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Abstract

Ultrasonic beam transmission through solid plates has been extensively studied over
the past decades. Through this study many anomalies have been found. Plane-
wave theory can not account for these anomalies. It is therefore important to have
a fundamental understanding of these effects in order to accurately model guided
ultrasonic waves in solids. Through the use of experiments and modelling these
effects can be studied.

The objective of this thesis is to study ultrasonic beam transmission through steel at
a normal incidence angle. This study is done by studying the on-axis pressure with
measurement techniques used by numerous members of the acoustics group. In
addition to the on-axis pressure the use of equidistant measurements along an axis
are introduced to the normal incidence ultrasonic beam transmission measurement.
This use of equidistant measurements allows for the use of 2D Fourier transforma-
tions, and the study of beam transmission in the wavenumber domain. Using these
pressure wavenumber spectra the reconstruction of the transmission coefficient can
be achieved using results from measurements. This method is replicated in simula-
tion by using the angular spectrum method and offers comparable results.
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Chapter 1

Introduction

1.1 Motivation

Signal transmission through fluid embedded visco-elastic solids has an integral role
in many research and industrial uses, with Guided Ultrasonic Waves (GUW) of par-
ticular interest. GUW are especially of interest in the form of non-destructive test-
ing and evaluation (NDT & E) and non-invasive ultrasonic technology as these are
favourable methods of crack detection, flow measurement, material characterization
and corrosion measurements among others. However the process of signal trans-
mission through solids is complex. As the interaction of the beam and solid can be
subject to effects such as reflection, dispersion, interference and diffraction among
others. It is therefore important to have a good understanding of the process of GUW
in order to have reliable and accurate models of the processes. The use of numeri-
cal models and physical measurements can contribute to the understanding of this.
The acoustics group at the University of Bergen have both conducted measurements
and made models of this process. This thesis is a part of that research and aims to
contribute to further research within this field.

1.2 Previous Work

Rayleigh first wrote about free vibrations of an infinite plate in 1888 [1]. The theory
for the symmetric and anti-symmetric Lamb modes and their dispersion relation for
a vacuum embedded plate was formulated by Lamb in 1889 [2], and further in 1917
[3]. Following this Reissner[4], in 1938, and Osborne and Hart, in 1945 [5] and 1946
[6], formulated the theory for these waves in a fluid embedded plate. In 1939 Sanders
[7] performed measurements of transmission through thin plates. The general struc-
ture and properties for the dispersion curves for a vacuum embedded plate was
found by Mindlin et al. throughout the 1950’s e.g. [8]. These dispersion properties
for leaky Lamb modes and numerical solutions for them have been studied by nu-
merous researchers e.g. [9]. Throughout the 20th century these researchers, among
many others, built a fundamental understanding of sound propagation and trans-
mission through elastics. The use of plane-wave theory has been used to explain the
propagation of waves in plates [4] [5]. However studies into how normal incident
beams interact with solid plates show effects plane-wave theory does not account
for. These include increase of on-axis transmitted pressure, frequency downshift
and narrowing of the transmitted beam, all associated with the excitation of leaky
Lamb waves e.g.[10, 11, 12, 13]. The acoustics group at the University of Bergen have
conducted significant research into the transmission of sound through elastic plates.
Among others, in 2008 Lohne et al. [12] wrote on ultrasonic signal transmission in
plates and compared simulated models with experiments. Lohne observed the three
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aforementioned effects through measurements. In 2011 Aanes et al. compared sim-
ulated beam interactions at normal incidence using finite element method and com-
paring with an angular spectrum method and measurements [13] confirming the
results of Lohne. Aanes continued the research into his PhD-thesis [11] developing
two models for simulation of beam transmission which incorporated the transducer
into the simulation allowing for more realistic beam interactions with the plate. In
2017 Aanes et al. wrote on and discussed the complex dispersion properties of Lamb
and leaky Lamb modes in elastic and viscoelastic plates [14].

The transmission coefficient, T, is a plane-wave coefficient and describes the trans-
mission of plane waves through the solid. A finite transducer is however not a plane-
wave transmitter and has a complex angular spread. This dilemma has been solved
numerous ways, among others using a large (80 mm× 40 mm) ultrasonic transducer
by Cawley [10] and using spacial distributed measurements e.g. [15, 16]. Safaeinili et
al. [16] used air coupled materials and many different emitter-receiver positions and
angles to synthesize a wide angle focused transducer aperture. Through the summa-
tion of these one dimensional scans they were able to reconstruct the transmission
coefficient with excellent agreement to theory. Joecker and Smeulders [15] used the
synthesized aperture technique of Safaeinili in conjunction with spatial measure-
ments without the solid for spectral decomposition in order to determine the trans-
mission coefficient, and found excellent agreement between the measurements and
theory. Both of these techniques used angled beam incidence and reconstructed the
transmission coefficient as a function of frequency and and incident angle.

The modelling of sound transmission has been done in numerous ways including
more recently within Gaussian beam method e.g. [17], Finite Element Modelling
(FEM) e.g. [18, 19], Distributed Point Source Modelling (DPSM) e.g. [20] and Angu-
lar Spectrum Method (ASM) e.g. [21, 22]. The Angular spectrum method simulates
a baffled piston, with the sound-field decomposed into infinitely many plane waves,
allowing for plane-wave theory and the use of plane-wave transmission and reflec-
tion coefficients. FE and FEM can simulate a real transducer and it’s sound field,
making it more accurate, but is load heavy. Kocbach developed a FEM program for
piezoelectric transducers [23] and has been used extensively in the Acoustics group
at the university of Bergen. Midtbø [24] developed an ASM model based on a model
developed by Anderson and Martin [25].

1.3 Objective

The objective of this thesis is to study the beam transmission through a steel plate
from normal incidence, this includes the excitation of leaky Lamb waves and the the
effects associated with this from the plate. The goal is to study this through measure-
ment and compare with an implementation of ASM based on the model by Midtbø
[24]. Through the measurement and simulation of the pressure spectra, effects such
as transmission can be studied. Furthermore, to reconstruct the transmission coef-
ficient as a function of the horizontal wavenumber and frequency using the normal
incidence measurements. This will be done by using the same measurement tech-
niques that have been previously utilized by the acoustics group [11, 24, 26], but in-
troducing equidistant traversing measurements along an axis in order to transform
the measurements from the spatial domain to the wavenumber domain. Throughout
this process several comparisons to previous works will be made.
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1.4 Outline of Thesis

In Ch. 2 the theory that forms the basis for this thesis is presented. This includes
plane-wave transmission, a summarized derivation of Lamb modes and leaky Lamb
modes. The theory the simulation model used in this thesis. And the equations for
the Fourier transformations used.

In Ch. 3 the different experimental setups are explained, including the components
used. The different methods used to conduct the measurements are presented. The
Experimental setups for both on-axis and transverse measurements are presented.
Lastly the methods used for post-processing are presented.

In Ch. 4 the simulation model is discussed. The different variables and parame-
ters used are presented and discussed. Lastly the different post-processing methods
used are presented, this includes the testing of post-processing methods used in the
experimental setup.

In Ch. 5 the results from the simulations and measurements are presented. This
includes all the stages of the simulation and measurements. For the simulations
this entails the verification of post-processing. For the measurements this includes
results from both on-axis and transverse measurements. Lastly the results are com-
pared.

In Ch. 6 a final conclusion on the work throughout the thesis is given and sugges-
tions for further work.
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Chapter 2

Theory

In this chapter the theory this thesis is based upon will be presented. The theory is
a selection of different subjects ranging from basic beam transmission to a specific
simulation method. In Sect. 2.1 the theory of beam transmission is presented, this
includes the pressure-to-pressure transfer function. Sect. 2.2 and 2.3 present the
theory for Lamb and leaky Lamb modes. Sect. 2.4 presents the theory and equations
for the simulation method Angular spectrum method (ASM). Lastly the theory for
the discrete Fourier transform and Hankel transformation is presented in Sect. 2.5.

2.1 Beam Transmission

FIGURE 2.1: Illustration of beam transmission from baffled piston
through fluid embedded solid plate, y-axis is pointing out of paper.

Fig. 2.1 shows a model of the system used in this thesis and is based on the model
used by Aanes [11]. The model is the basis for both simulation and measurements.
This model has a uniformly vibrating circular baffled piston radiating towards a
solid plate with infinite extent in two directions, submerged in a fluid. The piston
is assumed to be perfectly perpendicular to the z-axis and thus having an incident
angle θ = 0 with the z-axis. As the angle θ is zero it is not shown in the figure. The
coordinates are shown in the figure with the x-axis horizontal and z-axis vertical,
and y-axis out of the paper, with origin placed at the center of the pistons lower face.
The plate has infinite extent in the x and y-directions and a thickness of d = 6.05mm
in the z-direction. The piston has a radius of a = 10.55mm, why this radius is chosen
is discussed in Sect 4.1. The solid plate has its upper face placed at z = 270 mm and
is denoted z0 which is consistent with previous work such as Aanes [11]. The piston
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uniformly vibrates and radiates a pulsed ultrasonic beam into the fluid propagating
at fluid velocity c f . The pressure at the piston-fluid interface is denoted p(x0, 0, 0, f ),
where x0 denotes x = 0 and f is the frequency of the pulsed beam. The beam
then reaches the fluid solid interface at z0. The pressure spectrum at this interface is
denoted p(x, 0, z0, f ). The beam is transmitted through the solid plate, this process
is expanded on in Sect. 2.2. The lower plate face then re-radiates into the fluid. The
transmitted pressure spectrum used throughout simulations and measurements is
located 100 mm below the lower face of the solid plate at position z2 = 376.05mm.
This pressure spectrum is denoted p(x, 0, z2, f ). This model is symmetric around the
z-axis and therefore only the z and x coordinates will be used from this point on.
The y-coordinate can be assumed to be y = 0 if not specified otherwise. The entire
system is assumed to be lossless.

