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Abstract

Parkinson’s disease is known as a progressive neurological disease characterized by motor symptoms.
The motor symptoms are caused by neurodegeneration that causes dysfunctionalities in molecular
functions crucial for movement. Network analysis contributes to identifying new biomarkers of
diseases by considering the interactions between the disease-specific genes and proteins. This study
focuses on a differential weighted gene co-expression network analysis of transcriptomics data,
comparing data from healthy persons with Parkinson’s disease patients. This analysis method
constructs networks and identifies modules that can be compared with different evaluation and
analysis methods, to identify dysregulated pathways and causative genes of Parkinson’s disease.
This disease is a complex disease by multiple variations of symptoms with each individual, hence
personalized medicine is highly relevant.
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1 Introduction

Parkinson’s disease(PD) is a progressive neurodegenerative disorder influenced by both environ-
mental and genetic factors. Age is one of the main risk factors and the average age of onset is
55 years [1]. The symptoms of this disorder are thought to be caused by neurodegeneration of
dopaminergic neurons in the brain, which inhibits signaling for movement and makes the daily
chores more difficult. Many biological factors are found to be associated with PD: dopaminergic
neurons, misfolded proteins, Lewy Bodies(LB), and mitochondrial dysfunctions.

Based on this knowledge a differential co-expression analysis with RNA data from PD patients
and controls was carried out to find dysregulated pathways and genes that might underlie PD.
The co-expression networks were constructed using weighted gene co-expression network analy-
sis(WGCNA) methodology, where clusters of highly connected genes in the networks are identified
and further studied by functional enrichment studies.

The combination of different symptoms with each patient, unknown underlying biology, and the
complexity of PD makes personalized treatments(P4 or ”personalized” medicine) highly relevant.
This study of functionally enriched pathways and causative genes can contribute to the predictive
part of P4 medicine.

1.1 Parkinson’s Disease

Parkinson’s disease(PD) is the second most common age-related progressive neurodegenerative
disease after Alzheimer’s disease [1], and the most common neurodegenerative movement disorder
[2]. The incidents of PD increases markedly with age, where the average age of onset is 55 [1].

Motor symptoms of PD are thought to be caused by neurodegeneration of dopaminergic neurons
in the substantia nigra pars compacta (SNpc)(Figure 1). This region of the brain shows more
pathological changes with age than any other region [3]. Some characteristics of PD are higher
degree loss of dopaminergic neurons and the different patterns of neuronal loss compared to other
aging diseases.

Most of the cases of PD are of the “sporadic”(idiopathic) PD, where there is no apparent genetic
linkage. Approximately 10% of the PD cases are of the ”inherited”(monogenic) form of PD [4]. The
patients with ”inherited” PD experience symptoms earlier than the patients with ”sporadic” PD.
The symptoms of early-onset PD(EOPD) are also thought to be caused mutations in the genes
which affect protein metabolisms and mitochondrial functions [3]. Studying genetic risk factors in
PD has provided insight into possible dysregulated pathways in PD [2].

Pathogenetic study of PD can be studied by transcriptomics(genome-wide expression profiling)
[2]. A main goal of transcriptomics study in diseases is to identify differentially expressed genes by
comparing multiple samples by using microarrays or RNA-sequencing(RNA-seq). This can then be
used to identify over-represented functional pathways that may contribute to the disease process.

At the cellular level, neurodegenerative diseases are characterized by extensive oxidative damage
to lipids, proteins, and DNA, which can lead to cell death by a variety of different mechanisms [5].
PD is also characterized by misfolded proteins that lead to toxicity and cell death. There is also
a correlation between the age and ability to process the misfolded proteins. Excess misfolded
proteins provoke an already compromised proteasome and become a proteotoxic insult to cells [1].
Protetoxicity is described as damage to proteins caused by chemical and physical agents [6].
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Figure 1: This figure illustrates where neurodegeneration takes place in a brain with the difference
of neurotransmitters in the signaling of movement between normal patients and PD patients, and
their symptoms are also described. Illustrations created with BioRender.com

1.1.1 Symptoms

Increased levels of dopamine weaken the signals for movement and cause the motor symptoms
observed in PD patients. The motor symptoms that characterize PD are involuntary shakiness,
stiffness in muscles, and less movement. Tremor associated with PD(“Pill rolling”) is described as
involuntary shakiness at rest that decreases with voluntary movement. This is one of the most com-
mon reasons for medical consultation. Rigidity refers to muscle stiffness, for example, an expression-
less face. This is caused by increased resistance to the passive movement of the patient’s limbs [1].
Other typical symptoms of PD are the difficulty of movement, slow movement(bradykinesia), less
movement(hypokinesia), and absence of movement(akinesia). When facing these symptoms daily
chores and normal daily routines could be difficult or impossible for PD patients. There are not
only motor symptoms, sometimes there can be other dysfunctions giving mental distractions that
are not easy to recognize as a symptom of PD. These symptoms are not only caused by the affected
regions of the brain but are rather a result of a domino effect from other connected regions that
result in balance problems, depression, dementia, sleep disturbance, and loss of smell. Some of the
symptoms of PD also occur with advanced aging or other diseases similar to PD, but 80% of the
patients with these symptoms manifest for PD [1]. Additionally, it is important to keep in mind
that there are no clinical correlations between these symptoms. For example, some PD patients
may get dementia before the onset of any motor symptoms. When the motor symptoms appear,
however, around 60% of SNpc dopaminergic neurons have already been lost [1].

1.1.2 Genetics of Parkinson’s Disease

More than two decades of research have led to the identification of a number of mutations responsible
for monogenic and sporadic forms of PD by genome-wide association studies(GWAS). For both
forms of PD, the genetic mutations give different age of onset and clinical outcome [7].

Identification of new genes and risk factors linked to PD are found using gene mapping of the
human genome and candidate gene approach. Gene mapping is the localization of genes underlying
the clinical phenotypes of the disease based on correlation with DNA variants, without the need
for prior hypotheses about biological features [4]. New sequencing technology as next generation

http://www.biorender.com
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Symbol Disorder Gene Discovered

PARK1 EOPD SNCA 1997

PARK2 EOPD PRKN 1998

PARK3 Classical PD Unknown 1998

PARK4 EOPD SNCA 2003

PARK5 Classical PD UCHL1 1998

PARK 6 EOPD PINK1 2004

PARK 7 EOPD DJ-1 2003

PARK 8 Classical PD LRRK2 2004

PARK9 atypical PD ATP13A2 2006

PARK10 Classical PD Unknown 2002

PARK11 Late-onset PD Unknown 2003

PARK12 Classical PD Unknown 2003

PARK13 Classical PD HTRA2 2005

PARK14 Subtype of EOPD PLA2G6 2009

PARK15 Subtype of EOPD FBX07 2008

PARK16 Classical PD Unknown

PARK17 Classical PD VPS35 2011

PARK18 Classical PD EIF4G1 2011

PARK19 Classical PD DNAJC6 2012

PARK20 atypical EOPD SYNJ1 2013

PARK21 EOPD DNAJC13 2014

Unassigned EOPD RAB39B

Unassigned EOPD GBA 2009

Table 1: Classification of genes related to monogenic PD, with a description of what sub-group of
PD they are classified into, which gene, and when it was discovered [4] [8] [7].
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sequencing(NGS) allows for obtaining whole genome sequences and comparing them to a reference
genome. Genome-wide association studies(GWAS) facilitate the discovery of genes associated with
human disorders. With GWAS in PD genetic risk factors have been identified in both sporadic and
inherited PD by differential analysis of PD patients and healthy persons.

The inherited(monogenic) form of PD is rare inherited DNA variants causing PD with early
symptoms. The genes listed in Table 1 are heavily debated as PD is presented to be affected by
both genetic and non-genetic factors [8]. These genetic risk factors of the monogenic form are
rarely followed when diagnosing PD due to complications of inheritance. In some carriers, the
disease will not manifest, and for those where the disease manifests, the age of onset, symptoms,
and progression can differ even if it is the same variant within a family [8]. Studies of these
monogenic variants could contribute to designing treatments that target a particular genetic cause
and pre-symptomatic therapies, and for evaluation of whether these mechanisms are also applicable
to the sporadic form [8]. As these monogenic variants of PD are rare, it is challenging to gather
such cohorts for studies.

The sporadic form of PD was thought to be caused spontaneously with no association to genetic
factors, but as the genetic discovery in PD has increased rapidly over the last decade, the knowledge
of genetic risk factors of sporadic PD has grown [7] [8]. PD is now known to be caused by both
genetic and non-genetic factors. The genetic risk factors of sporadic PD patients can also be
identified by genetic screening and GWAS. Some of the genes identified with monogenic PD are
also found in sporadic PD patients, such as SNCA, LRRK2, and GBA [8]. Sporadic PD has a
later-onset of the disease, and when the motor symptoms are observed it might be too late for a
treatment. By combining genetic risk scores with observed symptoms, a patient can be diagnosed
in an earlier stage of PD.

1.1.3 Transcriptomics in PD

A transcriptome is all the RNA transcripts that express the information content in the DNA of
an organism [9]. Transcriptomics has been important in the study of human diseases by enabling
the study of gene expression by differential analysis, which may reveal over-represented functional
pathways contributing to the disease process [10]. PD is a neurological disease where differential
gene expression analysis by transcriptomics of brain tissues may reveal important characteristics of
PD can contribute to a better understanding of the disease and improve treatments.

A recent study of transcriptome data in PD has revealed differentially expressed genes and
molecular dysfunctions with PD patients, and high similarity with Alzheimer’s disease [11]. Bor-
rageiro et al. [2] found that the majority of the studies on brain tissues of PD patients used data
from the SNpc region and that most of the studies are case-control comparison, but only a minority
of the studies used RNA-seq. Among the studies of PD, blood, and skin samples have also been
used for studying PD, other than brain tissues [2]. It was found challenging to compare gene lists
of studies that examined the same tissue as variations may be caused by sample differences and
experimental noise. [2]. Individual studies highlight various genes and pathways, but the most dis-
cussed pathways and processes in PD are dopamine metabolism, mitochondrial function, oxidative
stress, protein degradation, neuroinflammation, vesicular transport, and synaptic transmission [2].
For further studies, it was recommended that the data from previous studies to be publicly avail-
able, consideration of quality parameters, recommendations for statistical parameters, larger sample
sizes(minimum 50), and combination of other genomic techniques with RNA-seq [2].
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1.1.4 Molecular Factors of Parkinson’s Disease

There is uncertainty about the role of toxic environmental and genetic factors underlying sporadic
PD. The different factors that are associated with cell loss in SNpc in PD are: misfolded proteins,
neuroinflammation, mitochondrial dysfunctions, increased oxidative stress, dysfunctional synaptic
transmission, and vesicular transport(Figure 2).

Figure 2: These are some of the multiple factors that are known to cause neurodegeneration in
PD patients and how they affect each other. The main factors are misfolded proteins, oxidative
stress, and mitochondrial dysfunction.

Studies of the pathogenesis of PD suggests two major hypotheses: (1) Misfolding and aggregation
of proteins, (2) mitochondrial dysfunction and consequent oxidative stress [1]. The pathogenic
considered by these hypotheses affect different pathways and biological processes. The main goal
in current PD research is to understand the molecular interactions and the sequence they act in to
gain an improved understanding of PD.

Protein misfolding is a common factor in neurodegenerative diseases. Misfolded proteins can
become neurotoxic in many mechanisms, which may cause cell damage by deforming the cell or
interfering with intracellular trafficking. Lewy Bodies(LB) are protein inclusions characterized by
dark pigmentation and may cause neurodegeneration [12]. LB might also sequester proteins that
are important for cell survival, but in Huntington Disease, another degeneration disease, it was
suggested by Saudou et al. [13] and Cummings et al. [14] that there is no correlation between
inclusion formation(LB) and cell death. The formation of LB seems more likely to be a defense
mechanism against toxic soluble misfolded proteins [1].

Mitochondrial dysfunction is found in both inherited and sporadic PD with evidence of mi-
tochondrial DNA(mtDNA) deletions and decreased complex I activity in SNpc [2]. Studies have
suggested an association between correlations of mtDNA mutations and cell loss, also in PD. The
double-strand breaks are caused by the damage to mtDNA, likely associated with the highly oxida-
tive environment of the SNpc [3]. This then leads to loss of segments of the mitochondrial genome
and further on to reduced mitochondrial function, ATP levels, and proteasomal activity that causes
misfolded proteins and eventually cell death [3].
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A considerable amount of knowledge in PD originates from the studies of 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyrodine (MPTP)-induced dopaminergic neurons. MPTP has shown to block
the electron transport chain by inhibiting complex I of the respiratory chain, inducing symptoms
of PD [1]. This discovery puts focus on the possibility that an oxidative phosphorylation defect
plays a key role in the pathogenesis of PD. Other studies have identified abnormalities in complex I
activity in PD and indicated that complex I defect may subject cells to oxidative stress and energy
failure [1]. Defects in complex I activity are not exclusively found in the brain but are also found in
platels of PD patients [15]. Later studies have shown that decline in the activity of complex IV, also
called a respiratory deficiency, may also lead to compromised production of ATP [3]. Respiratory
deficiency in complex IV has shown to be caused by a high load of mtDNA deletions within SNpc,
higher than other parts of the brain shown in studies of both aging and PD [3]. Dysfunctions of the
respiratory chain will affect the SNpc neurons as they are highly energy dependant, and increase
their vulnerability.

Reactive oxygen species(ROS) comes from interactions of molecular oxygen with other chemical
compounds as calcium and iron, and are more reactive than the molecular oxygen itself [5] [16]. ROS
production is unregulated when complex I is inhibited and causes an increase of ROS which leads to
cellular damage by reaction with nucleic acids, proteins, and lipids. ROS mainly targets the electron
transport chain [17] causing mitochondrial damage and further production of ROS. The presence
of ROS increases protein misfolding which in turn leads to the need for the ubiquitin-proteasome
system to remove them.

Increased oxidative stress is not only caused by the production of ROS: SNpc neurons are
believed to be under additional oxidative stress due to the metabolism of dopamine within the
neurons [3]. The metabolism of dopamine(DA) produces hydrogen peroxide radicals and superoxide.
By auto-oxidation DA-quinone(a molecule that damages proteins [1]) makes dopaminergic neurons
a fertile environment for the production of ROS. Failure of the mitochondrial respiration system
may disrupt vesicular storage of dopamine and cause increased DA concentration that leads to
cellular damage [1].

DA neurons of the SNpc are also characterized by their pacemaking activity and pigmentation.
The pacemaking activity is believed to be important for the maintenance of dopamine levels within
the striatum [3] and is maintained by specific calcium channels in adult neurons. The mechanism of
maintaining dopamine levels is crucial, and the elimination of toxic factors within mitochondria is
key for cellular survival [3]. The calcium channels are also responsible for the modulation of calcium
levels within neurons. Overload of calcium may lead to mitochondrial permeability transition,
and cause loss of mitochondrial bioenergetic function. Likely for the concentration of iron, where
it has been shown an increase of iron in SNpc with age [18] [19] [20] [21] [22]. There are also
some contradicting studies of changes in iron concentration with PD patients [23]. Change in
concentration of iron causes neuronal loss based on the generation of ROS by the Fenton reaction
and will also affect the mitochondria functionality and then cause neuronal loss.

The pigmentation of SNpc neurons is due to the accumulation of neuromelanin [3]. Neurome-
lanin is a dark pigment composed of proteins, lipids, and products of the DA metabolism, and is
thought to protect against oxidative stress [3]. The pigmentation increases with age and has been
implicated with cell survival and the loss of neurons in PD, as it is assumed to be a regulator of
intracellular iron. A lack of neuromelanin in PD patients than the control group, it is suggested
that neuromelanin might protect against neuronal loss caused by intracellular stressors [3].

Changes of synaptic transmission in the striatum are thought to play a role in the occurrence
of PD symptoms studied in animal models of PD [24]. It is also thought that synapses maybe
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affected at the earliest stages of neurodegeneration [25]. Changes in synapses are found to occur
in the striatum as a response to massive dopaminergic loss [24]. Molecular dysfunction of synapses
is not only limited to post-synaptic neurons but is also dependent on proper pre-synaptic vesicular
transport [24].

Several unknown factors may contribute to cell death in SNpc. Studies in PD patients show that
most dopaminergic neurons die long before the symptoms and molecular dysfunctions take place.
Motor symptoms, oxidative phosphorylation and ROS abnormalities documented in PD patients
could be non-specific features of dying cells [1].

1.2 Co-expression Analysis

Biological systems can be defined by how the molecules interact with each other. Network rep-
resentations of biological data simplify complex systems and enable the use of various tools from
network science and graph theory for data analysis [26]. For example, protein-protein interaction
networks are graphical visualizations of which proteins interact with each other to function. Dif-
ferential network analysis compares topological differences between two different conditions, for
example healthy condition vs disease condition.

A key objective of biological research is to identify and understand how all molecules in a living
cell interact, and how their functions and interactions relate to the disease [27]. One method to
obtain this understanding is by inferring gene function and gene-disease associations from genome-
wide gene expression using co-expression network analysis. Co-expression network analysis is a
network-based approach that constructs networks of genes based on their correlation in expression
[27]. It can be used for candidate disease gene prioritization, functional gene annotation, and
identification of regulatory genes. This approach is more effective in the identification of genes that
are [27]. Co-active genes are genes that are activated simultaneously, which often indicates that
they are active in the same biological processes.

1.2.1 Co-expression Networks

Co-expression networks describe the relationship between genes from their coordinated expression
pattern across a group of samples [27]. The construction and analysis of a co-expression network
can be described in three steps (Figure 3): (1) gene correlation,(2) network construction, and (3)
module definition. The different types of co-expression are signed or unsigned and weighted or
un-weighted.

The first step is to identify the pairwise relationships between genes based on their correlation in
expressions. The calculation of correlation can be done by methods such as Pearson’s or Spearman’s
correlations which describe the similarity between the genes. In the second step, the construction
of the co-expression network is carried out by using the correlation measures. Each node represents
a gene and the edges represent the presence and the strength of the co-expression relationship.
Finally, the co-expression network is used to cluster the genes into modules, based on connectivity.

Correlation-based co-expression networks use correlation measures ranging from -1 to 1. Un-
signed co-expression networks use absolute correlation values, which means two negatively correlated
genes are linked by an edge [27]. Maintaining the signed correlation can be problematic when using
differential co-expression, since the differences in co-expression between groups that have the oppo-
site signs can cancel out. In signed co-expression networks, this problem of the unsigned network is
solved by scaling the correlation values between 0 and 1. Values less than 0.5 indicate the negative
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Figure 3: The three steps of co-expression network construction. 1) Calculation of co-expressed
genes by correlation. 2) Constructing the network based on the correlations of the co-expressed
genes. 3) Defining modules by clustering the network.
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correlations and values greater than 0.5 indicate the positive correlations. This scaling constructs
a network with more biologically meaningful modules [27].

The edges in the network can also be either weighted or un-weighted. In weighted co-expression
networks all genes are connected [27], and each edge is characterized with weights to represent the
strength of the correlation between the genes. In an unweighted co-expression network, the weights
of the edges are binary(0 or 1), indicating that the genes are either connected or not connected.
In unweighted networks, a threshold is chosen so that pairs of genes are defined as ”connected” if
their pairwise correlation stands above the threshold, or ”unconnected” otherwise. A threshold can
be set for the edges where hard thresholding gives unweighted networks and soft thresholding gives
weighted networks [28]. Till now the focus is more on weighted networks as these construct the
most robust networks, and the networks are more informative as it will describe which connections
are stronger [29].

1.2.2 Input Data for Co-expression Networks

Data from both microarray and RNA-seq technology can be used for constructing co-expression
networks, although RNA-seq data is more used in co-expression studies than microarray [27]. To
apply microarray data to create a co-expression network, the probes for all the targeted molecules
are required, where this makes limitations of the non-coding genes. RNA-seq data quantifies the
expression of non-coding genes in some platforms and has a wider dynamic range that offers a
higher resolution for low-abundant transcripts. Many of these non-coding genes play an important
role in diseases [27]. Co-expression networks based on RNA data also show an increased resolution
for identifying tissue-specific expression patterns and have the potential to differentiate between
expression profiles that are closely related [27].

When using RNA-seq data for co-expression networks it is important to obtain expression es-
timates from the raw sequenced reads, and normalizing and quality controlling the data. The
important factors of normalizing are sequencing depth, distribution of counts, transcript length,
fragment size, GC contents, and batch effects. There are many different tools for normalizing for
each factor mentioned, and new methods are continuously being created to tackle the normaliza-
tion problems [27]. This process first requires mapping the reads to transcripts, and subsequently
count and normalize the counts by the total number of reads(library size). Generally, the resulting
transcript quantification is used to test differential expression between groups(e.g. different tissues
or different disease conditions). Proper preparation by normalizing and quality controlling the data
is crucial for the accuracy of downstream analysis.

To create an RNA-seq-based co-expression network with high performance, a sampling size of
20 or above is suggested based on functional connectivity experiments [30]. Increases in the sample
size provide more reliable co-expression estimation, a higher total read depth provides an increase
in accuracy, and a higher cut-off threshold may be preferable when data is of higher quality [30] [27].

1.2.3 Network Construction

RNA-seq based co-expression networks are commonly constructed by collapsing overlapping transcript-
level expression estimates, and the network is then constructed at the gene-level [27]. This approach
does not maintain information about different transcripts encoded by the same gene.

Gene co-expression networks are constructed by describing gene expression profiles in a n×m
matrix where n represents the number of nodes (genes) and m the number of samples. Gene
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expression profiles are then used to calculate correlation measures by the pairwise correlations
between the genes and stored in a n×m matrix.

A thresholding procedure is used to create an adjacency matrix based on the correlation values.
A hard thresholding method gives unweighted edges, defining each entry to be 1 if the similarity
measure is above the threshold, 0 otherwise. Soft thresholding allows the network edges to take
on continuous values between 0 and 1, which results in a weighted network with all the edges
connected. Both thresholding methods, however, require the user to set the threshold. The choice
of the threshold can be based on how the topology of the resulting network approximates a scale-
free distribution [28], or in some cases, a default parameter works as well. Scale-free property
distribution is where the distribution of node degrees follows a power law [31]. Once the network is
constructed, modules can be identified by clustering the nodes based on how interconnected they
are.

1.2.4 Identification of Modules by Clustering

Clustering is used to group genes that have similar expression patterns across multiple samples. The
resulting modules often represent sets of genes associated with the same biological processes [27].
Weighted Gene Correlation Network Analysis(WGCNA) is one of the most widely used methods
to construct co-expression networks and identify modules using hierarchical clustering. WGCNA
clusters genes based on their topological overlap, a measure that considers each pair of genes in
relation to all other genes in the network, i.e. a high topological overlap between a pair of genes
means that they are connected to roughly the same group of genes in the network [27] [32]. Hier-
archical clustering based on the topological overlap creates clusters by comparing the genes. The
gene profiles are first clustered one by one, then these sub-clusters will be merged and create mod-
ules(Figure 4). In the end, all sub-clusters will be connected to one top branch. The length of the
branches describes both similarities between sub-clusters, and when the clusters were formed. The
similarity is often calculated in the form of distance, as it can be difficult to identify similarity in
large data sets. WGCNA has shown to be effective in identifying biologically relevant associations
between phenotypes and modules, with both RNA-seq data and single-cell RNA data [27].

The topological overlap measures are used as a similarity metric in co-expression network when
identifying modules by clustering. Hierarchical clustering results in a dendrogram, which is then
cut at a certain height to define the modules as the resulting branches. To decide the cut height,
parameters based on robustness analysis are recommended, but a default parameter could also be
used [28].

In the WGCNA implementation, the modules are then labeled by numeric values that are
converted to color labels for better visualization. Functional information such as gene ontology(GO)
[33] can be used to study the biological meaningfulness of the resulting modules.

are defined as the first principal component of the expression values of the genes within a given
module, and they can be considered to be representative of the gene expression profiles within a
module [28]. These can be computed by dimension reducing methods and can be used to study
the inter-modular relationships by constructing a correlation network of modules, in which the
nodes(modules) are linked based on their similarity(correlation between the eigengenes).

1.2.5 Block-wise Network Construction

When it is a large data-set the network construction can be constructed block-wise. To identify
the blocks this function pre-clusters the data set with k-mean clustering and merges the smaller
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Figure 4: This figure shows briefly how hierarchical clustering creates modules in the dendrogram
with a heatmap describing the adjacencies. The columns are the different samples and the rows
are the gene profiles. The colors represent the gene expression levels in each sample, ranging from
brown to green. By comparing the gene profiles, the gene profiles that correlate the most to each
other will make a cluster. In this example, gene profiles 1 and 3 have similar gene expressions in the
different samples and are highly correlated. Then the other gene profiles will be compared to the
recently created cluster. If the correlation is higher between the pair of genes than to the cluster
already made, these two will be clustered together, just like this example. Otherwise, the gene that
is most correlated with the cluster will be joined with it to form a cluster of three genes.

clusters to create blocks of defined size [34]. The table describing the block sizes shows a variation
of block sizes between the defined minimum and maximum size. Then networks are constructed
and modules identified for each block. The time and memory savings of the block-wise approach are
substantial: a standard single-block network analysis of n nodes requires O(n2) memory and O(n3)
calculations, while block-wise approach with block-size nb requires only O(n2b) memory and O(nn2b)
calculations, analyzing larger data set with blocks of size 7000 feasible on a standard computer [28].

1.2.6 Gene Ontology

There are many databases with integrated data that provide functional information at the gene level.
These databases can be used to gain insight into the network modules, by testing their enrichment
in specific functional categories [35]. Gene Ontology(GO) is the most widely used annotation
database [36]. The GO project integrates data about gene functions from different sources such as
research papers, across-species data, and different fields such as evolution and disease studies [36].
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Figure 5: Illustration of GO terms to illustrate how the GO terms define for example a biological
process, and how they are connected by their functionality.

GO uses ontologies to describe biological knowledge of gene product functions [37]. Ontologies
describe key domains of molecular biology and can be applied in the annotation of sequences, genes
or their products. The ontologies are defined in non-overlapping domains and describe the attributes
and the linkage between the gene products. GO defines three main domains: ”Molecular function”,
”Biological process”, and ”Cellular component”. The molecular function domain describes activities
at the molecular level and the biological process domain describes biological goals accomplished by
one or more molecular functions [33]. Cellular component domain relates gene products to their
subcellular locations at the levels of subcellular structures including macromolecular complexes.
GO has recently added a fourth domain, ”Sequence ontology”, which provides a classification and
a standardized representation for sequences and their features [33]. Gene Ontologies are structured
by GO terms(Figure 5) that are related to each other in a hierarchical manner [36]. The mapping
between specific gene products and the GO terms are defined as GO annotations. High quality GO
annotations are normally based on reviews of published literature and supported by experimental
evidence. The GO project is publicly available on their web page and used by many tools to
annotate genes with their functions.

1.2.7 Kyoto Encyclopedia for Genes and Genomes

Kyoto Encyclopedia for Genes and Genomes(KEGG) is among the most widely used databases
for functional annotation of pathways, along with GO. KEGG is a knowledge-based database for
systematic analysis of gene functions in pathways, that links genomic information with higher-
order functional information [38]. This database is mainly divided into 3 databases; GENES,
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Figure 6: This is an example of a pathway representation of the KEGG pathway ”Long-term
depression”. The network nodes(the green boxes) are the enzymes(gene products), and they are
connected by directed edges describing the biological process of the enzymes in this pathway [40].
It also mentions the other pathways they are part of.

PATHWAY, and LIGAND [38], and contains protein-protein interactions, biochemical reactions,
gene-regulatory interactions, genetic interactions, and drug-target interactions. Protein-protein
interactions represent the largest source of interactions, and genetic interactions and drug-target
are the newest added groups, with fewer annotations [39].

The GENES database is a collection of fully sequenced genomes and some partially sequenced
genomes with frequent annotation updates. The second database, PATHWAY, contains the higher-
order functional information linked to the genes, and in which reactions they are taking part [38].
The PATHWAY database can also integrate graphical representations of cellular processes, where
enzymes are represented in a pathway linking their respective identifiers(EC numbers). A pathway
is defined as a reference pathway when it has been manually validated, and it is used as a template to
construct other organism-specific pathways computationally by matching to the EC numbers across
species. Figure 6 shows the pathway Long-term depression as a network of enzymes, and some of
the pathways it takes part in. Finally, LIGAND contains information about chemical compounds,
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enzyme molecules, and their reactions. KEGG provides graphical tools for browsing and comparing
genome maps and manipulating expression maps and computational tools for sequence and graph
comparison and path computation [38]. For example, with a cluster of genes as a product of network
analysis, KEGG can be used to annotate the functions of the genes, and identify pathways that
these genes are a part of. KEGG is continuously updated and freely available [38].

The interactions between molecules are important to understand cellular processes. Consen-
susPathDB is a database that integrates data from many sources in an attempt to map all the
molecular interactions that are known to date. To integrate data from many sources it requires
standardized file formats and platforms to exchange data, which can be challenging. During the
last years, the number of resources that contribute to ConsensusPathDB has increased rapidly [39],
increasing the number of interactions in the database. This database also gives a quality measure
of the interactions, as the interactions are collected from different papers and databases of different
quality. This database provides a tool that performs a pathway enrichment analysis.

1.2.8 Module Evaluation and Analysis

The purpose of network construction is to identify functional modules that are then evaluated
using different methods. These analyses can consist of statistical enrichment of functional terms,
comparison to reference networks, or analyses of topological properties.

The functional relevance of a set of genes and the biological meaning of a given module can be
assessed by computing the enrichment of GO terms for the group of genes within a module. In each
module the enriched GO terms are counted, where the numbers of enriched GO terms vary from
module to module [41]. The counts can then be used to avoid some modules with a large number
of GO terms, and some modules with few GO terms. It can also be used for over-representation
analysis of enriched terms within a gene set.

The functional importance of gene modules can also be assessed by comparing the gene modules
in a co-expression network with the structure of a reference network. A reference network can be
obtained from biological networks(e.g. PPI-networks, gene interaction networks). Genes within
the same module are connected by many high-weight edges, and genes in different modules are
connected by many low-weight edges in the reference network.

Preservation statistics can be used to evaluate how well the modules of a reference network is
preserved in another network. In a study of gene co-expression modules in type 1 diabetes [42]
module preservation statistics were used to evaluate whether a given module defined in the control
data set could also be found in the diseased data set. The equations and details for these calculations
are described by Langfelder et al. [43]. Even though the original paper of Zsummary [43] proposes
to identify modules with high preservation, Medina et al. [42] identified the modules with the
lowest preservation with the idea that the weakly preserved modules may highlight the dysregulated
pathways in the disease network.

The application of graph theory to the analysis of biological data sets has provided insights
into the topology of biological networks [44]. Clustering in a co-expression network often results
in large modules, which makes it crucial to identify hub genes, i.e. central genes highly connected
with many other genes in the network [27]. Hubs are identified by using statistical indicators of
centrality that describes the importance of the nodes based on network topology. Examples of
centrality measures are degree centrality, closeness centrality, or betweenness centrality [45].

