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Chapter 1Introdution and perspetivesThis introdution provides bakground material for the artiles [3℄, [1℄, and[2℄ whih respetively onstitute Chapters 2 to 4 in this thesis. Setion 1.1ontains notation and terminology used in the introdution. In Setion 1.2we present bakground material for the artile [3℄. This artile ontains newharaterizations of thik and weak∗-thik sets. Subsetion 1.2.2 ontains ageneralization of the notion of thik sets. New results and open problems arealso presented here. In Setion 1.3 bakgroundmaterial for the artiles [1℄ and [2℄is presented. These artiles ontain new results about approximation propertiesand u-ideals. In subsetion 1.3.2 we disuss some open problems related to thenotion of u-ideals.1.1 Notation and terminologyThe notation and terminology used throughout this introdution is standard(see e.g. [57℄). We will write N, R, and C for the sets of natural numbers, realnumbers, and omplex numbers, respetively. K will denote a set that an beeither R or C. The letters X , Y , and Z will denote Banah spaes unless oth-erwise stated. The letters E, F , and G will typially denote �nite dimensionalBanah spaes. The losed unit ball of a Banah spae X is denoted by BX andthe unit sphere of X is denoted by SX . We will write X∗ for the dual spaeof X . The sets of extreme points, exposed points, and strongly exposed pointsof BX are respetively denoted by extBX , expBX , and str-expBX . Similarly
ω*-expBX∗ and ω*-str-expBX∗ denote the sets of weak∗-exposed and weak∗-strongly exposed points of BX∗ .Let A be a subset of a Banah spae X . Then its norm losure, onvex hull,absolutely onvex hull, and linear span will be denoted by A, onvA, absonvA,and spanA, respetively. We will write Aw for the weak losure of A. Similarly,if A is a subset of a dual spae X∗, Aw∗ denotes the weak∗-losure of A.Let X and Y be Banah spaes. We will write L(Y,X) for the Banahspae of bounded linear operators from Y to X , and F(Y,X), K(Y,X), and
W(Y,X) for its subspaes of �nite rank operators, ompat operators, andweakly ompat operators, respetively. If Z is a subspae of X , then we willwrite iZ : Z → X for the anonial embedding of Z into X . IX will denote theidentity operator on X . If no onfusion is possible, we will sometimes also write1



I for the identity operator on a Banah spae. The natural embedding of Xinto its bidual will be denoted by kX : X → X∗∗. kerT will denote the kernelof a bounded linear operator T .
1.2 Bakground on thik and weak∗-thik sets inBanah spaesThe Banah-Steinhaus Uniform Boundedness Priniple (see e.g. [69, p. 43℄) isone of the ornerstones in the theory of Banah spaes. Speial ases of thetheorem dates bak to those of Lebesgue [43℄ in 1909 for the funtion spaes
L2[a, b], L1[a, b], L∞[a, b], Helly [36℄ in 1912 for the funtion spae C[a, b], andToeplitz [77℄ and Shur [71℄ in 1913 and 1920 for the sequene spae c. Theabstrat version of the Banah-Steinhaus Uniform Boundedness Priniple waspublished independently by Hahn [34℄, Banah [6℄, and Hildebrant [38℄ in theyears 1922 − 1923. Banah and Steinhaus [8℄ proved a more general version ofthe priniple for seond ategory sets in 1927. The proof of this theorem wasmodern beause it used Baire's Category Theorem [5℄ (f. [58, p. 37℄) insteadof the gliding hump tehnique (f. [17, pp. 138-142℄) used before. This generalversion of the Banah-Steinhaus Uniform Boundedness Priniple essentially tellsus that whenever (Tα) is a family of bounded linear operators on some Banahspae X , whih is pointwise bounded on a set A of the seond ategory in X ,then the family is bounded. However, in some ases, boundedness an be ob-tained from pointwise boundedness on a �smaller set� than the seond ategory.Indeed, the Nikodým-Grothendiek Boundedness Theorem (see e.g. [16, p. 14℄or [15, p. 80℄) says that if a family (Tα) of bounded linear operators is pointwisebounded on the set of harateristi funtions in the unit sphere of the spae
B(Σ) (see text above Theorem 1.2.5), then this family is bounded. This set ofharateristi funtions is ertainly not of the seond ategory, it is even nowheredense. Thus it is natural to ask: How an we sharpen the Banah-SteinhausUniform Boundedness Priniple in the sense of weakening the restritions onthe set A on whih to test pointwise boundedness?Building on a result of Kadets and Fonf [26, Proposition 1℄, Nygaard pro-posed a property, that he alled thikness, whih is weaker than the seondategory, so that the onlusion of the Banah-Steinhaus Uniform BoundednessPriniple still holds [59℄. Further, Nygaard showed that thikness is the ultimateproperty in the sense that if a subset B of a Banah spae X is not thik, thenit is always possible to �nd an unbounded family of bounded linear operators on
X whih is pointwise bounded on B. Nygaard notied also that the thiknessproperty is equivalent to another fundamental property in the theory of linearoperators. The property is the one that guarantees that if a bounded linearoperator T : Y → X is onto a subset B of X , then it is onto X .The paper [3℄, whih is presented in Chapter 2 in this thesis, ontains newharaterizations of the thikness property, and a weaker dual ompanion alledthe weak∗-thikness property, in terms of integrability of vetor-valued fun-tions. 2



1.2.1 Basi results on thik and weak∗-thik setsSuppose X and Y are topologial vetor spaes. The following two problemsare of fundamental importane in the theory of linear operators:Problem 1.2.1. Assume A is a subset of Y . Find a property on A suh thatevery ontinuous linear operator T : X → Y is onto Y if and only if the rangeof the operator ontains A.Problem 1.2.2. Assume A is a subset of Y and that A is a subset of the spaeof all ontinuous linear operators from Y into X. Find a property on A suhthat A is bounded if and only if the set {Ty : T ∈ A} is bounded for eah y ∈ A(A is pointwise bounded on Y ).If Y is of �nite dimension, the answer to both problems is of ourse that Ahas to ontain as many independent vetors as the dimension of Y . When Y isof in�nite dimension there is, on the ontrary, no simple answer to any of theproblems.However, from a lassial theorem that appeared already in Théorie desOpérations Linéaires [7℄, the following result is known.Theorem 1.2.3 (Banah, 1932). If T is a bounded linear operator from aBanah spae into a normed linear spae, then the range of T is either of �rstategory or equal to the range spae itself.Another lassial theorem, the famous ategory version of the Banah-SteinhausUniform Boundedness Priniple [8℄, whih appeared in a joint paper of Banahand Steinhaus as early as 1927, reads:Theorem 1.2.4 (Banah and Steinhaus, 1927). Let (Tn) be a sequene ofbounded linear operators from a Banah spae Y into a Banah spae X. Sup-pose supn ‖Tny‖ < ∞ for every y ∈ A where A is a set of the seond ategoryin Y . Then supn supy∈BY
‖Tny‖ <∞.Thus Theorem 1.2.3 and Theorem 1.2.4 tell us that the property seondategory is su�iently strong to obtain impliation in one diretion in bothProblems 1.2.1 and 1.2.2 when X and Y are Banah spaes. However, thereare examples whih show that this property is indeed too strong for the reverseimpliations to hold. In the ase of Problem 1.2.1, the spetaular theorem ofSeever shows this [72℄ (see also [16, p. 17℄). (B(Σ) denotes here the Banahspae of uniform limits of simple funtions modeled on the σ-algebra Σ.)Theorem 1.2.5 (Seever, 1968). Let Σ be a σ-algebra of subsets of a set Ω andlet X be a Banah spae. Let T : X → B(Σ) be a bounded linear operator whoserange inludes the set {χE : E ∈ Σ}. Then TX = B(Σ).In partiular Seever's theorem says that if an operator is onto the set of 0-1sequenes in ℓ∞, then it is onto ℓ∞.In the ase of Problem 1.2.2, the Nikodým-Grothendiek Boundedness Theo-rem (see below) shows that seond ategory is a too strong property. Indeed, thisis easily seen from Corollary 1.2.7 below whih is an immediate onsequene ofthe Nikodým-Grothendiek Boundedness Theorem. (Use the fat that for eahbounded linear operator T : B(Σ) → X there orresponds a vetor measure

F : Σ → X de�ned by F (E) = T (χE) and then apply Theorem 1.2.6.)3



Theorem 1.2.6 (Nikodým and Grothendiek). Let Σ be a σ-algebra of subsetsof a set Ω, let X be a Banah spae, and let {Fτ : τ ∈ T } be a family of X-valuedbounded vetor measures de�ned on Σ. If supτ ‖Fτ (E)‖ < ∞ for eah E ∈ Σ,then the family {Fτ : τ ∈ T } is uniformly bounded, i.e. supτ∈T ‖Fτ‖(Ω) <∞.Corollary 1.2.7. Let Σ be a σ-algebra of subsets of a set Ω. Suppose {Tα : α ∈
A} is a olletion of bounded linear operators from B(Σ) to a Banah spae Xsuh that supα∈A ‖TαχE‖ <∞ for eah E ∈ Σ. Then supα ‖Tα‖ <∞.It is lear from the theorems above, that if X and Y are Banah spaes andif A is a subset of Y , then the property on A that solves both Problem 1.2.1and Problem 1.2.2, is stritly between A being span dense in Y and A being ofthe seond ategory in Y . But still, what haraterizes suh a property?In [26℄, Kadets and Fonf enovered a property whih in fat solves Problem1.2.1 in the ase Y is a Banah spae and A is a bounded subset of Y .Theorem 1.2.8 (Kadets and Fonf, 1983). Let Y be a Banah spae and suppose
A ⊂ SY . The following are equivalent statements:(a) For any Banah spae X and any bounded linear operator T : X → Ysuh that T (X) ⊃ A, one has T (X) = Y .(b) For every representation of A as the union of an inreasing sequene ofsets, A = ∪∞

i=1Ai, (Ai ↑), there is an index j suh that
inf

y∗∈SY ∗

sup
y∈Aj

|y∗(y)| > 0.Theorem 1.2.8 suggests the following de�nition (f. [26℄, [25℄, and [59℄).De�nition 1.2.9. Let Y be a normed linear spae. A subset A ⊂ Y is said tohave the surjetivity property if for every Banah spae X , every T ∈ L(X,Y ),suh that T (X) ⊃ A, we have that T is onto Y . If the same onlusion holds fora subset A ⊂ L(X,Y ), we say that A has the A-restrited surjetivity property.For the speial ase when A ⊂ Y ∗ and A is the spae of adjoints in L(X∗, Y ∗),we say that A has the weak∗-surjetivity property.Note that Theorem 1.2.3 of Banah, says that every seond ategory set ina Banah spae has the surjetivity property.Before we go into a further disussion of Problems 1.2.1 and 1.2.2, we needto agree on some more de�nitions (f. [26℄, [25℄, and [59℄).De�nition 1.2.10. A subsetA of a Banah spae Y (resp. a dual Banah spae
Y ∗) is said to be norming (resp. weak∗-norming) if infy∗∈SY ∗

supy∈A |y∗(y)| > 0(resp. infy∈SY
supy∗∈A |y∗(y)| > 0). The subset A is alled thin (resp. weak∗-thin) if it an be written as a ountable inreasing union of non-norming (resp.non-weak∗-norming) sets. If A is not thin (resp. weak∗-thin) it is alled thik(resp. weak∗-thik).The following geometrial lemmas [59, Lemmas 2.2 and 2.3℄ are easy onse-quenes of the Hahn-Banah separation Theorem.Lemma 1.2.11. Let Y be a real normed spae and A a subset of Y . Thefollowing statements are equivalent. 4



(a) A is norming.(b) onv(±A) is norming.() There exists δ > 0 suh that onv(±A) ⊃ δBY .Lemma 1.2.12. Let Y be a real normed spae and A a subset of Y ∗. Thefollowing statements are equivalent.(a) A is weak∗-norming.(b) onvw∗

(±A) is weak∗-norming.() There exists δ > 0 suh that onvw∗

(±A) ⊃ δBY ∗ .We remark that if the spae Y is omplex, Lemma 1.2.11 and Lemma 1.2.12hold if we replae o(±A) with o(∪|r|=1rA) where r is a omplex number.Of ourse a norming set in a dual spae is weak∗-norming. However, it doesnot need to be weak∗-thik. The set of extreme points of the unit ball of ℓ1 issuh an example sine it is ountable. (Indeed, it is lear that every ountableset is thin, or weak∗-thin if it is in a dual spae). There are also weak∗-thiksets whih are not norming. The unit ball of every non-re�exive Banah spae,onsidered as a subset of the bidual, is suh an example. Next we give anexample of a set whih is both norming and weak∗-thik.Example 1.2.13. Let H∞(D) denote the spae of bounded analyti funtionson the open unit disk. The Blashke produts in H∞(D) is a weak∗-thik andnorming set [59, Corollary 3.7℄. See [70, p. 310℄ for a de�nition of Blashkeproduts. It is unknown whether the Blashke produts forms a thik set.It is immediate from the de�nitions that every thik set in a dual spae isweak∗-thik. From the de�nitions it is also straightforward to verify that sets ofthe seond ategory are thik [59, Lemma 3.4℄. General examples of thik andweak∗-thik sets are given by the results [27, Theorem 4.3℄, [60, Corollary 2.2℄,[24, Theorem 1℄, and [25, Theorem 3*℄.Theorem 1.2.14 (Fonf and Lindenstrauss, 2003). Let X be a separable non-re�exive Banah spae. Then the set of funtionals in X∗ whih do not attaintheir maximum on BX is a thik set.Theorem 1.2.15 (Nygaard, 2006). Let X be a Banah spae. If x∗∗ ∈ X∗∗\X,then kerx∗∗ is a weak∗-thik subset of X∗.Reall that a subset B of the unit sphere SX∗ of the dual of a Banah spae
X is alled a James boundary of X , if for every x ∈ X , there exists x∗ ∈ B suhthat x∗(x) = ‖x‖.Theorem 1.2.16 (Fonf, 1989). Let X be a Banah spae. If X does not ontaina opy of c0, then every James boundary of X is weak∗-thik.Theorem 1.2.17 (Fonf, 1996). Let X be a separable Banah spae. If X doesnot ontain a opy of c0, then ω*-expBX∗ is weak∗-thik.5



De�nition 1.2.18. Let Y be a normed linear spae. A subset A ⊂ Y is said tohave the boundedness property if for every normed linear spae X , every family
(Tα) ⊂ L(Y,X), whih is pointwise bounded on A, is bounded. If the sameonlusion holds for a subset A ⊂ L(Y,X), we say that A has the A-restritedboundedness property. For the speial ase when A ⊂ Y ∗ and A is the spae ofadjoints in L(Y ∗, X∗), we say that A has the weak∗-boundedness property.From the Banah-Steinhaus Uniform Boundedness Priniple [8℄ (see also[69, p. 43℄) we have that sets of the seond ategory in Banah spaes have theboundedness property. Note also that Theorem 1.2.5 of Seever and Corollary1.2.7 of Nikodým and Grothendiek say that the harateristi funtions in theunit sphere of B(Σ) both have the surjetivity property and the boundednessproperty.Nygaard proved in [59℄ the following general result.Theorem 1.2.19 (Nygaard, 2002). Suppose A is a subset of a Banah spae
Y . The following statements are equivalent.(a) A has the surjetivity property.(b) For every Banah spae X, every injetion T : X → Y whih is onto A isan isomorphism.() A has the boundedness property.(d) Every sequene (y∗n) ⊂ Y ∗ whih is pointwise bounded on A is a boundedsequene in Y ∗.(e) A is thik.Note that from Theorem 1.2.19 it follows that Seever's theorem and theNikodým-Grothendiek Boundedness Theorem are the same.In [59℄ another speial ase of Problem 1.2.1 was onsidered, that is the asewhen A is a subset of the dual of a Banah spae X and the operators areadjoints into X∗.Theorem 1.2.20 (Nygaard, 2002). Suppose A is a subset of the dual of aBanah spae Y . The following statements are equivalent.(a) A has the weak∗-surjetivity property.(b) For every Banah spae X, every dual injetion T : X∗ → Y ∗ whih isonto A is an isomorphism.() A has the weak∗-boundedness property.(d) Every sequene (yn) ⊂ Y whih is pointwise bounded on A is a boundedsequene in Y .(e) A is weak∗-thik.The notion of weak∗-thik sets also turns up in the theory of vetor measures.Let us reall the basi de�nitions from this theory (f. e.g. [16℄).Let X be a Banah spae and let F be an algebra of subsets of a set Ω.A set funtion F : F → X is alled a vetor measure if whenever E1 and E26



are disjoint members of F , then F (E1 ∪ E2) = F (E1) + F (E2). If, in addition
F (∪∞

n=1En) =
∑∞
n=1 F (En), with onvergene in the norm-topology of X , forall sequenes (En) of pairwise disjoint members of F suh that ∪∞

n=1En ∈ F ,then F is said to be a ountably additive vetor measure. Moreover, a vetormeasure F : F → X is said to be bounded if supE∈F ‖F (E)‖ <∞.If Σ is a σ-algebra of subsets of a set Ω, and µ a measure on Σ, then afuntion f : Ω → X is alled weakly µ-measurable if for every x∗ ∈ X∗ thesalar valued funtion x∗f is µ-measurable.The following theorem was proved by Dunford already in 1937 (f. [16,p. 52℄).Theorem 1.2.21 (Dunford, 1937). Let X be a Banah spae, Σ a σ-algebraof subsets of a set Ω, and µ a measure. If f : Ω → X is a funtion suh that
x∗f ∈ L1(µ) for every x∗ ∈ X∗, then for eah E ∈ Σ there exists x∗∗E ∈ X∗∗satisfying

x∗∗E (x∗) =

∫

E

x∗(f)dµ (1.2.1)for all x∗ ∈ X∗.Based on this result, we an de�ne the Dunford integral.De�nition 1.2.22. A weakly µ-measurable funtion f : Ω → X is alled Dun-ford integrable if x∗f ∈ L1(µ) for every x∗ ∈ X∗. The Dunford integral of f over
E ∈ Σ is de�ned by the element x∗∗E of X∗∗ in (1.2.1). We denote this integralby (D) −

∫

Ω fdµ.Moreover, if (D) −
∫

Ω
fdµ ∈ X , then f is alled Pettis integrable.In [18℄ and [14℄ Dimitrov and Diestel independently proved the followingresult.Theorem 1.2.23 (Dimitrov, 1971 and Diestel, 1973). Let X be a separableBanah spae whih does not ontain isomorphi opies of c0 and let (Ω,Σ, µ)be a �nite measure spae. Then every Dunford integrable funtion f : Ω → Xis Pettis integrable.Using this theorem of Dimitrov and Diestel, in ombination with the fatthat when a Banah spae X is c0 free, the set extBX∗ is weak∗-thik [24,Theorem 1℄ (f. Theorem 1.2.16), Fonf obtained the following theorem.Theorem 1.2.24 (Fonf, 1989). Let X be a separable Banah spae whih doesnot ontain isomorphi opies of c0. Then, whenever (Ω,Σ, µ) is a �nite measurespae and a funtion f : Ω → X is suh that x∗f ∈ L1(µ) for every x∗ ∈

extBX∗ , we have x∗f ∈ L1(µ) for every x∗ ∈ X∗ and f is Pettis integrable.The main objetive of the artile [3℄ (f. Chapter 2) is to generalize theabove result of Fonf. We do this by giving the following haraterization ofweak∗-thik sets (f. Chapter 2, Main theorem).Theorem 1.2.25 (Abrahamsen, Nygaard, and Põldvere, 2006). Let X be aBanah spae. A subset A ⊂ X∗ is weak∗-thik if and only if whenever (Ω,Σ, µ)is a measure spae and f : Ω → X is an essentially separable valued funtionsuh that x∗f ∈ L1(µ) for all x∗ ∈ A, then x∗f ∈ L1(µ) for all x∗ ∈ X∗.7



Let (xn) be a sequene in a Banah spae X . Observe that, for any x∗ ∈ X∗,we have ∑∞
n=1 |x∗(xn)| =

∫

N
|x∗f |dc, where c is the ounting measure on the

σ-algebra P(N) of all subsets of N and f : N → X is the funtion de�ned by
f =

∑∞
n=1 χ{n}xn. Now, using Theorem 1.2.25, (b) ⇒ (a) in the followingharaterization of weak∗-thin sets, is immediate (f. Corollary 2.2.4). Thereverse impliation is proved by using a �gliding hump� argument.Corollary 1.2.26 (Abrahamsen, Nygaard, and Põldvere, 2006). Let X be aBanah spae and A ⊂ X∗. The following statements are equivalent.(a) A is weak∗-thin.(b) There exists a sequene (xn) ⊂ X and x∗ ∈ X∗\A suh that ∑∞

n=1 |x∗(xn)|diverges, but ∑∞
n=1 |x∗(xn)| <∞ for all x∗ ∈ A.In [19℄ Elton proved the theorem stated below.Theorem 1.2.27 (Elton, 1981). Let X be a Banah spae. The followingstatements are equivalent.(a) X ontains a opy of c0.(b) There exists a divergent series ∑∞

n=1 xn in X suh that ∑∞
n=1 |x∗(xn)| <

∞ for all x∗ ∈ extBX∗ .Fonf proved in [25, Theorem 3*℄ that a separable Banah spae X ontains
c0 whenever the set ω*-expBX∗ is weak∗-thin. He then ombined this resultwith the well known Bessaga-Peªzy«ski Theorem [10℄ and dedued that the set
extBX∗ an be replaed by the set ω*-expBX∗ in the above theorem of Elton[25, Theorem 6℄.Using the Nikodým-Grothendiek Boundedness Theorem one an prove thefollowing important result of Dieudonné and Grothendiek (f. [16, p. 16℄).Theorem 1.2.28 (Dieudonné and Grothendiek). Let X be a Banah spaeand let F be an X-valued set funtion de�ned on a σ-algebra Σ. Suppose that
x∗F is bounded and �nitely additive for eah x∗ belonging to some total subset
A of X∗. Then F is a bounded vetor measure.Note that the additivity of F is immediate from the totality of Γ.Theorem 1.2.28 may fail for algebras whih are not σ-algebras. A strongerproperty is needed in this ase. Indeed, if �total� is replaed by �weak∗-thik�in this Theorem 1.2.28, then we get a test for boundedness of vetor measuresde�ned merely on algebras. In fat, we also get a new haraterization of weak∗-thik sets (f. Propositions 2.3.2 and 2.3.3)Theorem 1.2.29 (Abrahamsen, Nygaard, and Põldvere, 2006). Let X be aBanah spae and A a subset of X∗. The following statements are equivalent.(a) For every algebra F and every set funtion F : F → X, the funtion Fis a bounded vetor measure whenever the funtion x∗F is bounded and�nitely additive for eah x∗ ∈ A.(b) A is weak∗-thik. 8



1.2.2 Further results and a generalized thikness notionLet | · | denote the distane funtion on K. Reall that a funtion f froma topologial linear spae X into the real numbers is said to be lower semi-ountinuous if f(x) ≤ lim infα f(xα) whenever (xα) is a net in X onvergingto some element x ∈ X . A funtion f is alled onvex if f(tx + (1 − t)y) ≤
tf(x) + (1 − t)f(y) for every x, y ∈ X and 0 ≤ t ≤ 1.It is not di�ult to see that Theorem 1.2.19 an be ontinued by(f) Whenever a sequene of funtions {fn : Y → K}, with the properties thatfor every natural number n, | · | ◦ fn is lower semi-ontinuous and onvex,is pointwise bounded on A, then this sequene is uniformly bounded on