2.1.1 Transfer Function

The pressure-to-pressure transfer function, or Hpp, is used in order to investigate
the transmission through the solid plate. The equation is consistent with its use
previously [11, 24, 27, 28].

Hpp(x, z2, f ) =
p(x, z2, f )
p(x0, z0, f )

. (2.1)

Where p(x0, z0, f ) is the incident pressure located at distance z0 from the source.
p(x, z2, f ) is the transmitted pressure spectrum at the position (x, z2). The Hpp-
transfer function is often plotted logarithmic as 20log10(Hpp).

FIGURE 2.2: Illustrated position of pressure measurement for Hpp
transfer function. y-axis is pointing out of paper

Fig. 2.2 an example of the positions for p(x, z2, f ) and p(0, z0, f ), are given and how
they can be oriented in relation to one another.
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2.2 Lamb Modes

The derivation and formulation of plane waves in elastic media has been done by
many, and are cited by Aanes, but this brief formulation will follow the one given by
Aanes [11]. Lamb modes occur in solid plates in a vacuum [2]. The plate is assumed
to be of infinite extent in the x, y directions and isotropic homogeneous. There is also
assumed to be no Lamb mode particle motion in the y-direction as this is confined to
the x, z directions, making this a 2D-description. The confinement of particle motion
means shear horizontal waves (SH) are excluded from the derivation. This is ex-
plored further later on in the derivation. Lamb modes are divided into two distinct
type of modes, symmetric and anti-symmetric. Lamb waves are the waves propa-
gating through the solid and are the superposition of propagating longitudinal and
shear modes [29]. The longitudinal waves, denoted P (Primary), propagate in the
medium as the compression an rarefaction of the solid. The shear waves, denoted S,
propagate through the shear displacement of particles perpendicular to the direction
of wave propagation [29]. Here only shear vertical waves are used further, denoted
SV.

FIGURE 2.3: Illustration of propagation of Lamb wave within a vac-
uum embedded solid plate of thickness d. y-axis is pointing out of

paper.

The propagation of Lamb waves is illustrated in Fig. 2.3. Here the z′-axis is oriented
the same as z in Fig. 2.1, but has the origin placed in the middle of the solid plate.
The plate has a thickness of d = 2L. The longitudinal and shear velocities are given
respectively by

cL =

√
λ + 2µ

ρs
(2.2)

and
cS =

√
µ

ρs
. (2.3)

The linearized displacement equation of motion for an isotropic elastic, homoge-
neous solid medium is given as
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(λ + 2µ)∇(∇ · u)− µ[∇× (∇× u)] = ρs
∂2u
∂t

(2.4)

where λ is the first Lamé parameter, the elastic modulus, and µ is the second Lamé
parameter, the shear modulus. u = (ux, uy, uz) is the particle displacement and ρs is
the density of the solid and t is time [30]. Equation 2.4 can be decomposed into two
new expressions by using the longitudinal and shear velocities introduced in Eq. 2.2
and 2.3 [12].

(∇2 − 1
c2

L

∂2

∂t2 )Φ = 0 (2.5)

and

(∇2 − 1
c2

s

∂2

∂t2 )Ψ = 0 (2.6)

The Hermholtz decomposition yields us the displacement vector, u expressed as the
scalar potential, Φ and a vector potential, Ψ, i.e. u = ∇Φ +∇× Ψ. Here Eq. 2.5
describes the longitudinal wave and Eq. 2.6 describes the shear wave. As stated
previously the particle motion is restricted to the (x, z)-plane. This can be done
without any loss of generality [12]. The waves can propagate in the x-direction,
making Φ and Ψ independent of y, thus making ∂

∂y = 0. The horizontal and vertical
displacements and stresses are given as [31]

ux =
∂Φ
∂x
−

∂Ψy

∂z′
, (2.7)

uz′ =
∂Φ
∂z′

+
∂Ψy

∂x
, (2.8)

Tz′z′ = (λ + 2µ)(
∂uz′

∂z′
) + λ(

∂ux

∂x
+

∂uy

∂y
), (2.9)

Txz′ = µ(
∂ux

∂z′
+

∂uz′

∂x
). (2.10)

By separation of variables the solutions for the scalar fields and vector fields, Φ and
Ψ, are given as [12]

Φ = (A−e−ihz′ z
′
+ A+eihz′ z

′
)ei(ηx−ωt) (2.11)

and
Ψy = (B−e−ikz′ z

′
+ B+eikz′ z

′
)ei(ηx−ωt), (2.12)

where

ω = 2π f . (2.13)

Here A−2 and A+
2 are the longitudinal wave amplitudes in positive and negative z′-

directions within the solid. B−2 and B+
2 are the equivalent amplitudes only for shear

waves. Here the formulation differs from Aanes [11], as he uses a time convention
of eiωt, but here a time convention of e−iωt will be used in order to be consistent with
other sections. The wavenumbers for the longitudinal and shear waves are given as
[11]

h =
ω

cL
, (2.14)



2.2. Lamb Modes 9

k =
ω

cS
, (2.15)

and the vertical components of these and the horizontal wavenumber η are given as
[32]

hz′ =

{ √
h2 − η2 for η ≤ h

i
√

η2 − h2 for η > h
, (2.16)

kz′ =

{ √
k2 − η2 for η ≤ k

i
√

η2 − k2 for η > k
, (2.17)

η = hx = kx. (2.18)

The boundary conditions for an elastic plate in a vacuum are zero normal and shear
stresses at the interface of the solid and vacuum, such that

Tz′z′ = 0, at z′ = ±L (2.19)

Txz′ = 0, at z′ = ±L. (2.20)

The rest of the derivation and formulation of the Lamb modes will not be included
in this thesis, rather a brief summation of the steps will be given. Aanes [11] fol-
lowing [12] introduces trigonometric functions for Eqs. 2.11 and 2.12. Further these
two functions are inserted into the equations for displacement and stress Eqs. 2.7,
2.8, 2.10 and 2.9. Using the boundary conditions from Eqs. 2.19 and 2.20 and Gaus-
sian elimination of the trigonometric equations for displacement and stress a matrix
is obtained. Setting the determinant of the matrix to zero, the dispersion relation
for the symmetric and anti-symmetric lamb modes for a solid plate in a vacuum
are given. This defines the symmetric and anti-symmetric modes for the vacuum
embedded solid plate as [11]

Symmetric :
tan(kz′L)
tan(hz′L)

= − 4η2hz′kz′

(2η2 − k2)2 , (2.21)

Anti− symmetric :
tan(kz′L)
tan(hz′L)

= − (2η2 − k2)2

(4η2hz′kz′)
. (2.22)

These are further defined as the characteristic functions for the symmetric, S, and
anti-symmetric, AS, modes

S =
(k2 − 2η2)2

tan(hz′L)
+

4η2hz′kz′

tan(kz′L)
= 0 (2.23)

and

AS =
(k2 − 2η2)2

tan(kz′L)
+

4η2hz′kz′

tan(hz′L)
= 0. (2.24)
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2.2.1 Cut-off Frequencies

Some certain frequencies generate standing compressional and shear waves across
the thickness of the plate [11, 33]. This happens when the phase velocity of the Lamb
waves approach infinity [11, 34]. This can be calculated by letting the horizontal
wavenumber η approach zero in Eqs. 2.21 and 2.22. The phase-velocity in the x-
direction is given as [11, 12, 34]

cph =
ω

η
. (2.25)

Eqs. 2.21 and 2.22 become zero if the numerator or denominator of the expressions
become zero or infinity,

lim
kL→nπ

tan(kL) = 0 or lim
kL→ nπ

2

tan(kL) = ∞ where n = 1, 2, 3... (2.26)

This gives us cut-off frequencies for symmetric Lamb modes [11]

f S
tn =

2ncS

4L
, n = 1, 2, 3, ... and f S

lm =
(2m− 1)cL

4L
, m = 1, 2, 3, ... (2.27)

and for anti-symmetric modes

f A
ln =

2ncL

4L
, n = 1, 2, 3, ... and f A

tm =
(2m− 1)cS

4L
, m = 1, 2, 3, ... (2.28)

Where f S
tn is the corresponding frequencies for the symmetrical thickness-shear, TS,

modes. f S
lm is the corresponding frequencies for the symmetrical thickness-extensional,

TE, modes. f A
tm and f A

ln are the equivalent frequencies for the anti-symmetrical TS
and TE modes respectively
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2.3 Leaky Lamb Modes

FIGURE 2.4: Illustration of leaky Lamb wave propagation through
fluid embedded solid plate with thickness d. y-axis pointing out of

paper.