Topological properties may reveal causative genes when comparing a co-expression network
to a reference network. For example, comparing a network constructed based on data from PD
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patients to a control network. The study of diabetes type 1 also did a topological analysis with
betweenness centrality(BC) measure. Betweenness centrality values indicate the relevance of a node
in how capable it is of transferring communication between genes in a module. High betweenness
centrality indicates more biologically informative nodes in a module [42]. The genes with the highest
BC measures were compared between control and diseased module network.

The topological overlap is another metric that can be used to compare genes between two
different conditions. The high topological overlap between two genes indicates that the gene is not
likely to be directly involved functionally in the condition, while genes with low topological overlap
have activities that are condition-specific [46].

1.2.9 Differential Co-expression Analysis

Differential co-expression analysis consists of measuring the differences in co-expression between
different groups(e.g. different tissues, species, cell types, or conditions like healthy vs diseased).
Differential co-expression analysis is used to identify biological important differences between mod-
ules, and can also be used to identify differences by their topological dissimilarities. Genes that
are differentially co-expressed between different sample groups are more likely to be regulators and
hence a role in the difference between the sample groups. Some differential co-expression methods
do not require the groups compared to be pre-defined [27].

Weighted gene co-expression network analysis(WGCNA) is one of the most frequently used
programs for differential clustering based on correlations. It determines the importance of each
module in each sample group and calculates an eigengene. The similarity between the eigengenes
of the modules can be visualized with heatmaps, that presents the similarities between modules by
their eigengenes within a network. By doing this for two condition networks, modules that have
strong differences in similarities can be identified as modules containing disease-associated genes.
This approach prioritizes which genes are more likely to underlie the phenotype associated with the
module.

Another approach to compare networks from two different conditions is to look at which genes
are overlapping between modules identified in each network. The overlap between modules can
be transformed into a matrix(correspondence matrix), which represents the pairwise similarities
between modules using the p-value of a Fisher’s exact test.

1.3 Personalized Medicine

Current medicine, how the most of the medicines are designed today, is one treatment for all. Some
patients benefit from the treatment, but some patients may not respond to the treatment and show
either no effect. Future medicine is treatments tailored to each individual and provides greater
chances for a positive effect for all patients. P4 medicine which is another name of personalized
medicine consists of 4 parts that need to be considered when designing personalized treatment.
These are predictive, preventive, personalized, and participatory medicine(7). P4 medicine is the
ultimate goal of systems medicine [26].

According to predictive medicine, with the knowledge of genetic risks associated with many
diseases, the signs of symptoms can be recognized before the disease manifests. Unfortunately, the
symptoms may happen too late, increasing that the treatment will give no effect or negative effect.
Preventive medicine is recognizing earlier signs of symptoms to improve the capacity to prevent the
disease. The participatory part is including the patient and the close ones in information about the
disease and planning the treatment. Lastly, personalized medicine is the focus of each individual,
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by predicting a disease and designing personalized treatment to prevent it. To reach personalized
medicine available data and analyzing the data is needed.

Figure 7: Illustrates P4 medicine. All these factors are equally important to consider when putting
together a personalized treatment for a patient. These 4 parts may overlap and depend on each
other, like predictive and preventive may be the recognition of symptoms with genetic risk factors.

1.3.1 Personalized Medicine in Parkinson’s Disease

The current treatment for PD is levodopa and other dopamine replacement treatment(DRT). These
treatments can improve the motor symptoms of PD [47] but do not cure the disease. As PD is
a complex disease, DRT as ”one treatment for all” is not sufficient. Personalized medicine is an
important consideration in PD as each PD patient is different. In PD patients specific personal
needs, clinical phenotype, lifestyle, and genetics needs to be considered and may require ”cocktail
therapies”.

In the predictive part of personalized medicine, genes recognized in studies of PD patients
could be used for predicting the risk factor of developing PD. Identifying genetic risk factors in the
early stage of PD, especially early-onset PD(EOPD), could help precision medicine and prevent the
development of PD. The knowledge of genetic risk factors and the mechanisms resulting from the
mutation in these genes can be used to develop specific therapies.

Another approach in the predictive part of personalized medicine is pharmacogenetics. Pharma-
cogenetics refers to the influence of inherited genetic differences in drug metabolic pathways which
affect individual clinical responses to drugs as well as adverse events [47]. This approach is slowly
evolving and is used in for example studies of the effect of levodopa treatment [47].

Preventive medicine considers the symptoms of a disease at an early stage, often the motor
symptoms in the case of PD. As mentioned earlier, the appearance of motor symptoms may be too
late, and the neurodegeneration may have caused a significant neuronal loss already. Not only is
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PD a complex disease, but aging is also a complex process. Many anti-PD treatments define age as
a definitive landmark that influences therapy [47]. When looking for a treatment for a patient, it
is important to consider the possibility of side effects, especially if the patient is older. There may
be differences between chronological and biological aging in the process of aging, which also makes
the treatment decision more difficult. Another factor that may influence personalized and precision
medicine is the length of telomeres. Telomeres are crucial for adjusting cellular response to stress
as well as the stimulation of cell growth [47]. Accumulation of short telomeres triggers cell death,
which makes aging associated with a decline in telomere length.

Personalized and participatory parts of P4 medicine refers to the importance of listening to
and including the patient from the very beginning of diagnosis. Each individual has different
lifestyles, which should influence affect how the treatment is designed. Not only lifestyle, but each
individual is also different in many other ways. Each patient has different genetics and may have
other conditions like cardiovascular diseases or risk factors of inherited influence such as diabetes.
Cultural background may also be an important factor to consider, so is that the patient is honest
and open about themselves and are willing to participate wholeheartedly.

2 Aim of Study

The main aim of this study is to do a differential weighted gene co-expression network analy-
sis(WGCNA) comparing the brain tissue of healthy individuals(controls) and PD patients in order
to identify differentially expressed genes.

The sub aims of this study were:

• To apply WGCNA methodology using R packages to the RNA- seq data collected from the
brain tissue of healthy controls and PD patients.

• To carry out a differential analysis of the co-expression networks of controls and PD patients
and identify and analyze the resulting modules.

• Identify dysregulated pathways within the modules with current knowledge of dysregulations
in the context of Parkinson’s Disease

• Analyze network topology measures of the modules as sub-networks of the co-expression
networks for both control and PD networks, to find genes that might be associated with
dysfunctions in PD.

• Identify gene functions associated with dysregulated pathways, critically examine their func-
tions, and relate them to known symptoms or mechanisms related to PD.
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3 Methods

The construction of the co-expression network starts with selecting and filtering the data. To
identify molecular functions these genes represent, an over-representation analysis of functionally
enriched GO terms is performed. By following the WGCNA methodology the co-expression network
will be constructed. Module detection is the second part of network construction where dendrograms
are created by clustering based on dissimilarity topological overlap matrix(TOM). To merge modules
with similar expression profiles module eigengenes are calculated. Heatmap plot is one of the
preferred methods to visualize the network. To analyze the results by the modules in the network,
the modules are first evaluated and analyzed collectively. Then the interesting modules are identified
by preservation statistics and further analyzed to identify causative genes. Most of the methods are
based on functions provided in the WGCNA package [28], and the R code is found in the Appendix.

3.1 Data

The data was provided as a count matrix based on RNA-seq expression data from different bulk
tissues of the prefrontal cortex. The counts in the matrix represent the count of reads in each
sample that overlaps a gene, gene counts per sample. There was a total of 57451 gene-profiles
and 123 samples from 3 cohorts: PA-polyA capture RNA seq(74), PW-the Norwegian Park West
Study(28), and NBB-Netherlands Brain Bank(21).

The data is first divided into subsets based on the cohorts. For each cohort counts are extracted
from the count matrix based on sample identifiers. It is then changed from the data frame to a
matrix and transposed so that the rows contain the genes, and each column refers to a sample.
Then the data is filtered and quality controlled by removing any genes and samples with too many
missing values or very low expression levels. The WGCNA tutorial [28] also recommends clustering
the samples to find any obvious sample outliers and remove them. To select the top varying genes,
the median absolute deviation(MAD) will be calculated. The data will then be separated based
on the conditions and the co-expression networks are constructed for each condition to look at
differences between healthy patients and PD patients. An over-representation analysis is done to
find enriched GO terms within the most varying genes used in this study.

3.1.1 Quality Controlling and Filtering

Before constructing the network it is important to filter out samples and genes to avoid noise that
disrupts the networks. ”Good genes” are the genes that pass the criteria of not having missing
entries or too low entries. ”Good samples” are the samples with the majority of the genes being
classified as ”good genes”. The filtering of ”good genes” is done for all the cohorts, and the sample
clustering is only done for the selected cohort. The quality controlling and filtering reduces noise
and makes it easier to present and analyze the results.

First, the samples and genes with null-values and genes that are not ”good” are filtered out.
WGCNA package has a function called goodSampleGenes that returns FALSE for the gene profiles
for each sample that is not qualified as a ”good gene”. This function checks for missing entries,
entries with weights below a threshold that lies in [0,1], and zero-variance genes and returns a list
of samples and genes that pass the criteria and are qualified as ”good genes” and ”good samples”
[28] [34].

The second step is clustering based on samples to identify any obvious sample outliers to remove
them. Here the samples are clustered by hierarchical clustering and then the sample tree is plotted



24

Figure 8: Illustrates a sample clustering tree where the two samples to the left are obvious outliers,
and therefore the tree is cut at the height 240 and excludes those sample outliers.

to identify the outliers. A sample outlier is identified by looking at the sample tree to find the
sample(s) that is distant from the other samples in the sample tree. Figure 8 shows that the two
samples to the left are outliers from the rest of the samples that lie under one branch of the sample
tree. To remove the sample outliers a cut off height is set and the cluster of outliers is separated
from the rest that should be kept. In Figure 8 the cut height is set to 240 cutting away the 2
samples at the most left and the rest are kept. The filtering of genes and sample outliers reduces
possible noise for creating networks and clusters.

The most varying genes can be filtered out of a large set of genes, which will also be the most
differentially expressed genes between the conditions. After removing the genes and samples that
were not qualified as ”good”, there might still be a large set of genes in the count matrix. The
most varying genes can be filtered out by calculating the median absolute deviation(MAD). These
values are calculated by the function mad. Median absolute deviation takes each gene as a vector
and calculates the variation by the formula

constant ∗ cMedian(abs(x− center))

where constant is default value = 1.4826, and center being the median of vector x [48]. Higher
MAD means higher variation among the samples. The most varying genes are selected by sorting
the list of MAD values in descending order, matching the gene identifiers in the list of MAD values
with the gene identifiers in the original count matrix, and then the top varying genes are used in
the final count matrix.

This subset with the top varying genes by the calculated MAD values is then divided into
PD patients and healthy persons. For the selected cohort, one network will be constructed per
condition. For the analysis, the reference network will be the network created from control data.
The separate network construction will then be compared through different analysis methods to
identify differences in pathways and gene functions.
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3.1.2 Over-representation analysis of Gene Ontologies

The over-representation analysis is used to identify over-represented GO terms within a gene set and
will describe the molecular processes that the genes present. It will also indicate which processes
are more significant in the gene set and can be used to give an idea of what molecular processes
the most varying genes between PD patients and healthy persons are associated with. The GO
terms and their p-values identified with GO::TermFinder are then visualized with REViGO, a tool
for summarizing and visualizing long lists of GO terms with calculated p-values.

GO::TermFinder [49] is open-source software that takes a gene list as an input, and the ontology
domain and a reference set with annotation data are selected. The numbers of annotations to a
GO term are compared between the input list and the reference set. This software calculates a
p-value using the hypergeometric distribution that represents the statistical significance of a GO
term associated with a group of genes in the input list [49]. This calculation considers the total
number of genes estimated for an organism in the annotation data, and the number of genes within
that organism having that GO term annotation [49]. The higher these numbers of genes are, the
closer the p-value is to zero, which indicates more significance of a GO term in the user-list of
genes [49]. This software also calculates correction for multiple hypotheses by Bonferroni correction
and false discovery rate, and the last measure calculated is false positives [49]. A gene product can
be annotated to one or more GO term(s) and is then also annotated to the related GO terms of
the connected GO terms [49].

The output is a table listing of all annotated GO terms within the selected domain with the
p-values, results of multiple hypotheses testing, and false positives. The resulting list also describes
the numbers of genes from the input list that are associated with a GO term and the number of
genes from the annotation list that is associated with this GO term.

The results of the identified GO terms can be visualized in REViGO(Reduce +visualize Gene
Ontology) [50]. REViGO is a web server that uses clustering to summarize and visualize long
lists of GO terms in multiple ways such as table format with hierarchical description, scatterplot,
graph-based visualization, treemaps, and tag clouds.

This software takes the list of GO terms with their p-values from GO::TermFinder with settings
of semantic similarity, a description of the numbers provided in the list [50]. Semantic similarity
describes how similar the GO terms are based on their associations with other terms and how similar
the processes or functions are [50]. A lower cutoff value for semantic similarity will give a shorter
output list, which can lead to removing GO terms without statistical support [50]. The algorithm
removes functionally redundant GO terms by calculating semantic similarity, clusters highly similar
GO terms and finds a representative GO term for each cluster guided by the associated p-values
from GO::TermFinder [50].

The scatterplots visualize the semantic similarities of the GO terms by placing the more similar
GO terms closer to each other in clusters, by composing eigenvalues of the terms’ pairwise distance
matrix [50]. Then a stress minimization step improves the agreement between the GO terms’
semantic similarity and their closeness in the plot [50].

The graph-based visualization presents the GO terms as nodes and only 3% of the strongest GO
term pairwise similarities are designated as edges in the graph [50]. Only the strongest edges are
visualized and the threshold is found by balancing over-connected graphs with no visible subgroups
and very fragmented graphs with too many small groups [50]. The layout algorithm used in this
software is ForceDirected layout [50], which describes the similarity of the nodes by distance [51].
In both scatterplots and graph-based visualization, the size of the circles indicates the generality of
the GO terms, and the p-values are described by their colors [50].
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The last two visualizations are treemap view and tag clouds. The treemap view illustrates
the hierarchy of the GO terms with the cluster representatives [50]. The tag clouds show over-
represented keywords in the GO term’s descriptions of the GO terms in the input list [50].

3.2 Network Construction and Module Detection

Network construction is the second step of WGCNA methodology [28] of co-expression analysis. To
construct the network a co-expression matrix is necessary, which will be modified into an adjacency
matrix by setting a threshold value to highlight the stronger similarities. To minimize the effects
of noise, the adjacency matrix is transformed into a topological overlap matrix(TOM) and the
corresponding dissimilarity matrix is calculated. When the network is constructed the next step is
module detection by clustering using the TOM.

3.2.1 Threshold

A threshold can be set to highlight the strongest connectivities for further analysis of the co-
expression networks. The thresholding procedure modifies the adjacency matrix, either by setting
a threshold and removing the weaker linkages below a value(hard thresholding) or by raising all
entries to power highlighting the strong connections(soft thresholding).

Weighted gene co-expression network provides the most biological meaningful co-expression
network. To get a weighted co-expression network a soft-threshold is set. The first step is to
choose a set of soft-threshold powers, and then plot them by calling the network topology analysis
function pickSoftThreshold which will do the scale-free topology analysis of the set of powers [29].
To identify a threshold value that satisfies the scale-free property, the scale-free topology fit index
is plotted with a red line indicating the powers that satisfy the scale-free property. The powers
close to and above this line satisfy the scale-free property. The power that will be chosen is the
lowest integer that can satisfy the scale-free property, as proposed by Medina et al. [42]. From the
network topology analysis in Figure 9 the power 3 is is the lowest power above to the plotted line,
and therefore the soft-threshold value can be set to 3.

3.2.2 Topological Overlap Matrix

The adjacency matrix A is a symmetric matrix with entries aij describing the co-expression simi-
larity by correlation measurements, which encodes the connection strength between nodes i and j.
The correlation measures in the WGCNA package are calculated by Pearson’s correlation measure
method that lies in [-1,1]. These correlation measures are then scaled to lie in [0,1], which results
in a signed network. This adjacency matrix is then modified by the set threshold power, which
transforms the adjacency matrix into a topological overlap matrix(TOM).

Topological overlap measures describe pairwise interconnections and can be used to identify
modules. The topological overlap between the nodes i and j reflects their relative interconnected-
ness, by measures that lie in [0,1] [52]. The measure equals to 1 by two conditions; one is that all of
i’s neighbors are also j’s neighbors and two is that i is connected to j. Topological overlap equals 0
if both nodes are unconnected and they do not share any neighbors. The TOM can be considered
as a ”smoothed out” version of the adjacency matrix [52].
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Figure 9: Example of a plot analyzing network topology for various soft-thresholding powers.
This plot describes the scale-free fit index (y-axis) as a function of the soft-thresholding power
(x-axis) [28].

3.2.3 Modules

Modules are defined as clusters of densely interconnected genes [28]. The topological overlap ma-
trix(TOM) is used to identify the modules by hierarchical clustering done by the function hclust.
This function performs a hierarchical cluster analysis using the dissimilarity matrix for the n objects
being clustered. At each stage, cluster distances are recomputed according to the clustering method
being used [28] [34]. This clustering creates a dendrogram(Figure 11), that describes the clusters
in a tree. Each leaf corresponds to a gene, and the branches of the dendrogram group together
densely interconnected highly co-expressed genes.

Branch cutting methods can be applied to the hierarchical dendrogram to identify modules, as
the branches of the dendrogram correspond to modules. The modules are identified by the dynamic
tree cut method that performs a branch cutting to detect modules of a minimum size specified and a
variable of deepsplit. The deepsplit variable provides control over the sensitivity of cluster splitting,
where a higher deepsplit value gives more modules of smaller size [53]. The function outputs a
vector of numerical labels giving an assignment of objects to modules [53]. Module 0 contains the
unassigned genes, and the rest of the numeric labels describes the size of the module where the
module 1 is the largest, and module 2 is the second-largest module and so it continues. The module
labels are then converted from numeric values to color labels, which can be plotted together with
the dendrogram, which is the upper color-range in Figure 11. The grey module indicates the genes
in module 0, unassigned genes.

Modules eigengenes are used for summarizing the gene profiles of an identified module. The
module eigengenes can be calculated by the function moduleEigengenes [28], which takes a count
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Figure 10: This is an example of a module eigengene tree with a red line describing the modules
to merge. The module eigengenes below the red line are the ones that will be merged.

Figure 11: This is how a dendrogram will look for 1000 genes, where the upper colors explain the
modules before the merging and the colors below describe the modules after the merging.
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matrix and the colors from the modules in the tree as parameters. Then the dissimilarity of module
eigengenes are calculated and the module eigengenes are clustered by hierarchical clustering using
the dissimilarities. With the tree of module eigengenes, a cut is performed by defining a cut height
that describes which modules to merge(Figure 10). The modules with similar expression profiles
are merged by an automatic merge function mergeCloseModules, that uses the correlation of the
eigengenes to measure similarity used for merging the close modules [28]. The merged modules
are converted from numeric to color labels again, and the dendrogram will be plotted with both
color-labels of the modules, before and after merging the modules to see what the merging did to
the modules. Figure 11 shows the merging of the yellow and brown module, which indicates that
they were modules with similar expression profiles.

Figure 12: An example of a network visualization of the dendrogram in Figure 11 by heatmap.
The darker the color is, the higher is the adjacency.

3.3 Visualizing

The dendrogram created by the topological overlap matrix and the modules labeled by colors will
not give a clear overview of the network for analysis purposes as seen in Figure 11. The TOM
can be visualized by a heatmap plot(Figure 12) o visualize the dissimilarities. This will describe
the connections by a color-code indicating strong and weak connections between the gene profiles.
The connections are calculated by transforming the dissimilarities of the TOM with a power, which
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makes the moderately strong connections more visible in the heatmap. Each row and column of the
heatmap correspond to a single gene expression profile. The lighter shades indicate low adjacency
and the darker colors denote higher adjacency, where adjacency describes the similarity between
the gene expression profiles. The gene dendrogram and the module colors will also be plotted along
the top and left side of the heatmap, as in the example shown in Figure 12. Blocks of darker colors
along the diagonal represent the modules. For a more informative plot, the diagonal of the matrix is
set to not applicable(NA). The heatmap is then plotted by the function TOMplot which visualizes
the heatmap plot with the TOM, dendrogram, and module colors as input values.

3.4 Evaluation

An evaluation of the modules identified for both diseased and control networks will reveal interesting
modules that can be analyzed further to identify the dysregulated pathways that might contain
causative genes associated with PD. In this study module eigengene heatmaps, correspondence
matrix and module preservation statistics are used to evaluate the modules, and for determining
which modules to analyze further. Module eigengene heatmaps are used to evaluate the modules
by describing the adjacencies of the module eigengenes within a network. Correspondence matrix
compares two networks to visualize the count of genes per module, the overlapping genes, and
the similarity between the modules of both networks. Module preservation statistics visualization
describes how well the modules of a reference network are preserved in a test network.

3.4.1 Module Adjacency Heatmap

The eigengenes can be used to describe module similarity by eigengene correlation to evaluate the
modules by studying the relationships among the found modules within a network [28]. The den-
drogram of module eigengenes can be used to plot a heatmap describing the relationships between
them by using the function plotEigengeneNetworks. These relationships are visualized by a color-
code from blue to red, where red indicates high similarity, and the blue indicates low similarity. In
this method, the similarity is based on the correlation of the modules by their module eigengenes.

As seen in Figure 13, the module eigengenes indicated by color labels are plotted with a heatmap-
plot visualizing the similarities of the module eigengenes. High similarity indicates similar biological
processes, as a module presents the genes with similar associated biological processes. The blocks
in the heatmap define groups of correlated module eigengenes and are called meta-modules, which
represents similarity in biological processes between these modules.

3.4.2 Correspondence Matrix

The module correspondence matrix is a method to relate modules from different networks to each
other. A correspondence matrix is created by comparing two sets of modules and counting overlap-
ping genes between the corresponding modules. The indices with the overlapping counts between
the modules are colored from white to red, where red indicates a higher similarity between the
modules of the data sets. The analysis is presented by the module eigengenes, module labels and
colors, and the tree.

The tables of p-values and the counts are filled by pairwise comparison between the module
eigengenes for both data sets. The p-values are computed by Fisher’s exact test, also known as
the hypergeometric test, and describes the overlap of gene expression profiles of two modules. The
smaller p-values are cut off to add the color-code and display the tables in a more informative
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Figure 13: This is an example of a module eigengene heatmap describing adjacencies between
the modules within a network. Red indicates more similarity and blue indicates less similarity. For
example, the dark blue module is highly similar to the turquoise module, and the black and red
modules as well. The turquoise and yellow modules show very low similarity.

way. The matrix is displayed by the function labledHeatMap where the coloring from white to red
encodes −log(p), where p is the calculated p-value [28]. The rows and the columns represent the
modules of each data set, with the network name included in the labels.

3.4.3 Module Preservation Statistics

Module preservation statistics are used to evaluate the modules identified in a reference network
against the modules in a test network. Module preservation is calculated by the function mod-
ulePreservation in the WGCNA package, where the input is a multiset of the reference and test
networks with their modules.

Module preservation statistics calculates how well the modules of the reference set are preserved
in the test set, in a pairwise manner [28] [43]. This function uses the gene names for matching, so the
column names must be valid and at least half of the genes in both sets should match for evaluating
the module preservation [28] [43]. The module preservation results in a nested list containing
statistics describing quality, preservation, accuracy, reference separability, test separability, and
permutation details. For further analysis the observed values and their preservation scores(Zscores)
are isolated. The Zscores are summarized to Zsummary values that are visualized to find interesting
modules, as in diabetes study [42]. In the article about network analysis of type 1 diabetes [42],
it is suggested that the modules with the lowest preservation(lowest Zsummary) are the modules
containing the dysregulated pathways.

3.5 Analysis of Interesting Modules

This study focuses on identifying gene products that could be a genetic factor of PD patients,
which could improve the treatments by better knowledge for predicting the disease. The gene
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products can be identified within dysregulated pathways present in the modules. The evaluation
of the modules reveals differences and similarities between the modules. This can be used to
identify interesting modules that can be analyzed further to find causative genes and dysregulated
pathways. Interesting modules could be identified by combining the evaluations of the adjacencies
in the module eigengene heatmap, overlapping genes or similarities in the correspondence matrix,
and the modules that are preserved at a low level in the preservation statistics. Each module is a
set of genes, and the genes can be plotted into tools that use pathway databases with GO terms
to identify the gene functions and their associations between each other, and what pathways these
genes are present in. Further on a comparison of identified genes and pathways can be performed to
analyze the differences between the PD patients and healthy persons. The dysregulated pathways
can be found by tools providing over-representation analysis of the pathways present in a gene set.
Network topology measures may also reveal differences in gene products when comparing between
control modules with case modules.

Many of these tools and databases are available online, with a quality measure which indicates
how reliable the results are based on what resources the information was fetched from. In this study
ConsensusPathDB is used as proposed in the study of diabetes [42], which includes the enrichment
of predefined pathways by KEGG and GO terms. Cytoscape is used to visualize the module
networks for analyzing network topology measures such as betweenness centrality and node degree.
Cytoscape also provides plug-ins where ClueGO is used in this study to visualize the interactions
of the pathways within a module.

3.5.1 ConsensusPathDB

ConsensusPathDB is an online tool for analyzing sets of genes by different analyzing methods [54]
[55]. In this study, an over-representation study is used to identify pathways with the genes in the
interesting modules. The input is a set of genes together with different settings like a database of
pathways, p-value threshold, and minimum overlap size. The minimum overlap size tells how many
genes from the gene set should match with the gene set of a pathway to include that pathway in
the output list.

The output is a list of pathways with their set size, overlap size, p-value, q-value, and pathway
source. This list can be downloaded in a tab-separated file, that contains the p-value, q-value,
pathway name, source name, external id(source id), gene symbol of overlapping genes, and their
numeric ids and overlapping size. With the output list online it was possible to generate a word
cloud that shows which words appear the most of the pathway names. The p-value is calculated
by the hypergeometric test considering the number of genes present in the user-specified list and
the annotation data [54] [55]. The q-values describes the correction of p-values by multiple testing
using the false discovery rate [54] [55]. The downloaded list can be used to identify the matching
genes for each pathway. The most interesting genes will be the genes that match with pathways
that are found to give outbreaks of the disease. These genes might be in the control module as well,
but it depends on how many genes are set to the minimum overlap size in the pre-settings.

3.5.2 ClueGO-Network of Pathways

Cytoscape is a software for visualizing molecular interaction networks and biological pathways and
integrating the networks with annotation data [51]. Cytoscape provides the basic functionality of
integrating data on the graph, visualization, selecting and filtering tools, and implemented external
methods as plug-ins.
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ClueGO is a plug-in app in Cytoscape that reads a gene set and visualizes the network of
pathways by selected data integration. This app provides multiple analysis methods, and in this
study, the analysis method is set to functional analysis. A gene list is provided from each module
as an input. This tool also allows selecting between different databases, and if more databases are
selected they can be separated by the shape of the nodes. In this study, KEGG is used to make
the results comparable with ConsensusPathDB. The network specificity is a range of how detailed
the network should be in the visualization. This is a toggle bar that can be moved from global to
medium to detailed. A threshold of the p-values can also be set as in ConsensusPathDB.

The other settings such as statistical and grouping options are set to default, and the default for
preferred layout is ”Prefuse Force Directed Layout”. The layout can be selected to groups, which
calculates similarities and clusters similar pathways into functional groups. The functional groups
are shown by colors in the final network. The size of the node represents the node significance,
and the node-label is highlighted by the same color as the nodes of a functional group present the
representative pathway of a functional group [56]. The representative pathway is selected based on
the highest percentage of genes per term in the functional groups. Some pathways are a part of
more than one functional group, then the node color will be like a sector diagram and present all
the functional groups.

The edges are weighted by a Kappa score that shows how similar their associated genes are and
defines the connectivity between them. The Kappa score is calculated by Cohen’s kappa coefficient
measure, [56]:

K =
po − pe
1 − pe

Figure 14 describes the formula in more detail and shows an example of how to calculate the
kappa score by Cohen’s kappa coefficient measure. First, a binary matrix with the pathways and
genes is calculated by setting 1 if the gene is in the pathway, 0 otherwise. Then a Kappa score is
calculated between all terms(pathway) creating a term-term similarity matrix by counting genes
in both pathways and classifies as ”yes” or ”no”. The ”yes”-”yes” column describes overlapping
genes between the two pathways which is used to calculate po, and ”yes”-”no” column describes
the genes that are in one of the pathways and not in the other, and is used to calculate pe with
”no”-”no”. The po is the relative observed agreement among the pathways, a ratio of overlapping
genes among the genes present in both pathways. The pe is the hypothetical probability of chance
agreement, which measures the probability of the genes which are only found in one pathway to be
in the other pathway for both pathways [56]. These two ratios are then used in the Cohen’s kappa
coefficient measure which calculates K-Kappa score.

Figure 15 illustrates the results produced by ClueGO. The nodes present the pathways and the
edges describe the connectivity by the Kappa score defined by shades of grey, where darker shade
indicates a higher score. In some networks, often more complex networks, the nodes are a part of
several functional groups, and the nodes are then colored like a sector diagram to present all the
functional groups of the pathway. This plug-in to Cytoscape has almost the same functionality as
ConsensusPathDB, but because of the network visualization of the pathways, it is easier to see the
similarity between the pathways.

3.5.3 Module network visualization

These interesting modules can also be visualized in Cytoscape where the genes and their interaction
can be analyzed. This tool allows for a variety of graph layout, where spring embedded layout is set
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Figure 14: The kappa score is calculated by Cohen’s kappa coefficient measure which describes
the similarity between two pathways. Here is a simple example of how it is calculated, where the
matrix is a count matrix of genes in both pathways. ”yes”-”yes” indicates overlap of genes, ”yes”-
”no” indicates there is a chance for overlap, and ”no”-”no” indicates no overlap nor a chance for
overlap [56]. In this example, the pathways have 5 genes in common, and pathway 1 has 2 other
genes as well and pathway 2 has 3 other genes. Both pathways do not have the 9 other genes, that
are found in other pathways of the entire network.
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Figure 15: This is an example of a pathway network with KEGG data in ClueGO analysis. The
nodes are the terms(KEGG pathways), and the edges are weighted by a Kappa score. The color of
the nodes indicates the functional group, which are highlighted in the same color.

to default and is the most widely used layout in Cytoscape [51]. The layout models the nodes by
similarity, which means that the nodes closer to each other are more similar than the nodes further
away. Other attributes can be applied to the layout for the style of the nodes and the edges.

For the modules that appear to be very large, the analysis can be complicated without filtering
the nodes and the edges within a module network. The filtering can be done in Cytoscape based on
the attributes, or it can also be done when extracting the module matrix by selecting top-ranked
genes by calculating soft-connectivity in the topological overlap matrix(TOM) for each module,
and by setting a threshold for the weights. The edges are weighted by similarity measures from
TOM, and by setting a threshold the number of edges is limited to only the edges with a similarity
measure above the threshold. This gives us only the strongest edges and makes the visualization of
the network less complicated. The edge file is used in Cytoscape by defining the source and target
column, and the node file can be added if there are some extra attributes of the nodes.

The network analysis tool in Cytoscape gives statistical measures of the network topology such
as node degree, betweenness centrality, and clustering coefficient. These networks and topology
measures can also make it easier to compare genes in two modules and look at the different measures
between control and disease.