BY .Evidently every linear funtional in a dual Banah spae is lower semi-ontinuous and onvex when left omposed with |·|, so (f) implies (d) in Theorem1.2.19 above. The fat that (e) in Theorem 1.2.19 implies (f), follows from thesame argument as in (e) implies (d) in Theorem 1.2.19. Indeed, assume that Ais thik and put An = {y ∈ Y ∩A : supk |fk(y)| ≤ n}. By the pointwise bound-edness, (An) form an inreasing, ountable overing of A. Sine A is thik, thereexists a natural number m suh that Am is norming. By Lemma 1.2.11, thereexists a real number δ > 0 suh that absonv(Am) ⊃ δBY . Finally, observe thatwe only need | · | ◦ fn to be onvex and lower semi-ontinuous, to onlude that
supk supy∈BY

|fk(y)| ≤ m
δ .A similar argument as in the preeding paragraph proves that Theorem1.2.20 an be ontinued by(f) Whenever a sequene of funtions {fn : Y ∗ → K}, with the propertiesthat for every natural number n, | · | ◦ fn is weak∗-lower semi-ontinuousand onvex, is pointwise bounded on A, then this sequene is uniformlybounded on BY ∗ .As already mentioned, seond ategory sets in a Banah spae are thik. Theonverse is not true. A standard ounterexample is the set of 0-1 sequenes in ℓ∞whih is thik by Nikodým-Grothendiek Boundedness Theorem and Theorem1.2.19. The set is nowhere dense, so it is trivially of the �rst ategory. Based onthis on an ask: Whih Banah spaes ontain thik sets of the �rst ategory?The interesting and surprising answer is that indeed every Banah spae does.This follows from the fat that every Banah spae ontains a Hamelbasis ofthe �rst ategory [9, Proposition 3.2℄ and Theorem 1.2.19. In other words wean onlude from this that every Banah spae ontains a set on whih (theategory version of) the Banah-Steinhaus Uniform Boundedness Priniple doesnot apply, but Theorem 1.2.19 does.Let X be a Banah spae and assume F is a subset of X∗. Suppose we wantto determine whether F is bounded or not. From Theorem 1.2.19, we knowthat F is bounded if and only if it is pointwise bounded on a thik set A in X .But suppose we know in addition that F belongs to some (weak∗-dense linear)subset Γ of X∗. Can we then weaken the restritions on A and still have anequivalene as in Theorem 1.2.19? We an state the following problem.Problem 1.2.30. Let A be a subset of a Banah spae X and let F ⊂ Γ where

Γ is a weak∗-dense linear subset of X∗. Whih ondition (PΓ) must A ful�ll so9



that boundedness of F an be dedued from testing pointwise boundedness of Fon A?Note that for A ⊂ X in ase Γ = X ⊂ X∗∗, (PΓ) is exatly the weak∗-boundedness property for A.Let A be a subset of a Banah spae X . The following list of examples arespeial ases of the problem above:(a) If Y and Z are Banah spaes, X = L(Y, Z), and Γ = Y ⊗ Z∗.(b) If Γ is the (norm losed) linear span of the extreme points of BX∗ (or ofany James boundary).() If X has a Shauder basis and Γ is the (norm losed) linear span of thebiorthogonal funtionals in X∗ assoiated with the basis.(d) If Y is a Banah spae and T : X → Y is a bounded linear injetion and
Γ = T ∗(Y ∗).(e) If X is a dual Y ∗ and Γ is the Baire funtionals, Ba(Y ), in Y ∗∗.Motivated by Problem 1.2.30 and the de�nitions of norming and weak∗-norming and thin and weak∗-thin sets, we make the following de�nition.De�nition 1.2.31. Let X be a Banah spae and Γ a weak∗-dense linear sub-set of X∗. A subset A of X is alled Γ-norming if inf{supx∈A |x∗(x)| : x∗ ∈

SX∗ ∩ Γ} > 0. If the set A is not Γ-norming, then it is alled non-Γ-norming.Moreover, A is said to be Γ-thin if it an be written as a ountable inreasingunion of non-Γ-norming sets. If it is not Γ-thin, then it is alled Γ-thik.Note that a bounded set is Γ-norming if and only if it is Γ-norming (normlosure in X∗). Thus a set Γ and its norm losure share the same thik sets.However, is the onverse true, i.e. is it so that two sets Γ1,Γ2 ⊂ X∗ whih sharethe same thik sets have the same norm losures? Indeed, the following resultanswers this question in the a�rmative, and hene provides a good reason tostudy the speial ases of Problem 1.2.30 listed above.Theorem 1.2.32. Let X be a Banah spae and let Γ1 ⊂ Γ2 be weak∗-denselinear subspaes of X∗. Then Γ1 and Γ2 share the same thik sets if and only if
Γ1 and Γ2 have the same norm-losure.We sketh a proof of this result.Proof. As noted in the paragraph above Γ1 and Γ2 share the same thik setsif they have the same norm losures. For the onverse one an assume that Γ1is not norm-dense in Γ2, then hoose x∗ ∈ Γ2 \ Γ1 and put A = kerx∗. It isevident that A now is Γ2-thin and not to hard to show using [16, Lemma 2℄ that
A is Γ1-norming. This latter fat in ombination with Banah's lemma (see e.g.[33, Lemma 82℄), is then used to prove that A is Γ1-thik.From the proof of Theorem 1.2.32, the next orollary follows.Corollary 1.2.33. Let X be a Banah spae. Suppose Γ is a weak∗-dense linearsubspae of X∗ and Γ 6= X∗. If x∗ ∈ X∗ \ Γ, then kerx∗ is a thin, but Γ-thik,set.Note that this result generalizes [60, Corollary 2.2℄ of Nygaard presented inTheorem 1.2.15. 10



1.3 Bakground on approximation properties and
u-idealsA fundamental question in funtional analysis is whether ompat operators,from a Banah spae Y into a Banah spae X , an be approximated in normby sequenes of �nite rank operators. (This has been alled the approximationproblem for obvious reasons.) A Banah spae X for whih this is true for everyBanah spae Y , is said to have the approximation property. The �rst formaltreatment of the approximation property was done by Grothendiek [32℄ in hisdotoral thesis from 1955. In his thesis he produed equivalent formulations ofthe approximation property. It is, however, lear from [67℄ that Banah and hisollaborators, knew many of these equivalenes.In [32℄, Grothendiek de�ned stronger forms of the approximation property,e.g. the bounded approximation property and the metri approximation prop-erty. A powerful and important result onerning the latter of these two prop-erties, says that for separable dual spaes, the approximation property impliesthe metri approximation property. This result has never been generalized tonon-separable Banah spaes. However, in some unpublished leture notes (see[16, p. 256℄), Rosenthal has shown that for a Banah spae with the Radon-Nikodým property whih is 1-omplemented in its bidual, the approximationproperty implies the metri approximation property. Thus for a dual Banahspae with the Radon-Nikodým property, the approximation property impliesthe metri approximation property. The result of Rosenthal is atually alsoimpliit in Grothendiek's thesis [32℄.Lima and Oja [55℄ have reently made a new approah to answer the prob-lem of whether Grothendiek's result holds for non-separable spaes. They didso by introduing the weak metri approximation property. The weak metriapproximation property is weaker than the metri approximation property andstritly stronger than the approximation property [55, Proposition 2.2℄. Fordual spaes, however, Lima and Oja has proved that the approximation prop-erty implies the weak metri approximation property [55, Corollary 3.4℄. Sothe problem of determining whether Grothendiek's result generalizes to non-separable spaes still remains, but now we are left with the question of whetherthe weak metri approximation property implies the metri approximation prop-erty for non-separable dual spaes.Most reently [44℄ the weak metri approximation property has been har-aterized in terms of ideals of �nite rank operators and Hahn-Banah extensionoperators. The artile [1℄, whih onstitutes Chapter 3 in this thesis, ontainsgeneralized forms of haraterizations of the weak metri approximation prop-erty obtained in [55℄ and [44℄.The study of u-ideals and the unonditional metri approximation property,emerged from the artile [11℄ by Casazza and Kalton. Casazza and Kaltonproved that for a separable re�exive Banah spae X with the approximationproperty, K(X,X) is a u-ideal in L(X,X) if and only if X has the unon-ditional metri approximation property. Lima [50℄ generalized this result byshowing that it holds when the unonditional metri approximation property isreplaed by the unonditional metri ompat approximation property and whenonly assuming X to have the Radon-Nikodým property. However, removing theRadon-Nikodým property from the assumption, Lima and Lima [45℄ showed11



that the above result is equivalent to K(Y,X) being a u-ideal in L(Y,X) forevery Banah spae Y whih in turn is equivalent to K(X̂,X) being a u-idealin L(X̂,X) for every equivalent renorming X̂ of X . A similar result for dualspaes having the unonditional metri ompat approximation property withonjugate operators, was also obtained in [45℄.In the artile [2℄, whih onstitutes Chapter 4 in this thesis, we look at the�nite rank operators and obtain haraterizations for when they are u-ideals inthe spae of weakly ompat operators.1.3.1 Basi results on approximation properties and u-idealsA sequene (xn) in a Banah spae X is alled a Shauder basis for X if foreah x ∈ X there is a unique sequene (αn) of salars suh that
x = lim

n

n
∑

k=1

αkxk.On page 111 in the famous book Théorie des Opération Linéaires [7℄ from1932, the following problem appears: �Does every separable Banah spae havea Shauder basis?� This problem, known as the basis problem, remained openfor a long time and was solved in the negative by En�o [20℄ in 1973. En-�o onstruted a separable, re�exive Banah spae without the approximationproperty, and by doing so he also solved the approximation problem.De�nition 1.3.1 (Grothendiek, 1955). A Banah spae X has the approxima-tion property (AP) if for every ompat set K in X and every ε > 0, there is anoperator T : X → X of �nite rank suh that ‖Tx− x‖ < ε, for every x ∈ K. Ifthese approximating �nite rank operators an be hosen with ‖T ‖ ≤ λ, for some
λ ≥ 1, then X is said to have the λ-bounded approximation property (λ-BAP).A Banah spae is said to have the bounded approximation property (BAP) if ithas λ-BAP for some λ. We say that X has the metri approximation propertyif it has 1-BAP.A Banah spae with a Shauder basis has the BAP and hene the AP. SoEn�o's spae is, in partiular, an example of a separable Banah spae withouta Shauder basis. Right after En�o's onstrution was published, Davie [12℄simpli�ed it and showed that c0 and ℓp, for p > 2, have subspaes without theAP. Later the same deade, Szankowski [74℄ proved that also ℓp, for 1 ≤ p < 2,have subspaes without the AP. Szankowski [75℄ has also proved that the spaeof bounded linear operators on an in�nite dimensional Hilbert spae fails theAP.In 1973, using En�o's example, Figiel and Johnson [23℄ showed that there isa Banah spae with the AP whih fails the BAP. In 1987 Szarek [76℄ showedthat there exists a re�exive Banah spae without a basis whih has the BAP.It has also been proved that there are Banah spaes with the BAP whih failthe MAP (f. e.g. [57, p. 42℄).In many ases, however, the AP implies the MAP. A powerful and surprisingresult of Grothendiek [32℄ (see e.g. [57, p. 39℄ for a nie proof of this) reads.12



Theorem 1.3.2 (Grothendiek, 1955). Let X be a separable Banah spaewhih is isometri to a dual spae and whih has the AP. Then X has theMAP.It is, however, still an open problem whether this result holds for non-separable spaes.Problem 1.3.3. Does the AP of the dual spae X∗ of a Banah spae X implythe MAP?The obvious reason why it is still unknown whether Theorem 1.3.2 holdsfor non-separable spaes, is that the proof does not generalize to suh spaes.The fat that in a separable dual Banah spae X∗, the sets BX∗ and BX∗∗ areompat metri in their orresponding weak∗ topologies, are ruial parts of theproof.In 1974 Davis, Figiel, Johnson, and Peªzy«ski [13, Corollary 1℄ proved thatevery weakly ompat operator fators through a re�exive Banah spae. Lima,Nygaard, and Oja later improved this result in [51, Theorems 2.3 and 2.4℄ byshowing that the fatorization an by done isometrially and even uniformly withrespet to �nite dimensional subspaes. Their proof is based on the Davis-Figiel-Johnson-Peªzy«ski onstrution. However, in the Lima-Nygaard-Oja version ofthe Davis-Figiel-Johnson-Pe¨zy«ski onstrution, the number 2 is replaed by√
a for a > 1. This seemingly minor hange, turns out to be important.Let a > 1 and let K be a losed absolutely onvex subset of the unit ball

BX of a Banah spae X . For eah positive integer n, put Bn = a
n
2K+a−

n
2 BXand denote by ‖ · ‖n the equivalent norm on X de�ned by the gauge on Bn. Let

‖x‖K = (
∑∞

n=1 ‖x‖n)
1

2 , XK = {x ∈ X : ‖x‖K < ∞}, CK = {x ∈ X : ‖x‖K ≤
1}, and let JK denote the identity embedding of XK into X . Finally, de�ne
f : (1,∞) → R by

f(a) =
(

∞
∑

n=1

an

(an + 1)2

)1/2

.It an be shown that there is a unique ã ∈ (1,∞) suh that f(ã) = 1. For this�xed number ã, Lima, Nygaard, and Oja proved in Lemmas 1.1 and 2.1 in [51℄,the following isometri version of Lemma 1 in [13℄.Lemma 1.3.4 (Lima, Nygaard, and Oja, 2000). Let K be a losed absolutelyonvex subset of the unit ball BX of a Banah spae X. If a ∈ (1,∞) is suhthat f(a) = 1, then(a) K ⊂ CK ⊂ BX(b) (XK , ‖ · ‖K) is a Banah spae with losed unit ball CK , and JK ∈
L(XK , X) with ‖JK‖ ≤ 1.() J∗∗
K is injetive.(d) XK is re�exive if and only if K is weakly ompat.(e) The X-norm and the XK-norm topologies oinide on K.(f) The weak topologies de�ned by X∗ and X∗

K oinide on CK .13



(g) CK as a subset of X is ompat, weakly ompat, or separable if and onlyif K has the same property.Davis, Figiel, Johnson, and Peªzy«ski used their version of the preedingresult to prove that every weakly ompat operator fators through a re�exivespae. Similarly Lima, Nygaard, and Oja applied their quantitative modi�edversion to prove that the fatorization an be done isometrially and uniformlyin the following way.Theorem 1.3.5 (Lima, Nygaard, and Oja, 2000). Let F be a �nite dimensionalsubspae of W(Y,X). Then there exist a re�exive spae Z, a norm one operator
J : Z → X, and a linear isometry Φ : F → W(Y, Z) suh that T = J ◦Φ(T ) forall T ∈ F . Moreover,(a) Z = XK and J = JK for the weakly ompat absolutely onvex set K =

conv{Ty : T ∈ BF and y ∈ BY } whenever the number a is �xed so that
f(a) = 1.(b) T is ompat if and only if Φ(T ) is ompat.() T has �nite rank if and only if Φ(T ) has �nite rank.Corollary 1.3.6 (Lima, Nygaard, and Oja, 2000). Let F be a �nite dimensionalsubspae of W(X,Y ). Then there exist a re�exive spae Z, a norm one operator

J : X → Z, and a linear isometry Φ : F → W(Z, Y ) suh that T = Φ(T ) ◦ Jfor all T ∈ F . Moreover,(a) T is ompat if and only if Φ(T ) is ompat.(b) T has �nite rank if and only if Φ(T ) has �nite rank.Using their version of the Davis-Figiel-Johnson-Peªzy«ski onstrution, Lemma1.3.4, Lima, Nygaard, and Oja proved in [51, Corollary 1.5℄ that the approxi-mation property has a �metri� equivalent.Theorem 1.3.7 (Lima, Nygaard, and Oja, 2000). Let X be a Banah spae.The following statements are equivalent.(a) X has the approximation property.(b) For every Banah spae Y and every T ∈ W(Y,X), there is a net (Tα) in
F(Y,X) with supα ‖Tα‖ ≤ ‖T ‖ suh that Tα → T in the strong operatortopology.() For every separable re�exive Banah spae Y and every T ∈ K(Y,X),there is a net (Tα) in F(Y,X) with supα ‖Tα‖ ≤ ‖T ‖ suh that Tα → Tin the strong operator topology.One an show that Theorem 1.3.7 an be ontinued by(d) For every Banah spae Y and every T ∈ W(Y,X), there is a net (Sα)in F(X,X) with supα ‖SαT ‖ ≤ ‖T ‖ suh that Sα → IX uniformly onompat sets in X. 14



(e) For every separable re�exive Banah spae Y and every T ∈ K(Y,X),there is a net (Sα) in F(X,X) with supα ‖SαT ‖ ≤ ‖T ‖ suh that Sα → IXuniformly on ompat sets in X.Proof. We only need to show that (b) ⇒ (d). To this end, �rst note thatthe net (Tα) in (b) may be assumed to onverge uniformly on ompat sets in
Y . Now, let ε > 0 and T ∈ W(Y,X) of norm one. Let uk =

∑∞
n=1 x

∗
k,n ⊗

xk,n ∈ X∗⊗̂πX = (L(X,X), τ)∗ for k = 1, ...,m where τ is the topology ofuniform onvergene on ompat sets in X (see e.g. [57, Proposition 1.e.3℄).Assume ∑∞
n=1 ‖x∗k,n‖ < ∞ and 1 ≥ ‖xk,n‖ → 0 for eah k = 1, ...,m. Put

K = onv{±T (BY ) ∪ {xk,n} : k = 1, ...,m;n = 1, 2, ...} ⊂ BX . Let Z be theBanah spae onstruted from K in Lemma 1.3.4, and let J : Z → X be theidentity embedding of Z into X . Now Z is re�exive and J ∈ W(Z,X) is ofnorm one. From (b) in Theorem 1.3.7 and the two �rst lines in this paragraph,there is a net (Jα) ⊂ F(Z,X) with supα ‖Jα‖ ≤ ‖J‖ = 1 suh that Jα → Juniformly on ompat sets in Z. By Lemma 1.3.4 J∗X∗ is norm-dense in Z∗and thus we an write Jα = SαJ where Sα is in F(X,X). For eah xk,n and
k = 1, ...,m, n = 1, ... hoose zk,n ∈ BZ and S in (Sα) suh that Jzk,n = xk,nand

ε > max
1≤k≤m

|
∞
∑

n=1

〈

SJzk,n, x
∗
k,n

〉

−
∞
∑

n=1

〈

Jzk,n, x
∗
k,n

〉

|

= max
1≤k≤m

|
∞
∑

n=1

〈

Sxk,n, x
∗
k,n

〉

−
∞
∑

n=1

〈

xk,n, x
∗
k,n

〉

|.Thus (d) follows from (b).In [55℄ Lima and Oja introdued the weak metri approximation property.De�nition 1.3.8. A Banah spae X has the weak metri approximation prop-erty (weak MAP) if for every Banah spae Y and for every T ∈ W(X,Y ), thereis a net (Sα) in F(X,X) with supα ‖TSα‖ ≤ ‖T ‖ suh that Sα → IX uniformlyon ompat sets in X .Note that the only di�erene between De�nition 1.3.8 and statement (d)in Theorem 1.3.7 is that the roles of X and Y are interhanged. Comparingde�nitions it is immediate that MAP ⇒ weak MAP ⇒ AP. The fat that theweak MAP is stritly stronger than the AP follows from [55, Proposition 2.1℄.Reently, Oja [66, Corollary 1℄ showed that if a Banah spae has the weakMAP, then it has the MAP if either its dual or its bidual have the Radon-Nikodým property. It is still unknown if the weak MAP implies the MAP ingeneral. However, in [55, Corollary 3.4℄ it is shown that for dual spaes the APimplies the weak MAP. Hene Problem 1.3.3 an be restated as follows.Problem 1.3.9. Does the weak MAP of the dual spae X∗ of a Banah spae
X imply the MAP?In [55, Theorem 2.4℄ Lima and Oja proved the following haraterization ofthe weak MAP.Theorem 1.3.10 (Lima and Oja, 2005). Let X be a Banah spae. The fol-lowing statements are equivalent. 15



(a) X has the weak MAP.(b) For every separable re�exive Banah spae Y and for every operator T ∈
K(X,Y ), there exists a net (Sα) ⊂ F(X,X) with supα ‖TSα‖ ≤ ‖T ‖ suhthat Sα → IX in the strong operator topology.() For every separable re�exive Banah spae Y and for every operator T ∈
K(X,Y ), there exists a net (Sα) ⊂ F(X,X) with supα ‖TSα‖ ≤ ‖T ‖ suhthat TSα → T in the strong operator topology.(d) For every Banah spae Y , for every operator T ∈ W(X,Y ) with ‖T ‖ = 1,and for all sequenes (xn) ⊂ X, and (y∗n) ⊂ Y ∗ with ∑∞

n=1 ‖xn‖‖y∗n‖ <∞,one has the inequality
|

∞
∑

n=1

y∗n(Txn)| ≤ sup
‖TS‖≤1,S∈F(X,X)

|
∞
∑

n=1

y∗n(TSxn)|.In [29℄ Godefroy, Kalton, and Saphar introdued the notion of an ideal.De�nition 1.3.11. A losed subspae X of a Banah spae Y is an ideal in Yif the annihilator X⊥ is the kernel of a linear norm one projetion on Y ∗. Suha projetion is alled an ideal projetion.It is straightforward to show that ideals an be expressed in terms of Hahn-Banah extension operators.De�nition 1.3.12. LetX be a subspae of a Banah spae Y . A linear operator
φ : X∗ → Y ∗ is alled a Hahn-Banah extension operator if φ(x∗)(x) = x∗(x)and ‖φ(x∗)‖ = ‖x∗‖ for every x ∈ X and x∗ ∈ X∗. We write HB(X,Y ) for theset of all Hahn-Banah extension operators from X∗ into Y ∗.The justi�ation for this terminology omes from the Hahn-Banah Theo-rem, whih tells us that every element x∗ ∈ X∗ has a norm-preserving extensionto Y . A Hahn-Banah extension operator extends all elements in X∗ linearly.The onnetion between ideals and Hahn-Banah extension operators wasannouned above. Indeed, if iX : X → Y is the natural inlusion and φ ∈HB(X,Y ), then the operator P = φ ◦ i∗X is an ideal projetion on Y ∗ with
kerP = X⊥ (P is usually alled the orresponding ideal projetion to φ). Con-versely, if X is an ideal in Y with an ideal projetion P , then φ : X∗ → Y ∗de�ned by φx∗ = Py∗, where y∗ ∈ HB(x∗), the set of norm-preserving extensionsof x∗ to Y, is a Hahn-Banah extension operator (φ is alled the orrespondingHahn-Banah extension operator to P ). Thus HB(X,Y ) 6= ∅ if and only if X isan ideal in Y .Lima [44, Theorem 2.6 and Proposition 3.1℄ has showed that the weak MAPan be haraterized in terms of ideals of �nite rank operators and Hahn-Banahextension operators.Theorem 1.3.13 (Lima). Let X be a Banah spae. The following statementsare equivalent.(a) X has the weak MAP.(b) For every Banah spae Y , F(Y,X) is an ideal in W(Y,X∗∗).16



() For every separable re�exive Banah spae Y , F(Y,X) is an ideal in
K(Y,X∗∗).(d) There exists a Hahn-Banah extension operator φ ∈ HB(X,X∗∗) suh thatfor every hoie of sequenes (x∗n)

∞
n=1 ⊂ X∗ and (x∗∗n )∞n=1 ⊂ X∗∗ with

∑∞
n=1 ‖x∗n‖‖x∗∗n ‖ <∞ and ∑∞

n=1 x
∗
n(x)x∗∗n = 0, for all x ∈ X we have

∞
∑

n=1

φ(x∗n)(x∗∗n ) = 0.(e) There exists a Hahn-Banah extension operator φ ∈ HB(X,X∗∗) suh thatfor every re�exive Banah spae Y and operator T ∈ W(Y,X∗∗) we have
φ∗|X∗∗T ∈ F(Y,X)∗∗.(f) There exists a Hahn-Banah extension operator φ ∈ HB(X,X∗∗) suh thatfor every re�exive Banah spae Y and operator T ∈ K(Y,X∗∗) we have
φ∗|X∗∗T ∈ F(Y,X)∗∗.In [1℄ (f. Theorem 3.2.4) we generalize Theorem 1.3.13 by proving that theextension operator φ ∈ HB(X,X∗∗), an be replaed by an extension operator

