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Abstract 

 

Background: Vitamin D is a fat-soluble vitamin with important functions in several 

different tissues, and poor vitamin D status has been found to be associated with chronic 

diseases like type 1 diabetes, metabolic syndrome, cardiovascular disease, infectious 

diseases, and several forms of cancer. Different modifiable and non-modifiable factors 

have been suggested to be associated with serum 25(OH)D levels. The prevalence of 

insufficient serum 25(OH)D level is high, and determinants of vitamin D status are not 

fully elucidated. The main purpose of this thesis was to explore factors associated with 

circulating vitamin D levels which could contribute to a better understanding of 

potential causes of vitamin D deficiency. 

 

Methods: This was a cross-sectional study of 4118 patients who underwent coronary 

angiography at Haukeland University Hospital or Stavanger University Hospital with 

suspected or verified stable angina pectoris (SAP) and available data on 25(OH)D serum 

concentrations. To assess the relationship between serum 25(OH)D and dietary, clinical, 

and biochemical variables measured in the two cohort studies, linear regression was 

used, while quantile regression analyses were conducted to assess the relationships 

between 25(OH)D status and the same variables in selected quantiles of 25(OH)D levels. 

To estimate the strength of the linear relationships between serum 25(OH)D levels and 

the measured predictors on a standardized scale, Spearman`s rank correlation 

coefficients, rhos, were calculated.  

 

Results: The results showed that serum 25(OH)D levels were positively associated with 

blood sampling during the summer months and vitamin D intake through diet, fish, and 

egg consumption, and with circulating concentrations of HDL cholesterol (HDL-C), 

riboflavin, pyridoxal phosphate (PLP), pyridoxic acid (PA), folate, cobalamin, vitamin A, 

vitamin E, choline, and sarcosine. Negative associations were found for blood sampling 

during the winter season and body mass index (BMI), with circulating concentrations of 

triglycerides (TGs), blood glucose, and hemoglobin A1c (HbA1C), and with total 
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homocysteine (tHcy), dimethylglycine (DMG), and C-reactive protein (CRP) levels at low 

serum 25(OH)D concentrations. 

 

Conclusions: In this cross-sectional study, we found that serum 25(OH)D levels were 

associated with seasonality, vitamin D intake, and BMI, and with circulating levels of 

HDL-C, TGs, PLP, vitamin A, and vitamin E, total homocysteine, as well as markers of 

glucose metabolism. These results may motivate future experimental studies further 

investigating determinants of vitamin D status and their mechanistic relationships, 

leading to better prevention of vitamin D deficiency. 
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1  Introduction 

Vitamin D, calciferol, is a fat soluble vitamin essential for calcium and phosphorus 

metabolism, and insufficient levels of vitamin D are known to be detrimental to bone 

health (1,2). Several functions besides calcium and phosphorus metabolism have been 

discovered, and poor vitamin D status has been found to be associated with chronic 

diseases like type 1 diabetes, metabolic syndrome, cardiovascular disease (CVD), 

infectious diseases, and several forms of cancer (1,3–5). A high global prevalence of 

insufficient vitamin D levels increases the risk of health consequences in a large group of 

people (3,4). Different factors have been suggested to be associated with circulating 

levels of vitamin D (6–8), but potential determinants of vitamin D status have not been 

fully elucidated. The main aim of this thesis was to investigate relationships between 

serum levels of vitamin D and dietary, clinical, and biochemical variables measured in a 

large cohort.   

  

1.1 Vitamin D 

1.1.1 The “sunshine” vitamin 

Lack of sunlight has historically been strongly associated with the skeletal disease 

rickets (1,2). Early in the 1900s, it was suggested that rickets was caused by a dietary 

deficiency, and animal studies showed that the supply of cod liver oil prevented and 

cured the disease, and this resulted in the discovery of vitamin D as an essential nutrient 

(1,2).  

 

The observed connection between sunlight exposure, vitamin D, and the development of 

rickets led to the identification of the two precursors of vitamin D, named 7-

dehydrocholesterol (7-DHC) and ergosterol (1,2,9). 7-DHC is a sterol produced by 

animals, while ergosterol is found in plants, and both of these precursors change 

structure when exposed to ultraviolet irradiation from sunlight (1,2,9). When exposed to 

ultraviolet irradiation, 7-DHC is transformed into the provitamin D called vitamin D3 or 

cholecalciferol, while ergosterol is transformed into ergocalciferol, also called vitamin D2 
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(1,2,9). Because of the importance of sunlight exposure in the synthesis of vitamin D, the 

vitamin is also called the “sunshine vitamin” (1,2,9).  

 

1.1.2 Vitamin D metabolism 

7-DHC in the epidermis of the skin absorbs UV-radiation between 290 nm and 315 nm, 

causing an isomerization that involves photolytic ring opening to produce the 9,10-seco-

sterol previtamin D3 (1,9,10). Previtamin D3 has the thermodynamically unstable s-cis, s-

cis conformation and is easily transformed to vitamin D3 through a non-enzymatic heat-

induced isomerization, which cause the hydrophilic and hydrophobic interactions 

between the previtamin D3 and the membrane fatty acids to break, and vitamin D3 is 

released from the skin cell membrane into the blood (1,2,10). If the production of 

vitamin D3 is high and the serum levels are above required, some of the vitamin D3 can 

be stored in the fat tissue and be released in periods with insufficient synthesis 

(1,11,12).  

 

Vitamin D2 and D3 have to be further activated before the vitamin can perform its 

functions in the target tissues (2,9). The vitamin D3 produced in the skin or ingested 

through the diet is transported in the blood bound to vitamin D-binding protein (DBP) 

or incorporated into chylomicrons, and delivered to the liver where vitamin D3 is 

converted to 25-hydroxyvitamin D3 (25(OH)D) by the vitamin D 25-hydroxylase CYP2R1 

(1,2). 25(OH)D3 is released in the blood and transported to the kidneys, where a 25-

hydroxyvitamin D-1α-hydroxylase called CYP27B1 converts 25(OH)D3 to the active form 

1,25-dihydroxyvitamin D3 (1,25-(OH)2D3), also called calcitriol (1,2,9). 1,25(OH)2D3 is 

transported in the blood to different tissues in the body and function like a steroid 

hormone that bind to cell membrane and nuclear vitamin D receptors (VDR) to regulate 

gene expression (1,9).  

 

Vitamin D metabolism is tightly regulated based on calcium and phosphorus levels (1,2). 

Low serum calcium levels activate the calcium receptors on the parathyroid glands. This 

cause an increased release of parathyroid hormone (PTH), which in turn stimulates the 
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kidneys to increase the activity of 25(OH)D-1α-hydroxylase, which result in increased 

serum levels of calcitriol (1). Low phosphorus levels also lead to an increased activity of 

25(OH)D-1α-hydroxylase to increase the circulating levels of calcitriol. Low levels of 

both calcium and phosphorus substantially increase the activity of 25(OH)D-1α-

hydroxylase and thereby lead to high levels of calcitriol as a protective mechanism to 

normalize calcium and phosphorus levels (1).  

 

The breakdown of calcitriol also occurs in the kidneys, and this catabolism is also tightly 

regulated based on calcium and phosphorus levels. 25(OH)D-24-hydroxylase (CYP24A1) 

is the catabolic enzyme responsible for the degradation of 1,25(OH)2D3 to calcitroic acid, 

which is then excreted in the bile (1,2). High levels of PTH and calcitriol increases the 

activity of the 25(OH)D-24-hydroxylase, while low serum phosphorus levels down-

regulate the activity of the 25(OH)D-24-hydroxylase and thereby the degradation of 

calcitriol to maintain sufficient serum levels (1,2).  

 

1.1.3 Vitamin D functions 

The vitamin D receptor 

The actions of vitamin D are mediated through the vitamin D receptor (VDR), a ligand-

activated transcription factor located in the target tissues (1,2,13). Binding of 

1,25(OH)2D3 to the VDR leads to the formation of two independent protein interaction 

surfaces on the VDR, one that allows binding of the heterodimer retinoid X-receptor 

(RXR), and one that is necessary for recruitment of large coregulatory complexes 

required for regulation of gene expression (1). The VDR recognizes a specific DNA 

sequence called vitamin D response element (VDRE), and the VDR-RXR complex binds to 

the VDRE. The regulation of gene expression is not mediated directly by the VDR, but 

indirectly through the recruitment of coregulatory complexes with the ability to make 

the desired changes of gene expression (1). These coregulatory complexes contain one 

VDR-interacting component, as well as many subunits with different enzymatic 

functions that acts by enhancing or suppressing the expression of the targeted genes (1). 

This way, through binding to the VDR and regulating gene expression, vitamin D has the 

ability to regulate the activity and different functions in a number of cells and tissues.  
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Effects of vitamin D 

The primary function of vitamin D is to maintain calcium and phosphorus homeostasis 

(1,2). Serum calcium levels should be maintained at a very constant level, at 2.1 to 2.6 

mmol/L, to attain and maintain a healthy bone mineral density (12). Vitamin D has three 

primary functions with the intent of increasing calcium levels if they fall below normal 

levels, which include stimulating the absorption of calcium and phosphorus in the 

intestine, mobilization of calcium and phosphorus from the bone tissue, and also 

stimulating reabsorption of calcium in the renal tube (2,12).  

 

The VDR has also been found in tissues besides the ones involved in calcium and 

phosphorus metabolism, including the islet cells of the pancreas, the parathyroid glands, 

B cells and T cells of the immune system, in the macrophages, in epithelial cells of the 

intima of blood vessels, in cells of the stomach, in keratinocytes of skin, in epithelial cells 

of the colon, and in cells of the placenta (1,2,12). Thus, vitamin D has several non-

skeletal functions (1,2,12). Among the observed functions of vitamin D, it has been found 

to affect the keratinocytes (1,13), maintaining parathyroid status (1,12), and have an 

impact on the immune system (1,12,14). However, it is still a work in progress to 

investigate the wide range of non-skeletal effects of vitamin D.  

 

1.1.4 Sources of vitamin D 

Dietary sources of vitamin D are quite limited and include fatty fish, cod liver oil, egg 

yolk, and foods fortified with vitamin D, such as dairy products. Vitamin D supplements 

are also an important source of vitamin D in some parts of the population (1,15).  

However, exposure of sunlight on the skin is considered to be the most important source 

of the vitamin (1,2). Vitamin D occurs in two different structural forms, named vitamin 

D2, or ergocalciferol, and vitamin D3, or cholecalciferol. Vitamin D2 is found in plant 

sources like mushrooms and yeast, while vitamin D3 is found in animal and fortified 

foods and is synthesized in the skin (1).  
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1.1.5 Recommended vitamin D levels 

25(OH)D is the circulating form measured to determine vitamin D status (1,9). The 

Nordic Nutrition Recommendations 2012 (16), the US Institute of Medicine (17), and the 

recommendations from Germany, Austria, and Switzerland (18) consider a serum level 

of above 50 nmol/L 25(OH)D (20 ng/mL) as sufficient, while a level of under 30 nmol/L 

(12 ng/mL) is regarded as deficient (19). However, the levels of serum 25(OH)D 

considered as adequate and the definition of vitamin D deficiency has been widely 

discussed. In parts of the literature, a serum level of above 30 ng/mL (75 nmol/L) 

25(OH)D is considered to be sufficient to optimize health, while levels under 20 ng/mL 

(50 nmol/L) is considered as a vitamin D deficiency (1,9,20). There have also been 

uncertainties regarding the daily intake of vitamin D needed to achieve the optimal 

serum levels of 25(OH)D, and the recommendations vary across different countries and 

health authorities. The US recommendation for vitamin D intake to achieve the 

recommended level of 50 nmol/L to support bone health is set to 15 µg for children and 

adults (17), while the dietary guidelines from Germany, Austria, and Switzerland have 

estimated adequate vitamin D intake to be 20 µg/d for children, adolescents, and adults 

(18). However, the Nordic recommendations to maintain sufficient serum levels is set to 

10 µg/d for children, adults, pregnant women, and lactating women, and 20 µg/d for 

adults over 75 years old (19).  

 

Highly increased serum levels of 25(OH)D are toxic and can lead to consequences like 

hypercalcaemia, hyperphosphatemia, nephrocalcinosis, and kidney failure (1,19). Serum 

25(OH)D concentrations above 375 nmol/L indicates vitamin D toxicity (21). This 

usually occurs with excessive oral intake, most often associated with supplementation 

above the recommended doses (1,21). The tolerable upper intake level (UL) is set to 100 

µg/d for adults and adolescents, 50 µg/d for children 1−10 years of age, and 25 µg/d for 

infants (19). Excessive sunlight exposure will not cause vitamin D intoxication due to 

photodegradation of previtamin D3 to inactive sterols in the skin, in addition to the 

protective effect of melanin production against further irradiation (22).  
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1.1.6 Vitamin D deficiency 

Prevalence  

The prevalence of vitamin D deficiency varies across different parts of the world and 

between different population groups. Reviews aimed at providing an overview of the 

global vitamin D status have found that vitamin D deficiency is a global problem 

affecting all age groups, but the prevalence is particularly high in girls and women from 

the middle east (3,8).  

 

Data from “The Tromsø study” and “The North Trøndelag health study” show that a 

large proportion of the Norwegian adult population has suboptimal serum 25(OH)D 

levels (below 50 nmol/L), while a relatively small proportion have levels below 25 

nmol/L, considered as deficient (23). The vitamin D status varies across different groups 

in the Norwegian population, and it has been found that among the adult ethnic 

Norwegian population aged 45−75, the majority have sufficient vitamin D levels, while 

among the elderly at nursing homes and the non-western immigrants, it is estimated 

that more than 70% have insufficient serum 25(OH)D levels (24).  

 

Consequences of vitamin D deficiency 

Vitamin D deficiency has primarily been associated with detrimental effects on bone 

health. Lack of vitamin D affects the calcium homeostasis, causing decreased calcium 

absorption in the intestine and reabsorption of calcium in the kidneys, decreased levels 

of calcium in the blood, and thereby impaired bone mineralization (1,2,9). A 

consequence of severely deficient vitamin D and calcium levels in children is poor bone 

development and the condition rickets, characterized by bowed legs, knock knees, and 

growth retardation (1,9,11). In adults, vitamin D deficiency could cause impaired bone 

mineralization leading to the bone disease osteomalacia and increased risk of 

osteoporosis (1,2).  

 

The vitamin D receptor (VDR) is also found in muscle tissue, and vitamin D deficiency 

has been shown to impair muscle function and cause muscle weakness, which in turn 
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increases the risk of falling (11,25). A proposed explanation of the effect of vitamin D on 

muscle function and the risk of falling is that 1,25(OH)2D binds to a vitamin D receptor 

in muscle tissue stimulating de novo protein synthesis, muscle cell growth, and improved 

muscle function (1,25). Closely related to the effects on muscle function and risk of 

falling is the connection between vitamin D status and fracture risk. A dose-dependent 

associations between vitamin D status and the risk of fractures have been observed 

(1,25). A meta-analysis found that supplementing with 10 µg/d or below did not reduce 

the risk of fractures, while vitamin D supplementation at 12.5 to 17.5 µg/d and higher 

achieved serum 25(OH)D levels that seemed to reduce the risk of nonvertebral fractures 

by 20% and hip fractures by 18% (26).  

 

In addition to the detrimental effects on bone health and muscle function, vitamin D 

deficiency is associated with increased risk of several chronic diseases, including CVD, 

autoimmune diseases, infectious diseases, multiple sclerosis, type 1 diabetes, and 

different forms of cancer (1,2,11).  

 

Both excessive and insufficient vitamin D status have been suggested to be associated 

with an increased risk of CVD (1,2). In observational studies from the 1980s, it was 

observed a seasonal variation in cases of cardiovascular events in accordance with 

varying sunlight exposure, and it was hypothesized that vitamin D is associated with the 

risk of CVD (1). Insufficient vitamin D status is associated with several different risk 

factors of CVD, including hypertension, peripheral vascular disease, diabetes mellitus, 

and abnormal lipid profiles (2,27–32). Furthermore, several meta-analyses found that 

low levels of serum 25(OH)D were associated with an increased risk of CVD (33,34). 

Potential mechanisms explaining the protective effects of vitamin D against CVD include 

beneficial effects on cardiac function, blood pressure, insulin resistance, lipid 

metabolism, and inflammatory processes (1). Studies investigating the effects of vitamin 

D supplementation on the risk of CVD are, however, inconsistent, and it is yet premature 

to draw firm conclusions about the effects of vitamin D supplements (35–37).  
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The abilities of vitamin D to regulate gene expression in several different tissues have 

led to the hypothesis that vitamin D could have anti-cancer effects and that vitamin D 

status affects cancer risk (1). Activation of VDR by binding of calcitriol elicit a wide 

variety of responses, which could influence cellular growth, proliferation, apoptosis, and 

immune function, and thereby affecting the risk of cancer development (1,38). Vitamin D 

also seems to have angiogenesis inhibitory effects causing tumor growth retardation and 

tumor regression (1,38).  

 

Associations between serum 25(OH)D levels and different types of cancers, including 

colorectal cancer, breast cancer, and prostate cancer, have been suggested (1,11,16). A 

meta-analysis indicated that circulating 25(OH)D was inversely associated with cancer 

incidence and cancer mortality (39), and that serum 25(OH)D levels were inversely 

related to the risk of colorectal cancer, but no association was found for breast and 

prostate cancer (40). When looking at the effects of vitamin D supplementation on 

cancer incidence and mortality, the results are inconclusive (41,42). 

 

Immunomodulatory and anti-inflammatory effects of vitamin D have also been 

hypothesized, and it has been suggested that vitamin D may thereby affect the risk of 

developing autoimmune diseases (1,43). A meta-analysis looking at the effects of 

vitamin D on systemic inflammation and autoimmune disease concluded that the data 

was insufficient to indicate a relation between vitamin D and reduced risk of 

autoimmune disease (14). However, several meta-analyses investigating the 

relationship between rheumatoid arthritis and vitamin D status have found that patients 

with rheumatoid arthritis have lower serum 25(OH)D compared to healthy controls, and 

that there is a negative association between serum 25(OH)D and rheumatoid arthritis 

disease activity (44,45). Similar results have been observed when looking at associations 

between vitamin D status and type 1 diabetes, where subjects with type 1 diabetes had 

6.3 nmol/ lower serum 25(OH)D levels compared to the control group (46). 

 

Vitamin D deficiency has also been suggested to increase the risk of infectious diseases 

(47), and vitamin D has been proposed to have a protective effect on diseases like 
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respiratory tract infections and tuberculosis (1,48,49). Some meta-analyses found that 

vitamin D supplementation reduced the risk of acute respiratory tract infection (odds 

ratio (OR) 0.64 and odds ratio 0.88), where the protective effects were strongest in 

those with profound vitamin D deficiency at baseline (49,50), while another meta-

analysis observed a weaker protective effect of vitamin D supplementation on the risk of 

respiratory tract infections in previously healthy individuals (relative risk (RR) 0.94) 

(48). When looking at the associations between vitamin D and tuberculosis, some meta-

analyses found that vitamin D deficiency is associated with an increased risk of 

tuberculosis (51,52).  

 

Vitamin D also seems to influence brain function, and it has been found associations 

between insufficient vitamin D status and several neurological diseases, including 

schizophrenia, Parkinson´s disease, Alzheimer´s disease, and reduced cognitive function 

(53,54). Data from experimental trials indicate that vitamin D is a neuroactive steroid, 

and that vitamin D signaling is involved in brain development and function in adults 

(53,54). Meta-analyses found that lower 25(OH)D levels were associated with poorer 

cognitive function (55) and that individuals with Alzheimer’s disease had lower 

25(OH)D concentrations compared to healthy controls (55,56).  