The node degree can be used for coloring or sizing of the nodes, which makes it easier to compare
overlapping nodes(genes) between control and case module network by their connectivities. As in
the diabetes study by Medina et al. [42] where the betweenness centrality measure of nodes in control
and case network are compared, other measurements can also be compared for each overlapping
node. The number of overlapping genes will vary according to the set parameters of the module
networks when writing to the files.
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Figure 16: This figure summarizes the flow of the co-expression analysis performed in this study.
The purple text indicates how the data is used collectively in filtering, then separated for network
construction and module identification, and compared in the end for comparison.
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4 Results

The aim of this study is to perform weighted gene co-expression network analysis(WGCNA) with
data from PD patients vs healthy persons, to identify dysregulated pathways and causative genes
associated with PD. The data is separated by condition and the networks are constructed for
each condition. The modules are then identified and their module eigengenes are calculated. The
modules and their eigengenes are evaluated and analyzed to identify interesting modules that might
reveal biological interesting genes and dysregulated pathways. The genes are then identified within
dysregulated pathways that are associated with PD, or by studying topological measures of genes
within a module that is thought to contain the causative genes. The flow of this study is illustrated
in Figure 16.

4.1 Data

The data needs to be filtered and quality controlled to reduce any noise that might lead to results
that are not meaningful. It is also needed to reduce the number of genes and samples to focus on
the most varying genes between the conditions. The count matrix is also separated based on the
condition of the samples to conduct a differential analysis; PD patients VS healthy persons.

The selected cohort is Park-West(PW). The rows correspond to the samples and the columns
represent the genes. The count matrix of this cohort was filtered by identifying ”good genes” and
”good samples”, and any obvious sample outliers were removed. By calculating the median absolute
deviation(MAD), the top 10 000 varying genes where identified. The count matrix for PD patients,
from now named case, consists of 17 samples. The count matrix for controls consists of 10 samples.
Both count matrices contain the same 10 000 genes.

4.2 Over-represented Gene Ontologies

An over-representation analysis of GO terms within a set of genes could give an executive description
of biological processes associated with these genes. For this study, the over-representation analysis
of GO terms reveals the terms associated with the most varying genes between the controls and the
PD patients, which will indicate the processes that vary the most and most likely play a key role
in PD. The terms were identified with GO::TermFinder [49] and visualized with REViGO [50].

To identify the GO terms for the analysis, the gene list consisting of the 10 000 top varying genes
was analyzed. The p-value cutoff was set to 0.01(default). Among the list of genes, 10 duplicates
and 865 identifiers were removed by the GO::TermFinder [49]. In the results, 10 541 terms were
found in the biological process domain, but only 647 were displayed due to the p-value cut off. The
results are presented in an HTML table format that was imported to REViGO [50] to visualize the
terms.

The input field in REViGO for the GO term identifiers and their p-values was pre-filled from
GO::TermFinder. The allowed semantic similarity was set to medium(0.7), which was the default.
Semantic similarity describes processes that are similar by their annotated genes and their func-
tionalities. The advanced options were left as default too. REViGO summarized the GO terms by
hierarchical clustering and visualized similarities and the p-values of the terms in the results.

The scatter-plot and the tree-map(Figure 17) showed the representative pathways for some of the
clusters. From both these visualizations ”Neuron projection development”-cluster was the biggest
cluster, along with ”mRNA metabolism”, ”Modulation of synaptic transmission”, ”Regulation of
catabolism”, and ”Peptide transport”. This indicates that the most varying genes between control
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Figure 17: This treemap visualizes the functionally enriched GO terms within the gene set used
for this analysis. This visualization indicates the biological processes that are associated with the
most varying genes. The block size indicates the p- values of the terms.

and case data set are associated with these biological processes, hence these processes are the most
varying processes between controls and PD patients. Terms in the ”Neuron project development”-
cluster and ”Modulation of synaptic transmission”-cluster are recognizable with known molecular
dysfunctions associated with PD.

4.3 Constructing the Network

The networks are constructed separately for each condition to do a differential analysis between
PD patients and healthy persons. The genes are clustered into modules, which are then merged by
the similarity of the gene expression profiles between the modules to avoid too many small modules
with high similarity. The step-by-step tutorial of WGCNA was followed with adjustment of some
parameters accordingly to each count matrix.

To construct weighted networks for biologically more meaningful networks a soft threshold is
set. A set of soft-threshold powers ranging from 1 to 30 is computed for generating the scale-free
topology index plot. For both conditions, the plot is very different from each other, as shown in
Figure 18. The red line is set at 0.8, and the powers above this line indicate high scale-free topology.
From these plots, the soft threshold power 5 is selected for the case network and 24 for the control
network.

The soft threshold power is used to modify the adjacency matrix that describes the relations
between the gene profiles into a topological overlap matrix(TOM). Then the dissimilarities are
calculated by using the TOM, which is then used to create a gene tree for both conditions by
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Figure 18: The scale-free topology plots. The soft threshold powers range from 1 to 30, and the
red line indicates the scale-free topology fit index is set to 0.8. (a) Case condition; selected power
is 5. (b) Control condition; selected power is 24.

hierarchical clustering. The gene trees visualize the networks as dendrograms and are used to
identify modules by dynamic tree cut function for branch cutting. The minimum module size is set
to 30 and deepsplit-variable is set to 2.

The module eigengenes are visualized in a module eigengene tree by clustering their calculated
dissimilarities to identify and merge the close modules. The cut lines for merging the modules are
set to 0.1 in the control module eigengene tree and 0.2 in the case module eigengene tree(Figure
19). The module eigengene trees indicate that there are more modules in the control network than
in the case network.

The results of the gene trees are visualized in Figure 20, where the color-labels before and after
merging the modules are shown for both conditions along the dendrogram. As indicated by the
module eigengene trees(Figure 19), the blue, yellow, brown, and turquoise modules are merged in
the control network. In the case network black, blue, and turquoise are merged to the black module,
the yellow into the grey60 module, and the red into the magenta(Figure 20). The merging causes
larger modules because some of the bigger modules that have high similarity are merged. The color
labels of the modules indicate that there are some similar modules between the networks that might
have some overlapping genes.

The similarities of the gene profiles in the dendrogram can also be visualized by a heatmap
plot(Figure 21), where darker shades indicate the modules. The dendrograms and the heatmaps
show that both networks have one large module resulting from merging many modules, and some
of the color labels appear in both conditions.
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Figure 19: The module eigengene tree for the control network is presented to the left, and the
case network to the right. The module eigengene trees indicate that there are more modules in the
control network than in the case network.

4.4 Evaluating the Modules

An evaluation of the modules could help to select the more interesting modules, that might con-
tain the dysregulated pathways or the causative genes. The evaluations will indicate similarities
between the modules, within a network and between two networks. The module eigengene heatmap
shows the relationships among the modules, separately for each condition network. The module
correspondence matrix compares the modules in a pairwise manner and finds similarities between
them. The module preservation statistics are used to analyze the preservation of the modules from
the reference network in the test network. These three methods are used together to evaluate and
analyze the modules, for selecting interesting modules for further analysis. In this study, the module
labels are used for comparing between case and control, as in the diabetes study [42].

4.4.1 Module Eigengene Heatmap

The adjacency heatmaps of the module eigengenes(Figure 22) show the relationships among the
calculated modules for the control and case network separately. This is done separately because
the networks are constructed separately and it might be interesting to analyse how the adjacencies
differ from control network to case network. The analysis of the module eigengenes and their
adjacencies can be useful for finding interesting modules by looking at the changes of similarities
from the control to the case network. The color scale ranges from blue to red where red indicates
high adjacency and blue indicates low adjacency. The adjacencies describe the correlations between
the module eigengenes. The colors representing the rows and the columns are the modules in the
network. There are 14 modules in the case network, and 20 modules in the control network.

The color-labels that are only in the control network are blue, green, dark grey, dark orange,
dark green, salmon, orange, dark turquoise, and dark red. The color-labels that are only in the
case network are green-yellow, royal blue, and brown. The grey module is not in the heatmaps as
the genes in the grey module are ”leftover” genes, which are the genes that were not assigned to
any module.

Comparing the adjacencies of the modules present in both networks indicates that some module
adjacencies are different from control to case, and some modules show small differences. When
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Figure 20: This is the result of network constructions. The dynamic tree cut colors are before
merging the modules and the merged dynamic is after merging. (a) The dendrogram for the control
condition, and (b) The case dendrogram.
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Figure 21: These are the visualizations of the dendrograms in Figure 20, by a heatmap plot. (a)
Control network heatmap, where the blue module is the largest, and (b) Case network heatmap,
where the black module is the largest.
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Figure 22: Module eigengene network heatmaps for control(right) and case(left) module eigen-
genes. The colors presenting the columns and the rows are the modules, and the colors in the
matrix ranging from blue to red indicate the similarity measure between the modules within the
condition network.

comparing control module heatmap to case module heatmap the pink, black, and tan modules have
many modules with a big difference in adjacencies for most of the other modules, and some with
smaller differences.

4.4.2 Module Correspondence Matrix

A correspondence matrix compares the modules of two networks and describes the gene count
distribution and the similarities of each module. This evaluation allows for comparing the modules
by similarity measures calculated by Fisher’s exact test. It also allows for comparing the gene
distributions in numbers and shows the count of overlapping genes between the modules of both
networks.

The module correspondence matrix for case modules vs control modules(Figure 23) is con-
structed by pairwise comparison. The color-code indicates the similarity measures from white to
red, where white indicates low similarity, and red indicates high similarity.

Some modules have high similarity and high overlapping count, for example, the case black and
the control blue module. The case black module has overlapping genes with all the modules of
the control data set. The color-labels below the case dendrogram in Figure 20 shows that the case
black module is a big module after the merging of the modules with similar expression profiles.
The merging shows that the case black module includes the case blue module when merging, which
might explain the high overlapping count and the high similarity of the case black module with the
control blue module.

Many of the color- labels are present in both of the networks, but none of them have markedly
high overlapping count nor high similarity measure between the same color modules. They seem to
overlap more and have high similarity with other color modules in the other network.

The grey modules contain all the ”leftover” genes, the genes that are not assigned to any of
the other modules. In the control network, there are 708 genes in the grey module. Only one of
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Figure 23: This matrix describes the correspondence of the modules in the case network vs the
control network. The color-scale from white to red indicates the similarity measures between the
modules, and the counts present the overlapping genes in the modules. The rows represent the
color labels of the modules in the case network and the columns represent the control network.

these genes is also in the case grey module as the only gene in this module. The rest of the genes
in the control grey module overlaps with all the modules of the case network, where the highest
overlapping count is with the case black module. This indicates that the genes in the control grey
module are assigned to modules in the case network, except for one gene.

4.4.3 Module Preservation

Module preservation statistics can be used to evaluate the preservation of the modules from a
reference network in a test network. This will also indicate which modules that might contain the
dysregulated pathways by using the hypotheses presented by Medina et al. [42].

By using the module preservation function, module preservation statistics are calculated based
on the control network as the reference network and the case network as the test network and their
module labels. The Zsummary score is plotted against the module size in Figure 24. The blue
line(height = 2) presents the lowest preservation and the green line(height = 10) presents the weak
preservation. The grey module is not included in this calculation.

The lines indicate the lower levels of preservation, and these are the modules that might con-
tain genes associated with dysregulated pathways of PD. From the Zsummary plot(Figure 24), the
modules that are below or closer to the blue line are dark orange, orange, dark grey, pink, and
black.

The color labels of dark orange, orange, dark grey are not present in the case network after
the merging of close modules, as seen in the summaries and plots in previous evaluation sections.
The dark orange module shows no similarity with any other module in the case network in the
correspondence matrix, which might explain the low preservation. The dark-grey module shows



45

Figure 24: This plot describes the preservation of the control modules in the case network. It
shows the preservation statistics by Zsummary scores plotted against module size. The modules
below the blue line are the lowest preserved modules and the green line indicates weakly preserved
modules. Here the control network is the reference network and the case network is the test network.
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low similarity in the correspondence matrix with two modules. The orange module shows low
similarity with the case cyan module, and have the highest overlap count with this module. The
pink and black color labels are present in both networks. The low preservation indicates that these
modules are dysregulated in the case network.

The other modules of the control network that are not present in the case network are blue,
green, dark green, salmon, dark red, and dark turquoise. The blue module shows the highest
preservation in this plot and is also the biggest module by size. More than 4000 of the control blue
module overlaps with genes in the case black module, which can be explained by the merging of
the case blue module into the case black module. Some modules are only present in the control
network that show high preservation. For example, the dark red module and the green module,
which both show high similarity with modules of case network.

4.4.4 Interesting Modules

These matrices of module evaluation and the preservation statistics together indicate the interesting
modules for further analysis. The interesting modules will most probably contain the dysregulated
pathways with causative genes by considering the differences indicated by the evaluations. By
the analysis of the eigengene adjacency heatmap, some of the modules with color-labels present in
both networks showed difference in the similarities that could be interesting to look at. Further by
the three analysis methods the 5 lowest preserved modules that also showed differences in module
eigengene network and correspondence matrix are selected; dark grey, dark orange, orange, the pink
and black module of the control network, and the pink and black module of the case network.

The pink and the black color label are present in both networks. The pink modules also had
high similarity indicated in the correspondence matrix(Figure 23). The pink modules and the black
modules also indicated differences in the module eigengene heatmaps.

4.5 ConsensusPathDB

An over-representation analysis of the functionally enriched pathways in the interesting modules
may reveal some dysregulated pathways associated with PD. For the functional enrichment anal-
ysis of the dysregulated pathways, the online version of ConsensusPathDB. Gene lists from each
interesting module were uploaded and KEGG was selected as a pathway source. The p-value cutoff
was set to 0.05 and the minimum overlap size with the input list was set to 2.

The analysis gave 108 pathways for case black module, 36 for control black, 10 for case pink, 62
for control pink, 30 for dark grey, 21 for dark orange, and 8 for orange. Among the bigger lists of
pathways for the control module gene sets, signaling pathways was a common factor for the lists,
also verified by their word clouds. The signaling pathways decreased and the pathways related to
diseases increased from control to case modules. For further analysis, the pink and black modules
are compared between the conditions, as these color labels are present in both condition networks
and the evaluations indicated these as interesting modules. The pink modules had high similarity
in the correspondence matrix(Figure 23), and pink and black modules had many differences in the
similarities with the other modules described in the module adjacency heatmap(Figure 22).

4.5.1 The Pink Modules

The control pink and case pink module is almost equal by size, where the control pink module
contains 268 genes, and the case pink module contains 292 genes. The numbers of pathways were
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very different, the control pink list had 62 pathways and the case pink had 10 pathways. There
were only three overlapping pathways with some similar genes. In the control module almost 50%
are signaling pathways, but there is only one signaling pathway in the case pink output list.

In the pink control output list ”Dopaminergic synapse” was listed with 5 candidates. This
indicates that this pathway is associated with the most varying genes within PD. The presence of
this pathway can also show that the dysfunction is not directly in the dopaminergic synapse, but
in an earlier or later step of the signal transmitting. In control pink, the genes that overlapped
with the dopaminergic pathway are PRKCA, AKT1, MAPK11, CAMK2A, and GNB2. All of these
genes are related to signaling by being directly involved in cellular signaling pathways or involved
in the integration of biochemical signals for a variety of cellular processes [57]. Out of these genes,
only AKT1 is present in the case pink gene set, but because of the minimum overlap size set to 2,
it will not give a match with the ”Dopaminergic synapse”-pathway.

On the other side ”Dopaminergic synapse” is listed in the black case output list with 60 can-
didates, which is the opposite patient group. According to the correspondence matrix, the control
pink module overlaps with the case black module with 101 genes, but there are no overlapping
genes in the candidate list of the pathway between control pink and case black output-lists.

4.5.2 The Black Modules

The resulting list of control black module contained 36 pathways, and the case black module con-
tained 108 pathways. The different sizes of the lists are because of the different sizes of the gene
sets. The control black module has 280 genes and the case black module has 5932 genes. The
case black module contains a larger set of genes, hence the pathways also contain many genes per
pathway.

These two modules have a total of 21 common pathways, where some of them had overlapping
genes. Many of the common pathways are signaling pathways. In the control black module output
list approximately 36% of the pathways are signaling pathways, and in the case black module it is
around 25%. This shows that the signaling pathways might be dysregulated from control to case.

Another thing to compare between these lists is the disease-associated pathways. In the control
output-list, it is only 8% of the pathways that are associated with a disease, but in the case
output-list, it is approximately 14.8%. Among these disease pathways in the case black module,
Parkinson’s disease is one of them along with Huntington’s disease and Alzheimer’s disease. 99 of
5932 genes match with the gene set representing Parkinson’s disease in KEGG. The recognizable
genes are PARK7 (DJ-1 ), LRRK2, SNCA, and UCHL1. These are described in Table 1 as early-
onset PD(EOPD) with few cases and good responses to levodopa treatment, except LRRK2 which
is found in later-onset PD(Classical PD).

Another interesting pathway identified within the case black module was the ”Ubiquitin medi-
ated proteolysis” pathway, which has an important role in cellular processes with the functionality
of protein ubiquitination [40]. This system regulates the presence of reactive oxygen species to
protect the cell for extra oxidative stress and mitochondrial damage.

4.6 ClueGo

ClueGo is a plug-in tool in Cytoscape that can be used for functional analysis of pathways and how
they interact by common genes with network visualization of the pathways. The database used for
this tool is also KEGG so that the results can verify the findings of the analysis in ConsensusPathDB,
and compare the pathways found in both networks.
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Figure 25: These are the pathway networks from ClueGO analysis for each set of nodes from the
module networks. The colors indicate functional groups, and the edges are weighted by a Kappa
score. Some nodes have multiple colors, which indicate that this node is a part of multiple functional
groups. The levels of detail are different from module to module.
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ClueGo creates a network of the pathways, and the layout tells which pathways are functionally
similar and how similar they are. The modules used in this tool are pink and black modules from
both case and control networks, the same that were used for module network topology analysis. This
means that there are fewer genes than in the ConsensusPathDB analysis, because of the filtering
done when making gene sets for network topology analysis. These modules were also selected for
this analysis as these were the most interesting modules in the ConsensusPathDB analysis.

Figure 25 shows the results of the ClueGo analysis. They vary in how detailed they are, and
also in how similar the pathways are. The numbers of pathways and functional groups are also
different from module to module. To present the network in this figure, some of the nodes that
were far away from the others were moved closer to get a better overview of all the pathways in
one square. The distance in the original network tells how similar the pathways are.

4.6.1 Pink Modules

In the control pink module network, there were found 10 functional groups. The toggle was set
right above medium to get the most important functional groups and pathway, as a more detailed
one was more complicated to analyze. The largest group is the ”ErbB signaling” pathway, where
all the signaling pathways are connected. ErbB signaling pathway is defined as a signaling pathway
that regulates different biological processes such as regulating cell survival [40].

The edge colors representing the Kappa score indicated strong connections between signaling
pathways and their functional groups. These signaling groups are associated with functions such
as signal transductions which are important for cell survival. One interesting pathway in this
module is ”Dopaminergic synapse”, also found in the analysis of ConsensusPathDB. Dopaminergic
synapse is an important synapse pathway for the neurotransmitter dopamine(DA) in the brain. DA
controls different functions such as motor signaling and more in the central nervous system [40].
Defects in this pathway may lead to a lack of dopaminergic neurons which causes many of the
PD symptoms. The connectivity to other signaling pathways explains the importance of signals
transmitted by neurons in dopaminergic synapse because this pathway also activates several other
signaling pathways.

Lastly, the ClueGO analysis was done for the case pink module. The toggle was set in the
middle of medium and detailed as this network did not have many pathways. The more detailed
network gave more pathways, but no more connections than shown in Figure 25. In this network
of pathways, there were 8 functional groups, and only one group had two pathways connected as
visualized in Figure 25. This case module network gave no match with signaling pathways.

4.6.2 Black Modules

The control black module contains significantly fewer genes than the case black module, which
resulted in fewer pathways as in the ConsensusPathDB analysis. The 60 nodes of the control
black pathway network are very similar, and only 2 of them are not linked to any other pathway.
The control black module resulted in 4 functional groups where 2 of them are strongly connected
and cover most of the pathways. The two functional groups that are connected are the ”Thyroid
hormone signaling” pathway and ”Renal cell carcinoma” pathway, and they share some pathways
in between them. The Thyroid hormone signaling pathway is central of activating many other
signaling pathways, essential for many biological processes [40], which also explains the connections
to the other signaling pathways.
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Figure 26: This sub-network is a part of the case black ClueGO network in Figure 25. These
nodes belong to the functional group of oxidative phosphorylation as the representative pathway,
and Parkinson’s disease is a part of this sub-network. The edges are colored by the Kappa score,
where the darker shade of grey indicates a higher score.

The case black module is the largest module of the case network, and in ConsensusPathDB the
output contained a high number of pathways. For the module network analysis, the number of
genes was reduced to 533, but it still resulted in many pathways. To avoid too many pathways the
toggle button was right below medium for this gene set, which still resulted in many pathways. The
pathways were divided into 140 functional groups, where many of the groups only contained one
pathway. Many of the pathways are similar and close together in the ”hairball” in the middle, but
the other nodes far away from each other indicate a high variation of pathways within this module.
In the analysis of the ConsensusPathDB, there were some interesting pathways such as ”Parkinson’s
disease” and ”Ubiquitin mediated proteolysis”. Ubiquitin mediated proteolysis pathway has high
p-value in the ClueGO network of this module, but it is not connected with any other pathway.
In this network, the Parkinson’s disease pathway belongs to the functional group of ”Oxidative
phosphorylation” where all the nodes have a high p-value, hence the larger size nodes.

The functional group oxidative phosphorylation contains three neurodegenerative diseases, which
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Genes Association/Functionality

ADCY5, ADORA2A, PRKACA, PRKACB Signaling compounds and pathways

MT-ND1, MT-ND2, MT-ND3, MT-ND4, MT-ND4L, MT-ND5, MT-ND6

SLC25A4, SLC25A5, SLC25A6 (Translocates ADP/ATP)

Respiratory chain

LRRK2, PARK7, PINK1 (Section 1.1.2)

SEPT5

Parkinson Disease

UBE2J1, UBE2L3 Modification of proteins with ubiquitin

VDAC1, VDAC2, VDAC3 Mitochondrial integral membrane protein

PPIF Involved in ATP synthase activity and may assist in protein folding

Table 2: This table shows the genes that are in Parkinson’s disease pathway and not in Alzheimer’s
disease pathway from ConsensusPathDB analysis, with their associations and functionalities. In-
formation is from genecards [57].

explains the similarity between Alzheimer’s Disease, PD, and Huntington’s disease. In Figure 26
the functional group of Oxidative phosphorylation is extracted with the adjacent nodes. None of
these pathway nodes are connected to other nodes in the remaining network. For this closer look,
the edge color is changed to a gradient greyscale indicating the kappa score, where darker shades
of grey represent a higher Kappa score.

Oxidative phosphorylation is a biological process that phosphorylates ADP to ATP which is the
fuel of the cell, which takes place in the mitochondria [58]. The oxidative phosphorylation happens
through the respiratory chain which consists of five complexes, where dysfunction in complex I is
found to be associated with PD and is also a reason for increased production of ROS [59].

The stronger connectivity from Parkinson’s disease to Alzheimer’s disease, than to Huntington’s
disease, confirms that these two diseases are very similar in dysfunctionalities. By looking at the
genes that matched with Parkinson’s disease pathway in the list from ConsensusPathDB compared
to Alzheimer’s Disease, the genes that are different between these disease-associated pathways can
be identified. As the Kappa score tells there are many similar genes in both of the sets, but there
are some genes that are only in either of them which can be a major difference to tell the diseases
apart from each other.

The genes are listed in Table 2 and categorized based on common association and functionalities.
The largest group is the genes associated with the respiratory chain, which explains the strong
connectivity to the Oxidative phosphorylation pathway. Along with LRRK2, PARK7, and PINK1
which is explained to be associated with PD in section 1.1.2, SEPT5 is also associated with PD [57].
Over-expression of SEPT5 is associated with dopamine-dependent neurotoxicity, and degradation
of this gene may lead to early-onset PD(EOPD) [57].

In this set of genes, two genes are associated with the modification of proteins with ubiquitin,
which has an important role in decreasing oxidative stress and preventing mitochondrial damage.
The presence of this pathway in the case black module network, and that two genes of Parkinson’s
disease pathway are associated with ubiquitination may indicate that there is a higher level of
oxidative stress by reactive oxygen species in PD genes compared to Alzheimer’s disease genes.
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4.7 Module Network-Cytoscape

The network analyzer tool in Cytoscape provides a statistical analysis that describes the topological
properties of the network for each module network. The statistical analysis calculates many topo-
logical measurements, where the betweenness centrality and the node degree is kept in the network
tables for further analysis.

In the module networks, the nodes represent the genes and the edges are weighted by the
adjacency measures from the topological overlap matrix. The nodes and the edges are filtered by
selecting the top-ranked genes by their soft connectivity measures, and by setting a weight threshold
for each module network.

The modules that are visualized in Cytoscape are the control and case modules of black and
pink(Figure 27). The case black module is the largest module with more than 5000 genes, even
after filtering. For this module, the 1000 top-ranked genes are selected before setting the weight
threshold by calculating soft connectivity measures. The case black module had a threshold on 0.57
with 533 genes and 3529 edges, which will say that the weight threshold left approximately 50% of
the genes disconnected to the resulting network. For the control black module, the weight threshold
is set to 0.06 which resulted in a network of 275 genes and 2985 edges. The pink modules have
the threshold 0.1 for the control module and 0.2 for the case module, where the control module
contains 235 genes and 4007 edges, and the case module 262 nodes and 3988 edges.

In the visualization of the module networks in Figure 27, the network node’s color is a gradient
with the node degree from the network topology analysis. The color scale is from light-yellow to
orange to red, where yellow indicated a low degree, orange medium, and darker red high degree.
The large gene sets in each module formed ”hairballs” in the network visualization, making the
table resulted from the statistical analysis more useful for further analysis.

4.7.1 Identifying Genes by Analyzing Betweenness Centrality Measures

Betweenness centrality(BC) measure indicates biological information transfer, and how important
each gene is in a biological network [42]. The overlapping genes between the control and case
module networks can be used to analyze and compare the importance of the genes in the networks.
Then the roles of the genes can be associated with functions causing PD.

The genes with the highest betweenness centrality measure in each module network will have a
central role in the module. In the control pink module, the PITPNM3 gene has a BC measure equal
to 1.0 and in the case pink module the CYB5R1 has the highest BC measure at 0.0999, and are
the genes with the highest BC measure in these modules. The PITPNM3 gene encodes membrane-
associated transfer proteins and the CYB5R1 gene is related to oxidoreductase activity [57]. In
the black control module, the IQSEC2 has a BC measure 0.076 and in the case black module
the SEC63 gene has the highest BC measure that is 0.2799. The IQSEC2 gene may play a role
in the cytoskeletal and synaptic organization, where mutations of this gene have been associated
with cognitive disability [57]. The SEC63 gene from the case black module is associated with
the unfolded protein response pathway and is a central component of the protein translocation
apparatus of the endoplasmic reticulum(ER) membrane [57].

Overlapping genes between the module networks enables a comparison of the genes by their BC
measure between the modules of the same module color. In the pink module networks, there are 30
out of 37 overlapping genes after setting the weight threshold, and in the black module networks,
there are no overlapping genes left after the filtering. The black modules are very different in size,
and approximately 50% of the genes are filtered out in the case black modules. No overlapping
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Figure 27: Visualization of the module networks in Cytoscape. The nodes are colored by their
degree from yellow to dark red. Yellow indicates a low degree and darker red indicates a high
degree.
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genes in the black modules indicate that the 87 overlapping genes were not among the genes with
the highest soft connectivity measure in the case black module.

By looking at the overlapping genes in the pink module and their betweenness centrality(BC)
measure from control to case, the similarities of the BC measures can be compared. The genes
with very similar BC measures are SNX8, TPR, and AKT1. The genes that were very different
are PCM1, AK1, NCBP2, DARS, IVD, WASF3, SIN3A, NELFB, NLGN3, IPP, and Clorf122,
and they all show lower BC measure in the case module network than in control module network.
This indicates that these genes that were different have less important roles in the pink module
of PD patients. Out of these, AKT1, AK1, CSPG5, IVD, and NLGN3 have some interesting
functionalities that could be related to the known symptoms and dysfunctionalities of PD.

AKT1 is a protein-coding gene that is related to many signaling pathways and cell survival as-
sociations [57]. This describes the findings with ConsensusPathDB where AKT1 is related to many
of the pathways, especially signaling pathways. This gene regulates cell survival by phosphorylation
of other genes [57]. AKT1 has a betweenness centrality equal to 0 in the case and control module
network of the pink modules.

AK1 is found to be highly expressed in skeletal muscle and brain and certain mutations in this
gene are associated with a rare genetic disorder that can destroy red blood cells [57]. AK1 is also
associated with metabolic pathways.

CSPG5 encodes a protein that may function as a neural growth factor that is essential for the
regulation of growth, maintenance, and survival of neurons [57]. Mutations or lack of this gene may
cause a higher rate of neuronal loss, which might explain the lower BC measure in the case module.

A lack of IVD results in an accumulation of an acid that is toxic to the central nervous system
[57]. The BC measure for this gene is 0 in the case network and higher in the control network. This
may explain more toxicity to the central nervous system with PD patients, as this gene has a more
important role in the control module.

NLGN3 encodes neuronal cell surface proteins that play a role in synapse function and synaptic
signal transmission, which may have a role in the formation and the remodeling of the central
nervous system synapses. The lower BC measure in the case module may indicate dysfunctions of
the synapses.

4.8 Interesting Genes

The analysis methods of ConsensusPathDB, network topology analysis, and the pathways visualized
by ClueGO indicated some interesting genes in the selected modules, by having functionalities that
could be associated with PD. Table 3 presents a summary of all the genes mentioned as interesting
genes in the analysis of the modules. The genes are described with what module they were found
in, their functionality/association, and what analysis they were found in. The table is sorted by
the module they are found in, and for the pink module, some genes are in both condition modules.

4.8.1 Pink Module

CYB5R1 is the only gene from the pink case module without being in the control module also, and
this gene was found when analyzing BC measure as the highest BC measure in this module. This
gene is associated with oxidoreductase activity [57].