If the solid plate, of thickness d = 2L, is submerged in a single fluid propagating
waves in the solid can leak energy into the fluid. These waves leaking energy into
the fluid are called leaky Lamb waves. The waves generate a pressure wave in the
fluid, illustrated in Fig. 2.4. The pressure wave in fluid travel with velocity c f .

FIGURE 2.5: Illustration of solid plate embedded in fluid

The following derivation also follows [11, 12]. Fig. 2.5 shows the solid plate im-
mersed in a single fluid. The figure is divided into three layers. Layer 1 is the fluid
above the plate, the plate is layer 2 and the fluid below the plate is layer 3. In Layer
1 an incident plane wave A+

1 , where 1 denotes layer and + denotes the propagating
z′-direction, coming from z′ = −∞. A reflected plane wave A−1 , also in layer 1, is
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propagating towards z′ = −∞. In layer 3 a transmitted plane wave A+
3 is propagat-

ing towards z′ = ∞. The waves in layer 1 and 3 can written as [11, 12]

Φ1 = A+
1 eih f ,z′ z

′
+ A−1 e−ih f ,z′ z

′
(2.29)

and

Φ3 = A+
3 eih f ,z′ z

′
. (2.30)

The boundary conditions for an isotropic infinite plate, fully immersed in a single
fluid, are continuity of normal displacement uz′ , normal stress Tz′z′ and vanishing
shear stress Txz′ , and are given as [11, 12]

uz′,n = uz′,n+1 at z′ = ±L (2.31)

Tz′z′,n = Tz′z′,n+1 at z′ = ±L (2.32)

Txz′,n = 0 at z′ = ±L (2.33)

Where n and n + 1 denote the layer number, 1,2 or 3. The vertical wavenumber for
the fluid, h f ,z′ is defined as [11, 12]

h f ,z′ =


√

h2
f − η2 for η ≤ h f

i
√

η2 − h2
f for η > h f .

, (2.34)

Where [35]

h f =
ω

c f
. (2.35)

The horizontal and normal displacement, and the normal stress in layers 1 and 3 are
now given as

ux,1∧3 =
∂Φ
∂x

, (2.36)

uz′,1∧3 =
∂Φ
∂z′

, (2.37)

Tz′z′,1∧3 = −p = λ f (
∂ux

∂x
+

∂uz′

∂z′
). (2.38)

Where p is the sound pressure and λ f is the Lamé parameter for the fluid. For layer
1 this is given as [[11] [12]]

uz′,1 = ih f ,z′ [A+
1 eih f ,z′ z

′
− A−1 e−ih f ,z′ z

′
], (2.39)

Tz′z′,1 = −p = ρ f ω2[A+
1 eih f ,z′ z

′
− A−1 e−ih f ,z′ z

′
]. (2.40)

For layer 3 this is given as

uz′,3 = ih f ,z′A+
3 eih f ,z′ z

′
, (2.41)

Tz′z′,3 = −p = −ρ f ω2A+
3 eih f ,z′ z

′
. (2.42)
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As in the previous section the further derivation will not be explored, but a more
rigorous one can be found in Aanes thesis [11]. A brief summary of what is done
will be given. Using the boundary conditions at z′ = ±L and using trigonometric
functions the displacement u′z and Tz′z′ are rewritten. Txz′ is the same as in Sect. 2.2.
These equations are arranged into matrix A [11]. The dispersion relations for the
symmetric and anti-symmetric leaky Lamb waves are found by setting determinant
of the matrix to zero, det|A| = 0, The determinant is calculated using cofactor ex-
pansion [11]. Then the dispersion relation for the symmetrical and anti-symmetrical
leaky Lamb modes for an infinite isotropic plate fully immersed in a single fluid are
given as [11]

S + iY = 0 (2.43)

and
AS− iY = 0. (2.44)

Where [11]

Y =
ρ f hz′

ρsh f ,z′
k4 (2.45)

2.3.1 Plane-wave Transmission and Reflection Coefficients
for Fluid Embedded Plate

The transmission and reflection coefficients are more rigorously derived by Aanes
[11] and Lohne [12], but a summation of what is done will be given. The time con-
vention used here is e−iωt. Setting the incident wave, A+

1 = 1 and inserting this into
equations the for the reflection and transmission coefficient given as [12, 11]

R(η, L, f ) =
A−1
A+

1
ei2h f ,z′ L (2.46)

and

T(η, L, f ) =
A+

3

A+
1

ei2h f ,z L. (2.47)

Using Cramer’s rule and using the matrix, A, from Sect. 2.3 A−1 and A+
3 are cal-

culated [11]. Giving the transmission and reflection coefficient for infinite isotropic
plate immersed in a single fluid

T(η, L, f ) =
iY(AS + S)

(S− iY)(AS + iY)
(2.48)

and

R(η, L, f ) =
SAS−Y2

(S− iY)(AS + iY)
. (2.49)

AS, S and Y are given respectively in Eqs. 2.23, 2.24 and 2.45.
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2.4 Angular Spectrum Method

In this section the simulation method Angular Spectrum Method (ASM) will be pre-
sented. This ASM model was developed Midtbø [24] and was implemented in this
thesis in Matlab. The Angular Spectrum Method simulates a uniformly vibrating
planar circular piston in a rigid baffle. The piston is radiating, at an incident angle
of θ = 0, into a fluid with a solid steel plate at a distance of 270 mm. The piston is
assumed to be vibrating uniformly at a constant normal surface velocity of v0. The
velocity of the fluid is c f and the system is assumed to be lossless. Fig. 2.1 shows the
system in detail. In ASM cylindrical coordinates replace the Cartesian coordinates
of Sect. 2.1. The position is now a function of (r, z) where r represents the radial dis-
tance and z represents the vertical distance, the system is assumed to be symmetrical
around the z-axis. All other variables are still consistent with section 2.1.

2.4.1 ASM Method

As stated previously the normal particle velocity on the piston surface, vz(r, z =
0, f ), is assumed to be constant and uniform, this boundary condition is written as
[24, 35]

v(r, z = 0, f ) =
{

v0, r ≤ a
0, r ≥ a (2.50)

where a is the radius of the piston. A Hankel transform/Fourier-Bessel transform is
used to decompose the normal particle velocity and is given as [24, 31]

Vz(ηr, 0, f ) = 2π
∫ ∞

0
vz(r, 0, f )J0(ηrr)rdr. (2.51)

Here ηr is distinguished from η of Sect. 2.2. Here ηr is a function of r and is defined
as the horizontal wavenumber ηr = hr. Vz(ηr, 0, f ) is known as the angular spectrum
of vz(r, 0, f ) and is characterized by the dependence on the horizontal wavenumber
ηr. J0 is the zeroth order Bessel function of the first kind. Here a time convention
of e−iωt is used. A known integral identity is used to write the angular spectrum as
[24, 31]

Vz(ηr, 0, f ) = 2πv0

∫ a

0
J0(ηrr)rdr = 2πav0

J1(aηr)

ηr
(2.52)

Where J1 is the first order Bessel function of the first kind. This function is known
as the source aperture function. The identity 2J1(aηr)/aηr is the directivity function
also known as the Jinc-function [24], which has the property [24]

lim
x→0

2J1(x)
x

= 1. (2.53)

The source aperture from Eq. 2.52 and the identity from Eq. 2.53 will be used later
on. The actual field variable of interest is the pressure, which is obtained from the
angular spectrum, Eq. 2.51. This is done by using Euler’s equation and Fourier
transform [35]. This derivation is expanded on in Midtbø’s thesis [24], but results in
the equation

P(ηr, 0, f ) =
ρ f ω

hz, f
V(ηr, 0, f ). (2.54)
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Here ρ f is the fluid density and hz, f is fluid vertical wavenumber. When the pressure
is a function of the horizontal wavenumber it is referred to as the pressure wavenum-
ber spectrum. The equation is not valid for h f ,z = ηr, because the denominator of
the fraction would become 0 and result in a singularity. This is discussed further in
Sect. 4.1.1. Using the Jinc function identity from Eq. 2.53 and Eq. 2.52 we can rewrite
Eq. 2.54

P(ηr, 0, f ) = πa2 ρ f ω

hz, f
v0

2J1(ηra)
ηra

. (2.55)

Giving the pressure wavenumber spectrum at z = 0. The pressure in the wavenum-
ber domain at distance z0 is found by using plane wave field extrapolation [32]

P(ηr, z, f ) = P(ηr, 0, f )e(ihz, f z). (2.56)

Accounting for a steel plate the transmission coefficient, T(ηr, d, f ), which is defined
Eq. 2.48, but defined here with cylindrical coordinates. T(ηr, d, f ) is introduced to
Eq. 2.56

P(ηr, z2, f ) = P(ηr, 0, f )T(ηr, d, f )eih f ,z(z2−d). (2.57)

Here d is the thickness of the steel plate and z2 denotes the z-position of the trans-
mitted pressure. The wave field propagation term has (z2 − d), as the transmission
coefficient includes the propagation through the plate. In order to get the pressure
from the wavenumber-domain to the spatial-domain an inverse Hankel transform
is used on Eqs. 2.56 and 2.57 and give [32]

p(r, z, f ) =
1

2π

∫ ∞

0
P(ηr, z, f )J1(ηrr)ηrdηr. (2.58)

and

p(r, z2, f ) =
1

2π

∫ ∞

0
P(ηr, z2, f )J0(ηrr)ηrdηr. (2.59)

The pressure here is a function of r the spatial position, and is referred to as the
pressure spectrum.