φP ∈ HB(X,X∗∗) suh that P = φ∗P |X∗∗ is a projetion on X∗∗. The fat thatthis an be done, follows from the result below (f. Theorem 3.2.1). We stateTheorem 3.2.1 in a slightly di�erent manner here.Theorem 1.3.14 (Abrahamsen, 2007). Let X be a Banah spae.(a) If P is a norm one projetion on X∗∗ with X ⊂ P (X∗∗), then ϕP =
P ∗kX∗ ∈ HB(X,X∗∗).(b) If there exists a Hahn-Banah extension operator ϕ ∈ HB(X,X∗∗) suhthat ϕ∗|X∗∗ is in the weak∗-losure of F(X,X) in L(X∗∗, X∗∗), then thereexists a norm one projetion P on X∗∗ with X ⊂ P (X∗∗) suh that P isin the weak∗-losure of F(X,X) in L(X∗∗, X∗∗).Using Theorem 1.3.14 in ombination with Lemma 1.3.4 and a result ofGodefroy and Saphar [30, Theorem 1.5℄, one an prove that the following holds(f. Proposition 3.2.2).Proposition 1.3.15 (Abrahamsen, 2007). Let X be a Banah spae with theweak MAP. Then there exists a projetion P on X∗∗ with X ⊂ P (X∗∗) suhthat for every re�exive Banah spae Y and for every T ∈ W(X,Y ), there existsa net (Sα) ⊂ F(X,X) with lim supα ‖TSα‖ ≤ ‖T ‖ suh that Sα → P weak∗ in

L(X∗∗, X∗∗).Of ourse Proposition 1.3.15 holds for every Banah spae Y and not justfor re�exive Y . Indeed, this is immediate from Corollary 1.3.6 by putting F =
span{T } for T ∈ W(X,Y ). On the basis of this, Proposition 1.3.15 should beompared with De�nition 1.3.8.Prior to the notion an ideal, Alfsen and E�ors had introdued the notionof an M -ideal in a Banah spae in their fundamental artile [4℄ from 1972.Part of their aim was to generalize struture theories for C∗-algebras and L1-preduals. This beomes transparent from the de�nition below and the fat thatin C∗-algebras M -ideals are exatly the losed two-sided algebrai ideals.17



De�nition 1.3.16. Let Y be a Banah spae. A linear projetion P on Y isalled an L-projetion if
‖y‖ = ‖Py‖ + ‖y − Py‖ for all y ∈ Y.A losed subspae X ⊂ Y is alled an L-summand in Y if it is the range of an

L-projetion. If the annihilator X⊥ ⊂ Y ∗ of X is an L-summand, then X isalled an M -ideal in Y .Vaguely spoken, if X is anM -ideal in Y , then the norm of Y ∗ resembles the
ℓ1-norm and the norm of Y thus ought to resemble the max-norm. M -idealshave been thoroughly studied in many artiles. The reader should onfer thebook [35℄ for a nie and exhaustive presentation of M -ideal theory.From the de�nitions it is immediate thatM -ideals are stronger forms of ide-als. Also properties intermediate that of being an M -ideal and that of being anideal, have been studied in the literature (see e.g. [37℄, [62℄). An unonditionalideal is one suh property. The notion of an unonditional ideal was introduedby Kalton and Casazza in [11℄.De�nition 1.3.17. A losed subspae X of a Banah spae Y is an unon-ditional ideal (u-ideal) in Y if there exists a linear projetion P on Y ∗ with
kerP = X⊥ suh that ‖I − 2P‖ = 1.It is straightforward to show that this de�nition is equivalent to ‖v+x⊥‖ =
‖v − x⊥‖ for every v ∈ P (Y ∗) and x⊥ ∈ X⊥. Thus, if X is a u-ideal in Y , thenorm on Y ∗ ful�lls a symmetry ondition.In [56℄ Lindenstrauss and Rosenthal showed that �nite dimensional sub-spaes of the bidual of a Banah spae X , are more or less the same as those of
X . This fat is ommonly referred to as the Priniple of Loal Re�exivity. Theversion of this priniple listed below was proved in [41℄ and is a slightly strongerform of that of Lindenstrauss and Rosenthal.Theorem 1.3.18 (Priniple of Loal Re�exivity, 1969). Let X be a Banahspae, and let E and F be �nite dimensional subspaes of X∗∗ and X∗, respe-tively. Then, for eah ε > 0 there is an injetive operator L : E → X with thefollowing properties:(a) L(x) = x for all x ∈ E ∩X,(b) ‖L‖ · ‖L−1‖ ≤ 1 + ε,() 〈Lx∗∗, x∗∗〉 = 〈x∗∗, x∗〉 for all x∗∗ ∈ E and x∗ ∈ F .Every Banah spae X is an ideal in its bidual, sine the natural embedding
kX∗ : X∗ → X∗∗∗ is a Hahn-Banah extension operator. In fat, every ideal ina Banah spae an be haraterized in terms of loal struture similarly to thePriniple of Loal Re�exivity. This follows from results of Fakhoury [21℄ andKalton [42℄. Of ourse Fakhoury and Kalton did not use the term �ideal� whihwas introdued later, as mentioned above.Theorem 1.3.19 (Fakhoury, 1972 and Kalton, 1984). Let X be a subspae ofa Banah spae Y . Then the following statements are equivalent.(a) X is an ideal in Y . 18



(b) For every �nite dimensional subspae E of Y and every ε > 0, there existsa linear operator L : E → X suh that(i) L(x) = x for all x ∈ E ∩X,(ii) ‖L‖ ≤ 1 + ε.Godefroy, Kalton, and Saphar showed that also u-ideals have a loal hara-terization. From [29, Lemma 2.2 and Proposition 3.6℄ and we have the followingresult.Theorem 1.3.20 (Godefroy, Kalton, and Saphar, 1993). Let Y be a Banahspae and let X be a subspae of Y . The following statements are equivalent.(a) X is a u-ideal in Y .(b) There exists a Hahn Banah extension operator φ ∈ HB(X,Y ) suh thatfor every y ∈ Y there is a net (xα) in X suh that φ∗(y) = limα xα in theweak∗-topology and lim supα ‖y − 2xα‖ ≤ ‖y‖.() For every �nite dimensional subspae E of Y and every ε > 0, there is alinear map L : E → X suh that(1) L(y) = y for every y ∈ E ∩X, and(2) ‖y − 2L(y)‖ ≤ (1 + ε)‖y‖ for every y ∈ E.There are approximation properties linked to the notion of u-ideals.De�nition 1.3.21. A Banah spae X has the unonditional metri approxi-mation property (UMAP) if there is a net (Tα) in F(X,X) with lim supα ‖I −
2Tα‖ ≤ 1 suh that Tαx → x for every x ∈ X . If the net (Tα) is in K(X,X)instead of F(X,X) we say that X has the unonditional metri ompat ap-proximation property (UMKAP).The obvious reason for this terminology is given by the following result ofCasazza and Kalton [11, Theorem 3.8℄.Theorem 1.3.22 (Casazza and Kalton, 1990). A separable Banah spae X hasthe UMAP if and only if for every ε > 0 there exists a sequene (Tn) ∈ F(X,X)with supn ‖Tn‖ <∞ and Tnx→ x for all x ∈ X, so that if An = Tn− Tn−1 for
n ∈ N (with T0 = 0) then for every N ∈ N and all ηi = ±1, i = 1, 2, ..., N wehave

‖
N

∑

n=1

ηiAi‖ ≤ 1 + ǫ.In [29, Theorem 8.1℄ Godefroy, Kalton, and Saphar showed that Theorem1.3.22 holds when UMAP and F is replaed by UMKAP and K respetively.Casazza and Kalton also proved in [11, Theorem 3.9℄ that UMAP is relatedto u-ideals of ompat operators in the following way.Theorem 1.3.23 (Casazza and Kalton, 1990). Let X be a separable re�exiveBanah spae with the approximation property. Then the following statementsare equivalent. 19



(a) X has UMAP.(b) K(X,X) is a u-ideal in L(X,X).In [29, Theorem 8.3℄ Godefroy, Kalton, and Saphar showed that Theorem1.3.23 holds when UMAP is replaed by UMKAP without assuming X to havethe AP. Lima soon generalized this result by showing that the assumptions anbe redued to X having the RNP or BX∗ = onv(ω*-str-expBX∗) [50, The-orem 4.3℄. Note that if X has the AP, then K(X,X) is the norm losure of
F(X,X). Thus [50, Theorem 4.3℄ of Lima also generalize Theorem 1.3.23. The-orems 5.2 and 6.1 in [45℄ show that the following holds without any assumptionson the Banah spae X .Theorem 1.3.24 (Lima and Lima, 2004). Let X be a Banah spae. Thefollowing statements are equivalent.(a) X has UMKAP.(b) K(Y,X) is a u-ideal in L(Y,X) for every Banah spae Y .() K(X̂,X) is a u-ideal in L(X̂,X) for every equivalent renorming X̂ for X.Theorem 1.3.25 (Lima and Lima, 2004). Let X be a Banah spae. Thefollowing statements are equivalent.(a) X∗ has UMKAP with onjugate operators.(b) K(X,Y ) is a u-ideal in L(X,Y ) for every Banah spae Y .() K(X, X̂) is a u-ideal in L(X, X̂) for every equivalent renorming X̂ for X.The results also hold when ompat operators and UMKAP are replaed by�nite rank operators and UMAP respetively.The next result was proved is Theorem 3.3 in [51℄.Theorem 1.3.26 (Lima, Nygaard, and Oja, 2000). Let X be a Banah spae.The following statements are equivalent.(a) X has the AP.(b) F(Y,X) is an ideal in W(Y,X) for every Banah spae Y .() F(Y,X) is an ideal in K(Y,X) for every separable re�exive Banah spae

Y .Next we prove that Theorem 1.3.26 an be ontinued by the following state-ments:(d) F(Y,X) is an ideal in span (F(Y,X), {T }) for every Banah spae Y andevery T ∈ W(Y,X).(e) F(Y,X) is an ideal in span (F(Y,X), {T }) for every separable re�exiveBanah spae Y and every T ∈ K(Y,X).20



Proof. We only have to prove (e) ⇒ (). To do this, we use the ideas from theproofs of [51, Lemma 1.4℄ and [2, Proposition 2.5℄.Let Y be a separable re�exive Banah spae and let T ∈ K(Y,X). Wewant to show that HB(F(Y,X),K(Y,X)) 6= ∅. Sine F(Y,X) is an ideal in
B =span (F(Y,X), {T }) we an, by using Goldstine's theorem, �nd a net (Tα) ⊂
F(Y,X) with supα ‖Tα‖ ≤ ‖T ‖ suh that Tα → Φ∗

T (T ) weak∗, where ΦT ∈HB(F(Y,X),B) is the extension operator. Now, assume that y ∈ BY is a stronglyexposed point. Then by Lemma 3.4 in [50℄ x∗⊗ y has a unique norm-preservingextension from F(Y,X) to L(Y,X) and hene ΦT (x∗ ⊗ y) = x∗ ⊗ y. Sine Yhas the RNP we get ΦT (x∗ ⊗ y) for every x∗ ∈ X∗ and y ∈ Y by linearity andontinuity. By a theorem of Feder and Saphar [22, Theorem 1℄ F(Y,X)∗ is aquotient of X∗⊗̂πY and it follows that ΦT is just the identity and hene unique.A straightforward alulation shows that Φ∗
T (T ) = T . Thus the operator Ψ =

IX∗ ⊗ IY ∈ HB(F(Y,X),K(Y,X)) and () follows.If the roles of X and Y are interhanged in Theorem 1.3.26, we get a har-aterization of the dual of X having the AP [51, Theorem 3.4℄.The metri approximation property has also been haraterized in terms ofideals of operators similarly to the approximation property.Theorem 1.3.27 (Lima and Lima, 2004). Let X be a Banah spae. Thefollowing statements are equivalent.(a) X has the MAP.(b) F(Y,X) is an ideal in L(Y,X) for every Banah spae Y .() F(Y,X) is an ideal in L(Y,X) for every separable Banah spae Y .(d) F(X̂,X) is an ideal in L(X̂,X) for every equivalent renorming X̂ of X.If the roles of X and Y are interhanged in Theorem 1.3.27, we get a har-aterization of the dual of X having the MAP with onjugate operators [45,Theorem 1.2℄.From [52, Theorem 5.1℄ and [53, Theorem 4.4℄ (resp. [53, Theorem 4.3℄) wehave the following result when the spae of ompat operators is onsidered asa subspae of the spae of weakly ompat operators.Theorem 1.3.28 (Lima and Oja, 1999 and 2004). Let X be a losed subspaeof a Banah spae Z. Then F(Y,X) is a u-ideal in W(Y, Z) (resp. K(Y, Z))for all Banah spaes Y if and only if F(Y,X) is a u-ideal in W(Y, Z) (resp.
K(Y, Z)) for all (resp. separable) re�exive Banah spaes Y .In [2℄, whih is presented in Chapter 4 in this thesis, we study when thespae of �nite rank operators is a u-ideal in the spae of ompat and weaklyompat operators as in Theorems, 1.3.29, 1.3.30, 1.3.31, and 1.3.32 below (f.Theorems 4.3.2, 4.3.8, 4.4.4, and 4.4.6 respetively).Theorem 1.3.29 (Abrahamsen, Lima, and Lima). Let X be a Banah spae.The following statements are equivalent.(a) F(Y,X) is a u-ideal in W(Y,X) for every Banah spae Y .(b) F(Y,X) is a u-ideal in span (F(Y,X), {T }) for every T ∈ W(Y,X) andfor every re�exive Banah spae Y .21



() For every re�exive Banah spae Y there exists a Hahn-Banah extensionoperator Ψ ∈ HB(F(Y,X),W(Y,X)) suh that for every T ∈ W(Y,X)there is a net (Tα) ⊂ F(Y,X) with lim supα ‖T − 2Tα‖ ≤ ‖T ‖ suh that
Tα → Ψ∗(T ) = T weak∗ in F(Y,X)∗∗.(d) For every weakly ompat set K ⊂ X there is a net (Sα) ⊂ F(X,X) with
limα supx∈K ‖x − 2Sαx‖ ≤ supx∈K ‖x‖ suh that Sα → IX uniformly onompat subsets of K.(e) For every Banah spae Y and T ∈ W(Y,X) there is a net (Sα) ⊂
F(X,X) with lim supα ‖T − 2SαT ‖ ≤ ‖T ‖ suh that Sα → IX uniformlyon ompat sets in X.(f) For every Banah spae Y and T ∈ W(Y,X) there is a net (Sα) ⊂
F(X,X) with lim supα ‖T − 2SαT ‖ ≤ ‖T ‖ suh that Sα → IX in thestrong operator topology.(g) For every re�exive Banah spae Y and T ∈ W(Y,X) there is a net (Sα) ⊂
F(X,X) with lim supα ‖T − 2SαT ‖ ≤ ‖T ‖ suh that SαT → T in thestrong operator topology.Theorem 1.3.30 (Abrahamsen, Lima, and Lima). Let X be a Banah spae.The following statements are equivalent.(a) F(X,Y ) is a u-ideal in W(X,Y ) for every Banah spae Y .(b) F(X,Y ) is a u-ideal in W(X,Y ) for every re�exive Banah spae Y .() F(X,Y ) is a u-ideal in span (F(X,Y ), {T }) for every T ∈ W(X,Y ) andfor every re�exive Banah spae Y .(d) For every re�exive Banah spae Y there exists a Hahn-Banah extensionoperator Ψ ∈ HB(F(X,Y ),W(X,Y )) suh that for every T ∈ W(X,Y )there is a net (Tα) ⊂ F(X,Y ) with lim supα ‖T − 2Tα‖ ≤ ‖T ‖ suh that
Tα → Ψ∗(T ) = T weak∗ in F(X,Y )∗∗.(e) For every weakly ompat ompat set K ⊂ X∗ there is a net (Sα) ⊂
F(X,X) with limα supx∗∈K ‖x∗−2S∗

αx
∗‖ ≤ supx∗∈K ‖x∗‖ suh that S∗

α →
IX∗ uniformly on ompat subsets of K.(f) For every Banah spae Y and T ∈ W(X,Y ) there is a net (Sα) ⊂
F(X,X) suh that lim supα ‖T − 2TSα‖ ≤ ‖T ‖ and S∗

α → IX∗ uniformlyon ompat sets in X∗.(g) For every Banah spae Y and T ∈ W(X,Y ) there is a net (Sα) ⊂
F(X,X) suh that lim supα ‖T − 2TSα‖ ≤ ‖T ‖ and S∗

α → IX∗ in thestrong operator topology.(h) For every re�exive Banah spae Y and T ∈ W(X,Y ) there is a net
(Sα) ⊂ F(X,X) suh that lim supα ‖T − 2TSα‖ ≤ ‖T ‖ and S∗

αT
∗ → T ∗in the strong operator topology.Theorem 1.3.31 (Abrahamsen, Lima, and Lima). Let X be a Banah spae.The following statements are equivalent.22



(a) F(Y,X) is a u-ideal in W(Y,X∗∗) for every Banah spae Y .(b) X is a u-ideal in its bidual with unonditional Hahn-Banah extensionoperator ψ ∈ HB(X,X∗∗) suh that for every Banah spae Y and T ∈
W(Y,X∗∗) there is a net (Sα) ⊂ F(X,X) with lim supα ‖T − 2S∗∗

α T ‖ ≤
‖T ‖ suh that S∗∗

α T → ψ∗T weak∗ in L(Y,X∗∗).() There exists a Hahn-Banah extension operator ψ ∈ HB(X,X∗∗) suh thatfor every Banah spae Y and T ∈ W(Y,X∗∗) there is a net (Sα) ⊂
F(X,X) with lim supα ‖T − 2S∗∗

α T ‖ ≤ ‖T ‖ suh that S∗∗
α T → ψ∗T weak∗in L(Y,X∗∗).(d) For every weakly ompat ompat set K ⊂ X∗∗ there is a net (Sα) ⊂

F(X,X) with limα supx∗∗∈K ‖x∗∗ − 2S∗∗
α x

∗∗‖ ≤ supx∗∗∈K ‖x∗∗‖ suh that
Sα → IX uniformly on ompat subsets of K ∩X.(e) For every Banah spae Y and T ∈ W(Y,X∗∗), there is a net (Sα) ⊂
F(X,X) with lim supα ‖T − 2S∗∗

α T ‖ ≤ ‖T ‖ suh that Sα → IX uniformlyon ompat sets in X.(f) For every re�exive Banah spae Y and T ∈ W(Y,X∗∗), there is a net
(Sα) ⊂ F(X,X) with lim supα ‖T − 2S∗∗

α T ‖ ≤ ‖T ‖ suh that Sα → IXuniformly on ompat sets in X.Theorem 1.3.32 (Abrahamsen, Lima, and Lima). Let X be a Banah spae.The following statements are equivalent.(a) F(Y,X) is a u-ideal in K(Y,X∗∗) for every Banah spae Y .(b) X is a u-ideal in X∗∗ with unonditional Hahn-Banah extension ψ suhthat ψ∗|X∗∗ is in the weak∗-losure of the F(X,X) in L(X∗∗, X∗∗).() X is a u-ideal in its bidual with unonditional Hahn-Banah extensionoperator ψ ∈ HB(X,X∗∗) suh that for every Banah spae Y and T ∈
K(Y,X∗∗) there is a net (Sα) ⊂ F(X,X) with lim supα ‖T−2S∗∗

α T ‖ ≤ ‖T ‖suh that S∗∗
α T → ψ∗T weak∗ in L(Y,X∗∗).(d) For every Banah spae Y and T ∈ K(Y,X∗∗) there is a net (Sα) ⊂

F(X,X) with lim supα ‖T − 2S∗∗
α T ‖ ≤ ‖T ‖ suh that Sα → IX uniformlyon ompat sets in X.(e) For every separable re�exive Banah spae Y and T ∈ K(Y,X∗∗) there is anet (Sα) ⊂ F(X,X) with lim supα ‖T −2S∗∗

α T ‖ ≤ ‖T ‖ suh that Sα → IXuniformly on ompat sets in X.Note that when �u-ideal� is replaed by �ideal� in statement (a) in Theorem1.3.31 and in (a) in Theorem 1.3.32, these statements are equivalent. This ispart of Theorem 1.3.13. On the basis of this, it is interesting to note that thestatements in Theorem 1.3.31 are in fat stritly stronger than those in Theorem1.3.32. Indeed, as remarked in [2℄ (see Chapter 4) the equivalently renormedversion ℓ̂2 of ℓ2 obtained by Oja in [62, Example 3℄, ful�lls the statements inTheorem 1.3.32, but fails to satisfy those of Theorem 1.3.31 (or equivalentlyTheorems 1.3.29, 1.3.30 sine ℓ̂2 is re�exive (see the next subsetion)). In thenext subsetion, this renorming is disussed in more detail.23



From Theorem 1.3.26, [73℄, and [49, Corollary 2℄ (see also [42, Theorem 5.1℄,[35, p. 138℄, and [65, Proposition 2.1℄) we get the following proposition.Proposition 1.3.33 (Lima, 1993; Lima, Nygaard, and Oja, 2000). Let X be aBanah spae. The following statements are equivalent.(a) F(Y,X) is an ideal in W(Y,X) for every Banah spae Y .(b) X has the AP.() Every separable ideal Z in X has the AP.(d) F(Y, Z) is an ideal in W(Y, Z) for every Banah spae Y and separableideal Z in X.In [2℄ (f. Proposition 4.3.6) we were able to show that the following analogueto Theorem 1.3.33 holds for u-ideals.Proposition 1.3.34 (Abrahamsen, Lima, and Lima). Let X be a Banah spaeand assume F(Y,X) is a u-ideal in W(Y,X) for every Banah spae Y . Then alosed subspae Z of X has the AP if and only if F(Y, Z) is a u-ideal in W(Y, Z)for every Banah spae Y .By using Theorem 1.3.33 the next result is immediate.Corollary 1.3.35. Let X be a Banah spae. The following are equivalent.(a) F(Y,X) is a u-ideal in W(Y,X) for every Banah spae Y .(b) F(Y, Z) is a u-ideal in W(Y, Z) for every Banah spae Y and ideal Z in
X.1.3.2 U-ideals and open problemsBefore we start to disuss u-ideals, we will take a detour into some related prop-erties. It turns out that known results about these properties are importantalso in the setting of u-ideals.The Hahn-Banah theorem asserts that a linear funtional de�ned on a sub-spae of a normed linear spae has at least one norm-preserving extension tothe whole spae. In some ases, however, this extension is unique (e.g. re�exivespaes). Following Phelps [68℄ we de�ne.De�nition 1.3.36. Let X be a losed subspae of a normed linear spae Y .Then X has property U in Y if every element x∗ ∈ X∗ has a unique norm-preserving extension y∗ to Y .Generalizing the onept of an M -ideal, Hennefeld [37℄ introdued and in-vestigated the onept of HB-subspaes.De�nition 1.3.37. A losed subspae X of a normed linear spae Y is saidto be an HB-subspae in Y (or X has property HB in Y ) if its annihilator X⊥is omplemented in Y ∗ by a subspae X∗ suh that whenever x∗ ∈ X∗ and

x⊥ ∈ X⊥ \ {0}, then ‖x∗ + x⊥‖ ≥ ‖x⊥‖ and ‖x∗ + x⊥‖ > ‖x∗‖.24



It is straightforward to verify that an HB-subspae has property U. Indeed,let X be an HB-subspae in Y and let P be the indued projetion on Y ∗ de�nedby P (x⊥ + x∗) = x∗. Then, for x∗ ∈ X∗ and y∗ ∈ HB(x∗), we get Py∗ = y∗sine Py∗ ∈ HB(x∗). Now, if y∗1 and y∗2 are in HB(x∗), then y∗1 − y∗2 ∈ kerP .Thus y∗1 = Py∗1 = Py∗2 = y∗2 whih shows that X has property U in Y .There are, however, subspaes with property U whih fail to be HB-subspaes.Produing suh an example took some years, but �nally Oja sueeded in [61℄(see also Example 1 in [62℄). In fat, Oja showed that there is a subspae of
ℓ3∞ with property U whih fails the property SU [61℄ (see also [62, Example 1℄).The property SU is stronger than the property U. This follows by the sameargument as for HB-subspaes.De�nition 1.3.38. Let X be a losed subspae of a normed linear spae Y .Then X has the property SU in Y if its annihilator X⊥ is omplemented in
Y ∗ by a subspae X∗ suh that whenever x∗ ∈ X∗ and x⊥ ∈ X⊥ \ {0}, then
‖x∗ + x⊥‖ > ‖x∗‖.It is lear from the de�nitions that HB-subspaes must have property SU, soOja's example shows in partiular that the property HB is stritly stronger thanproperty U. For a subspae with the property SU failing the property HB seeExample 2 in [62℄. Thus the property SU is stritly between the properties Uand HB.The property U is loally determined in the sense that a subspae X of aBanah spae Y has this property in Y if and only X has this property in everysubspae Z of Y in whih X has odimension 1. Similar results also holds forthe properties SU and HB.Theorem 1.3.39. Let X be a losed subspae of a Banah spae Y . The fol-lowing statements are equivalent.(a) X has property U (resp. SU, HB) in Y .(b) X has property U (resp. SU, HB) in Z =span (X, {y}) for every y ∈ Y .To prove this we will use results whih require the following de�nition [48℄.De�nition 1.3.40. Let X be a subspae of a Banah spae Y and let n ≥ 3be a natural number. Then X is said to have the n.Y. intersetion property(n.Y.I.P ) if for every family (B(xi, ri))

n
i=1 of n losed balls with enters (xi)

n
i=1in X and Y ∩⋂n

i=1 B(xi, ri) 6= ∅, then X∩⋂n
i=1 B(xi, ri+ε) 6= ∅ for every ε > 0.From [48, Theorem 3.1℄, [52, Proposition 2.1℄, and [63, Theorem 1.2℄ we havethe following results.Theorem 1.3.41 (Lima, 1983; Lima and Oja, 1999). Let X be a losed subspaeof a Banah spae Y . The following are equivalent.(a) X is an ideal in Z =span (X, {y}) for every y ∈ Y .(b) X has the n.Y.I.P for all n.() If n ∈ N x∗1, ..., x