 

In addition to the range of chronic diseases, several studies have also found an inverse 

relationship between 25(OH)D levels and all-cause mortality (57,58). However, the 

effect of vitamin D supplementation on all-cause mortality is unclear. Some meta-

analyses found that intake of vitamin D supplements were associated with decreased 

total mortality rates (59,60), while another analysis observed no association between 

vitamin D supplementation and all-cause mortality (61).   

 

1.1.7 Factors associated with vitamin D status 

Vitamin D status is affected by several different factors, both modifiable and non-

modifiable. Among the modifiable factors are sunlight-exposure, vitamin D content in 

the diet, bodyweight, smoking, and lifestyle factors such as physical activity (6,7,62–64). 
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The non-modifiable factors include gender, age, and skin-color (6,7,62,63,65). However, 

there is still uncertainty regarding determining factors of vitamin D status and potential 

risk factors of vitamin D deficiency. This thesis is based on a cohort of patients with 

stable angina pectoris (SAP). A previous study based on these data found that serum 

25(OH)D concentrations were inversely associated with cardiovascular mortality (66), 

highlighting the need to provide more information about potential determinants of 

vitamin D. 
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2 Objectives 

Vitamin D has a wide variety of functions in the human body, and insufficient vitamin D 

levels may have major health consequences. Importantly, the prevalence of insufficient 

serum 25(OH)D levels is high, and potential determinants of vitamin D status are not 

fully elucidated. This thesis aimed to explore a wide variety of factors, both demographic 

characteristics, anthropometric measures, biochemical variables, and dietary data, to 

investigate which factors were associated with serum 25(OH)D levels, measured at 

baseline in a large cohort of patients with stable angina pectoris.  

 

Specific objectives  

• Assess cross-sectional associations between 25(OH)D serum levels and a variety 

of dietary, clinical, and biochemical variables by linear regression modeling.  

• Explore associations between serum 25(OH)D and dietary, clinical and 

biochemical variables at different levels of 25(OH)D by quantile regression 

analysis.  

• Assess the strengths of linear relationships between serum 25(OH)D levels and 

the measured variables of interest on a standardized scale by correlation 

analysis.  
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3 Methods 

 

3.1 Cohorts 

This was a cross-sectional study based on data obtained from the Western Norway 

Coronary Angiography Cohort (WECAC), investigating factors associated with serum 

25(OH)D levels at baseline in a large clinical cohort. WECAC included the participants 

from both Bergen Coronary Angiography Cohort (BECAC) and Western Norway B Vitamin 

Intervention Trial (WENBIT). BECAC was a prospective cohort study that followed 

patients who underwent elective coronary angiography at Haukeland University 

Hospital between January 2000 and April 2004 (67). The overall aim of BECAC was to 

study various prognostic markers of cardiovascular endpoints and cause-specific 

mortality in patients with suspected heart diseases (67). WENBIT (ClinicalTrials.gov 

Identifier: NCT00354081) was a randomized, controlled, double blind study 

investigating effects of homocysteine-lowering therapy on mortality and cardiac events 

in patients undergoing coronary angiography, hypothesizing that a daily supplement 

with B vitamins would reduce the risk of cardiovascular mortality and serious 

cardiovascular events among patients with coronary artery disease (68).  

 

The inclusion criteria for the cohort was age over 18 years, patients able to give 

informed consent, with and without significant coronary artery disease (CAD) who had 

undergone coronary angiography just before inclusion, and was prepared to undergo 

long-term follow-up (67,68). Patients with known alcohol abuse or serious mental 

illness, or with known active malignant disease were not eligible to participate in the 

study. The study was conducted according to the Declaration of Helsinki and approved 

by the Regional Committee for Medical and Health Research Ethics and the Norwegian 

Data Protection Authority, and written informed consent was obtained from all 

participants (68). 

 

In total 5210 men and women who underwent coronary angiography at Haukeland 

University Hospital or Stavanger University Hospital between April 1999 and April 2004 

https://clinicaltrials.gov/ct2/show/NCT00354081
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were included in BECAC and WENBIT (4241 patients were included in BECAC and an 

additional 969 patients were included in WENBIT). From this cohort, a total of 4166 

patients with suspected or verified stable angina pectoris (SAP) were eligible for 

inclusion. Of these patients, 4118 had available measures of 25(OH)D concentrations 

and were included in the analyses in the current thesis (Figure 1).  

 

 

Figure 1. Flow of subjects from BECAC and WENBIT with stable angina pectoris (SAP) and available measurements of 
serum 25(OH)D included in the analyses. 
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3.2 Baseline characteristics 

Information about the participants was obtained by clinical examinations, 

anthropometric measurements, blood sampling, and questionnaires on lifestyle, medical 

history, and dietary habits. Self-administered questionnaires were used to obtain 

information on participants lifestyle, and medical history gave information about health 

status and was verified by comparing with hospital records. Smoking status was 

classified based on self-reported smoking habits and plasma cotinine levels. Current 

smoking was defined as a self-reported smoker, having stopped smoking less than 90 

days ago, or plasma cotinine levels above 85 nmol/L. Estimated glomerular filtration 

rates (eGFR) were calculated by using the formula suggested by the Chronic Kidney 

Disease Epidemiology Collaboration (69).  

 

3.2.1 Laboratory data 

Clinical examinations and blood sampling at baseline and during follow-up were 

conducted by trained study personnel. At Haukeland University Hospital, the blood 

samples were taken from non-fasting patients before the angiography, while at 

Stavanger University Hospital, fasting blood samples were taken in conjunction with the 

angiography. Routine blood analyses were performed at the hospital laboratories, while 

blood sample for biobanking were immediately prepared to serum and plasma and 

stored at −80°C until analyzed (68).  

 

Analyses of plasma 25(OH)D2 and 25(OH)D3 concentrations were performed by using 

liquid chromatography tandem mass spectrometry (LC-MS/MS) in the period between 

2011 and 2012 at Bevital AS, Bergen, Norway (66,68).  

 

3.2.2 Dietary data 

Information on dietary habits was obtained from a semiquantitative food frequency 

questionnaire (FFQ) the participants completed at enrollment (68,70). The FFQ was 

developed at the Department of Nutrition, University of Oslo, and included 169 food 

items that were grouped according to traditional Norwegian meal patterns. It was 
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designed to obtain information on usual food intake during the past year, including the 

frequency of consumption of different food groups and amounts given as household 

measures or units, such as slices or pieces. Questions on supplement use were also 

included in the FFQ. Based on the information from the FFQ, nutrient intake was 

calculated by using a database and software system developed at the Department of 

Nutrition, University of Oslo (Kostberegningssystem, version 3.2; University of Oslo, 

Norway).  

 

3.3 Statistical analysis 

Baseline characteristics of the study population are presented as arithmetic means and 

standard deviation (SD) for demographic characteristics, as number and percentages for 

categorical variables, and as geometric means and ranges (1SD ranges) for biochemical 

variables. The geometric SD ranges were calculated by dividing and multiplying the 

geometric means with the geometric SD factors to obtain the lower and upper limits, 

respectively. The descriptive statistics are categorized into quartiles of 25(OH)D levels. 

P-values for the linear trend across quartiles were derived from unadjusted linear 

regression models for the continuous variables, while unadjusted logistic regression 

models were used to derive p-values for trend across quartiles of 25(OH)D levels for the 

categorical variables. All statistical analyses were conducted with R, version 3.6.1 

(https://www.R-project.org) (71), and data transformation and exploration were done 

by using tidyverse packages (72).  

 

To assess the relationship between serum 25(OH)D levels and dietary, clinical, and 

biochemical variables linear regression analysis were used. Linear regression is a 

method to investigate associations between variables, and allows prediction of the 

values of the dependent variable based on the values of the independent variable (73). A 

simple linear regression model was used to assess the association between serum 

25(OH)D and the different parameters. In addition, multiple linear regression models 

were used to adjust for potential confounding factors, i.e., to isolate the relationship 

between serum 25(OH)D levels and the variable of interest from the effects of the 

confounding variables. Multiple regression allows inclusion of more than one 

https://www.r-project.org/
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independent variable, and is used to reveal associations between multiple predictor 

variables and a single outcome variable (74). The first multiple regression model was 

adjusted for sex and age, and the second was adjusted for age, sex, BMI, smoking habits, 

and GFR. We adjusted for age, sex, BMI, smoking habits, and GFR as these covariates 

have been found to be associated with serum 25(OH)D levels (6,7,62,75), and also 

several of the variables of interest. Among observed relationships between potential 

confounders and the variables we investigated, are associations between BMI and 

biochemical variables, such as standard lipids and parameters glycemic control (76), the 

relationships of sex and age with amino acid profile (77) and lipid profile (78), and the 

associations between GFR and biochemical variables, such as vitamin status (79). The 

linear regression analyses were performed with the lm function, while logistic 

regression analyses were conducted with the glm function in the stats package, version 

3.6.2 (https://www.rdocumentation.org/packages/stats) (80). 

 

Quantile regression analysis was used to assess the relationship between 25(OH)D 

concentrations and the different parameters in selected quantiles of 25(OH)D. This type 

of regression analysis makes it possible to assess the relationship between the 

independent variables and serum 25(OH)D at different levels of 25(OH)D (81). This may 

disclose varying degrees of association between the independent variables and 25(OH)D 

in different categories of vitamin D status. Quantile regression was conducted both for 

the unadjusted model, the model adjusted for age and sex, and the model adjusted for 

age, sex, BMI, smoking habits, and GFR. The quantile regression analyses were 

performed with the lqm function in the quantreg package, version 5.51 (https://cran.r-

project.org/web/packages/quantreg/) (82).  

 

To estimate the strengths of linear relationships between serum 25(OH)D levels and the 

measured variables of interest on a standardized scale, Spearman`s rank correlation 

coefficients, rhos, with bootstrapped confidence intervals and p-values, were calculated. 

Spearman`s correlation measures the strength and direction of the monotonic 

relationship between two variables. A positive relationship, which implies that as the 

value of one of the variables increases so does the other variable, will give a positive 

https://www.rdocumentation.org/packages/stats
https://cran.r-project.org/web/packages/quantreg/
https://cran.r-project.org/web/packages/quantreg/
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correlation coefficient, while a negative relationship, which implies that as the value of 

one variable increases the value of the other variable decreases, is shown as a negative 

correlation coefficient (83). The Spearman`s correlation coefficient can take values from 

−1 to +1, where a correlation coefficient of +1 indicates a perfect positive association, 

while a correlation coefficient of −1 indicates a perfect negative association, and a 

coefficient of 0 indicates that there is no association between the two variables (84). To 

control for the effects of potential confounding factors, partial correlation analyses were 

also conducted by adjusting for age and sex in one model, and for age, sex, BMI, smoking 

habits, and GFR in another model. The Spearman`s rank correlation coefficients were 

calculated with the cor.test function in the RVAideMemoire package and the partial 

correlations were estimated with the pcor.test function in the RVAideMemoire package, 

version 0.9-73 (https://cran.r-project.org/web/packages/RVAideMemoire) (85). 

 

3.3.1 Model validation 

Linearity, normality, and homoscedasticity are assumptions that should be met to justify 

the use of linear regression (73,86). In a linear regression model, it is assumed that the 

relationship between the dependent variable and the independent variables is linear. A 

linear regression model is also limited by the fact that it models the mean of the 

conditional probability distribution, and the results are more accurate if this distribution 

is normally distributed. The assumption of homoscedasticity includes that the variance 

of the residuals should be the same for all values of the independent variables. Through 

model validation, these assumptions can be checked to determine whether the chosen 

model is suitable for its purposes (87,88).  

 

To check for the assumptions of linearity, normality, and homoscedasticity, and examine 

the validity of the regression models in this thesis, graphical analyses of residuals were 

conducted. To assess the linearity, the residual values were plotted against predicted 

values of the independent variable in a scatter plot. The residuals were presented on the 

y-axis, while the predicted values were presented on the x-axis, and a horizontal line 

was drawn where the residuals equal zero. Residual plots showing no systematic 

pattern and a line approximately horizontal at zero, indicated linearity (86,89). In 

https://cran.r-project.org/web/packages/RVAideMemoire
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addition, partial residual plots were used to assess linearity in the multiple regression 

models. In partial residual plots the dependent variable is adjusted for the linear effects 

of the independent variables except the one of interest. The partial residuals were 

plotted against predictive values for each of the independent variables in component-

plus-residual-plots. Plots with residuals randomly scattered close to the zero-line, 

indicated that the assumption of linearity was held (86). The assumption of 

homoscedasticity was evaluated by plotting square root standardized residuals against 

the predicted values of the independent variable. Residuals randomly spread along a 

horizontal line, indicated that the assumption of homoscedasticity was valid (86,89). To 

assess the assumption of normality of the residuals, a normal quantile-quantile (QQ) 

plot was used. In this plot, the quantiles of the observed residuals were plotted against 

the quantiles of the standard normal distribution, and where the points in the scatter 

plot followed along the 45 degree line, we assumed normality (86,89). The diagnostic 

plots and model validation in this thesis were conducted with the plot function in the 

ggfortify package, version 0.4.10 (https://cran.r-project.org/package=ggfortify) (90), 

and partial residual plots were made with the crPlots function in the car package, 

version 3.0-7 (91) (https://cran.r-project.org/package=car).  

 

Potential nonlinear associations between serum 25(OH)D and different variables was 

visualized by plotting the relationships using splined functions in the regression models, 

and the function geom_smooth in the package ggplot2, version 3.2.0 (https://cran.r-

project.org/web/packages/ggplot2).  

 

To visualize the results from the statistical analysis different plots and figures were 

made. All plots were made with the ggplot2 package, version 3.2.0 (https://cran.r-

project.org/web/packages/ggplot2).  

https://cran.r-project.org/package=ggfortify
https://cran.r-project.org/package=car
https://cran.r-project.org/web/packages/ggplot2
https://cran.r-project.org/web/packages/ggplot2
https://cran.r-project.org/web/packages/ggplot2
https://cran.r-project.org/web/packages/ggplot2
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4 Results 

4.1 Baseline characteristics 

Of the 4166 participants eligible for inclusion in this study, 48 were excluded due to 

missing data on serum 25(OH)D levels, and the remaining 4118 (2961 (72%) males and 

1157 (28%) females) were included in the analyses. The mean age (SD) in the study 

population was 61.8 (10.4) years. 

 

Geometric mean serum 25(OH)D level (1SD range) in the study group was 55.4 

(38.3−80.1) nmol/L, with a range from 3.37 nmol/L to 205 nmol/L. A total of 1423 

(35%) of the 4118 participants, had serum 25(OH)D concentrations below the 

recommended level of 50 nmol/L, while the remaining 2695 had serum 25(OH)D levels 

considered as sufficient. The baseline table is divided into quartiles of 25(OH)D levels, 

showing the linear trend of the different variables across the quartiles. Tables 1-4 

present baseline data on demographic characteristics, anthropometric measurements, 

levels of standard lipids, blood glucose, inflammatory markers, vitamin status, dietary 

data, amino acids, and amino acid metabolites, both in the total cohort and across 

quartiles of 25(OH)D levels.   

 

  



28 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1Values are arithmetic means (SDs), geometric means (1SD range), and numbers (%) across quartiles of serum 25OH vitamin D levels. BMI, body mass index (kg/m2); 

eGFR, estimated glomerular filtration ratio. 2P-values are derived from unadjusted linear regression models for the continuous variables and logistic regression models 

for the categorical variables. 

 

  

Table 1. Demographic characteristics, anthropometric measurements, smoking habits, GFR and vitamin D intake of the study population at 
baseline across quartiles of 25OH vitamin D levels.1 

 

Variable 

 Quartiles of vitamin D levels  

Total cohort 
(n = 4118) 

Q1 
(n = 1030) 

Q2 
(n = 1029) 

Q3 
(n = 1030) 

Q4 
(n = 1029) 

P-value2 

25(OH)D (nmol/L) 55.4 (38.3, 80.1) 
 

34.0 (26.0, 44.4) 
 

51.3 (47.9, 55.0) 
 

64.1 (60.0, 68.4) 
 

84.3 (73.1, 97.1) 
 

 

Age (years) 61.8 (10.4) 
 

60.1 (11.0) 
 

61.4 (10.3) 
 

62.9 (9.85) 
 

62.6 (10.0) 
 

<0.001 

Male sex (n) 2961 (71.9) 
  

716 (69.5) 
 

733 (71.2) 
 

762 (74.0) 
 

750 (73.0) 
 

0.075 

BMI (kg/m2) 26.3 (4.00) 
 

26.9 (4.48) 
 

26.6 (4.07) 
 

26.1 (3.71) 
 

25.5 (3.54) 
 

<0.001 

Current smoker (n) 
 

1063 (26) 
 

340 (33.0) 
 

248 (24.1) 
 

220 (21.4) 
 

255 (24.8) 
 

<0.001 

eGFR (mL/min/ 1,732) 85.5 (66.3, 110) 
 

88.4 (69.1, 113) 
 

86.9 (69.2, 109) 
 

84.2 (65.7, 108) 
 

82.7 (62.2, 110) 
 

<0.001 

Waist circumference 
(cm) 

95.8 (11.6) 
 

97.3 (12.6) 
 

96.4 (11.6) 
 

95.6 (11.3) 
 

94.1 (10.6) 
 

<0.001 

Vitamin D intake (µg/d) 10.8 (8.48) 7.95 (5.48) 9.88 (7.60) 11.8 (9.40) 12.9 (9.51) <0.001 
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Table 2. Standard lipids, blood glucose, and inflammatory markers in serum at baseline across quartiles of 25OH vitamin D levels.1 

 

Variable 

 Quartiles of vitamin D levels  

Total cohort 
(n = 4118) 

Q1 
(n = 1030) 

Q2 
(n = 1029) 

Q3 
(n = 1030) 

Q4 
(n = 1029) 

P-value2 

TG (mmol/L) 1.54 (0.92, 2.58) 
 

1.67 (0.96, 2.91) 1.54 (0.94, 2.52) 
 

1.49 (0.91, 2.46) 1.46 (0.89, 2.40) <0.001 

Total cholesterol 
(mmol/L) 

4.95 (3.97, 6.17) 
 

4.98 (3.95, 6.27) 4.94 (3.98, 6.13) 4.92 (3.96, 6.11) 4.96 (4.01, 6.13) 0.673 

LDL-C (mmol/L) 2.94 (2.11, 4.09) 2.95 (2.11, 4.12) 2.94 (2.13, 4.07) 
 

2.92 (2.10, 4.08) 
 

2.92 (2.10, 4.08) 
 

0.794 

HDL-C (mmol/L) 1.24 (0.78, 1.95) 
 

1.18 (0.90, 1.56) 1.23 (0.93, 1.62) 1.23 (0.57, 2.68) 
 

1.31 (1.00, 1.71) 
 

<0.001 

Non-HDL-C (mmol/L) 3.62 (2.69, 4.86) 3.71 (2.74, 5.02) 3.62 (2.71, 4.85) 
 

3.57 (2.67, 4.78) 
 

3.56 (2.65, 4.78) 
 

0.002 

ApoA-I (g/L) 1.29 (1.05, 1.59) 1.24 (1.00, 1.54) 1.28 (1.03, 1.58) 1.30 (1.07, 1.59) 1.35 (1.11, 1.63) 
 

