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Neurodegenerative Protein Misfolding Diseases (PMDs), such as Alzheimer’s (AD), Parkinson’s (PD) and 
prion diseases, are generally difficult to diagnose before irreversible damage to the central nervous system 
damage has occurred. Detection of the misfolded proteins that ultimately lead to these conditions offers a 
means for providing early detection and diagnosis of this class of disease. In this review, we discuss recent 
developments surrounding protein misfolding diseases with emphasis on the cytotoxic oligomers implicated 
in their aetiology. We also discuss the relationship of misfolded proteins with biological membranes. Final-
ly, we discuss how far techniques for providing early diagnoses for PMDs have advanced and describe 
promising clinical approaches. We conclude that antibodies with specificity towards oligomeric species of 
AD and PD and lectins with specificity for particular glycosylation, show promise. However, it is not clear 
which approach may yield a reliable clinical test first. 
Relevance for patients: Individuals suffering from protein misfolding diseases will likely benefit form 
earlier, less- or even non-invasive diagnosis techniques. The current state and possible future directions for 
these are subject of this review. 
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1. Introduction 
The oligomerization and then fibrillation of misfolded pro-

teins is a common feature of a large group of diseases referred 
to as protein misfolding diseases (PMDs). A subset of these 
diseases is known as neurodegenerative because they cause 
irreversible damage to the central nervous system (CNS). Sev-
eral different proteins may precipitate the clinical symptoms of 
these conditions, several parts of the CNS may be damaged 
and the mechanism of the condition varies (Table 1). The best 
known examples of neurodegenerative PMDs include Parkin-

son’s [1,2] and Alzheimer’s [2-4] diseases (PD and AD, re-
spectively). Prionic diseases are less common and less pre-
dictable than the others but their immediate clinical impact can 
be more dramatic [5,6]. There are also a number of hereditary 
conditions also counted among the neurodegenerative PMDs, 
the most well- known of these being Huntington’s Disease 
(HD) [7]. While the exact nature and relevance of protein 
misfolding is sometimes debated, for instance the relevance 
and nature of Huntingtin (Htt) aggregation in HD [8,9], there 
is agreement that misfolded, mis-aggregated or wrongly pro-
cessed proteins are the unifying feature of these conditions 
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Table 1. Neurodegenerative protein misfolding diseases 
Protein Misfolding Disease Aggregating protein(s) Aetiology Clinical Manifestation Pathogenic mechanism 

AD Aβ, Tau [128] Acquired; age, 
gene variants in-
crease risk, see 
also familial forms 

Dementia, language difficulties, execu-
tive dysfunction, depression, hallucina-
tions, delusions, agitation, apathy, disin-
hibition [128] 

Depositions of Aβ plaques and Tau 
tangles observed. Selective loss of cho-
linergic neurones, loss of synapses and 
neurones in the cerebral cortex, atrophy 
of frontal cortex cingulate gyrus, tem-
poral lobe and parietal lobe [129] 

Cerebral amyloid angiopathy Aβ, BRI2, Cystatin C, 
gelsolin, PrPSc, Transthy-
rin [130] 

Acquired; age, fa-
milial factors and 
familial subtypes 
types identified 

Cerebral haemorrhage, ischemic lesions, 
progressive dementia [130] 

Progressive deposition of amyloid pro-
tein in cerebral blood vessel walls lead-
ing to degenerative vascular changes 
[130] 

PD α-Syn, Tau [131,132] Acquired; head 
trauma, specific 
gene variants known 
to increase risk 

REM sleep behaviour disorder, Exces-
sive daytime sleepiness, hyposmia, 
depression, bradykinesia, rigidity, trem-
ors, mild cognitive impairment, dyski-
nesia, dysphagia, postural instability, 
freezing of gait, orthostatic hypotension 
[131] 

Manifestation of Lewy bodies enriched 
in α-Syn. Loss of dopaminergic neurons 
in the substantia nigra, Neuroinflamma-
tion with reactive gliosis and micro-
gliosis [131] 

Frontotemporal lobar de-
generation 

Tau, TDP-43, FUS, p62, 
ubiquitin [133] 

Major genetic 
contributions 
[134]  

Personality changes, behavioural disin-
hibition, apathy, progressive aphasia 
[53] 

Neuronal loss, gliosis, microvacular 
changes of frontal lobes, anterior tem-
poral lobes, anterior cingulate cortex 
and insular cortex [133] 

Huntington’s disease Htt [135] Congenital, 
monogenic 

Mild psychotic and behavioural symp-
toms, progressive chorea, rigidity, de-
mentia, dystonia, bradykinesia [135] 

Gross striatal atrophy, neuronal loss in 
neocortex, cerebellum, hippocampus, 
substantia nigra, and brainstem nuclei 
[135] 