∗
n ∈ X∗ are suh that x∗1 + x∗2 + ... + x∗n = 0, then for

i = 1, ..., n there exist y∗i ∈ HB(x∗i ) suh that y∗1 + ...+ y∗n = 0.25



Theorem 1.3.42 (Oja, 1991). Let X be a losed subspae of a Banah spae
Y . Then the following statements are equivalent.(a) X is an HB subspae of Y .(b) X has property U in Y and there exists an ideal projetion P on Y ∗satisfying ‖I − P‖ = 1.Proof of the U-ase of Theorem 1.3.39 . (a) ⇒ (b). Let y ∈ Y \ X and put
Z =span (X, {y}). Let x∗ ∈ X∗ and z∗1 , z

∗
2 ∈ HB(x∗) ⊂ Z∗. Choose y∗i ∈HB(z∗i ) ⊂ Y ∗ for i = 1, 2. Then y∗1 = y∗2 ∈ HB(x∗), so z∗1 = z∗2 .(b) ⇒ (a). Let x∗ ∈ X∗. Suppose that y∗1 , y∗2 ∈ HB(x∗) ⊂ Y ∗ and that

y∗1 6= y∗2 . Choose y ∈ Y \X suh that y∗1(y) 6= y∗2(y) and let Z =span (X, {y}).Sine y∗1 |Z and y∗2 |Z are extensions of x∗ to Z, they have to be equal on Z byassumption, and we get a ontradition.Proof of the SU-ase of Theorem 1.3.39. (a) ⇒ (b). Let y ∈ Y \ X and put
Z =span (X, {y}). Sine X has property U in Z and is an ideal in Z the resultfollows from [62, Theorem℄.(b) ⇒ (a). By [62, Theorem℄ it su�es to show that X possesses properties
3.Y.I.P and U in Y . But this follows from Proposition 1.3.41 and Theorem1.3.39 (U-ase).Proof of the HB-ase of Theorem 1.3.39. (a) ⇒ (b). Let y ∈ Y \X , and de�ne
Z =span (X, {y}). Let z∗ ∈ Z∗, and let y∗ ∈ HB(z∗). Sine HB-subspaes haveproperty SU it follows from Theorem 1.3.39 (SU-ase) that X has property SUin Z. Denote by iX,Z : X → Z, iZ,Y : Z → Y , and iX,Y : X → Y the naturalembeddings. Then iX,Y = iZ,Y ◦ iX,Z , so (iX,Y )∗ = (iX,Z)∗ ◦ (iZ,Y )∗. Let PY ∗and PZ∗ denote the unique ideal projetions on Y ∗ and Z∗ respetively. Write
PY ∗ = φ◦(iX,Y )∗ and PZ∗ = ψ◦(iX,Z)∗ where φ ∈ HB(X,Y ) and ψ ∈ HB(X,Z).We get

‖z∗ − PZ∗z∗‖ = ‖z∗ − ψ(iX,Z)∗z∗‖ = ‖z∗ − φ(iX,Z)∗z∗|Z‖
= ‖z∗ − φ(iX,Z)∗(iZ,Y )∗y∗|Z‖ ≤ ‖y∗ − φ(iX,Y )∗y∗‖
= ‖y∗ − PY ∗y∗‖ ≤ 1.Thus the result follows from Theorem 1.3.42.(b) ⇒ (a). From Theorem 1.3.39 (SU-ase) we get that X has property SUin Y . Let y∗ ∈ Y ∗ and y ∈ BY and put Z =span (X, {y}). Then

〈y∗ − φ(iX,Y )∗y∗, y〉 = 〈y∗ − φZ(iX,Z)∗(iZ,Y )∗y∗, y〉 = 〈(IZ∗ − PZ∗)(iZ,Y )∗y∗, y〉,and the result follows from Theorem 1.3.42.The artile [48℄ of Lima, left open the following two questions: Do there existBanah spaes X and Y , suh that X or Y ∗ has the metri approximation prop-erty, for whih K(Y,X) has property U in L(Y,X), but is not an HB-subspaein L(Y,X)? Could a Banah spae have property U in its bidual without beinga HB-subspae in its bidual?A few years after the artile of Lima, both of these questions was answeredin the negative by Oja in Examples 3 and 4 in [62℄. In [62, Example 3℄, Ojade�ned a renorming ℓ̂2 of ℓ2 for whih K(Y, ℓ̂2) has property SU in W(Y, ℓ̂2) for26



every normed linear spae Y , but suh that K(ℓ1, ℓ̂2) fails to be an HB-subspaein W(ℓ1, ℓ̂2). This renorming of ℓ2 is done in the following manner:
‖(ξ1, ξ2, ...)‖ = (

1

3

∞
∑

i=1

ξ2i +
2

3
sup
n≥2

(ξ21 , (
ξ1√
2

+ ξn)2))1/2,where (ξ1, ξ2, ...) ∈ ℓ2.In Example 4 in [62℄, Oja showed that for 0 < r < 1, the equivalentlyrenormed versions c0r of c0, due to Johnson and Wolfe [40℄, have property SU intheir biduals, but in fat fail to be HB-subspaes in their biduals. For 0 < r ≤ 1,the Johnson-Wolfe renorming of c0 is done in the following manner:
‖(ξ1, ξ2, ...)‖ = sup{|ξ1|/r, |ξ1 − ξ2|, ...},where (ξ1, ξ2, ...) ∈ c0.Later, in [64, p. 127℄, Oja also showed that for 0 < r < 1 the spaes

K(c0r , c0r), K(ℓ1, c0r), andK(ℓ̂2, ℓ̂2) all have property U, in fat SU, in L(c0r , c0r),
L(ℓ1, c0r), and L(ℓ̂2, ℓ̂2) respetively. However, all of them fail to be HB-subspaes.Observe that L(ℓ̂2, ℓ̂2) = K(ℓ̂2, ℓ̂2)

∗∗, so ℓ̂2 is also an example of a Banah spaefor whih K(ℓ̂2, ℓ̂2) has property U, atually SU, in its bidual, without beingan HB-subspae in its bidual. If we ombine this fat with Theorem 1.3.22, weget that ℓ̂2 does not have the UMAP. Thus the UMAP is not preserved underequivalent renormings sine ℓ2 has the UMAP.Note that, if X is a u-ideal in a Banah spae Y , and X has property U in Y ,then X is an HB-subspae of Y . Indeed, let P be the unonditional projetionon Y ∗ satisfying ‖I − 2P‖ = 1. Then writing I − P = I
2 + I−2P

2 and usingthe triangle inequality, this follows. Sine K(ℓ1, ℓ̂2) is not an HB-subspae of
W(ℓ1, ℓ̂2), it now follows that ℓ̂2 does not ful�ll Theorem 1.3.31 as laimed inthe last paragraph of subsetion 1.3.1.It now also follows from the examples in the preeding paragraphs that for
0 < r < 1, c0r and K(ℓ̂2, ℓ̂2) are not u-ideals in their biduals. These two exam-ples leave us with the problem of determining when Banah spaes are u-idealsin their biduals. Some results in this diretion are known. If a Banah spae
X is a u-ideal in its bidual, then from [29, Corollary 4.1℄ we know that everyBanah spae being (1+ε)-isomorphi to a (1+ε)-omplemented subspae of X ,is a u-ideal in its bidual. In partiular 1-omplemented subspaes of X possessthis property. However, it is not known if ideals in X also possess this property.Based on this, one an ask:Problem 1.3.43. Suppose a Banah spae is a u-ideal in its bidual. Whihsubspaes of this Banah spae inherits the property of being u-ideals in theirbiduals? In partiular, do we have that every ideal in a Banah spae is a u-idealin its bidual whenever the spae itself is?Godefroy, Kalton, and Saphar proved a result related to this problem, but forh-ideals instead of u-ideals [29, Theorem 6-7℄. H-ideals are omplex analoguesto u-ideals.De�nition 1.3.44. A losed subspae X of a omplex Banah spae Y is alledan h-ideal in Y if there exists a projetion P on Y ∗ with kerP = X⊥ suh that
‖I − (1 + λ)P‖ = 1 for all λ with |λ| = 1.27



Theorem 1.3.45 (Godefroy, Kalton, and Saphar, 1993). Suppose X is a sepa-rable Banah spae and X is an h-ideal in its bidual. Let φ ∈ HB(X,X∗∗) be theorresponding Hahn-Banah extension operator. Then every losed subspae Zof X suh that φ∗(Z⊥⊥) ⊂ Z⊥⊥, inherits the property of being an h-ideal in itsbidual.Atually the proof an be modi�ed so that the result holds for arbitraryBanah spaes being u-ideals in their biduals (see [2, Theorem 2.4℄)Theorem 1.3.13, Theorem 1.3.26, and its dual ounterpart [51, Theorem 3.4℄,gives reason to study the following statements. This is done in [2℄, whih on-stitutes Chapter 4 in this thesis.(A) F(X,Y ) is a u-ideal in W(X,Y ) for every Banah spae Y .(B) F(Y,X) is a u-ideal in W(Y,X∗∗) for every Banah spae Y .(C) F(Y,X) is a u-ideal in W(Y,X) for every Banah spae Y .If X is a re�exive Banah spae, then (A), (B), and (C) are equivalent.Indeed, this follows from [2, Theorems 3.2 and 3.5℄ and [50, Theorem 4.3℄ usingthe isometries F(X,X) = F(X∗, X∗) and W(X,X) = W(X∗, X∗).For a general Banah spae X it is evident that (B) implies (C) by using theloal haraterization of u-ideals Theorem 1.3.19.Note that if (A) holds, then X∗ has the AP [51, Theorem 3.4℄. From [44,Proposition 3.3℄ we have that F(Y,X)∗∗ = W(Y,X∗∗) for every re�exive Banahspae Y if and only if X∗ has the AP. Thus, if (A) implies (B) and X is a spaesatisfying (A), then F(Y,X) beomes a u-ideal in its bidual for every re�exiveBanah spae Y .From [35, Example 4.1℄, it follows that ℓp for 1 < p <∞ ful�lls (C) and thus(B) and (A) by the paragraph above. In [2℄ it is remarked that ℓ1 ful�lls (C),but fails (A). Note that this shows that the statement (A) is stritly strongerthan the similar statements in [51, Theorem 3.4℄ for ideals.We will now prove that also ℓ1 ful�lls statement (B). To do this we will usethe reently established fat that F(Y,X) is a u-ideal in W(Y,X∗∗) for everyBanah spaes Y if and only if F(Y,X) is a u-ideal in span (F(Y,X), {T }) forevery Banah spae Y and T ∈ W(Y,X∗∗) [47℄.Proof. Let Y be a Banah spae and let T ∈ W(Y, ℓ∗∗1 ). By the above paragraph,it su�es to prove that F(Y, ℓ1) is a u-ideal in B =span (F(Y, ℓ1), {T }) for everyBanah spae Y and T ∈ W(Y, ℓ1
∗∗). Let (Si)

3
i=1 ⊂ F(Y, ℓ1). Sine c0 is an

M -ideal in its bidual [35, p. 105℄, there exists an L-projetion, P , from ℓ∗∗1 onto
ℓ1. Denote by Pn : ℓ1 → ℓ1 the anonial projetion onto the �rst n oordinates.We may assume that Si = PnSi for i = 1, 2, 3 for some large n. For y ∈ BY ,using the fat that P and Pn are L-projetions, we get that
‖(T + Si − 2PnPT )y‖ = ‖Ty − PTy‖ + ‖PTy+ Siy − 2PnPTy‖

= ‖Ty − PTy‖ + ‖PTy− PnPTy‖+ ‖PnPTy − Siy‖
= ‖Ty − PTy‖ + ‖PTy− Siy‖
= ‖Ty − Siy‖ ≤ ‖T − Si‖.28



This means that 2PnPT ∈ F(Y, ℓ1)∩
⋂3
i=1 BB(T +Si, ‖T −Si‖), and the resultnow follows from [46, Theorem 1.3℄. If we have ‖Si − PnSi‖ < ε for i = 1, 2, 3,then we get 2PnPT ∈ F(Y, ℓ1) ∩

⋂3
i=1BB(T + Si, ‖T − Si‖ + 2ε).In [2℄ it is also remarked that c0 ful�lls (A), (B), and (C), but that ℓ∞ fails(C) and hene also (B). Note that this shows that the statements in Theorems1.3.26 and 1.3.13 are stritly weaker than statements (C) and (B) respetively.As far as the author knows, it is open whether ℓ∞ fails (A). Also, from [75℄ itfollows that X = ℓ2⊗̂πℓ2 does not ful�ll (A), but does this X ful�ll (C) or (B)?The disussion in this paragraph leaves open the following problem, whihseems to be of some importane.Problem 1.3.46. Do we have that (A) ⇒ (B)? Moreover, are the impliations(A) ⇒ (B) ⇒ (C) strit?Another interesting question is whether Corollary 1.3.35 holds when �ideals�
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Chapter 2On weak integrability andboundedness in Banahspaes2.1 IntrodutionLet X be a Banah spae. A subset B ⊂ X∗ is said to be weak∗-norming if
inf
x∈SX

sup
x∗∈B

|x∗(x)| > 0. Equivalently, the set B is weak∗-norming if and onlyif its weak∗-losed absolutely onvex hull ontains some ball. The set B issaid to be weak∗-non-norming if it is not weak∗-norming. In [9℄ Fonf de�neda set A ⊂ X∗ to be weak∗-thin if it an be represented as a non-dereasingountable union of weak∗-non-norming sets. (Remark that Fonf used the term�thin" instead of �weak∗-thin".) As in [14℄ and [15℄, let us say that the set A isweak∗-thik if it is not weak∗-thin. For haraterizations of weak∗-thik sets interms of uniform boundedness of families of funtionals in X , and surjetivityof onjugate operators, we refer to [10, Proposition 1℄ and [15, Theorems 3.4and 4.6℄ (see also Theorem 2.4.4 of the present paper for the summary of theseharaterizations).In [9, Theorem 1℄, Fonf proved that if X does not ontain any losed sub-spaes isomorphi to c0, then extBX∗ , the set of extreme points of the dualunit ball, is weak∗-thik. From this he dedued (see [9, Theorem 4℄) that if
X is separable and does not ontain any isomorphi opies of c0, then when-ever (Ω,Σ, µ) is a �nite measure spae and a funtion f : Ω → X is suh that
x∗f ∈ L1(µ) for all x∗ ∈ extBX∗ , one has x∗f ∈ L1(µ) for all x∗ ∈ X∗, i.e., fis weakly integrable (and thus Pettis integrable by a well known result of Dim-itrov and Diestel (see [4℄ or [3, Theorem 7, p. 54℄)). The main objetive of thispaper is to generalize this result by giving the following new haraterization ofweak∗-thik sets.Main theorem A subset A ⊂ X∗ is weak∗-thik if and only if whenever (Ω,Σ, µ)is a measure spae and f : Ω → X is an essentially separable valued funtionsuh that x∗f ∈ L1(µ) for all x∗ ∈ A, then x∗f ∈ L1(µ) for all x∗ ∈ X∗.In Setion 2.2, we prove the Main Theorem. As a orollary, it speializes to35



give a haraterization of weak∗-thik sets inX∗ in terms of weakly unondition-ally Cauhy series. In Setion 2.3, we prove a haraterization of weak∗-thiksets in terms of boundedness of vetor measures. In Setion 2.4, we explainhow �thikness", a notion dual to �weak∗-thikness", is related to the theory ofbarrelled spaes.Throughout this paper, X will be a Banah spae. Our notation is standard.The unit ball and the unit sphere of X are denoted, respetively, by BX and
SX . For a set A ⊂ X , we denote by extA the set of extreme points of A, and byabsonv(A) its absolutely onvex hull. If some subsets Aj ⊂ X , j ∈ N, are suhthat A1 ⊂ A2 ⊂ A3 ⊂ . . ., then, for their union, we sometimes write ⋃∞

j=1 Aj ↑.2.2 Thikness and weak integrabilityThe �if" part of the Main Theorem is an immediate onsequene of the followinglemma whih will be used also in Setion 2.3.Lemma 2.2.1. Let a subset A ⊂ X∗ be weak∗-thin, and let αj ∈ R, αj > 0,
j ∈ N. Then there are xj ∈ X, j ∈ N, z∗ ∈ X∗ \ A, an inreasing sequene ofindies (νj)

∞
j=1, and a real number δ > 0 suh that

∞
∑

j=1

αj |x∗(xj)| <∞ for all x∗ ∈ A,but ανj
|z∗(xνj

)| > δ for all j ∈ N.Corollary 2.2.2. Let a subset A ⊂ X∗ be weak∗-thin, and let (Ω,Σ, µ) be ameasure spae suh that there are pairwise disjoint sets Aj ∈ Σ with 0 < µ(Aj) <
∞, j ∈ N. Then there is a strongly measurable funtion f : Ω → X suh that
∫

Ω
|x∗f | dµ <∞ for all x∗ ∈ A, but ∫

Ω
|z∗f | dµ = ∞ for some z∗ ∈ X∗ \A.Proof. The assertion follows by applying Lemma 2.2.1 for αj = µ(Aj), j ∈ N,and putting f =

∑∞
j=1 χAj

xj .Proof of Lemma 2.2.1. Sine A is weak∗-thin, it has a representationA =
⋃∞
j=1 Aj ↑where all the Aj are weak∗-non-norming, i.e., inf

x∈SX

sup
x∗∈Aj

|x∗(x)| = 0, j ∈ N.Thus we an pik a sequene (xj) ⊂ X with αj ‖xj‖ = 2j, j ∈ N, suh that
sup
x∗∈Aj

αj |x∗(xj)| ≤
1

2j
for all j ∈ N.Note that whenever x∗ ∈ A, then there is some m ∈ N suh that x∗ ∈ Aj for all

j ≥ m, and thus
∞
∑

j=1

αj |x∗(xj)| =

m−1
∑

j=1

αj |x∗(xj)| +
∞
∑

j=m

αj |x∗(xj)|

≤
m−1
∑

j=1

αj |x∗(xj)| +
∞
∑

j=m

1

2j
<∞.36



Next pik a sequene (x∗j ) ⊂ X∗ with ‖x∗j‖ ≤ 1
2j , j ∈ N, suh that

αj |x∗j (xj)| > 1 − 1

4
, j ∈ N.Now there are two alternatives:

1) limj→∞ αj |x∗i0(xj)| 6= 0 for some i0 ∈ N;
2) limj→∞ αj |x∗i (xj)| = 0 for all i ∈ N.In the ase 1), hoose an inreasing sequene of indies (νj) suh that, forsome δ > 0, one has ανj

|x∗i0 (xνj
)| > δ for all j ∈ N, and put z∗ = x∗i0 .In the ase 2), put ν1 = 1 and proeed as follows. Given indies ν1 < ν2 <

. . . < νj−1 (j ∈ N, j ≥ 2), pik an index νj > νj−1 suh that
j−1
∑

i=1

ανj
|x∗νi

(xνj
)| < 1

4
and 2νj−1

2νj
≤ 1

2j+1
.Denoting z∗ =

∑∞
i=1 x

∗
νi

(this series onverges beause it onverges absolutely),it remains to observe that, whenever j ∈ N and i > j, one has
ανj

|x∗νi
(xνj

)| ≤ ανj
‖xνj

‖ ‖x∗νi
‖ ≤ 2νj

2νi
≤ 2νi−1

2νi
≤ 1

2i+1
,and thus, for all j ∈ N,

ανj
|z∗(xνj

)| ≥ ανj
|x∗νj

(xνj
)| −

j−1
∑

i=1

ανj
|x∗νi

(xνj
)| −

∞
∑

i=j+1

ανj
|x∗νi

(xνj
)|

≥ 1 − 1

4
− 1

4
−

∞
∑

i=j+1

1

2i+1
≥ 1

4
.Proof of the Main Theorem. Su�ieny has been proven in Corollary 2.2.2.Neessity has been essentially proven in [9, Theorem 4℄. For the sake ofompleteness, we shall give the details also here.Let A ⊂ X∗ be weak∗-thik, let (Ω,Σ, µ) be a measure spae, and let anessentially separable valued funtion f : Ω → X be suh that x∗f ∈ L1(µ) for all

x∗ ∈ A. Denote Aj = {x∗ ∈ A :
∫

Ω |x∗f | dµ ≤ j}, j ∈ N. Then A =
⋃∞
j=1 Aj ↑,and the thikness of A implies the existene of some m ∈ N and δ > 0 suhthat absonvw∗

(Am) ⊃ δBX∗ . Thus it learly su�es to show that x∗f ∈ L1(µ)for all x∗ ∈ absonvw∗

(Am). Fix an arbitrary x∗ ∈ absonvw∗

(Am). Sine f isessentially separable valued, there is a sequene (y∗n) ⊂ absonv(Am) suh that
y∗nf → x∗f µ-almost everywhere on Ω; hene x∗f is measurable. Sine, for any
y∗ ∈ absonv(Am), one has ∫

Ω
|y∗f | dµ ≤ m, by ourtesy of Fatou's lemma, also

∫

Ω |x∗f | dµ ≤ m; thus x∗f ∈ L1(µ).By the Banah-Steinhaus theorem, from [15, Theorem 3.4℄ (see also The-orem 2.4.4 of the present paper) it follows that any Banah spae is a weak∗-thik subset of its bidual. Thus the Main Theorem yields the following orollary(whih is probably known although the authors do not know any referene forit). 37



Corollary 2.2.3. Let (Ω,Σ, µ) be a measure spae, and let f : Ω → X∗ bean essentially separable-valued funtion. If xf ∈ L1(µ) for all x ∈ X, then
x∗∗f ∈ L1(µ) for all x∗∗ ∈ X∗∗.Reall that a series ∑∞

j=1 xj inX is said to be weakly unonditionally Cauhyif ∑∞
j=1 |x∗(xj)| < ∞ for all x∗ ∈ X∗. Observing that, for any x∗ ∈ X∗,

∑∞
j=1 |x∗(xj)| =

∫

N
|x∗f | dc, where c is the ounting measure on P(N) and thefuntion f : N → X is de�ned by f =

∑∞
j=1 χ{j}xj , then from the Main Theoremand the proof of Corollary 2.2.2 we immediately getCorollary 2.2.4. A set A ⊂ X∗ is weak∗-thik if and only if every series