Many of the genes from the pink control module are associated with the dopaminergic synapse
pathway, identified with ConsensusPathDB. AKT1 gene is present in the pink module for both
condition networks and is related to many signaling pathways as well as cell survival associations
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Gene Module/Condition Functionality/Association Analysis section

PARK7 (DJ-1 ) Black/Case Parkinson’s Disease ConsensusPathDB

LRRK2 Black/Case Parkinson’s Disease ConsensusPathDB

SNCA Black/Case Parkinson’s Disease ConsensusPathDB

UCHL1 Black/Case Parkinson’s Disease ConsensusPathDB

SEC63 Black/Case
Responsible for unfolded protein response

+ protein translocation

Betweenness Centrality

SEPT5 Black/Case Parkinson’s Disease Cytoscape-ClueGO

UBE2J1 Black/Case Modification of proteins with ubiquitin Cytoscape-ClueGO

UBE2L3 Black/Case Modification of proteins with ubiquitin Cytoscape-ClueGO

IQSEC2 Black/Control
Cytoskeletal

+ Synaptic organization

Betweenness centrality

CYB5R1 Pink/Case Oxidoreductase activity Betweenness centrality

PRKCA Pink/Control Dopaminergic Synapse ConsensusPathDB

MAPK11 Pink/Control Dopaminergic Synapse ConsensusPathDB

CAMK2A Pink/Control Dopaminergic Synapse ConsensusPathDB

GNB2 Pink/Control Dopaminergic Synapse ConsensusPathDB

PITPNM3 Pink/Control Membrane transfer proteins Betweenness centrality

AKT1 Pink/Control+Case Dopaminergic Synapse ConsensusPathDB + Betweenness Centrality

AK1 Pink/Control+Case Metabolic pathways Betweenness Centrality

CSPG5 Pink/Control+Case Neural growth Betweenness centrality

IVD Pink/Control+Case
Degradation

+ Metabolic pathways

Betweenness centrality

NLGN3 Pink/Control+Case Synaptic signal transmission Betweenness centrality

Table 3: This table summarizes the genes identified in different analyses of the condition networks.
The genes are sorted by what condition module they were found in. Their functionality and
the analysis they were found in is also described. Many of the genes are found within pathways
associated with PD.
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[57]. PRKCA is a gene that encodes for a protein that plays a role in many different cellular
processes [57]. MAPK11 encodes for a protein kinase that is central in the integration of biochemical
signals for many different cellular processes [57]. CAMK2A is crucial for encoding protein involved
in calcium signaling [57]. GNB2 is also associated with signaling and involved in signal-transducing
receptors. The last gene that was only found in the pink control module is the PITPNM3 gene
that is associated with membrane proteins and had the highest BC measure in this module.

The rest of the genes in Table 3 are also found in BC measure analysis where these were among
the overlapping genes. These genes were found to have a higher BC measure in the control module
network than in the case module network. AK1 is described as a highly expressed gene in skeletal
muscles and the brain [57]. CSPG5 is essential for neuron growth, maintenance, and survival [57].
A lower expression of this gene might indicate less growth and differentiation of neurons, and a
higher rate of neuron death. Lack of IVD is thought to result in a toxic environment in the central
nervous system [57], and lower expression of this gene within the case patients might describe more
toxicity in the central nervous system of the case patients. NLGN3 is essential for synapse function
and signal transmission which may have a role in the formation and remodeling of the central
nervous system synapses [57].

4.8.2 Black Module

The first genes are the ones in the black case module network, where most of them that were found
to be interesting are associated with ”Parkinson’s disease” pathway and some of them are described
in section 1.1.2.

PARK7, LRRK2, UCHL1, and SNCA are described in Table 1 as associated with PD. PARK7
gene encodes proteins that are thought to protect the cell against oxidative stress and avoid cell
death, and a defect in this gene causes the autosomal-recessive EOPD [57]. LRRK2 is associ-
ated with the outer membrane and signaling, and UCHL1 is especially expressed in neurons [57].
SNCA(Synuclein Alpha) is highly expressed in the brain and is thought to be involved in presy-
naptic signaling and membrane trafficking [57]. This gene is also associated with the respiratory
chain and ATP synthesis. These genes were found when analyzing pathways that were identified
with ConsensusPathDB.

A gene that was not mentioned in Table 1 is SEPT5, also called SEPTIN5, which is associated
with neurotoxicity that may lead to EOPD. This gene was found when analyzing pathways identified
with ClueGO. The next gene listed from the case black module is SEC63, which is responsible
for unfolded protein response and associated with protein translocation, and was identified when
analyzing betweenness centrality with the highest measure in the case black module. The last two
genes UBE2J1 and UBE2L3 are associated with ubiquitination, which is an important process for
reducing oxidative stress by removing reactive oxygen species that increase oxidative stress. These
genes were also identified when analyzing the PD pathway in ClueGO results.

The only gene from the black control module was IQSEC2 from BC measure analysis, where
this gene had the highest BC measure in this module. This gene may play a role in the cytoskeletal
and synaptic organization [57], which can be essential for neuron transmitting and signals in the
nervous system. Mutations of this gene are associated with a cognitive disability, which can cause
symptoms of PD.
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Step Description Function Parameters

Data filtering and selection Good genes and samples goodSamplesGenes count matrix, verbose

Sample clustering hclust distance matrix, method

cutreeStatic Sample tree, cutheight, minSize

Top varying genes mad count matrix

Network construction Soft threshold values pickSoftThreshold count matrix, cutheight, verbose

Adjacency matrix adjacency count matrix, power

Gene tree hclust distance matrix, method

Module identification cutreeDynamic dendrogram, distance matrix, deepSplit, minClusterSize

Module eigengenes moduleEigengenes count matrix, colorlabels

Module eigengene tree hclust distance matrix, method

Merging modules mergeCloseModules count matrix, color labels, cutHeight, verbose

Table 4: This table summarizes the automatic functions of WGCNA used in this study. The
highlighted parameters are the parameters that can be tuned.

5 Discussion

Parkinson’s disease is one of the most common neurodegenerative diseases with symptoms that
makes daily chores difficult. There are several studies ongoing to finding causative genes in PD
patients to identify genetic differences that differ PD from other similar diseases and differences
between healthy and PD patients. The biological functions that are believed to cause this disease
are partially identified, and with that knowledge, genes that play different important roles in those
biological processes can be identified. This study approaches dysregulated pathways and causative
genes by a differential network analysis based on the co-expressed genes in PD patients vs healthy
persons. Modules are helpful to analyze the large data set, and evaluations of these help to identify
interesting modules. Further on, the interesting modules were analyzed by different tools and
methods which led to interesting pathways and genes that could be associated with PD. Figure 16
describes a flowchart of this study.

5.1 Functions of Network Construction

In the data filtering and network construction, there are many automatic functions. Especially
the network construction step consists of many tuned parameters. Tuning the parameters is a
major challenge, as there might not be good descriptions of how to select appropriate parameters.
Some of the parameters were default and some were changed by testing different values where the
parameters were selected when the output was close to what the tutorial had. Another challenge of
automatic functions is the reproducibility, because of all the tuned parameters. All the functions
of data filtering and network constructions are summarized in Table 4, where the parameters that
are tuned are highlighted. This was also a challenge with the tools when setting different cutting
parameters.
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These large data sets can be challenging to analyze in detail, therefore the network construction
and WGCNA methodology in identifying modules were helpful for a detailed overview. The modules
were created with different automatic functions, where some parameters were also tuned by testing.
These parameters were tuned considering the numbers of the modules the tuning resulted in, but it
was challenging to get the same number of modules for both the networks. The different numbers of
modules, the different color labels, and the different module sizes in the networks made it challenging
to compare the modules in further analysis.

Block-wise network construction is a method to consider for network construction with large
data set. As the method name suggests, this method divides the data set in blocks of set size
and constructs a network for each block, and is described to be faster. The challenges of this
method were to visualize the networks by heatmaps as the TOMs are saved in separate files and to
compare and analyze the modules with more than 20 networks. In the tutorial [28], the network
that represented the data set the best was selected. The step by step network construction was
easier considering the steps after network construction, and as it was feasible to run on the computer
it was not necessary to perform to blockwise network construction.

5.2 Evaluating the Modules

The differences in similarities between the modules, when comparing the eigengene heatmaps of the
case and control network indicate that the overlapping genes in some of the modules are differentially
expressed. It could also be because the modules of the same color label consist of different genes,
also indicated by the correspondence matrix.

The correspondence matrix showed that the modules that were in both networks did not always
contain the same genes, which could be explained by different clustering and merging of the modules,
and that the genes are differentially expressed in both networks as these genes are the most varying
genes of the original data set. Every module from both networks shared some similarity with at
least one module from the other network, but not many shared a strong similarity or any similarity
with the same color labeled module in the other network if the color label was present in both
networks.

In the module preservation statistics analysis it was expected that the modules that were not
in the case network would show low preservation, as this statistic shows how well the modules
are reproduced in the test network. Surprisingly some of them were in the middle and some even
showed high preservation. The modules with low preservation were verified by the other evaluation
methods as well.

The tutorials of module evaluation methods excluded the grey module( the ”leftover” genes)
from preservation statistic analysis and the module eigengene heatmap, but the difference in how
many genes that were in the control grey module vs the case module indicated that this module
could also be interesting to include in the preservation analysis.

5.3 Tools

Based on the evaluations, interesting modules were selected for further analysis of pathways and
network topology. The different tools are summarized in Table 5. The gene sets were the genes
from each module selected as interesting modules, and KEGG was selected as the database for the
pathways for both methods.
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ConsensusPathDB Cytoscape-BC Cytoscape-ClueGO

Online tool Software Plug-in app to software

A list of matching pathways for each

module

Access to network topology measures,

and module network visualization

Visualization of the pathways and

their interactions for each module

Used to identify dysregulated pathways with the gene-sets

of each interesting module

Used to visualize the module networks

and to look at the network topology measure

betweenness centrality measure

Used to validate pathways found with

ConsensusPathDB, and to look at some

interacting pathways of the dysregulated

pathways

Table 5: Summaries of the tools and what they were used for in this study.

5.3.1 ConsensusPathDB

In ConsensusPathDB the threshold and the minimum overlap size were the same for all the gene
sets, but the size of the gene sets varied and resulted in different output list sizes. Maybe different
threshold values would have given more equal list sizes, but for the comparing between the modules,
without having to consider the parameters, all the thresholds were equal.

The output list could be downloaded, which was found to be more informative, as the down-
loaded file was presented in a more informative way. The downloaded file contained all the genes
that matched with one pathway, and the online list only showed how many genes that matched with
the pathway. The genes listed in the downloaded file were very useful when identifying interesting
genes within the dysregulated pathways.

5.3.2 ClueGO

The ClueGO plug-in verified some of the pathways listed in the output of ConsensusPathDB, but
there were also some pathways left out and some new pathways identified. The functional groups
in ClueGO made it easier to look for interesting pathways and pathways similar to them, by using
the pathways from the analysis with ConsensusPathDB.

The kappa score also made it easier to identify interesting pathways for further analysis and
to extract pathways that were similar within functional groups. This score was used to identify
pathway similarities within the functional group oxidative phosphorylation in Figure 26, which
contained PD, Alzheimer’s, and Huntington’s disease pathways. The similarities between these
diseases, and that they are hard to tell apart when diagnosing elderly patients are discussed in
many studies.

The different networks of the pathways for each module have different levels of details. Some
modules needed higher levels of details to get more connections between the pathways, and some
modules needed lower levels of details to only show the most important connections between the
different pathways. This is also another tuned parameter to consider, which makes it more difficult
to reproduce the results.
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5.3.3 Cytoscape

Cytoscape is a software for visualizing the networks and it provides extra tools for analyzing the
networks. The nodes and edges of the module networks were filtered in different steps of ranking and
filtering, considering the numbers of nodes(genes) and edges(connectivity) to be as equal as possible
for easier comparison. The thresholds were different for each module network, as the weights varied
from module to module, and the number of nodes and edges were considered. The filtering of nodes
and edges made it easier to analyze the networks with only the strongest connections among the
genes in the modules and between the conditions, but it also decreased the number of overlapping
genes between the condition modules. The overlapping genes were useful to look at how the same
gene acted differently between healthy and PD patients by comparing modules based on their color
label. Even though the filtering made it easier, it was still a challenge with a large number of nodes
and edges per module network.

5.4 Evaluating Results

The network construction, module identification, evaluation, and the analysis resulted in interesting
dysregulated pathways with genes associated with dysfunctions of PD. One should consider how
reliable the results are, and if some selecting and filtering can affect the results. First, the tuned
parameters and the evaluation which resulted in selecting only five, later on only two modules.
Next, interesting pathways were selected based on recognizable functionalities. Finally, interesting
genes were selected by network topology and in the interesting pathways. This study resulted in a
list of 20 genes out of approximately 50 000 genes.

5.4.1 Modules

Different tuning of the parameters could have resulted in more modules, and maybe the modules
could be related to more specific functionalities by containing fewer genes per module. The modules
in this study included a variety of pathways which made it difficult to pin a module to a functional
group. This variation might also be caused by the merging of the modules which made some modules
larger, and one or two modules containing a large number of the total amount of the genes. The
variations within the modules were also indicated by the visualization in ClueGO analysis, where
many functional groups were indicating a high variation of functionalities.

In the dendrograms created for each condition, the genes have different correlation measures in
the different conditions which results in different assignments of genes to modules. When the genes
are clustered into the dendrogram, the branches that connect the genes describe a module. When
the branch cutting is performed, the numbers of the modules will vary based on the branches, and
hence will also the labels of the modules. This explains the differences between the same color
modules in the networks.

The merging also made that some of the modules that are in one of the networks seem to not be
present in the other network, but they are merged into another module. In Figure 24, the control
blue module shows high preservation because this module was present in the case network before
the merging, and is merged into the case black module, which also explains the high overlap in the
correspondence matrix. This indicates that merging is also one of the reasons for the differences in
the modules between the condition networks.

As discussed earlier the grey module also seemed to be interesting to study which gene is not
assigned to a module in any of the condition networks, or identify the genes that were not in the
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case grey module, but in the control grey module. The different modules of the networks might also
have been interesting, and by only analyzing 2 modules out of 14 in the case and 21 in the control
network, there is a risk of missing modules containing dysregulated pathways with causative genes
for this disease.

5.4.2 ConsensusPathDB

The analysis with ConsensusPathDB gave an idea of what pathways the modules of the different
conditions contained. A challenge in the analysis with this tool was the case black module, as it
contained many genes compared to the other modules selected for analysis. This analysis and a
match with the PD pathway verified that WGCNA methodology with the preservation statistics
will help to identify dysregulated pathways.

During this study, a curiosity raised about if the PD related pathways and genes belonged to
the case blue module or the case black module before merging. Both networks contain the same
set of genes, which means that these PD genes must be in the control network too. The previously
described similarity between the case black module and the control blue module indicates a high
probability that the PD genes are in the control blue module and suggests that this module should
have also been analyzed. At the same time, these two modules are the largest modules of the
networks and contain approximately 50% of the genes. Analyzing modules that are this big could
give an inaccurate indication by a variety of functionalities.

The pathways identified by ConsensusPathDB and the identification of the genes in the path-
ways resulted in some interesting genes, where some of them were found to be more studied than
others. The genes that were more studied, and found to be associated with functionalities that
could be related to PD are described in this study. The other genes that are mentioned, but not
described, were not studied enough to relate to PD, and some barely had any information about
the functionalities of the gene.

In this study, interesting pathways are pathways associated with characteristics of PD described
in the background section 1.1, which suggests there might be other pathways than the ones analyzed
in this study that are interesting to study in the case of PD.

5.4.3 Module Network Analysis

ClueGO was used to look at the interactions between the pathways identified in the case and control
modules of pink and black. The pathways that were visualized here were also found with Consen-
susPathDB, but with this visualization, it was easier to look for pathways with high similarity.
This also revealed different functional groups, which helped in identifying central functions for the
disease pathways. The case black module was also a challenge in this tool, but the interesting
pathways found in ConsensusPathDB gave an idea of what pathways to look for. The risk of using
the data from ConsensusPathDB to select out interesting pathways is that considering the level of
details tuned in these networks. Maybe some pathways that were not found in ConsensusPathDB
analysis could also be interesting to study. On the other side, there were fewer genes after filtering,
which could give more specific pathway lists considering the genes with the highest connectivity.

Network topology is widely used to analyze biological interaction networks, especially for dif-
ferential analysis, where betweenness centrality(BC) measures were used in this study. A challenge
here was, by all the filtering of genes and their interactions, the black modules had no overlapping
genes between the control and case modules that could be compared. The comparison of BC mea-
sures of the overlapping genes between the case and control pink modules revealed some genes that
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were associated with dysregulated functions that are known in the PD brain. Many other network
topology measures could have been used to identify interesting genes as well, in addition to BC
measures.

5.4.4 The Interesting Genes

All the different analysis methods of the modules and their genes resulted in interesting genes.
These genes are identified by many steps of filtering and analyses that resulted in 20 genes found
to be interesting, from approximately 50 000 genes.

A study of changes in cell composition of control vs PD patients [60] revealed that there was a
big difference in cell composition between parts of the brain that changes the most, both biological
differences and technical variation in sample dissection and preparation. This study also suggested
that the observed gene profiles within PD patients were influenced by differences in cellular compo-
sition and driven by technical factors associated with RNA quality [60]. This indicated that the gene
profiles observed from PD patients in this study may be because of different cell composition in the
bulk tissues, and because of technical variation in RNA quality. Nido et al. [60] also did a differen-
tial expression analysis that resulted in downplaying some characteristics associated with PD [60].
As suggested in this study with WGCNA as well, Nido et al [60] also found that the changes are in
the number of neurons and not directly in the signal transmitting pathways. Down-regulation of
mitochondrial pathways, for example, complex I, is found to be driven by altered cellular composi-
tion [60]. This analysis highlighted processes related to endoplasmatic reticulum(ER) and unfolded
protein response, which is also mentioned in this study when describing SEC63. The challenge
of identifying transcriptional events that happen because of changes in cellular composition by
cell-type correction may be solved by single-cell or cell-sorting based methods [60].

5.5 Personalized Medicine

There is currently only one treatment for all PD patients, the dopamine replacement treatment(DRT).
This treatment does not cure PD but decreases the motor symptoms by increasing levels of dopamine
which strengthens the signal transmission for movement. As described PD is not only because of
dopamine levels, many other factors play a role in this disease. ”One treatment for all” will benefit
for some patients, but it may also have a negative effect on some patients. A combination of symp-
toms, biological factors such as Lewy bodies and genetic risk factors are used to diagnose PD, and
to differ this disease from for example Alzheimers. For a complex multi-system disease like PD, a
”cocktail therapy” involving all the parts of P4 medicine is thought to be more sufficient than ”one
treatment for all”. This study of using WGCNA and identifying causative genes in dysregulated
pathways focus on genetic risk factors in the predictive part.

Many researchers are working to find genetic risk factors and early signs related to PD, but it
is very difficult as this is a disease common by aging, a complicated process itself. Oxidative stress
which is described as a biological factor for developing PD is also a factor of the aging process. It
is also known that when the motor symptoms are observed it might be too late for treatment.

With time it is less time consuming to get an output of the genetic risk factors for a patient,
but even though a patient has a probability for getting PD, they might have a probability for
other diseases as well. Which of the diseases should be looked into and how many biological
dysfunctionalities will be looked for every single patient? The list of genes related to PD is ever-
increasing because of the multiple factors associated with PD. The genes identified as interesting
genes in this study might be validated through other studies and might be useful for the study of
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PD, also in personalized medicine in PD. Genetic risk factors can help in predicting the disease in
an earlier stage of the disease, also by combining non-motor symptoms as early signs of PD.

There are different genes in every biological dysfunctionality that may lead to PD by mutations,
and some dysfunctionalities are also a part of other similar diseases like Alzheimer’s. Available data
of PD patients, for example, earlier blood tests can help to study earlier changes on a molecular
level, which then can be used for predicting PD before the symptoms take place.

Cerebrospinal fluid(CSF) has also been used in studying biomarkers that were found to differ-
entiate PD patients from healthy persons and similar diseases like Alzheimer’s disease [61]. The
study of CSF biomarkers also found that it could be used to differentiate between subgroups of
PD and to monitor PD progression in longitudinal samples. Subgroups can then be used in the
predictive part to indicate these changes in the molecular functions of PD patients much earlier, or
it can be used for developing treatments more personalized for these subgroups before considering
each individual. The identified genes from this study can be studied as biomarkers in CSF.

5.6 Further Study

This methodology and the hypotheses suggested in the study of diabetes type 1 [42] have shown
results of some dysregulated pathways and interesting genes to study further. The tuned parameters
can be changed and result in more modules with fewer genes in each module, which might give more
specific modules associated with biological functions. Many more network topology properties can
be studied with the networks visualized in Cytoscape that may reveal other interesting genes too.
More modules were different between the conditions that could be interesting to look into, for
example, the control blue module and the grey modules. The genes identified in this study can be
studied further to associate these genes as possible genetic risk factors of PD, and this methodology
for identifying dysregulated pathways and causative genes can be applied to other disease data as
well.

6 Conclusion

Parkinson’s disease is a complex progressive multi-system disease common by age. It is a very
difficult disease to prevent or predict, as there are multiple biological factors as well as environ-
mental factors triggering and causing this disease. To study such complex diseases many resources
of different research fields are required, where one could be the genetic analysis to find genetic risk
factors that may help to predict the disease. This study with a weighted gene co-expression net-
work(WGCNA) methodology is an approach to identify causative genes by looking at dysregulated
pathways in modules defined by clusters within co-expression s. Many methodologies to do this
kind of network analysis, but for differential network analysis, WGCNA methodology is one of the
most widely used methodologies.

WGCNA contains multiple functions and methods for filtering the data, calculating the corre-
lations between gene profiles, constructing the network, identifying the modules, and visualization
with more. ConsensusPathDB was used to identify dysregulated pathways, and Cytoscape was used
to study network topology properties and to identify pathways and their interactions with ClueGO
plug-in. These analyses resulted in a set of genes related to known dysregulation in PD patients,
and that dysfunctions of synapses and synaptic transmissions may not play an important role for
PD patients.
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One of the challenges in this study was to tune the parameters in automatic functions, which
also make it challenging to reproduce the results. With the parameters set, this study resulted in
many interesting pathways and genes that were associated with dysfunctions of PD. The networks
resulted in differences in the modules that could be challenging when comparing the different
networks. Lastly, eliminating modules and genes to select only a few for further analysis was also
a challenge, as some modules or genes that could be interesting may be left out.

This study was done as a contribution to the study of personalized medicine in PD, especially
focusing on finding genes that might be genetic risk factors within PD patients, by doing a differen-
tial expression analysis between healthy controls and PD patients. It is important to keep in mind
is that as this is a complex multi-system disease, all parts of P4 medicine are equally important to
consider when designing a treatment. Dopamine replacement treatment(DRT) may be beneficial
for some patients, but as PD is different for each patient, the treatments should also be accordingly
for greater chances for a positive effect for all patients. ”One treatment for all” such as DRT is a
good start towards personalized medicine in PD. This treatment can be modified by pharmacology
and improve the effect of the treatment for more patients.
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Glossary

BC Betweenness centrality.

DRT Dopamine replacement treatment.

EOPD Early- onset Parkinson’s Disease.

ER endoplasmic reticulum.

GO Gene Ontology.

GWAS Genome- wide Association Studies.

hub genes central genes highly connected with other genes.

KEGG Kyoto Encyclopedia for genes and genomes.

LB Lewy Bodies.

MAD Median Absolute Deviation.

median absolute deviation Measure of variability of univariate sample of
quantitative data.

modules the branches of a gene dendrogram, clusters of
gene-expression profiles.

monogenic Single gene causing disease.

MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrodine.
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mtDNA mitochondrial DNA.

NBB Cohort; Netherlands Brain Bank.

neurodegeneration progressive neuronal loss in structure or func-
tion and neuronal death.

neuromelanin A dark pigmentation composed of proteins,
lipids, and products of the DA metabolism.

NGS Next generation sequencing.

PA Cohort; Poly- A capture RNA seq.

PD Parkinson’s Disease.

proteasome Protein complexes which degrade damaged pro-
teins.

PW Cohort; the Norwegian Park West Study.

ROS Reactive oxygen species.

scale-free property distribution Where the distribution of node degrees follows
a power law.

SNpc Substantia Nigra parsa compacta.

TOM Topological overlap matrix.

WGCNA Weighted Gene Correlation Network analysis.
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A Appendix

A.1 ConsensusPathDB outputs

• Black-case

• Black-control

• Pink-case

• Pink-control

• dark grey-control

• dark orange-control

• Orange-Control



p-value  q-value  pathway  source  external_id  members_input_overlap  

3,10E-25  9,50E-23  Oxidative phosphorylation - 

Homo sapiens (human)  

KEGG  path:hsa00190  MT-CO1; MT-CO2; MT-CO3; NDUFB9; NDUFB8; NDUFB7; NDUFB6; NDUFB5; NDUFB4; NDUFB3;  

NDUFB2; NDUFB1; UQCRQ; UQCRH; UQCRB; NDUFAB1; MT-ND1; MT-ND2; MT-ND3; MT-ND4; MT- 

ND5; MT-ND6; ATP6AP1; NDUFB11; NDUFB10; NDUFA10; NDUFA11; NDUFA12; NDUFA13; 
MTATP6; COX6A1; UQCRFS1; UQCRC2; UQCRC1; ATP6V1D; ATP6V1F; ATP6V1A; ATP6V1H; COX6B1;  
MT-ND4L; COX6C; MT-CYB; COX8A; COX7A1; COX7A2; ATP6V0A1; ATP6V1G1; COX11; COX15;  

COX17; PPA2; PPA1; NDUFV3; NDUFV2; NDUFV1; MT-ATP8; NDUFA6; ATP6V0C; NDUFA4; NDUFA5;  

NDUFA2; NDUFA3; NDUFA1; NDUFA8; NDUFA9; COX4I1; ATP6V0D1; ATP6V1E1; COX7B; COX7C;  

ATP6V0B; COX5A; COX5B; UQCR10; UQCR11; SDHC; ATP6V1B2; ATP6V1G2; NDUFC1; NDUFC2;  

ATP6V0A2; NDUFS8; ATP6V1C1; COX7A2L; CYC1; NDUFS1; NDUFS2; NDUFS3; NDUFS4; NDUFS5; 

NDUFS6; NDUFS7; SDHA; ATP6V0E1; ATP6V0E2; SDHB; SDHD  

2,81E-23  4,30E-21  Parkinson disease - Homo 

sapiens (human)  

KEGG  path:hsa05012  MT-CO1; MT-CO2; MT-CO3; UBE2J1; NDUFB9; NDUFB8; NDUFB7; NDUFB6; NDUFB5; NDUFB4;  

NDUFB3; NDUFB2; NDUFB1; UQCRQ; UQCRH; UQCRB; NDUFAB1; MT-ND1; MT-ND2; MT-ND3; MT- 

ND4; MT-ND5; MT-ND6; PARK7; NDUFB11; NDUFB10; MT-ATP8; NDUFA11; NDUFA12; NDUFA13;  

MT-ATP6; SLC25A6; SLC25A5; SLC25A4; COX6A1; ADCY5; UBB; UQCRFS1; UQCRC2; UQCRC1;  

UBE2L3; SEPT5; COX6B1; ADORA2A; LRRK2; MT-ND4L; COX6C; MT-CYB; COX8A; UBA1; COX7A1;  

COX7A2; SNCA; GNAL; VDAC3; VDAC2; VDAC1; NDUFV3; NDUFV2; NDUFV1; NDUFA10; NDUFA6;  

NDUFA4; NDUFA5; NDUFA2; NDUFA3; NDUFA1; NDUFA8; NDUFA9; COX4I1; UCHL1; PRKACA;  

PRKACB; PPIF; COX7B; COX7C; COX5A; COX5B; UQCR10; UQCR11; CYCS; PINK1; UBE2G1; NDUFC1; 

NDUFC2; NDUFS8; COX7A2L; CYC1; NDUFS1; NDUFS2; NDUFS3; NDUFS4; NDUFS5; NDUFS6; 

NDUFS7; SDHA; SDHC; SDHB; SDHD  

6,82E-22  6,96E-20  Thermogenesis - Homo 

sapiens (human)  

KEGG  path:hsa04714  SMARCC2; MT-CO1; MT-CO2; MT-CO3; ACTG1; NDUFB9; NDUFB8; NDUFB7; NDUFB6; NDUFB5;  

NDUFB4; NDUFB3; NDUFB2; NDUFB1; MT-ND4L; SMARCC1; UQCRH; UQCRB; NDUFAB1; MT-ND1;  

MT-ND2; MT-ND3; MT-ND4; MT-ND5; MT-ND6; NDUFB11; NDUFB10; NDUFA10; NDUFA11;  

NDUFA12; NDUFA13; MT-ATP6; FGFR1; PRKAG2; CREB1; SMARCD3; SMARCD1; UQCRQ; COX6A1;  

KRAS; ADCY5; ADCY1; ADCY3; ACSL3; ACSL1; ACSL6; ACSL4; GRB2; ACTB; UQCRC2; UQCRC1;  

NDUFAF3; ADCY8; HRAS; NDUFC2; COX6B1; PPARGC1A; PRKG1; ZNF516; COX6C; MT-CYB; COX8A;  

COX7A1; COX7A2; UQCRFS1; RPS6KA2; RPS6KA3; GNAS; COX18; COX19; COX11; KDM3A; COX14;  

COX15; COX16; COX17; DPF3; NDUFAF5; NDUFAF4; NDUFAF1; MAPK12; KDM1A; TSC2; TSC1;  

NDUFV3; NDUFV2; NDUFV1; RPS6KB1; MT-ATP8; NDUFA6; NDUFA4; NDUFA5; NDUFA2; NDUFA3;  

NDUFA1; NDUFA8; NDUFA9; COX4I1; MTOR; PRKACA; PRKACB; RHEB; COX7B; COX7C; COX5A;  

COX5B; UQCR10; UQCR11; PRKAA2; PRKAA1; SMARCA2; SMARCA4; RPTOR; NRAS; NDUFC1; CPT1C;  

CPT1B; SMARCB1; NDUFS6; COA5; COA7; COA6; COA3; SDHA; COX7A2L; CYC1; NDUFS1; NDUFS2;  

NDUFS3; NDUFS4; NDUFS5; ACTL6B; NDUFS7; NDUFS8; SDHC; SDHB; SDHD  



 

   PPARGC1A; POLR2J2; COX6C; PLCB1; PLCB4; MT-CYB; COX8A; POLR2E; POLR2A; POLR2C; POLR2B;  

COX7A1; COX7A2; ITPR1; POLR2I; POLR2K; TBPL1; GNAQ; GPX1; CREBBP; POLR2J3; HDAC2; DCTN2;  

VDAC2; VDAC1; DCTN1; DCTN4; NDUFV3; NDUFV2; NDUFV1; AP2M1; MT-ATP8; NDUFA6; NDUFA4;  

NDUFA5; NDUFA2; NDUFA3; NDUFA1; NDUFA8; NDUFA9; COX4I1; PPIF; COX7B; COX7C; COX5A;  

COX5B; UQCR10; UQCR11; CYCS; NDUFC1; NDUFC2; TFAM; NDUFS8; AP2A1; CREB1; AP2A2; SDHC; 

COX7A2L; CYC1; GRIN2B; NDUFS1; NDUFS2; NDUFS3; NDUFS4; NDUFS5; NDUFS6; NDUFS7; SDHA; 

DNAL4; SDHB; SDHD; DNAL1  

1,19E-17  7,28E-16  Alzheimer disease - Homo 

sapiens (human)  

KEGG  path:hsa05010  MT-CO1; MT-CO2; MT-CO3; NDUFB9; NDUFB8; NDUFB7; NDUFB6; NDUFB5; NDUFB4; NDUFB3;  

NDUFB2; NDUFB1; UQCRQ; UQCRH; UQCRB; NDUFAB1; CALM2; CALM3; CALM1; APBB1; NDUFB11;  

NDUFB10; NDUFA10; CAPN2; CAPN1; NDUFA13; MT-ATP6; LPL; COX6A1; MT-ATP8; APP; GSK3B;  