Familial British dementia, 
and Familial Danish dementia 

BRI2 [136] Congenital, 
monogenic 

Progressive cognitive impairment, spas-
tic tetraparesis, cerebellar ataxa [137] 

Amyloid angiopathy and neurofibrillary 
tangles (NFTs) in the hippocampus 
[136] 

CADASIL, Cerebral auto-
somal dominant arteriopathy 
with subcortical infarcts and 
leukoencephalopathy 

NOTCH3 [138] Congenital, 
monogenic [139] 

Mood disturbances, apathy, subcortical 
ischemic events, migraine with aura, 
cognitive impairment [138] 

Degeneration of smooth muscle cells in 
blood vessels [138] 

Alexander disease GFAP [140] Sporadic; gene 
variants increase 
risk 

Macrocephaly, frontal leukodystrophy, 
palatal tremors, dysphagia, cognitive 
delays, seizures [140] 

Demyelination, Rosenthal fibres in 
astrocytes [141] 

Familial encephalopathy with 
neuroserpin inclusion bodies 

Neuroserpin [142] Congenital, 
monogenic [143] 

Dementia, epileptic, seizures, progres-
sive myoclonus, dysarthria [142] 

Poorly understood, encephalopathy with 
neuroserpin inclusion bodies [142] 

Kuru PrP [144] Acquired; trans-
mitted 

Cerebellar ataxia, choreifrom, athetoid 
movements, nystagmus, dysphasia [144] 

Spongiform change, neuronal loss, as-
trocytic microgliosis, kuru plaques [144] 

Creutzfeldt-Jakob disease  PrP [145] Acquired; trans-
mitted  

Dementia, myoclonus, visual or cerebellar 
disturbance, akinetic mutism, pyramidal 
or extrapyramidal signs [146] 

Spongiform change, neuronal loss, 
gliosis [145] 

Gerst-
mann-Straussler-Scheinker 
syndrome 

PrP [144] Major genetic 
contributions 
[147] 

Cerebellar ataxia, gait abnormalities, 
dementia, dysarthria, ocular dysmetria, 
myoclonus, spastic paraparesis, parkin-
sonism, hyporeflexia or areflexia in 
lower extremities [144] 

Amyloid plaques, severe to absent 
spongiform changes, neuronal loss, 
astrocyte microgliosis, variable neurofi-
brillary tangles [144] 

Fatal familial insomnia PrP [144] Congenital, 
monogenic [148] 

Insomnia, myoclonus, ataxia, dysarthria, 
dysphagia, pyramidal signs, autonomic 
hyperactivation [144] 

Neuronal loss, astrogliosis, hypometab-
olism in the thalamus and cingulate 
cortex [144] 

Progressive supranuclear 
palsy 

Tau [149] Acquired; head 
trauma [150] 

Progressive axial rigidity, vertical gaze 
palsy, dysarthria, dysphagia [149] 

Neuronal loss, gliosis, neurofibrillary 
tangles affecting brainstem, basal gan-
glia, diencephalon [149] 

Chronic traumatic encepha-
lopathy 

Tau, TDP-43 [151] Acquired; head 
trauma [152]  

Learning and memory impairment, ant-
erograde amnesia, executive dysfunc-
tion, depression, apathy, irritability, sui-
cidality, loss of impulse control, demen-
tia, PD, dysarthria [151] 

Atrophy of frontal and temporal cortices 
and medial temporal lobe, atrophy of the 
thalamus, hypothalamus and mammil-
lary bodies. Thinning of the corpus 
callosum, pallor of the substantia nigra 
and locus coeruleus, cavum septum 
pellucidum [151] 

Lytico-Bodig disease Tau [153] Acquired Global dementia, progressive aphasia, 
gaze palsy, parkinsonism, progressive 
supranuclear palsy [153] 

Poorly understood, neurofibrillary tangles 
are found in the brain [153] 

Continued on the next page 

http://dx.doi.org/10.18053/jctres.02.201601.003
http://dx.doi.org/10.18053/jctres.02.201601.003


 Strømland & Jakubec et al. | Journal of Clinical and Translational Research 2016; 2(1): 11-26 13 
 

Distributed under creative commons license 4.0        DOI: http://dx.doi.org/10.18053/jctres.02.201601.003 

Protein Misfolding Disease Aggregating protein(s) Aetiology Clinical Manifestation Pathogenic mechanism 

Meningioangiomatosis Tau [154] Acquired Epileptic seizures, haemorrhagic stroke, 
anginoma, status epilepticus, general-
ized tonic–clonic seizures [155] 

Focal lesion of the leptomeninges and 
underlying cerebral cortex [155] 

Neuronal Ceroid 
Lipofuscinosis 

ATP synthase subunit c, 
saposin A, saposin D 
[156]  

Congenital, mon-
ogenic, subtypes 
exists [157] 