∑∞
j=1 xj in X satisfying ∑∞

j=1 |x∗(xj)| < ∞ for all x∗ ∈ A is weakly unondi-tionally Cauhy.The �only if" part of Corollary 2.2.4 gives the known link between Fonf'stheorem stating that if X does not ontain any isomorphi opies of c0, thenextBX∗ is weak∗-thik (see [9, Theorem 1℄), and a theorem of Elton (see [5,Corollary℄ or [2, Theorem 15, p. 169℄).2.3 Thikness and bounded vetor measuresLet F be an algebra of subsets of a set Ω, and let F : F → X be a vetormeasure (i.e., let F be a �nitely additive set funtion). It is standard (see [3,Proposition 11, p. 4℄) that F has bounded range if and only if it is of boundedsemi-variation, i.e., ‖F‖(Ω) = supx∗∈BX∗
|x∗F |(Ω) < ∞ (see [3, p. 2℄ for thede�nitions of the variation and the semivariation of a vetor measure).An important onsequene of the Nikodým boundedness theorem is the fol-lowing result of Dieudonné and Grothendiek.Proposition 2.3.1 (see [3, p. 16℄). Let F be an X-valued set funtion de�nedon a σ-algebra Σ of subsets of a set Ω, and suppose that, for eah x∗ belongingto some total subset Γ ⊂ X∗, the funtion x∗F is bounded and �nitely additive.Then F is a bounded vetor measure.The interesting part of the theorem is of ourse the test for boundedness: if

Σ is a σ-algebra, then it is enough to test on a total subset Γ ⊂ X∗. In general,Proposition 2.3.1 may fail for algebras that are not σ-algebras. We now showthat there is a general test for boundedness also if the vetor measure is de�nedmerely on an algebra.Proposition 2.3.2. Let F be an X-valued set funtion de�ned on an algebra
F of subsets of a set Ω, and suppose that, for eah x∗ belonging to some weak∗-thik subset Γ ⊂ X∗, the funtion x∗F is bounded and �nitely additive. Then Fis a bounded vetor measure.Proof. By the Hahn-Banah theorem, the additivity of F follows easily from theweak∗-denseness of span Γ in X∗, and it remains to show that F is bounded.Put Aj = {x∗ ∈ Γ: |x∗F |(Ω) ≤ j}, j ∈ N. Then Γ =

⋃∞
j=1 Aj ↑, and theweak∗-thikness of Γ implies that there are some m ∈ N and δ > 0 suh thatabsonvw∗

(Am) ⊃ δBX∗ . Thus it learly su�es to show that, for all x∗ ∈absonvw∗

(Am), one has |x∗F |(Ω) ≤ m. Observing that the last inequality38



holds for all x∗ ∈ absonv(Am), it an be easily seen to hold also for all x∗ ∈absonvw∗

(Am).It is natural to ask whether Proposition 2.3.2 haraterizes the weak∗-thiksets in X∗. More preisely, if a subset A ⊂ X∗ is weak∗-thin, then an onealways �nd an algebra F and an unbounded X-valued vetor measure F on Fsuh that, for all x∗ ∈ A, the salar valued vetor measure x∗F is bounded?The following proposition answers this question in the a�rmative.Proposition 2.3.3. Let a subset A ⊂ X∗ be weak∗-thin. Then there is anunbounded X-valued vetor measure F on the algebra FN of �nite and o�nitesubsets of N suh that |x∗F |(N) <∞ for every x∗ ∈ A.Proof. Applying Lemma 2.2.1 for αj = 1, j ∈ N, produes some zj ∈ X ,
j ∈ N, z∗ ∈ X∗, and δ > 0 suh that ∑∞

j=1 |x∗(zj)| < ∞ for all x∗ ∈ A, but
Re z∗(zj) > δ for all j ∈ N (just take zj =

z∗(xνj
)

|z∗(xνj
)| xνj

in Lemma 2.2.1). Itremains to de�ne the vetor measure F : FN → X by
F (E) =



























0, if E = ∅ or E = N,
∑

j∈E

zj, if 0 < |E| <∞,
−

∑

j∈Ec

zj, if 0 < |Ec| <∞.2.4 Notes and remarksThere is a notion dual to �weak∗-thikness", namely, �thikness". A subset
B ⊂ X is said to be norming if inf

x∗∈SX∗

sup
x∈B

|x∗(x)| > 0. Equivalently, the set Bis norming if and only if its losed absolutely onvex hull ontains some ball.The set B is said to be non-norming if it is not norming. In [11℄, Kadets andFonf de�ned a set A ⊂ X to be thin if it an be represented as a non-dereasingountable union of non-norming sets. As in [14℄ and [15℄, let us say that the set
A is thik if it is not thin.From [11, Proposition 1℄ and [15, Theorems 3.2 and 4.2℄, one has the follow-ing haraterization of thik sets.Theorem 2.4.1. Let A ⊂ X. The following assertions are equivalent.(i) The set A is thik.(ii) Whenever Y is a Banah spae and T : Y → X is a ontinuous linearoperator suh that TY ⊃ A, then TY = X.(iii) Whenever a family of ontinuous linear operators from the spae X tosome Banah spae is pointwise bounded on A, then this family is normbounded.(iv) Whenever a family of funtionals in the dual spae X∗ is pointwise boundedon A, then this family is norm bounded.39



It is almost verbatim to the proof of the Main Theorem to show that Theo-rem 2.4.1 an be ontinued by(v) Whenever (Ω,Σ, µ) is a measure spae and a funtion g : Ω → X∗ is suhthat xg ∈ L1(µ) for all x ∈ A, then xg ∈ L1(µ) for all x ∈ X.The perhaps most famous thik set is the set A of harateristi funtions in
B(Σ), the spae of bounded measurable funtions on a measurable spae (Ω,Σ):Nikodym's boundedness theorem states that A satis�es the ondition (iv) in
B(Σ), Seever's theorem states that A satis�es the ondition (iii). Remark thatboth these theorems were proved before Theorem 2.4.1 was ommonly known.It is well known that every pointwise bounded family of ontinuous linearoperators from a loally onvex spae (LCS) E to some other LCS is equiontin-uous if and only if the spae E is barrelled, i.e., every absolutely onvex losedabsorbing set (every barrell) in E is a neighbourhood of zero. The theory ofbarrelled LCS is by now well doumented through many books, among them[17℄ and more reently [8℄ and [13℄. If an LCS is metrizable, then it is barrelledif and only if it is Baire-like, i.e., it an not be represented as a ountable non-dereasing union of absolutely onvex, nowhere dense sets. In this de�ninition,one may of ourse assume the sets to be losed. Observing that whenever a sub-set of a Banah spae is thin, then its linear span is thin as well, just omparingthe de�nitions givesProposition 2.4.2. A subset A ⊂ X is thik if and only if its linear span isdense and barrelled.Thus the equivalenes (i)⇔(iii) and (i)⇔(ii) in Theorem 2.4.1 are, respe-tively, just a restatement for Banah spaes of the above-mentioned barrellednessriterion, and the following well-known result of Bennett and Kalton.Theorem 2.4.3 (see [1, Proposition 1℄). Let Z ⊂ X be a dense subspae. Then
Z is barrelled if and only if whenever Y is a Banah spae and T : Y → X is aontinuous linear operator suh that TY ⊃ Z, then TY = X.From [10, Proposition 1℄ and [15, Theorems 3.4 and 4.6℄ one has the followingharaterization of weak∗-thik sets.Theorem 2.4.4. Let A ⊂ X∗. The following assertions are equivalent.(i) The set A is weak∗-thik in X∗.(ii) Whenever Y is a Banah spae and T : X → Y is a ontinuous linearoperator suh that T ∗Y ∗ ⊃ A, then T ∗Y ∗ = X∗.(iii) Whenever a family of elements of the spae X is pointwise bounded on A,then this family is norm bounded.On the ontrary to Theorem 2.4.1, Theorem 2.4.4 has nothing to do withresults from the theory of barrelled spaes: it does not say anything about theequiontinuity of weak∗-ontinuous linear funtionals, but it gives a test for theequiontinuity of norm ontinuous linear funtionals.The already mentioned theorem due to Fonf (see [9, Theorem 1℄) states thatif extBX∗ is weak∗-thin in X∗, then X ontains a opy of c0. If X is separable,40



the same is true for w∗-expBX∗ , the set of weak∗-exposed points of BX∗ , as isshown in [10, Theorem 3∗℄.Using results of Fonf, Nygaard showed in [15℄ that if both X∗ and Y are
c0-free, then the set E = extBX∗∗ ⊗ extBY ∗ is weak∗-thik in L(X,Y )∗. Fromthis it follows that if both X∗ and Y are c0-free, then extBK(X,Y )∗ is weak∗-thikin K(X,Y )∗. Note that even K(ℓ2) ontains a opy of c0.In the theory of analyti funtions, a set A satisfying the ondition (iv) ofTheorem 2.4.1 is alled a uniform boundedness deiding set (UBD-set) (see [7℄).It has been shown by Fernandez ([6℄) that the set of inner funtions is a UBD-setin (H∞, w∗). Later it has been shown by H. Shapiro ([16℄) that also the set ofthe Blashke-produts has this property. Whether the inner funtions form aUBD-set in (H∞, ‖ · ‖) is still unknown. In other words, it is unknown whetherthe linear span of the inner funtions in H∞ is barrelled. What is known from[16℄ is that this linear span is not a Baire spae, but the inner funtions form anorming set in H∞. In fat, the losed, onvex hull of the Blashke-produts isexatly the unit ball in H∞ (see [12, Cor 2.6, p. 196℄).Bibliography[1℄ G. Bennett and N. J. Kalton, Inlusion theorems for K-spaes, Canad. J.Math. 25 (1973), 511�524.[2℄ J. Diestel, Sequenes and Series in Banah Spaes, Graduate Texts inMathematis, vol. 92, Springer, 1984.[3℄ J. Diestel and J. J. Uhl, jr., Vetor Measures, Math. Surveys, vol. 15,Amer. Math. So., 1977.[4℄ D. B. Dimitrov, A remark on the Gel'fand integral, Funktsional. Anal.i Prilozhen. 5 (1971), no. 2, 84�85; English translation in: Funt. Anal.Appl. 5 (1971), 158�160.[5℄ J. Elton, Extremely weakly unonditionally onvergent series, Israel J.Math 40 (1981), 255�258.[6℄ J. Fernandez, A boundedness theorem for L1/H
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Chapter 3Weak metri approximationproperties and nieprojetions3.1 IntrodutionLet X and Y be Banah spaes. We denote by L(Y,X) the Banah spae ofbounded linear operators from Y to X , and by F(Y,X), K(Y,X), W(Y,X)its subspaes of �nite rank operators, ompat operators, and weakly ompatoperators, respetively.We denote by X⊗̂πY the (ompleted) projetive tensor produt of X and
Y . Reall that we may identify the dual of X⊗̂πY with L(Y,X∗) and that theation of an operator T : Y → X∗, as a linear funtional on X⊗̂πY , is given by

〈

T,
∞
∑

n=1

xn ⊗ yn

〉

=
∞
∑

n=1

(Tyn)(xn).Let IX denote the identity operator on X . Reall that X is said to have theapproximation property (AP) if there exists a net (Sα) ⊂ F(X,X) suh that
Sα → IX uniformly on ompat sets in X . If the net (Sα) an be hosen suhthat supα ‖Sα‖ ≤ 1, then X is said to have the metri approximation property(MAP).In [8℄ Lima and Oja introdued and studied the weak metri approxima-tion property. Following Lima and Oja a Banah spae X is said to have theweak metri approximation property (weak MAP) if, for every Banah spae
Y and every operator T ∈ W(X,Y ), there exists a net (Sα) ⊂ F(X,X) with
supα ‖TSα‖ ≤ ‖T ‖ suh that Sα → IX uniformly on ompat sets in X .It is immediate from the de�nitions that MAP ⇒ weak MAP ⇒ AP. How-ever, the AP does not imply the weak MAP in general as was shown in [8,Proposition 2.2℄. Reently it was also shown [10, Corollary 1℄ that if a Banahspae has the weak MAP then it has the MAP if either its dual or its bidualhas the Radon-Nikodým property (RNP). It is, however, not known whetherthe weak MAP and the MAP in general are equivalent properties.43



Let X be a subspae of a Banah spae Y . A linear operator ϕ : X∗ → Y ∗ isalled a Hahn-Banah extension operator if (ϕx∗)(x) = x∗(x) and ‖ϕx∗‖ = ‖x∗‖for every x ∈ X and x∗ ∈ X∗. We denote the set of Hahn-Banah extension op-erators ϕ : X∗ → Y ∗ by HB(X,Y ). It is easy to show that HB(X,Y ) is non-voidif and only if X is an ideal in Y (in the sense of Godefroy, Kalton and Saphar[2℄).The following result [5, Propositions 2.1 and 2.5℄ of Lima establishes a on-netion between the weak MAP and the existene of a Hahn-Banah extensionoperator.Theorem 3.1.1 (Lima). Let X be a Banah spae. Then X has the weak MAPif and only if there exists a Hahn-Banah extension operator ϕ ∈ HB(X,X∗∗)suh that ϕ∗|X∗∗ is in the weak∗-losure of F(X,X) in L(X∗∗, X∗∗).Note that we an onsider F(X,X) as a subspae of L(X∗∗, X∗∗) through theembedding operator whih maps an operator T ∈ F(X,X) to its seond adjoint
T ∗∗ ∈ L(X∗∗, X∗∗).In Setion 3.2 we improve Theorem 3.1.1 by showing that we an replae theHahn-Banah extension operator ϕ : X∗ → X∗∗∗ by a Hahn-Banah extensionoperator ϕP : X∗ → X∗∗∗ suh that P = ϕ∗

P |X∗∗ is a projetion on X∗∗. Thisresult is then thereafter used to improve other haraterizations of the weakMAP.In Setion 3.3 we establish similar haraterizations to those in Setion 3.2for two, reently introdued [6℄, natural ompat ompanions of the weak MAP.We will onsider Banah spaes over the real salar �eld only. We use stan-dard Banah spae notation, as an be found e.g. in [9℄. The losed unit ballof a Banah spae X is denoted by BX and the unit sphere of X by SX . Thelosure of a set A ⊂ X is denoted by A, its linear span by spanA, and its onvexhull by onvA. We will write X∗ for the dual of X .3.2 The weak MAPWe might ask what more an we say about the Hahn-Banah extension operatorin Theorem 3.1.1. In fat, by using a tehnique of Godefroy and Kalton from[1℄, we will prove that we an replae the Hahn-Banah extension operator
ϕ ∈ HB(X,X∗∗) in Theorem 3.1.1 by a Hahn-Banah extension operator ϕP ∈HB(X,X∗∗) suh that P = ϕ∗

P |X∗∗ is a projetion on X∗∗. More expliitly wehave the following theorem.Theorem 3.2.1. Let X be a Banah spae.(a) If P is a norm one projetion on X∗∗ with X ⊂ P (X∗∗) suh that Pis in the weak∗-losure of F(X,X) in L(X∗∗, X∗∗), then there exists aHahn-Banah extension operator ϕ ∈ HB(X,X∗∗) suh that ϕ∗|X∗∗ is inthe weak∗-losure of F(X,X) in L(X∗∗, X∗∗).(b) If there exists a Hahn-Banah extension operator ϕ ∈ HB(X,X∗∗) suhthat ϕ∗|X∗∗ is in the weak∗-losure of F(X,X) in L(X∗∗, X∗∗), then thereexists a norm one projetion P on X∗∗ with X ⊂ P (X∗∗) suh that P isin the weak∗-losure of F(X,X) in L(X∗∗, X∗∗).44



Proof. (a) Assume that there exists a norm one projetion P on X∗∗ with
X ⊂ P (X∗∗) suh that P is in the weak∗-losure of F(X,X) in L(X∗∗, X∗∗).Then put ϕP = P ∗iX∗ where iX∗ : X∗ → X∗∗∗ is the natural embedding of X∗into X∗∗∗. Finally observe that ϕP : X∗ → X∗∗∗ is a Hahn-Banah extensionoperator suh that ϕ∗

P |X∗∗ = P .(b) We use an argument from the proof of [1, Theorem III.1℄. Assumethat there exists a Hahn-Banah extension operator ϕ ∈ HB(X,X∗∗) suh that
ϕ∗|X∗∗ is in the weak∗-losure of F(X,X) in L(X∗∗, X∗∗). Now, pik a net
(Sα) ⊂ F(X,X) suh that S∗∗

α → ϕ∗|X∗∗ weak∗ in L(X∗∗, X∗∗). Let S be theonvex semi-group generated by the net (S∗∗
α ), i.e. the smallest onvex semi-group that ontains (S∗∗

α ). Let S∗ denote the weak∗-losure of S. Now S∗ is aonvex semi-group. To see this let U and V be in S∗ and write
U = ω*- limU∗∗

α

V = ω*- limV ∗∗
β ,where U∗∗

α and V ∗∗
β are in S. Choose u =

∑∞
n=1 x

∗
n⊗x∗∗n ∈ X∗⊗̂πX∗∗ arbitrarily.Then it follows that

UV (u) = lim
α

∞
∑

n=1

〈x∗n, U∗∗
α V x∗∗n 〉 = lim

α

∞
∑

n=1

〈U∗
αx

∗
n, V x

∗∗
n 〉 (3.2.1)

= lim
α

lim
β

∞
∑

n=1

〈

U∗
αx

∗
n, V

∗∗
β x∗∗n

〉

= lim
α

lim
β

(UαVβ)
∗∗(u).Hene UV is in the weak∗-losure of F(X,X) in L(X∗∗, X∗∗). It is obvious that

S∗ is onvex.Now put S0
∗ = {T ∈ S

∗ : T |X = IX , ‖T ‖ = 1}. Note that S0
∗ 6= ∅ sine

ϕ∗|X∗∗ ∈ S0
∗. Sine S0

∗ is losed under omposition, it is a semi-group. It isstraightforward to show that it is onvex and weak∗-losed.Equip S0
∗ with the order-relation ≤ de�ned by S ≤ T if ‖Sx∗∗‖ ≤ ‖Tx∗∗‖for every x∗∗ ∈ X∗∗. Now let N be any maximal hain in (S0

∗,≤) and for
S ∈ N let NS = {T ∈ N : T ≤ S}. We an write N =

⋃

S∈N NS . Note thateah NS is weak∗-losed. Indeed, hoose a net (Vα) in NS and assume Vα →
α
V ′weak∗, where V ′ ∈ S∗

0. Then for every x∗∗ ∈ X∗∗ we get
‖V ′x∗∗‖ ≤ lim inf

α
‖Vαx∗∗‖ ≤ ‖Sx∗∗‖.By the maximality of N it follows that V ′ ∈ N so NS is weak∗-losed. Nowhoose (Si)

n
i=1 ⊂ N arbitrarily. Then (NSi

)ni=1 is a �nite family of weak∗-losedsets and
n
⋂

i=1

NSi
= {T ∈ N : T ≤ min

1≤i≤n
Si} 6= ∅.Sine S0

∗ is weak∗-ompat, every family of losed sets having the �nite in-tersetion property has a non-void intersetion. Hene ⋂

S∈N NS 6= ∅. By theHausdor� maximality theorem every hain is ontained in a maximal hain.Hene, by the above argument, every hain in S0
∗ has a lower bound. It nowfollows by Zorn's lemma that S0

∗ has a minimal element. Denote suh a mini-mal element by P . 45



We now show that P is a projetion of norm one. Sine P is minimal and
‖S‖ = 1 for all S ∈ S0

∗ we have ‖SPx∗∗‖ = ‖Px∗∗‖ for all S ∈ S0
∗ and all

x∗∗ ∈ X∗∗. Applying this observation to
Sn =

1

n
(

n
∑

i=1

P i),whih by onvexity is in S0
∗, gives

‖(SnP 2 − SnP )x∗∗‖ = ‖SnP (Px∗∗ − x∗∗)‖
= ‖P (Px∗∗ − x∗∗)‖
= ‖P 2x∗∗ − Px∗∗‖.Sine we have that

SnP
2 − SnP =

1

n
(Pn+2 − P 2),we get that ‖P 2x∗∗ −Px∗∗‖ ≤ 2

n for all n ≥ 1. It follows that P is a projetionon X∗∗ suh that P is in the weak∗-losure of F(X,X) in L(X∗∗, X∗∗). By thede�nition of S0
∗, P is of norm one and X ⊂ P (X∗∗).In fat we an do slightly better than Theorem 3.2.1. The result below tellsus that we may assume that the net onverging weak∗ to the projetion, satis�essome boundedness property.Proposition 3.2.2. Let X be a Banah spae with the weak MAP. Then thereexist a projetion P on X∗∗ with X ⊂ P (X∗∗) suh that for every re�exiveBanah spae Y and for every T ∈ W(X,Y ), there exists a net (Sα) ⊂ F(X,X)with lim supα ‖TSα‖ ≤ ‖T ‖ suh that Sα → P weak∗ in L(X∗∗, X∗∗).Proof. Let ǫ > 0, let Y be a re�exive Banah spae, and let T ∈ W(X,Y ) ofnorm one. Let uk =

∑∞
n=1 x

∗
k,n ⊗ x∗∗k,n ∈ X∗⊗̂πX∗∗ for k = 1, ...,m. Assume

∑∞
n=1 ‖x∗∗k,n‖ < ∞ and 1 ≥ ‖x∗k,n‖ → 0 for eah k = 1, ...,m. Put K =onv{±x∗k,n : k = 1, ...,m;n = 1, 2, ...} ⊂ BX∗ . Let Z be the Banah spaeonstruted from K in the fatorization lemma [7, Lemma 1.1℄, and let J :

Z → X∗ be the identity embedding of Z into X∗. Now Z is separable, re�exiveand J ∈ K(Z,X∗) is of norm one. De�ne a map V : X → Z∗ ⊕∞ Y by
V x = (J∗x, Tx). Note that V ∈ W(X,Z∗ ⊕∞ Y ). By Theorem 3.1.1 andTheorem 3.2.1 there exists a norm one projetion P on X∗∗ with X ⊂ P (X∗∗)suh that P is in the weak∗-losure of F(X,X) in L(X∗∗, X∗∗). Note that
V ∗∗P is in the weak∗-losure of the onvex set {V ∗∗S∗∗ : S ∈ F(X,X)} in
W(X∗∗, Z∗ ⊕∞ Y ). Sine Z∗ ⊕∞ Y is re�exive we have, by [3, Theorem 1.5℄,that V ∗∗P is in the weak∗-losure of

{V ∗∗S∗∗ : S ∈ F(X,X), ‖V ∗∗S∗∗‖ < ‖V ∗∗P‖ + ǫ}in W(X∗∗, Z∗ ⊕∞ Y ), whih again is a subset of the weak∗-losure of
{V ∗∗S∗∗ : S ∈ F(X,X), ‖V S‖ < 1 + ǫ}46



in W(X∗∗, Z∗ ⊕∞ Y ). Now hoose zk,n ∈ BZ suh that Jzk,n = x∗k,n for all kand n. Find S in the above set suh that
ǫ > max

1≤k≤m
|V ∗∗S∗∗(

∞
∑

n=1

(zk,n, 0) ⊗ x∗∗k,n) − V ∗∗P (

∞
∑

n=1

(zk,n, 0) ⊗ x∗∗k,n)|

= max
1≤k≤m

|
∞
∑

n=1

〈

zk,n, J
∗S∗∗x∗∗k,n

〉

−
∞
∑

n=1

〈

zk,n, J
∗Px∗∗k,n

〉

|

= max
1≤k≤m

|
∞
∑

n=1

〈

x∗k,n, S
∗∗x∗∗k,n

〉

−
∞
∑

n=1

〈

x∗k,n, Px
∗∗
k,n

〉

|.Sine ‖TS‖ ≤ ‖V S‖ ≤ 1 + ǫ, the result follows.When the spae X is separable and does not ontain a opy of ℓ1, we knoweven more about the projetion.Corollary 3.2.3. Let X be a separable Banah spae not ontaining ℓ1. Thenthere exists a Hahn-Banah extension operator ϕ ∈ HB(X,X∗∗) suh that ϕ∗|X∗∗is in the weak∗-losure of F(X,X) in L(X∗∗, X∗∗) if and only if there exist anorm one projetion P on X∗∗ with weak∗-losed kernel and with X ⊂ P (X∗∗)suh that P is in the weak∗-losure of F(X,X) in L(X∗∗, X∗∗).Proof. This follows diretly from Theorem 3.2.1 and [1, Claim III.2℄.Building on Theorem 3.2.1, we arrive at the result below. This improves [5,Propositions 2.5 and 3.1℄ in the way that the Hahn-Banah extension operator
ϕ : X∗ → X∗∗∗, in eah of these results, is replaed by Hahn-Banah extensionoperator ϕP : X∗ → X∗∗∗ suh that P = ϕ∗