<0.001 

ApoB (g/L) 0.87 (0.67, 1.14) 0.88 (0.67, 1.16) 0.87 (0.67, 1.14) 0.87 (0.67, 1.12) 0.87 (0.67, 1.13) 0.259 

Type 2 diabetes (n) 455 (11.0) 140 (13.6) 112 (10.9) 110 (10.7) 93 (9.04) <0.001 

HbA1c (%) 6.08 (4.91, 7.54) 
 

6.22 (4.98, 7.78) 
 

6.06 (4.90, 7.48) 
 

6.09 (4.95, 7.49) 
 

5.96 (4.81, 7.38) 
 

<0.001 

Serum glucose (mmol/L) 6.00 (3.69, 9.77) 
 

6.21 (4.54, 8.49) 
 

6.11 (4.62, 8.07) 
 

5.85 (2.55, 13.39) 
 

5.85 (4.39, 7.81) 
 

<0.001 

CRP (mg/L) 1.86 (0.59, 5.84) 
 

2.25 (0.59, 8.59) 
 

1.79 (0.63, 5.12) 
 

1.68 (0.57, 4.96) 
 

1.76 (0.61, 5.10) 
 

0.003 

Neopterin (nmol/L) 8.57 (5.85, 12.5) 
 

8.59 (5.75, 12.8) 
 

8.37 (5.72, 12.2) 
 

8.59 (6.11, 12.1) 
 

8.72 (5.85, 13.0) 0.006 

 

1Values are geometric means (1SD range), and numbers (%) across quartiles of serum 25OH vitamin D levels. TG, serum triglycerides; HDL-C, serum high density 

lipoprotein cholesterol; LDL-C, serum low density lipoprotein cholesterol; ApoA-I, Apolipoprotein A-I; ApoB, Apolipoprotein B; HBA1c, glycosylated haemoglobin; CRP, 

C-reactive protein. 2P-values are derived from unadjusted linear regression models for the continuous variables and logistic regression models for the categorical 

variables. 
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Table 3. Dietary data at baseline across quartiles of 25OH vitamin D levels.1 

 

Variable 

 Quartiles of vitamin D levels  

Total cohort 
(n = 4118) 

Q1 
(n = 1030) 

Q2 
(n = 1029) 

Q3 
(n = 1030) 

Q4 
(n = 1029) 

P-value2 

Riboflavin (µg/dL)  12.4 (5.90, 26.2) 
 

11.3 (5.62, 22.7) 
 

12.4 (5.97, 26.0) 
 

12.9 (6.20, 26.8) 
 

13.2 (5.91, 29.4) 
 

<0.001 

PL (nmol/L) 10.6 (5.43, 20.9) 
 

9.48 (5.12, 17.5) 
 

10.2 (5.42, 19.2) 
 

11.1 (5.74, 21.4) 
 

12.0 (5.64, 25.5) 
 

0.072 

PLP (nmol/L) 43.7 (24.0, 79.6) 
 

38.3 (20.8, 70.4) 
 

42.9 (24.3, 75.9) 
 

46.5 (26.0, 83.2) 
 

47.7 (25.8, 88.2) 
 

<0.001 

PA (nmol/L) 28.0 (14.3, 54.8) 
 

24.9 (13.5, 45.8) 
 

26.8 (14.5, 49.7) 
 

29.1 (14.9, 56.7) 
 

31.8 (15.0, 67.6) 
 

0.005 

Folate (nmol/L) 11.0 (5.99, 20.3) 
 

10.0 (5.55, 18.0) 
 

11.03 (6.06, 20.0) 
 

11.3 (6.21, 20.5) 
 

11.8 (6.22, 22.5) 
 

<0.001 

Cobalamin (pq/mL) 361 (228, 570) 
 

343 (214, 549) 
 

358 (231, 554) 
 

368 (238, 569) 
 

375 (232, 606) 
 

0.001 

MMA (nmol/L) 0.17 (0.12, 0.25) 0.17 (0.11, 0.26) 
 

0.17 (0.12, 0.24) 
 

0.17 (0.12, 0.24) 
 

0.17 (0.12, 0.25) 
 

0.736 

Vitamin A (µmol/L) 2.84 (2.25, 3.59) 2.71 (2.11, 3.48) 
 

2.79 (2.22, 3.50) 
 

2.88 (2.31, 3.60) 
 

2.99 (2.38, 3.74) 
 

<0.001 

Vitamin E (µmol/L) 30.2 (24.1, 38.0) 29.2 (22.8, 37.4) 
 

29.9 (24.0, 37.1) 
 

30.6 (24.6, 38.2) 
 

31.3 (25.2, 38.9) <0.001 

Low fat milk 
consumption (g/day) 

131 (188) 137 (203) 122 (179) 134 (187) 129 (183) 0.598 

Fish consumption (g/day) 110 (70.7) 96.1 (62.5) 112 (69.9) 112 (76.8) 119 (70.0) <0.001 

Egg consumption (g/day) 16.6 (11.9) 15.6 (11.9) 17.1 (11.8) 16.3 (11.7) 17.1 (11.9) 0.090 

 

1Values are arithmetic means (SDs) and geometric means (1SD range) across quartiles of serum 25OH vitamin D levels. PL, Pyridoxine levels; PLP, Pyridoxal 5-phosphate; PA, 

4-pyridoxic acid; MMA, methylmalonic acid. 2P-values are derived from unadjusted linear regression models. 
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Table 4. Serum levels of amino acids and amino acid metabolites at baseline across quartiles of 25OH vitamin D levels.1 

 

Variable 

 Quartiles of vitamin D levels  

Total cohort 
(n = 4118) 

Q1 
(n = 1030) 

Q2 
(n = 1029) 

Q3 
(n = 1030) 

Q4 
(n = 1029) 

P-value2 

Serine (µmol/L)  97.2 (26.1, 361) 
 

99.7 (41.0, 243) 
 

98.5 (28.5, 340) 
 

95.1 (21.0, 432) 
 

95.5 (21.0, 433) 
 

0.728 

Glycine (µmol/L)  211 (163, 272) 
 

206 (158, 268) 
 

209 (163, 269) 
 

211 (162, 274) 
 

216 (168, 278) 
 

<0.001 

DMG (µmol/L) 4.20 (2.99, 5.90) 
 

4.23 (2.92, 6.13) 
 

4.13 (2.98, 5.73) 
 

4.22 (3.05, 5.83) 
 

4.21 (3.00, 5.92) 
 

0.339 

Sarcosine (µmol/L)  1.50 (1.06, 2.12) 
 

1.43 (0.99, 2.06) 
 

1.50 (1.08, 2.10) 
 

1.51 (1.09, 2.10) 
 

1.56 (1.11, 2.20) 
 

<0.001 

Choline (µmol/L)  9.71 (7.48, 12.6) 
 

9.36 (7.01, 12.5) 
 

9.68 (7.58, 12.4) 
 

9.74 (7.57, 12.5) 
 

10.1 (7.83, 12.9) 
 

<0.001 

Betaine (µmol/L)  38.9 (28.3, 53.5) 
 

37.8 (27.0, 52.8) 
 

38.5 (28.1, 52.8) 
 

39.3 (28.8, 53.6) 
 

40.2 (29.5, 54.7) 
 

<0.001 

Methionine (µmol/L)  27.0 (20.8, 35.1) 
 

26.5 (20.3, 34.5) 
 

27.1 (20.9, 35.2) 
 

27.0 (21.1, 34.5) 27.4 (20.8, 36.0) 
 

0.023 

tHcy (µmol/L) 10.7 (7.75, 14.8) 
 

10.9 (7.65, 15.5) 
 

10.5 (7.70, 14.2) 
 

10.6 (7.87, 14.4) 
 

10.8 (7.79, 15.0) 
 

0.537 

tCys (µmol/L) 290 (254, 331) 
 

288 (252, 329) 
 

288 (253, 328) 
 

293 (257, 334) 
 

292 (256, 332) 
 

<0.001 

 

1Values are geometric means (1SD range) across quartiles of serum 25OH vitamin D levels. DMG, plasma dimetylglycine; tHcy, total homocysteine; tCys, total cysteine. 
2P-values are derived from unadjusted linear regression models. 
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4.2 Factors associated with vitamin D status 

The following sections present a summary of the results from the regression and 

Spearman`s correlation analyses investigating the associations between serum 25(OH)D 

levels and measured variables of interest.  

 

Vitamin D intake 

Data on estimated daily vitamin D intake was available for 2068 of the study 

participants. The mean vitamin D intake in the total population was estimated to 10.8 

(8.48) µg/d. 779 of the 2068 with available data on vitamin D intake had an estimated 

daily intake above the recommendation of 10 µg/d. Among the participants with serum 

25(OH)D levels above 50 nmol/L, the mean vitamin D intake was estimated to 11.9 (9.2) 

µg/d, while the mean daily intake among the subjects with serum levels below 50 

nmol/L was estimated to 8.3 (5.9) µg. Both the unadjusted and the adjusted regression 

and Spearman`s correlation analyses showed that vitamin D intake was positively 

associated with the serum 25(OH)D level (Tables 5 and 6). The fully adjusted 

regression model showed that each additional 1 µg higher daily vitamin D intake was 

associated with an increase in serum 25(OH)D of 0.47 nmol/L.  

 

Season 

Great variation was seen when analyzing the associations between month or season of 

the study visit and the measured serum 25(OH)D levels. The lowest vitamin D levels 

were measured in the subjects included in March, with a geometric mean (1SD range) 

serum 25(OH)D concentration of 49.5 (35.3−69.5) nmol/L, while the highest levels were 

observed in the blood samples taken in August, with a geometric mean (1SD range) of 

69.0 (53.4−89.0) nmol/L. This implies a difference of 19.5 nmol/L between the 

geometric means of the months with highest and lowest observed vitamin D levels.  

 

When categorizing date of study visit in quarters of the year, the results revealed a 

similar trend with lower serum 25(OH)D levels during the winter months compared to 

the summer months (Table 6). Blood samples in the period from January through March 

had the lowest serum 25(OH)D levels with a mean of 50.0 (34.8−71.8) nmol/L, while the 
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quarter with the highest levels of serum 25(OH)D was July through September with a 

mean of 66.5 (50.1−88.3) nmol/L. This relationship was also shown in the regression 

and correlation analyses, where the summer months were positively associated with 

serum 25(OH)D levels, while the winter months were negatively associated with vitamin 

D status in both the unadjusted and the adjusted models. The proportion of subjects 

included in the period from January to March with serum 25(OH)D levels below 50 

nmol/L, was estimated to 48%, while among subjects included in the period from July 

through August, the proportion with insufficient serum 25(OH)D levels was 14%. The 

variation of serum 25(OH)D levels according to months of the year are shown in Figure 

2.  

 

 

Figure 2. Mean 25(OH)D levels measured at each month of study visit. 

 

 

Anthropometric measurements 

Both the unadjusted linear regression and correlation analyses and the models adjusted 

for age and sex showed that both BMI and waist circumference were inversely related to 

serum 25(OH)D levels (Tables 5 and 6). When classified according to WHOs body mass 
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index classification (92), it was observed that subjects classified as “normal weight” 

(BMI 18.5−24.9) had a mean serum 25(OH)D concentration of 58.1 (40.5−83.3) nmol/L, 

the subjects in the “overweight” category (BMI 25.0−29.9) had a mean serum 25(OH)D 

level of 55.7 (38.5−80.5) nmol/L, while the subjects classified as “obese class 1” (BMI 

30.0−34.9), “obese class 2” (BMI 35.0−39.9), and “obese class 3” (BMI above 40) had 

mean serum 25(OH)D concentrations of 50.9 (35.8−72.4), 46.3 (31.0−69.0), and 43.6 

(29.5−64.4) nmol/L, respectively. 30% of the normal weight subjects had insufficient 

serum 25(OH)D levels, while 34 and 46% of the subjects categorized as overweight or 

obese had an insufficient vitamin D status. 
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1 Values are regression coefficients (95% CI) and p-values. Regression coefficients represent the mean difference of 25(OH)D (nmol/L) per one 

unit increase of the predictor variable. BMI, body mass index; eGFR, estimated glomerular filtration rate. 2 Model 1: unadjusted; 3 Model 2: 

adjusted for sex and age; 4 Model 3: adjusted for sex, age, BMI, smoking habits, and GFR. 

 

 

 
Table 5. Associations between serum 25(OH)D levels and demographic characteristics, anthropometric measurements, 
smoking habits, GFR, and vitamin D intake.1   

 
 Regression model 

Model 12 

 
Model 23 

 
Model 34 

Variable Estimate (95% CI) P-value Estimate (95% CI) P-value Estimate (95% CI) P-value 

Age (years) 0.22 (0.16, 0.28) <0.001     

Sex (male = 1) 1.24 (−0.13, 2.61) 0.075     

BMI (kg/m2) −0.73 (−0.88, −0.57) <0.001 −0.67 (−0.82, −0.52)    

Current smoker (n) −2.92 (−4.33, −1.52) <0.001 −1.75 (−3.19, −0.31) 0.018   

eGFR (mL/min/ 1,732) −0.17 (−0.21, −0.14) <0.001 −0.16 (−0.20, −0.11) <0.001   

Waist circumference (cm) −0.19 (−0.25, −0.13) <0.001 −0.23 (−0.29, −0.17) <0.001 −0.04 (−0.15, 0.07) 0.473 

Vitamin D intake (µg/d) 0.47 (0.38, 0.57) <0.001 0.49 (0.39, 0.58) <0.001 0.47 (0.38, 0.57) <0.001 
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1Values are Spearman`s rhos (bootstrapped 95% CIs) and p-values. BMI, body mass index (kg/m2); eGFR, estimated glomerular filtration ratio. 2Model 1: 

unadjusted; 3Model 2: adjusted for sex and age; 4Model 3: adjusted for sex, age, BMI, smoking habits, and GFR. 5 Season 1, January−March; 6 Season 2, 

April−June; 7 Season 3, July−September; 8 Season 4, October−December. 

Table 6. Correlation between serum 25(OH)D levels and demographic characteristics, anthropometric measurements, smoking habits, GFR, 
and vitamin D intake.1 

 
 Correlation coefficients for unadjusted and adjusted models 

Model 12 

 
Model 23 

 
Model 34 

Variable Spearman’s rho (95% CI) P-value Spearman’s rho (95% CI) P-value Spearman’s rho (95% CI) P-value 

Age (years) 0.10 (0.07, 0.14) <0.001     

Sex (1 = male) 0.03 (−0.00, 0.06) 0.041     

BMI (kg/m2) −0.14 (−0.17, −0.11) <0.001 −0.13 (−0.16, −0.10) <0.001   

Current smoker (n) −0.07 (−0.11, −0.04) <0.001 −0.05 (−0.08, −0.02) <0.001   

eGFR (mL/min/ 1,732) −0.15 (−0.18, −0.12) <0.001 −0.11 (−0.14, −0.08) <0.001   

Waist circumference (cm) −0.11 (−0.14, −0.08) <0.001 −0.13 (−0.16, −0.09) <0.001 −0.01 (−0.05, 0.02) 0.358 

Vitamin D intake (µg/d) 0.21 (0.17, 0.26) <0.001 0.21 (0.17, 0.26) <0.001 0.21 (0.17, 0.25) <0.001 

Season 0.18 (0.14, 0.22) <0.001 0.17 (0.13, 0.21) <0.001 0.17 (0.13, 0.21) <0.001 

Season 15 −0.22 (−0.26, −0.19) <0.001 −0.17 (−0.22, −0.15) <0.001 −0.16 (−0.22, −0.14) <0.001 

Season 26 −0.00 (−0.04, 0.04) 0.933 0.00 (−0.04, 0.03) 0.900 −0.01 (−0.04, 0.03) 0.291 

Season 37 0.25 (0.22, 0.29) <0.001 0.16 (0.15, 0.22) <0.001 0.15 (0.14, 0.22) <0.001 

Season 48 −0.01 (−0.05, 0.03) 0.680 −0.02 (−0.05, 0.02) 0.199 −0.02 (−0.05, 0.02) 0.262 
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Standard lipids 

The results showed that serum levels of 25(OH)D was positively associated with HDL-

cholesterol (HDL-C) and apolipoprotein (Apo) A-I, and inversely with triglycerides (TGs) 

in both the unadjusted and the adjusted linear regression models and Spearman`s 

correlation analyses (Tables 7 and 8, Figure 3). The fully adjusted linear regression 

model showed that each additional 0.1 mmol/L higher baseline HDL-C was associated 

with 0.6 nmol/L higher 25(OH)D. The geometric mean (1SD range) HDL-C level in 

subjects with sufficient 25(OH)D levels was 1.26 (0.75−2.13) mmol/L, while the 

geometric mean (1 SD range) HDL-C level in subjects with insufficient vitamin D status 

was 1.19 (0.90−1.58) mmol/L. 

 

 

Figure 3. Scatter plot and regression line from the unadjusted linear regression model. The left graph shows the 
relationship between HDL-C level and serum 25(OH)D level, while the right graph shows the association between TGs and 
serum 25(OH)D level. HDL-C, High density lipoprotein cholesterol; 25(OH)D, 25-hydroxyvitamin D, TG; triglycerides. 

 

Glucose metabolism 

Serum levels of 25(OH)D associated negatively with blood glucose, HbA1C, and being 

diagnosed with type 2 diabetes in both the unadjusted linear regression model and 

Spearman`s correlation analyses and the models adjusted for confounding variables 

(Tables 7 and 8). The number of participants diagnosed with type 2 diabetes in the 

study population was 455. The geometric mean (1SD range) serum 25(OH)D level in 
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these subjects were estimated to 51.9 (34.2−78.8) nmol/L, compared to 55.9 

(39.0−80.0) nmol/L in the participants without the diagnosis. 

 

Inflammation 

A negative relationship was observed between CRP and 25(OH)D levels in serum in both 

the unadjusted and adjusted regression models (Table 7). However, the fully adjusted 

quantile regression model showed that the negative association was stronger at lower 

levels of serum 25(OH)D, and the association was weaker at higher 25(OH)D levels. This 

relationship is presented in Figure 4. A similar trend was observed for the association 

between serum 25(OH)D and neopterin in the fully adjusted quantile regression model, 

where the negative association was stronger at lower levels of serum 25(OH)D, and the 

relationship disappeared at the upper quantiles of serum 25(OH)D (Supplemental 

Table 9). Thus, at lower levels of 25(OH)D, higher CRP and neopterin was associated 

with lower 25(OH)D, while at higher levels of 25(OH)D, this relationship tended to 

disappear. 

 

 

Figure 4 Plot showing the association between serum 25(OH)D and CRP using a splined function in the 
unadjusted regression model. 25(OH)D, 25-hydroxyvitamin D; CRP, C-reactive protein 
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1 Values are regression coefficients (95% CI) and p-values. Regression coefficients represent the mean difference of 25(OH)D (nmol/L) per one unit 

increase of the predictor variable. TG, serum triglycerides; HDL-C, serum high density lipoprotein cholesterol; LDL-C, serum low density lipoprotein 

cholesterol; ApoA-I, Apolipoprotein A-I; ApoB, Apolipoprotein B; HBA1c, glycosylated haemoglobin; CRP, C-reactive protein. 2 Model 1: unadjusted; 3 

Model 2: adjusted for sex and age; 4 Model 3: adjusted for sex, age, BMI, smoking habits, and GFR.  