UQCRFS1; UQCRC2; UQCRC1; ATP2A2; NOS1; GAPDH; COX6B1; COX6C; PLCB1; PLCB4; MT-CYB;  

COX8A; COX7A1; COX7A2; ITPR1; GNAQ; TNFRSF1A; SNCA; PPP3R1; ITPR3; NDUFV3; NDUFV2;  

NDUFV1; MAPK1; NAE1; NDUFA11; NDUFA6; NDUFA4; NDUFA5; NDUFA2; NDUFA12; NDUFA1;  

NDUFA8; NDUFA9; COX4I1; EIF2AK3; CDK5; COX7B; COX7C; COX5A; COX5B; UQCR10; UQCR11;  

CYCS; BAD; NDUFA3; GRIN2C; BID; NDUFS3; NDUFC1; NDUFC2; RTN4; RTN3; NDUFS8; SDHC;  

COX7A2L; BACE2; SDHB; CYC1; GRIN2B; NDUFS1; NDUFS2; GRIN2A; NDUFS4; NDUFS5; NDUFS6; 

NDUFS7; SDHA; PPP3CA; PPP3CB; ATF6; SDHD  

2,28E-16  1,16E-14  Non-alcoholic fatty liver 

disease (NAFLD) - Homo 

sapiens (human)  

KEGG  path:hsa04932  MT-CO1; MT-CO2; MT-CO3; NDUFB9; NDUFB8; NDUFB7; NDUFB6; NDUFB5; NDUFB4; NDUFB3;  

NDUFB2; NDUFB1; UQCRQ; IKBKB; AKT3; UQCRH; UQCRB; NDUFAB1; PIK3CA; PIK3CB; NDUFB11;  

NDUFB10; NDUFA10; NDUFA11; NDUFA12; NDUFA13; RELA; PRKAG2; COX6A1; GSK3A; GSK3B;  

UQCRFS1; UQCRC2; UQCRC1; COX6B1; PIK3R3; PIK3R1; COX6C; MT-CYB; COX8A; COX7A1; COX7A2;  

TNFRSF1A; MAPK10; NDUFV3; NDUFV2; NDUFV1; ADIPOR1; MAPK8; MAPK9; NDUFA6; NDUFA4;  

NDUFA5; NDUFA2; NDUFA3; NDUFA1; RXRA; NDUFA8; NDUFA9; COX4I1; MLXIP; CYCS; EIF2AK3;  

COX7B; COX7C; CDC42; COX5A; COX5B; UQCR10; UQCR11; PRKAA2; PRKAA1; EIF2S1; BID; NDUFC1;  

NDUFC2; RAC1; NDUFS8; IL6R; COX7A2L; CYC1; NDUFS1; NDUFS2; NDUFS3; NDUFS4; NDUFS5; 

NDUFS6; NDUFS7; SDHA; SDHC; SDHB; SDHD  

 2,16E-18  1,65E-16  Huntington disease - Homo 

sapiens (human)  

KEGG  path:hsa05016  MT-CO1; TGM2; MT-CO3; NDUFB9; NDUFB8; NDUFB7; NDUFB6; NDUFB5; NDUFB4; NDUFB3;  

NDUFB2; NDUFB1; UQCRQ; UQCRH; BDNF; UQCRB; NDUFAB1; NDUFB11; NDUFB10; NDUFA10;  

NDUFA11; NDUFA12; NDUFA13; MT-ATP6; SOD2; IFT57; SOD1; SP1; SLC25A6; SLC25A5; SLC25A4;  

COX6A1; UQCRFS1; UQCRC2; UQCRC1; VDAC3; MT-CO2; CLTA; CLTC; CLTB; COX6B1; AP2B1; AP2S1;  



1,88E-15   8,20E-14  Retrograde  

endocannabinoid signaling -  

Homo sapiens (human)  

KEGG  path:hsa04723  NDUFB9; NDUFB8; NDUFB7; NDUFB6; NDUFB5; NDUFB4; NDUFB3; NDUFB2; NDUFB1; NDUFAB1;  

MT-ND1; MT-ND2; MT-ND3; MT-ND4; MT-ND5; MT-ND6; GNG10; GNG11; NDUFB11; NDUFB10;  

NDUFA10; NDUFA11; NDUFA12; NDUFA13; ABHD6; ADCY5; ADCY1; ADCY3; ADCY8; GNG4; GNG2;  

GNG3; SLC17A6; GRIA2; GABRG2; GRIA4; MT-ND4L; PLCB1; PLCB4; ITPR3; ITPR1; GNAQ; GABRD;  

SLC32A1; NAPEPLD; MAPK10; MAPK12; GABRA5; GABRA4; GABRA1; GABRA3; NDUFV3; NDUFV2;  

NDUFV1; MAPK1; GRIA3; GNAO1; MAPK8; MAPK9; RIMS1; DAGLA; NDUFA4; NDUFA5; NDUFA2;  

NDUFA3; NDUFA1; GNB5; GNB1; NDUFA8; NDUFA9; GABRB2; KCNJ3; FAAH; KCNJ9; SLC17A7;  

PRKACA; PRKACB; NDUFA6; NDUFC1; NDUFC2; PRKCB; PRKCG; NDUFS1; NDUFS2; NDUFS3; NDUFS4; 

NDUFS5; NDUFS6; NDUFS7; NDUFS8  

3,98E-14  1,52E-12  Protein processing in 
endoplasmic reticulum -  
Homo sapiens (human)  

KEGG  path:hsa04141  RPN1; RPN2; UBE2J1; TUSC3; HSPA8; MAN1B1; MARCH6; CANX; HYOU1; STUB1; HSP90AB1;  

NSFL1C; CAPN1; CUL1; DNAJC10; ERLEC1; SEC24A; EDEM3; SEC24C; SEC24B; MAN1A1; DNAJA2;  

UBE4B; DNAJA1; MBTPS2; MBTPS1; RNF185; RBX1; RNF5; EDEM1; UBE2D2; UBE2D3; HSP90B1;  

 

    UBE2D1; NGLY1; DERL1; DNAJB11; UBXN6; OS9; ERP29; SEC13; HSPA4L; STT3B; STT3A; DNAJC5;  

DNAJC3; ATXN3; GANAB; BAG1; RAD23B; RAD23A; FBXO2; MAPK10; NPLOC4; SEC23A; SEC23B;  

SKP1; MAPK8; MAPK9; UGGT2; UGGT1; SEL1L; AMFR; SEC62; SAR1A; SEC63; BCAP31; EIF2AK1;  

EIF2AK3; EIF2AK2; EIF2AK4; PREB; CRYAB; HSPA1A; DDOST; SVIP; EIF2S1; SEC31B; SEC31A; UBQLN2; 
UBQLN1; UBQLN4; HSPBP1; UBE2G1; PDIA6; PDIA4; PDIA3; VCP; PLAA; CALR; CAPN2; SSR4; CKAP4;  
ATF6; SEC61A2  

1,47E-12  5,00E-11  Ubiquitin mediated 
proteolysis - Homo sapiens  

(human)  

KEGG  path:hsa04120  UBE2Q1; UBE3A; UBE2J1; WWP1; UBA6; BIRC6; HUWE1; UBE2D2; UBE2D3; RNF7; UBE2D1; FBXO2;  

UBE2Q2; UBE2L3; RCHY1; TRIM37; SMURF2; CDC16; FBXW11; RHOBTB1; SKP1; STUB1; UBE3C;  

MAP3K1; ANAPC11; CDC27; ANAPC13; CUL4B; UBR5; UBE2G1; TRIM32; PML; CUL5; DDB1; CUL1;  

CUL2; CUL3; SMURF1; UBA2; SIAH1; UBE3B; UBE2H; FANCL; UBE2E1; UBE4A; UBE2R2; UBE2E2;  

HERC1; HERC3; HERC2; RHOBTB2; UBE2E3; UBA1; ANAPC1; PIAS1; TRIP12; ANAPC5; ANAPC4;  

ANAPC7; BTRC; UBE2I; UBE4B; UBE2K; CUL7; UBE2M; UBE2N; UBE2A; FZR1; XIAP; UBE2F; CUL4A; 

PRPF19; SAE1; UBE2Z; UBE2B; BIRC2; RBX1; FBXW7; KLHL9; UBA3  

3,06E-12  9,36E-11  Proteasome - Homo sapiens 

(human)  

KEGG  path:hsa03050  PSMD8; PSMD4; PSMF1; PSMD6; PSMD1; PSMD3; PSMD2; PSMD7; PSMA2; PSMA3; PSMA1;  

PSMA6; PSMA7; PSMA4; PSMA5; PSMC1; PSMC2; PSMC3; ADRM1; PSMC5; PSMC6; POMP; PSME4; 

PSME3; PSMC4; PSMD11; PSMD13; PSMD12; PSMD14; PSMB7; PSMB6; PSMB5; PSMB4; PSMB3; 

PSMB2; PSMB1  



5,22E-11  1,45E-09  Endocytosis - Homo sapiens 

(human)  

KEGG  path:hsa04144  VPS4B; WWP1; HSPA8; CHMP2B; IST1; CHMP2A; CAV2; SMAP1; SMAP2; RAB4A; PARD6B; PARD6A;  

VPS35; IGF1R; RAB5A; RAB5B; SH3GLB2; VPS26A; ZFYVE9; KIF5A; ARPC1A; RAB11FIP4; RAB11FIP2;  

UBB; ARPC1B; GBF1; SNX3; CAPZB; KIF5C; SNX4; HRAS; CLTA; CLTC; CLTB; IQSEC1; IQSEC3; STAM;  

AP2B1; SMURF1; AP2S1; SMURF2; VPS37A; RAB11A; RAB11B; CHMP5; VTA1; RAB7A; ARPC3;  

ARPC2; RNF41; ARPC4; ARPC5; EPS15L1; AMPH; DNAJC6; TSG101; PDGFRA; EHD3; EHD2; SNX2;  

VPS26B; ARRB2; ARRB1; CHMP3; CHMP7; SH3GL3; SH3GL2; VPS45; SNX12; ARF3; ARF1; ARF5;  

AP2M1; RAB22A; RABEP1; PML; RAB10; VPS4A; ARFGEF2; CHMP1B; CHMP1A; CAPZA2; CAPZA1;  

ZFYVE27; RAB11FIP5; VPS36; PIP5K1C; PIP5K1B; ARPC5L; DNM1; ASAP2; CDC42; USP8; DNM3;  

CHMP4A; CHMP4B; ARFGAP1; HSPA1A; WASL; EPS15; RAB35; ARAP1; EEA1; STAM2; VPS29;  

SH3KBP1; PRKCI; HGS; ACAP3; AP2A1; SNF8; AP2A2; CYTH3; CYTH2; PARD3; PDCD6IP; ARFGAP2; 

WIPF2; VPS28; ARFGEF1  

6,54E-11  1,67E-09  Autophagy - animal - Homo 

sapiens (human)  

KEGG  path:hsa04140  BCL2L1; VMP1; IGF1R; MAP2K1; UVRAG; HMGB1; STK11; IGBP1; PRKAA1; MAP2K2; BAD; AKT3;  

CTSB; MAPK10; ZFYVE1; RB1CC1; TSC2; TSC1; RPTOR; PIK3C3; GABARAPL1; CAMKK2; PIK3CA;  

PIK3CB; NRAS; RPS6KB1; MAP3K7; GABARAP; CFLAR; PIK3R4; PIK3R3; ATG7; PIK3R1; ATG5; ATG9A;  

MAPK8; NRBF2; DAPK3; HRAS; MAPK1; ULK2; RRAGD; RAB7A; DDIT4; RRAGC; RRAGB; WIPI2;  

AMBRA1; PRKACB; CTSD; MRAS; PRKAA2; EIF2S1; ATG12; ATG13; ATG14; KRAS; ITPR1; BNIP3;  

ATG2B; MTMR4; BECN1; PPP2CA; MAPK9; EIF2AK3; GABARAPL2; EIF2AK4; PTEN; RRAGA; PRKACA; 

ATG16L1; MTOR; RHEB  

1,22E-10  2,87E-09  Spliceosome - Homo 

sapiens (human)  

KEGG  path:hsa03040  PLRG1; PQBP1; HSPA8; TCERG1; SLU7; SF3B3; SRSF8; DHX38; PRPF8; HSPA1A; ZMAT2; DHX15;  

TXNL4A; PRPF3; RBMX; BCAS2; SART1; PRPF6; SRSF5; SNRNP200; SRSF7; SRSF1; SRSF3; AQR;  

PRPF19; PRPF18; PRPF31; U2AF2; SRSF9; HNRNPU; PRPF4; EFTUD2; LSM4; HNRNPK; RBM17; SF3A1;  

     SF3A3; HNRNPC; SRSF2; TRA2B; HNRNPM; DHX8; CDC5L; SNRNP27; SMNDC1; HNRNPA3; SF3B1;  

PCBP1; U2SURP; WBP11; U2AF1L4; SNRPB2; THOC3; SNRPD3; THOC1; SF3B2; CWC15; SNRPD2;  

DDX23; RBMXL1; SNRNP40; SNW1; CDC40; SNRPA1; SNRPD1; PPIL1; PRPF38A; DDX42; PUF60; DDX46; 

DDX5; RBM25; RBM22; XAB2; EIF4A3  

1,97E-10  4,29E-09  Mitophagy - animal - Homo 

sapiens (human)  

KEGG  path:hsa04137  USP8; BCL2L1; HRAS; USP15; FOXO3; PGAM5; MAPK10; RHOT1; RHOT2; PINK1; BECN1; OPTN;  

GABARAPL1; TBK1; GABARAPL2; CALCOCO2; NRAS; GABARAP; TFE3; ATG5; CITED2; RELA; KRAS;  

RAB7A; FUNDC1; BNIP3L; SP1; AMBRA1; MAPK8; MRAS; ATG9A; CSNK2A2; CSNK2A1; BNIP3;  

TAX1BP1; MAPK9; BCL2L13; EIF2AK3; MFN2; MFN1; FIS1; UBB; CSNK2B; TBC1D15  

2,10E-10  4,29E-09  Synaptic vesicle cycle -  

Homo sapiens (human)  

KEGG  path:hsa04721  STX1A; ATP6V1D; ATP6V1F; ATP6V1A; DNM3; SLC32A1; UNC13A; ATP6V1H; STXBP1; STX1B; CLTA;  

CLTC; CLTB; AP2B1; ATP6V1B2; AP2S1; NSF; AP2M1; NAPA; ATP6V0D1; RIMS1; ATP6V0A1;  

ATP6V0B; ATP6V0C; ATP6V1G1; CPLX2; DNM1; CPLX1; AP2A1; UNC13C; RAB3A; AP2A2; ATP6V1C1; 

SNAP25; VAMP2; SYT1; SLC17A6; SLC17A7; ATP6V1E1; ATP6V1G2; ATP6V0A2; ATP6V0E1; ATP6V0E2  

1,21E-07  2,31E-06  Citrate cycle (TCA cycle) - 

Homo sapiens (human)  

KEGG  path:hsa00020  CS; MDH2; MDH1; FH; IDH3A; OGDH; IDH3B; IDH3G; PDHB; OGDHL; PDHA1; DLD; SUCLG1; ACO1; 

ACO2; DLST; SUCLA2; DLAT; SDHA; ACLY; SDHC; SDHB; SDHD  



4,38E-07  7,88E-06  Phosphatidylinositol 

signaling system - Homo 

sapiens (human)  

KEGG  path:hsa04070  OCRL; PI4KB; PI4KA; PLCG1; IMPAD1; PI4K2A; CDIPT; DGKZ; ITPR1; CALM2; CALM3; INPPL1; CALM1;  

PIK3CA; PIK3CB; DGKQ; INPP4A; ITPKA; DGKH; SYNJ1; SACM1L; PIK3R1; DGKB; PIK3R3; MTMR4;  

MTMR2; DGKD; PIP4K2B; PLCB1; PLCB4; PIKFYVE; PRKCB; PRKCG; IMPA1; MTMR6; ITPR3; PIK3C3; 

IP6K1; INPP5A; INPP5B; INPP5F; MTMR7; PIP5K1C; CDS1; CDS2; INPP5K; PPIP5K2; PTEN; MTMR1; 

PIP5K1B; PIP4K2C; DGKE; INPP5J  

2,76E-06  4,70E-05  Insulin signaling pathway - 

Homo sapiens (human)  

KEGG  path:hsa04910  CRKL; MKNK2; NRAS; HRAS; PRKAG2; PRKAA2; PRKAA1; IKBKB; MAP2K2; BAD; AKT3; MAPK10;  

RAPGEF1; SORBS1; CRK; PDE3B; TSC2; TSC1; RPTOR; PPP1R3F; PPP1R3E; CALM2; CALM3; INPPL1;  

CALM1; PIK3CA; PIK3CB; RPS6KB1; PPARGC1A; PHKB; PYGB; MAPK1; FASN; PIK3R1; PIK3R3; MAPK8;  

MAPK9; FLOT1; PRKCI; ACACA; SHC1; SHC2; RHOQ; HK1; PHKA2; MTOR; PRKAR1A; PRKAR1B; EIF4E;  

KRAS; PRKAR2A; EIF4E2; PPP1CB; EXOC7; PPP1CA; INPP5K; MAP2K1; GSK3B; PTPRF; PRKAR2B; 

GRB2; PRKACA; BRAF; FLOT2; PRKACB; RHEB  

5,81E-06  9,35E-05  mTOR signaling pathway - 

Homo sapiens (human)  

KEGG  path:hsa04150  SLC7A5; ATP6V1D; ATP6V1F; ATP6V1A; SEH1L; NRAS; HRAS; CAB39; ATP6V1H; PRKAA1; IKBKB;  

MAP2K2; MAP2K1; AKT3; MIOS; RRAGA; RICTOR; TSC2; NPRL3; TSC1; RPTOR; FZD4; LPIN1; FZD8;  

PIK3CA; PIK3CB; RPS6KB1; DVL1; PIK3R3; PIK3R1; RNF152; ATP6V1B2; EIF4B; MAPK1; BRAF; ULK2;  

RRAGD; IGF1R; STK11; DDIT4; RRAGC; RRAGB; SEC13; PRKCB; PRKCG; PRKAA2; EIF4E2; MTOR;  

EIF4E; WNT5A; KRAS; CAB39L; RPS6KA2; RPS6KA3; TTI1; LRP5; TNFRSF1A; ATP6V1E1; GSK3B; PTEN;  

GRB2; ATP6V1G2; ATP6V1G1; DEPDC5; LAMTOR4; LAMTOR5; ATP6V1C1; RHEB; STRADA; LAMTOR3  

  



p-value  q-value  pathway  source  external_id  members_input_overlap  

0,000267833   0,030422763 Thyroid hormone signaling pathway - Homo sapiens (human)  KEGG  path:hsa04919  

CREBBP; MED13L; TSC2; PRKCG; PIK3R2; EP300; RAF1; 

NCOR1  

0,000463516   0,030422763 Renal cell carcinoma - Homo sapiens (human)  KEGG  path:hsa05211  VHL; PIK3R2; EP300; RAF1; CREBBP; RAPGEF1  

0,000629436   0,030422763 Melanogenesis - Homo sapiens (human)  KEGG  path:hsa04916  ADCY5; ADCY6; PRKCG; DVL3; EP300; RAF1; CREBBP  

0,001288041   0,046691489 Glutamatergic synapse - Homo sapiens (human)  KEGG  path:hsa04724  ADCY5; ADCY6; GRIK2; PRKCG; HOMER2; SHANK2; GRM2  

0,002604814  0,051479343 Aldosterone synthesis and secretion - Homo sapiens (human) KEGG  path:hsa04925  DAGLA; ADCY5; ADCY6; CACNA1I; PRKCG; CACNA1G  

0,00274784  0,051479343 Long-term potentiation - Homo sapiens (human)  KEGG  path:hsa04720  PPP1R1A; EP300; RAF1; PRKCG; CREBBP  

0,002849692  0,051479343 FoxO signaling pathway - Homo sapiens (human)  KEGG  path:hsa04068  HOMER2; SMAD3; AGAP2; PIK3R2; EP300; RAF1; CREBBP  

0,002979423  0,051479343 Hepatocellular carcinoma - Homo sapiens (human)  KEGG  path:hsa05225  PHF10; ARID2; ARID1A; PRKCG; SMAD3; DVL3; PIK3R2; RAF1  

0,00319527  0,051479343 HIF-1 signaling pathway - Homo sapiens (human)  KEGG  path:hsa04066  MKNK2; PRKCG; VHL; PIK3R2; EP300; CREBBP  

0,003758153  0,054493216 Adherens junction - Homo sapiens (human)  KEGG  path:hsa04520  BAIAP2; EP300; FER; CREBBP; SMAD3  

0,004934186  0,060252476 Notch signaling pathway - Homo sapiens (human)  KEGG  path:hsa04330  DVL3; EP300; CREBBP; NUMBL  

0,004986412  0,060252476 Phospholipase D signaling pathway - Homo sapiens (human)  KEGG  path:hsa04072  ADCY5; ADCY6; RAF1; PIK3R2; CYTH3; TSC2; GRM2  

0,005569148  0,06211742 Cholinergic synapse - Homo sapiens (human)  KEGG  path:hsa04725  ADCY5; ADCY6; CACNA1B; KCNQ2; PRKCG; PIK3R2  

0,006887561  0,07133545 Cushing syndrome - Homo sapiens (human)  KEGG  path:hsa04934  ADCY5; ADCY6; CACNA1I; KMT2D; KMT2A; CACNA1G; DVL3  

0,009173279  0,088675033 Dilated cardiomyopathy (DCM) - Homo sapiens (human)  KEGG  path:hsa05414  CACNB3; ADCY5; ADCY6; ITGA3; SGCD  

0,010403564  0,0942823 MAPK signaling pathway - Homo sapiens (human)  KEGG  path:hsa04010  

CACNA1I; CACNB3; TAB1; PRKCG; CACNA1G; MKNK2; 

DUSP7; DUSP16; RAF1; CACNA1B  

0,012470337  0,102233613 Circadian entrainment - Homo sapiens (human)  KEGG  path:hsa04713  ADCY5; ADCY6; CACNA1G; PRKCG; CACNA1I  

0,013495836  0,102233613 Cortisol synthesis and secretion - Homo sapiens (human)  KEGG  path:hsa04927  CACNA1I; ADCY6; ADCY5; CACNA1G  

0,014101188  

Inflammatory mediator regulation of TRP channels - Homo 

0,102233613 sapiens (human)  KEGG  path:hsa04750  ADCY5; ADCY6; ASIC1; PIK3R2; PRKCG  

0,014101188  

Progesterone-mediated oocyte maturation - Homo sapiens 

0,102233613 (human)  KEGG  path:hsa04914  ADCY5; ADCY6; FZR1; RAF1; PIK3R2  

0,015244563  

Signaling pathways regulating pluripotency of stem cells - 

0,105260078 Homo sapiens (human)  KEGG  path:hsa04550  ACVR2B; SMAD3; DVL3; PIK3R2; KAT6A; RAF1  

0,01784843  0,117637381 Hepatitis B - Homo sapiens (human)  KEGG  path:hsa05161  PRKCG; SMAD3; PIK3R2; EP300; RAF1; CREBBP  

0,028325887  0,171388763 Type II diabetes mellitus - Homo sapiens (human)  KEGG  path:hsa04930  CACNA1B; PIK3R2; CACNA1G  

0,028693946  0,171388763 Neurotrophin signaling pathway - Homo sapiens (human)  KEGG  path:hsa04722  RAPGEF1; SH2B1; RAF1; PIK3R2; NTRK3  



 

  

0,029549787  0,171388763 Rap1 signaling pathway - Homo sapiens (human)  KEGG  path:hsa04015  ADCY5; ADCY6; PRKCG; PIK3R2; SIPA1L1; RAF1; RAPGEF1  

0,033028417  

Glycosaminoglycan biosynthesis - chondroitin sulfate / 

0,176537577 dermatan sulfate - Homo sapiens (human)  KEGG  path:hsa00532  CHPF; CSGALNACT1  

0,033430507  0,176537577 Cell cycle - Homo sapiens (human)  KEGG  path:hsa04110  EP300; FZR1; TFDP2; CREBBP; SMAD3  

0,034158859  0,176537577 TGF-beta signaling pathway - Homo sapiens (human)  KEGG  path:hsa04350  ACVR2B; EP300; CREBBP; SMAD3  

0,038074295  0,176537577 GABAergic synapse - Homo sapiens (human)  KEGG  path:hsa04727  ADCY5; ADCY6; CACNA1B; PRKCG  

0,038074295  0,176537577 Gap junction - Homo sapiens (human)  KEGG  path:hsa04540  ADCY5; ADCY6; RAF1; PRKCG  

0,039434343  0,176537577 Longevity regulating pathway - Homo sapiens (human)  KEGG  path:hsa04211  ADCY5; ADCY6; TSC2; PIK3R2  

0,039722595  0,176537577 Relaxin signaling pathway - Homo sapiens (human)  KEGG  path:hsa04926  ADCY5; ADCY6; RAF1; PIK3R2; SMAD3  

0,040929812  0,176537577 Axon guidance - Homo sapiens (human)  KEGG  path:hsa04360  SEMA3D; PLXNA1; PIK3R2; SSH1; SEMA4A; RAF1  

0,042236892  0,176537577 Morphine addiction - Homo sapiens (human)  KEGG  path:hsa05032  ADCY5; ADCY6; CACNA1B; PRKCG  

0,042612519  0,176537577 Regulation of lipolysis in adipocytes - Homo sapiens (human)  KEGG  path:hsa04923  ADCY5; ADCY6; PIK3R2  

0,047918025  0,193003155 Insulin signaling pathway - Homo sapiens (human)  KEGG  path:hsa04910  MKNK2; RAF1; TSC2; PIK3R2; RAPGEF1  



  

p-value  q-value  pathway  source external_id  members_input_overlap  

0,006460603 0,295828262 Biosynthesis of unsaturated fatty acids - Homo sapiens (human)  KEGG  path:hsa01040 HSD17B12; ACAA1; ACOT2  

0,006573961 0,295828262 Peroxisome - Homo sapiens (human)  KEGG  path:hsa04146 CRAT; ECH1; ACAA1; ABCD4; IDH2  

0,012454505 0,373635144 Glycerophospholipid metabolism - Homo sapiens (human)  KEGG  path:hsa00564 MBOAT2; AGPAT5; PCYT1B; PNPLA7; GPD2  

0,025033788 0,432178072 Thyroid hormone signaling pathway - Homo sapiens (human)  KEGG  path:hsa04919 AKT1; PFKFB2; KAT2A; HIF1A; SIN3A  

0,030759886 0,432178072 Valine, leucine and isoleucine degradation - Homo sapiens (human)  KEGG  path:hsa00280 IVD; ACAA1; BCKDHA  

0,032432318 0,432178072 Arginine and proline metabolism - Homo sapiens (human)  KEGG  path:hsa00330 PYCR2; LAP3; MAOB  

0,045336727 0,432178072 Glycosaminoglycan biosynthesis - heparan sulfate / heparin - Homo sapiens (human) KEGG  path:hsa00534 NDST1; HS2ST1  

0,045432578 0,432178072 Glutathione metabolism - Homo sapiens (human)  KEGG  path:hsa00480 IDH2; LAP3; GSTM3  

0,048828012 0,432178072 Glycosylphosphatidylinositol (GPI)-anchor biosynthesis - Homo sapiens (human)  KEGG  path:hsa00563 PIGP; PIGS  

0,049554342 0,432178072 Endometrial cancer - Homo sapiens (human)  KEGG  path:hsa05213 APC2; AKT1; CTNNA2  



p-value  q-value  pathway  source  external_id  members_input_overlap  

0,000108699  0,01695621  ErbB signaling pathway - Homo sapiens (human)  KEGG  path:hsa04012  MAPK3; PRKCA; SHC3; CAMK2A; AKT1; BAD; PAK6  

0,000318575  0,01695621  Hepatocellular carcinoma - Homo sapiens (human)  KEGG  path:hsa05225  DPF1; SMARCB1; SHC3; PRKCA; AKT1; BAD; APC; 

SMARCA4; MAPK3  

0,000386328  0,01695621  Insulin signaling pathway - Homo sapiens (human)  KEGG  path:hsa04910  RPTOR; SOCS4; SHC3; PTPRF; BAD; FASN; AKT1;  

MAPK3  

0,000429271  0,01695621  MAPK signaling pathway - Homo sapiens (human)  KEGG  path:hsa04010  RPS6KA4; MAPK3; PRKCA; MRAS; JUND; AKT1;  

MAPK11; ARRB1; SRF; MAP3K5; MAPK8IP1; TAOK3  

0,000753484  0,021319832  Thermogenesis - Homo sapiens (human)  KEGG  path:hsa04714  RPTOR; DPF1; SMARCB1; MGLL; MAP3K5; COX20; 

MAPK11; KDM3B; KDM3A; SMARCA4  

0,000857067  0,021319832  Neurotrophin signaling pathway - Homo sapiens (human)  KEGG  path:hsa04722  MAPK3; SHC3; CAMK2A; MAP3K5; AKT1; BAD; 

MAPK11  

0,00094455  0,021319832  VEGF signaling pathway - Homo sapiens (human)  KEGG  path:hsa04370  PRKCA; AKT1; BAD; MAPK11; MAPK3  

0,001080076  0,021331508  Focal adhesion - Homo sapiens (human)  KEGG  path:hsa04510  SHC3; PRKCA; CCND3; TNR; AKT1; BAD; PAK6; 

PARVA; MAPK3  

0,001437178  0,025230465  Relaxin signaling pathway - Homo sapiens (human)  KEGG  path:hsa04926  MAPK3; PRKCA; SHC3; GNB2; AKT1; MAPK11; 

ARRB1  

0,001912998  0,028586817  Renal cell carcinoma - Homo sapiens (human)  KEGG  path:hsa05211  AKT1; BAD; PAK6; TFE3; MAPK3  

0,002039091  0,028586817  Prolactin signaling pathway - Homo sapiens (human)  KEGG  path:hsa04917  SOCS4; SHC3; MAPK11; MAPK3; AKT1  

0,002171151  0,028586817  Glioma - Homo sapiens (human)  KEGG  path:hsa05214  PRKCA; AKT1; SHC3; CAMK2A; MAPK3  

0,003233772  0,03930277  mTOR signaling pathway - Homo sapiens (human)  KEGG  path:hsa04150  RPTOR; MAPK3; PRKCA; STK11; MAPKAP1; AKT1; 

CLIP1  

0,00381969  0,043107932  Thyroid hormone signaling pathway - Homo sapiens (human)  KEGG  path:hsa04919  MAPK3; PRKCA; THRA; AKT1; BAD; SIN3A  

0,004738684  0,049914135  Insulin secretion - Homo sapiens (human)  KEGG  path:hsa04911  RAPGEF4; PRKCA; CAMK2A; RIMS2; KCNN2  

0,006159059  0,057185862  Autophagy - animal - Homo sapiens (human)  KEGG  path:hsa04140  RPTOR; MAPK3; STK11; MRAS; AKT1; BAD  

0,006318747  0,057185862  Morphine addiction - Homo sapiens (human)  KEGG  path:hsa05032  PRKCA; GABRB1; ARRB1; PDE7B; GNB2  