P |X∗∗ is a projetion on X∗∗.Theorem 3.2.4. Let X be a Banah spae. The following statements are equiv-alent.(a) X has the weak-MAP.(b) There exists a norm one projetion P on X∗∗ with X ⊂ P (X∗∗) suh that
P is in the weak∗-losure of F(X,X) in L(X∗∗, X∗∗).() There exists a norm one projetion P on X∗∗ with X ⊂ P (X∗∗) suh that,for every re�exive Banah spae Y and every operator T ∈ W(Y,X∗∗), onehas PT ∈ F(Y,X)∗∗.(d) There exists a norm one projetion P on X∗∗ with X ⊂ P (X∗∗) suhthat, for every separable re�exive Banah spae Y and every operator T ∈
K(Y,X∗∗), one has PT ∈ F(Y,X)∗∗.Proof. (a)⇔(b) follows from Theorem 3.1.1 and Theorem 3.2.1.(b)⇒() is obtained by the same reasoning as in [5, Proposition 3.1 (a)⇒(b)℄.()⇒(d) is trivial.(d)⇒(a) is obtained by the same reasoning as in [5, Proposition 3.1 ()⇒(a)℄.47



3.3 The weak MCAP and the very weak MCAPReently Lima and Lima [6℄ introdued and investigated two approximationproperties that are natural ompat ompanions of the weak MAP. Following[6℄, a Banah spae X has the weak metri ompat approximation property(weak MCAP) if, for every Banah spae Y and every operator T ∈ W(X,Y ),there exists a net (Sα) ⊂ K(X,X) with supα ‖TSα‖ ≤ ‖T ‖ suh that Sα →
IX uniformly on ompat sets in X . Moreover, X is said to have the veryweak metri ompat approximation property (very weak MCAP) if for everyBanah spae Y and every operator T ∈ W(X,Y ) there exists a net (Sα) ⊂
K(X,X∗∗) with supα ‖T ∗∗Sα‖ ≤ ‖T ‖ suh that limα tr(Sαu) = tr(IXu) forevery u ∈ X∗⊗̂πX . By omparing the de�nitions, it is immediate that thefollowing impliations hold: weak MAP ⇒ weak MCAP ⇒ very weak MCAP.As pointed out in [6, Remark 5.2℄, there is a spae with the very weak MCAP,but without the weak MCAP. Moreover, the spae of Willis [11, Proposition 4℄has the weak MCAP, but not the weak MAP.It should be noted that similar results to Theorem 3.2.1 also hold for theweak MCAP and the very weak MCAP. The results di�er from Theorem 3.2.1only in the way that F(X,X) is replaed by K(X,X) in the weak MCAP ase,and K(X,X∗∗) in the very weak MCAP ase. The proofs of these results areverbatim to that of Theorem 3.2.1, using K(X,X) and K(X,X∗∗) instead of
F(X,X) respetively. The reason why the arguments work, is that the imageof the seond adjoint of a ompat operator is a subspae of the range spae ofthe operator itself. Hene the alulation in (3.2.1) holds.Proposition 3.3.1. Let X be a Banah spae.(a) If P is a norm one projetion on X∗∗ with X ⊂ P (X∗∗) suh that P isin the weak∗-losure of K(X,X) [K(X,X∗∗)℄ in L(X∗∗, X∗∗), then thereexists a Hahn-Banah extension operator ϕ ∈ HB(X,X∗∗) suh that ϕ∗|X∗∗is in the weak∗-losure of K(X,X) [K(X,X∗∗)℄ in L(X∗∗, X∗∗).(b) If there exists a Hahn-Banah extension operator ϕ ∈ HB(X,X∗∗) suhthat ϕ∗|X∗∗ is in the weak∗-losure of K(X,X) [K(X,X∗∗)℄ in L(X∗∗, X∗∗),then there exists a norm one projetion P on X∗∗ with X ⊂ P (X∗∗) suhthat P is in the weak∗-losure of K(X,X) [K(X,X∗∗)℄ in L(X∗∗, X∗∗).By applying these results in ompanion with the proof of [5, Proposition 3.1℄and the proofs of [6, Theorem 4.3℄ and [6, Theorem 5.3℄, we obtain the followingstrengthenings of [6, Theorem 4.3℄ for the weak MCAP ase, and [6, Theorem5.3℄ for the very weak MCAP ase. The results improve [6, Theorem 4.3℄ and [6,Theorem 5.3℄ in the way that the Hahn-Banah extension operator ϕ : X∗ →
X∗∗∗ in eah of these theorems is replaed by a Hahn-Banah extension operator
ϕP : X∗ → X∗∗∗ suh that P = ϕ∗

P |X∗∗ is a projetion on X∗∗.Theorem 3.3.2. Let X be a Banah spae. The following statements are equiv-alent.(a) X has the weak MCAP.(b) There exists a norm one projetion P on X∗∗ with X ⊂ P (X∗∗) suh that
P is in the weak∗-losure of K(X,X) in L(X∗∗, X∗∗).48



() There exists a norm one projetion P on X∗∗ with X ⊂ P (X∗∗) suhthat, for every re�exive Banah spae Y and every T ∈ W(Y,X∗∗), onehas PT ∈ E∗∗ where E = {S∗∗T : S ∈ K(X,X)} ⊂ K(Y,X).(d) There exists a norm one projetion P on X∗∗ with X ⊂ P (X∗∗) suh that,for every separable re�exive Banah spae Y and every T ∈ K(Y,X∗∗),one has PT ∈ E∗∗ where E is as in ().(e) There exists a norm one projetion P on X∗∗ with X ⊂ P (X∗∗) suh that,for all sequenes (x∗n) ⊂ X∗ and (x∗∗n ) ⊂ X∗∗ with ∑∞
n=1 ‖x∗n‖‖x∗∗n ‖ < ∞and ∑∞

n=1 x
∗∗
n (S∗x∗n) = 0 for all S ∈ K(X,X), one has ∑∞

n=1 x
∗∗
n (P ∗x∗n) =

0.Proof. (a)⇔(b) follows from [6, Theorem 4.3 (a)⇔(b)℄ and Proposition 3.3.1.(b)⇒() is similar to the proof of [5, Proposition 3.1 (a)⇒(b)℄.()⇒(d) is trivial.(d)⇒(e) is similar to the proof of [6, Theorem 4.3 (f)⇒(g)℄.(e)⇒(b) is trivial.Theorem 3.3.3. Let X be a Banah spae. The following statements are equiv-alent.(a) X has the very weak MCAP.(b) There exists a norm one projetion P on X∗∗ with X ⊂ P (X∗∗) suh that
P is in the weak∗-losure of K(X,X∗∗) in L(X∗∗, X∗∗).() There exists a norm one projetion P on X∗∗ with X ⊂ P (X∗∗) suhthat, for every re�exive Banah spae Y and every T ∈ W(X,Y ), one has
T ∗∗P ∈ E∗∗, where E = {T ∗∗S : S ∈ K(X,X∗∗)} ⊂ K(X,Y ).(d) There exists a norm one projetion P on X∗∗ with X ⊂ P (X∗∗) suhthat, for every re�exive Banah spae Y and every T ∈ K(X,Y ), thereexists a net (Sα) ⊂ K(X,X∗∗), with supα ‖T ∗∗Sα‖ ≤ ‖T ‖, suh that
ω*- limα S

∗
αT

∗y = P ∗T ∗y∗ in X∗∗∗ for all y∗ ∈ Y ∗.(e) There exists a norm one projetion P on X∗∗ with X ⊂ P (X∗∗) suhthat, for every re�exive Banah spae Y and every T ∈ K(X,Y ), thereexists a net (Sα) ⊂ K(X,X∗∗), with supα ‖T ∗∗Sα‖ ≤ ‖T ‖, suh that
T ∗∗S∗∗

α → T ∗∗P in the strong operator topology.(f) There exists a norm one projetion P on X∗∗ with X ⊂ P (X∗∗) suh that,for all sequenes (x∗n) ⊂ X∗ and (x∗∗n ) ⊂ X∗∗ with ∑∞
n=1 ‖x∗n‖‖x∗∗n ‖ < ∞and ∑∞

n=1 x
∗∗
n (S∗x∗n) = 0 for all S ∈ K(X,X∗∗), one has ∑∞

n=1 x
∗∗
n (P ∗x∗n) =

0.Proof. (a)⇔(b) follows from [6, Theorem 5.3 (a)⇔(b)℄ and Proposition 3.3.1.(b)⇒()⇒(d)⇒(e) are similar to the proofs of (b)⇒()⇒(d)⇒(e) in [6, The-orem 5.3℄ respetively.(e)⇒(f). Let ǫ > 0, let u =
∑∞
n=1 x

∗
n ⊗ x∗∗n ∈ X∗⊗̂πX∗∗, and assume

∑∞
n=1 ‖x∗∗n ‖ <∞ and 1 ≥ ‖x∗n‖ → 0. Put K = onv{±x∗n : n = 1, 2, ...} ⊂ BX∗ .Let Z be the Banah spae onstruted from K in the fatorization lemma [7,Lemma 1.1℄, and J : Z → X∗ the identity embedding of Z into X∗. Now Z isseparable, re�exive and J ∈ K(Z,X∗) is of norm one. Choose zn ∈ BZ suh49



that Jzn = x∗n for every n ∈ N. From the assumption it follows that there existsa norm one projetion P on X∗∗ with X ⊂ P (X∗∗) and a net (Sα) ∈ K(X,X∗∗)with supα ‖(J∗|X)∗∗Sα‖ ≤ 1 suh that (J∗|X)∗∗S∗∗
α → (J∗|X)∗∗P in the strongoperator topology. Sine ((J∗|X)∗∗Sα) is bounded, we may assume that the netonverges to (J∗|X)∗∗P in the topology τ of uniform onvergene on ompatsets in X∗∗. By the desription of (L(X∗∗, Z∗), τ)∗, due to Grothendiek [4℄ (seei.e. [9, Proposition 1.e.3℄), it now follows that there exists an S ∈ K(X,X∗∗)suh that

ǫ > |
∞
∑

n=1

〈(J∗|X)∗∗S∗∗x∗∗n , zn〉 −
∞
∑

n=1

〈(J∗|X)∗∗Px∗∗n , zn〉 |

= |
∞
∑

n=1

〈S∗∗x∗∗n , Jzn〉 −
∞
∑

n=1

〈Px∗∗n , Jzn〉 |

= |
∞
∑

n=1

〈S∗∗x∗∗n , x
∗
n〉 −

∞
∑

n=1
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Chapter 4Unonditional ideals of �niterank operators4.1 IntrodutionA losed subspae Z of a Banah spae X is an ideal in X if the annihi-lator Z⊥ is the kernel of a norm one projetion on X∗. A linear operator
ϕ : Z∗ → X∗ is alled a Hahn-Banah extension operator if ϕ(z∗)(z) = z∗(z)and ‖ϕ(z∗)‖ = ‖z∗‖ for every z ∈ Z and z∗ ∈ Z∗. We write HB(Z,X) for theset of all Hahn-Banah extension operators from Z∗ into X∗. It is not di�ultto see that HB(Z,X) 6= ∅ if and only if Z is an ideal in X . If Z is a subspae ofa normed spae X , we say that Z is an ideal in X if Z is an ideal in X . Thenotion of an ideal was introdued and studied by Godefroy, Kalton, and Sapharin [5℄.The stronger notion of an unonditional ideal (u-ideal for short) was intro-dued and studied by Casazza and Kalton in [2℄. If Z is an ideal in X suh thatthe orresponding projetion P on X∗ satis�es ‖I − 2P‖ = 1, then Z is alleda u-ideal in X . The projetion is alled a u-projetion and the orresponding
ϕ ∈ HB(Z,X) is alled an unonditional Hahn-Banah extension operator. FromLemma 2.2 and Proposition 3.6 in [5℄, we an state the following result.Theorem 4.1.1 (Godefroy, Kalton, and Saphar). Let X be a Banah spae andlet Z be a subspae of X. The following statements are equivalent.(a) Z is a u-ideal in X.(b) There exists a Hahn Banah extension operator ϕ ∈ HB(Z,X) suh thatwhenever ε > 0, x ∈ X and A is a onvex subset of Z suh that ϕ∗(x) isin the weak∗-losure of A then there exists z ∈ A with ‖x− 2z‖ < ‖x‖+ ε.() There exists a Hahn Banah extension operator ϕ ∈ HB(Z,X) suh thatfor every x ∈ X there is a net (zα) in Z suh that ϕ∗(x) = limα zα in theweak∗-topology and lim supα ‖x− 2zα‖ ≤ ‖x‖.(d) For every �nite dimensional subspae F of X and every ε > 0, there is alinear map L : F → Z suh that(1) L(x) = x for every x ∈ F ∩ Z, and53



(2) ‖x− 2L(x)‖ ≤ (1 + ε)‖x‖ for every x ∈ F .Note that (1) an be substituted by the inequality ‖L(x)− x‖ ≤ ε‖x‖ for every
x ∈ F ∩ Z. We will sometimes use this fat.Let X and Y be Banah spaes. We denote by L(Y,X) the Banah spae ofbounded linear operators from Y to X , and by F(Y,X), K(Y,X), and W(Y,X)its subspaes of �nite rank operators, ompat operators, and weakly ompatoperators, respetively.In Setion 4.2 we show that the set of Hahn-Banah extension operatorsHB(X,Y ) is a fae in the unit ball of L(X∗, Y ∗). We show in Proposition 4.2.2that an unonditional Hahn-Banah extension operator has to be a enter ofsymmetry in HB(X,Y ). If X ontains a opy of ℓ1 and is a u-ideal in its bidual,then we show that the diamHB(X,X∗∗) = 2. We also show that in some im-portant ases the set HB(X,Y ) onsists of a single element. The subspaes Z of
X suh that ϕ∗|X∗∗(Z⊥⊥) ⊂ Z⊥⊥ where ϕ ∈ HB(X,X∗∗) is unonditional areharaterized.In Setion 4.3 we establish in Theorem 4.3.2 haraterizations of the asewhen F(Y,X) is a u-ideal in W(Y,X) for every Banah spae Y . The hara-terizations inlude a statement similar to Theorem 4.1.1 (b) involving a Hahn-Banah extension operator, a statement whih is an approximation propertyfor X and statements about approximating weakly ompat operators by �niterank operators. In Theorem 4.3.8 we give similar haraterizations of the asewhen F(X,Y ) is a u-ideal in W(X,Y ) for every Banah spae Y .In Setion 4.4 we haraterize the property that F(Y,X) is a u-ideal in
W(Y,X∗∗) for every Banah spae Y in Theorem 4.4.4, and the property that
F(Y,X) is a u-ideal in K(Y,X∗∗) for every Banah spae Y in Theorem 4.4.6 bystatements similar to those in Theorems 4.3.2 and 4.3.8. An example due to Oja[25, Example 3℄ shows that the latter property is stritly weaker (see Remark4.4.7 below). We de�ne an unonditional version of the weak metri approxi-mation property. We show by giving an example that this property is stritlyweaker than F(Y,X) being a u-ideal in K(Y,X∗∗) for every Banah spae Y .We will frequently use the isometri version of the Davis-Figiel-Johnson-Peªzy«ski fatorization lemma [3℄ due to Lima, Nygaard, and Oja [16℄. Let Xbe a Banah spae and let K be a losed absolutely onvex subset of the unitball BX of X . If Z is the Banah spae onstruted from K in the fatorizationlemma and J is the norm one identity embedding of Z into X (see [16, Lemma1.1℄), we will write

[Z, J ] = DFJP(K).From the fatorization lemma we know that Z is re�exive if and only if K isweakly ompat. The fatorization lemma also says that if K is ompat, then
Z is separable and J is ompat.From the isometri version of the fatorization lemma proved by Lima, Ny-gaard, and Oja [16, Theorem 2.3℄ we get that if G ⊂ W(Y,X) is a �nite dimen-sional subspae, then there exist a re�exive Banah spae Z, a norm one operator
J : Z → X , and a linear isometry Φ : G→ W(Y, Z) suh that T = J ◦Φ(T ) forevery T ∈ G. We will write

[Z, J,Φ] = DFJP(G), (4.1.1)54



for this onstrution. Similarly, using [16, Corollary 2.4℄, we get that if G ⊂
W(X,Y ) is a �nite dimensional subspae, then there exists a re�exive Banahspae Z, a norm one operator J : X → Z, and a linear isometry Φ : G →
W(Z, Y ) suh that T = Φ(T ) ◦ J for every T ∈ G. We will write

[Z,Φ, J ] = DFJP(G), (4.1.2)for this onstrution.We use standard Banah spae notation as used by Lindenstrauss and Tzafririin [23℄. Only real Banah spaes are onsidered unless otherwise stated. Thelosed unit ball of a Banah spae X is denoted by BX and the identity operatoron X is denoted by IX . We will write X∗ for the dual spae of X . If Z ⊂ X isa subspae of X , then we will write iZ : Z → X for the anonial embedding.We will write kX : X → X∗∗ for the natural embedding of X into its bidual.
extBX denotes the set of extreme points in BX . If T : X → Y is an operatorand x ∈ X , then we will write Tx instead of T (x) when there is no danger ofonfusion.4.2 Unonditional Hahn-Banah extension oper-atorsLet us start with a general result about the loation and the size of the set ofHahn-Banah extension operators.Proposition 4.2.1. Let Y be a Banah spae. If X is an ideal in Y , thenHB(X,Y ) is a fae in BL(X∗,Y ∗).Proof. Let φ1, φ2 ∈ BL(X∗,Y ∗) and suppose ϕ = φ1+φ2

2 ∈ HB(X,Y ). We thenget that
i∗Xφ1 + i∗Xφ2

2
= i∗Xϕ = IX∗ ∈ extBL(X∗,X∗).Thus i∗Xφi = IX∗ and φi ∈ HB(X,Y ) for i = 1, 2.In Lemma 3.1 in [5℄ there is an algebrai proof of the fat that an unon-ditional Hahn-Banah extension operator is unique. Next we have a geometriproof. (Reall that x is a enter of symmetry in a subset A of a linear spae Xif 2x− y ∈ A for every y ∈ A.)Proposition 4.2.2. Let X be a u-ideal in Y with unonditional ϕ ∈ HB(X,Y ).For x∗ ∈ X∗, let HB(x∗) ⊂ Y ∗ be the set of norm preserving extensions of x∗ to

Y . Then ϕ(x∗) is the enter of symmetry in HB(x∗) for every x∗ ∈ X∗.In partiular, the unonditional Hahn-Banah extension operator ϕ is unique,and ϕ is a enter of symmetry in HB(X,Y ).Proof. Let y∗ ∈ HB(x∗) and let Pϕ = ϕi∗X be the u-projetion. Then ‖x∗‖ =
‖y∗‖ = ‖(I − 2Pϕ)y∗‖ = ‖y∗ − 2ϕ(x∗)‖, so that 2ϕ(x∗) − y∗ ∈ HB(x∗). Hene
ϕ(x∗) is a enter of symmetry in HB(x∗). Sine a enter of symmetry in aonvex bounded set is unique, it follows that there is at most one unonditionalextension operator in HB(X,Y ). 55



If ψ ∈ HB(X,Y ) and x∗ ∈ X∗, then ψ(x∗) ∈ HB(x∗). Using that ϕ(x∗) is aenter of symmetry in HB(x∗) we get 2ϕ(x∗) − ψ(x∗) ∈ HB(x∗). Hene we get
2ϕ− ψ ∈ HB(X,Y ) and ϕ is a enter of symmetry in HB(X,Y ).The following result shows that if a Banah spae X ontains a subspaeisomorphi to ℓ1 and is a u-ideal in its bidual, then the diameter of HB(X,X∗∗)is as large as possible.Proposition 4.2.3. Let X be a Banah spae whih ontains a subspae iso-morphi to ℓ1. If X is a u-ideal in its bidual, then diamHB(X,X∗∗) = 2.Proof. Let π = kX∗k∗X and Pϕ = ϕk∗X respetively be the anonial projetionand the u-projetion on X∗∗∗. By Proposition 4.2.2 the unonditional Hahn-Banah extension operator ϕ is a enter of symmetry in HB(X,X∗∗), i.e. ψ =
2ϕ− kX∗ ∈ HB(X,X∗∗). Let Pψ = ψk∗X and note that Pψ is an ideal projetionon X∗∗∗. By Proposition 2.6 in [5℄ we have ‖I − 2π‖ = 3, so

2 ≥ ‖Pψ − π‖ = ‖2Pϕ − 2π‖ ≥ ‖I − 2π‖ − ‖I − 2Pϕ‖ = 2.Hene ‖ψ − kX∗‖ = ‖Pψ − π‖ = 2, so diamHB(X,X∗∗) = 2.Note that the proof of Proposition 1 in [1℄ shows that if a non-re�exive Ba-nah spaeX is 1-omplemented in its bidual by a projetion P , then HB(X,X∗∗)onsists of at least two elements.One diretion of the following theorem was proved for separable h-ideals in[5, Theorem 6.7℄. Our argument, as the proof of Theorem 6.7 in [5℄, is based onan appliation of Theorem 4.1.1 (b).Theorem 4.2.4. Let X be a Banah spae. Assume that X is a u-ideal in
X∗∗ with unonditional ϕ ∈ HB(X,X∗∗). Let Z be a losed subspae of X.Then ϕ∗(Z⊥⊥) ⊂ Z⊥⊥ if and only if Z is a u-ideal in Z∗∗ with unonditionalHahn-Banah extension operator ψ ∈ HB(Z,Z∗∗) suh that i∗∗Z ψ∗|Z∗∗ = ϕ∗i∗∗Z .Proof. Suppose ϕ∗(Z⊥⊥) ⊂ Z⊥⊥. iZ : Z → X is the natural embedding, so i∗Zis the restrition and i∗∗Z is weak∗-weak∗ ontinuous, isometri, and onto Z⊥⊥.De�ne ψ : Z∗ → Z∗∗∗ by

ψ(z∗) = ψ(x∗ + Z⊥) = i∗∗∗Z ϕ(x∗)for z∗ = x∗ + Z⊥ ∈ Z∗. Sine i∗∗Z (Z∗∗) ⊂ Z⊥⊥ we get that ψ is well-de�ned:
〈ψ(z∗), z∗∗〉 = 〈x∗ + Z⊥, ϕ∗(i∗∗Z (z∗∗))〉 = 〈x∗, ϕ∗(i∗∗Z (z∗∗))〉 = 〈i∗∗∗Z ϕ(x∗), z∗∗〉for z∗∗ ∈ Z∗∗. Thus we have ψ(i∗Z(x∗) = i∗∗∗Z ϕ(x∗) for all x∗ ∈ X∗. Takingadjoints we get i∗∗Z ψ∗|Z∗∗ = ϕ∗i∗∗Z .Let us show that ψ is an unonditional Hahn-Banah extension operator.Clearly ψ is linear with norm at most one. For z ∈ Z and z∗ = x∗ + Z⊥ ∈ Z∗we have

