
∗
n ⊗ (Φ(T )yn) ∈ X∗⊗̂πZ.We get that

〈u, ψ∗T 〉 =
∑

n

〈ψx∗n, JΦ(T )yn〉 = 〈Ψ(v), J〉 = 〈v,Ψ∗(J)〉

= lim
α
〈v, S∗∗

α J〉 = lim
α

∑

n

〈x∗n, S∗∗
α Tyn〉 = lim

α
〈u, S∗∗

α T 〉.This shows that S∗∗
α T → ψ∗T weak∗ in L(Y,X∗∗).(b) ⇒ (
) is trivial.(
) ⇒ (d) is similar to the proof of (
) ⇒ (d) in Theorem 4.3.2.(d) ⇒ (e) is similar to the proof of (d) ⇒ (e) in Theorem 4.3.2.(e) ⇒ (f) is trivial.(f) ⇒ (a) is similar to the proof of (f) ⇒ (a) in Theorem 4.3.2.Remark 4.4.5. Note that X = c0 ful�lls Theorem 4.4.4 sin
e c0 an M∞ spa
e(see [7℄ p. 306) and [7, Proposition 5.6℄.Theorem 4.4.6. Let X be a Bana
h spa
e. The following statements are equiv-alent. 65



(a) F(Y,X) is a u-ideal in K(Y,X∗∗) for every Bana
h spa
e Y .(b) X is a u-ideal in X∗∗ with un
onditional Hahn-Bana
h extension ψ su
hthat ψ∗|X∗∗ is in the weak∗-
losure of the F(X,X) in L(X∗∗, X∗∗).(
) X is a u-ideal in its bidual with un
onditional Hahn-Bana
h extensionoperator ψ ∈ HB(X,X∗∗) su
h that for every Bana
h spa
e Y and T ∈
K(Y,X∗∗) there is a net (Sα) ⊂ F(X,X) with lim supα ‖T−2S∗∗

α T ‖ ≤ ‖T ‖su
h that S∗∗
α T → ψ∗T weak∗ in L(Y,X∗∗).(d) For every Bana
h spa
e Y and T ∈ K(Y,X∗∗) there is a net (Sα) ⊂

F(X,X) with lim supα ‖T − 2S∗∗
α T ‖ ≤ ‖T ‖ su
h that Sα → IX uniformlyon 
ompa
t sets in X.(e) For every separable re�exive Bana
h spa
e Y and T ∈ K(Y,X∗∗) there is anet (Sα) ⊂ F(X,X) with lim supα ‖T −2S∗∗

α T ‖ ≤ ‖T ‖ su
h that Sα → IXuniformly on 
ompa
t sets in X.Proof. (a) ⇒ (b) follows from Proposition 4.4.2.(b) ⇒ (
). Let Y be a Bana
h spa
e and let T ∈ K(Y,X∗∗). Put G =span({T }) and write [Z, J,Φ] = DFJP(G). NowZ is re�exive and J ∈ K(Z,X∗∗)has norm one. Let ψ ∈ HB(X,X∗∗) be the un
onditional Hahn-Bana
h exten-sion operator and 
hoose a net (Sα) ⊂ F(X,X) su
h that S∗∗
α → ψ∗|X∗∗ weak∗in L(X∗∗, X∗∗). Sin
e Z is re�exive, K(Z,X∗∗)∗ is a quotient of X∗∗∗⊗̂πZ by [4,Theorem 1℄ of Feder and Saphar. Now let ε > 0 and let u ∈ X∗∗∗⊗̂πZ. Choosea representation ∑∞

n=1 x
∗∗∗
n ⊗ zn for u su
h that ∑∞

n=1 ‖x∗∗∗n ‖‖zn‖ ≤ ‖u‖π + εand write x∗n = x∗∗∗n |X . We get that
| 〈u, J − 2S∗∗

α J〉 | = |
∞
∑

n=1

〈x∗∗∗n , (J − 2S∗∗
α J)zn〉 | = |

∞
∑

n=1

〈x∗∗∗n − 2S∗
αx

∗
n, Jzn〉 |

→ |
∞
∑

n=1

〈x∗∗∗n − 2ψx∗n, Jzn〉 ≤
∞
∑

n=1

‖x∗∗∗n ‖‖Jzn‖ ≤ ‖u‖π + ε.Hen
e 
onv(J−2S∗∗
α J) 
an not be strongly separated from BK(Z,X∗∗). By takingsu

essive 
onvex 
ombinations we get a new net, also denoted (Sα), su
h that

lim supα ‖J − 2S∗∗
α J‖ ≤ 1. Thus

lim sup
α

‖T − 2S∗∗
α T ‖ ≤ lim sup

α
‖Φ(T )‖‖J − 2S∗∗

α J‖ ≤ ‖T ‖.Obviously S∗∗
α T → ψ∗T weak∗ in L(Y,X∗∗).(
) ⇒ (d). Argue as in the proof of (d) ⇒ (e) in Theorem 4.4.4.(d) ⇒ (e) is trivial.(e) ⇒ (a). Argue as in the proof of (g) ⇒ (a) in Theorem 4.3.2.Remark 4.4.7. In [10, Proposition 2.1℄ it is proved that F(Y,X) is an idealin W(Y,X∗∗) for every Bana
h spa
e Y if and only if F(Y,X) is an ideal in