2.4.2 Pressure Calculated Transmission Coefficient

In addition to Eq. 2.48 the transmission coefficient can also be calculated using the
calculated the pressure wavenumber spectra P(ηr, z2, f ) and P(ηr, z0, f ) from Eqs.
2.57 and 2.56 respectively. Here z0 denotes the pressure at the face of the steel plate.
Rearranging Eq. 2.57 we can calculate the transmission coefficient with

T(ηr, d, f ) =
P(ηr, z2, f )

P(ηr, z0, f )eih f ,z(z2−z0−d)
. (2.60)

Here the incident pressure is calculated to z0, this is accounted for in the wave field
propagation term. Eq. 2.60 is used further in Ch. 3 and 4. The thickness of the plate
d = 2L is assumed to be unchanged further and is not listed as one of the variables
in further use.
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2.5 Fourier Transformation

In this section the equations for the Discrete Temporal Fourier transformation and
the Hankel transformation will be discussed. This is the basis of many simulation
and post processing methods discussed in Chs. 3 and 4.

2.5.1 Discrete Fourier Transform (DFT)

The Fourier method is a mathematical operation that decomposes /or transforms
for example a signal of time into its frequency components. We can distinguish two
types of transformations, temporal and spatial. The temporal Fourier transformation
takes a continuous signal of time and transforms it to the frequency domain. For
sampled signals the signal is not continuous but is a set of discrete values. The
discrete Fourier transform (DFT) approximates the Fourier transform as a sum of all
the samples. The temporal DFT is given as [32]

F( f ) =
N−1

∑
t=0

f (t)ei2π f t/N . (2.61)

Where N is the number of of samples.

2.5.2 Hankel transformation

The Hankel transform of the zeroth order, or Fourier-Bessel transform, is a 2D Fourier
transform that assumes rotational symmetry as in Sect. 2.4. In the Hankel transfor-
mation used in this thesis the pressure is assumed to be symmetrical around the
z-axis. The Hankel transformation from the spatial x-domain to the wavenumber
η-domain is given as [32]

F(η) =
1

2π

∫ ∞

0
f (x)J0(ηx)ηdη. (2.62)

The inverse of Eq. 2.62 going from the wavenumber η-domain to the spatial x-
domain is given as [32]

f (x) = 2π
∫ ∞

0
F(η)J0(ηx)xdx. (2.63)
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Chapter 3

Experimental Setup and Method

Through this chapter the experimental setup and individual components will be
presented. Following this the methods used for measurement and post-processing
are shown. This setup has was first used in this configuration by Aanes [11], and
subsequently by Midtbø [24] and Eileraas [26]. The basis for this setup is described
in Sec. 2.1. In Sect. 3.1.1 the components of the experimental setup are presented. In
Sect 3.1 the equipment used throughout the measurements are discussed. Sect. 3.2
presents the different experimental configurations used in this thesis. The methods
used to conduct the measurements are presented in Sect. 3.3. In Sect. 3.4 the post-
processing methods are presented.

3.1 Equipment

In this section the equipment used throughout the measurements are presented. The
equipment remains the same through all the different measurements.

3.1.1 Experimental Setup

FIGURE 3.1: Photo of measurement tank with steel plate immersed in
water
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FIGURE 3.2: Schematic of the experimental setup with top and side
view, the axes are oriented accordingly

In the photo Fig. 3.1 the experimental setup is shown. In Fig. 3.2 a schematic of
the setup is illustrated. The experimental setup consists of a steel plate submerged
in water within a tank with the dimensions measured to height x width x length =
60 x 75 x 160 cm3. The tank is filled to 51 cm± 1 cm in the y-direction. The steel plate
has been measured to dimensions 6, 05± 0, 01 mm thick, 500 mm wide and 700 mm
long [26]. The piezoelectric transducer, to the left in the photo and schematic is
attached to the visible motor-stage, it is radiating towards the plate at a distance of
z0 = 270mm from the plate, 440 mm from the back glass and 270 mm from the side
glass. The transducer radiates at an incident angle of θ = 0◦. On the other side of
the steel plate a needle hydrophone, attached to the rod seen on the right side of
photo Fig. 3.1, is placed 100 mm from the right side of the steel plate and 465 mm
from the glass wall. The total distance between the transducer and hydrophone is
z2 = 376, 05 mm. These distances were chosen to compare to previous work done by
among other Aanes [11]. The axes are consistent with that of Ch. 2, with the origin
placed in the middle of the transducer. The z-axis points towards the steel plate, the
x-axis along the short length of the tank and the y-axis in the vertical direction of
the tank. Measurements are made over the frequency range of 350 kHz to 1 MHz.
This range is chosen to be consistent with previous work [11, 24] and the excitation
of leaky Lamb modes within that range.



3.1. Equipment 19

3.1.2 Transducer and Needle Hydrophone

The transducer used in this setup was built by Aanes during his thesis (transducer
no. 3) [11]. It is a piezoelectric transducer with e piezoelectric element with thickness
of 4, 0 mm and radius of 12, 4 mm [11]. The transducer was calibrated by Aanes and
is intended for use in the 350 kHz− 1 MHz range.

FIGURE 3.3: Photograph of the piezoelectric transducer

FIGURE 3.4: Photograph of PA needle hydrophone
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The needle hydrophone is also the same as used by Aanes [11], Midtbø [24] and
Eileraas [26]. This hydrophone was produced by Precision Acoustics Ltd. and is a
PVDF needle hydrophone. It consists of a 1 mm diameter hydrophone with a 100mm
probe length. The hydrophone has National Physical Laboratory (NPL) calibration
as well as in-house calibration. The in-house calibration is detailed in M. Aanes’ the-
sis [11]. Here the NPL calibration is used [36]. The hydrophone is connected with a
coaxial plug and has an uncertainty of ±0, 8dB [36]. The Hydrophone is calibrated
from NPL in the frequency range of 100 kHz to 1 MHz with 10kHz increments pro-
viding a level of confidence of approximately 95% [36]. In the calibration certificate
it was also noted that "The tolerance on the orientation of the hydrophone relative to
the direction of propagation of the incoming wave was ±3◦ in the horizontal plane
and ±3◦ in the vertical plane." [36]. No other data regarding this is provided, so
the actual effect of this is uncertain. Lastly the certificate from NPL also noted that
the soaking time of the hydrophone was approximately 1 hour prior to use and a
significantly different soaking time may affect the measured sensitivity [36].

3.1.3 Electronic Transmission and Measurement Components

FIGURE 3.5: Illustration of electrical components and their
connections

In Fig 3.5 an illustration of the electrical components used in the measurements is
shown. The computer controlled signal generator, HP33120A, generates a sinusoidal
signal. It is set up to supply a 10 V peak-to-peak sine burst of 130 µs duration with
a burst rate of 50 Hz. It also triggers the oscilloscope. It transmits the resulting
waveform to the piezoelectric transducer. The signal is then radiated from the trans-
ducer and picked up by the needle hydrophone. The hydrophone is connected to a
pre-amplifier, PA110078, and DC coupler, DCPS223 (Precision Acoustics Ltd.). The
signal is terminated with 50 Ω in parallel with an amplifier, HVA-10M-60-F (Pre-
cision Acoustics Ltd.) with an input impedance of 1 MΩ and an amplifier gain of
around 46 dB [11]. This gain is used for all frequencies, as Aanes found that the fre-
quency response of the amplification factor is relatively flat in the frequency range,
350 kHz to 1 MHZ [11]. The amplifier is connected through a coaxial cable with the
DC-coupler. The signal is then filtered through a band-pass filter (200 kHz-2MHz)
of the type Krohne Hite model 3940. Lastly the signal is received by the oscilloscope,
Tektronix DPO 3012. The parameters of the oscilloscope such as sample frequency,
average of bursts and time delay before storage are computer controlled.
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3.1.4 Positioning System

FIGURE 3.6: Illustration of motor-stages and their axes. The top part
is seen from above and the bottom part is from the side.