ψ(z∗)(z) = 〈ϕ(x∗), iZ(z)〉 = 〈x∗, iZ(z)〉 = z∗(z).Let z∗∗ ∈ BZ∗∗ and ε > 0. Sine X is a u-ideal in X∗∗ and ϕ∗(i∗∗Z (z∗∗)) is inthe w∗-losure of BZ in X∗∗ there exists a z ∈ BZ suh that
‖z∗∗ − 2z‖ = ‖i∗∗Z (z∗∗) − 2iZ(z)‖ < ‖z∗∗‖ + ε56



by Theorem 4.1.1 (b). Thus there is a net (zα) ⊂ BZ with lim supα ‖z∗∗−2zα‖ ≤
‖z∗∗‖ suh that zα → ψ∗(z∗∗) weak∗ in Z∗∗ (here we used i∗∗Z ψ∗|Z∗∗ = ϕ∗i∗∗Z ).Hene ‖z∗∗ − 2k∗∗Z (ψ(z∗∗))‖ ≤ ‖z∗∗‖ and ψ is unonditional.For the onverse assume that Z is a u-ideal in Z∗∗ with unonditional ψ ∈HB(Z,Z∗∗) suh that i∗∗Z ψ∗|Z∗∗ = ϕ∗i∗∗Z . Let x∗∗ ∈ Z⊥⊥ in X∗∗ and hoose
z∗∗ ∈ Z∗∗ suh that i∗∗Z (z∗∗) = x∗∗, then ϕ∗(x∗∗) = i∗∗Z (ψ∗z∗∗) ∈ Z⊥⊥.Reall that a Banah spae X is said to have the approximation property(AP) if there exists a net (Sα) ⊂ F(X,X) suh that Sα → IX uniformly onompat sets in X . Lima, Nygaard, and Oja have proved [16, Theorem 3.3℄ thata Banah spae X has the AP if and only if the set HB(F(Y,X),W(Y,X)) ofHahn-Banah extension operators is non-empty for every Banah spae Y .In some ases the set of Hahn-Banah extension operators onsists of a singleelement. For example if X is an M-ideal in a Banah spae Y , then HB(X,Y )ontains a single element (see [7, Proposition 1.2℄. Cf. [7, p. 1℄ for de�nitionof an M-ideal). A Banah spae X suh that HB(X,X∗∗) onsists of a singleelement is said to have the unique extension property (UEP). This notion wasintrodued and studied by Godefroy and Saphar in [6℄. They proved in [6,Corollary 5.4℄ that if X and Y are Banah spaes suh that X is re�exive and
Y ∗ has the Radon-Nikodým property (RNP) and ontains no proper normingsubspae, then X ⊗ε Y and K(X,Y ) have the UEP. (Reall that a subspae Zof Y ∗ is norming if ‖y‖ = sup{y∗(y) : y∗ ∈ Z, ‖y∗‖ ≤ 1} for y ∈ Y .)From [24℄ we also know that HB(F(Y,X),L(Y,X)) ontains a single elementfor every Banah spae Y whenever X is either ℓp or the Lorentz sequenespae d(ω, p) for 1 < p < ∞ (see also [7, Example 4.1℄ for the ase X = ℓp and
Y = ℓq where 1 < q ≤ p <∞). Dually we also have that HB(F(X,Y ),L(X,Y ))ontains a single element for every Y whenever X is either ℓp or d(ω, p)∗ for
1 < p < ∞. From [26, Theorem 3℄ we have in addition that the above holds if
X is a losed subspae of either ℓp, d(ω, p) or d(ω, p)∗ with the AP. Also theset HB(F(Y, c0),L(Y, c0)) onsists of a single element for every Banah spae Y(F(Y, c0) is an M-ideal in L(Y, c0), see [7, Example 4.1℄). The next results tellus that in many more ases the set of Hahn-Banah extension operators onsistsof a single element.Proposition 4.2.5. Let X and Y be Banah spaes. If X has the AP and Yis re�exive, then HB(F(Y,X),W(Y,X)) onsists of one element only.Proof. Let Φ ∈ HB(F(Y,X),W(Y,X)), let x∗ ∈ X∗ and y ∈ BY . Assume that yis a strongly exposed point. Then by Lemma 3.4 in [15℄ x∗⊗y has a unique norm-preserving extension from F(Y,X) to W(Y,X) and hene Φ(x∗ ⊗ y) = x∗ ⊗ y.Sine Y has the RNP we get Φ(x∗⊗y) for every x∗ ∈ X∗ and y ∈ Y by linearityand ontinuity. By a theorem of Feder and Saphar [4, Theorem 1℄ F(Y,X)∗is a quotient of X∗ ⊗ Y and it follows that Φ is just the identity and heneunique.A Banah spae X has the AP if and only if F(Y,X) is dense in K(Y,X) forevery Banah spae Y (f. e.g. [23, Theorem 1.e.4℄). By [17, Theorem 5.1℄ Xhas the AP if and only if F(Y,X) is a (trivially unonditional) ideal in K(Y,X)for every Banah spae Y .For Y re�exive, we an ombine Proposition 4.2.5 with the isometriesF(X,Y ) =
F(Y ∗, X∗) and W(X,Y ) = W(Y ∗, X∗) and we get the following orollary.57



Corollary 4.2.6. Let X and Y be Banah spaes. If X∗ has the AP and Y isre�exive, then HB(F(X,Y ),W(X,Y )) onsists of one element only.The dual of a Banah spae X has the AP if and only if F(X,Y ) is densein K(X,Y ) for every Banah spae Y (f. e.g. [23, Theorem 1.e.5℄). By [17,Theorem 5.2℄ X∗ has the AP if and only if F(X,Y ) is a (trivially unonditional)ideal in K(X,Y ) for every Banah spae Y .4.3 F(Y, X) as a u-ideal in W(Y, X)From [17, Theorem 5.1℄ and [19, Theorem 4.4℄ (resp. [19, Theorem 4.3℄) we havethe following result.Theorem 4.3.1 (Lima and Oja). Let X be a losed subspae of a Banah spae
Z. Then F(Y,X) is a u-ideal in W(Y, Z) (resp. K(Y, Z)) for all Banah spaes
Y if and only if F(Y,X) is a u-ideal in W(Y, Z) (resp. K(Y, Z)) for all (resp.separable) re�exive Banah spaes Y .The next theorem haraterizes the property that F(Y,X) is a u-ideal in
W(Y,X) for every Banah spae Y in terms of onvergene of nets of �nite rankoperators. The statements should be ompared with their prototypes in similarresults on ideals (see [11, Theorem 5.2℄ and [20, Theorem 2.3℄).Theorem 4.3.2. Let X be a Banah spae. The following statements are equiv-alent.(a) F(Y,X) is a u-ideal in W(Y,X) for every Banah spae Y .(b) F(Y,X) is a u-ideal in span(F(Y,X), {T }) for every T ∈ W(Y,X) andfor every re�exive Banah spae Y .() For every re�exive Banah spae Y there exists a Hahn-Banah extensionoperator Ψ ∈ HB(F(Y,X),W(Y,X)) suh that for every T ∈ W(Y,X)there is a net (Tα) ⊂ F(Y,X) with lim supα ‖T − 2Tα‖ ≤ ‖T ‖ suh that

Tα → Ψ∗(T ) = T weak∗ in F(Y,X)∗∗.(d) For every weakly ompat set K ⊂ X there is a net (Sα) ⊂ F(X,X) with
limα supx∈K ‖x − 2Sαx‖ ≤ supx∈K ‖x‖ suh that Sα → IX uniformly onompat subsets of K.(e) For every Banah spae Y and T ∈ W(Y,X) there is a net (Sα) ⊂
F(X,X) with lim supα ‖T − 2SαT ‖ ≤ ‖T ‖ suh that Sα → IX uniformlyon ompat sets in X.(f) For every Banah spae Y and T ∈ W(Y,X) there is a net (Sα) ⊂
F(X,X) with lim supα ‖T − 2SαT ‖ ≤ ‖T ‖ suh that Sα → IX in thestrong operator topology.(g) For every re�exive Banah spae Y and T ∈ W(Y,X) there is a net (Sα) ⊂
F(X,X) with lim supα ‖T − 2SαT ‖ ≤ ‖T ‖ suh that SαT → T in thestrong operator topology. 58



Proof. (a) ⇒ (b) is immediate from the loal haraterization of u-ideals, The-orem 4.1.1.(b) ⇒ (). Assume that Y is re�exive and let T ∈ W(Y,X). Sine F(Y,X)is a u-ideal in B = span(F(Y,X), {T }) we an, using the loal haraterizationof u-ideals Theorem 4.1.1, �nd a net (Tα) ⊂ F(Y,X) with lim supα ‖T −2Tα‖ ≤
‖T ‖ suh that Tα → Φ∗

T (T ) weak∗, where ΦT ∈ HB(F(Y,X),B) is the un-onditional extension operator. From the argument in the proof of Proposi-tion 4.2.5 ΦT is unique and of the form ΦT = IX∗ ⊗ IY . A straightforwardalulation shows that Φ∗
T (T ) = T . Thus the operator Ψ = IX∗ ⊗ IY ∈HB(F(Y,X),W(Y,X)) satis�es () in Theorem 4.1.1.() ⇒ (d). Let K ⊂ X be weakly ompat, ε > 0, and u =

∑∞
n=1 x

∗
n ⊗ xn ∈

X∗⊗̂πX . Assume that K is a symmetri subset of BX . Assume also that 1 ≥
‖xn‖ → 0 and that ∑∞

n= ‖x∗n‖ < ∞. Put [Z, J ] = DFJP(onv{±K ∪ xn : n =
1, ...,∞}). Now Z is re�exive, J ∈ W(Z,X), and ‖J‖ ≤ 1. Find zn ∈ BZ suhthat xn = Jzn. Choose a net (Jα) ⊂ F(Z,X) with lim supα ‖J − 2Jα‖ ≤ ‖J‖suh that Jα → J weak∗ in F(Z,X)∗∗. Sine J∗X∗ is norm-dense in Z∗ [16,Lemma 1.1℄ we an write Jα = SαJ where (Sα) ⊂ F(X,X) (see the proof of[21, Theorem 3.2℄). Now we an �nd an S among the Sα's suh that

ε > |
∞
∑

n=1

〈SJzn, x∗n〉 −
∞
∑

n=1

〈Jzn, x∗n〉 | = |
∞
∑

n=1

〈Sxn, x∗n〉 −
∞
∑

n=1

〈xn, x∗n〉 |and supx∈K ‖x− 2Sx‖ ≤ supz∈BZ
‖Jz − 2SJz‖ ≤ ‖J − 2SJ‖ < 1 + ε.(d) ⇒ (e). Let Y be a Banah spae and let T ∈ W(Y,X) of norm one. Let

C ⊂ BX be ompat and let ε > 0. De�ne K = onv(±(C ∪ T (BY ))) and notethat K ⊂ BX and weakly ompat. By assumption there is S ∈ F(X,X) with
supx∈K ‖x− 2Sx‖ < 1 + ε and supx∈C ‖x− Sx‖ < ε. From this (e) follows.(e) ⇒ (f) and (f) ⇒ (g) are trivial.(g) ⇒ (a). Let Y be a Banah spae, let ε > 0, and hoose a �nite dimen-sional subspae F ⊂ W(Y,X). Put [Z, J,Φ] = DFJP(F ) (see (4.1.1)) and let
G = F ∩ F(Y,X). Then

K =
⋃

T∈BG

T (BY )is a ompat subset of X and of Z. It follows from the assumptions that wean �nd an S ∈ F(X,X) with ‖J − 2SJ‖ ≤ 1 + ε suh that ‖z − Sz‖ ≤ ε forevery z ∈ K. De�ne L : F → F(Y,X) by L(T ) = ST . Then ‖T − L(T )‖ ≤
‖Φ(T )‖‖J − SJ‖ ≤ ε‖T ‖ for every T ∈ G and ‖T − 2L(T )‖ = ‖T − 2ST ‖ ≤
‖Φ(T )‖‖J − 2SJ‖ ≤ (1 + ε)‖T ‖ for T ∈ F . The result now follows from loalharaterization of u-ideals in Theorem 4.1.1.Remark 4.3.3. Let ℓ̂2 be the equivalently renormed version of ℓ2 de�ned by Ojaand denoted F in Example 3 in [25℄. The spae F(ℓ1, ℓ̂2) is not a u-ideal in
W(ℓ1, ℓ̂2) (by [25, Example 3℄ and [27, Theorem 1.2℄ or [28, Proposition 1℄).Sine ℓ̂2 has the AP, F(Y, ℓ̂2) is an ideal in W(Y, ℓ̂2) for all Banah spaes Y(see [25, Example 3℄ or [16, Theorem 3.3℄). Thus statement (a) in Theorem 4.3.2is stritly stronger than statement (a) in Proposition 4.3.5 below. Note that thisimplies that the bound lim supα ‖T − 2SαT ‖ ≤ ‖T ‖ in statement (f) in 4.3.2 isstritly stronger than the bound lim supα ‖Tα‖ ≤ ‖T ‖ in (iii) in Corollary 1.559



in [16℄.Sine ℓ̂2 is re�exive, we also get that F(ℓ̂∗2, ℓ∞) is not a u-ideal in W(ℓ̂∗2, ℓ∞).Hene, also ℓ∞ is an example of a Banah spae X suh that F(Y,X) is an idealin W(Y,X) for all Banah spaes Y , without being a u-ideal for all Y . Also,if for 0 < r < 1, Yr are the equivalently renormed versions of c0 de�ned in [8℄,then F(ℓ1, Yr) is not a u-ideal in W(ℓ1, Yr) for any 0 < r < 1, even though
F(Y, Yr) is an ideal in W(Y, Yr) for all Banah spaes Y and 0 < r < 1 (see lastparagraph in [25℄).Remark 4.3.4. Let X be a Banah spae and let K ⊂ BX be a weakly om-pat subset. If X has the AP, then there is a net (Sα) ⊂ F(X,X) with
supx∈K ‖Sαx‖ ≤ 1 suh that Sα → IX uniformly on ompat sets in X . In-deed, put [Z, J ] = DFJP(onv(±K)). Using [4, Theorem 1℄ we get that BF(Z,X)annot be strongly separated from onv(SαJ). This should be ompared withstatement (d) in Theorem 4.3.2.A Banah spae X is said to have the unonditional metri approximationproperty (UMAP) if there is a net (Tα) ⊂ F(X,X) with lim supα ‖IX−2Tα‖ ≤ 1suh that Tα(x) → x for all x ∈ X . Like u-ideals, also the notion of the UMAP(for separable spaes using sequenes) was introdued by Casazza and Kaltonin [2℄.In Theorem 5.2 in [11℄ it was proved that X has the UMAP if and only if
F(Y,X) is a u-ideal in L(Y,X) for every Banah spae Y .If X is re�exive, then (d) in Theorem 4.3.2 says that X has the UMAP. By[2, Theorem 3.9℄, it follows that in this ase F(Y,X) is a u-ideal in W(Y,X) forall Banah spaes Y if and only if F(X,X) is a u-ideal in W(X,X).From [16, Theorem 3.3℄ and [14, Corollary 2℄ (see also [9, Theorem 5.1℄, [30,Proposition 2.1℄) we get the following proposition.Proposition 4.3.5. Let X be a Banah spae. The following are equivalent.(a) F(Y,X) is an ideal in W(Y,X) for every Banah spae Y .(b) X has the AP.() Every separable ideal Z in X has the AP.(d) F(Y, Z) is an ideal in W(Y, Z) for every Banah spae Y and separableideal Z in X.For u-ideals we have the following result.Proposition 4.3.6. Let X be a Banah spae and assume F(Y,X) is a u-idealin W(Y,X) for every Banah spae Y . Then a losed subspae Z of X has theAP if and only if F(Y, Z) is a u-ideal in W(Y, Z) for every Banah spae Y .Proof. One diretion is immediate from Proposition 4.3.5.For the reverse diretion let Y be a re�exive Banah spae, Z a subspae of
X with the AP, and T ∈ W(Y, Z). Put T̂ = iZ ◦ T , hoose a ompat subset
K of Z, and let ε > 0. By Theorem 4.3.2 there is a net (Sα) ⊂ F(X,X) with
lim supα ‖T̂ − 2SαT̂‖ ≤ ‖T̂‖ = ‖T ‖ suh that Sα → IX uniformly on ompatsets. Sine Z has the AP, there is a net (Uβ) ⊂ F(Z,Z) suh that Uβ → IZuniformly on ompat sets. After swithing to the produt index set we maysuppose that (Uβ) is indexed by the same set as (Sα). Hene we shall write60



(Uα) from now on.Now let u ∈ F(Y,X)∗. Sine Y is re�exive and X has the AP F(Y,X)∗ isisometrially isomorphi to a quotient of X∗⊗̂πY by a theorem of Feder andSaphar [4, Theorem 1℄. Choose a representation ∑∞
n=1 x

∗
n ⊗ yn for u. For thenet Tα = SαiZT − iZUαT , we have

〈u, Tα〉 =

∞
∑

n=1

〈x∗n, (SαiZT − iZUαT )(yn)〉

→
∞
∑

n=1

〈i∗Zx∗n, T yn〉 −
∞
∑

n=1

〈i∗Zx∗n, T yn〉 = 0.Hene Tα → 0 weakly in F(Y,X). Consequently a suitable net of onvex om-binations of Tα onverges in norm to 0. Thus there exist α0, Ŝα0
∈ o{Sα :

α > α0}, and Ûα0
∈ o{Uα : α > α0} suh that ‖Ŝα0

iZT − iZÛα0
T ‖ ≤ ε,

supz∈K ‖Ûα0
(z) − z‖ ≤ ε, and ‖T̂ − 2Ŝα0

T̂‖ ≤ ‖T̂‖ + ε. We get that
‖iZT − 2iZÛα0

T ‖ ≤ ‖iZT − 2Ŝα0
iZT ‖ + 2‖Ŝα0

iZT − iZÛα0
T ‖ ≤ ‖T̂‖ + 3ε.Hene ‖T − 2Ûα0

T ‖ ≤ ‖T ‖ + 3ε, and the result follows from the loal hara-terization of u-ideals Theorem 4.1.1.Remark 4.3.7. If F(Y, Z) is a u-ideal in W(Y, Z) for every Banah spae Yand subspae Z of X with the AP, then F(Y,X) is not neessarily a u-ideal in
W(Y,X) for every Banah spae Y . Indeed, for 1 < p < ∞, hoose a subspae
X of ℓp suh that X does not have the AP (f. e.g. [23, p. 91℄). X annot beomplemented and hene is not an ideal in ℓp. It is probably well known that
F(Y, ℓp) is a u-ideal in W(Y, ℓp) for all Banah spaes Y . (It an be proved byusing that the standard basis of ℓp is 1-unonditional and then Theorem 4.3.2(g).) By Proposition 4.3.6 F(Y, Z) is a u-ideal in W(Y, Z) for every subspae
Z of X with the AP. But X does not have the AP so F(Y0, X) is not even anideal in W(Y0, X) for some Banah spae Y0 by [16, Theorem 3.3℄.Let X be a Banah spae. In the next theorem we want to study when
F(X,Y ) is a u-ideal in W(X,Y ) for all Banah spaes Y . In Theorem 6.5 in[11℄ it was proved that (a) K(X,Y ) is a u-ideal in L(X,Y ) for all Banah spaes
Y is equivalent to () there is a net (Tα) ⊂ K(X,X) with lim supα ‖I−2Tα‖ ≤ 1suh that Tαx→ x for all x ∈ X and T ∗

αx
∗ → x∗ for all x∗ ∈ X∗ whih in turnis equivalent to (e) X has the metri ompat approximation property and Xhas property (wM∗). Note that the equivalene of () and (e) follows fromthe equivalene of (3o) and (2o) in Corollary 4.5 in [29℄ by taking a = 1 and

B = {−2}. In all these statements K(X,X) (resp. K(X,Y )) may be replaedby F(X,X) (resp. F(X,Y )) (see the text after Corollary 4.6 in [29℄).Theorem 4.3.8. Let X be a Banah spae. The following statements are equiv-alent.(a) F(X,Y ) is a u-ideal in W(X,Y ) for every Banah spae Y .(b) F(X,Y ) is a u-ideal in W(X,Y ) for every re�exive Banah spae Y .() F(X,Y ) is a u-ideal in span(F(X,Y ), {T }) for every T ∈ W(X,Y ) andfor every re�exive Banah spae Y .61



(d) For every re�exive Banah spae Y there exists a Hahn-Banah extensionoperator Ψ ∈ HB(F(X,Y ),W(X,Y )) suh that for every T ∈ W(X,Y )there is a net (Tα) ⊂ F(X,Y ) with lim supα ‖T − 2Tα‖ ≤ ‖T ‖ suh that
Tα → Ψ∗(T ) = T weak∗ in F(X,Y )∗∗.(e) For every weakly ompat ompat set K ⊂ X∗ there is a net (Sα) ⊂
F(X,X) with limα supx∗∈K ‖x∗−2S∗

αx
∗‖ ≤ supx∗∈K ‖x∗‖ suh that S∗

α →
IX∗ uniformly on ompat subsets of K.(f) For every Banah spae Y and T ∈ W(X,Y ) there is a net (Sα) ⊂
F(X,X) suh that lim supα ‖T − 2TSα‖ ≤ ‖T ‖ and S∗

α → IX∗ uniformlyon ompat sets in X∗.(g) For every Banah spae Y and T ∈ W(X,Y ) there is a net (Sα) ⊂
F(X,X) suh that lim supα ‖T − 2TSα‖ ≤ ‖T ‖ and S∗

α → IX∗ in thestrong operator topology.(h) For every re�exive Banah spae Y and T ∈ W(X,Y ) there is a net
(Sα) ⊂ F(X,X) suh that lim supα ‖T − 2TSα‖ ≤ ‖T ‖ and S∗

αT
∗ → T ∗in the strong operator topology.Proof. If Y is a re�exive Banah spae, we have isometriesF(X,Y ) = F(Y ∗, X∗)and W(X,Y ) = W (Y ∗, X∗). Using this observation, Theorem 4.3.8, for re�ex-ive spaes Y , follows from Theorem 4.3.2.It now su�es to show that the statements in (a) and (f) hold whenever theyhold for re�exive spaes Y . Indeed, to see that (a) holds we an use the loalharaterization of u-ideals in Theorem 4.1.1 and an argument similar to (g) ⇒(a) in Theorem 4.3.2 (use (4.1.2) instead of (4.1.1)).To see that (f) holds we put [Z,Φ, J ] = DFJP(span({T }) where Y is a Ba-nah spae and T ∈ W(X,Y ). Sine Z is re�exive and J ∈ W(X,Z) there isa net (Sα) ⊂ F(X,X) with lim supα ‖J − 2JSα‖ ≤ ‖J‖ = 1 suh that S∗

α →
IX∗ uniformly on ompat sets in X∗. Finally, write lim supα ‖T − 2TSα‖ ≤
lim supα ‖Φ(T )‖‖J − 2JSα‖ ≤ ‖T ‖ and we are done.Remark 4.3.9. By [16, Theorem 3.4℄ we get that F(ℓ1, Y ) is an ideal inW(ℓ1, Y )for every Banah spae Y . In Remark 4.3.3 we notied that F(ℓ1, ℓ̂2) is not au-ideal in W(ℓ1, ℓ̂2) where ℓ̂2 is the equivalent renorming of ℓ2 onstruted byOja in [25℄. Thus ℓ1 does not ful�ll statement (a) in Theorem 4.3.8.Note that Proposition 2.3 in [22℄ for M-ideals also holds for u-ideals by usingthe loal haraterization of u-ideals in Theorem 4.1.1 instead of the 3-ball-property used in [22, Proposition 2.3℄ (see [13, Theorem 6.17℄, [7, Theorem I.2.2℄or [22, Theorem 2.1℄). Thus if a dual spae X∗ ontains a opy of c0, then
F(ℓ1, Y ) is a u-ideal in W(ℓ1, Y ) whenever F(X,Y ) is a u-ideal in W(X,Y ).If ℓ̂2 is the equivalently renormed version of ℓ2 onstruted by Oja, it followsfrom the preeding paragraph that F(X, ℓ̂2) fails to be a u-ideal in W(X, ℓ̂2)whenever X∗ ontains a opy of c0.Remark 4.3.10. Reall that a u-ideal Z in X is strit if the u-omplement of
Z⊥ in X∗ is a norming subspae for X , i.e. if ϕ(Z∗) is a norming subspae of
X∗ where ϕ ∈ HB(Z,X) is the unonditional Hahn-Banah extension operator.If Y is a re�exive Banah spae and F(Y,X) is a u-ideal in W(Y,X) thenit is in fat a strit u-ideal. This is easily seen from the proof of Proposition62