K(Y,X∗∗) for every Bana
h spa
e Y . This fails if we repla
e �ideal� with �u-ideal�. Indeed, if we let X = ℓ̂2, the equivalent renorming of ℓ2 obtained byOja (see Remark 4.3.3), then we have a 
ounterexample. This proves that thestatements in Theorem 4.4.6 are stri
tly weaker than those in Theorem 4.4.4.66



The next result shows that F(Y,X) being a u-ideal in W(Y,X∗∗) for allBana
h spa
es Y is inherited by some subspa
es of X .Proposition 4.4.8. Suppose F(Y,X) is a u-ideal in W(Y,X∗∗) for every Ba-na
h spa
e Y and let ϕ ∈ HB(X,X∗∗) be the un
onditional Hahn-Bana
h exten-sion operator. Then F(Y, Z) is a u-ideal in W(Y, Z∗∗) for every Bana
h spa
e
Y and ideal Z in X su
h that ϕ∗(Z⊥⊥) ⊂ Z⊥⊥.Proof. Let Y be a re�exive Bana
h spa
e and let Z be an ideal in X su
hthat ϕ∗(Z⊥⊥) ⊂ Z⊥⊥. Denote by iZ : Z → X the natural embedding. Sin
e
ϕ∗(Z⊥⊥) ⊂ Z⊥⊥, it follows from Theorem 4.2.4 that Z is a u-ideal in its bidualwith an un
onditional extension operator ψ ∈ HB(Z,Z∗∗) su
h that i∗∗Z ψ∗|Z∗∗ =
ϕ∗i∗∗Z . From Theorem 4.4.6 we have ϕ∗|X∗∗ in the weak∗-
losure of F(X,X) in
L(X∗∗, X∗∗). By the Prin
iple of Lo
al Re�exivity it is routine to 
he
k that
ψ∗|Z∗∗ is in the weak∗-
losure of L(Z∗∗, Z∗∗).Choose a 
ompa
t subset K of Z and an operator T ∈ W(Y, Z∗∗). Put
T̂ = i∗∗Z ◦ T ∈ W(Y,X∗∗). By Theorem 4.4.4 there is a net (Sα) ⊂ F(X,X)with lim supα ‖T̂ − 2S∗∗

α T̂‖ ≤ ‖T̂‖ = ‖T ‖ su
h that S∗∗
α T̂ → ϕ∗|X∗∗ T̂ weak∗in L(X∗∗, X∗∗). From the �rst paragraph there is a net (Ui) ⊂ F(Z,Z) su
hthat U∗∗

i → ψ∗|Z∗∗ weak∗ in L(Z∗∗, Z∗∗). Assume (Sα) and (Ui) have the sameindex set. Thus we will write (Uα) for the net in F(Z,Z). Note that Uα → IZuniformly on 
ompa
t sets in Z. Now let u =
∑

n x
∗
n ⊗ yn ∈ F(Y,X)∗ and

Tα = S∗∗
α i

∗∗
Z T − i∗∗Z U

∗∗
α T . From this we get that

〈u, Tα〉 =
∑

n

〈x∗n, (S∗∗
α i

∗∗
Z − i∗∗Z U

∗∗
α )(Tyn)〉

=
∑

n

〈x∗n, S∗∗
α (i∗∗Z Tyn)〉 −

∑

n

〈i∗Zx∗n, U∗∗
α (Tyn)〉

→
∑

n

〈x∗n, ϕ∗(i∗∗Z Tyn)〉 −
∑

n

〈i∗Zx∗n, ψ∗(Tyn)〉 = 0.Hen
e Tα → 0 weakly in F(Y,X). Consequently a suitable net of 
onvex 
om-binations of Tα 
onverges in norm to 0. Thus there exist α0, Ŝα0
∈ 
o{S∗∗