Hypotonia, myoclonic jerks, generalized 
epileptic seizures, developmental regre-
ssion, optic atrophy, macular degenera-
tion, spastic tetraplegia, blindness, severe 
and constant microcephaly, and phar-
maco-resistant epileptic seizures, myoclo-
nia, ataxia, extrapyramidal signs [156] 

Cerebellar and cortical atrophy, loss of 
pyramidal neurons and Purkinje cells, 
reactive astrogliosis [156]  

Argyrophilic grain disease  Tau [158] Acquired; old age 
[158] 

Cognitive decline, dementia, mood 
imbalance, personality changes, behav-
ioural abnormalities [158] 

Argyrophilic grains in trans entorhinal 
cortex, entorhinal cortex, hippocampus, 
presubiculum, temporal cortex, orbito-
frontal cortex, insular cortex, and 
amygdala[158] 

 
[10]. Full recovery has not yet been observed in any patient 
after damage to nerve tissue has begun. Clear and early diag-
nosis of these conditions is therefore essential for informing 
sufferers about their condition, managing the condition where 
this is possible and giving appropriate palliative care. Theoret-
ically, early diagnosis might help guide choice of treatment in 
cases where effective options are available. 

The desire for both prompt diagnosis and improved medical 
treatments has thus encouraged research into misfolded protein 
aggregates and their relative PMDs. Diligent research has 
identified and characterised many of the individual proteins 
involved in these conditions. For example, β-amyloid (Aβ) [11] 
and Tau in AD [12], α-Synuclein (α-Syn) in PD [13,14] and 
Htt in HD [7] are now largely accepted to have key roles in 
these diseases (For other protein involvement in given diseases, 
see Table 1). Despite this, tests for diagnostic compounds 
(biomarkers) are not in routine use for identifying any of the 
non-hereditary PMDs. For instance, when assessing patients 
for AD, clinicians have to rely on an imaging or visual data 
regarding symptoms and standardized tests that are sometimes 
combined with MRI [7]. Biopsies for detecting changes in the 
CNS are considered invasive procedures that are generally 
unsuitable for elderly patients, and thus they are usually only 
used for verification of the diagnosis post mortem [15]. Im-
portantly, tissue damage precedes the formation of the charac-
teristic insoluble fibrils that are detected in brains of AD suf-
ferers. Such fibrils are not cytotoxic and their formation corre-
lates only poorly with disease progression [16]. This suggests 
that other agents, such as oligomers of the same misfolded 
proteins as the fibrils, are responsible.  

The common features of neurodegenerative PMDs, in 
which only one or two proteins appear to be defective, or at 
least the processing of which is defective, is an attractive target 
for translational research aiming to detect the condition in its 
early stages. One possible diagnostic tool is therefore a detec-
tion system for the activity of proteases that are also involved 
in the progression of the disease, such as caspase-8 activation 
in the case of PD [17] and β- and γ-secretase in AD [18,19]. 
One problem with this approach is that such processes do not 

have a unique association with the diseases in question. An-
other approach would be to focus on the individual misfolded 
proteins at an early stage, rather than the insoluble plaques and 
reduction in tissue volume associated with advanced stages. 
Sensitive tools are required for the early detection of condi-
tions where the underlying biochemical changes may be small 
or difficult to resolve. For example, only minute quantities of 
transmissible misfolded prions are required to precipitate 
Creutzfeldt-Jakob Disease (CJD) in humans [6], bovine spon-
giform encephalopathy (BSE) and scrapie in sheep [20]. Nor is 
it necessarily straightforward to detect changes in protein 
folding, aggregation or processing in bodily fluids. Despite 
these challenges, methods for monitoring such changes in the 
relevant proteins of PMDs are of clinical interest. In this re-
view, we explore recent advances in translational research fo-
cused on detecting misfolded proteins in the context of early 
pre-fibril misfolding. We discuss these advances from both a 
research and a clinical perspective. We conclude with a for-
ward-looking view on possible research directions.  

2. Protein misfolding, oligomerisation and toxicity 
Proteins pass through a fundamental process called folding 

in order to obtain their functional structure [21-23]. Folding is 
usually spontaneous under physiological conditions, and oc-
curs at rates that depend upon the protein’s size [24]. This 
process takes a couple of hundred milliseconds for most pro-
teins [25]. Early steps in protein folding include the clustering 
of hydrophobic amino acids and the expulsion of water, the 
subsequent compaction of the polypeptide chain and consoli-
dation of secondary structure. Then, a re-ordering and fine- 
tuning of the structural elements takes place to afford the final 
tertiary structure. The folding process needs to make particular 
intra-fold contacts both in its early and late stages. All these 
steps are affected by the protein’s environment. Factors that 
affect the outcome of a folding process and aggregation be-
haviour include solvent conditions, the presence or absence of 
cofactors and metal cations [26], chaperones or other dissolved 
factors, crowding from other proteins or macromolecular ag-
gregates, spatial organization and post-translational modifica-
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tion (reviews [27,28]). The fact that folding is influenced by 
many factors is also reflected in the cell biology of the PMDs. 
The state of the prion protein associated with CJD is both 
translocated into the ER and glycosylated differently than its 
non-pathogenic counterparts [29,30]. Copper and zinc ions are 
implicated in both AD and PD, as there is evidence that they 
influence disease onset and progress in animal models and 
have been highlighted in clinical studies [31]. It is not entirely 
clear whether Cu2+ and Zn2+ are only involved in the misfold-
ing of proteins or also in the aggregation of those proteins into 
fibrils [32].  