In Fig. 3.6 the four motor-stages used in the experimental setup are depicted. The
motor-stages are used to position the transducer and hydrophone. The transducer
is only controlled on the rotary axis, θ. This is controlled by the Micos PRS-110 with
an accuracy of ±0.006◦ [37]. The hydrophone is controlled by three motor-stages,
one for each linear axes. The x-position is controlled by the Micos LMS-100, with
an accuracy of ±3µm [37]. The range is limited by the cable connected to the motor
stage, but is sufficient for the measurements. The y-position is controlled by the
Parker 404XE T09 and the z-position is controlled by the Parker 404XE T07. The
Parker 404XE T09 has a range of 400 mm and an accuracy of ±106 µm [38]. The
Parker 404XE T07 has a range of 300 mm and accuracy of 90 µm [38]. All of the
motor-stages are controlled through the use of Matlab and corresponding scripts.
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3.2 Experimental Setups

In this section the different experimental setups are presented. There are two pairs
of measurements conducted. each of these will be presented. The x and z positions
will vary in the setups, but the y-coordinate remains unchanged at y = 0 and is not
listed as one of the variables in p(x, z, f ).

3.2.1 On-Axis Free Field Measurement

FIGURE 3.7: Illustration of on-axis free field measurement,
p(x0, z0, f ). View from the side.

In this setup the pressure p(x0, z0, f ) is measured. This is one of the measurements
needed in the Hpp-transfer function from Eq. 2.1. In Fig. 3.7 the hydrophone is
placed at z-position z0. The measurements are conducted for each frequency in the
range 350 kHz − 1 MHz with ∆ f1 = 1kHz. The signal is radiated as a sine wave
lasting 130 µs. The measurement takes in total about an hour to conduct.
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3.2.2 On-Axis Transmission Measurement

FIGURE 3.8: Illustration of on-axis transmission measurement,
p(x0, z2, f ). View from the side.

In this measurement the transmitted pressure p(x0, z2, f ) is measured. With the steel
plate placed at z0 and the hydrophone 100 mm behind the 6.05 mm thick steel plate
at position z2. This is the second measurement used in the Hpp transfer function Eq.
2.1. This measurement along with the on-axis free field measurement of Sect. 3.2.1
are consistent with setups from [11, 24, 26] and results are compared with [11] in Ch.
5. The measurement is conducted for each frequency in the range 350 kHz− 1 MHz
with a frequency step of ∆ f = 1 kHz.
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3.2.3 Transverse Free Field Measurement

FIGURE 3.9: Illustration of transverse free field measurement,
p(x, z0, f ). View from top.

Fig. 3.9 shows an illustration of the transverse free field measurement, note this is
from the top with the x-axis as the vertical axis. The transducer is also moved closer
to one side of the tank in order to get a more expansive measurement, this means the
origin is moved along the x-axis. This measurement is one part of the measurement
for the transmission coefficient by measuring p(x, z0, f ). Here the hydrophone tra-
verses along the x-axis in the positive direction with a step interval ∆x = 1mm. The
hydrophone starts at xmin = −10mm and moves to xmax = 320mm with ∆x = 1mm
and a total length of 331 mm. The hydrophone starts at xmin in order to ensure the
middle of the main lobe is measured. p(x, z0, f ) is measured at each x-position. The
transverse movement is controlled by the Micos LMS-100 which is operated by a
Matlab script which was written during this thesis for this purpose. The frequency
range is still 350kHz − 1MHz but with a ∆ f = 5kHz, a larger ∆ f is chosen in this
measurement because of time constraints. After each frequency has been measured
at a x-position the script moves the hydrophone ∆x. As mentioned in Sect. 3.1.2 the
horizontal angle tolerance of the hydrophone is ±3◦. The angle between the trans-
ducer and hydrophone is denoted β. The maximum value of β is at x = 320mm with
an angle of β = 50◦. At this angle the measurement will be affected. With these pa-
rameters this measurement takes about 8 days. The water height in the y-direction
is filled to 51cm± 1cm, but as the measurement takes about 8 days up to 1cm water
can evaporate over the course of the measurement.
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3.2.4 Transverse Transmission Measurement

FIGURE 3.10: Illustration of transverse transmission measurement,
p(x, z2, f ). View from side.

Fig. 3.10 shows an illustration of the transverse transmission measurement. The
plate is placed at position z0 with the hydrophone at position z2. The transmitted
pressure, p(x, z2, f ), is measured for the same frequencies and x-positions as in the
free field transverse measurement of Sect. 3.2.3. This measurement along with the
transverse free field measurement of Sect. 3.2.3 are used for the purpose of trans-
formation the spatial-domain to the wavenumber-domain. The measurement takes
about 8 days to finish as well.

3.2.5 Symmetrical Transverse Measurement

A second version of the transverse measurement has also been used to measure both
sides of the beam. In this setup the transducer has the same position as in 3.2.1. The
hydrophone starts at position xmin = −210 mm and traverses to xmax = 210 mm. with
a step of ∆x = 5mm. This is done at both z = z0 and z = z2. These measurements
are used in a comparison with a simulation done by Aanes shown in Fig. 5.81.

3.2.6 Transverse Measurement Numbering

The transverse measurements of Sects. 3.2.3 and 3.2.4 were first conducted only for
the frequency f = 455 kHz in order to test the setup. This measurement is used
further in Ch. 5 and is referred to as measurement 1. The measurements of Sects.
3.2.3 and 3.2.4 over the entire frequency range is referred to as measurement 2. The
symmetrical transverse measurement of Sect. 3.2.5 is referred to as measurement 3.
The differing parameters are listed in Table. 3.1
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TABLE 3.1: Transverse measurements

Measurement Frequency Range [kHz] ∆ f xmin[mm] ∆x [mm] xmax[mm]
1 455 -10 1 320
2 350 to 1000 1 -10 1 320
3 350 to 1000 5 -210 5 210

3.3 Methods Used in Measurements

In this section the techniques used to measure the pressure field will be discussed.

3.3.1 Placement and Alignment of the Transducer and Hydrophone

The placement of the transducer is set in the z and y-direction. The transducer can
only be manually moved in the x − direction, but can be remotely rotated around
the y-axis (See Fig. 3.6). For the on-axis measurements of Sects. 3.2.1, and 3.2.2 and
the symmetrical measurement of Sect. 3.2.5, the transducer is placed at a marked
location for the center of the tank. For the transverse measurements of Sects. 3.2.3
and 3.2.4 the transducer is placed at a marked location 110 mm in the negative x-
direction. The hydrophone can move in the x, z and y directions. Along the z-axis the
hydrophone is placed at either z0 or z2. This is achieved by measuring the distance
manually with two reference rods with lengths 270 mm and 100 mm. The 270 mm
rod is used to measure the z0 position and the 100 mm rod for the z2 position. There
is some uncertainty in the z-position as this placement using the reference rod is
subject to human error. The exact uncertainty is hard to assert, but some deviation
is expected.

3.3.2 Incident Angle of Transducer

To ensure that the incident angle θ is set to zero the hydrophone is placed at z =
100mm from the transducer. Through the use of the Micos LMS-100 and Parker
404XE T07 motor-stages the peak pressure is found. Then the hydrophone is moved
200mm along the z-axis away from the transducer. The incident angle θ of the trans-
ducer is then adjusted so that the pressure is at the maximum again. This process
is repeated until no adjustment of the transducer is needed between the two hy-
drophone positions.

3.3.3 Measuring Pressure

The oscilloscope uses an 8-bit resolution. The signal has a length of 130µs and the
measurement is averaged over 256 bursts. The pressure p(x, z, t) is measured over a
4000µs window and is sampled as the voltage output of the hydrophone, V(x, z, t).
As mentioned in Sect. 3.1.3 the oscilloscope is triggered by the signal generator, the
time delay from when the oscilloscope begins sampling to when the signal is radi-
ated is 1600µs. 100 000 samples are taken over the 4000µs interval, this amounts to
a sample frequency of 25 MHZ and a ∆t = 4 · 10−8 s. The samples n of the measure-
ment are stored in array. The time-stamp ti of each sample n is stored in a second
array. The oscilloscope samples the voltage over the hydrophone and this stored as
the voltage value V(x, z, t). This representation of the pressure as the voltage output
of the hydrophone is used throughout this thesis. The script used for the measure-
ment can be seen in Appendix A.
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3.3.4 Parameters and Variables Used in Experiments

In the following table the parameters and variable used in the measurements are
presented.

TABLE 3.2: Parameters and variables of measurements

Parameter or Variable Value or measured value Description
f 350 kHz− 1 MHz Frequency

∆ f 1 kHz Frequency step for
on-axis measurements

∆ f 5 kHz Frequency step for
traversing measurements

x Horizontal position
x0 0 mm Middle of transducer

xmin −10 mm Start x-position for
transverse measurements

xmax 320 mm End x-position for
transverse measurements

∆x 1 mm Step interval along
x-axis for traversing hydrophone

z0 270 mm Free field measurement
position on z-axis

z2 376.5 mm Transmission measurement
position on z-axis

p(x0, z0, f ) V(x0, z0, f ) On-axis free field pressure
p(x0, z2, f ) V(x0, z2, f ) On-axis transmitted pressure
p(x, z0, f ) V(x, z0, f ) Free field pressure at

position (x, z0)
p(x, z2, f ) V(x, z2, f ) Transmitted pressure

at position (x, z2)
θ 0◦ Incident angle of transducer

from the z-axis
β Angle between transducer

and hydrophone
tmin −1600µs Start of sampling
tmax 2400µs End of sampling
∆t 4 · 10−8s Temporal sampling step

Signal length 130µs Length av radiated signal
Sample window 4000 µs Length of sample interval

Time-stamp ti Time of measurement
of each sample

Samples, n 100 000 Samples taken
over sample window

Sampling frequency 25 MHz Frequency of sampling
over sampling window

Average 256 Number of measurements averaged over
Burst rate 50 Hz Time between bursts in Hz
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3.4 Post-Processing of Data

In this section a summation of the methods used to post-process the gathered data
through the measurement setups. This includes selection of post-processing win-
dow and mathematical operations applied to the data.