0,006514845  0,057185862  Endometrial cancer - Homo sapiens (human)  KEGG  path:hsa05213  APC; BAD; MAPK3; AKT1  

0,007198517  0,058846891  Galactose metabolism - Homo sapiens (human)  KEGG  path:hsa00052  B4GALT2; PFKL; PGM1  

0,007448974  0,058846891  Axon guidance - Homo sapiens (human)  KEGG  path:hsa04360  EPHB1; MAPK3; PRKCA; CAMK2A; ROBO1; PAK6; 

SEMA6B  

0,009332785  0,065020266  HIF-1 signaling pathway - Homo sapiens (human)  KEGG  path:hsa04066  PRKCA; AKT1; PFKL; CAMK2A; MAPK3  

0,010227281  0,065020266  Non-small cell lung cancer - Homo sapiens (human)  KEGG  path:hsa05223  PRKCA; MAPK3; BAD; AKT1  



  

0,010251854  0,065020266  Ras signaling pathway - Homo sapiens (human)  KEGG  path:hsa04014  SHC3; PRKCA; MRAS; GNB2; AKT1; BAD; PAK6; 

MAPK3  

0,010712101  0,065020266  Adrenergic signaling in cardiomyocytes - Homo sapiens (human)  KEGG  path:hsa04261  MAPK3; PRKCA; CAMK2A; RAPGEF4; AKT1; MAPK11  



 

0,010770089  0,065020266  Fc epsilon RI signaling pathway - Homo sapiens (human)  KEGG  path:hsa04664  PRKCA; MAPK3; MAPK11; AKT1  

0,011058958  0,065020266  Phospholipase D signaling pathway - Homo sapiens (human)  KEGG  path:hsa04072  MAPK3; PRKCA; SHC3; MRAS; RAPGEF4; AKT1  

0,011111058  0,065020266  Chemokine signaling pathway - Homo sapiens (human)  KEGG  path:hsa04062  MAPK3; SHC3; GNB2; AKT1; BAD; ARRB1; CXCL14  

0,011818728  0,066181324  Parathyroid hormone synthesis, secretion and action - Homo 

sapiens (human)  

KEGG  path:hsa04928  PRKCA; MMP24; MAPK3; JUND; ARRB1  

0,012147205  0,066181324  Retrograde endocannabinoid signaling - Homo sapiens (human)  KEGG  path:hsa04723  PRKCA; MGLL; GNB2; MAPK3; MAPK11; GABRB1  

0,013705595  0,07014442  TNF signaling pathway - Homo sapiens (human)  KEGG  path:hsa04668  AKT1; RPS6KA4; MAPK3; MAPK11; MAP3K5  

0,013762513  0,07014442  Adherens junction - Homo sapiens (human)  KEGG  path:hsa04520  IQGAP1; PTPRF; MAPK3; WASF3  

0,014721028  0,070854532  Cholinergic synapse - Homo sapiens (human)  KEGG  path:hsa04725  PRKCA; AKT1; MAPK3; CAMK2A; GNB2  

0,015166966  0,070854532  Proteoglycans in cancer - Homo sapiens (human)  KEGG  path:hsa05205  MAPK3; PRKCA; CAMK2A; MRAS; AKT1; MAPK11; 

IQGAP1  

0,015247178  0,070854532  Serotonergic synapse - Homo sapiens (human)  KEGG  path:hsa04726  PRKCA; GABRB1; MAPK3; KCNN2; GNB2  

0,0158706  0,071644423  PI3K-Akt signaling pathway - Homo sapiens (human)  KEGG  path:hsa04151  RPTOR; TNR; PRKCA; CCND3; STK11; GNB2; AKT1; 

BAD; MAGI2; MAPK3  

0,016502337  0,07175408  Chronic myeloid leukemia - Homo sapiens (human)  KEGG  path:hsa05220  AKT1; BAD; SHC3; MAPK3  

0,017134372  0,07175408  Rap1 signaling pathway - Homo sapiens (human)  KEGG  path:hsa04015  MAPK3; PRKCA; MRAS; RAPGEF4; AKT1; MAGI2; 

MAPK11  

0,01725731  0,07175408  Cellular senescence - Homo sapiens (human)  KEGG  path:hsa04218  MAPK3; CCND3; MRAS; AKT1; HIPK1; MAPK11  

0,018066937  0,073194258  Sphingolipid signaling pathway - Homo sapiens (human)  KEGG  path:hsa04071  PRKCA; AKT1; MAPK11; MAPK3; MAP3K5  

0,019285124  0,07601647  AMPK signaling pathway - Homo sapiens (human)  KEGG  path:hsa04152  RPTOR; AKT1; PFKL; FASN; STK11  

0,019725793  0,07601647  Human immunodeficiency virus 1 infection - Homo sapiens 

(human)  

KEGG  path:hsa05170  MAPK3; PRKCA; GNB2; AKT1; BAD; MAPK11; PAK6  

0,02207144  0,083030655  Peroxisome - Homo sapiens (human)  KEGG  path:hsa04146  CRAT; PEX10; ACOX1; PMVK  

0,024769473  0,089613885  Colorectal cancer - Homo sapiens (human)  KEGG  path:hsa05210  AKT1; BAD; MAPK3; APC  

0,024955765  0,089613885  N-Glycan biosynthesis - Homo sapiens (human)  KEGG  path:hsa00510  B4GALT2; ST6GAL2; MGAT4C  

0,026674116  0,091150704  GABAergic synapse - Homo sapiens (human)  KEGG  path:hsa04727  PRKCA; GABRB1; SLC6A1; GNB2  

0,026950191  0,091150704  Dopaminergic synapse - Homo sapiens (human)  KEGG  path:hsa04728  PRKCA; AKT1; MAPK11; CAMK2A; GNB2  

0,027658489  0,091150704  Longevity regulating pathway - Homo sapiens (human)  KEGG  path:hsa04211  RPTOR; EHMT2; STK11; AKT1  

0,027691353  0,091150704  Amyotrophic lateral sclerosis (ALS) - Homo sapiens (human)  KEGG  path:hsa05014  BAD; MAPK11; MAP3K5  

0,028664333  0,09242785  Fc gamma R-mediated phagocytosis - Homo sapiens (human)  KEGG  path:hsa04666  PRKCA; AKT1; MAPK3; WASF3  



0,031811346  0,095563634  GnRH signaling pathway - Homo sapiens (human)  KEGG  path:hsa04912  PRKCA; MAPK3; CAMK2A; MAPK11  

0,031811346  0,095563634  IL-17 signaling pathway - Homo sapiens (human)  KEGG  path:hsa04657  MAPK3; JUND; MAPK4; MAPK11  

0,031846889  0,095563634  Apelin signaling pathway - Homo sapiens (human)  KEGG  path:hsa04371  AKT1; MAPK3; HDAC5; MRAS; GNB2  

0,032056156  0,095563634  Other types of O-glycan biosynthesis - Homo sapiens (human)  KEGG  path:hsa00514  B4GALT2; ST6GAL2  

0,034817961  0,100986999  Mannose type O-glycan biosynthesis - Homo sapiens (human)  KEGG  path:hsa00515  ISPD; B4GALT2  

0,035153702  0,100986999  Circadian entrainment - Homo sapiens (human)  KEGG  path:hsa04713  PRKCA; MAPK3; CAMK2A; GNB2  

0,038692426  0,107252689  AGE-RAGE signaling pathway in diabetic complications - Homo 

sapiens (human)  

KEGG  path:hsa04933  PRKCA; AKT1; MAPK11; MAPK3  

0,038692426  0,107252689  Choline metabolism in cancer - Homo sapiens (human)  KEGG  path:hsa05231  PRKCA; AKT1; MAPK3; WASF3  

0,040156863  0,109392834  Lysine degradation - Homo sapiens (human)  KEGG  path:hsa00310  EHMT2; SETD2; HADHA  

0,041160953  0,110227636  T cell receptor signaling pathway - Homo sapiens (human)  KEGG  path:hsa04660  AKT1; PAK6; MAPK11; MAPK3  

0,043560496  0,114709306  cAMP signaling pathway - Homo sapiens (human)  KEGG  path:hsa04024  MAPK3; ACOX1; CAMK2A; RAPGEF4; AKT1; BAD  

0,045027918  0,115572443  C-type lectin receptor signaling pathway - Homo sapiens 

(human)  

KEGG  path:hsa04625  AKT1; MAPK11; MRAS; MAPK3  

0,045351212  0,115572443  Viral carcinogenesis - Homo sapiens (human)  KEGG  path:hsa05203  HDAC5; CCND3; MAPK3; BAD; HDAC11; SRF  

  



p-value  q-value  pathway  source external_id  members_input_overlap  

 1,78E-07  4,26E-06 Allograft rejection - Homo sapiens (human)  KEGG  path:hsa05330 HLA-C; HLA-B; HLA-A; HLA-DRB1; HLA-E  

 2,76E-07  4,26E-06 Antigen processing and presentation - Homo sapiens (human)  KEGG  path:hsa04612 HLA-C; HLA-B; HLA-A; HLA-DRB1; HLA-E; B2M  

 3,03E-07  4,26E-06 Graft-versus-host disease - Homo sapiens (human)  KEGG  path:hsa05332 HLA-C; HLA-B; HLA-A; HLA-DRB1; HLA-E  

 3,87E-07  4,26E-06 Type I diabetes mellitus - Homo sapiens (human)  KEGG  path:hsa04940 HLA-C; HLA-B; HLA-A; HLA-DRB1; HLA-E  

 9,12E-07  7,49E-06 Phagosome - Homo sapiens (human)  KEGG  path:hsa04145 HLA-C; HLA-B; HLA-A; HLA-DRB1; HLA-E; CD14; C1R  

 1,02E-06  7,49E-06 Autoimmune thyroid disease - Homo sapiens (human)  KEGG  path:hsa05320 HLA-C; HLA-B; HLA-A; HLA-DRB1; HLA-E  

 1,77E-06  1,11E-05 Viral myocarditis - Homo sapiens (human)  KEGG  path:hsa05416 HLA-C; HLA-B; HLA-A; HLA-DRB1; HLA-E  

 5,93E-06  3,26E-05 Epstein-Barr virus infection - Homo sapiens (human)  KEGG  path:hsa05169 STAT3; HLA-C; HLA-B; HLA-A; HLA-DRB1; HLA-E; B2M  

 8,70E-06  4,25E-05 Human immunodeficiency virus 1 infection - Homo sapiens (human)  KEGG  path:hsa05170 SAMHD1; HLA-C; HLA-B; HLA-A; HLA-E; B2M; BST2  

 4,48E-05 0,000184828 Herpes simplex infection - Homo sapiens (human)  KEGG  path:hsa05168 HLA-C; HLA-B; HLA-A; HLA-DRB1; HLA-E; PML  

 4,62E-05 0,000184828 Kaposi sarcoma-associated herpesvirus infection - Homo sapiens (human) KEGG  path:hsa05167 STAT3; HLA-C; HLA-B; HLA-A; HLA-E; ANGPT2  

0,00011421 0,000418788 Human T-cell leukemia virus 1 infection - Homo sapiens (human)  KEGG  path:hsa05166 HLA-C; HLA-B; HLA-A; HLA-DRB1; HLA-E; B2M  

0,00013245 0,000448301 Human cytomegalovirus infection - Homo sapiens (human)  KEGG  path:hsa05163 STAT3; HLA-C; HLA-B; HLA-A; HLA-E; B2M  

0,00014355 0,000451149 Cell adhesion molecules (CAMs) - Homo sapiens (human)  KEGG  path:hsa04514 HLA-C; HLA-B; HLA-A; HLA-DRB1; HLA-E  

0,00069028 0,002024833 Viral carcinogenesis - Homo sapiens (human)  KEGG  path:hsa05203 HLA-C; HLA-B; HLA-A; STAT3; HLA-E  

0,00112791 0,003101764 Natural killer cell mediated cytotoxicity - Homo sapiens (human)  KEGG  path:hsa04650 HLA-C; HLA-B; HLA-A; HLA-E  

0,00162591 0,004008823 Acute myeloid leukemia - Homo sapiens (human)  KEGG  path:hsa05221 PML; CD14; STAT3  

0,00163997 0,004008823 Endocytosis - Homo sapiens (human)  KEGG  path:hsa04144 HLA-C; HLA-B; HLA-A; HLA-E; PML  

 0,0024171 0,005361313 Cellular senescence - Homo sapiens (human)  KEGG  path:hsa04218 HLA-C; HLA-B; HLA-A; HLA-E  

0,00243696 0,005361313 Pertussis - Homo sapiens (human)  KEGG  path:hsa05133 C1R; CD14; SERPING1  

 0,0161655 0,033870562 Staphylococcus aureus infection - Homo sapiens (human)  KEGG  path:hsa05150 C1R; HLA-DRB1  

0,02214313 0,042364786 Inflammatory bowel disease (IBD) - Homo sapiens (human)  KEGG  path:hsa05321 HLA-DRB1; STAT3  

0,02214523 0,042364786 Tight junction - Homo sapiens (human)  KEGG  path:hsa04530 MSN; MYH9; MYL12A  

0,02475343 0,045381295 Adipocytokine signaling pathway - Homo sapiens (human)  KEGG  path:hsa04920 STAT3; ACSL5  

0,03145622 0,053805206 Human papillomavirus infection - Homo sapiens (human)  KEGG  path:hsa05165 HLA-C; HLA-B; HLA-A; HLA-E  

0,03179399 0,053805206 Complement and coagulation cascades - Homo sapiens (human)  KEGG  path:hsa04610 C1R; SERPING1  

0,03713614 0,060518155 Salmonella infection - Homo sapiens (human)  KEGG  path:hsa05132 CD14; MYH9  



  

 0,0393766 0,061877507 Regulation of actin cytoskeleton - Homo sapiens (human)  KEGG  path:hsa04810 MSN; MYH9; MYL12A  

0,04531691 0,068756692 Hematopoietic cell lineage - Homo sapiens (human)  KEGG  path:hsa04640 CD14; HLA-DRB1  

0,04875978  0,07151435 HIF-1 signaling pathway - Homo sapiens (human)  KEGG  path:hsa04066 ANGPT2; STAT3  



p-value  q-value  pathway  source  external_id  members_input_overlap  

4,41E-05 0,000671367 NOD-like receptor signaling pathway - Homo sapiens (human)  KEGG  path:hsa04621 OAS3; NAMPT; STAT2; STAT1; GBP4  

4,80E-05 0,000671367 Influenza A - Homo sapiens (human)  KEGG  path:hsa05164 TRIM25; OAS3; STAT2; STAT1; MX1  

0,000100845 0,000941224 Epstein-Barr virus infection - Homo sapiens (human)  KEGG  path:hsa05169 TAP1; GADD45A; OAS3; STAT2; STAT1  

0,000251448 0,001760136 Measles - Homo sapiens (human)  KEGG  path:hsa05162 OAS3; STAT2; STAT1; MX1  

0,000476972 0,002671046 Hepatitis C - Homo sapiens (human)  KEGG  path:hsa05160 OAS3; STAT2; STAT1; MX1  

0,000926754 0,004324853 Herpes simplex infection - Homo sapiens (human)  KEGG  path:hsa05168 TAP1; OAS3; STAT2; STAT1  

0,006620327 0,025553451 JAK-STAT signaling pathway - Homo sapiens (human)  KEGG  path:hsa04630 STAT2; STAT1; PIM1  

0,00757761 0,025553451 Pathways in cancer - Homo sapiens (human)  KEGG  path:hsa05200 ZBTB16; GADD45A; STAT2; STAT1; PIM1  

0,008213609 0,025553451 Human papillomavirus infection - Homo sapiens (human)  KEGG  path:hsa05165 COL9A2; STAT2; STAT1; MX1  

0,01009434 0,026264841 Chemokine signaling pathway - Homo sapiens (human)  KEGG  path:hsa04062 STAT2; STAT1; SHC1  

0,010747314 0,026264841 Acute myeloid leukemia - Homo sapiens (human)  KEGG  path:hsa05221 ZBTB16; PIM1  

0,012028873 0,026264841 Prolactin signaling pathway - Homo sapiens (human)  KEGG  path:hsa04917 SHC1; STAT1  

0,012359281 0,026264841 Glioma - Homo sapiens (human)  KEGG  path:hsa05214 GADD45A; SHC1  

0,013720397 0,026264841 Pancreatic cancer - Homo sapiens (human)  KEGG  path:hsa05212 GADD45A; STAT1  

0,014070451 0,026264841 Chronic myeloid leukemia - Homo sapiens (human)  KEGG  path:hsa05220 GADD45A; SHC1  

0,023151869  0,04051577 AGE-RAGE signaling pathway in diabetic complications - Homo sapiens (human)  KEGG  path:hsa04933 STAT1; PIM1  

0,025374886 0,041793931 C-type lectin receptor signaling pathway - Homo sapiens (human)  KEGG  path:hsa04625 STAT2; STAT1  

0,03664858 0,057008903 Osteoclast differentiation - Homo sapiens (human)  KEGG  path:hsa04380 STAT2; STAT1  

0,046002736 0,065208033 Hepatitis B - Homo sapiens (human)  KEGG  path:hsa05161 STAT2; STAT1  

0,047736722 0,065208033 Breast cancer - Homo sapiens (human)  KEGG  path:hsa05224 GADD45A; SHC1  

0,048906025 0,065208033 Gastric cancer - Homo sapiens (human)  KEGG  path:hsa05226 GADD45A; SHC1  

  



p-value  q-value  pathway  source  external_id  members_input_overlap  

0,003726703 0,040443648 Ras signaling pathway - Homo sapiens (human)  KEGG  path:hsa04014 HGF; PLA2G16; GAB2; FOXO4  

0,008000614 0,040443648 Gastric cancer - Homo sapiens (human)  KEGG  path:hsa05226 HGF; TGFB3; CTNNA3  

0,00808873 0,040443648 Malaria - Homo sapiens (human)  KEGG  path:hsa05144 HGF; TGFB3  

0,011090007 0,041587527 Hepatocellular carcinoma - Homo sapiens (human)  KEGG  path:hsa05225 HGF; SMARCC1; TGFB3  

 0,0155874  0,0467622 Renal cell carcinoma - Homo sapiens (human)  KEGG  path:hsa05211 HGF; TGFB3  

0,018708677 0,046771693 Chronic myeloid leukemia - Homo sapiens (human)  KEGG  path:hsa05220 TGFB3; GAB2  

0,046098288 0,083026448 Cell cycle - Homo sapiens (human)  KEGG  path:hsa04110 MCM7; TGFB3  

0,047694745 0,083026448 MAPK signaling pathway - Homo sapiens (human)  KEGG  path:hsa04010 HGF; TGFB3; MAP4K4  
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Gene name BetweennessCentrality Degree 