Amyloid fibrils are widely recognized as a result of protein 
misfolding and have been observed both in vitro and in vivo. 
They are repetitive sheets in which monomers are joined by 
hydrogen bonds across β-strands. The long sheets are slightly 
twisted, with varying dimensions and crossover distances de-
pending on the polypeptide involved. Cryo-electron micros-
copy has indicated that in Aβ the fibril is approximately 4 nm 
and 11 nm at the narrowest and widest points respectively and 
has a twist crossover distance that has a mean of about 100 nm. 
Comparative work on fibril morphology from Aβ and α-Syn 
indicates that they are similar, but with a degree of polymor-
phism [33-35]. A considerable range of proteins and protein 
fragments can form fibrils, suggesting that the barrier to for-
mation of these states is more likely to rest with time and 
physico-chemical conditions than amino acid sequence.  

Importantly, the extent of fibril formation does not appear to 
correlate with disease progression and naturally occurring mu-
tants associated with the early onset of PMDs do not produce 
more fibrils [16]. For these reasons, attention has been given to 
the aggregates preceding fibril formation. It has been proposed 
recently that the toxic oligomers are, just like fibrils, a general 
phenomenon that forms relatively independently of protein 
sequence [36]. The oligomerisation of other proteins such as 
calcitonin [37], α-Syn [38], Syrian hamster prion protein [39], 
GAP-43 and BASP1 [40] is consistent with this. The oligo-
mers have since been shown to display significant toxici-
ty-related effects relative both to monomers, fibrils and pro-
to-fibrils [41,42]. Furthermore, rates of their formation are 
better able to account for disease-promoting mutations 
[16,37,42,43]. It has also been suggested that their toxicity is 
linked to membrane damage through a pore-like action [44] 
and a range of pre-fibrillar oligomeric structures from a several 
proteins, including Aβ, Htt, prion proteins, and α-Syn, has 
since been investigated in this context [39,43,45,46]. 

3. Misfolded proteins and the lipid profile of the 
membrane 

It is well established that membrane or peripheral proteins 
may affect membranes and vice versa (review [47]). The li-
pid-dependent, differential processing of APP to Aβ is one 
particularly relevant example of this [48]. Moreover, PMD 
proteins and notably their oligomeric states have considerable 
effects on membrane integrity. Furthermore, tissue deposits of 
amyloid fibrils contain lipids [49]. Imaging studies on pre- 

fibrillar oligomers reveal a range of structures, some of which 
may have a pore-like morphology (review [50]). These are 
referred to as amyloid pores or sometimes annular oligomers 
[51]. Whether such oligomers will go on to form mature amy-
loid fibrils exclusively is not clear, as there exists reports in 
which pore-like oligomers do not appear to undergo fibrilla-
tion [52]. Certain drugs can arrest fibril but not oligomer for-
mation [53]. Even though the presence of non-fibrillar, pore- 
like oligomers correlates better with toxicity and disease-pro-
moting mutants than fibrils, their properties, mechanism of 
action and what promotes or suppresses their formation re-
mains poorly understood.  

Two competing hypotheses that may explain the effect of 
oligomers on the membrane are being researched at the mo-
ment. The first suggests that oligomer toxicity is a direct result 
of pore formation. Examples of oligomers that may effect pore 
formation include those generated by islet amyloid polypeptide 
[54-57], poly-glutamine [58], transthyretin [59], prion protein 
fragment [60], Aβ [61], β2-microglobulin [62] and serum am-
yloid A [63]. Porosity was indicated by ionic flux across re-
constituted membranes, which compromises cellular homeo-
stasis and membrane potential [61]. The second hypothesis 
being tested at present is that the oligomers cause membrane 
thinning rather than leakage, through a distinct pore [42,64,65]. 
In this scenario, leakage through the membrane is independent 
of the pore-like aggregate morphologies and can take place 
through any area of the membrane that is sufficiently perturbed 
by these aggregates. Membrane thinning involves the increase 
of area per lipid and intercalation of polypeptides and water 
molecules between head groups in order to avoid energetically 
costly vacuums in the lateral lipid packing. This has the effect 
of lowering the dielectric barrier and allowing ion leakage 
through the membrane [10,66].  