3.4.1 Selection of Post-Processing Window for On-Axis Measurement

FIGURE 3.11: Example of selected post-processing window for
V(0, z0, t)

FIGURE 3.12: Example of selected post-processing window for
V(0, z2, t)

The post-processing window is the selected interval of samples that will be used for
processing. This includes the fast Fourier transform (fft), used in Matlab. The 130µs
long signal is located somewhere in the 4000 µs long window. A post-processing
window is selected manually by going into the waveform and designating a start
sample, nz,x, and end sample mz,x. Here z, x denotes the position of the hydrophone.
For the on-axis measurement they are denoted nz0,x0 , mz0,x0 nz2,x0 and mz2,x0 . The
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number of samples in the post-processing window is 5000. This selection is seen in
Figs. 3.11 and 3.12, where the interval between sample nz,x and sample mz,x is the
designated post-processing window for the z0 and z2 measurements. The designa-
tion is done for the frequency 455kHz because of its vicinity to a leaky Lamb mode
in the transmission measurement. The vicinity to a leaky Lamb mode is favourable
as the signal is strongest here, and easiest to have clear signal. This post-processing
window is then used for all the other frequencies measured.

3.4.2 Selection of Post-Processing Window for Transverse Measurements

FIGURE 3.13: Calculated steady state region for
V(100mm, z0, t)

FIGURE 3.14: Calculated steady state region for
V(100mm, z2, t)

In order to select a post-processing window for the transverse measurements a dif-
ferent approach than the one for the on-axis measurement is needed. Because the
hydrophone moves further away from the transducer the signal position within the
sample window changes. Therefore a calculation is implemented, using the sound
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velocity and the Pythagorean theorem, to account for the shift in position. At posi-
tion z0 the fluid velocity of water is used c f . At position z2 an approximate velocity
ca is used. This velocity is an average of the velocity the sound travels from the trans-
ducer to position (x0, z2), this is found using an average time of arrival (TOA) of the
z2 measurements and is set to ca = 1515 m/s. A post-processing window is selected
as seen in previous section, in Figs. 3.11 and 3.12, for the measurement at x = 0,
where sample nz,x0 and sample mz,x0 are designated, containing 5000 samples. Af-
terwards a post-processing window is calculated for each previous and subsequent
x positions, nz,−9, nz,−8... nz,320. This is done for both z0 and z2. In Figs. 3.13 and 3.14
the calculated post-processing windows are shown at position x = 100mm for the z0
and z2 measurements respectively.

3.4.3 Temporal DFT - Voltage Spectrum

The sampled voltage from each measurement are given as a function of time, V(x, z, t).
For any further use they are needed as a function of frequency V(x, z, f ). Here the
temporal DFT from Eq. 2.61 is utilized. Matlab has a built in version of this DFT
called Fast Fourier Transform (fft) this function is utilized on the post-processing
windows discussed in Sect. 3.4.1 and 3.4.2. Each individual post-processing win-
dow is transformed. Once a post-processing window has been transformed to the
frequency domain the maximum voltage from that measurement is stored as a com-
plex number, comprised of the amplitude and phase, in a x by f array for further
processing. This is done for position z0 and z2, resulting in two arrays. The resulting
voltage spectra are denoted V(x, z, f ). A distinction between the the post-processing
windows for the on-axis and transverse measurements is made because of charac-
teristics of the signals. The on-axis nz,x and mz,x are adjusted by a Matlab script in
order for the post-processing window to start and end at peaks of the signal. This
script does however not work on the transverse measurements because of the dis-
tortion of the signal further out along the x-axis. The post-processing window is
therefore used from the exact nz,x and mz,x values, meaning there occurs sampling
effects because the selection of nz,x and mz,x is somewhat arbitrary. This could pos-
sibly have been remedied but because of circumstances discussed in 6 this was not
accomplished.

3.4.4 Accounting for Phase

As explained in Sect. 3.4.2 the post-processing window for the transverse measure-
ment is determined by manually asserting the window and then using an approxi-
mation to assert it in subsequent x-positions. To account for the discrepancy in phase
a baseline time is used. The measurement is triggered by the signal generator so this
time stamp is used as a reference for the phase. This is employed using equation

V(x, z, f ) = max(V(x, z, f ))ei 6 (V(x,z, f ))−iωtn . (3.1)

Where tn is the time stamp of the first sample, nz,x, of the post-processing window.
The maximum amplitude of V(x, z, f ) is multiplied by the phase of the fft and the
phase at tn. This is done for each cell in the x by f array. Through this the discrepancy
between the post-processing windows can be accounted for.
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3.4.5 Pressure-to-Pressure Transfer Function

The Hpp transfer function is described by Eq. 2.1. The pressure is represented by the
voltage output of hydrophone, V(x, z, f ). Therefore the equation is given as

Hpp(x, z2, f ) =
V(x, z2, f )
V(x0, z0, f )

. (3.2)

Here V(x, z2, f ) represents the transmitted pressure. This is either obtained from the
on-axis transmission measurement of Sect. 3.2.2, or the transmission measurement
from measurement 3 of Sect. 3.2.5. These results are Fourier transformed from the
temporal to the frequency domain before utilized. V(x0, z0, f ) is the on axis free
field voltage. This is either obtained from the on-axis free field measurement of Sect.
3.2.1, or the x0-position of the free field measurement from measurement 3 of Sect.
3.2.5. These results are also Fourier transformed from the temporal to the frequency
domain before utilized. The calculation is performed for each frequency. This means
for the on-axis results that each cell from the z2-array corresponding to a frequency
is divided by the corresponding cell in the z0-array. For the symmetrical transverse
measurement each row in the z2-array for a given frequency is divided by the x0-
value at that given frequency from the z0-array.

3.4.6 Resolution and Extent

The four parameters that are crucial for the Hankel transform from Eq. 2.62 are ∆x,
xmax, ∆hx and hx,max. The term resolution refers to the step interval in a domain and
the term extent refers to the maximum value in a domain. The relation is given as
[32]

2π

N
= ∆x∆hx (3.3)

Where N is the number of spatial samples, ∆x is the spatial resolution and ∆hx is
the horizontal wavenumber resolution. Assuming the pressure maximum for the
transverse measurement is at x = 0 the extent of x is xmax = 320 mm and a spatial
resolution of ∆x = 1 mm. This results in an extent in the wavenumber domain of
hx,max = 6283.2 rad/m and wavenumber resolution of ∆hx = 19.6 rad/m.

3.4.7 Hankel Transformation - Voltage Wavenumber Spectrum

The next part of the post processing is to transform the arrays discussed in Sect.
3.4.3 from the spatial domain, x-domain, to the wavenumber domain, hx-domain.
To do this the Hankel transformation is utilized. Before the Hankel transformation
is utilized some characteristics of the voltage spectrum are needed. The x-value of
the maximum measured voltage for f = 455 kHz is found. This x-value is manually
assigned as x0 for all V(x, z, f ), making xmax dependant on x0. The Hankel transform
is given in Eq. 2.62. The pressure spectrum is however represented as a voltage
spectrum, giving the Hankel transformation as

VM(hx, z, f ) =
1

2π

∫ ∞

0
V(x, z, f )J0(ηx)hxdhx. (3.4)

Where V(x, z, f ) is the complex valued pressure spectrum component found from
Sect. 3.4.3 with the phase adjustment of Sect. 3.4.4. To solve this integral a trape-
zoidal numerical integration method is utilized. The limits of which are from x0 to
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xmax. VM(hx, z, f ) is then calculated for each horizontal wavenumber at frequency
f . The values of hx are given in Sect. 3.4.6, if it is assumed the voltage maximum is
measured at x = 0. Each frequency row of the x by f array is transformed resulting
in the a new array for the voltage wavenumber spectrum, hx by f . This is done for
the z0 and z2 positions, resulting in two new arrays. Each cell in the arrays corre-
sponding to a value of VM(hx, z0, f ) or VM(hx, z2, f ) depending on the array. The
cells containing the amplitude and phase.

3.4.8 Calculating the Transmission Coefficient

Using Eq. 2.60 the transmission coefficient can be calculated from the the measured
wavenumber pressure spectra, VM(hx, z0, f ) and VM(hx, z2, f ). The transmission co-
efficient in Eq. 2.60 is defined for functions of pressure, but as the measured pressure
is given as voltage the equation for the transmission coefficient is defined as

TM(hx, d, f ) =
VM(hx, z2, f )

VM(hx, z0, f )eih f ,z(z2−z0−d)
. (3.5)

Each cell from the z2 array is divided by plane-wave propagation term and the corre-
sponding cell from the z0 array. The corresponding cell being the cell with the same
hx and f values. The calculation giving the transmission coefficient TM(hx, d, f ).