Table 7. Associations between 25(OH)D and standard lipids, blood glucose, and inflammatory markers in serum.1   

 Regression model 

Model 12 Model 23 Model 34 

Variable Estimate (95% CI) P-value Estimate (95% CI) P-value Estimate (95% CI) P-value 

TG (mmol/L) −1.69 (−2.20, −1.20) <0.001 −1.48 (−1.99, −0.98) <0.001 −1.11 (−1.62, −0.60) <0.001 

Total cholesterol 
(mmol/L) 

−0.11 (−0.64, 0.41) 0.673 0.06 (−0.46, 0.59) 0.814 0.15 (−0.37, 0.67) 0.582 

LDL-C (mmol/L) −0.08 (−0.68, 0.52) 0.794 0.07 (−0.53, 0.67) 0.822 0.16 (−0.43, 0.75) 0.602 

HDL-C (mmol/L) 6.68 (5.07, 8.29) <0.001 7.09 (5.40, 8.78) <0.001 6.01 (4.28, 7.74) <0.001 

Non-HDL-C (mmol/L) −0.82 (−1.34, −0.29) 0.002 −0.61 (−1.14, −0.09) 0.023 −0.39 (−0.91, 0.13) 0.142 

ApoA-I (g/L) 10.7 (8.45, 13.0) <0.001 12.1 (9.69, 14.5) <0.001 10.8 (8.41, 13.2) <0.001 

ApoB (g/L) −1.43 (−3.91, 1.05) 0.259 −0.64 (−3.11, 1.84) 0.615 0.13 (−2.33, 2.59) 0.917 

Type 2 diabetes (n) −3.32 (−5.28, −1.36) <0.001 −4.10 (-6.05, -2.14) <0.001 −2.29 (−4.26, −0.31) 0.023 

HbA1C (%) −0.97 (−1.42, −0.53) 
 

<0.001 −1.02 (−1.46, −0.57) <0.001 −0.75 (−1.19, −0.31) 0.001 

Serum glucose (mmol/L) −0.59 (−0.85, −0.34) <0.001 −0.67 (−0.92, −0.41) <0.001 −0.44 (−0.70, −0.19) 0.001 

CRP (mg/L) −0.13 (−0.22, −0.05) 0.003 −0.14 (−0.22, −0.05) 0.001 −0.12 (−0.20, −0.04) 0.005 

Neopterin (nmol/L) 0.11 (0.03, 0.20) 0.006 0.07 (−0.02, 0.15) 0.109 −0.09 (−0.18, 0.01) 0.065 
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1Values are Spearman`s rhos (bootstrapped 95% CIs) and p-values. TG, serum triglycerides; HDL-C, serum high density lipoprotein cholesterol; LDL-C, serum low 

density lipoprotein cholesterol; ApoA-I, Apolipoprotein A-I; ApoB, Apolipoprotein B; HBA1c, glycosylated haemoglobin; CRP, C-reactive protein. 2 Model 1: 

unadjusted; 3 Model 2: adjusted for sex and age; 4 Model 3: adjusted for sex, age, BMI, smoking habits, and GFR.  

 
Table 8. Correlation between 25(OH)D and standard lipids, blood glucose and inflammatory markers in serum.1   

 
 Correlation coefficients for unadjusted and adjusted models 

Model 12 

 
Model 23 

 
Model 34 

Variable Spearman’s rho (95% CI) P-value Spearman’s rho (95% CI) P-value Spearman’s rho (95% CI) P-value 

TG (mmol/L) −0.09 (−0.12, −0.06) <0.001 −0.08 (−0.11, −0.05) <0.001 −0.05 (−0.08, −0.02) <0.001 

Total cholesterol (mmol/L) −0.00 (−0.03, 0.03) 0.990 0.01 (−0.02, 0.04) 0.523 0.01 (−0.02, 0.05) 0.466 

LDL-C (mmol/L) −0.00 (−0.03, 0.03) 0.889 0.01 (−0.02, 0.04) 0.735 0.01 (−0.02, 0.04) 0.712 

HDL-C (mmol/L) 0.14 (0.11, 0.17) <0.001 0.15 (0.12, 0.18) <0.001 0.13 (0.10, 0.16) <0.001 

Non-HDL-C (mmol/L) −0.04 (−0.08, −0.01) 0.006 −0.03 (−0.06, −0.00) 0.030 −0.02 (−0.05, 0.01) 0.110 

ApoA-I (g/L) 0.15 (0.12, 0.18) <0.001 0.17 (0.14, 0.20) <0.001 0.15 (0.12, 0.19) <0.001 

ApoB (g/L) −0.02 (−0.05, 0.01) 0.217 −0.01 (−0.04, 0.02) 0.477 −0.00 (−0.03, 0.03) 0.703 

Type 2 diabetes (n) −0.05 (−0.08, −0.02) 0.001 −0.02 (−0.05, −0.00) 0.123 −0.02 (−0.04, 0.01) 0.143 

HbA1C (%) −0.08 (−0.11, −0.05) <0.001 −0.08 (−0.11, −0.05) <0.001 −0.06 (−0.09, −0.03) <0.001 

Serum glucose (mmol/L) −0.08 (−0.11, −0.05) <0.001 −0.09 (−0.13, −0.06) <0.001 −0.07 (−0.10, −0.04) <0.001 

CRP (mg/L) −0.09 (−0.12, −0.06) <0.001 −0.09 (−0.12, −0.06) <0.001 −0.06 (−0.09, −0.03) <0.001 

Neopterin (nmol/L) 0.05 (0.02, 0.08) 0.003 0.00 (−0.03, 0.03) 1.000 −0.06 (−0.09. −0.03) <0.001 
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Amino acids 

Serum 25(OH)D levels associated positively with sarcosine and choline levels in both the 

unadjusted and adjusted regression models and Spearman`s correlation analyses. An 

inverse association was found between serum 25(OH)D level and total homocysteine 

and DMG in the fully adjusted regression model (Tables 9 and 11). The fully adjusted 

quantile regression analysis showed that the negative association between total 

homocysteine and vitamin D status was stronger at lower levels of serum 25(OH)D, and 

that the relationship disappeared at the upper quantiles of serum 25(OH)D 

(Supplemental Table 11). The association between serum 25(OH)D and total 

homocysteine is presented in Figure 5. 

 

 

Figure 5 Plot showing the association between serum 25(OH)D and tHcy using a splined function in the 
unadjusted regression model. 25(OH)D, 25-hydroxyvitamin D; tHcy, total homocysteine. 

 

Vitamin status and dietary variables 

Serum 25(OH)D levels was positively related to fish and egg consumption. Positive 

associations were also found for serum levels of vitamin A, vitamin E, riboflavin, 

pyridoxal phosphate (PLP), 4-pyridoxic acid (PA), folate, and cobalamin in both the 

unadjusted and the adjusted linear regression models and Spearman`s correlation 

analyses (Tables 10 and 12).  
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Figure 6 presents Spearman`s correlation coefficients and bootstrapped confidence 

intervals for the key observations of associations between serum 25(OH)D and the 

different variables, showing the direction and strength of the relationships on a 

standardized scale. Results from the quantile regression analyses investigating the 

associations between different quantiles of 25(OH)D and the independent variables are 

presented in the Supplemental Tables 1-4 for the unadjusted model, Supplemental 

Tables 5-8 for the model adjusted for age and sex, and Supplemental Table 9-12 for 

the model adjusted for age, sex, BMI, smoking habits, and GFR.  
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Table 9. Associations between serum 25(OH)D and amino acid levels.1  

 Regression model 

Model 12 

 
Model 23 

 
Model 34 

Variable Estimate (95% CI) P-value Estimate (95% CI) P-value Estimate (95% CI) P-value 

Serine (µmol/L)  −0.01 (−0.03, 0.02) 0.728 0.00 (−0.03, 0.03) 0.867 −0.01 (−0.04, 0.02) 0.492 

Glycine (µmol/L)  0.02 (0.01, 0.03) <0.001 0.02 (0.01, 0.03) <0.001 0.01 (−0.01, 0.02) 0.301 

DMG (µmol/L) −0.07 (−0.21, 0.07) 0.339 −0.11 (−0.25, 0.02) 0.109 −0.17 (−0.31, −0.03) 0.016 

Sarcosine (µmol/L)  2.62 (1.62, 3.61) <0.001 2.50 (1.51, 3.49) <0.001 1.79 (0.80, 2.78) <0.001 

Choline (µmol/L)  0.81 (0.58, 1.04) <0.001 0.62 (0.38, 0.86) <0.001 0.46 (0.20, 0.71) <0.001 

Betaine (µmol/L)  0.09 (0.04, 0.13) <0.001 0.06 (0.02, 0.11) 0.006 0.03 (−0.02, 0.08) 0.199 

Methionine (µmol/L)  0.09 (0.01, 0.17) 0.023 0.09 (0.02, 0.17) 0.020 0.07 (−0.01, 0.15) 0.088 

tHcy (µmol/L) 0.04 (−0.09, 0.16) 0.537 −0.07 (−0.19, 0.06) 0.302 −0.26 (−0.39, −0.12) <0.001 

tCys (µmol/L) 0.03 (0.02, 0.05) <0.001 0.01 (−0.01, 0.03) 0.255 0.00 (−0.02, 0.02) 0.967 

 

1 Values are regression coefficients (95% CIs) and p-values. Regression coefficients represent the mean difference of 25(OH)D (nmol/L) per one unit 

increase of the predictor variable. DMG, plasma dimetylglycine; tHcy, total homocysteine; tCys, total cysteine. 2 Model 1: unadjusted; 3 Model 2: adjusted 

for sex and age; 4 Model 3: adjusted for sex, age, BMI, smoking habits, and GFR. 
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Table 10. Associations between serum 25(OH)D levels, vitamin status, and dietary variables.1 

 Regression model 

Model 12 Model 23 Model 34 

Variable Estimate (95% CI) P-value Estimate (95% CI) P-value Estimate (95% CI) P-value 

Riboflavin (µg/dL)  0.05 (0.03, 0.07) <0.001 0.04 (0.02, 0.06) <0.001 0.04 (0.02, 0.06) <0.001 

PL (nmol/L) 0.01 (0.00, 0.01) 0.072 0.01 (0.00, 0.01) 0.062 0.01 (0.00, 0.01) 0.075 

PLP (nmol/L) 0.03 (0.02, 0.04) <0.001 0.03 (0.02, 0.04) <0.001 0.03 (0.01, 0.04) <0.001 

PA (nmol/L) 0.01 (0.00, 0.01) 0.005 0.01 (0.00, 0.01) 0.006 0.01 (0.00, 0.01) 0.030 

Folate (nmol/L) 0.11 (0.06, 0.12) <0.001 0.10 (0.05, 0.15) <0.001 0.09 (0.05, 0.14) <0.001 

Cobalamin (pq/mL) 0.00 (0.00, 0.00) 0.001 0.00 (0.00, 0.01) 0.001 0.00 (0.00, 0.01) 0.004 

MMA (nmol/L) −0.50 (−3.38, 2.39) 0.736 −1.73 (−4.61, 1.15) 0.238 −2.73 (−5.58, 0.12) 0.061 

Vitamin A (µmol/L) 4.51 (3.65, 5.37) <0.001 4.59 (3.74, 5.45) <0.001 4.25 (3.31, 5.18) <0.001 

Vitamin E (µmol/L) 0.26 (0.18, 0.34) <0.001 0.27 (0.19, 0.35) <0.001 0.27 (0.19, 0.34) <0.001 

Low fat milk consumption 
(g/day) 

0.00 (−0.00, 0.01) 0.598 0.00 (−0.00, 0.01) 0.356 0.00 (−0.00, 0.01) 0.384 

Fish consumption (g/day) 0.03 (0.02, 0.04) <0.001 0.03 (0.02, 0.04) <0.001 0.03 (0.02, 0.04) <0.001 

Egg consumption (g/day) 0.06 (−0.01, 0.13) 0.090 0.07 (−0.00, 0.14) 0.056 0.11 (0.04, 0.18) 0.003 

 

1 Values are regression coefficients (95% CIs) and p-values. Regression coefficients represent the mean difference of 25(OH)D (nmol/L) per one unit 

increase of the predictor variable. PL, Pyridoxine levels; PLP, Pyridoxal 5-phosphate; PA, 4-pyridoxic acid; MMA, methylmalonic acid. 2 Model 1: 

unadjusted; 3 Model 2: adjusted for sex and age; 4 Model 3: adjusted for sex, age, BMI, smoking habits, and GFR. 
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1 Values are spearman`s rhos (bootstrapped 95% CIs) and p-values. DMG, plasma dimetylglycine; tHcy, total homocysteine; tCys, total cysteine. 2 Model 1: 

unadjusted; 3 Model 2: adjusted for sex and age; 4 Model 3: adjusted for sex, age, BMI, smoking habits, and GFR.  

  

Table 11. Correlations between serum 25(OH)D and amino acid levels.1 

 
 Correlation coefficients for unadjusted and adjusted models 

Model 12 

 
Model 23 

 
Model 34 

Variable Spearman’s rho (95% CI) P-value Spearman’s rho (95% CI) P-value Spearman’s rho (95% CI) P-value 

Serine (µmol/L)  0.00 (−0.03, 0.03) 0.888 0.01 (−0.02, 0.04) 0.607 −0.00 (−0.03, 0.03) 0.022 

Glycine (µmol/L)  0.07 (0.04, 0.10) <0.001 0.08 (0.05, 0.11) <0.001 0.02 (−0.01, 0.05) 0.314 

DMG (µmol/L) 0.01 (−0.03, 0.04) 0.662 −0.02 (−0.05, 0.01) 0.202 −0.04 (−0.07, −0.01) 0.005 

Sarcosine (µmol/L)  0.10 (0.07, 0.13) <0.001 0.10 (0.07, 0.13) <0.001 0.07 (0.04, 0.11) <0.001 

Choline (µmol/L)  0.09 (0.06, 0.12) <0.001 0.07 (0.03, 0.10) <0.001 0.05 (0.02, 0.08) 0.003 

Betaine (µmol/L)  0.09 (0.06, 0.12) <0.001 0.07 (0.04, 0.10) <0.001 0.04 (0.01, 0.07) 0.012 

Methionine (µmol/L)  0.04 (0.01, 0.07) 0.020 0.04 (0.01, 0.07) 0.026 0.02 (−0.01, 0.06) 0.193 

tHcy (µmol/L) 0.01 (−0.02, 0.04) 0.468 −0.03 (−0.06, 0.00) 0.058 −0.08 (−0.11, −0.05) <0.001 

tCys (µmol/L) 0.06 (0.02, 0.09) <0.001 0.01 (−0.02, 0.05) 0.395 −0.00 (−0.03, 0.03) 0.737 
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1Values are spearman`s rhos (bootstrapped 95% CIs) and p-values. Regression coefficients represent the mean difference of 25(OH)D (nmol/L) per one unit 

increase of the predictor variable. PL, Pyridoxine levels; PLP, Pyridoxal 5-phosphate; PA, 4-pyridoxic acid; MMA, methylmalonic acid. 2Model 1: unadjusted; 
3Model 2: adjusted for sex and age; 4Model 3: adjusted for sex, age, BMI, smoking habits, and GFR.  

Table 12. Correlations between serum 25(OH) D levels, vitamin status, and dietary variables.1 

 Correlation coefficients for unadjusted and adjusted models 

Model 12 Model 23 Model 34 

Variable Spearman’s rho (95% CI) P-value Spearman’s rho (95% CI) P-value Spearman’s rho (95% CI) P-value 

Riboflavin (µg/dL)  0.06 (0.04, 0.09) <0.001 0.05 (0.02, 0.08) 0.003 0.04 (0.01, 0.07) 0.022 

PL (nmol/L) 0.17 (0.14, 0.20) <0.001 0.16 (0.10, 0.18) <0.001 0.11 (0.06, 0.14) <0.001 

PLP (nmol/L) 0.15 (0.12, 0.18) <0.001 0.16 (0.13, 0.19) <0.001 0.14 (0.11, 0.17) <0.001 

PA (nmol/L) 0.17 (0.14, 0.20) <0.001 0.15 (0.10, 0.17) <0.001 0.07 (0.04, 0.11) <0.001 

Folate (nmol/L) 0.11 (0.08, 0.14) <0.001 0.11 (0.08, 0.14) <0.001 0.11 (0.08, 0.14) <0.001 

Cobalamin (pq/mL) 0.07 (0.04, 0.10) <0.001 0.08 (0.05, 0.12) <0.001 0.06 (0.03, 0.10) <0.001 

MMA (nmol/L) 0.05 (0.02, 0.08) 0.003 0.01 (−0.02, 0.04) 0.669 −0.03 (−0.06, −0.00) 0.018 

Vitamin A (µmol/L) 0.16 (0.13, 0.19) <0.001 0.16 (0.13, 0.19) <0.001 0.14 (0.11, 0.17) <0.001 

Vitamin E (µmol/L) 0.13 (0.10, 0.16) <0.001 0.14 (0.10, 0.17) <0.001 0.14 (0.10, 0.17) <0.001 

Low fat milk 
consumption (g/day) 

0.01 (−0.03, 0.05) 0.637 0.01 (−0.03, 0.05) 0.605 0.02 (−0.03, 0.06) 0.681 

Fish consumption (g/day) 0.12 (0.08, 0.16) <0.001 0.12 (0.08, 0.16) <0.001 0.13 (0.09, 0.17) <0.001 

Egg consumption (g/day) 0.04 (0.00, 0.09) 0.043 0.05 (0.00, 0.09) 0.054 0.07 (0.02, 0.11) 0.007 
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Figure 6. Forest plot presenting Spearman`s rho and bootstrapped 95% CI for key findings of associations between serum 25(OH)D and variables of interest. Model 1: unadjusted; 
Model 2: adjusted for sex and age; Model 3: adjusted for sex, age, BMI, smoking habits, and GFR. BMI, body mass index (kg/m2); eGFR, estimated glomerular filtration ratio; Season 1, 
January-March; Season 3, July-September; TG, serum triglycerides; HDL-C, serum high density lipoprotein cholesterol; ApoA-I, Apolipoprotein A-I; HBA1c, glycosylated haemoglobin; 
CRP, C-reactive protein; PL, Pyridoxine levels; PLP, Pyridoxal 5-phosphate; PA, 4-pyridoxic acid; tHcy, total homocysteine; tCys, total cysteine.
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5 Discussion 

5.1 Main results 

In this study, we explored a wide variety of variables to assess which were associated 

with serum 25(OH)D levels among 4118 patients with stable angina pectoris included in 

a large cohort. The results showed a seasonal variation of serum 25(OH)D 

concentration, with the highest concentrations measured in the blood samples taken in 

August and the lowest concentrations in the subjects included in March. Further, we 

found that serum levels of 25(OH)D were positively associated with dietary vitamin D, 

fish intake, and egg consumption, and with serum levels of HDL-C, riboflavin, PLP, PA, 

folate, cobalamin, vitamin A, vitamin E, choline, and sarcosine. Factors that showed an 

inverse relationship with serum 25(OH)D concentrations were BMI, and serum levels of 

TGs, blood glucose, HbA1C, and total homocysteine, DMG, and CRP at lower 25(OH)D 

serum levels.  

 

5.2 Discussion of methods 

5.2.1 Study design 

This was a cross-sectional study, a type of observational study design where the 

variables of interest are measured at the same time point (93). Cross-sectional studies 

can be used to investigate associations between risk factors and outcomes or 

relationships between different variables, as was the case in the present thesis (94). This 

study design gives the opportunity to investigate many variables at the same time that 

can be more rigorously assessed in future studies (94)(95).  