CREBBP 1.3505E-4 10 

CHERP 0.00282056 25 

EP300 0.00102706 12 

TBC1D13 0.00297901 28 

GIT1 0.00369593 17 

ZCCHC14 0.03206978 41 

CELF3 0.0069203 26 

SMAD3 0.00786357 22 

KMT2D 6.0762E-4 19 

ZNF768 0.0016751 20 

EP400 0.00334982 23 

ITGA3 0.00174144 12 

PPP1R37 0.00415387 46 

RAPGEFL1 0.00315502 22 

ZNF142 0.00186673 19 

VPS13B 0.01345113 40 

CACNA1B 8.9311E-4 14 

FOXK1 0.0321876 43 

SH2B1 0.00501494 22 

CSMD1 0.00174431 32 

ZNF512B 0.01171222 20 

KIAA0753 8.963E-5 5 

CACNA1G 0.01091996 36 

KCNQ2 0.00582876 53 

BRPF3 0.02572826 75 

MAST3 0.0565805 92 

CACNA1I 8.733E-5 8 

SGSM3 9.6312E-4 16 

NUMBL 0.01702674 67 

PIK3R2 0.00263171 47 

SP4 0.03621824 22 

PLXNA1 0.01464119 45 

SCAP 0.01895989 71 

IQSEC2 0.07597296 97 

CPNE5 0.010769 63 

ABHD8 9.3359E-4 35 

VHL 1.001E-5 6 

RBM26 0.03915563 88 

NCOR1 0.00965873 61 

ASXL3 0.0018421 36 

FOXK2 0.03468027 86 

TTBK1 0.03079873 83 

FBXO10 0.0 5 

SORBS2 0.00307857 33 

NBPF8 0.0 5 

PYGO2 0.00337759 37 

DUSP7 0.00472252 28 

SUN1 0.00290118 21 

CACNB3 0.00766593 56 

SNTB2 0.02168873 79 

GPRIN1 0.0077486 59 

GPR137 8.8373E-4 29 

ANGEL2 0.00773542 14 

AATK 8.424E-5 8 

TNFAIP8L1 9.7113E-4 18 

ELAVL3 0.02013881 72 

ZNF667 0.00923466 28 

DGCR5 0.0030178 45 

ZNF585B 0.00255453 43 

MARK4 0.02177733 56 

CDK13 0.00291018 46 

NAV3 0.02244846 70 

LPHN1 0.04351122 65 

RAPGEF1 0.00740547 6 

DUSP16 0.0 10 

XRN1 0.00594322 13 

ARID1A 0.00565215 25 

CASP8AP2 0.00285759 32 

BAI2 0.03018519 66 

MED13L 0.00913655 26 

METTL8 0.02913422 51 

INO80 0.00702772 38 

MPRIP 0.01232049 62 

NTRK3 0.0 3 

PLEKHA6 0.01125006 33 

SETBP1 0.00284025 23 

SCAF4 0.00279596 17 

SHANK2 0.01045958 30 

SLC30A7 0.0072796 60 

BSN 0.02039259 73 

BRD3 0.06845741 59 

NLGN2 0.01468089 53 

ATF7IP 0.0016123 15 

CHD2 0.0035966 8 

ADCY6 4.0108E-4 13 

BBS1 5.2216E-4 10 

LRRN1 0.01868698 65 

KIAA2018 0.02443237 49 

SLC25A22 0.00316088 47 

SLC26A11 0.00751349 57 

KIAA2026 0.02422422 78 

SLC35E2B 0.01985298 51 

KIAA1671 0.01338998 54 

SYNGAP1 0.07263409 94 

ZNF43 0.00811723 13 

ATXN2 4.2388E-4 17 

ERCC6 0.04635542 61 

RP11-
252A24.7 0.00128221 26 



CYTH3 0.00729927 2 

ZNF786 0.0 1 

SPRN 0.02075982 23 

CELSR3 0.00657371 19 

NFX1 0.01019995 21 

IQCE 0.0041824 15 

ZNF236 0.01089249 22 

AGAP2 1.8614E-4 7 

KLHL36 0.00681982 20 

PKNOX2 1.4187E-4 4 

DMWD 0.00486166 27 

CTSO 5.6544E-4 7 

NSMAF 0.00216297 6 

MAST2 0.0038561 24 

ZNF382 2.6247E-4 3 

ARID2 0.00865529 11 

ZNF585A 1.2675E-4 3 

GET4 0.00593777 29 

CYP46A1 5.8674E-4 6 

CBFA2T2 0.01355397 16 

PIANP 1.681E-5 6 

ZNF678 6.998E-4 7 

GTF2H2C 8.9843E-4 4 

SHISA7 0.02878993 36 

USP2 0.00117363 36 

R3HDM1 0.0010985 18 

MOXD1 3.82E-6 8 

JPH1 0.00427542 46 

KIAA1377 6.0548E-4 23 

BCL7A 0.00289394 50 

SIN3B 0.0146752 18 

PHIP 1.3553E-4 30 

ZNF772 0.00188117 31 

RP5-837J1.2 0.00665523 21 

FAM65A 0.00288785 5 

TSPAN14 7.2322E-4 6 

TFDP2 0.00352405 9 

SNX21 0.00505899 19 

PEAK1 0.02689746 18 

C20orf112 0.01030944 20 

PTPN14 2.81E-5 6 

CNIH2 0.01347127 30 

CHST1 1.5074E-4 16 

SLC35E2 0.00122307 25 

SUGP2 3.2434E-4 9 

ZNF318 0.00824866 8 

SPEN 5.6783E-4 5 

UBR5 0.0054048 7 

ERGIC1 0.00570404 10 

NIPBL 5.6783E-4 5 

KAT6A 1.9659E-4 27 

PPP6R1 6.458E-5 26 

AGAP3 7.9968E-4 34 

SIPA1L1 1.3993E-4 17 

C19orf26 5.1122E-4 22 

FOXRED2 0.00265147 14 

RNF24 0.00337246 30 

SMPD3 5.9015E-4 22 

HOMER2 0.00650147 17 

CHPF 2.1601E-4 19 

PRKCG 1.1785E-4 16 

PTCD3 2.0931E-4 15 

CLUH 0.00275188 17 

DAGLA 0.00317361 32 

TMEM8B 0.00110264 24 

MINK1 5.4765E-4 17 

ZNF687 9.5361E-4 19 

RNF44 0.00382545 21 

ICA1L 0.00210569 24 

GRIK2 0.00162131 13 

PACS1 4.661E-5 10 

TOM1L2 1.492E-4 17 

KIAA0895L 0.00433549 29 

DCHS2 0.00457151 25 

TMEM184B 0.00115034 20 

SLC35F6 0.00826533 22 

NDST1 1.432E-5 3 

LMF2 0.00108516 5 

TTYH3 0.00113573 4 

SBK1 0.00628783 7 

ASIC1 0.00593127 16 

NACAD 0.01033167 24 

DISP2 5.2318E-4 20 

NPAS2 0.01264224 12 

BRSK2 0.01125661 14 

MPDZ 2.2373E-4 25 

CNOT6 4.843E-5 25 

OPRL1 2.119E-5 13 

ARL10 0.01012902 25 

ZNF445 0.0089005 17 

PTPN23 0.00184942 21 

DLGAP4 0.00171851 14 

SPG11 0.00362589 19 

KCNC4 7.299E-5 8 

KMT2A 6.8044E-4 13 

LATS1 0.00110632 20 

ANKFY1 0.0037605 10 

RTN4RL2 8.6433E-4 12 

SEMA4A 0.00801836 9 

TRIM9 0.0 3 



DVL3 6.3765E-4 5 

SSH1 5.69E-4 5 

GOLGA3 0.00865222 10 

LRRC28 0.00156154 5 

BAIAP2 0.00109193 7 

ZNF808 0.00156154 5 

NCOA6 0.01334041 14 

ADCY5 0.01570492 15 

MFN1 0.00160787 9 

POM121 0.00197161 11 

SPTBN4 0.0 3 

FUS 0.00553931 13 

TNRC6B 0.00700821 20 

STX16 4.247E-5 9 

MTO1 0.0 3 

C11orf30 7.0889E-4 3 

ZNF568 0.00827062 21 

LRIG2 0.02122579 16 

TUG1 0.00154978 19 

RAF1 8.3704E-4 6 

ZBTB34 8.82E-5 5 

NELFCD 2.8375E-4 12 

USP43 0.0 3 

RNF169 2.105E-5 20 

BTBD9 0.0073015 7 

LSM14A 1.1461E-4 17 

CLIP2 4.396E-4 14 

ARHGAP21 2.571E-5 10 

DPYSL3 0.0 2 

RAB40B 5.5124E-4 19 

GRM2 1.2965E-4 11 

ZNF704 0.01190445 14 

SGK223 0.0 8 

INF2 4.7489E-4 6 

SNAI3-AS1 0.0 3 

BDP1 0.00137378 11 

PSMG3-AS1 0.0 7 

MKNK2 8.294E-5 7 

HIST2H2BE 0.0 4 

RASD2 0.0 1 

TAB1 8.943E-5 3 

PHF10 0.0 2 

RBM25 1.9453E-4 11 

PHC3 1.213E-4 13 

TSC2 9.7606E-4 7 

HIST2H2AA4 7.091E-5 5 

DFFA 0.02892971 5 

MYO18A 0.0 1 

TTLL11 5.2705E-4 6 

ZBTB10 1.3309E-4 6 

DSCR3 0.00788002 6 

ZNF708 0.0 4 

MDGA1 0.0 1 

KANSL3 1.7223E-4 3 

NAV1 0.0 3 

ACVR2B 1.3144E-4 6 

SRRM1 6.032E-5 2 

ASXL2 0.0139217 7 

GPR83 0.0 2 

LRRC6 1.337E-5 3 

TRERF1 0.00729927 2 

DENND4B 0.0 1 

NCLN 0.0 1 

PTPN12 0.0 1 

PPP1R1A 1.337E-5 3 

SLC39A11 0.00363627 4 

FER 0.00363627 4 

SGCD 0.0 2 

PRRC1 0.0 2 

PIGM 0.0 5 

TMEM108 0.00440361 6 

TOR1AIP2 0.0 3 

ZNF100 3.124E-5 4 

SHISA9 0.00988878 6 

CSGALNACT1 0.0 2 

SEMA3D 0.0 1 

NDUFA6-AS1 0.0 1 
 



Gene name BetweennessCentrality Degree 

LAS1L 0.0 4 

SEC63 0.27990696 295 

ADSS 0.02472642 197 

POLR3E 0.17865454 361 

KLHL22 0.1928226 365 

CYP51A1 0.0 3 

SNAP91 0.1119059 223 

FSCN1 0.15246511 325 

BAD 0.0 4 

MRTO4 0.00797003 57 

ADRBK2 0.03819192 216 

MAD1L1 0.0 3 

M6PR 0.0 3 

ICA1 0.0 1 

MTMR7 2.7198E-4 14 

SARM1 0.01466781 168 

SAMD4A 0.02266278 123 

LSG1 0.00111071 38 

EML1 0.07027997 207 

TGFBR3 0.00231992 61 

NUAK1 0.02351188 182 

IPCEF1 0.03551433 202 

DDX24 0.00195341 66 

ACOT7 0.01514592 186 

SLC7A2 0.0 4 

ARF5 2.151E-4 13 

BID 0.00307421 82 

CAMKK1 2.1299E-4 12 

DHX33 8.68E-6 12 

PRKAR2B 0.0010524 64 

CREBBP 2.5854E-4 21 

IBTK 0.0 8 

PDK2 8.19E-6 12 

GGNBP2 0.0 9 

MAP3K9 7.126E-5 10 

PHTF2 7.126E-5 10 

KIAA0100 1.238E-5 12 

MATK 3.2651E-4 17 

LUC7L 1.952E-5 14 

UBE3C 2.4009E-4 16 

RANBP9 6.98E-5 7 

UQCRC1 0.0 7 

HIVEP2 3.2127E-4 20 

TSPAN9 2.5937E-4 22 

PTBP1 4.4542E-4 15 

RABGAP1 5.7538E-4 22 

EXTL3 1.588E-5 14 

NUB1 2.151E-4 12 

RWDD2A 2.1564E-4 15 

DNASE1L1 2.8229E-4 14 

GPRC5A 5.173E-4 29 

MATR3 1.4384E-4 11 

STMN4 1.061E-5 11 

GLT8D1 3.847E-4 22 

ATP2C1 3.8201E-4 17 

AGPS 2.22E-4 14 

NRXN3 1.597E-5 12 

FHL1 2.151E-4 12 

GABRA1 1.5437E-4 14 

NDUFS1 0.0 7 

RB1CC1 3.7E-7 10 

VEZT 7.126E-5 9 

TBPL1 2.22E-4 14 

BCLAF1 2.3073E-4 22 

TSSC1 7.063E-5 10 

UBA6 4.31E-6 9 

ATP6V0A1 3.421E-4 19 

APBA2 2.8563E-4 16 

TMSB10 1.122E-5 9 

TIMP2 3.7E-7 10 

MAT2B 0.0 7 

EDC4 0.0 8 

STAU2 5.3336E-4 20 

PSMA4 1.659E-5 14 

POLR2B 0.0 6 

XK 1.526E-5 11 

GOPC 3.9122E-4 23 

JKAMP 2.1299E-4 12 

PIK3CB 5.9837E-4 25 

NNAT 0.0 10 

AP5M1 2.1526E-4 13 

FAM168A 0.0 10 

EIF2AK2 3.8709E-4 10 

PUM2 3.3186E-4 17 

C4orf27 1.0916E-4 16 

IL17RB 2.1177E-4 13 

PET112 1.5343E-4 15 

STYK1 5.8609E-4 24 

MPC1 1.2472E-4 33 

GUCY1B3 0.0 9 

MRPS24 5.6471E-4 21 

VMP1 0.0 9 

EIF4B 7.25E-6 10 

MTMR1 2.0645E-4 10 

HAGH 0.0 9 

ZC3H15 2.3629E-4 20 

SLK 4.7025E-4 38 

ME1 0.0 8 

SLC9A7 2.9569E-4 29 



MSANTD3 0.0 5 

ATG2B 0.0 9 

CACNB1 2.0645E-4 11 

DNTTIP2 2.159E-5 15 

DHX8 1.061E-5 11 

OTUD5 0.0 4 

GRIPAP1 2.094E-5 16 

IFT80 4.2061E-4 24 

ERLEC1 1.559E-5 13 

DNAJA2 2.3772E-4 20 

RORA 2.8437E-4 16 

ATP1B3 1.04E-6 12 

ZXDC 0.0 11 

PABPC1 2.8436E-4 16 

MBD3 2.075E-4 15 

TRNT1 4.0719E-4 12 

ACADVL 2.153E-4 14 

SIDT1 1.0883E-4 15 

PPP2R2C 2.22E-4 15 

RAB7A 2.034E-4 6 

MCM6 2.8302E-4 14 

ACTL6B 6.4E-7 7 

RFX3 2.43E-6 8 

RIF1 4.2492E-4 28 

BZW1 2.534E-5 18 

GEMIN5 2.22E-4 14 

ULK2 8.0996E-4 21 

CHMP2B 2.2403E-4 19 

EIF3I 1.952E-5 14 

SEH1L 1.497E-5 12 

RRN3 3.8175E-4 21 

POMGNT1 2.8302E-4 14 

MAST2 5.3036E-4 21 

EIF2AK1 1.108E-5 10 

MRPL28 6.98E-5 8 

ERO1LB 2.5953E-4 15 

GNAS 2.22E-4 14 

ERGIC2 1.03E-5 13 

C3orf18 2.034E-4 8 

CRLS1 2.22E-4 14 

DYNLL1 7.7834E-4 22 

TESC 7.386E-5 12 

RPH3A 8.8183E-4 35 

NOS1 5.6025E-4 20 

CDIP1 5.1E-7 11 

OSBPL8 1.064E-5 13 

NLRP1 0.0 7 

SCFD1 0.0 8 

SUPT16H 0.00115384 56 

SEC22C 0.0 8 

DHPS 2.1447E-4 13 

HSP90AB1 3.3038E-4 16 

ITPR3 0.0 9 

MKNK2 1.3665E-4 12 

RANBP1 2.1592E-4 15 

YPEL1 7.126E-5 12 

PES1 3.9298E-4 17 

MIEF1 2.1894E-4 18 

KCNK10 7.063E-5 9 

FKBP3 8.39E-6 12 

ERH 1.2938E-4 19 

SLC8A3 3.1549E-4 20 

MTHFD1 3.0679E-4 17 

PCNX 1.572E-5 13 

GSKIP 0.0 9 

PSMB5 7.167E-5 12 

SRP54 3.0679E-4 17 

DCAF11 2.22E-4 14 

TRPC4AP 0.0 11 

UQCC1 5.92E-6 15 

PFDN4 4.087E-5 16 

DOK5 2.2312E-4 17 

PRPF6 7.475E-5 16 

SEC23B 7.413E-5 14 

NOP56 7.126E-5 13 

ZNF516 8.39E-6 12 

POLI 2.1447E-4 11 

SYP 3.0982E-4 23 

PGK1 1.05E-6 9 

KDM1A 0.0 1 

CCDC132 0.0 1 

CDC27 0.0 1 

KDM7A 9.0E-7 7 

REV3L 3.7E-7 9 

MBTPS2 0.0 6 

ATP2B4 1.4088E-4 9 

STAG3 2.1042E-4 9 

SPEG 0.0 7 

SF3B2 3.8E-7 9 

RHBDD2 0.0 6 

MYCBP2 1.9E-7 6 

CRLF1 0.0 3 

SYNRG 0.0 1 

CACNG3 0.0 4 

TMEM132A 0.0 1 

RALA 0.0 7 

AGK 0.0 3 

GGCT 0.0 7 

MARK4 0.0 6 

PAFAH1B1 0.0 6 



PTPN21 0.00650512 36 

CACNA2D2 0.0 2 

DNAJC11 0.0 5 

PSMB1 0.0 1 

CDKL5 0.0 1 

MED24 0.0 1 

HEATR5B 3.7E-7 7 

SEC62 0.0 1 

CSDE1 0.0 2 

SEL1L 5.1E-7 4 

BAZ1B 0.0 7 

CLCN6 0.0 2 

RFX2 1.3997E-4 20 

CEP68 0.0 1 

MAP4K3 0.0 7 

EHD2 4.23E-6 10 

KDM5D 0.0 1 

UBR7 0.0 1 

SLC7A14 0.0 1 

RNF14 0.0 2 

RGPD5 3.315E-5 19 

MDH1 0.0 3 

SLC30A9 0.0 1 

COX15 0.0 2 

PITHD1 1.1965E-4 9 

CTSA 6.695E-5 3 

TXNDC16 0.0 5 

TFIP11 2.0645E-4 10 

MYH7B 1.767E-5 14 

RUFY3 0.0 3 

ANK1 3.91E-6 9 

IKZF2 0.0 7 

VCAN 0.0 5 

CDH10 2.83E-6 7 

RAB27B 0.0 7 

AP2S1 1.67E-6 7 

CP 0.0 6 

DKK3 7.27E-6 8 

CDK17 5.19E-6 10 

YBX3 0.0 1 

ELMO2 1.1616E-4 8 

PDE4A 0.0 7 

IDI1 1.751E-5 9 

ACSL4 1.67E-6 5 

GNB5 0.0 5 

DGCR2 1.0003E-4 8 

ASNS 9.9E-7 8 

OSBPL3 0.0 2 

ATP6AP1 0.0 7 

EIF4G3 0.0 1 

USP33 0.0 8 

OSBPL6 0.0 4 

SMARCA2 4.04E-6 9 

RSBN1 0.0 6 

TNPO1 0.0 5 

SMAP2 0.0 7 

KIAA1467 0.0 7 

RAB10 0.0 6 

MAPRE3 0.0 2 

SCAMP1 0.0 4 

MTIF2 1.3303E-4 11 

DDHD2 0.0 5 

ATG16L1 0.0 7 

IPO11 8.48E-6 9 

NLK 1.67E-6 7 

UIMC1 0.0 3 

DNM1L 1.67E-6 5 

EPB41L1 0.0 7 

DOCK9 1.67E-6 5 

DOCK3 0.0 7 

TMEM230 7.27E-6 8 

HNRNPC 1.21E-6 3 

ARCN1 6.81E-6 4 

CRTAC1 6.756E-5 11 

POLRMT 1.21E-6 3 

PACSIN2 7.27E-6 6 

SAMM50 1.21E-6 3 

KHNYN 1.025E-5 8 

VTI1B 0.0 4 

GMPR2 0.0 2 

SAMHD1 0.0 4 

KIF3B 0.0 5 

TTI1 0.0 6 

APMAP 4.04E-6 9 

MCF2 7.27E-6 6 

SMARCA1 1.751E-5 9 

RTFDC1 0.0 4 

GLRX2 0.0 1 

RRAGD 0.0 6 

PHF20 0.0 7 

TOMM34 0.0 1 

RTEL1-
TNFRSF6B 0.0 8 

AGPAT4 0.0 2 

SLC39A9 2.4E-7 6 

NUP160 0.0 1 

RNF19A 0.0 1 

SKIV2L2 1.9E-7 6 

INPP4A 0.0 1 

C12orf4 0.0 1 



LMO3 0.0 2 

MRPS10 0.0 1 

MCUR1 0.0 1 

LETMD1 0.0 3 

MSMO1 0.0 2 

MCF2L2 0.0 2 

TAB2 2.4E-7 6 

CCDC85A 0.0 4 

ZFR 0.0 5 

ATP11B 6.79E-6 9 

RASGRF1 0.0 8 

SLC2A3 0.0 1 

CCAR1 0.0 4 

LZTS1 0.0 1 

MRPS35 0.0 1 

CS 0.0 5 

TAF2 0.0 1 

TNPO3 0.0 1 

OAT 0.0 1 

KARS 0.0 1 

TLE2 0.0 1 

ASB1 0.0 2 

NFYC 0.0 6 

NGEF 0.0 4 

ARFGEF1 0.0 9 

PFKP 0.0 2 

ATP2B3 6.695E-5 3 

PDK3 0.0 1 

COASY 0.0 1 

TFE3 1.9E-7 6 

TBC1D25 0.0 8 

KIF2A 0.0 5 

FUNDC1 0.0 3 

TMEM260 1.9E-7 6 

GBA2 0.0 5 

AP3M2 0.0 1 

ATP2B1 0.0 1 

RPL31 1.9E-7 6 

RPS6KA2 0.0 2 

WBSCR22 0.0 2 

PDCD2 1.9E-7 5 

SLC6A15 0.0 1 

TRHDE 0.0 1 

CRMP1 1.9E-7 6 

SDHA 0.0 4 

SNCB 0.0 1 

TSG101 6.758E-5 6 

PTPLAD1 0.0 8 

ENO1 0.0 2 

ACTR6 0.0 5 

SEMA3C 0.0 8 

TIMM21 0.0 2 

ADD2 7.15E-6 10 

SEC31B 0.0 2 

KIFAP3 0.0 1 

RAP1GAP 0.0 2 

DGKD 0.0 1 

DNAJC10 0.0 4 

JADE1 0.0 6 

UBE2A 0.0 7 

MAP2 7.15E-6 10 

UBE2K 0.0 1 

C12orf5 0.0 1 

VDAC3 0.0 6 

FDFT1 0.0 1 

OPHN1 0.0 8 

DDX1 0.0 4 

OXCT1 0.0 1 

STARD7 1.9E-7 4 

COL16A1 0.0 4 

TAF9 0.0 2 

MECOM 0.0 1 

CHMP5 0.0 3 

ADD1 0.0 5 

ATRN 1.3805E-4 9 

RPL6 7.74E-6 11 

ERP29 0.0 1 

FUS 1.9E-7 6 

GPATCH2L 0.0 1 

CERS4 0.0 3 

FCGBP 0.0 4 

RBM27 0.0 4 

DLD 0.0 2 

ALKBH5 0.0 3 

CD200 0.0 8 

TOX4 0.0 1 

DPYSL2 0.0 1 

MAP3K1 0.0 1 

ZNF184 1.06E-6 9 

ABL1 0.0 1 

RAB18 0.0 3 

CEP170B 0.0 1 

PALM 0.0 1 

PICK1 0.0 2 

RAB36 0.0 6 

SBF1 0.0 1 

DNAL4 0.0 1 

TOM1 0.0 5 

SYNGR1 1.9E-7 6 

FAM118A 0.0 1 



ACO2 0.0 8 

DESI1 1.9E-7 6 

CERK 0.0 3 

DAAM1 7.0E-7 8 

CHGA 0.0 5 

DHRS7 0.0 3 

PPM1A 0.0 1 

KIAA0247 0.0 1 

APEX1 0.0 1 

BRMS1L 0.0 1 

PYGB 0.0 7 

ABHD12 0.0 1 

PLCB4 0.0 1 

MAP1LC3A 0.0 1 

LPIN2 0.0 3 

SMCHD1 0.0 1 

ALG13 0.0 1 

SARS 0.0 6 

GABARAPL2 0.0 2 

GPBP1 0.0 7 

AFF4 0.0 5 

UBE2D1 3.06E-6 8 

MARK2 0.0 3 

DLG1 0.0 8 

ATXN7L3 0.0 3 

KHSRP 0.0 3 

CRKL 0.0 4 

CHD8 0.0 4 

C20orf24 0.0 5 

TM9SF4 0.0 6 

USP2 0.0 6 

TUBG2 0.0 1 

MYO16 2.85E-6 5 

CUL7 0.0 5 

PHKA2 0.0 1 

ATP6V1H 0.0 4 

KIAA0556 0.0 2 

DTNBP1 0.0 1 

HDAC9 8.181E-5 6 

CLPTM1L 0.0 2 

HEXB 0.0 1 

KIAA2022 0.0 1 

BCAR1 0.0 2 

ARID4B 0.0 2 

PTPRN 0.0 3 

ATP9A 0.0 3 

RC3H2 0.0 1 

APPBP2 0.0 2 

TM7SF3 0.0 5 

BTBD1 0.0 6 

SPEN 0.0 2 

ROGDI 0.0 3 

PSME4 0.0 2 

MAST4 0.0 2 

NUP133 0.0 3 

CSNK2A2 0.0 3 

RHOBTB1 0.0 3 

ZZEF1 0.0 5 

SEMA3A 0.0 1 

TMEM131 1.1082E-4 8 

ARHGEF1 0.0 4 

REXO1 0.0 5 

RIMS1 0.0 1 

AP4E1 0.0 4 

PCNP 0.0 5 

ARG2 0.0 2 

PLOD1 0.0 6 

SEPHS1 0.0 3 

DDX18 0.0 2 

LZTS3 0.0 2 

XRN2 0.0 2 

ANAPC5 0.0 2 

SLC23A2 0.0 1 

NAT14 0.0 4 

WDR7 0.0 4 

FKBP5 0.0 6 

CIRBP 0.0 4 

SMARCB1 0.0 2 

DDT 0.0 4 

SEZ6L 0.0 3 

DDX17 0.0 3 

L3MBTL2 0.0 2 

AP4S1 0.0 2 

VCPKMT 0.0 3 

TPD52L2 0.0 3 

PSMA7 0.0 4 

COL20A1 0.0 4 

MANBAL 0.0 3 

IDH3B 0.0 3 

SNRNP40 0.0 3 

SPHK2 0.0 1 

PKN2 0.0 2 

ADAM11 0.0 2 

ACTN2 0.0 1 

RBFOX1 0.0 1 

MEF2C 0.0 2 

C5orf22 0.0 3 

SLC27A5 0.0 1 

ACHE 0.0 1 

NSFL1C 0.0 3 



MAVS 0.0 4 

PXN 0.0 1 

GANAB 0.0 3 

SNAP23 0.0 1 

FBXL19 0.0 1 

POLR2E 0.0 2 

BCL2L13 0.0 1 

CBX7 0.0 1 

POLR3H 0.0 2 

PSMD10 0.0 2 

ZBTB11 0.0 1 

IL4R 0.0 1 

ERC1 0.0 1 

GLG1 0.0 1 

FH 0.0 2 

BTAF1 0.0 1 

JOSD1 0.0 1 

ATP6V1D 0.0 1 

VRK1 0.0 1 

PGRMC1 0.0 1 

SYT1 0.0 2 

POLR1A 0.0 2 

NUCKS1 0.0 2 

C16orf80 0.0 1 

PVALB 0.0 4 

COL5A3 0.0 1 

MAGI3 0.0 1 

APOL4 0.0 2 

CPNE6 0.0 1 

FGFR1 0.0 1 

NRD1 0.0 2 

ALG9 0.0 1 

MZF1 0.0 1 

RBFOX2 0.0 1 

ZC3H7B 0.0 1 
 



Gene name BetweennessCentrality Degree 

EPHA10 0.0 1 

MGAT4C 0.0 1 

WWP2 0.0 1 

YY1AP1 0.0 1 

PEA15 0.0 1 

NF2 0.0 1 

MDC1 0.0 1 

KIAA1211L 0.0 3 

GABRB1 0.0 3 

PARVA 0.0 1 

CXCL14 1.0019E-4 8 

ZNF521 0.00690966 5 

JUND 0.00284938 4 

CTIF 0.0 3 

MRAS 0.00877193 2 

THRA 0.01746657 3 

MEG8 0.0 2 

CCNL1 0.0 3 

IQGAP1 5.21E-6 6 

SOCS4 8.9945E-4 4 

COX20 5.0E-6 8 

CRIP2 0.0 1 

CUL9 0.0 1 

SOWAHA 0.0 1 

MAP3K5 0.0 2 

NADK2 1.8063E-4 6 

PPP1R9B 0.034624 2 

KLF16 0.00672816 6 

SLC25A23 0.02164694 7 

MEIS3 0.0 4 

XPC 0.0 3 

CLIP1 5.72E-6 2 

NLGN3 0.01411041 14 

C14orf37 1.5489E-4 26 

ZC3H7B 0.0 3 

RPTOR 0.00196617 12 

GTPBP1 0.0 4 

TBC1D24 0.0 2 

YPEL1 0.0 1 

TFDP1 0.00809421 5 

CTXN1 0.00112766 4 

JPH4 0.00187388 3 

FBXO41 0.06160946 18 

CBX7 5.7885E-4 10 

RN7SL4P 0.01877667 4 

ANP32E 0.00760789 6 

MAPK4 2.2142E-4 4 

GCSH 0.0 2 

FAM184A 0.0212699 6 

HADHA 0.00150989 4 

IVD 0.01978902 12 

TDRD3 0.0 1 

TMEM219 0.0 1 

CCND3 0.02616122 3 

KCNN2 0.00877193 2 

MAGI2 6.44E-6 7 

SLITRK2 0.00930428 6 

CADM1 8.4598E-4 8 

EPHB1 1.456E-4 6 

MEIS2 8.2E-6 5 

BBS2 8.2E-6 5 

MARC2 7.058E-5 9 

CHRDL1 0.0 3 

PGM1 0.0180841 18 

HDAC5 7.67E-6 5 

SNX8 2.03E-6 3 

ARHGAP10 0.0 3 

PGGT1B 0.0 2 

TMBIM6 0.09165216 31 

HERPUD2 7.8312E-4 14 

CPE 0.00833636 16 

ACOX1 0.00105274 26 

WASF3 0.00988355 26 

CSPG5 0.00258724 28 

LAPTM4A 0.0 4 

KDM3B 0.01999232 25 

BRINP2 0.00718385 52 

KLHL26 3.163E-5 17 

PEX10 0.00503839 27 

FSIP1 0.00337346 16 

SPAG16 0.0 2 

PAK6 2.2776E-4 25 

MRPS14 1.2223E-4 21 

KCNIP2 0.0 4 

HNRNPUL1 0.0 4 

TRA2A 3.86E-6 3 

PDXK 0.0 4 

FMN2 0.01607117 7 

PYCRL 0.0 3 

RAB36 0.0044059 9 

CRAT 0.04154943 15 

TMEM259 1.1926E-4 5 

HCFC1 0.03097172 9 

JPH3 0.00407582 8 

NEURL1 2.6434E-4 7 

LZTS1 0.0 4 

GATS 0.0 2 

DCAKD 7.805E-5 6 

SEC61A1 2.1228E-4 4 



NPTXR 0.01890967 45 

TLE1 9.794E-5 30 

NELFB 0.0045611 24 

EIF3F 0.0 1 

ST6GALNAC6 1.2905E-4 15 

PFKL 0.0 2 

STK11 0.00976168 40 

APH1A 3.92E-6 14 

PPM1F 0.00556671 30 

TFE3 0.01137781 28 

MED29 0.02131575 15 

SLC6A1 5.8522E-4 14 

SNX1 1.47E-6 11 

SPG7 2.17E-6 12 

C11orf95 0.00102062 42 

DYNC2H1 1.0618E-4 24 

ST6GAL2 0.00413748 41 

SEPT11 0.03833608 63 

HS6ST1 0.0 14 

LINC00094 0.00120466 57 

RP11-
82L18.4 6.9876E-4 50 

SCAF8 0.02907944 61 

C15orf59 0.00447618 32 

RP11-
514P8.6 5.742E-5 15 

GIGYF2 6.6382E-4 61 

SHISA4 0.00247505 47 

R3HDM4 0.00450116 62 

C1orf122 0.01196448 79 

IPP 0.00803934 48 

MAPK11 0.00612578 36 

SEPT5 0.02134231 111 

CBX6 0.03620817 88 

KCNIP1 0.0 6 

SETD2 5.03E-6 29 

RBM15B 0.02298066 100 

LINC00086 0.01351673 92 

RIMS2 7.71E-6 26 

ZBTB4 0.00485158 64 

CCDC106 0.01430967 60 

GOLGB1 0.00482071 52 

ADRBK1 0.00117822 47 

CES2 0.00126766 13 

GNB2 4.91E-5 25 

ORMDL3 8.82E-5 38 

SYNPO 0.01212332 66 

CTNND2 0.01280971 74 

NYAP1 0.00209014 19 

FASTK 2.999E-5 23 

HIPK1 0.0257471 96 

PMVK 0.00249643 39 

AGL 3.6264E-4 19 

EMC10 0.005544 63 

FBXW5 1.308E-5 19 

FAM213B 0.00969789 66 

PRKCA 0.00554267 32 

TMCO3 0.00513277 61 

SHC3 0.00851982 57 

SNRNP200 0.01502858 108 

PTPRF 0.0191104 54 

RERE 2.528E-5 35 

AKT1 0.0 21 

LARP1B 3.4725E-4 42 

APH1B 0.02716877 73 

SLTM 8.08E-6 30 

ARRB1 4.5083E-4 41 

APC 9.4379E-4 39 

MYBBP1A 0.01205141 55 

SYNE1 0.00738708 21 

KIF1A 0.0012777 38 

AKAP9 0.0 6 

SMARCA4 0.00425928 13 

MMP24 2.7295E-4 44 

PACSIN1 0.01561015 85 

OBSL1 2.6448E-4 34 

ZC3H13 7.0677E-4 40 

CLCC1 1.8314E-4 38 

MAPK8IP1 0.00528651 84 

DARS 0.0216334 69 

SRF 3.865E-5 34 

NCS1 9.5741E-4 28 

AK1 0.01593364 108 

KXD1 0.0 13 

SGTA 0.01749445 101 

WDR13 0.00767213 93 

ANKRD12 7.736E-5 37 

SNPH 0.00652234 18 

RIMS4 0.0048375 58 

CPNE6 3.66E-6 16 

ITPK1 5.2324E-4 55 

PITPNM3 0.02871149 58 

RAPGEF4 7.67E-6 7 

PCM1 0.00394032 30 

CAMK2A 0.01642707 63 

PDZD4 0.01137765 78 

ZNF275 2.669E-5 31 

TPR 0.02578239 71 

RETSAT 5.61E-5 14 

LARS2 2.248E-5 26 



SEMA6B 0.0051309 46 

LZTS3 0.02715887 33 

DBNDD1 6.8E-6 5 

STARD13-AS 5.2254E-4 29 

FXYD7 0.04373953 134 

FAM19A5 0.00160386 53 

EHMT2 0.00603833 62 

PDE7B 2.42E-6 16 

KLF13 0.00124366 69 

ROBO1 0.02410722 128 

SIN3A 0.01903934 116 

HSD11B1L 1.6031E-4 45 

KIAA1429 0.0111327 106 

BAP1 0.0396547 127 

RPS6KA4 6.9142E-4 54 

MUM1 0.00611314 80 

NACC1 0.01072852 97 

SH3GLB2 0.00559721 93 

SLC25A26 0.00374264 70 

FEM1A 0.01185686 98 

WDR89 0.00933403 102 

SYTL2 1.4872E-4 42 

BAI3 0.0155098 94 

ATP5S 9.135E-5 31 

SLC25A16 0.00976257 79 

MAPKAP1 0.00669577 101 

B4GALT2 5.8287E-4 50 

RLF 0.00637463 90 

NCBP2 0.02144066 122 

NECAB2 3.9146E-4 41 

PCIF1 0.02797204 113 

SMARCB1 0.00843432 107 

FBXL19 0.00627988 73 

SEPHS1 0.01016883 106 

DGCR2 0.015682 115 

DPF1 0.00425826 86 

THSD7A 0.01809894 112 

BAD 1.1029E-4 34 
 



Gene name BetweennessCentrality Degree 

CD38 6.05E-5 9 

TPR 0.03210921 151 

FUBP3 0.00149359 16 

RAB5C 0.0109917 73 

CCDC88A 0.00618185 35 

CYB5R1 0.09987836 199 

PAQR6 0.00287029 25 

RMDN1 0.00200798 25 

IPP 0.04223124 108 

FAM229B 0.0010412 29 

FAM214B 3.0087E-4 17 

MED29 0.01113747 36 

RNF31 0.00193693 62 

MARCH2 8.5325E-4 44 

ZKSCAN1 0.02889723 134 

SUMF2 0.06466922 189 

DIRC2 6.8827E-4 43 

TCTA 8.0335E-4 28 

GPR107 0.03555079 142 

AGPAT5 0.0432596 94 

IDH2 0.00429579 37 

NA 0.04270091 167 

RP11-
617F23.1 0.00243147 32 

RNF216 2.26E-6 14 

HMGB3 0.00584314 83 

TRMU 5.0809E-4 36 

SSR3 0.02943845 131 

ABCD4 0.01209497 111 

GIPC1 0.05120506 176 

HSD17B12 0.02611942 152 

RNF20 0.08244883 193 

FGF17 0.01124752 105 

CTSF 0.04340171 163 

HECW1-IT1 0.08715323 177 

RP11-
334C17.5 0.00420764 75 

CLK1 1.979E-5 16 

PIGS 2.0346E-4 28 

C20orf194 0.00350117 74 

GORASP1 0.00148992 57 

ACRC 0.00275498 74 

SPAG5-AS1 0.01684795 118 

CD44 0.0 7 

CLNS1A 0.01214625 110 

MFSD8 0.02975281 147 

TMEM9B 0.03874169 160 

RETSAT 6.448E-5 23 

ACAA1 3.9495E-4 21 

MAOB 0.0 8 

TFRC 0.0 5 

ANO8 3.871E-5 17 

PAPOLA 1.74E-5 28 

LMF2 2.09E-6 22 

TXN2 6.029E-5 29 

ZNF629 2.665E-5 22 

SCG3 1.502E-5 23 

PYCRL 3.521E-5 24 

PTOV1 1.114E-4 28 

ETFB 0.00286679 78 

SNX8 8.17E-6 24 

AK1 9.48E-6 17 

ALDOC 0.00135121 32 

ATG2A 1.2656E-4 25 

DARS 3.8031E-4 41 

WDR35 0.00623601 103 

ACOT2 0.0 15 

DNAJC15 1.59E-6 19 

FKBP9 3.052E-5 25 

PFKFB2 1.5904E-4 33 

PCID2 0.01846826 50 

SLC5A6 1.267E-5 21 

PYCR2 0.0051576 84 

KANSL1L 3.46E-6 16 

GBAS 7.074E-4 45 

TAF1 3.57E-6 19 

ALAD 0.00330413 79 

IMPACT 0.00948601 82 

VOPP1 2.2854E-4 29 

SLC6A1 4.925E-5 26 

LRP8 1.23E-6 14 

MX1 5.761E-5 30 

CCDC117 3.88E-5 22 

SHISA5 0.0 11 

SGK494 2.4493E-4 38 

TADA3 2.5986E-4 41 

THAP2 0.0 6 

RCC1 4.435E-5 31 

HIST1H2BC 0.01582267 113 

C8orf33 1.37E-5 19 

ZBTB40 1.335E-5 26 

P4HB 6.4252E-4 48 

NAT8L 9.22E-6 21 

HNRNPU-
AS1 1.0805E-4 31 

AMZ2 1.881E-5 23 

COX20 4.893E-5 28 

RBM14 3.1904E-4 37 

GATS 1.2504E-4 32 



MRPS6 3.507E-5 19 

RNU6-6P 2.81E-6 10 

SLC5A3 3.12E-6 16 

RANBP3 3.28E-6 13 

GNS 2.1155E-4 37 

MIR137HG 0.00558295 50 

TNC 0.0 9 

ASF1A 0.0 16 

DCUN1D1 0.0 2 

MAP4 6.414E-5 28 

MXD1 1.6816E-4 28 

SRBD1 9.805E-5 23 

JMJD6 7.226E-5 19 

NDST1 3.9172E-4 15 

SREBF1 3.583E-4 15 

SPAG5 8.344E-5 29 

PCM1 1.302E-5 15 

TDRD3 1.0816E-4 22 

TAB1 5.926E-5 26 

COTL1 0.0 4 

MYH14 3.475E-4 18 

KDELR1 1.771E-5 12 

PDE4C 5.307E-5 24 

DFNA5 4.681E-5 32 

ACBD5 1.47E-4 31 

RAI1 8.4E-7 18 

KAT2A 1.313E-5 12 

CHD4 1.0724E-4 30 

BAG2 2.173E-5 12 

ACOT13 4.195E-5 23 

EPM2A 1.4212E-4 37 

CSPG5 1.223E-5 26 

MRPL19 0.0032862 73 

KLHL29 4.58E-6 22 

MRPS14 0.0 11 

FAM213A 1.47E-5 16 

RAP2C 8.981E-5 33 

HIVEP3 0.02312267 43 

UCK1 2.171E-5 11 

GSTM3 0.0 7 

DHX34 8.738E-5 30 

KCTD3 9.601E-5 15 

MYO7A 1.93E-6 19 

APH1B 0.00299837 35 

SLC7A1 2.98E-6 21 

ETFA 2.662E-5 26 

SEMA6C 3.576E-5 22 

SPAG16 2.339E-5 25 

EIF5B 0.0 12 

TK2 3.635E-5 18 

FTH1 2.44E-6 22 

C11orf84 1.696E-5 17 

SIN3A 4.647E-5 20 

BANP 1.8077E-4 32 

CLK3 6.54E-6 23 

SKA2 9.729E-5 22 

NRBP2 1.899E-5 21 

NELFB 0.0 12 

TTC30A 2.2335E-4 35 

SLC9A8 5.54E-5 22 

C1orf122 3.735E-5 27 

SHISA4 6.3111E-4 30 

BCYRN1 0.0 12 

STRC 0.01258639 43 

BCKDHA 2.2006E-4 38 

LINC00599 1.4671E-4 28 

RP11-
282K24.3 6.97E-6 21 

RP11-
192H23.4 1.07E-5 25 

RP11-
252A24.7 0.0 13 

SUZ12P 8.89E-6 21 

SNX29 0.0 4 

CRAT 0.0 5 

IVD 0.0 5 

WASF3 0.0 1 

ZNF710 7.47E-6 6 

BAALC 0.0 6 

AF127936.7 7.8E-6 11 

TBC1D1 5.38E-6 19 

CTNNA2 0.0 3 

TPPP3 2.0714E-4 31 

TRIB2 0.0 2 

DAZAP1 0.0 7 

SPECC1L 0.0 18 

CRYBB2P1 0.0 15 

MON1B 2.27E-6 12 

ECH1 3.75E-6 16 

SPATA6L 5.18E-6 19 

NCBP2 4.19E-6 18 

H3F3B 0.0 9 

APLNR 0.0 9 

SH3GL1 0.0 17 

KCNE4 7.31E-6 19 

EMC10 1.969E-5 18 

TRIM17 1.389E-5 23 

SETD5 0.0 9 

ZNF154 0.0 12 

LINC00925 0.0 5 



MARK3 0.0 5 

TP53INP2 2.7742E-4 18 

LAMTOR1 6.9948E-4 21 

HDAC11 3.3234E-4 20 

DLGAP4 0.0 3 

ZC3H7A 1.801E-5 17 

COQ9 0.0 3 

GTPBP1 7.68E-6 19 

PCYT1B 0.0 12 

CHPF 0.0 13 

SPARCL1 0.0 12 

SDHAP1 1.75E-6 11 

TMEM222 1.954E-5 22 

PITPNM2 0.0 3 

MYO15A 0.0 3 

HIF1A 0.0 1 

CDC25B 0.0 2 

HSF4 6.1E-7 15 

ZBTB16 0.0 14 

MAST1 0.0 1 

DNAJC2 0.0 7 

SNX19 0.0 9 

THEM6 0.0 4 

IPO8 0.0 8 

AKT1 0.0 1 

MTURN 0.0 10 

MEGF9 0.0 3 

NLGN3 1.464E-5 5 

RPL28 0.0 1 

RBP1 6.114E-5 10 

ADAM15 7.411E-5 8 

ALDH1A1 1.294E-5 4 

PLXNA1 0.0 3 

PASK 8.661E-5 16 

DGCR8 0.0 4 

USP21 0.0 6 

TRA2A 7.99E-6 13 

LINC00632 0.00755098 24 

MBOAT2 1.617E-5 4 

BEST1 0.0 3 

SLC35A4 0.0 4 

ZNF808 2.884E-5 4 

STAG3L5P-
PVRIG2P-

PILRB 0.0 6 

KIF21B 0.0 2 

FAM104A 0.0 8 

RP11-
1212A22.1 0.0 7 

CSMD2 9.7911E-4 10 

B4GALNT3 0.0 3 

C2orf49 0.0 7 

GPR153 0.0 5 

C21orf2 0.0 2 

MGAT5B 0.0 7 

FAM153B 0.0 14 

CSPG4P11 0.0 5 

FAM210B 0.0 1 

HSD17B7 0.0 1 

SNX32 1.134E-5 4 

MTUS2 0.0 2 

RP11-
1407O15.2 0.0 2 

MIAT 1.313E-5 7 

EYA3 0.0 4 

PIGP 0.0 2 

PNPLA7 0.0 3 

LMBR1L 0.0 1 

TMEM108 0.0 2 

HS2ST1 0.0 3 

DDAH1 0.0 1 

GAN 0.0 1 

TNFAIP8L1 0.0 1 
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A.3 R-files