3.4.9 Post-Processing Parameters and Variables

In Tbl. 3.3 the different variables and parameters of the post-processing methods
are collected. The implementation of the post-processing methods can be seen in
Appendix. B and Appendix. D.

TABLE 3.3: Parameters and variables of measurements

Parameter or Variable Value Description
nz,x First selected sample of post-processing window

where z, x denote position of hydrophone
mz,x Last selected sample of post-processing window

where z, x are the position of the hydrophone
n 5000 number of temporal samples
c f 1485 m/s Fluid velocity
ca 1515 m/s Average velocity of transmitted beam

V(x, z, t) Sampled voltage in interval
tn Time-stamps of first selected and calculated samples
x0 Position of maximum voltage

xmax Spatial extent
∆x Spatial step interval, wavenumber resolution

hx,min 0rad/m Minimum wavenumber
hx,max Wavenumber extent, dependant on ∆x
∆hx Wavenumber resolution, dependant on xmax
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Chapter 4

Simulation Setup and Method

In This chapter the simulation using the ASM will be discussed, including meth-
ods used for further processing. Sect. 4.1 presents the Simulation parameters and
variables. In Sect. 4.2 the use of the simulation and its results are discussed. This
includes the directly calculated pressure wavenumber spectrum and transmission
coefficient in Sect. 4.2.1. The simulated pressure spectra in Sect. 4.2.2. The post-
processing of the pressure spectrum which includes the Hankel transformation to
the pressure wavenumber spectrum in Sect. 4.2.3. The transmission coefficient cal-
culated from these transformed pressure wavenumber spectrum is discussed in Sect.
3.4.8. Lastly the the simulation used to verify the post-processing method is pre-
sented in Sect. 4.2.5.

4.1 ASM Simulation

The implementation of the ASM model is done in Matlab, using the equations from
Sect. 2.4. ASM is used both to compare with experimental results, but also verify
and test the post processing methods used on the experimental results. The ASM
model simulates a baffled piston of radius a = 10.55mm. This is the effective radius
of the simulated FEM transducer in Aanes’ thesis [11] which is based on physical
transducer used in the measurements when adjusted to the frequency of maximum
source sensitivity of f = 575 kHz. This relationship is given by

a =
1.6137

h f sinθ−3dB
(4.1)

Where θ−3dB is the -3dB angle of the transducer. This radius is consistent with
the baffled piston simulations done previously [24, 26]. The piston is simulated ra-
diating waves into a fluid at normal incidence, θ = 0. A steel plate is 270 mm from
the piston face. The steel plate has a thickness of 6.05 mm. Finally the signal is trans-
mitted into the fluid on the other side of the plate. As discussed in section 2.4, ASM
calculates first the pressure as a function of ηr and f, then uses an inverse Hankel
transform to get the pressure as a function of r and f . The pressure is calculated
at the front face of the plate 270 mm from the transducer, z0. Then at the receiver
point 100 mm behind the steel plate, z2. Although not as accurate in regards to the
measurement as a FEM simulation with a simulated transducer as in Aanes’ thesis
[11], the time needed to implement and run a simulation in ASM is favourable. The
script for the implementation of the model can be seen in Appendix C.
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4.1.1 Determining Parameters and Variables

The parameters and variables used in the simulation chosen to match the experi-
mental setups described in Sects. 3.2.3 and 3.2.4. The values are consistent with
previous work [27, 24, 11, 26]. The first part of the ASM simulation is simulating
the wavenumber pressure spectra P(ηr, z0, f ) and P(ηr, z2, f ). The determining vari-
ables here is ηr and the maximum value desired, ηr,max. ηr,max is chosen so that it will
include the relationship h f = ηr, which is where the waves become evanescent. The
requirement for ηr,max is that the angular spectrum is truncated when the evanescent
part is negligible. Therefore ηr,max must be greater than the fluid-wavenumber of
f = 1000 kHz, which is 4231 rad/m, so ηr,max = 4250 rad/m. This value could have
been variable for each frequency, but this aspect was overlooked. ηr,min = 0. The
next variable to consider is the step interval ∆ηr. The consideration here is the rela-
tionship to rmax = 320 mm, as xmax = 320 mm is Sect. 3.9 and 3.2.4. The relationship
is given by [32]

2π

N
= ∆r∆ηr. (4.2)

∆r = 1 mm in order to match ∆x = 1 mm in the experimental setups of Sects. 3.9 and
3.2.4. ∆ηr = 1 · 10−3 rad/m is chosen in order to have an accurate model of P(ηr, z, f ).
This results in N = 4250001 number of samples. As stated in Sect. 2.4.1 at the value
ηr = h f a singularity occurs in P(ηr, z0, f ), because of the inverse proportionality
with h f ,z, which becomes zero. This is solved by sampling very rapidly close to the
value but not the value itself. This second sampling step is set to ∆ηr,2 = 1.33 ·
10−8 rad/m, this was chosen through trial and error. This sampling step is utilized
in the interval (ηr = h f ) − 0.01 rad/m + ∆ηr to (ηr = h f ) + 0.01 rad/m − ∆ηr. The
number of samples N is now a summation of the three ηr-intervals. Before ηr = h f ,
near ηr = h f and after ηr = h f . The total of samples add up to N2 = 5753739
samples. This is however only used for the transformation and is not stored in an
array. The stored array has the same number of samples as P(ηr, z2, f ), N = 4250001.
The distances in the z-direction are the same as in the experiment. The upper face
of the plate at z0 = 270 mm. The plate thickness is set to d = 6.05 mm, the same
as the thickness in the experiments. The distance from the lower face of the plate
is 100 mm so that z2 = z0 + d + 100 mm = 376.05 mm. The same frequency interval
as in the experimental setup is used here with a fmin = 350 kHz and fmax = 1 MHz.
The frequency step is chosen to be ∆ f = 5 kHz as in the experimental setups of Sects.
3.9 and 3.2.4. Next are the physical parameters needed, here the same parameters
used in previous simulations are used [11, 24, 26]. The fluid density is set to ρ f =

1000 kg/m3 and plate density to ρp = 8000 kg/m3. The sound velocity in the fluid is
set to c f = 1485 m/s, the compressional velocity in the plate is set to cl = 5780 m/s
and the shear velocity in the plate is set to cs = 3130 m/s. Finally the particle velocity
on the piston face is set to v0 = 1 m/s as this has been the utilized in [24, 26]. All
these values are given in Tbl. 4.1
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TABLE 4.1: Variables and parameters of ASM model

Variable or parameter value Description
ηr,min 0 rad/m Minimum Horizontal wavenumber
ηr,max 4250 rad/m Maximum horizontal wavenumber
∆ηr 1 · 10−3 rad/m Main wavenumber step

∆ηr,2 1.33 · 10−8 Secondary wavenumber step
fmin 350 kHz Minimum frequency
fmax 1 MHz Maximum frequency
∆ f 5 kHz Frequency step
c f 1485 m/s Fluid velocity
cl 5780 m/s Compressional velocity in steel
cs 3130 m/s Shear velocity in steel
ρ f 1000 kg/m3 Fluid density water
ρp 8000 kg/m3 Density steel
v0 1m/s Particle velocity piston face
a 10.55 mm Piston Diameter
z0 270mm Distance from piston to plate
d 6.05 mm Thickness of plate
z2 376.05 mm Distance from steel plate and receiver

rmin 0 mm Start of simulated pressure field
rmax 320 mm End of simulated pressure field
∆r 1 mm radial step
N 42500001 Number of samples

4.2 Use of ASM

In this section the use of ASM will be discussed. The main simulation of P(ηr, z, f )
and p(r, z, f ) but also other uses such as comparing post-processing methods uti-
lized for the physical measurements detailed in Sect. 3.4.

4.2.1 Directly Calculated Pressure Wavenumber Spectra and Transmis-
sion Coefficient

The first part of the ASM simulation, as mentioned previously, calculates the pres-
sure as a function of the ηr and f , P(ηr, z, f ). They are calculated from Eqs. 2.56
and 2.57. These pressure wavenumber spectra can be used to compare with the ones
obtained from the transverse measurements of Sects. 3.2.3 and 3.2.4 and are denoted
PD. In addition the transmission coefficient used in the calculation, described in
Eq. 2.48, can be compared with the measured one. This equation is given in Carte-
sian coordinates, but is used here with the cylindrical coordinates used in ASM. The
transmission coefficient used in the simulation is denoted |TD|

4.2.2 Simulated Pressure Spectra

The second part of the ASM simulation is the simulated pressure spectra, p(r, z0, f )
and p(r, z2, f ), denoted pr. These are calculated using the Eqs. 2.58 and 2.59. A
trapezoidal integration method is used. The integration limit is set by the vector
ηr. The pressure spectra components can be used to compare with the measured
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voltage spectra components described in Sect. 3.4.3 and are used in the further post-
processing simulation.