 

Cross-sectional studies are, however, limited by the fact that the outcome and the 

exposure are measured at the same time, and it is not possible to determine whether the 

exposure preceded the outcome, decide the direction of an association, and derive 

causal relationships (93)(94)(95). This principle of temporality is important to take into 

consideration when interpreting the results from cross-sectional studies.  
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Sample size 

A strength in the present thesis is the relatively large study sample, with 4118 subjects 

included. The size of the study sample is important for the confidence in the estimates, 

because a larger sample size will be less affected by variability in a heterogeneous 

population. We have more available information, and so the uncertainty reduces (96–

98). On the other hand, very large sample sizes tend to show even small differences or 

associations as statistically significant results, and it is important to be aware of this 

when evaluating the results and distinguish between what is statistically and what is 

clinically significant associations (97).  

 

Study population 

A study sample is a finite part of participants included from the target population, while 

the target population is the entire set of subjects the researchers want to obtain 

information on (99). The results from analyses of the study population may be 

generalized to the target population to a certain degree, referred to as external validity. 

The source population in this study was patients in Western-Norway referred to 

coronary angiography for suspected coronary artery disease, and the target population 

was all patients with stable angina pectoris. The cohort in this thesis was characterized 

by a large proportion of older men, and was found to be quite similar to other 

populations who had verified coronary artery disease in other European hospitals (68). 

Hence, the results should be generalizable to other populations with stable angina 

pectoris. However, the results may not be generalized to the general population because 

the subjects with stable angina pectoris included may have several characteristics 

associated with CVD differentiating them from the general population. Further 

longitudinal studies of the general population are needed to draw conclusion regarding 

variables associated with vitamin D status in the general population.  

 

Data collection 

The data collection methods are prone to random and systematic errors, that could 

affect the precision and validity of the study (100). The sampling method is a potential 

source of both systematic and random errors, due to the fact that the sample is a 
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selection from the target population and large parts of the target population are for 

different reasons not included in the study (100,101). Selection bias occurs when a 

population is selected by some factors that create association between two variables 

when they are not associated in the target population (102). Collider stratification bias, a 

type of selection bias, occurs when we condition on a common effect of otherwise 

unrelated variables, and could lead to a spurious association between the variables 

(103). In the case of this thesis, if vitamin D status affects the risk of SAP, and thereby 

the chance of inclusion in the cohort, it could lead to spurious association between 

vitamin D status and other variables affecting the risk of SAP and chance of inclusion, 

due to selection bias. This kind of selection bias may introduce associations in the 

included cohort that do not exist in the general population.  

 

Random errors due to the study sample can be minimized by increasing the sample size 

(101). In WECAC, all available patients who underwent coronary angiography and 

fulfilled the inclusion criteria were recruited to the study, which lead to inclusion of a 

large study sample over a broad time period, and thereby reduced risk of random errors 

due to the sampling method. Non-response bias, that occur when subject who refuse to 

participate in the study are significantly different from the included subjects, may also 

bias the results (101). The observations in this study are probably not much affected by 

non-response bias, because of the design of the study with just one case of data 

collection, conducted in conjunction with elective coronary angiography, and the fact 

that participation did not require much effort from the participants. 

 

The measurements of key variables are also potential sources of random errors and may 

affect the precision of the study. The data on serum 25(OH)D concentrations included in 

our study were measured by LC-MS/MS at Bevital AS, a laboratory certified by the 

Vitamin D External Quality Assessment Scheme, with a between-day coefficient of 

variation (CV) of 7−8% (104), indicating a small degree of random errors in the included 

measurements of 25(OH)D concentrations.  
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A potential source of systematic error in this study is the fact that blood sampling was 

conducted differently at Haukeland University Hospital and Stavanger University 

Hospital. At Haukeland University Hospital, blood sampling was done non-fasting prior 

to coronary angiography, while at Stavanger University Hospital, blood samples were 

taken after angiography and at least 8 hours of fasting. The non-standardized blood 

sampling could be a potential source of systematic error and reduce the validity in our 

study. This could have been handled by adjusting for site of study visit or non-fasting 

state of blood sampling, which could have reduced the risk of systematic error in the 

results.  

 

Parts of the data collection were done by self-administrated questionnaires to obtain 

information on diet, dietary supplements, smoking habits, medical conditions, and use of 

drugs. Questionnaires based on self-report may be subject to self-reporting bias, and are 

a potential source of systematic and random error in the data collection (105). Self-

reported data are prone to social desirability bias, where the reported data may be 

affected by underestimation or overestimation due to social desirability or approval. 

Another usual challenge with self-reported data is the ability to recall information. This 

type of bias is referred to as recall bias, and could potentially cause an underestimation 

or overestimation of the true associations (105). When conducting the data collection 

for WECAC, several measures were used to minimize the potential biases. Firstly, 

reported medical history was controlled against hospital records by trained personnel, 

and reported smoking status was complemented with measurement of cotinine 

concentration to provide an objective measurement. In addition, measurement of weight 

and anthropometry were conducted by trained personnel to minimize bias.  

 

Dietary data collection is prone to both social desirability bias and recall bias, and could 

be affected by overreporting of socially desirable behaviors and difficulties with 

recalling dietary habits. A semiquantitative food frequency questionnaire was designed 

in a way to obtain best possible information on usual food intake during the past year 

and minimize bias. However, the dietary data may still be a source of uncertainty in the 

data collection.  
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5.2.2 Statistical analysis 

In this cross-sectional study, we chose to conduct linear regression and Spearman`s 

correlation analyses to investigate associations and estimate effect sizes. Linear 

regression is used to measure the relationship between a dependent variable (outcome) 

and one or more independent variables (predictors). The Spearman`s correlation 

coefficient describes the strength and direction of the monotonic relationship between 

two variables, and linear regression also allows us to estimate how much the dependent 

variable either increases or decreases as the independent variables are changed 

(73,106).  

 

Importantly, linear regression is limited to linear and curvilinear relationships, and 

nonlinear associations may be missed (107). Linear regression is also limited by the fact 

that it investigates the relationship between the mean of the dependent variable and the 

independent variables, and in some cases, it is more valuable to look at the different 

levels of the dependent variable. We therefore also included quantile regression analysis 

to investigate the associations between serum 25(OH)D and the variables of interest at 

different serum levels of 25(OH)D.  

 

Quantile regression allows us to estimate the effect of an independent variable on a 

specified quantile of the dependent variable (81,108). Unlike linear regression, quantile 

regression makes no assumption about the distribution of the residuals, and can be used 

when the conditions of linear regression are not met (108,109). If the data are 

multimodal or highly skewed, quantile regression will be able to capture this 

relationship. Quantile regression is also more robust against outliers compared to the 

ordinary linear regression (108). Categorization of continuous variables and using them 

in analysis is also associated with some limitations. Such categorization lead to an 

assumption that the effect or association is homogeneous within each category (110). 

This assumption may reduce the power of the statistical test and the ability to detect 

associations. Categorization also makes it more difficult to compare results across 

different studies, because the categories used in the analyses depend on the study 

population and may differ between the compared studies (110). However, as an addition 
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to linear regression models, quantile regression may contribute to a more complete 

view of the associations of interest, especially in cases of nonlinear associations. The 

quantile regression analyses allowed us to assess the associations between serum 

25(OH)D and the independent variables at quartiles of serum 25(OH)D levels and 

explore potential nonlinear relationships.  

 

Another challenge in observational studies is the effect of confounding variables. A 

confounding variable is causally associated with both the dependent variable and the 

independent variable, and is not on the causal pathway between the exposure and 

outcome (111). Confounding variables lead to results that don`t reflect the actual 

relationship between the variables we want to study (112). To account for factors 

known to be associated with vitamin D status and several of the variables we wanted to 

investigate, we conducted multiple linear regression analyses in addition to the simple 

linear regression analyses. This way we adjust for the effect of known confounding 

variables to isolate the relationship of interest.  

 

P-value can be defined as “the probability that the chosen test statistic would have been 

at least as large as its observed value if every model assumption were correct, including 

the test hypothesis” (113). If the p-value is lower than the alpha level chosen, often 0.05, 

the association is stated to be statistically significant (113,114). However, statistical 

significance, or a small p-value, is not equivalent to scientific or clinical significance, and 

larger p-values do not imply a lack of importance (115). As mentioned, with a large 

sample, like in the current study, an inferential test may show statistically significant 

results even at very weak associations, while the effect sizes are not affected by the 

sample size (116,117). Although the significance level does not say anything about the 

size, direction, or clinical relevance of an association, the p-value is influenced by the 

variability in responses and may say something about the consistency in our findings 

(113). Notably, the interpretation of effect sizes estimated by linear regression and 

correlation analyses should be done with caution, and the clinical significance of an 

effect size also depends on theoretical background and comparison with previous work 

on the topic (116,118).  
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5.3 Discussion of results 

5.3.1 Sunlight exposure and season 

The results from this study showed a great variation of serum 25(OH)D in different 

months and quarters of the year. In line with several previous studies (6,117,118), we 

observed that serum 25(OH)D levels were higher during the quarter from July through 

September compared to the winter season. The seasonal variation observed in this and 

several previous studies is mainly explained by the fact that the sunlight exposure is 

insufficient for adequate vitamin D synthesis in the skin to maintain the vitamin D status 

throughout the winter months at the latitude of the Nordic countries (121). The UV 

radiation intensity is highest during the summer months and decreases during the 

winter. Besides, there is a greater degree of outdoor activities during the summer 

compared to the winter season, causing a considerable difference in serum 25(OH)D 

levels between summer and winter months (6,119).  

 

Sunlight exposure is reckoned as the major source of vitamin D for most people 

worldwide (1,120,121). A sufficient amount of sunlight exposure to stimulate the 

production of vitamin D3 in the skin can be enough to produce adequate levels of serum 

25(OH)D (1,19). It is estimated that during June and July in the Nordic countries 

exposure of sunlight to 25% of the body surface for about 6-8 minutes 2 to 3 times a 

week provides vitamin D equivalent to the recommended daily intake of 10 µg (19). The 

amount of vitamin D3 produced in the skin from sunlight exposure is also affected by 

exposed skin surface, use of sunscreen, and skin pigmentation, where skin type 4 (black 

skin) requires a higher degree of sunlight exposure compared to skin type 1 (white skin) 

to attain the same amount of vitamin D3 production (19,65). It has also been found that 

the production of vitamin D3 in the skin as a response to sunlight exposure is decreasing 

with age (65).  

 

Based on the observed seasonal variation of 25(OH)D concentrations, it has been 

discussed if single 25(OH)D measurements should be adjusted for seasonal variation to 

better assess vitamin D status (122–124). Seasonal variation in 25(OH)D concentrations 

implies that a person could have adequate 25(OH)D levels during the summer and 
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autumn months, but due to the reduced sunlight exposure, insufficient 25(OH)D levels in 

the winter and spring (123). It has been suggested that serum 25(OH)D concentration 

regarded as sufficient should vary according to season of blood sampling. In a study of 

healthy, postmenopausal women, and middle-aged and elderly men, the predicted sine 

curves indicated that serum 25(OH)D concentrations of 70-90 nmol/L in men and 60-70 

nmol/L in women during summer and fall were required to ensure 25(OH)D 

concentrations above 50 nmol/L throughout the year (123). Similarly, a study of the 

subjects in WECAC, using a cosinor model, estimated that a concentration of 65.8 

nmol/L would be required in August to remain vitamin D sufficient in February (122). 

These findings indicate that taking seasonal variation into account may increase the 

accuracy of the assessment of vitamin D status and improve the identification of patients 

at risk of developing insufficient vitamin D levels throughout the year.  

 

The results from this and previous studies indicate that sunlight exposure and seasonal 

variation are important determining factors of vitamin D status. However, vitamin D 

status is not explained in its entirety as a result of seasonal variation, and other 

variables also influence serum levels of 25(OH)D.  

 

5.3.2 Diet 

The positive association between serum 25(OH)D and daily vitamin D intake observed 

in this thesis, is in line with the results from several previous studies showing that 

estimated vitamin D intake is positively associated with serum 25(OH)D, and is one of 

the major determinants of vitamin D status (125–127).  

 

Some of the previous studies investigating determinants of vitamin D status found that 

estimated vitamin D intake did not affect the risk of insufficient or deficient vitamin D 

status (6,62). In these studies, it was observed that a higher estimated vitamin D intake 

did not decrease the risk of insufficient or deficient serum 25(OH)D concentrations, and 

the major determinants of vitamin D status was, however, season, latitude, age, obesity, 

and physical activity. In a study of a population of Danish adults, it was found that there 
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was no difference in association between vitamin D intake and insufficient or deficient 

serum 25(OH)D levels in the group at the lower quartile of vitamin D intake compared to 

the group in the upper quartile of vitamin D intake. However, use of supplements was 

not included in the analysis, which may affected the results (6). In addition, a large study 

of a middle-aged Caucasian population also observed no difference in association 

between serum 25(OH)D levels and vitamin D intake when comparing quartiles of 

vitamin D intake (62). 

 

Other studies have, however, found that dietary intake of vitamin D is positively 

associated with serum 25(OH)D level. Several studies conducted in Norway have shown 

that intake of fatty fish and cod liver oil are positively associated with serum 25(OH)D 

levels and inversely associated with prevalence of vitamin D deficiency (63,126). A 

cross-sectional study of a Norwegian adult population found that mean serum 25(OH)D 

level in the participants with daily intake of cod liver oil was 65.5 nmol/L, compared to 

57.9 nmol/L in the participants with no cod liver oil intake (63). In a study of Icelandic 

children, it was also found that current vitamin D intake was positively associated with 

vitamin D status (128). Among the children taking the recommended daily dose of 

vitamin D supplement, 83% had a sufficient level of serum 25(OH)D, while only 51% of 

the children not taking any vitamin D supplement had a sufficient serum 25(OH)D level 

(128). 

 

Optimal 25(OH)D levels 

As sunlight exposure and factors that affect sunlight exposure are important 

determining factors of vitamin D status, it complicates the estimation of daily needed 

vitamin D intake through diet to achieve specific serum 25(OH)D concentrations, and 

there is still lack of consensus as to the daily recommended dose to attain the desired 

level of serum 25(OH)D (16,129). The dietary recommendations for daily vitamin D 

intake are, therefore, estimated based on conditions of minimal sunlight exposure (17). 

In addition, due to the nonlinear dose-response of vitamin D intake on serum 25(OH)D 

levels, it makes it more complicated to estimate the needed daily vitamin D intake 

(16,130). Studies of the dose-response relation between vitamin D intake and serum 
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25(OH)D have shown that the association is dependent on the basal concentration, 

where the response is greater when the basal concentration is low (16,129,131). It has 

been estimated that at low starting serum 25(OH)D levels, the average increase in serum 

25(OH)D is 1.2 nmol/L for every µg of vitamin D3 given as a daily oral dose, while at 

higher starting 25(OH)D levels, the increase is only 0.7 nmol/L or less per µg vitamin D3 

(131).  

 

Other studies looking at the dose-response relationship have found a nonlinear 

relationship between vitamin D intake and serum 25(OH)D levels, with a great increase 

in serum 25(OH)D with dosages up to 25 µg/d, and a flattened response as daily intake 

exceeds 25 µg/d (17). This indicates that increasing a daily vitamin D intake from a very 

low intake to a recommended or slightly higher intake has a greater effect on serum 

25(OH)D levels than increasing a daily vitamin D intake that is already above the 

recommended dose. In addition, several studies observed a higher response of serum 

25(OH)D to total vitamin D intake at lower compared to higher latitudes (>49,5 °N) 

(17,132). Taken together, these findings regarding the dose-response relationship 

between dietary intakes of vitamin D and serum 25(OH)D concentrations have made it 

difficult to estimate a daily vitamin D intake needed to achieve an optimal serum 

25(OH)D level. The suggested daily vitamin D intake needed to achieve optimal serum 

25(OH)D concentrations varies. While some suggest that at least 15 µg/d is needed to 

attain a mean serum 25(OH)D level of 50 nmol/L and at least 20−25 µg/d is needed to 

reach a serum level of 75 nmol/L (131), others suggest that the daily intake should be 

25−50 µg or even higher to maintain serum 25(OH)D levels that are optimal for health 

(133,134).   

 

In summary, the results from this and previous studies indicate that dietary intake of 

vitamin D is one of the significant determinants of serum 25(OH)D level, and that a 

habitual diet containing vitamin D-rich food items contributes to attain a sufficient level 

of serum 25(OH)D. 
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5.3.3 Anthropometric measurements 

We found that serum 25(OH)D levels were negatively related to BMI and waist 

circumference. These findings are in line with several previous studies showing that 

overweight was associated with lower 25(OH)D concentrations (135–137). A meta-

analysis of observational studies found that the prevalence of vitamin D deficiency was 

35% higher in obese subjects compared to the normal weight group (135). In addition, a 

meta-analysis of 21 cohorts observed an inverse association between serum 25(OH)D 

and BMI, where each unit increase in BMI was associated with 1.15% lower serum 

25(OH)D concentrations (136). Similar results was found in an observational study of 

250 adults, where BMI was inversely associated with serum 25(OH)D, and each unit 

increase in BMI was associated with a decrease of 0.74 nmol/L serum 25(OH)D (137). 

These associations between serum 25(OH)D and anthropometric measurements have 

also been observed in several observational studies from the Nordic countries, showing 

that overweight and obesity is associated with increased risk of insufficient serum 

25(OH)D levels (6,7,138). 

 

Several hypotheses explaining the observed association between overweight and 

vitamin D status have been suggested. One potential explanation is that overweight and 

obesity are associated with other factors, such as inactivity and limited outdoor activity, 

causing insufficient sunlight exposure and thereby a low production of vitamin D3 in the 

skin (139,140). However, previous studies have shown that serum 25(OH)D levels are 

lower in obese individuals compared to normal weight individuals despite similar 

sunlight exposure, and that the increase of 25(OH)D levels in obese subjects are 

significantly lower than in normal weight subjects when exposed to identical amount of 

UV-B radiation (141). A suggested explanation to the differences in vitamin D status 

between obese and normal weight individuals is that vitamin D3 is sequestered in 

subcutaneous fat, and because obese subjects have more fat available for this process, 

the serum levels of 25(OH)D are therefore lower (139–141).  

 

Another hypothesized explanation is that volumetric dilution makes up the observed 

differences of vitamin D status in obese compared to normal weight individuals 
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(139,140,142). According to this hypothesis, the low serum 25(OH)D levels in obese 

individuals are explained by the larger body size, meaning that putting the same amount 

into a larger pool, will result in a lower concentration (139,140,142). It has therefore 

been suggested that vitamin D dosage to treat deficiency should be adjusted according to 

body weight to supply a sufficient amount (142).  

 

Taken together, the results from the present thesis, are in line with several previous 

findings, indicating that increasing body weight is inversely associated with serum 

25(OH)D levels, and may potentially be one of the determining factors of vitamin D 

status.   