4.2.5. Indeed, in this ase there is a unique Hahn-Banah extension operator
Φ ∈ HB(F(Y,X),W(Y,X))whih is of the form Φ = IX∗⊗IY . Sine BX∗⊗BY ⊂
W(Y,X)∗ is norming for W(Y,X) the laim follows. Similarly by Corollary4.2.6, if Y is re�exive, then F(X,Y ) is a strit u-ideal in W(X,Y ) whenever itis a u-ideal.If X is a Banah spae it follows from [16, Theorem 3.4℄ and [12, Proposition2.5℄ that F(X,Y ) is an ideal in W(X,Y ) for every Banah spae Y if and only if
F(Z, Y ) is an ideal inW(Z, Y ) for every Banah spae Y and for every separableideal Z in X . For u-ideals we have the following result.Proposition 4.3.11. Let X be a Banah spae. If F(X,Y ) is a u-ideal in
W(X,Y ) for every Banah spae Y , then F(Z, Y ) is a u-ideal in W(Z, Y ) forevery ideal Z in X and Banah spae Y .Proof. Let Y be a Banah spae and let Z be an ideal in X with orrespondingHahn-Banah extension operator ϕ ∈ HB(Z,X). Let G be a �nite dimensionalsubspae of W(Z, Y ) and de�ne the map L : G→ W(X,Y ) by

L(T ) = T ∗∗ ◦ ϕ∗|X , T ∈ G.Let ε > 0. By the loal haraterization of u-ideals, Theorem 4.1.1, thereis an operator M : L(G) → F(X,Y ) suh that M(S) = S for every S ∈
F(X,Y )∩L(G) and ‖S−2M(S)‖ ≤ (1+ε)‖S‖ for every S ∈ L(G). Now de�nean operator N : G→ F(Z, Y ) by

N(T ) = M(L(T )) ◦ iZ .It is straightforward to verify that the operator N ful�lls (d) in Theorem 4.1.1and the result follows.4.4 F(Y, X) as a u-ideal in K(Y, X∗∗) andW(Y, X∗∗)From [17, Theorem 5.1℄ and [19, Proposition 2.10℄ we have the following result.Proposition 4.4.1 (Lima and Oja). Let X be a losed subspae of a Banahspae Y . If F(Z,X) is a u-ideal in K(Z, Y ) for every re�exive Banah spae Z,then X is a u-ideal in Y .The next result tells us more.Proposition 4.4.2. Let X be a losed subspae of a Banah spae Y and let
Z be a re�exive Banah spae. Assume F(Z,X) is a u-ideal in K(Z, Y ) withunonditional extension operator Ψ. Then X is a u-ideal in Y with unonditionalextension operator ψ satisfying

Ψ(x∗ ⊗ z) = (ψx∗) ⊗ zfor all z ∈ Z and x∗ ∈ X∗.Moreover, if the above assumption holds for every separable re�exive Banahspae Z, then ψ∗|Y is in the w∗-losure of F(Y,X) in L(Y,X∗∗).63



Proof. We proeed as in the proof of [18, Theorem 2.3℄. Let Ψ ∈ HB(F(Z,X),K(Z, Y ))be the unonditional Hahn-Banah extension operator and denote the orre-sponding ideal projetion on K(Z, Y )∗ by PΨ. Sine Z is re�exive, it followsfrom [18, Theorem 1.3℄ that there exist {ψi : i = 1, ..., n} ⊂ HB(X,Y ) suh that
Z =

n
∑

i=1

⊕1ZΨψi
, ZΨψi

6= {0} for all 1 ≤ i ≤ n,where
ZΨψi

= {z ∈ Z : Ψ(x∗ ⊗ z) = (ψix
∗) ⊗ z, ∀x∗ ∈ X∗}.Let (Pψi

) be the orresponding ideal projetions on Y ∗. It now follows that for
z ∈ ZΨψi

and y∗ ∈ Y ∗

‖z‖‖y∗‖ = ‖y∗ ⊗ z‖ ≥ ‖(I − 2PΨ)(y∗ ⊗ z)‖ = ‖y∗ ⊗ z − 2PΨ(y∗ ⊗ z)‖
= ‖y∗ ⊗ z − 2(Pψi

y∗) ⊗ z‖ = ‖(y∗ − 2Pψi
y∗) ⊗ z‖ = ‖z‖‖y∗ − 2Pψi

y∗‖.Hene every ψi is unonditional and by uniqueness, see Proposition 4.2.2, theyare all equal. With ψ = ψi we have Z = ZΨψ.Furthermore, if F(Z,X) is a u-ideal in K(Z,X) for all separable re�exive Z,then by Lemma 2.1 in [20℄ there is for every suh Z and T ∈ K(Z, Y ) a net (Tα)in F(Z,X) with supα ‖Tα‖ ≤ ‖T ‖ suh that T ∗
α → T ∗ψ in the strong operatortopology. By boundedness we may also assume that 〈u, Tα〉 → 〈u, T 〉 for all

u ∈ X∗⊗̂πZ.Choose u =
∑

n x
∗
n ⊗ yn ∈ X∗⊗̂πY and assume that ∑

n ‖x∗n‖ = 1 and
1 ≥ ‖yn‖ → 0 and put [Z, J ] = DFJP(onv{±yn : n = 1, ...,∞}). Then Zis a separable re�exive Banah spae and J ∈ K(Z, Y ) with ‖J‖ ≤ 1. Pik anet (Jα) ⊂ F(Z,X) with supα ‖Jα‖ ≤ ‖J‖ suh that J∗

α → J∗ψ uniformly onompat sets. As in the proof of ()⇒ (d) in Theorem 4.3.2 we may assume thateah J∗
α = J∗S∗

α for some Sα ∈ F(Y,X). Now hoose ε > 0 and let zn ∈ BZsuh that yn = Jzn. Sine J∗
α → J∗ψ uniformly on ompat sets, it follows thatthere is an operator S ∈ F(Y,X) suh that

ε > |
∞
∑

n=1

〈J∗S∗x∗n, zn〉 −
∑

n=1

〈J∗ψx∗n, zn〉 | = |
∑

n=1

〈x∗n, Syn〉 −
∑

n=1

〈x∗n, ψ∗yn〉 |.Hene ψ∗|Y is in the w∗-losure of F(Y,X) in L(Y,X∗∗).Remark 4.4.3. If Y = X∗∗ in Proposition 4.4.2 we atually have that ψ∗|X∗∗ isin the weak∗-losure of set F(X,X) in L(X∗∗, X∗∗). In this ase J∗(X∗) andnot just J∗(X∗∗∗) is norm-dense in Z∗ (see the proof of [10, Proposition 2.1℄).Thus we an write eah J∗
α = J∗S∗

α for some Sα in F(X,X) (and not only in
F(X∗∗, X)).Let X be a Banah spae. From Theorem 4.3.1 we have that F(Y,X) is au-ideal in W(Y,X∗∗) for every Banah spae Y if and only if F(Y,X) is a u-ideal in W(Y,X∗∗) for every re�exive Banah spae Y . The next results ontainother haraterizations of these statements.Theorem 4.4.4. Let X be a Banah spae. The following statements are equiv-alent. 64



(a) F(Y,X) is a u-ideal in W(Y,X∗∗) for every Banah spae Y .(b) X is a u-ideal in its bidual with unonditional Hahn-Banah extensionoperator ψ ∈ HB(X,X∗∗) suh that for every Banah spae Y and T ∈
W(Y,X∗∗) there is a net (Sα) ⊂ F(X,X) with lim supα ‖T − 2S∗∗

α T ‖ ≤
‖T ‖ suh that S∗∗

α T → ψ∗T weak∗ in L(Y,X∗∗).() There exists a Hahn-Banah extension operator ψ ∈ HB(X,X∗∗) suh thatfor every Banah spae Y and T ∈ W(Y,X∗∗) there is a net (Sα) ⊂
F(X,X) with lim supα ‖T − 2S∗∗

α T ‖ ≤ ‖T ‖ suh that S∗∗
α T → ψ∗T weak∗in L(Y,X∗∗).(d) For every weakly ompat ompat set K ⊂ X∗∗ there is a net (Sα) ⊂

F(X,X) with limα supx∗∗∈K ‖x∗∗ − 2S∗∗
α x

∗∗‖ ≤ supx∗∗∈K ‖x∗∗‖ suh that
Sα → IX uniformly on ompat subsets of K ∩X.(e) For every Banah spae Y and T ∈ W(Y,X∗∗), there is a net (Sα) ⊂
F(X,X) with lim supα ‖T − 2S∗∗

α T ‖ ≤ ‖T ‖ suh that Sα → IX uniformlyon ompat sets in X.(f) For every re�exive Banah spae Y and T ∈ W(Y,X∗∗), there is a net
(Sα) ⊂ F(X,X) with lim supα ‖T − 2S∗∗

α T ‖ ≤ ‖T ‖ suh that Sα → IXuniformly on ompat sets in X.Proof. (a) ⇒ (b). Let Y be a Banah spae and let T ∈ W(Y,X∗∗). Put
G = span({T }) and let [Z, J,Φ] = DFJP(G). Now Z is re�exive and J ∈
W(Z,X∗∗) is of norm 1. Let Ψ : F(Z,X)∗ → W(Z,X∗∗)∗ be the unonditionalHahn-Banah extension operator. As in the proof of Proposition 4.4.2 we anshow that X is a u-ideal in X∗∗ with ψ ∈ HB(X,X∗∗) unonditional suh that
Ψ(x∗ ⊗ z) = ψ(x∗)⊗ z for every x∗ ∈ X∗ and z ∈ Z. By Theorem 4.1.1 there isa net (Jα) ⊂ F(Z,X) suh that lim supα ‖J−2Jα‖ ≤ 1 and Jα → Ψ∗(J) weak∗.Sine J∗(X∗) is norm dense in Z∗ we an assume that eah Jα = S∗∗

α J where
(Sα) ⊂ F(X,X). Sine ‖T − 2S∗∗

α T ‖ = ‖JΦ(T ) − 2S∗∗
α JΦ(T )‖ ≤ ‖T ‖‖J −

2S∗∗
α J‖ we get lim supα ‖T − 2S∗∗

α T ‖ ≤ ‖T ‖.Let u =
∑

n x
∗
n ⊗ yn ∈ X∗⊗̂πY . Then v =

∑

n x
∗
n ⊗ (Φ(T )yn) ∈ X∗⊗̂πZ.We get that

〈u, ψ∗T 〉 =
∑

n

〈ψx∗n, JΦ(T )yn〉 = 〈Ψ(v), J〉 = 〈v,Ψ∗(J)〉

= lim
α
〈v, S∗∗

α J〉 = lim
α

∑

n

〈x∗n, S∗∗
α Tyn〉 = lim

α
〈u, S∗∗

α T 〉.This shows that S∗∗
α T → ψ∗T weak∗ in L(Y,X∗∗).(b) ⇒ () is trivial.() ⇒ (d) is similar to the proof of () ⇒ (d) in Theorem 4.3.2.(d) ⇒ (e) is similar to the proof of (d) ⇒ (e) in Theorem 4.3.2.(e) ⇒ (f) is trivial.(f) ⇒ (a) is similar to the proof of (f) ⇒ (a) in Theorem 4.3.2.Remark 4.4.5. Note that X = c0 ful�lls Theorem 4.4.4 sine c0 an M∞ spae(see [7℄ p. 306) and [7, Proposition 5.6℄.Theorem 4.4.6. Let X be a Banah spae. The following statements are equiv-alent. 65



(a) F(Y,X) is a u-ideal in K(Y,X∗∗) for every Banah spae Y .(b) X is a u-ideal in X∗∗ with unonditional Hahn-Banah extension ψ suhthat ψ∗|X∗∗ is in the weak∗-losure of the F(X,X) in L(X∗∗, X∗∗).() X is a u-ideal in its bidual with unonditional Hahn-Banah extensionoperator ψ ∈ HB(X,X∗∗) suh that for every Banah spae Y and T ∈
K(Y,X∗∗) there is a net (Sα) ⊂ F(X,X) with lim supα ‖T−2S∗∗

α T ‖ ≤ ‖T ‖suh that S∗∗
α T → ψ∗T weak∗ in L(Y,X∗∗).(d) For every Banah spae Y and T ∈ K(Y,X∗∗) there is a net (Sα) ⊂

F(X,X) with lim supα ‖T − 2S∗∗
α T ‖ ≤ ‖T ‖ suh that Sα → IX uniformlyon ompat sets in X.(e) For every separable re�exive Banah spae Y and T ∈ K(Y,X∗∗) there is anet (Sα) ⊂ F(X,X) with lim supα ‖T −2S∗∗

α T ‖ ≤ ‖T ‖ suh that Sα → IXuniformly on ompat sets in X.Proof. (a) ⇒ (b) follows from Proposition 4.4.2.(b) ⇒ (). Let Y be a Banah spae and let T ∈ K(Y,X∗∗). Put G =span({T }) and write [Z, J,Φ] = DFJP(G). NowZ is re�exive and J ∈ K(Z,X∗∗)has norm one. Let ψ ∈ HB(X,X∗∗) be the unonditional Hahn-Banah exten-sion operator and hoose a net (Sα) ⊂ F(X,X) suh that S∗∗
α → ψ∗|X∗∗ weak∗in L(X∗∗, X∗∗). Sine Z is re�exive, K(Z,X∗∗)∗ is a quotient of X∗∗∗⊗̂πZ by [4,Theorem 1℄ of Feder and Saphar. Now let ε > 0 and let u ∈ X∗∗∗⊗̂πZ. Choosea representation ∑∞

n=1 x
∗∗∗
n ⊗ zn for u suh that ∑∞

n=1 ‖x∗∗∗n ‖‖zn‖ ≤ ‖u‖π + εand write x∗n = x∗∗∗n |X . We get that
| 〈u, J − 2S∗∗

α J〉 | = |
∞
∑

n=1

〈x∗∗∗n , (J − 2S∗∗
α J)zn〉 | = |

∞
∑

n=1

〈x∗∗∗n − 2S∗
αx

∗
n, Jzn〉 |

→ |
∞
∑

n=1

〈x∗∗∗n − 2ψx∗n, Jzn〉 ≤
∞
∑

n=1

‖x∗∗∗n ‖‖Jzn‖ ≤ ‖u‖π + ε.Hene onv(J−2S∗∗
α J) an not be strongly separated from BK(Z,X∗∗). By takingsuessive onvex ombinations we get a new net, also denoted (Sα), suh that

lim supα ‖J − 2S∗∗
α J‖ ≤ 1. Thus

lim sup
α

‖T − 2S∗∗
α T ‖ ≤ lim sup

α
‖Φ(T )‖‖J − 2S∗∗

α J‖ ≤ ‖T ‖.Obviously S∗∗
α T → ψ∗T weak∗ in L(Y,X∗∗).() ⇒ (d). Argue as in the proof of (d) ⇒ (e) in Theorem 4.4.4.(d) ⇒ (e) is trivial.(e) ⇒ (a). Argue as in the proof of (g) ⇒ (a) in Theorem 4.3.2.Remark 4.4.7. In [10, Proposition 2.1℄ it is proved that F(Y,X) is an idealin W(Y,X∗∗) for every Banah spae Y if and only if F(Y,X) is an ideal in

K(Y,X∗∗) for every Banah spae Y . This fails if we replae �ideal� with �u-ideal�. Indeed, if we let X = ℓ̂2, the equivalent renorming of ℓ2 obtained byOja (see Remark 4.3.3), then we have a ounterexample. This proves that thestatements in Theorem 4.4.6 are stritly weaker than those in Theorem 4.4.4.66



The next result shows that F(Y,X) being a u-ideal in W(Y,X∗∗) for allBanah spaes Y is inherited by some subspaes of X .Proposition 4.4.8. Suppose F(Y,X) is a u-ideal in W(Y,X∗∗) for every Ba-nah spae Y and let ϕ ∈ HB(X,X∗∗) be the unonditional Hahn-Banah exten-sion operator. Then F(Y, Z) is a u-ideal in W(Y, Z∗∗) for every Banah spae
Y and ideal Z in X suh that ϕ∗(Z⊥⊥) ⊂ Z⊥⊥.Proof. Let Y be a re�exive Banah spae and let Z be an ideal in X suhthat ϕ∗(Z⊥⊥) ⊂ Z⊥⊥. Denote by iZ : Z → X the natural embedding. Sine
ϕ∗(Z⊥⊥) ⊂ Z⊥⊥, it follows from Theorem 4.2.4 that Z is a u-ideal in its bidualwith an unonditional extension operator ψ ∈ HB(Z,Z∗∗) suh that i∗∗Z ψ∗|Z∗∗ =
ϕ∗i∗∗Z . From Theorem 4.4.6 we have ϕ∗|X∗∗ in the weak∗-losure of F(X,X) in
L(X∗∗, X∗∗). By the Priniple of Loal Re�exivity it is routine to hek that
ψ∗|Z∗∗ is in the weak∗-losure of L(Z∗∗, Z∗∗).Choose a ompat subset K of Z and an operator T ∈ W(Y, Z∗∗). Put
T̂ = i∗∗Z ◦ T ∈ W(Y,X∗∗). By Theorem 4.4.4 there is a net (Sα) ⊂ F(X,X)with lim supα ‖T̂ − 2S∗∗

α T̂‖ ≤ ‖T̂‖ = ‖T ‖ suh that S∗∗
α T̂ → ϕ∗|X∗∗ T̂ weak∗in L(X∗∗, X∗∗). From the �rst paragraph there is a net (Ui) ⊂ F(Z,Z) suhthat U∗∗

i → ψ∗|Z∗∗ weak∗ in L(Z∗∗, Z∗∗). Assume (Sα) and (Ui) have the sameindex set. Thus we will write (Uα) for the net in F(Z,Z). Note that Uα → IZuniformly on ompat sets in Z. Now let u =
∑

n x
∗
n ⊗ yn ∈ F(Y,X)∗ and

Tα = S∗∗
α i

∗∗
Z T − i∗∗Z U

∗∗
α T . From this we get that

〈u, Tα〉 =
∑

n

〈x∗n, (S∗∗
α i

∗∗
Z − i∗∗Z U

∗∗
α )(Tyn)〉

=
∑

n

〈x∗n, S∗∗
α (i∗∗Z Tyn)〉 −

∑

n

〈i∗Zx∗n, U∗∗
α (Tyn)〉

→
∑

n

〈x∗n, ϕ∗(i∗∗Z Tyn)〉 −
∑

n

〈i∗Zx∗n, ψ∗(Tyn)〉 = 0.Hene Tα → 0 weakly in F(Y,X). Consequently a suitable net of onvex om-binations of Tα onverges in norm to 0. Thus there exist α0, Ŝα0
∈ o{S∗∗

α :
α > α0}, and Ûα0

∈ o{U∗∗
α : α > α0} suh that ‖T̂ − 2Ŝα0

T̂‖ ≤ ‖T̂‖ + ε,
supz∈K ‖Ûα0

z − z‖ ≤ ε, and ‖Ŝα0
i∗∗Z T − i∗∗Z Ûα0

T )‖ ≤ ε. We get
‖i∗∗Z T − 2i∗∗Z Ûα0

T ‖ ≤ ‖i∗∗Z T − 2Ŝα0
i∗∗Z T ‖ + 2‖Ŝα0

i∗∗Z T − i∗∗Z Ûα0
T ‖ ≤ ‖T̂‖ + 3ε.Hene ‖T − 2Ûα0

T ‖ ≤ ‖T ‖ + 3ε, and the result follows.In [21℄ Lima and Oja introdued and studied the weak metri approximationproperty. Following Lima and Oja a Banah spae X is said to have the weakmetri approximation property (weak MAP) if for every Banah spae Y andoperator T ∈ W(X,Y ) there is a net (Sα) ⊂ F(X,X) with supα ‖TSα‖ ≤ ‖T ‖suh that Sα → IX uniformly on ompat subsets in X . It is easy to see thatthe MAP implies the weak MAP. In [31, Corollary 1℄ it is shown that the weakMAP and the MAP are indeed equivalent for a Banah spae for whih eitherits dual or its bidual has the RNP.Lima proved in [10℄ that X has the weak MAP if and only if F(Y,X) is anideal in K(Y,X∗∗) for every Banah spae Y . Based on this, it is natural to guessthat an �unonditional version� of the weak MAP ould be the property that for67



every Banah spae Y and operator T ∈ K(X,Y ) there is a net (Sα) ⊂ F(X,X)with lim supα ‖T −2TSα‖ ≤ ‖T ‖ suh that Sα → IX uniformly on ompat setsin X . As remarked below, this property is stritly weaker than the statementsin Theorem 4.4.6.Proposition 4.4.9. Let X be a Banah spae. The following statements areequivalent.(a) For every Banah spae Y and operator T ∈ K(X,Y ), there is a net
(Sα) ⊂ F(X,X) suh that lim supα ‖T − 2TSα‖ ≤ ‖T ‖ and Sα → IXuniformly on ompat sets.(b) For every re�exive Banah spae Y and operator T ∈ K(X,Y ), there is anet (Sα) ⊂ F(X,X) suh that lim supα ‖T − 2TSα‖ ≤ ‖T ‖ and TSα → Tuniformly on ompat sets.() There is a Hahn-Banah extension operator ψ ∈ HB(X,X∗∗) with ‖IX∗∗ −
2ψ∗

|X∗∗
‖ = 1 suh that ψ∗|X∗∗ is in the weak∗-losure of F(X,X) in

L(X∗∗, X∗∗).Proof. (a) ⇒ (b) is trivial.(b) ⇒ (). The proof is essentially that of [10, Proposition 2.5℄.() ⇒ (a) is similar to Theorem 4.4.6 () ⇒ (d).Remark 4.4.10. If ψ ∈ HB(X,X∗∗) is an unonditional extension operator then
‖IX∗∗−2ψ∗|X∗∗‖ = ‖IX∗∗∗−2ψk∗X‖ = 1. To see this, �rst note that 1 = ‖IX∗∗∗−
2ψk∗X‖ = ‖IX∗∗∗∗ − 2k∗∗X ψ

∗‖. Write the identity operator on the dual X∗ as
IX∗ = k∗XkX∗ and the identity operator on bidual X∗∗ as IX∗∗ = k∗X∗kX∗∗ . Bytaking adjoints we obtain from the �rst equality that IX∗∗ = (IX∗)∗ = k∗X∗k∗∗X .It follows that

‖IX∗∗ − 2ψ∗kX∗∗‖ = ‖IX∗∗ − 2IX∗∗ψ∗kX∗∗‖
= ‖k∗X∗kX∗∗ − 2k∗X∗k∗∗X ψ

∗kX∗∗‖ ≤ 1Proposition 4.4.11. Let X be a Banah spae. If every equivalent renormingof X is a u-ideal in its bidual, then X is a strit u-ideal in its bidual.Proof. Let x∗∗∗ ∈ X∗∗∗, x∗ = k∗X(x∗∗∗), and let ε > 0. By [11, Lemma 2.4℄there is an equivalent renorming X1 of X whih is loally uniformly rotund at
x∗ suh that BX ⊆ BX1

⊆ BX(0, 1 + ε). Let | · | be the norm on X1 and let
P : X∗∗∗

1 → X∗∗∗
1 be the u-ideal projetion. Then P (x∗∗∗) = x∗ and

‖x∗∗∗ − 2x∗‖ ≤ |x∗∗∗ − 2x∗| = |x∗∗∗ − 2P (x∗∗∗)| ≤ |x∗∗∗| ≤ (1 + ε)‖x∗∗∗‖whih shows that ‖I − 2π‖ = 1 where π = kX∗k∗X so X is a strit u-ideal in itsbidual.Remark 4.4.12. The statements in Proposition 4.4.9 are stritly weaker thanthose in Theorem 4.4.6. Indeed, as noted in [5℄ (see p. 29) ℓ1 is not a stritu-ideal in its bidual. Thus it follows from Proposition 4.4.11 that there exists anequivalent renorming, ℓ̂1, of ℓ1 for whih ℓ̂1 is not a u-ideal in its bidual. Sine
ℓ̂1 has the AP, Proposition 4.4.9 () is ful�lled with ψ = kℓ̂∗

1
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