Experimental determination of leakage through a pore for-
mation or through thinning of the membrane is not stra-
ightforward. Regardless of the particular mechanism, the oli-
gomers convey toxicity by perturbing the integrity of the 
membrane. However, the membranes may in turn affect the 
oligomers, too. Aggregating, oligomeric peptides have been 
shown to have preferential binding to particular membrane 
components, in particular sphingolipids and cholesterol. Sph-
ingolipids and cholesterol are found in patches termed the liq-
uid ordered phase that are often referred to as lipid rafts [67], 
though controversy about this link exists [68]. Glycosphin-
golipids and gangliosides have affinity for the Aβ peptide in 
AD and α-Syn interacts with GM1 and GM3 gangliosides 
[69-74]. PrP has been associated with sphingolipid signalling 
platforms and bind to sphingomyelin, GalCer, GM1 and GM2 
[70,75,76]. A strong interaction with sphingolipids may reflect 
the amount of amyloidogenic protein found in possible lipid 
raft areas of the extracellular leaflet of the plasma membrane 
[49]. Amyloidogenic proteins such as α-Syn also interact more 
strongly with anionic lipids phosphatidylglycerol and phos-
phatidylserine, found mainly in the cytoplasmic leaf 
[45,77-79]. Model systems comprising the anionic lipids car-
diolipin, phosphatidic acid or phosphatidylglycerol leak more 
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on contact with oligomers [45]. 
The role of cholesterol in membrane behaviour has been 

researched in some depth [80-88] but its role in oligomer for-
mation and amyloidogenesis remains disputed and controver-
sial [89]. Cholesterol has been shown to bind to Aβ pro-
to-fibrils, but how these interactions influence oligomerization 
and later fibrillogenesis remains unclear [90-92]. There is evi-
dence that cholesterol can have a stabilizing effect on mem-
brane permeability as it reduces the leakage induced by α-Syn 
[46]. The role of cholesterol in the proteolysis of APP to give 
Aβ is better understood. Proteolysis of APP is inhibited by the 
group of cholesterol synthesis inhibitors known as statins 
[93,94]. In PD a depletion of cholesterol leads to a decreased 
level of α-Syn in membrane fractions in neuronal cell cultures 
and mouse brains [95]. Inhibition of cholesterol synthesis also 
reduces the levels of α-Syn in membranes, but the opposite 
applies to cholesterol supplementation in neuronal cells [96]. It 
has also been suggested that oxidised cholesterol accelerates 
aggregation of α-Syn [97].  

This evidence may be at odds with the observation that 
cholesterol protects artificial membranes against oligomer- 
induced leakage [46] as it fails to provide a direct connection 
to the proposed toxicity mechanism. Polyunsaturated fatty 
acids may have an inhibitory role in oligomerization. The pre-
sence of docosahexaenoic acid (DHA) suppresses the toxicity 
of Aβ towards SH-SY5Y cells by interfering with its aggrega-
tion [98,99], and appears to have a neuro-protective role in 
murine models for AD [100]. However, DHA can also affect 
the progress of some cells through the cell cycle [101]. The 
notion that saturation levels of the fatty acid residues (FARs) 
of phospholipids in membranes play a role in modulating the 
rate of oligomerization agrees with measurements from model 
systems that indicate that saturated fatty acid residues lower 
the energetic barrier to aggregation [102].  

Further work is required to understand the complexities of 
the relationship between membrane components and protein 
misfolding and oligomerization. It is possible that certain li-
pids or other membrane components may be used as diagnostic 
compounds for more reliable early-stage detection of neuro-
degenerative PMDs in combination with detection of the oli-
gomeric proteins, should the links between lipid species and 
oligomerization prove robust. 

4. Clinical detection of protein aggregates  

There is no single rigorous assay for diagnosis of any PMD. 
The mounting evidence for the involvement of toxic oligomers 
in neurodegeneration confers an increasing importance on de-
tection methods for basic and translational research, and in 
clinical practice. As a result, great research effort is being fo-
cused on developing clinical methods for detecting the main 
pathological unit of AD. At present, diagnosing AD includes a 
test of cognitive impairment (The Mini Mental State Exam or 
Folstein test), in some cases supplemented by CSF assays for 
phosphorylated tau and Aβ, MRI for brain volume and PET 
scans for Aβ plaques (or glucose metabolism) in the brain 

[103].  
An overview of methods for clinical detection of protein 

aggregates is shown in Table 2. Generally, approaches for the 
identification of protein aggregates can be divided into three 
classes of method: (i) visualization of protein aggregates in 
biopsies, (ii) monitoring of marker peptide in bodily fluids, 
and (iii) visualization of protein aggregates in vivo using im-
aging techniques. Most of the methods discussed here concern  
Aβ peptide detection in AD, as this field has advanced the fur-
thest. The majority of approaches rely on antibodies to confer 
specificity to the detection, whether it occurs in biopsies, 
bio-fluids or in vivo. A considerable number of different anti-
bodies have been developed in the last two decades, many of 
which have at least some degree of specificity towards the 
proteins and aggregation-states involved in neurodegenerative 
PMDs. An overview of some of their properties is shown in 
Table 3a. 