 

5.3.4 Lifestyle 

Closely related to sunlight exposure, diet, and bodyweight, it has been suggested that the 

lifestyle of an individual is one of the determining factors of vitamin D status. Previous 

studies have found vitamin D status to be associated with lifestyle factors such as degree 

of outdoor activity, exercise, and clothing style (6,7,62,65). A lifestyle characterized by 

limited physical activity, minimal time outdoors, and a clothing style that includes 

covering most of the skin, has been shown to be associated with significantly lower 

serum 25(OH)D levels (6,7,62,65). Data from The Tromsø Study looking at vitamin D 

status in Norwegian adolescents, showed that some of the lifestyle factors related to 

serum 25(OH)D levels were use of snuff, physical activity, sunbathing holiday, and use of 

solarium (143). The effects of lifestyle on vitamin D status is largely explained by the 

associations between lifestyle and sunlight exposure, healthy diet, and bodyweight, 

which are important determinants of vitamin D status.  

 

5.3.5 Standard lipids 

In this study, HDL-C was found to be positively associated with serum 25(OH)D level, 

while an inverse relationship was observed between 25(OH)D and TGs. Several previous 

studies also found that 25(OH)D associated positively with HDL-C (144,145) and 

inversely with TGs (144–146). In a study of patients referred for the diagnosis and 
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treatment of hyperlipidemia and CVD, serum 25(OH)D was positively associated with 

HDL-C, with a Spearman`s rho of 0.19, and inversely associated with TGs, with a 

Spearman`s rho of −0.25 (144). This shows similar, but stronger associations between 

serum 25(OH)D and the lipids, as in the current thesis. In a cross-sectional study from 

the University of Tromsø including 10105 subjects, it was found an increase in total 

cholesterol, HDL-C, and LDL-C, and a decrease in LDL-C/HDL-C ratio and TGs across 

increasing serum 25(OH)D concentrations (145). The strongest associations were 

observed for HDL-C and TGs with a difference of 6.0 and 18.5% between the lowest and 

highest quartile of serum 25(OH)D. The results in the current thesis are similar to these 

previous findings, where HDL-C was positively and TGs inversely associated with serum 

25(OH)D.  

 

Based on the observed associations between vitamin D status and several of the 

standard lipids, it has been suggested a relationship between serum 25(OH)D levels and 

cardiovascular health, which has also been observed in several previous studies (33–

35). In several trials, it was observed that changes in serum lipids were small and the 

effect of vitamin D supplementation on lipid concentrations did not differ from the 

placebo group (147,148). A meta-analysis found that vitamin D supplementation was 

related to an increase in LDL-C and a small increase in total cholesterol, while HDL-C and 

TGs were slightly reduced (149). Another systematic review and meta-analysis showed 

that vitamin D supplementation reduced serum levels of total cholesterol, LDL-C, and 

TGs (150). Thus, the long-term effects of vitamin D supplementation on the lipid profile 

and risk of CVD are still uncertain. 

 

Taken together, the results from this thesis, and previous studies, indicate a relationship 

between vitamin D status and the standard lipid profile. However, these associations are 

still non fully elucidated, and further work is needed to investigate the connection 

between vitamin D status, possible causal pathways, effects of vitamin D 

supplementation, and the clinical relevance regarding CVD risk.  
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5.3.6 Glycemic control 

We observed a negative relationship between vitamin D status and serum glucose, 

HbA1c, and type 2 diabetes diagnosis. The observed association between serum 

25(OH)D level and glycemic control have also been found in several previous studies 

(151–154). A cross-sectional study of postmenopausal women showed that fasting 

serum glucose was inversely associated with serum 25(OH)D, with a Pearson`s 

correlation coefficient of −0.15 (151). In addition, a study of young men and women 

found an inverse association between fasting plasma glucose and serum 25(OH)D (152). 

In a cohort of 7198 Caucasian subjects, it was found an inverse relationship between 

serum 25(OH)D and HbA1c (153). Similar results were found in a large cohort of adults 

over the age of 20 years, showing that lower levels of serum 25(OH)D were associated 

with higher HbA1c (154). Previous studies have also investigated the effects of vitamin 

D supplementation on glycemic control (155,156). A meta-analysis of 47 randomized 

controlled trials (RCTs) including nondiabetic adults found a weak positive effect, where 

vitamin D supplementation reduced fasting glucose by 0.11 mmol/L (155). Another 

meta-analysis of RCTs showed a summary mean difference in fasting glucose between 

the intervention and placebo group of −0.12 mmol/L (156). These findings indicate a 

potential beneficial effect of vitamin D supplementation of serum glucose. However, the 

effects of vitamin D supplementation on glycemic control and risk of diabetes is still not 

fully elucidated.  

 

Based on observed associations between vitamin D status and glucose homeostasis, it 

has been suggested that vitamin D status could be associated with diabetes risk (1,157). 

A meta-analysis of 13 cross-sectional studies found that patients with type 1 diabetes 

had lower serum 25(OH)D levels than the control group, and that there was an 

association between vitamin D deficiency and type 1 diabetes (157). Similar findings 

have been observed when looking at type 2 diabetes, showing that 25(OH)D was 

inversely related to risk of type 2 diabetes (158,159). A meta-analysis of 21 prospective 

studies found an inverse association between serum 25(OH)D and risk of type 2 

diabetes, where the relative risk of type 2 diabetes when comparing the highest to 

lowest category of 25(OH)D levels was 0.62 (158). In addition, a meta-analysis of 8 

observational studies observed a 43% lower risk of developing type 2 diabetes among 
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the individuals with the highest vitamin D status (above 62.5 nmol/L) compared to the 

subjects in the group with the lowest vitamin D status (under 35 nmol/L)(159). The 

results from the current thesis are in line with these findings, indicating an association 

between serum 25(OH)D and type 2 diabetes.  

 

The observed associations between serum 25(OH)D levels and circulating markers of 

glycemic control in this thesis, and the relationship between vitamin D and beta-cell 

function and insulin sensitivity observed in previous studies (152,160,161), indicate 

that this relationship may be of clinical significance, and should be further investigated 

in future studies.  

 

5.3.7 Inflammation 

A weak inverse association was observed between serum 25(OH)D level and the 

inflammatory markers CRP and neopterin at lower serum levels of 25(OH)D, and these 

associations seemed to be reduced at higher 25(OH)D levels. Similar results have been 

found in a large cross-sectional study of an adult population, where it was observed an 

inverse relation between serum 25(OH)D and CRP at 25(OH)D levels below the median 

(52.5 nmol/L), while a positive association was observed at serum 25(OH)D levels 

above the median, equivalent to a geometric mean CRP change of 0.06 mg/L for each 1 

nmol/L change in serum 25(OH)D (162). Similarly, a cross-sectional study of a general 

adult population observed a U-shaped relationship between vitamin D status and high 

sensitivity-CRP (hs-CRP) (163). It was found that hs-CRP concentrations decreased up to 

a 25(OH)D concentration of about 52.5 nmol/L and increased when the 25(OH)D 

concentrations exceeded 62.5 nmol/L (163). In addition, an inverse relationship 

between serum 25(OH)D and CRP was observed in a cross-sectional study of an elderly 

population, where the lowest quartile of 25(OH)D was associated with higher CRP 

compared to the upper quartile (OR = 1.23) (164). When looking at the effects of vitamin 

D supplementation, pooled data from four RCTs investigating the effects of vitamin D 

supplementation in subjects without vitamin D deficiency found a slight increase in hs-

CRP in the subjects given vitamin D supplement (delta value = 0.02 mg/L) whereas in 

the placebo group there was a slight decrease (165). However, a meta-analysis of RCTs 
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evaluating the impact of vitamin D supplementation on CRP found a weighted mean 

difference in CRP of −0.26 mg/L following administration of vitamin D (166). The 

association between serum 25(OH)D and CRP observed in this thesis and previous 

studies, indicate a potential nonlinear relationship. However, this relation, and the 

effects of vitamin D supplementation on inflammatory markers, are still not fully 

elucidated.  

 

Based on observed associations between vitamin D status and inflammatory markers, it 

has been suggested that vitamin D status may be related to risk of infectious and 

autoimmune diseases like tuberculosis, rheumatoid arthritis, and type 1 diabetes 

(1,167,168). A high prevalence of insufficient serum 25(OH)D levels has been found in 

subjects with these infectious and autoimmune diseases (14). Future studies should 

further investigate the mechanisms of the association between serum 25(OH)D and 

immune function, and the effect of vitamin D on risk of infectious and autoimmune 

diseases.  

 

5.3.8 Vitamins 

Serum 25(OH)D concentration was found to be positively associated with riboflavin, 

pyridoxal phosphate, 4-pyridoxic acid, folate, cobalamin, vitamin A, and vitamin E in the 

present study. These associations may be explained by interacting effects of the 

vitamins, that other vitamins may have functions affecting the metabolism or actions of 

vitamin D (169,170), or the fact that the fat-soluble vitamins have similar absorption, 

transport, and storage mechanisms (9).  

 

B vitamins 

The positive association between serum levels of 25(OH)D and pyridoxal phosphate, the 

active form of vitamin B6, was the strongest observed relationship among the B 

vitamins. There is not much previous data on the association between serum 25(OH)D 

and PLP, although a cross-sectional study on community-dwelling middle-aged and 

older people showed that vitamin B6 was positively associated with serum 25(OH)D 
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concentration, with a partial Pearson`s r of 0.35 for women and 0.21 for men (171). It 

has been suggested that PLP may have modulatory effects on the action of steroid 

hormones, including calcitriol, which may partly explain the observed association 

between serum 25(OH)D and PLP (169,172). The associations between serum levels of 

25(OH)D and the B vitamins included in our analyses were weak, and existing evidence 

does not provide any conclusive data supporting a clinically significant association 

between vitamin D status and circulating levels of B vitamins. Thus, the connection is 

still highly uncertain. 

 

Fat-soluble vitamins 

In a large cohort of adults above 35 years of age examining vitamin D levels by quartiles, 

serum levels of vitamin A and vitamin E were positively associated with serum 25(OH)D 

(64). The common mechanisms involved in the metabolism of the fat-soluble vitamins 

may partly explain why 25(OH)D was associated with vitamin A and E. Another 

potential connection, is the observed interactions between vitamin D and vitamin A, 

where high concentrations of 9-cis retinoic acid, a vitamin A metabolite, may prevent 

calcitriol to perform its gene regulatory functions (170,173). Our observations are in 

line with existing knowledge and previously observed connections between serum 

25(OH)D and other fat-soluble vitamins.  

 

5.3.9 Amino acids 

The plasma concentration of several amino acids appeared to correlate with serum 

25(OH)D. Sarcosine and choline associated positively with 25(OH)D, while an inverse 

relationship was found for total homocysteine at lower levels of 25(OH)D, but this 

association appeared to be weaker at higher serum levels of 25(OH)D. The relationship 

between 25(OH)D and homocysteine was the strongest observed association among 

amino acids in our data. A similar relationship was also observed in a large community-

based cohort of asymptomatic adults, where they found an inverse association between 

homocysteine and serum 25(OH)D at 25(OH)D levels below median (52.5 nmol/L), 

while a weak positive association was observed at 25(OH)D levels above median level 

(174). A longitudinal study of 4475 participants showed that baseline homocysteine 
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concentrations were inversely associated with serum 25(OH)D, where homocysteine 

concentrations were 0.182 µmol/L lower for each additional 25 nmol/L of serum 

25(OH)D concentration (175). However, when the analyses were repeated separately by 

subgroup of baseline 25(OH)D, it was observed that each additional 25 nmol/L 25(OH)D 

was associated with 1.056 µmol/L lower homocysteine in the subjects with 25(OH)D 

below 50 nmol/L and 0.150 µmol/L in those with serum 25(OH)D above 50 nmol/L 

(175). A quite similar trend was found in the current thesis, where the inverse 

association between serum 25(OH)D and homocysteine was weaker at higher levels of 

serum 25(OH)D.  

 

The observed associations between serum levels of 25(OH)D and different amino acids 

were weak in our population, and the results from previous studies are inconclusive. 

However, a relationship between vitamin D and homocysteine, similar to the observed 

association in the current thesis, has been found in previous studies (174,175), 

indicating that this relationship may be of clinical significance, and should be further 

investigated in future studies. 
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6 Future perspectives 

The prevalence of suboptimal vitamin D status is still high, both in Norway and 

worldwide (8,23). Insufficient vitamin D status is associated with health risks, and 

prevention of vitamin D deficiency is a public health priority (23,176). Thus, research 

into the determinants of vitamin D status is vital to get a better understanding of the 

causes of insufficient vitamin D status, and thereby improving strategies to prevent 

vitamin D deficiency.  

 

Due to the nature of the study design in the present study, we are not able to draw any 

conclusions on causal relationships. However, the results from this and previous studies 

indicate associations between serum 25(OH)D level and season, vitamin D intake, lipid 

profile, PLP, vitamin A, vitamin E, BMI, and glucose metabolism. These observations may 

be the basis of future studies further investigating the associations between serum 

25(OH)D and the different variables. Longitudinal studies allows us to measure the 

characteristics of the same individuals on several occasions over time, and may be used 

to evaluate the relationship between the potential determinants and serum levels of 

25(OH)D over time (177,178). These types of studies have the ability to demonstrate 

temporality, and cause-and-effect relationships can be examined for the associations 

between serum 25(OH)D levels and different variables already observed (177,179). As 

mentioned, vitamin D status is affected by seasonal variation, which makes the 

assessment of associations between serum 25(OH)D and potential determinants more 

complicated. A suggested method to deal with seasonality of 25(OH)D is cosinor 

modelling (122), which could provide a more precise estimate of the associations 

between serum 25(OH)D and different determinants. Further, interventional studies, 

where a potential determinant of vitamin D status is changed and the effects on serum 

levels of 25(OH)D are measured, can be conducted to assess determinants of vitamin D 

status and measure the effect of preventive measures of vitamin D deficiency.  
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7 Conclusions 

In this study, we explored a wide variety of factors to investigate associations with 

serum 25(OH)D level, aiming to get a deeper understanding of potential determinants of 

vitamin D status. In conclusion, we observed a seasonal variation of serum 25(OH)D, 

where the highest concentrations were measured in August, and the lowest 

concentrations were measured in March. Serum levels of 25(OH)D were positively 

associated with dietary vitamin D, fish and egg consumption, and with serum levels of 

HDL-C, PLP, vitamin A, and vitamin E. Inverse associations were observed for BMI, and 

serum levels of TGs, total homocysteine, blood glucose, HbA1C and CRP.   
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1Values are regression coefficients (β) at each quantile of serum 25(OH)D with bootstrapped 95% confidence intervals and p-values from the unadjusted regression model. 

BMI, body mass index (kg/m2); eGFR, estimated glomerular filtration ratio; season 1, January-March; season 2, April-June; season 3, July-September; season 4, October-

December. 

 
Supplementary table 1. Associations between 25(OH)D levels and demographic characteristics in selected quantiles of 25(OH)D levels from the unadjusted regression 
model.1 

 

Variable 

Quantile 

0.10 0.25 0.50 0.75 0.90 
Estimate (95% CI) P-value Estimate (95% CI) P-value Estimate (95% CI) P-value Estimate (95% CI) P-value Estimate (95% CI) P-value 

Age (years) −0.16 (−0.24, −0.09) <0.001 −0.00 (−0.07, 0.07) 0.947 0.19 (0.12, 0.26) <0.001 0.41 (0.43, 0.48) <0.001 0.62 (0.54. 0.69) <0.001 

Sex (1 = male) 1.09 (−1.39, 3.57) 0.383 1.62 (−0.44, 3.68) 0.120 1.47 (−0.31, 3.25) 0.103 0.68 (−1.29, 2.64) 0.493 −1.50 (−4.25, 1.25) 0.279 

BMI (kg/m2) −1.55 (−1.70, −1.42) <0.001 −1.20 (−1.33, −1.07) <0.001 −0.77 (−0.90, −0.65) <0.001 −0.27 (−0.40, −0.13) <0.001 0.20 (0.01, 0.32) 0.003 

Current smoker 
(n) 

−6.12 (−8.02, −4.21) <0.001 −5.65 (−7.05, −4.24) <0.001 −3.22 (−5.04, −1.41) <0.001 −0.83 (−2.48, 0.82) 0.317 −1.53 (−4.63, 1.57) 0.325 

eGFR (mL/min 
per 1,732) 

−0.44 (−0.48, −0.40) <0.001 −0.32 (−0.36, −0.28) <0.001 −0.19 (−0.23, −0.15) <0.001 −0.03 (−0.07, 0.01) 0.090 0.10 (0.06, 0.14) <0.001 

Waist 
circumference 
(cm) 

−0.44 (−0.50, −0.38) <0.001 −0.34 (−0.40, −0.27) <0.001 −0.20 (−0.27, −0.14 <0.001 −0.06 (−0.12, 0.00) 0.050 0.00 (0.00, 0.13) 0.050 

Vitamin D 
intake (µg/d) 

0.39 (0.19, 0.59) <0.001 0.29 (0.10, 0.47) 0.003 0.42 (0.30, 0.55) <0.001 0.45 (0.25, 0.65) <0.001 0.51 (0.18, 0.85) 0.003 

Season 1 −6.65 (−9.41, −3.89) <0.001 −9.30 (−11.2, −7.39) <0.001 −10.3 (−11.9, −8.66) <0.001 −10.3 (−13.3, −7.20) <0.001 −8.99 (−13.1, −4.85) <0.001 

Season 2 0.10 (−2.58, 2.79) 0.939 1.25 (−1.22, 3.71) 0.314 0.06 (−1.45, 1.57) 0.936 −1.10 (−3.79, 1.59) 0.414 −0.79 (−4.73, 3.14) 0.688 

Season 3 10.9 (8.25, 13.6) <0.001 12.4 (9.81, 14.9) <0.001 12.6 (9.76, 15.4) <0.001 11.0 (8.41, 13.5) <0.001 9.31 (6.36, 12.3) <0.001 

Season 4 1.76 (−0.64, 4.15) 0.146 1.05 (1.34, 3.45) 0.381 −0.40 (−2.06, 1.25) 0.628 −2.13 (−4.38, 0.12) 0.063 0.59 (−3.31, 4.48) 0.764 
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1Values are regression coefficients (β) at each quantile of serum 25(OH)D with bootstrapped 95% confidence intervals and p-values from the unadjusted regression model. 

TG, serum triglycerides; HDL-C, serum high density lipoprotein cholesterol; LDL-C, serum low density lipoprotein cholesterol; ApoA1, Apolipoprotein A1; ApoB, 

Apolipoprotein B; HbA1c, glycosylated haemoglobin; CRP, C-reactive protein. 