α :
α > α0}, and Ûα0

∈ 
o{U∗∗
α : α > α0} su
h that ‖T̂ − 2Ŝα0

T̂‖ ≤ ‖T̂‖ + ε,
supz∈K ‖Ûα0

z − z‖ ≤ ε, and ‖Ŝα0
i∗∗Z T − i∗∗Z Ûα0

T )‖ ≤ ε. We get
‖i∗∗Z T − 2i∗∗Z Ûα0

T ‖ ≤ ‖i∗∗Z T − 2Ŝα0
i∗∗Z T ‖ + 2‖Ŝα0

i∗∗Z T − i∗∗Z Ûα0
T ‖ ≤ ‖T̂‖ + 3ε.Hen
e ‖T − 2Ûα0

T ‖ ≤ ‖T ‖ + 3ε, and the result follows.In [21℄ Lima and Oja introdu
ed and studied the weak metri
 approximationproperty. Following Lima and Oja a Bana
h spa
e X is said to have the weakmetri
 approximation property (weak MAP) if for every Bana
h spa
e Y andoperator T ∈ W(X,Y ) there is a net (Sα) ⊂ F(X,X) with supα ‖TSα‖ ≤ ‖T ‖su
h that Sα → IX uniformly on 
ompa
t subsets in X . It is easy to see thatthe MAP implies the weak MAP. In [31, Corollary 1℄ it is shown that the weakMAP and the MAP are indeed equivalent for a Bana
h spa
e for whi
h eitherits dual or its bidual has the RNP.Lima proved in [10℄ that X has the weak MAP if and only if F(Y,X) is anideal in K(Y,X∗∗) for every Bana
h spa
e Y . Based on this, it is natural to guessthat an �un
onditional version� of the weak MAP 
ould be the property that for67



every Bana
h spa
e Y and operator T ∈ K(X,Y ) there is a net (Sα) ⊂ F(X,X)with lim supα ‖T −2TSα‖ ≤ ‖T ‖ su
h that Sα → IX uniformly on 
ompa
t setsin X . As remarked below, this property is stri
tly weaker than the statementsin Theorem 4.4.6.Proposition 4.4.9. Let X be a Bana
h spa
e. The following statements areequivalent.(a) For every Bana
h spa
e Y and operator T ∈ K(X,Y ), there is a net
(Sα) ⊂ F(X,X) su
h that lim supα ‖T − 2TSα‖ ≤ ‖T ‖ and Sα → IXuniformly on 
ompa
t sets.(b) For every re�exive Bana
h spa
e Y and operator T ∈ K(X,Y ), there is anet (Sα) ⊂ F(X,X) su
h that lim supα ‖T − 2TSα‖ ≤ ‖T ‖ and TSα → Tuniformly on 
ompa
t sets.(
) There is a Hahn-Bana
h extension operator ψ ∈ HB(X,X∗∗) with ‖IX∗∗ −
2ψ∗

|X∗∗
‖ = 1 su
h that ψ∗|X∗∗ is in the weak∗-
losure of F(X,X) in

L(X∗∗, X∗∗).Proof. (a) ⇒ (b) is trivial.(b) ⇒ (
). The proof is essentially that of [10, Proposition 2.5℄.(
) ⇒ (a) is similar to Theorem 4.4.6 (
) ⇒ (d).Remark 4.4.10. If ψ ∈ HB(X,X∗∗) is an un
onditional extension operator then
‖IX∗∗−2ψ∗|X∗∗‖ = ‖IX∗∗∗−2ψk∗X‖ = 1. To see this, �rst note that 1 = ‖IX∗∗∗−
2ψk∗X‖ = ‖IX∗∗∗∗ − 2k∗∗X ψ

∗‖. Write the identity operator on the dual X∗ as
IX∗ = k∗XkX∗ and the identity operator on bidual X∗∗ as IX∗∗ = k∗X∗kX∗∗ . Bytaking adjoints we obtain from the �rst equality that IX∗∗ = (IX∗)∗ = k∗X∗k∗∗X .It follows that

‖IX∗∗ − 2ψ∗kX∗∗‖ = ‖IX∗∗ − 2IX∗∗ψ∗kX∗∗‖
= ‖k∗X∗kX∗∗ − 2k∗X∗k∗∗X ψ

∗kX∗∗‖ ≤ 1Proposition 4.4.11. Let X be a Bana
h spa
e. If every equivalent renormingof X is a u-ideal in its bidual, then X is a stri
t u-ideal in its bidual.Proof. Let x∗∗∗ ∈ X∗∗∗, x∗ = k∗X(x∗∗∗), and let ε > 0. By [11, Lemma 2.4℄there is an equivalent renorming X1 of X whi
h is lo
ally uniformly rotund at
x∗ su
h that BX ⊆ BX1

⊆ BX(0, 1 + ε). Let | · | be the norm on X1 and let
P : X∗∗∗

1 → X∗∗∗
1 be the u-ideal proje
tion. Then P (x∗∗∗) = x∗ and

‖x∗∗∗ − 2x∗‖ ≤ |x∗∗∗ − 2x∗| = |x∗∗∗ − 2P (x∗∗∗)| ≤ |x∗∗∗| ≤ (1 + ε)‖x∗∗∗‖whi
h shows that ‖I − 2π‖ = 1 where π = kX∗k∗X so X is a stri
t u-ideal in itsbidual.Remark 4.4.12. The statements in Proposition 4.4.9 are stri
tly weaker thanthose in Theorem 4.4.6. Indeed, as noted in [5℄ (see p. 29) ℓ1 is not a stri
tu-ideal in its bidual. Thus it follows from Proposition 4.4.11 that there exists anequivalent renorming, ℓ̂1, of ℓ1 for whi
h ℓ̂1 is not a u-ideal in its bidual. Sin
e
ℓ̂1 has the AP, Proposition 4.4.9 (
) is ful�lled with ψ = kℓ̂∗

1
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