The visualization of amyloid plaques in samples from biop-
sies is a well-established means for qualitative detection of 
mature fibrils. There are several standard stains, such as Congo 
red and fluorescent thioflavins [104], as well as immuno-
histology stains based on antibodies [105]. There have been 
several recent advances in the development of fluorescent 
probes based on luminescent conjugated oligothiophenes 
(LCOs) which can be used for investigating the nature of these 
protein deposits [106,107]. LCOs are able to illuminate more 
protein deposit plaques than other fluorophores [108]. Moreo-
ver, the emission spectra of LCOs are dependent on the type of 
predominant peptide present. This makes it possible to distin-
guish e.g. AD-associated aggregates from other types of ag-
gregates [109,110]. Another new and promising way of de-
tecting of amyloid plaques is the discovery of photo-induced 
electron transfer probes that can be used to detect Aβ aggre-
gates without the need of a washing step [111]. These recent-
ly-developed fluorescent probes represent a new opportunity in 
direct and sensitive identification of protein aggregates, espe-
cially in complex biological environments.  

The second class of methods for the detection of proteins 
and their aggregates detects molecules in bio-fluid samples, 
avoiding the need for biopsies. These clinical methods rely on 
the detection of marker peptides in cerebrospinal fluid (CSF). 
For instance, detection of Aβ or tau protein in AD has been 
shown to have predictive power over which individuals will go 
on to develop the disease [112]. Detection of the relevant mo-
lecular species in CSF is relatively straightforward and a broad 
array of methods exists for its detection. It is possible to detect 
and quantify tau peptides in the lower ng/mL range using mass 
spectrometry on samples acquired directly from the CNS [12], 
although this not in routine clinical use yet.  

A more common method is the use of enzyme-linked im-
muno-sorbent assays (ELISA) [113]. For example, antibodies 
2G3 and 21F12 are used for the detection of C-terminal amino 
acids of Aβ peptides 1-40 and 1-42, respectively, in diagnosis 
of AD [114]. The same peptides can be detected by new elec-
trochemical detection immuno-sensors. These biosensors are 
based on immobilization of antibodies on gold nanostructured  
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Table 2. Clinical detection of protein aggregates 

Proteopathy Misfolding/oligomerizing  
protein Current methods for clinical detection 

AD Aβ peptide Decrease of marker peptide concentration in CSF, detected by ELISA, immu-
no-sensors [112,113,115] 

  MRI with plaque selective magnetic nanoparticles – hollow manganese oxide 
nanoparticles coated with antibody or curcumin-conjugated magnetic nanoparti-
cles [123] 

  Fluorescent labelling of biotic samples with luminescent conjugated oligothio-
phenes [106,107,109-111] 

  Late phase PET imaging of cerebral fibrillary Aβ peptide with 11C-Pittsburgh 
compound B as a PET ligand [159,160] 

 Tau protein Ratio of phosphorylated Tau in position 396 and 404 in CSF could discriminate 
AD from other dementia; Identification by ELISA [161] 

  Identification of phosphorylated biomarkers pTau181, pTau199 and pTau231 in 
CSF by immunoassays [162-167] 

Cerebral amyloid angiopathy Aβ peptide Early phase PET imaging of cerebral fibrillary β-amyloid with 11C-Pittsburgh 
compound B as a PET ligand [168-170] 

PD α-Syn Detection of α-Syn aggregates in biotic samples by imunohistochemical or 
fluorescent staining [171-173] 

  Multi-parametric fluorescent pyrene-labelling of biotic samples [174] 

  Detection of α-Syn oligomers in human plasma or red cells by ELISA [175,176] 

Huntington’s Disease Htt Loss of brain volume observed by MRI with combination of genetic test – iden-
tification of abnormal CAG expansion in exon1 of htt gene [177-179] 

Variant Creutzfeldt-Jakob disease Prion protein PrP Whole blood immunoassay [180-182] 

Other prion diseases: 
Gerstmann-Sträussler-Scheinker disease, fatal 
familial insomnia, kuru, Creutzfeldt-Jakob Disease  

Prion protein PrP Conformation dependent immunoassays in biopsy samples[183,184] 

  Analysis of 14-3-3 and PrPSc expression pattern in CSF [185] 

  Detection of PrPSc in urine by immunoassay [186,187] 

 
screen-printed electrodes with cyclic voltammetry detection 
[115], or with difference pulse voltammetry detection with 
immobilization on gelsolin coated electrodes that selectively 
binds Aβ peptides [116]. Another interesting approach com-
bines ELISA and surface plasmon resonance to provide greatly 
enhanced detection, using gold nano-particles conjugated with 
antibodies [117]. The role of the nano-particles in this assay is 
to increase the change in refractive index response that each 
immobilized molecule produces. This provides detection limits 
as low as single molecules. This technique is also designed to 
handle precipitates as part of the detection assay, which may 
be an advantage when working with oligomerization states.  