 

Supplementary table 2. Associations between 25(OH)D levels and lipid profile, blood glucose and inflammatory markers in selected quantiles of 25(OH)D levels from the 
unadjusted regression model.1 

Variable 

Quantile 

0.10 0.25 0.50 0.75 0.90 
Estimate (95% CI) P-value Estimate (95% CI) P-value Estimate (95% CI) P-value Estimate (95% CI) P-value Estimate (95% CI) P-value 

TG (mmol/L) −1.66 (−2.17, −1.14) <0.001 −2.08 (−2.79, −1.37) <0.001 −1.96 (−2.60, −1.32) <0.001 −1.24 (−2.27, −0.21) 0.019 −1.19 (−2.10, 0.28) 0.011 

Total cholesterol 
(mmol/L) 

−1.16 (−1.89, −0.43) 0.003 −1.04 (−1.99, −0.09) 0.032 −0.38 (−0.89, 0.13) 0.139 0.40 (−0.47, 1.26) 0.361 1.32 (0.01, 2.63) 0.049 

LDL-C (mmol/L) −0.66 (−1.53, 0.20) 0.128 −1.21 (−2.18, −0.24) 0.016 −0.48 (−1.27, 0.31) 0.228 0.93 (0.06, 1.80) 0.037 0.68 (−0.95, 2.31) 0.406 

HDL-C (mmol/L) 5.44 (2.91, 7,97) <0.001 6.31 (3.87, 8.76) <0.001 6.50 (4.96, 8.05) <0.001 7.03 (5.09, 8.96) <0.001 7.30 (4.98, 9.61) <0.001 

Non-HDL-C 
(mmol/L) 

−1.04 (−1.73, −0.34) 0.004 −1.35 (−2.35, −0.35) 0.009 −1.20 (−1.67, −0.73) <0.001 −0.57 (−1.27, 0.14) 0.111 −0.58 (−2.01, 0.85) 0.419 

ApoA1 (g/L) 7.78 (4.12, 11.45) <0.001 9.62 (6.20, 13.03) <0.001 10.6 (7.66, 13.5) <0.001 11.9 (8.12, 15.77) <0.001 11.7 (6.89, 16.5) <0.001 

ApoB (g/L) −3.44 (−6.68, −0.19) 0.039 −3.66 (−7.02, −0.30) 0.033 −3.02 (−6.61, 0.56) 0.096 −0.67 (−3.26, 1.93) 0.608 0.37 (−5.59, 6.34) 0.901 

Type 2 diabetes 
(n) 

−5.33 (−8.11, −2.54) <0.001 −3.58 (−6.12, −1.05) 0.007 −2.66 (−4.41, −0.91) 0.004 −3.45 (−6.66, −0.24) 0.036 −0.28 (−4.19, 3.64) 0.887 

HbA1c (%) −1.81 (−3.13, −0.50) 0.008 −1.90 (−2.73, −1.07) <0.001 −1.14 (−1.70, −0.57) <0.001 −0.56 (−1.38, 0.25) 0.170 −0.01 (−1.52, 1.51) 0.999 

Serum glucose 
(mmol/L) 

−1.26 (−1.64, −0.88) <0.001 −1.07 (−1.65, −0.49) <0.001 −0.75 (−1.06, −0.44) 0.001 −0.36 (−0.76, 0.05) 0.083 −0.05 (−0.65, 0.56) 0.882 

CRP (mg/L) −0.24 (−0.37, −0.11) <0.001 −0.23 (−0.38, −0.08) 0.003 −0.22 (−0.37, −0.08) 0.003 −0.04 (−0.23, 0.14) 0.652 −0.01 (−0.10, 0.09) 0.887 

Neopterin 
(nmol/L) 

−0.17 (−0.59, 0.24) 0.407 −0.10 (−0.39, 0.19) 0.481 0.05 (−0.09, 0.20) 0.451 0.29 (−0.12, 0.70) 0.167 0.52 (−0.28, 1.32) 0.199 
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1Values are regression coefficients (β) at each quantile of serum 25(OH)D with bootstrapped 95% confidence intervals and p-values from the unadjusted regression model. 

PL, Pyridoxine levels; PLP, Pyridoxal 5-phosphate; PA, 4-pyridoxic acid; MMA, methylmalonic acid.  

  

Supplementary table 3. Associations between 25(OH)D levels and dietary data in selected quantiles of 25(OH)D levels from the unadjusted regression model.1 

Variable 

Quantile 

0.10 0.25 0.50 0.75 0.90 
Estimate (95% CI) P-value Estimate (95% CI) P-value Estimate (95% CI) P-value Estimate (95% CI) P-value Estimate (95% CI) P-value 

Riboflavin 
(µg/dL)  

−0.02 (−0.07, 0.02) 0.329 0.01 (−0.06, 0.09) 0.721 0.04 (0.02, 0.05) <0.001 0.17 (0.05, 0.29) 0.005 0.12 (−0.05, 0.30) 0.157 

PL (nmol/L) −0.02 (−0.03, 0.00) 0.055 0.00 (−0.00, 0.01) 0.147 0.01 (−0.00, 0.01) 0.095 0.01 (−0.04, 0.07) 0.629 0.08 (0.00, 0.15) 0.04 

PLP (nmol/L) −0.16 (−0.22, −0.10) <0.001 −0.08 (−0.11, −0.04) <0.001 0.02 (0.00, 0.03) 0.025 0.16 (0.12, 0.20) <0.001 0.35 (0.26, 0.45) <0.001 

PA (nmol/L) −0.01 (−0.07, 0.05) 0.663 −0.02 (−0.06, 0.03) 0.424 0.00 (0.00, 0.01) 0.009 0.05 (−0.01, 0.11) 0.101 0.12 (−0.10, 0.33) 0.272 

Folate (nmol/L) 0.04 (−0.12, 0.20) 0.615 0.02 (−0.06, 0.09) 0.618 0.07 (0.01, 0.13) 0.035 0.16 (0.06, 0.25) 0.002 0.21 (−0.13, 0.55) 0.225 

Cobalamin 
(pq/mL) 

−0.06 (−0.06, −0.05) <0.001 −0.03 (−0.03, −0.02) <0.001 0.00 (−0.00, 0.00) 0.473 0.03 (0.02, 0.03) <0.001 0.06 (0.06, 0.07) <0.001 

MMA (nmol/L) −6.21 (−18.1, 5.67) 0.298 −0.62 (−8.16, 6.92) 0.870 −1.75 (−8.49, 4.99) 0.604 1.78 (−6.20, 9.77) 0.656 4.36 (−16.6, 25.4) 0.678 

Vitamin A 
(µmol/L) 

2.20 (0.40, 5.08) 0.018 3.67 (2.25, 5.08) <0.001 4.25 (3.09, 5.41) <0.001 5.14 (3.56, 6.71) <0.001 7.95 (6.23, 9.68) <0.001 

Vitamin E 
(µmol/L) 

−0.45 (−0.55, −0.36) <0.001 −0.16 (−0.25, −0.07) <0.001 0.21 (0.11, 0.31) <0.001 0.65 (0.55, 0.75) <0.001 1.06 (0.95, 1.17) <0.001 

Low fat milk 
consumption 
(g/day) 

−0.07 (−0.08, −0.06) <0.001 −0.04 (−0.04, −0.03) <0.001 −0.00 (−0.01, 0.00) 0.173 0.03 (0.03, 0.04) <0.001 0.08 (0.06, 0.10) <0.001 

Egg consumption 
(g/day) 

−0.07 (−0.21, 0.07) 0.317 −0.01 (−0.19, 0.17) 0.884 −0.01 (−0.11, 0.09) 0.789 0.29 (0.09, 0.50) 0.006 0.37 (0.04, 0.70) 0.030 

Fish consumption 
(g/day) 

−0.17 (−0.19, −0.14) <0.001 −0.07 (−0.08, −0.05) <0.001 0.02 (0.00, 0.03) 0.020 0.12 (0.10, 0.13) <0.001 0.21 (0.19, 0.24) <0.001 
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1Values are regression coefficients (β) at each quantile of serum 25(OH)D with bootstrapped 95% confidence intervals and p-values from the unadjusted regression model. 

DMG, plasma dimetylglycine; tHcy, total homocysteine; tCys, total cysteine. 

 

Supplementary table 4. Associations between 25(OH)D levels and amino acids and amino acid metabolites in selected quantiles of 25(OH)D levels from the unadjusted 
regression model.1 

Variable 

Quantile 

0.10 0.25 0.50 0.75 0.90 
Estimate (95% CI) P-value Estimate (95% CI) P-value Estimate (95% CI) P-value Estimate (95% CI) P-value Estimate (95% CI) P-value 

Serine (µmol/L)  −0.23 (−0.26, −0.20) <0.001 −0.13 (−0.16, −0.11) <0.001 −0.02 (−0.05, 0.01) 0.187 0.11 (0.09, 0.14) <0.001 0.23 (0.20, 0.26) <0.001 

Glycine 
(µmol/L)  

−0.09 (−0.10, −0.08) <0.001 −0.04 (−0.05, −0.03) <0.001 0.01 (0.00, 0.02) 0.003 0.07 (0.07, 0.08) <0.001 0.13 (0.12, 0.14) <0.001 

Dmg (µmol/L) −0.13 (−0.73, 0.47) 0.657 −0.11 (−0.55, 0.33) 0.627 −0.11 (−0.41, 0.19) 0.453 0.12 (−0.35, 0.60) 0.607 0.08 (−0.10, 1.16) 0.883 

Sarcosine 
(µmol/L)  

2.12 (0.68, 3.56) 0.005 2.47 (1.08, 3.85) <0.001 2.50 (1.26, 3.74) <0.001 3.60 (1.88, 5.33) <0.001 3.82 (1.76, 5.88) <0.001 

Choline 
(µmol/L)  

−0.45 (−1.10, 0.19) 0.162 0.24 (−0.25, 0.73) 0.332 0.68 (0.44, 0.92) <0.001 1.37 (0.91, 1.84) <0.001 2.23 (1.42, 3.04) <0.001 

Betaine 
(µmol/L)  

−0.47 (−0.56, −0.38) <0.001 −0.21 (−0.26, −0.15) <0.001 0.05 (0.01, 0.10) 0.025 0.37 (0.32, 0.43) <0.001 0.70 (0.61, 0.78) <0.001 

Methionine 
(µmol/L)  

−0.61 (−0.75, −0.46) <0.001 −0.27 (−0.38, −0.15) <0.001 0.04 (−0.05, 0.13) 0.337 0.49 (0.39, 0.59) <0.001 0.78 (0.61, 0.94) <0.001 

tHcy (µmol/L) −0.35 (−0.92, 0.22) 0.225 −0.37 (−0.61, −0.12) 0.004 −0.07 (−0.21, 0.08) 0.364 0.32 (−0.12, 0.76) 0.146 0.88 (0.32, 1.44) 0.003 

tCys (µmol/L) −0.05 (−0.06, −0.03) <0.001 −0.02 (−0.03, 0.00) 0.070 0.03 (0.01, 0.04) 0.001 0.08 (0.06, 0.09) <0.001 0.12 (0.10, 0.14) <0.001 
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1Values are regression coefficients (β) at each quantile of serum 25(OH)D with bootstrapped 95% confidence intervals and p-values from the regression model adjusted for 

age and sex. BMI, body mass index (kg/m2); eGFR, estimated glomerular filtration ratio; waist circ., waist circumference; season 1, January-March; season 2, April-June; 

season 3, July-September; season 4, October-December. 

Supplementary table 5. Associations between 25(OH)D levels and demographic characteristics in selected quantiles of 25(OH)D levels derived from a regression 
model adjusted for age and sex.1 

 Quantile 

0.10 0.25 0.50 0.75 0.90 

Variable 
Estimate (95% CI) P-value Estimate (95% CI) P-value Estimate (95% CI) P-value Estimate (95% CI) P-value Estimate (95% CI) P-value 

BMI (kg/m2) −1.01 (−1.17, −0.85) <0.001 −0.86 (−1.00, −0.71) <0.001 −0.68 (−0.82, −0.54) <0.001 −0.58 (−0.71, −0.44) <0.001 −0.36 (−0.58, −0.14) 0.002 

Current smoker 
(n) 

−1.88 (−3.26, −0.50) 0.009 −1.88 (−3.21, −0.54) 0.007 −1.75 (−3.10, −0.40) 0.012 −1.72 (−3.08, −0.36) 0.014 −1.47 (−2.84, −0.10) 0.036 

eGFR (mL/min 
per 1,732) 

−0.27 (−0.34, −0.20) <0.001 −0.23 (−0.28, −0.17) <0.001 −0.16 (−0.22, −0.10) <0.001 −0.07 (−0.13, −0.02) 0.013 −0.05 (−0.11, 0.02) 0.137 

Waist circ. (cm) −0.36 (−0.42, −0.30) <0.001 −0.33 (−0.39, −0.26) <0.001 −0.24 (−0.30, −0.18) <0.001 −0.14 (−0.21, −0.07) <0.001 −0.07 (−0.16, 0.01) 0.087 

Season 1 −9.20 (−10.9, −7.49) <0.001 −9.24 (−11.0, −7.53) <0.001 −9.24 (−11.0, −7.53) <0.001 −9.24 (−11.0, −7.52) <0.001 −9.24 (−10.9, −7.52) <0.001 

Season 2 −0.18 (−1.66, 1.29) 0.805 −0.18 (−1.65, 1.29) 0.807 −0.18 (−1.65, 1.29) 0.808 −0.18 (−1.66, 1.30) 0.809 −0.18 (−1.64, 1.29) 0.808 

Season 3 11.7 (9.78, 13.7) <0.001 11.7 (9.78, 13.7) <0.001 11.7 (9.79, 13.7) <0.001 11.7 (9.79, 13.7) <0.001 11.7 (9.78, 13.7) <0.001 

Season 4 −0.61 (−2.13, 0.91) 0.425 −0.61 (−2.13, 0.90) 0.419 −0.61 (−2.13, 0.90) 0.420 −0.61 (−2.13, 0.91) 0.421 −0.62 (−2.13, 0.90) 0.418 

Vitamin D 
intake (µg/d) 

0.42 (0.29, 0.56) <0.001 0.45 (0.35, 0.56) <0.001 0.48 (0.38, 0.59) <0.001 0.49 (0.35, 0.63) <0.001 0.50 (0.35, 0.64) <0.001 
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Supplementary table 6. Associations between 25(OH)D levels and lipid profile, blood glucose and inflammatory markers in selected quantiles of 25(OH)D levels 
derived from a regression model adjusted for age and sex.1 

 Quantile 

0.10 0.25 0.50 0.75 0.90 

Variable 
Estimate (95% CI) P-value Estimate (95% CI) P-value Estimate (95% CI) P-value Estimate (95% CI) P-value Estimate (95% CI) P-value 

TG (mmol/L) −1.89 (−2.45, −1.32) <0.001 −1.69 (−2.19, −1.19) <0.001 −1.49 (−1.97, −1.00) <0.001 −1.46 (−1.98, −0.95) <0.001 −0.85 (−1.50, −0.21) 0.011 

Total cholesterol 
(mmol/L) 

−0.23 (−1.07, 0.61) 0.589 −0.61 (−1.22, 0.00) 0.052 0.06 (−0.46, 0.58) 0.817 0.16 (−0.41, 0.73) 0.584 0.90 (0.01, 1.78) 0.047 

LDL-C (mmol/L) −0.34 (−1.11, 0.43) 0.374 −0.11 (−0.79, 0.56) 0.738 0.07 (−0.60, 0.73) 0.841 0.12 (−0.55, 0.79) 0.720 0.72 (−0.02, 1.47) 0.057 

HDL-C (mmol/L) 7.00 (5.41, 8.59) <0.001 7.08 (5.48, 8.68) <0.001 7.09 (5.50, 8.68) <0.001 7.10 (5.49, 8.70) <0.001 7.19 (5.49, 8.78) <0.001 

Non-HDL-C 
(mmol/L) 

−1.84 (−2.60, −1.08) <0.001 −0.63 (−1.25, −0.02) 0.042 −0.62 (−1.12, −0.12) 0.016 −0.45 (−0.95, 0.06) 0.082 0.31 (−0.45, 1.08) 0.416 

ApoA-I (g/L) 12.06 (9.67, 14.45) <0.001 12.07 (9.65, 14.48) <0.001 12.07 (9.67, 14.47) <0.001 12.13 (9.72, 14.54) <0.001 12.08 (9.68, 14.49) <0.001 

ApoB (g/L) −0.84 (−3.40, 1.72) 0.513 −0.64 (−3.16, 1.88) 0.612 −0.64 (−3.15, 1.88) 0.614 −0.63 (−3.15, 1.89) 0.617 −0.60 (−3.16, 1.95) 0.638 

Type 2 diabetes −4.10 (−6.10, −2.09) <0.001 −4.11 (−6.11, −2.10) <0.001 −4.09 (−6.10, −2.09) <0.001 −4.10 (−6.11, −2.09) <0.001 −4.09 (−6.10, −2.08) <0.001 

HbA1c (%) −2.34 (−3.00, −1.68) 0.008 −1.39 (−2.02, −0.76) <0.001 −1.02 (−1.53, −0.50) <0.001 −0.91 (−1.52, −0.31) 0.004 0.20 (−0.70, 1.11) 0.652 

Serum glucose 
(mmol/L) 

−1.28 (−1.67, −0.88) <0.001 −0.91 (−1.30, −0.53) <0.001 −0.67 (−0.96, −0.38) <0.001 −0.44 (−0.78, −0.10) 0.012 −0.03 (−0.49, 0.43) 0.902 

CRP (mg/L) −0.28 (−0.41, −0.16) <0.001 −0.25 (−0.35, −0.14) <0.001 −0.19 (−0.31, −0.06) 0.004 −0.05 (−0.22, 0.12) 0.559 −0.02 (−0.11, 0.07) 0.601 

Neopterin 
(nmol/L) 

−0.19 (−0.43, 0.05) 0.123 −0.11 (−0.31, 0.09) 0.275 0.06 (−0.08, 0.20) 0.394 0.10 (−0.06, 0.25) 0.210 0.23 (0.10, 0.36) 0.001 

 

1Values are regression coefficients (β) at each quantile of serum 25(OH)D with bootstrapped 95% confidence intervals and p-values from the regression model adjusted for 

age and sex. TG, serum triglycerides; HDL-C, serum high density lipoprotein cholesterol; LDL-C, serum low density lipoprotein cholesterol; ApoA-I, Apolipoprotein A1; ApoB, 

Apolipoprotein B; HBA1c, glycosylated haemoglobin; CRP, C-reactive protein. 
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Supplementary table 7. Associations between 25(OH)D levels and vitamin status and dietary data in selected quantiles of 25(OH)D levels derived from a regression 
model adjusted for age and sex.1 

 Quantile 

0.10 0.25 0.50 0.75 0.90 

Variable 
Estimate (95% CI) P-value Estimate (95% CI) P-value Estimate (95% CI) P-value Estimate (95% CI) P-value Estimate (95% CI) P-value 

Riboflavin (µg/dL)  −0.04 (0.00, 0.07) 0.046 0.05 (0.03, 0.08) <0.001 0.04 (0.03, 0.06) <0.001 0.03 (−0.00, 0.06) 0.056 0.07 (0.01, 0.13) 0.029 

PL (nmol/L) 0.00 (−0.01, 0.02) 0.715 0.01 (−0.00, 0.02) 0.175 0.01 (0.00, 0.02) 0.002 0.01 (0.00, 0.01) 0.021 −0.00 (−0.03, 0.03) 0.981 

PLP (nmol/L) 0.01 (−0.02, 0.03) 0.578 0.02 (0.01, 0.04) 0.010 0.04 (0.03, 0.05) <0.001 0.03 (0.01, 0.06) 0.003 0.07 (0.04, 0.10) <0.001 

PA (nmol/L) 0.00 (−0.01, 0.01) 0.662 0.01 (0.00, 0.01) 0.005 0.01 (0.00, 0.01) 0.001 0.01 (0.00, 0.01) 0.030 0.00 (−0.02, 0.03) 0.912 

Folate (nmol/L) 0.06 (0.00, 0.12) 0.046 0.07 (0.00, 0.13) 0.042 0.11 (0.04, 0.18) 0.002 0.14 (0.06, 0.21) <0.001 0.16 (0.06, 0.27) 0.004 

Cobalamin (pq/mL) −0.00 (−0.01, 0.00) 0.395 0.00 (−0.00, 0.01) 0.437 0.00 (−0.00, 0.00) 0.501 0.01 (0.00, 0.02) 0.030 0.02 (0.01, 0.02) 0.001 