• Datastep.R

• StepByStepWGCNA.R

• Analysis.R

• Cytoscape.R

1
2 library("tidyverse") #package for dplyr
3 library("WGCNA")
4
5 Cohorts <- c("PW", "NBB", "PA")
6
7 # Genenames
8 # geneNames <- readRDS ("../Data/EnsDb.Hsapiens.v75.Rds")
9

10 # Sample info
11 SampleInfo <- read.csv(paste0("../Data/sample_list_3cohorts_final.csv"), header=TRUE , sep = "\t"

)
12
13 # Count matrix
14 countMatrix <- read.csv(paste0("../Data/countMatrix.genes"), header=TRUE , sep = "\t")
15
16 # First , we want rows to correspond to samples and columns to genes , we
17 # transpose the matrix
18 counts_t <- t(as.matrix(countMatrix [,-1]))
19 colnames(counts_t) <- countMatrix$genes
20
21 #
22 # Function to extract the counts for a specific cohort and transpose the count
23 # matrix
24 #
25 countsCohort <- function(cmat , mdat , cohort) {
26 tmpMat <- cmat %>% select_if(names (.) %in% mdat[mdat$origin ==cohort ,"sample_id"]) %>%
27 as.matrix %>% round %>% t
28 colnames(tmpMat) <- cmat$genes
29 return(tmpMat)
30
31 }
32
33 # EXAMPLE: extract counts from PW cohort
34 count_PW <- countsCohort(countMatrix , SampleInfo , "PW") #%>% .[1:10 ,1:10]
35 count_PW_example <- countsCohort(countMatrix , SampleInfo , "PW") %>% .[1:10 ,1:1000] %>% as.matrix
36
37
38 # CLEANING DATASET
39 #
40 # Find genes with too many missing values and remove them from the count
41 # matrix. We do this for every cohort in an "lapply" loop to have a list with
42 # the results for each cohort
43 #
44 counts <- lapply(Cohorts , function(cohort){
45 tmpCounts <- countsCohort(countMatrix , SampleInfo , cohort)
46 gsg <- goodSamplesGenes(tmpCounts , verbose =3)
47 tmpCounts[gsg$goodSamples , gsg$goodGenes]
48 })
49 names(counts) <- Cohorts
50
51 #
52 # CLUSTERING SAMPLES
53 #
54 # To remove outlier samples , first we cluster them
55 #
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56 # 1) PW cohort
57 #
58 cohort <- "PW"
59 sampleTree <- hclust(dist(counts [[ cohort ]]), method="average")
60 plot(sampleTree , main=paste0(cohort , " cohort"), sub="", xlab="")
61 #
62 # By looking at the plot , there is at least one oulier , the sample SL283597. We
63 # chose a threshold of 3000000 to cut the sample out , and plot the line on the
64 # dendrogram to be sure.
65 #
66 cutH <- 3000000
67 abline(h=cutH , col="red")
68 clust <- cutreeStatic(sampleTree , cutHeight=cutH , minSize =10)
69
70 # There should be 2 clusters , we want to keep the one with 27 samples , of
71 # course , and discard the sample that we cut out
72 #
73 table(clust)
74
75 # So, the cluster we want to keep is the [1], let ’s get the sample ids
76 #
77 keepSamples <- rownames(counts [[ cohort ]])[clust ==1]
78
79 # Now we can update the counts matrix and the SampleInfo by removing the
80 # outlier (we are going to create a list of sample_info , with one element for
81 # each cohort)
82 #
83 counts [[ cohort ]] <- counts [[ cohort ]][ rownames(counts [[ cohort ]]) %in% keepSamples ,]
84 metadata <- list()
85 metadata [[ cohort ]] <- SampleInfo[SampleInfo$sample_id %in% keepSamples ,]
86
87
88 # SELECT MOST VARYING GENES
89 #
90 # This function returns the top X most varying genes
91 #
92 topMad <- function(cmat , top =10000) {
93 apply(cmat , 2, mad) %>% sort(decreasing=TRUE) %>% head(n=top) %>% names
94 }
95
96 # We select the top 10000 most varying genes for each of the three cohorts
97 #
98 topN <- 10000
99 counts_top <- lapply(Cohorts , function(cohort){

100 top_ids <- topMad(counts [[ cohort]], topN)
101 counts [[ cohort ]][, colnames(counts [[ cohort ]]) %in% top_ids]
102 })
103 names(counts_top) <- Cohorts
104
105 counts_top_PW <- counts_top[["PW"]]
106
107
108 # SUBSETS BASED ON CONDITION
109 #
110 #Function
111 #
112 countsCondition <- function(cmat , mdat , cond) {
113 tmpMat <- cmat[rownames(cmat) %in% mdat[mdat$condition ==cond ,"sample_id"],] %>%
114 as.matrix %>% round
115 return(tmpMat)
116
117 }
118
119 counts_PW_control <- countsCondition(counts_top_PW , SampleInfo , "Control")
120 counts_PW_case <- countsCondition(counts_top_PW, SampleInfo , "Case")
121
122
123 # SOFT THRESHOLD
124 #
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125 #Function
126 #
127 softThreshold <- function(countMatrix_cohort){
128 #Settings
129 options(stringsAsFactors = FALSE)
130
131 #Choose a set of soft -threshold powers
132 powers = c(c(1:10) , seq(from = 12, to = 30, by=2))
133
134 #Calling the network topology analysis funtion
135 sft = pickSoftThreshold(countMatrix_cohort , powerVector = powers , verbose = 5)
136
137 #Plot the results of the analysis
138 sizeGrWindow (9,5)
139 par(mfrow = c(1,2))
140 cex1 = 0.8
141
142 #Plot , scale -free topology fit index
143 plot(sft$fitIndices [,1], -sign(sft$fitIndices [,3])*sft$fitIndices [,2], xlab = "Soft Threshold

(power)", ylab = "Scale Free Topology Model Fit , signed R^2"
144 , type="n", main = paste("Scale independence"))
145 text(sft$fitIndices [,1], -sign(sft$fitIndices [,3])*sft$fitIndices [,2], labels = powers , cex =

cex1 , col="red")
146
147 abline(h= cex1 , col= "red")
148
149 }
150
151 softThreshold(counts_PW_case)
152 softThreshold(counts_PW_control)
153
154 softThreshold(count_PW_example)

Rfiles/Datastep.R

1 library(WGCNA)
2
3 # CONTROL
4 adjacency= adjacency(counts_PW_control , power = 24)
5
6 #Turning adjacency into topological overlap
7 TOM_control = TOMsimilarity(adjacency)
8 dissTOM_control = 1-TOM_control
9

10 #Clustering using TOM
11 #Call the hierarchical clustering function
12 geneTree_PW_control = hclust(as.dist(dissTOM_control), method = "average")
13
14 #plot the tree
15 sizeGrWindow (12,9)
16 plot(geneTree_PW_control , xlab = "", sub = "", main = "Gene clustering on TOM -based

dissimilarity", labels = FALSE , hang = 0.4)
17
18 #Branch cutting and modules
19 #Min module size
20 minModuleSize = 30
21
22 #Module identification using dynamic tree cut:
23 dynamicMods_control = cutreeDynamic(dendro = geneTree_PW_control , distM = dissTOM_control ,

deepSplit = 2, pamRespectsDendro = FALSE , minClusterSize = minModuleSize)
24 table(dynamicMods_control)
25
26 #Convert numeric labels into colors
27 dynamicColors_control = labels2colors(dynamicMods_control)
28 table(dynamicColors_control)
29
30 #Plot the dendogram with colors underneath
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31 plotDendroAndColors(geneTree_PW_control , dynamicColors_control , "Dynamic Tree Cut", dendroLabels
= FALSE , hang = 0.03, addGuide = TRUE , guideHang = 0.05,

32 main = "Gene dendrogram and module colors")
33
34 #Module eigengene - merging of modules whose expression profiles are very similar
35 #Calculate eigengenes
36 MEList_control = moduleEigengenes(counts_PW_control , colors = dynamicColors_control)
37 MEs_control = MEList_control$eigengenes
38
39 #Calculate dissimilarity of module eigengenes
40 MEDiss_control = 1-cor(MEs_control)
41
42 #Cluster module eigengenes
43 METree_control = hclust(as.dist(MEDiss_control), method = "average")
44
45 #Plot the result
46 sizeGrWindow (7,6)
47 plot(METree_control , main = "Clustering of module eigengenes , Control", xlab = "", sub = "")
48
49 #Choosing cut ,
50 MEDissThres = 0.1
51
52 #plot the cut line
53 abline(h= MEDissThres , col = "red")
54
55 #Call an automatic merge function
56 merge_control = mergeCloseModules(counts_PW_control , dynamicColors_control , cutHeight =

MEDissThres , verbose = 3)
57
58 #The merged module colors
59 mergedCOlors_control = merge_control$colors
60 table(mergedCOlors_control)
61
62 #Eigengenes of the new merged modules
63 mergedMEs_control = merge_control$newMEs
64
65 #plot the gene dendrogram again
66 sizeGrWindow (12,9)
67 plotDendroAndColors(geneTree_PW_control , cbind(dynamicColors_control , mergedCOlors_control), c("

Dynamic Tree Cut", "Merged dynamic"),
68 dendroLabels = FALSE , hang = 0.3, addGuide = TRUE , guideHang = 0.05)
69
70 #Topological overlap , using dissTOM
71 #Transform dissTOM with a power to make moderaely strong connections more visible in the heatmap
72 plotTom = dissTOM_control ^7
73
74 #Set diagonal to NA for a nicer plot
75 diag(plotTom) = NA
76
77 #Call the plot function
78 sizeGrWindow (9,9)
79 TOMplot(TOM_control , geneTree_PW_control , mergedCOlors_control , main = "Network heatmap plot ,

all genes")
80
81
82 ################################################################################
83 #CASE
84 adjacency= adjacency(counts_PW_case , power = 5)
85
86 #Turning adjacency into topological overlap
87 TOM_case = TOMsimilarity(adjacency)
88 dissTOM_case = 1-TOM_case
89
90 #Clustering using TOM
91 #Call the hierarchical clustering function
92 geneTree_PW_case = hclust(as.dist(dissTOM_case), method = "average")
93
94 #plot the tree
95 sizeGrWindow (12,9)
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96 plot(geneTree_PW_case , xlab = "", sub = "", main = "Gene clustering on TOM -based dissimilarity",
labels = FALSE , hang = 0.4)

97
98 #Branch cutting and modules
99 #Min module size

100 minModuleSize = 30
101
102 #Module identification using dynamic tree cut:
103 dynamicMods_case = cutreeDynamic(dendro = geneTree_PW_case , distM = dissTOM_case , deepSplit = 2,
104 pamRespectsDendro = FALSE , minClusterSize = minModuleSize)
105 table(dynamicMods_case)
106
107 #Convert numeric labels into colors
108 dynamicColors_case = labels2colors(dynamicMods_case)
109 table(dynamicColors_case)
110
111 #Plot the dendogram with colors underneath
112 plotDendroAndColors(geneTree_PW_case , dynamicColors_case , "Dynamic Tree Cut", dendroLabels =

FALSE , hang = 0.03, addGuide = TRUE , guideHang = 0.05,
113 main = "Gene dendrogram and module colors")
114
115 #Module eigengene - merging of modules whose expression profiles are very similar
116 #Calculate eigengenes
117 MEList_case = moduleEigengenes(counts_PW_case , colors = dynamicColors_case)
118 MEs_case = MEList_case$eigengenes
119
120 #Calculate dissimilarity of module eigengenes
121 MEDiss_case = 1-cor(MEs_case)
122
123 #Cluster module eigengenes
124 METree_case = hclust(as.dist(MEDiss_case), method = "average")
125
126 #Plot the result
127 sizeGrWindow (7,6)
128 plot(METree_case , main = "Clustering of module eigengenes , Case", xlab = "", sub = "")
129
130 #Choosing cut ,
131 MEDissThres = 0.2
132
133 #plot the cut line
134 abline(h= MEDissThres , col = "red")
135
136 #Call an automatic merge function
137 merge_case = mergeCloseModules(counts_PW_case , dynamicColors_case , cutHeight = MEDissThres ,

verbose = 3)
138
139 #The merged module colors
140 mergedColors_case = merge_case$colors
141 table(mergedColors_case)
142
143 #Eigengenes of the new merged modules
144 mergedMEs_case = merge_case$newMEs
145
146 #plot the gene dendrogram again
147 sizeGrWindow (12,9)
148 plotDendroAndColors(geneTree_PW_case , cbind(dynamicColors_case , mergedColors_case), c("Dynamic

Tree Cut", "Merged dynamic"),
149 dendroLabels = FALSE , hang = 0.3, addGuide = TRUE , guideHang = 0.05)
150
151 #Topological overlap , using dissTOM
152 #Transform dissTOM with a power to make moderaely strong connections more visible in the heatmap
153 plotTom = dissTOM_case^7
154
155 #Set diagonal to NA for a nicer plot
156 diag(plotTom) = NA
157
158 #Call the plot function
159 sizeGrWindow (9,9)
160 TOMplot(TOM_case , geneTree_PW_case , mergedColors_case , main = "Network heatmap plot , all genes")
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161
162 ##############################################################
163 # Example
164 adjacency= adjacency(count_PW_example , power = 14)
165
166 #Turning adjacency into topological overlap
167 TOM_example = TOMsimilarity(adjacency)
168 dissTOM_example = 1-TOM_example
169
170 #Clustering using TOM
171 #Call the hierarchical clustering function
172 geneTree_PW_example = hclust(as.dist(dissTOM_example), method = "average")
173
174 #plot the tree
175 sizeGrWindow (12,9)
176 plot(geneTree_PW_example , xlab = "", sub = "", main = "Gene clustering on TOM -based

dissimilarity", labels = FALSE , hang = 0.4)
177
178 #Branch cutting and modules
179 #Min module size
180 minModuleSize = 30
181
182 #Module identification using dynamic tree cut:
183 dynamicMods_example = cutreeDynamic(dendro = geneTree_PW_example , distM = dissTOM_example ,

deepSplit = 1, pamRespectsDendro = FALSE , minClusterSize = minModuleSize)
184 table(dynamicMods_example)
185
186 #Convert numeric labels into colors
187 dynamicColors_example = labels2colors(dynamicMods_example)
188 table(dynamicColors_example)
189
190 #Plot the dendogram with colors underneath
191 #sizeGrWindow (8,6)
192 plotDendroAndColors(geneTree_PW_example , dynamicColors_example , "Dynamic Tree Cut", dendroLabels

= FALSE , hang = 0.03, addGuide = TRUE , guideHang = 0.05,
193 main = "Gene dendrogram and module colors")
194
195 #Module eigengene - merging of modules whose expression profiles are very similar
196 #Calculate eigengenes
197 MEList_example = moduleEigengenes(count_PW_example , colors = dynamicColors_example)
198 MEs_example = MEList_example$eigengenes
199
200 #Calculate dissimilarity of module eigengenes
201 MEDiss_example = 1-cor(MEs_example)
202
203 #Cluster module eigengenes
204 METree_example = hclust(as.dist(MEDiss_example), method = "average")
205
206 #Plot the result
207 sizeGrWindow (7,6)
208 plot(METree_example , main = "Clustering of module eigengenes", xlab = "", sub = "")
209
210 #Choosing cut ,
211 MEDissThres = 1
212
213 #plot the cut line
214 abline(h= MEDissThres , col = "red")
215
216 #Call an automatic merge function
217 merge_example = mergeCloseModules(count_PW_example , dynamicColors_example , cutHeight =

MEDissThres , verbose = 3)
218
219 #The merged module colors
220 mergedCOlors_example = merge_example$colors
221 table(mergedCOlors_example)
222
223 #Eigengenes of the new merged modules
224 mergedMEs_example = merge_example$newMEs
225
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226 #plot the gene dendrogram again
227 sizeGrWindow (12,9)
228 plotDendroAndColors(geneTree_PW_example , cbind(dynamicColors_example , mergedCOlors_example), c("

Dynamic Tree Cut", "Merged dynamic"),
229 dendroLabels = FALSE , hang = 0.3, addGuide = TRUE , guideHang = 0.05)
230
231 #Topological overlap , using dissTOM
232 #Transform dissTOM with a power to make moderaely strong connections more visible in the heatmap
233 plotTom = dissTOM_example ^7
234
235 #Set diagonal to NA for a nicer plot
236 diag(plotTom) = NA
237
238 #Call the plot function
239 sizeGrWindow (9,9)
240 TOMplot(TOM_example , geneTree_PW_example , mergedCOlors_example , main = "Network heatmap plot ,

all genes")

Rfiles/StepByStepWGCNA.R

1 ############# CORRESPONDENCE MATRIX: Healthy VS Control
2 #Preparing
3 caseMEs = orderMEs(mergedMEs_case , greyName = "MEO")
4 controlMEs=orderMEs(mergedMEs_control , greyName = "MEO")
5
6 #Isolating the module labels in the order they appear in ordered ME, already in colors
7 caseModules = substring(names(caseMEs) ,3)
8 controlModules = substring(names(controlMEs), 3)
9

10 #Initialize tables of p-values and of the corresponding counts
11 pTable = matrix(0, nrow = length(caseModules), ncol = length(controlModules))
12 CountTbl = matrix(0, nrow = length(caseModules), ncol = length(controlModules))
13
14 # Execute all pairwaise comparisons
15 for (camod in 1: length(caseModules))
16 for (comod in 1: length(controlModules))
17 {
18 caseMembers = (mergedColors_case == caseModules[camod])
19 controlMembers = (mergedCOlors_control == controlModules[comod])
20 pTable[camod , comod] = -log10(fisher.test(caseMembers , controlMembers , alternative = "

greater")$p.value)
21 CountTbl[camod , comod] = sum(mergedColors_case == caseModules[camod] & mergedCOlors_control

== controlModules[comod ])
22 }
23
24 ##To add colors
25
26 # Truncate p values smaller than 10^{ -50} to 10^{ -50}
27 pTable[is.infinite(pTable)] = 1.3*max(pTable[is.finite(pTable)])
28 pTable[pTable >50 ] = 50
29
30 # Marginal counts (really module sizes)
31 caseModTotals = apply(CountTbl , 1, sum)
32 controlModTotals = apply(CountTbl , 2, sum)
33
34 # Actual plotting
35 sizeGrWindow (12 ,20)
36 par(mfrow=c(1,1))
37 par(cex = 1.0)
38 par(mar=c(8, 10.4, 2.7, 1)+0.3)
39
40 # Use function labeledHeatmap to produce the color -coded table with all the trimmings
41 labeledHeatmap(Matrix = pTable ,
42 xLabels = paste(" ", controlModules),
43 yLabels = paste(" ", caseModules),
44 colorLabels = TRUE ,
45 xSymbols = paste("Control ", controlModules , ": ", controlModTotals , sep=""),
46 ySymbols = paste("Case ", caseModules , ": ", caseModTotals , sep=""),
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47 textMatrix = CountTbl ,
48 colors = greenWhiteRed (100) [50:100] ,
49 main = "Correspondence of case vs control modules",
50 cex.text = 1.0, cex.lab = 1.0, setStdMargins = FALSE)
51
52
53 ###### MODULE EIGENGENE HEATMAP: Visualizing network of eigengenes
54 #Plot relationships among the eigengenes
55 # Plot the heatmap matrix
56 par(cex = 1.0)
57 plotEigengeneNetworks(mergedMEs_case , "Eigengene adjacency heatmap , Case", marHeatmap = c

(3,4,2,2),
58 plotDendrograms = FALSE , xLabelsAngle = 90)
59
60 # Plot the heatmap matrix (note: this plot will overwrite the dendrogram plot)
61 par(cex = 1.0)
62 plotEigengeneNetworks(mergedMEs_control , "Eigengene adjacency heatmap , Control", marHeatmap = c

(3,4,2,2),
63 plotDendrograms = FALSE , xLabelsAngle = 90)
64
65 #
66 # MODULE PRESERVATION
67 #
68 #Multidata
69 countMatrix_2dim <- list(Control = list(data = counts_PW_control), Case = list(data = counts_PW_

case))
70
71 #Colors
72 mergedColors_2dim <- list(Control = mergedCOlors_control , Case = mergedColors_case)
73
74 #ModulePreservation
75 mp <- modulePreservation(multiData = countMatrix_2dim , multiColor = mergedColors_2dim ,
76 referenceNetworks = 1, nPermutations = 200, randomSeed = 1, quickCor =

0, verbose = 3)
77 #Analysis
78 #Isolating the observed statistics and their Z scores
79 ref = 1
80 test = 2
81
82 statsObs = cbind(mp$quality$observed [[ref ]][[ test]][, -1], mp$preservation$observed [[ref ]][[ test

]][, -1])
83 statsZ = cbind(mp$quality$Z[[ref ]][[ test]][, -1], mp$preservation$Z[[ref ]][[ test]][, -1])
84
85 # Module labels and module sizes are also contained in the results
86 modColors = rownames(mp$preservation$observed [[ref ]][[ test ]])
87 moduleSizes = mp$preservation$Z[[ref ]][[ test]][, 1];
88
89 # leave grey modules out
90 plotMods = !(modColors %in% c("grey"));
91
92 # Text labels for points
93 text = modColors[plotMods ];
94
95 # Auxiliary convenience variable
96 plotData = cbind(mp$preservation$observed [[ref ]][[ test]][, 2], mp$preservation$Z[[ref ]][[ test

]][, 2])
97
98 # Main titles for the plot
99 mains = c("Preservation Median rank", "Preservation Zsummary");

100
101 # Start the plot
102 sizeGrWindow (10, 5);
103 par(mfrow = c(1,2))
104 par(mar = c(4.5 ,4.5 ,2.5 ,1))
105 for (p in 1:2)
106 {
107 min = min(plotData[, p], na.rm = TRUE);
108 max = max(plotData[, p], na.rm = TRUE);
109 # Adjust ploting ranges appropriately
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110 if (p==2)
111 {
112 if (min > -max/10) min = -max/10
113 ylim = c(min - 0.1 * (max -min), max + 0.1 * (max -min))
114 } else
115 ylim = c(max + 0.1 * (max -min), min - 0.1 * (max -min))
116 plot(moduleSizes[plotMods], plotData[plotMods , p], col = 1, bg = modColors[plotMods], pch =

21,
117 main = mains[p],
118 cex = 2.4,
119 ylab = mains[p], xlab = "Module size", log = "x",
120 ylim = ylim ,
121 xlim = c(10, 2000) , cex.lab = 1.2, cex.axis = 1.2, cex.main =1.4)
122 labelPoints(moduleSizes[plotMods], plotData[plotMods , p], text , cex = 1, offs = 0.08);
123 # For Zsummary , add threshold lines
124 if (p==2)
125 {
126 abline(h=0)
127 abline(h=2, col = "blue", lty = 2)
128 abline(h=10, col = "darkgreen", lty = 2)
129 }
130 }
131
132
133 #
134 ###### INTERESTING MODULES
135 # Genenames
136 geneNames <- readRDS("../Data/EnsDb.Hsapiens.v75.Rds")
137
138 #select modules
139 #In Control
140 intModules_control = c("darkorange", "darkgrey", "orange", "pink", "black")
141 probes_control = colnames(counts_PW_control)
142 probes2annotation_control = match(probes_control , geneNames$gene_id)
143 probes_control = geneNames$gene_name[probes2annotation_control]
144
145 for (module in intModules_control) {
146 #Select module probes
147 modGenes = (mergedCOlors_control == module)
148 #Get their name
149 modGeneNames = probes_control[modGenes]
150 #Write to file
151 # Write them into a file
152 fileName = paste("GeneNames - NewControl -", module , ".txt", sep="");
153 write.table(as.data.frame(modGeneNames), file = fileName ,
154 row.names = FALSE , col.names = FALSE)
155
156 }
157
158 #In case
159 intModules_case = c("pink","black")
160 probes_case = colnames(counts_PW_case)
161 probes2annotation_case = match(probes_case , geneNames$gene_id)
162 probes_case = geneNames$gene_name[probes2annotation_case]
163
164 for (module in intModules_case) {
165 #Select module probes
166 modGenes = (mergedColors_case == module)
167 #Get their name
168 modGeneNames = probes_case[modGenes]
169 #Write to file
170 # Write them into a file
171 fileName = paste("GeneNames - Case -", module , ".txt", sep="");
172 write.table(as.data.frame(modGeneNames), file = fileName ,
173 row.names = FALSE , col.names = FALSE)
174
175 }
176
177
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178 #Reading tables from consensus path DB
179 CPDB_black_control <- read.table("CPDB_black_control_geneName.tab", sep = "\t", header = TRUE)
180 CPDB_darkgrey_control <- read.table("CPDB_darkgrey_control_geneName.tab", sep = "\t", header =

TRUE)
181 CPDB_darkorange_control <- read.table("CPDB_darkorange_control_geneName.tab", sep = "\t", header

= TRUE)
182 CPDB_orange_control <- read.table("CPDB_orange_control_geneName.tab", sep = "\t", header = TRUE)
183 CPDB_pink_control <- read.table("CPDB_pink_control_geneName.tab", sep = "\t", header = TRUE)
184
185 CPDB_pink_case <- read.table("CPDB_pink_case_geneName.tab", sep = "\t", header = TRUE)
186 CPDB_black_case <- read.table("CPDB_black_case_geneNames.tab", sep = "\t", header = TRUE)
187
188
189 #Intersect 2 moduler
190 modTOM_control_top <- colnames(modTOM_control[top , top])
191 modTOM_case_top <- colnames(modTOM_case[top_case , top_case])
192
193 intersect(modTOM_case_top , modTOM_control_top)

Rfiles/Analysis.R

1 #
2 #CYTOSCAPE
3 #
4 probes_control = colnames(counts_PW_control)
5 probes_case = colnames(counts_PW_case)
6
7 modules_cyto_control = c("black")
8 modules_cyto_case = c("black")
9

10 inModule_control = is.finite(match(mergedCOlors_control , modules_cyto_control))
11 inModule_case = is.finite(match(mergedColors_case , modules_cyto_case))
12
13 modProbes_control = probes_control[inModule_control]
14 probes2annotation_control = match(modProbes_control , geneNames$gene_id)
15 probes_control = geneNames$gene_name[probes2annotation_control]
16
17 modProbes_case = probes_case[inModule_case]
18 probes2annotation_case = match(modProbes_case , geneNames$gene_id)
19 probes_case = geneNames$gene_name[probes2annotation_case]
20
21
22 modTOM_control = TOM_control[inModule_control , inModule_control]
23 modTOM_case = TOM_case[inModule_case , inModule_case]
24
25 dimnames(modTOM_control) = list(probes_control , probes_control)
26 dimnames(modTOM_case) = list(probes_case , probes_case)
27
28 nTop = 1000;
29 IMConn = softConnectivity(counts_PW_control[, modProbes_control ]);
30 top = (rank(-IMConn) <= nTop)
31
32
33 IMConn_case = softConnectivity(counts_PW_case[, modProbes_case]);
34 top_case = (rank(-IMConn_case) <= nTop)
35
36
37
38 cyt_control_top = exportNetworkToCytoscape(modTOM_control[top , top],
39 edgeFile = paste("CytoscapeInput - Control_top - edges -",

paste(modules_cyto_control , collapse = "-"), ".txt",
sep = ""),

40 nodeFile = paste("CytoscapeInput - Control_top - nodes -",
paste(modules_cyto_control , collapse = "-"), ".txt",
sep = ""),

41 weighted = TRUE ,
42 threshold = 0.1,
43 nodeNames = modProbes_control ,
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44 altNodeNames = probes_control ,
45 nodeAttr = mergedCOlors_control[inModule_control ])
46
47
48 cyt_case_top = exportNetworkToCytoscape(modTOM_case[top_case , top_case],
49 edgeFile = paste("CytoscapeInput - CaseTOP - edges -", paste(

modules_cyto_case , collapse = "-"), ".txt", sep = ""),
50 nodeFile = paste("CytoscapeInput - CAseTOP - nodes -", paste(

modules_cyto_case , collapse = "-"), ".txt", sep = ""),
51 weighted = TRUE ,
52 threshold = 0.57,
53 nodeNames = probes_case ,
54 altNodeNames = probes_case ,
55 nodeAttr = mergedColors_case[inModule_case])

Rfiles/Cytoscape.R
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