The last group of methods allow direct observation of amy-
loid plaques in vivo. This direct observation is appealing for 
clinical use, but is not yet practiced routinely. Methods like 
magnetic resonance imaging (MRI), positron emission tomog-
raphy (PET) [118] and diffusion-tensor imaging [119,120] are 
being developed for direct diagnosis of amyloid plaques based 
on visual inspection of advanced imaging output. However, all 
of these methods are based only on qualitative approaches and 
rely on detecting visible changes in the CNS. There has been 
some work on quantification of amyloid loads based on PET 
image analysis but with very limited results [118,121]. More 
recent advances in MRI are based mainly on the use of parti-
cles that allow localization of particular plaques. For example 

it is possible to use curcumin-conjugated magnetic nano- par-
ticles [122] or hollow manganese oxide nano-particles conju-
gated with a particular antibody [123]. Both of these nano- 
particle methods increase the specificity and sensitivity of the 
techniques towards the protein aggregates. However, these 
approaches are not in routine use and may not satisfy the need 
for diagnosis before irreparable damage to tissue has occurred. 

5. Concluding remarks and future perspectives 

The methods available for detecting proteins associated 
with neurodegenerative PMDs shows some promise for clini-
cal use. However, many of these methods make no distinction 
between monomers or oligomers. Thus, the preparation of di-
agnostic tools that monitor the advancement of oligomeriza-
tion at an early stage is still under development.  

Antibodies are one of the most well established and still 
promising directions for developing diagnostic tools. Antibod-
ies with ligand conformation sensitivity could be used to build 
one or more specific standardized clinical ELISA assays for 
detection of misfolded oligomers. The reliability of such im-
muno-based approaches is limited by the quality of the anti-
body involved. Notably, antibody-based detection of the mis-
folded oligomers, for instance Tau and Aβ, has advanced in 
recent years (see Table 3a), indicating that standard assays 
based on immunology may indeed be made sensitive to oligo-
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meric forms. Ensuring that there is a low limit of detection in a 
complex bio-fluid is also a concern, for ensuring early diagnosis. 

Another approach could be the use of native mass spec-
trometry for detecting protein aggregates. It is a technique 
which, in contrast to other types of mass spectrometry, can 
detect non-covalent interactions between proteins [124]. This 
technique is also able to detect protein complexes across a 
wide range of molecular masses and handles heterogeneous 
samples well. All these features are attractive when aiming to 
detect oligomers in complicated samples such as bio-fluids. 
Native mass spectrometry has been used successfully to inves-
tigate the assembly of virus capsid, directly from crudely puri-
fied culture extract [125]. In principle, it is also possible to 
detect the oligomers discussed above. An overview of recent, 

promising use of mass spectroscopy in neurodegenerative 
PMDs can be found in Table 3c. 

The detection of protein glycosylation may be a means for 
detecting prionic diseases at an early stage (See Table 3b for 
references). This approach relies upon detailed knowledge of 
the glycosylation chemistry involved. Although mass spec-
trometry may be helpful in identifying prion protein glycosyla-
tion species, the most promising tool at present are lectins. 
These are saccharide-binding proteins that can detect differ-
ences in glycosylation with some specificity and made a dis-
tinction between normal and disease-associated prionic protein 
successfully [126]. One limit to this approach is the ubiquity of 
glycosylation; it may not be clear which protein the sugars are 
actually attached to. For these reasons, false positive results 

 

 
Table 3a. Oligomeric protein states detected by antibodies 

Aggregating protein Antibody Specificity and epitope Cross-reactions Detection Methods and References 

Aβ-peptide 4G8 Recognizes residue 18-23 in Aβ sequence, 
in its fibrils and fibrillary oligomers form  

α-Syn, IAPP, Tau These cross-reactions 
are reported to be fibril-associated, not 
sequence dependent 

WB, IHC, IP, ELISA [188-190] 

 A11 Prefibrillar oligomers, not monomers or 
fibrils 

Weakly detects annular oligomeric con-
formations from α-Syn and IAPP 

WB, IHC [189,191] 

 6E10 Amino acid 4-9 in Aβ sequence Detects monomers, oligomers and fibrils, 
but does not cross-react with α-Syn or 
IAPP 

WB, IHC, IP, ELISA, EM [189,192] 

Tau T22 Human Tau oligomers; conformationally 
specific epitope 

Reported to have no significant cross-rea-
ction with monomers or fibrils of Tau, or 
with α-Syn, IAPP, or Aβ in any form 

WB, IHC, IP ELISA [193-195] 

 TOMA Human Tau oligomers; conformationally 
specific epitope 

No cross-reaction with Tau monomers or 
fibrils, or with Aβ or α-Syn 

WB ,IHC, ELISA [193] 

α-Syn Syn211 Amino acid 121-125 of human α-Syn 
sequence 

Does not cross-react with mouse or rat 
subtypes. Does not cross-react with β-Syn 
or β-Syn.  