MMA (nmol/L) −1.74 (−7.51, 4.04) 0.549 −1.73 (−7.51, 4.05) 0.550 −1.73 (−7.51, 4.05) 0.550 −1.73 (−7.51, 4.05) 0.550 −1.73 (−7.51, 4.05) 0.550 

Vitamin A (µmol/L) 3.03 (1.66, 4.39) <0.001 4.53 (3.64, 5.43) <0.001 4.59 (3.71, 5.46) <0.001 4.60 (3.73, 5.48) <0.001 4.78 (3.72, 5.85) <0.001 

Vitamin E (µmol/L) −0.09 (−0.20, 0.01) 0.080 0.11 (−0.01, 0.24) 0.073 0.26 (0.15, 0.37) <0.001 0.45 (0.31, 0.59) <0.001 0.63 (0.45, 0.82) <0.001 

Low fat milk 
consumption 
(g/day) 

−0.00 (−0.01, −0.00) 0.018 −0.01 (−0.01, 0.00) 0.114 0.00 (−0.00, 0.01) 0.630 0.01 (−0.00, 0.01) 0.087 0.01 (0.00, 0.02) 0.019 

Egg consumption 
(g/day) 

−0.03 (−0.11, 0.04) 0.377 0.02 (−0.08, 0.12) 0.671 0.02 (−0.08, 0.13) 0.666 0.14 (0.03, 0.25) 0.017 0.22 (0.04, 0.40) 0.017 

Fish consumption 
(g/day) 

0.01 (−0.00, 0.03) 0.102 0.03 (0.01, 0.04) 0.003 0.02 (0.01, 0.04) 0.004 0.04 (0.02, 0.06) <0.001 0.03 (0.01, 0.05) 0.018 

 

1Values are regression coefficients (β) at each quantile of serum 25(OH)D with bootstrapped 95% confidence intervals and p-values from the regression model adjusted for 

age and sex. PL, Pyridoxine levels; PLP, Pyridoxal 5-phosphate; PA, 4-pyridoxic acid; MMA, methylmalonic acid.  
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Supplementary table 8. Associations between 25(OH)D levels and amino acids and amino acid metabolites in selected quantiles of 25(OH)D levels derived from a 
regression model adjusted for age and sex.1 

 Quantile 

0.10 0.25 0.50 0.75 0.90 

Variable 
Estimate (95% CI) P-value Estimate (95% CI) P-value Estimate (95% CI) P-value Estimate (95% CI) P-value Estimate (95% CI) P-value 

Serine (µmol/L)  −0.12 (−0.16, −0.08) <0.001 −0.05 (−0.08, −0.02) 0.004 −0.01 (−0.03, 0.02) 0.647 0.06 (0.03, 0.09) <0.001 0.14 (0.10, 0.19) <0.001 

Glycine (µmol/L)  −0.02 (−0.03, −0.01) <0.001 0.00 (−0.01, 0.01) 0.454 0.02 (0.01, 0.03) <0.001 0.06 (0.04, 0.07) <0.001 0.07 (0.05, 0.09) <0.001 

DMG (µmol/L) −0.45 (−0.86, −0.04) 0.033 −0.27 (−0.58, 0.04) 0.086 −0.12 (−0.34, 0.11) 0.304 0.01 (−0.23, 0.25) 0.945 0.23 (−0.20, 0.65) 0.285 

Sarcosine 
(µmol/L)  

2.23 (1.20, 3.26) <0.001 2.45 (1.47, 3.42) <0.001 2.50 (1.51, 3.48) <0.001 2.51 (1.55, 3.47) <0.001 2.54 (1.54, 3.54) <0.001 

Choline (µmol/L)  −0.22 (−0.65, 0.21) 0.312 0.36 (−0.01, 0.74) 0.058 0.55 (0.28, 0.82) <0.001 0.73 (0.42, 1.04) <0.001 1.31 (0.76, 1.86) <0.001 

Betaine (µmol/L)  −0.07 (−0.14, −0.01) 0.029 −0.01 (−0.06, 0.04) 0.731 0.06 (0.01, 0.10) 0.010 0.13 (0.07, 0.19) <0.001 0.18 (0.09, 0.27) <0.001 

Methionine 
(µmol/L)  

−0.22 (−0.35, −0.10) <0.001 −0.03 (−0.12, 0.06) 0.489 0.06 (−0.03, 0.15) 0.172 0.24 (0.12, 0.35) <0.001 0.34 (0.18, 0.49) <0.001 

tHcy (µmol/L) −0.38 (−0.57, −0.19) <0.001 −0.33 (−0.46, −0.20) <0.001 −0.10 (−0.27, 0.06) 0.217 0.14 (−0.11, 0.39) 0.252 0.36 (0.13, 0.60) 0.003 

tCys (µmol/L) −0.07 (−0.08, −0.06) <0.001 −0.03 (−0.05, −0.02) <0.001 0.00 (−0.01, 0.02) 0.492 0.05 (0.03, 0.06) <0.001 0.09 (0.08, 0.11) <0.001 

 

1Values are regression coefficients (β) at each quantile of serum 25(OH)D with bootstrapped 95% confidence intervals and p-values from the regression model adjusted for 

age and sex. DMG, plasma dimetylglycine; tHcy, total homocysteine; tCys, total cysteine. 
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1Values are regression coefficients (β) at each quantile of serum 25(OH)D with bootstrapped 95% confidence intervals and p-values from the regression model adjusted for 

age, sex, BMI, smoking-habits and GFR. TG, serum triglycerides; HDL-C, serum high density lipoprotein cholesterol; LDL-C, serum low density lipoprotein cholesterol; ApoA1, 

Apolipoprotein A1; ApoB, Apolipoprotein B; HBA1c, glycosylated haemoglobin; CRP, C-reactive protein. 

Supplementary table 9. Associations between 25(OH)D levels and waist circumference, lipid profile, blood glucose and inflammatory markers in selected quantiles of 
25(OH)D levels derived from a regression model adjusted for age, sex, BMI, smoking habits and GFR. 1 

 Quantile 
 

0.10 0.25 0.50 0.75 0.90 

Variable 
Estimate 
(95% CI) 

P-value Estimate 
(95% CI) 

P-value Estimate 
(95% CI) 

P-value Estimate 
(95% CI) 

P-value Estimate 
(95% CI) 

P-value 

Waist circumference 
(cm) 

−0.10 (−0.23, −0.02) 0.097 −0.08 (−0.21, 0.04) 0.187 −0.03 (−0.15, 0.09) 0.564 0.02 (−0.10, 0.14) 0.736 0.07 (−0.05, 0.20) 0.230 

TG (mmol/L) −1.10 (−1.55, −0.66) <0.001 −1.13 (−1.58, −0.68) <0.001 −1.10 (−1.55, −0.65) <0.001 −1.10 (−1.55, −0.65) <0.001 −1.07 (−1.53, −0.62) <0.001 

Total cholesterol 
(mmol/L) 

0.09 (−0.50, 0.67) 0.771 0.09 (−0.50, 0.68) 0.755 0.11 (−0.47, 0.70) 0.698 0.12 (−0.46, 0.71) 0.674 0.14 (−0.44, 0.73) 0.626 

LDL-C (mmol/L) 0.06 (−0.52, 0.65) 0.826 0.09 (−0.50, 0.68) 0.767 0.10 (−0.49, 0.69) 0.735 0.10 (−0.49, 0.69) 0.725 0.12 (−0.48, 0.71) 0.693 

HDL-C (mmol/L) 6.12 (4.12, 8.13) <0.001 6.13 (4.12, 8.13) <0.001 6.13 (4.12, 8.13) <0.001 6.13 (4.13, 8.14) <0.001 6.14 (4.13, 8.14) <0.001 

Non-HDL-C (mmol/L) −0.46 (−1.01, 0.09) 0.101 −0.45 (−1.00, 0.10) 0.104 −0.43 (−0.99, 0.12) 0.124 −0.43 (−0.98, 0.13) 0.127 −0.41 (−0.97, 0.14) 0.143 

ApoA1 (g/L) 10.96 (8.32, 13.60) <0.001 10.97 (8.33, 13.60) <0.001 10.97 (8.33, 13.61) <0.001 10.97 (8.34, 13.61) <0.001 10.98 (8.34, 13.61) <0.001 

ApoB (g/L) −0.13 (−2.73, 2.48) 0.922 −0.11 (−2.72, 2.49) 0.930 −0.11 (−2.71, 2.49) 0.932 −0.11 (−2.71, 2.49) 0.933 −0.11 (−2.71, 2.50) 0.934 

Type 2 diabetes (n) −2.29 (−4.27, −0.30) 0.025 −2.28 (−4.27, −0.30) 0.025 −2.28 (−4.27, −0.30) 0.025 −2.28 (−4.27, −0.30) 0.025 −2.28 (−4.26, −0.30) 0.025 

HbA1c (%) −0.79 (−1.25, −0.33) 0.001 −0.78 (−1.26, −0.31) 0.002 −0.76 (−1.24, −0.29) 0.002 −0.75 (−1.23, −0.28) 0.003 −0.68 (−1.15, −0.21) 0.006 

Serum glucose 
(mmol/L) 

−0.52 (−0.76, −0.28) <0.001 −0.46 (−0.70, −0.22) <0.001 −0.45 (−0.69, −0.21) <0.001 −0.43 (−0.68, −0.19) <0.001 −0.40 (−0.64, −0.16) 0.002 

CRP (mg/L) −0.18 (−0.26, −0.10) <0.001 −0.26 (−0.37, −0.14) <0.001 −0.18 (−0.27, −0.10) <0.001 −0.06 (−0.16, 0.05) 0.280 −0.04 (−0.13, 0.05) 0.390 

Neopterin (nmol/L) −0.59 (−0.80, −0.38) <0.001 −0.45 (−0.70, −0.20) <0.001 −0.10 (−0.29, 0.09) 0.306 −0.00 (−0.22, 0.21) 0.976 0.11 (−0.14, 0.37) 0.375 
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Supplementary table 10. Associations between 25(OH)D levels and vitamin status and dietary data in selected quantiles of 25(OH)D levels derived from a regression 
model adjusted for age, sex, BMI, smoking habits and GFR.1 

 Quantile 

 
0.10 0.25 0.50 0.75 0.90 

Variable 
Estimate 
(95% CI) 

P-value Estimate 
(95% CI) 

P-value Estimate 
(95% CI) 

P-value Estimate 
(95% CI) 

P-value Estimate 
(95% CI) 

P-value 

Vitamin D intake 
(µg/d) 

0.47 (0.36, 0.57) <0.001 0.50 (0.38, 0.61) <0.001 0.49 (0.40, 0.59) <0.001 0.42 (0.29, 0.55) <0.001 0.42 (0.27, 0.57) <0.001 

Riboflavin (µg/dL)  0.03 (−0.00, 0.07) 0.117 0.04 (0.02, 0.07) 0.002 0.03 (0.02, 0.05) <0.001 0.02 (−0.00, 0.05) 0.099 0.06 (0.01, 0.11) 0.030 

PL (nmol/L) 0.00 (−0.01, 0.01) 0.780 0.01 (−0.00, 0.02) 0.209 0.01 (0.00, 0.02) 0.018 0.01 (0.00, 0.01) 0.026 −0.00 (−0.01, 0.00) 0.830 

PLP (nmol/L) 0.01 (−0.01, 0.02) 0.354 0.03 (0.01, 0.05) 0.005 0.03 (0.02, 0.05) <0.001 0.02 (0.00, 0.04) 0.013 0.03 (0.02, 0.05) <0.001 

PA (nmol/L) −0.00 (−0.01, 0.01) 0.695 0.00 (−0.00, 0.01) 0.105 0.00 (0.00, 0.01) 0.033 0.00 (−0.00, 0.01) 0.073 0.00 (−0.02, 0.02) 0.858 

Folate (nmol/L) 0.06 (−0.00, 0.11) 0.055 0.06 (−0.00, 0.12) 0.066 0.09 (0.02, 0.16) 0.009 0.12 (0.07, 0.17) <0.001 0.10 (0.02, 0.18) 0.013 

Cobalamin (pq/mL) −0.00 (−0.01, 0.00) 0.484 0.00 (−0.00, 0.00) 0.090 0.00 (−0.00, 0.01) 0.563 0.00 (−0.00, 0.01) 0.230 0.01 (−0.00, 0.02) 0.106 

MMA (nmol/L) −2.86 (−8.81, 3.10) 0.340 −2.85 (−8.81, 3.10) 0.340 −2.85 (−8.80, 3.10) 0.341 −2.85 (−8.80, 3.10) 0.341 −2.85 (−8.80, 3.10) 0.341 

Vitamin A (µmol/L) 4.27 (3.12, 5.41) <0.001 4.28 (3.11, 5.44) <0.001 4.30 (3.14, 5.46) <0.001 4.31 (3.15, 5.47) <0.001 4.34 (3.18, 5.50) <0.001 

Vitamin E (µmol/L) 0.07 (−0.01, 0.16) 0.097 0.20 (0.10, 0.29) <0.001 0.27 (0.19, 0.34) <0.001 0.33 (0.23, 0.43) <0.001 0.39 (0.26, 0.51) <0.001 

Low fat milk 
consumption (g/day) 

−0.00 (−0.01, 0.00) 0.328 −0.00 (−0.01, 0.01) 0.869 0.00 (−0.00, 0.01) 0.575 0.00 (−0.00, 0.01) 0.834 0.00 (−0.00, 0.01) 0.538 

Egg consumption 
(g/day) 

0.01 (−0.00, 0.15) 0.245 0.08 (0.00, 0.16) 0.039 0.10 (0.03, 0.18) 0.008 0.12 (0.03, 0.22) 0.009 0.17 (0.02, 0.33) 0.025 

Fish consumption 
(g/day) 

0.03 (0.02, 0.04) <0.001 0.03 (0.01, 0.04) <0.001 0.03 (0.02, 0.05) <0.001 0.03 (0.01, 0.05) 0.001 0.02 (0.00, 0.05) 0.047 

 

1Values are regression coefficients (β) at each quantile of serum 25(OH)D with bootstrapped 95% confidence intervals and p-values from the regression model adjusted for 

age, sex, BMI, smoking-habits and GFR. PL, Pyridoxine levels; PLP, Pyridoxal 5-phosphate; PA, 4-pyridoxic acid; MMA, methylmalonic acid. 
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Supplementary table 11. Associations between 25(OH)D levels and amino acids and amino acid metabolites in selected quantiles of 25(OH)D levels derived from a 
regression model adjusted for age, sex, BMI, smoking habits and GFR.1  

 Quantile 
 

0.10 0.25 0.50 0.75 0.90 

Variable 
Estimate 
(95% CI) 

P-value Estimate 
(95% CI) 

P-value Estimate 
(95% CI) 

P-value Estimate 
(95% CI) 

P-value Estimate 
(95% CI) 

P-value 

Serine (µmol/L)  −0.07 (−0.11, −0.02) 0.003 −0.04 (−0.07, −0.01) 0.022 −0.01 (−0.04, 0.02) 0.469 0.02 (−0.02, 0.05) 0.372 0.05 (−0.01, 0.11) 0.086 

Glycine (µmol/L)  −0.01 (−0.03, 0.01) 0.156 −0.01 (−0.02, 0.00) 0.143 0.00 (−0.01, 0.01) 0.922 0.02 (0.00, 0.04) 0.013 0.03 (0.02, 0.05) <0.001 

Dmg (µmol/L) −0.21 (−0.56, 0.14) 0.239 −0.20 (−0.55, 0.16) 0.267 −0.17 (−0.53, 0.20) 0.361 −0.16 (−0.51, 0.19) 0.351 −0.15 (−0.48, 0.19) 0.381 

Sarcosine (µmol/L)  1.79 (0.61, 2.98) 0.004 1.79 (0.61, 2.98) 0.004 1.80 (0.62, 2.99) 0.004 1.82 (0.63, 3.00) 0.003 1.82 (0.64, 3.00) 0.003 

Choline (µmol/L)  0.16 (−0.18, 0.50) 0.344 0.34 (0.06, 0.62) 0.020 0.46 (0.17, 0.76) 0.003 0.51 (0.18, 0.83) 0.003 0.60 (0.22, 0.98) 0.003 

Betaine (µmol/L)  −0.02 (−0.09, 0.05) 0.623 −0.03 (−0.09, 0.03) 0.331 0.03 (−0.04, 0.09) 0.423 0.06 (0.00, 0.11) 0.039 0.06 (−0.02, 0.14) 0.162 

Methionine (µmol/L)  −0.02 (−0.13, 0.09) 0.698 0.01 (−0.08, 0.11) 0.774 0.06 (−0.04, 0.16) 0.224 0.15 (0.04, 0.26) 0.007 0.16 (0.03, 0.29) 0.018 

tHcy (µmol/L) −0.56 (−0.90 −0.22) 0.002 −0.43 (−0.62, −0.25) <0.001 −0.38 (−0.55, −0.20) <0.001 −0.21 (−0.38, −0.03) 0.021 −0.01 (−0.32, 0.30) 0.962 

tCys (µmol/L) −0.06 (−0.08, −0.04) <0.001 −0.03 (−0.05, −0.01) 0.004 −0.00 (−0.02, 0.01) 0.651 0.02 (0.00, 0.04) 0.019 0.06 (0.04, 0.08) <0.001 

           

1Values are regression coefficients (β) at each quantile of serum 25(OH)D with bootstrapped 95% confidence intervals and p-values from the regression model adjusted for 

age, sex, BMI, smoking-habits and GFR. DMG, plasma dimetylglycine; tHcy, total homocysteine; tCys, total cysteine. 
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Supplementary table 12. Associations between 25(OH)D levels and season of study visit in selected quantiles of 25(OH)D levels derived from a regression model adjusted 
for age, sex, BMI, smoking habits and GFR. 1 

 Quantile 
 

0.10 0.25 0.50 0.75 0.90 

Variable 
Estimate 
(95% CI) 

P-value Estimate 
(95% CI) 

P-value Estimate 
(95% CI) 

P-value Estimate 
(95% CI) 

P-value Estimate 
(95% CI) 

P-value 

Season 1 −8.96 (−10.6, −7.30) <0.001 −8.96 (−10.6, −7.31) <0.001 −8.96 (−10.6, −7.31) <0.001 −8.96 (−10.6, −7.30) <0.001 −8.96 (−10.6, −7.30) <0.001 

Season 2 −0.53 (−2.11, 1.06) 0.507 −0.53 (−2.11, 1.06) 0.509 −0.53 (−2.11, 1.06) 0.508 −0.53 (−2.11, 1.06) 0.507 −0.53 (−2.11, 1.06) 0.507 

Season 3 11.6 (9.70, 13.5) <0.001  11.6 (9.71, 13.5) <0.001 11.6 (9.71, 13.5) <0.001 11.6 (9.71, 13.5) <0.001 11.6 (9.71, 13.5) <0.001 

Season 4  −0.44 (−1.94, 1.07) 0.563 −0.44 (−1.94, 1.07) 0.563 −0.44 (−1.95, 1.07) 0.561 −0.44 (−1.95, 1.07) 0.561 −0.44 (−1.95, 1.07) 0.562 

           

1Values are regression coefficients (β) at each quantile of serum 25(OH)D with bootstrapped 95% confidence intervals and p-values from the regression model adjusted for 

age, sex, BMI, smoking-habits and GFR. Season 1, January-March; season 2, April-June; season 3, July-September; season 4, October-December. 

 