WB, IHC, IP, IF [164] 

 
 

Syn-O2 Oligomers, weakly recognizes residue 
127-140 of the α-Syn sequence 

Does not detect monomers, but detects 
some fibril 

WB, IP, IHC [196,197] 

Huntingtin (Htt) 3B5H10  PolyQ in a compact β-strand configuration Recognizes diseased-associated Htt from 
human and murine origin; no detectable 
binding to normal Htt 

WB, IHC, IP, ELISA [8,198-200] 

 MW1 PolyQ domain of Htt exon 1 Recognizes diseased-associated Htt from 
human and murine origin; no detectable 
binding to normal Htt 

WB, IHC [200,201] 

Prion protein PrPC 
and PrPSc 

6D11 PrpC, human origin; epitope within resi-
dues 93-109 

Also detects PrPSc. Cross-reacts with 
prion proteins from cervines, ovine, mu-
rine and cricetine 

WB, IHC, ELISA, IF [202,203] 

 G-12 Amino acid 217-232 human sequence  Murine, human WB, IP, IF and ELISA [204] 

 PRC5 Needs Ala in position 136 PrP from murine, cervines, bovine, ovine, 
equine, cricetine, mustelines, sciurine, 
primates 

WB [205] 

 D18 PrPC, conformationally specific epitope 
related to Helix 1, residues 130-160 

Murine, human, recognises PrPC Only WB [206-209] 

 ICSM18 PrPC, conformationally specific epitope 
related to Helix 1, residues 130-160 

Murine, human, recognises PrPC Only WB [207-209] 

 6H4 PrPSC conformationally specific epitope 
related to Helix 1, residues 130-160 

Also recognises PrPC WB [207-210] 
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Table 3b. Identification of prion protein glycosylation states 

Prion Protein Glycosylation state Detection method Sample type References and notes 

Preferential detection of aglycosyl 
and mono-glycosyl 

Antibody PRC7; conformationally specific ep-
itope. Residues at position 154, 166, 185 and 
197 are involved. 

Extract, WB The epitope is glycosylation-dependent and resi-
dues 154 and 185 are involved [205] 

Sialylated and O-glycosidically 
linked glycans 

Lectin proteins affinity for specific glycosyla-
tions 

Tissue, IHC Antibodies for PrP (MAB1562 and AB5058) 
used to ensure that lectins actually detected prion 
proteins [126] 

Glycoproteome of prion protein 
variants 

708 proteins or protein variants assessed Murine plasma samples Combined MS-affinity chromatography based 
approach [211] 

 
Table 3c. Identification of oligomeric states by mass spectrometry 

Protein Oligomeric state detected Sample type MS detection method sub-type Reference 

α-Syn Differentiates between oligomers  
and monomers 

Prepared from isolated protein Hydrogen-Deuterium Exchange, ESI-MS [212] 

α-Syn Monomers and oligomers Prepared from isolated protein ESI-ion mobility mass spectrometry [213] 

α-Syn Differentiates between oligomers  
and monomers 

Conditioned cell media, similar in  
complexity to Cerebrospinal Fluid 

Combined MS-antibody based approach [214] 

APP, Prion Protein, DJ-1 Monomers and oligomers Cerebrospinal Fluid Tandem MS/MS [215] 

Prion Protein Differentiates between PrPC  
and PrPSc 

Samples prepared from brain  
homogenate 

Quantitative LC–MS/MS [216] 

 
may be a significant problem unless the detection method can 
also identify the protein involved clearly. Fortunately, many 
well-stablished antibodies may help solve this problem (Table 
3a), although extensive glycosylation may sometimes obscure 
the epitopes involved.  

The problems inherent in the types of detection discussed 
here—low concentration of target protein, subtle differences 
between correctly and incorrectly folded and aggregated pro-
teins, heterogeneous protein modifications and strong back-
ground signals when detecting in a complex biological envi-
ronment—do not have obvious solutions. However, it seems 
likely that protein affinity-based techniques (antibodies, lectins) 
can successfully be combined with instrument-based detection 
methods, such as mass-spectrometry, fluorescence, and surface 
plasmon resonance to produce sensitive detection methods 
able to identify both the aggregation state and modification 
state of the protein in question. Moreover, there is reason to 
believe that early detection can give the patient time to benefit 
from emerging medical technologies such as antibody-based 
inhibition of oligomer formation [127]. 
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