4.2.3 Post-processing of Pressure Spectrum

This step in the ASM-simulation is used to simulate the methods used in Sect. 3.4.7.
The simulated pressure spectrum, pr(r, z, f ), from Sect. 4.2.2 is utilized in the same
manner as the voltage spectra V(x, z, f ) from the the Sect 3.4.3. The Hankel trans-
formation from Eq. 2.62 is used to transform the simulated pressure spectra to the
wavenumber domain again. Here the Hankel transformation is a function of r and
ηr. A trapezoidal integration is utilized with the limit being the r-vector of the pres-
sure spectrum. This means the new pressure wavenumber spectra are subject to the
same restraints as the measurements in regards to rmax and ∆r. With these variables
the extent can be up to ηr,max = 6283.3rad/m, but is set to ηr,max = 4300 rad/m as this
is deemed sufficient. The resolution can be be set to to ∆ηr = 19.6 and is rounded
up to ∆ηr = 20rad/m. The same method as in 3.4.7 is utilized. These pressure
wavenumber spectra are denoted PH. The parameters of the Hankel transformation
are given in Table. 4.2.

TABLE 4.2: Variables and parameters of Hankel transformation

Variable or parameter value Description
rmax 320 mm Extent of pressure spectrum in r-domain
rmin 0 mm Minimum r-value
∆r 1 mm Spatial resolution

ηr,max 4300 rad/m Extent in wavenumber domain
ηr,min 0 rad/m Minimum in wavenumber domain
∆ηr 20 rad/m Resolution in wavenumber domain

4.2.4 Pressure Calculated Transmission Coefficient

Using the Hankel transformed pressure wavenumber spectra PH the transmission
coefficient can again be calculated using Eq. 2.60 as in Sect 3.4.8, denoted TH. This
transmission coefficient can show what effect the reduction of resolution and extent
of the spatial samples from the pressure spectrum p(r, z, f ) will have on the recon-
struction of the transmission coefficient.

4.2.5 Post-Processing Verification

To verify that the transformation is implemented correctly a second simulation is
conducted, but utilizing a larger rmax. In this simulation the rmax = 63.5m resulting
in a ∆ηr = 0.1 rad/m. Due to the size of this simulation it is only conducted for the
frequency f = 455 kHz. The differing parameters of the Hankel transformation used
in this simulation are given in Table. 4.3. The rest of the variables and parameters
are given in Table. 4.1.
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TABLE 4.3: Variables and parameters of Hankel transformation

Variable or parameter value Description
rmax 63.5 mm Extent of pressure spectrum in r-domain
rmin 0 mm Minimum r-value
∆r 1 mm Spatial resolution

ηr,max 4300 rad/m Extent in wavenumber domain
ηr,min 0 rad/m Minimum in wavenumber domain
∆ηr 0.01 rad/m Resolution in wavenumber domain
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Chapter 5

Results and Discussion

In this chapter the results from the simulations and experiments will be presented
and discussed. First the results will be presented individually and later on com-
pared. In Sect. 5.1 the results from the ASM simulation will be presented. This
includes the direct calculation of the transmission coefficient in Sect. 5.1.1 and the
pressure wavenumber spectra in Sect. 5.1.2. Next the pressure spectra are presented
in Sect. 5.1.3. Further the results from the simulated post-processing are presented
in Sects. 5.1.4 where the method of post-processing is tested, and in Sect. 5.1.5 the
effects of limited spatial extent and resolution are presented. Following the ASM
results, the measurement results are presented. Firstly the results from the on axis
measurements. Sect. 5.2.1 presents the sampled data and Sect. 5.2.2 presents the
processed data results with comparison to previous work. Following this the results
from the transverse measurements are presented in Sects. 5.3 with the sampled data
presented in Sect. 5.3.1. In Sect. 5.3.2 the results from the post-processed symmet-
rical transverse measurement with comparison to previous work are shown. Sect.
5.3.3 presents the the voltage spectra results from the transverse measurements. Sect.
5.3.4 presents the voltage wavenumber spectra results from the measurements and
Sect. 5.3.5 presents the measured results for the transmission coefficient. Lastly the
comparison and discussion of the two sets of results are presented in Sect. 5.4 fol-
lowed by some final thoughts in Sect. 5.5.

Unfortunately the processing of the sampled intervals V(x, z, t) from the transverse
measurements, specifically the assignment of start and end sample of post-processing
window, resulted in the phase component being nonsensical. Because of this the re-
sults will focus on the magnitude of measurements and simulations.

5.1 ASM Simulations

In this section the results from the ASM simulation detailed in Ch. 4 will be pre-
sented. The results will be presented in the order they are in the simulation process,
starting at the directly calculated wavenumber spectra and transmission coefficient.
Following this the verification of the Hankel transformation. Lastly the results from
the simulation with limited spatial resolution and extent is shown. The spectra will
be shown at three different frequencies f = 455 kHz, f = 700 kHz and f = 955 kHz.
These three frequencies are chosen as they represent three different intervals of trans-
mission through the plate. f = 455 kHz is in close vicinity to S−2 leaky Lamb mode
at normal incidence, f = 700 kHz is not in the vicinity of mode and therefore repre-
sents a minimum in transmission and f = 955kHz is close to the A3 mode at normal
incidence. All the variables and parameters of the simulation are found in Table. 4.1
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5.1.1 Direct Calculation of Transmission Coefficient

FIGURE 5.1: Directly calculated transmission coefficient |TD| with
labeled leaky Lamb modes

The magnitude of the directly calculated transmission coefficient TD is plotted in Fig.
5.1. The horizontal axis shows ηr and the frequency f along the vertical axis. The
figure shows the magnitude of the transmission coefficient as a function of ηr and
f , with the colour denoting the value of |TD|. Along with the magnitude of TD the
leaky Lamb modes have been labeled consistent with [11], except for the S−2 mode
which is consistent with [14]. |TD| is calculated using equation 2.48.
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5.1.2 Direct Calculation of the Pressure Wavenumber Spectra and Trans-
mission Coefficient Components

As detailed in Sect. 4.2.1 the first part of the ASM simulation calculates the pressure
wavenumber spectra, PD(ηr, z, f ) and the transmission coefficient TD(ηr, f ). Because
these spectra are calculated directly they represent the theoretically correct values.

FIGURE 5.2: Directly calculated magnitude of the pressure
wavenumber spectrum PD(ηr, z0, 455kHz)

Fig. 5.2 shows the directly calculated magnitude of the wavenumber spectrum for
|PD(ηr, z0, 455kHz)|. The figure has the horizontal wavenumber ηr along the hor-
izontal axis and the magnitude |P(ηr, z0, 455 kHz)|[Pa/Hz][m2] along the vertical
axis. The clearest peak is at ηr = 1925.2 rad/m. This is consistent with what is
discussed in Sect. 4.1.1 where ηr = h f results in a singularity. For f = 455 kHz
h f = 1925.2 rad/m. With the region beyond ηr = h f being the evanescent region.

FIGURE 5.3: Zoomed in |PD(ηr, z0, 455 kHz)| from Fig. 5.2

Excluding the peak at hx = 1925.2 rad/m from Fig. 5.2 shows a more detailed view
of the directly calculated spectrum, shown in Fig. 5.3. The maximum is observed at
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ηr = 0 with diminishing side lobes as ηr increases until the exponential increase at
ηr = h f .

FIGURE 5.4: Directly calculated magnitude of the pressure
wavenumber spectrum PD(ηr, z2, 455kHz)

In Fig 5.4 the magnitude of the transmitted pressure wavenumber spectrum PD(ηr, z2, 455 kHz).
Here we see the influence of the plate’s transmission coefficient. The peak at ηr =
1925.2rad/m is not present, as the magnitude approaches approaches zero along ηr
after the peaks seen in Fig. 5.4.

FIGURE 5.5: Directly calculated magnitude of the transmission
coefficient, TD(ηr, 455kHz)

The transmission coefficient for the frequency 455 kHz is plotted in Fig. 5.5. The
magnitude of the transmission coefficient has a value between 0 and 1. 0 being no
transmission and 1 being unity and full transmission. Here one can see the effect the
transmission coefficient has on the pressure wavenumber spectrum. The transmis-
sion coefficient |TD(0, 455 kHz)| = 0.4 shows why the transmitted |PD(ηr, z2, 455 kHz)|
does not have a maximum at ηr = 0 while |PD(ηr, z0, 455 kHz)| has.



5.1. ASM Simulations 43

FIGURE 5.6: Directly calculated magnitude of pressure wavenumber
spectrum PD(ηr, z0, 700kHz)

Fig. 5.6 has the magnitude of the pressure wavenumber spectrum PD(ηr, z0, 700kHz)
plotted. As in Fig. 5.2 we have a peak at ηr = h f , which at f = 700kHz is h f =
2961.8 rad/m.

FIGURE 5.7: Zoomed in |PD(ηr, z0, 700 kHz)| from Fig. 5.6

In Fig. 5.7 as in Fig. 5.3 we see the peak at ηr = 0 and diminishing side-lobes, but
here continuing further as the singularity for f = 700 kHz is higher. The pressure at
ηr = 0 is the same as in Fig. 5.2, this is because the baffled piston used in this model
has the same particle velocity v0 for all frequencies.
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FIGURE 5.8: Directly calculated magnitude of the pressure
wavenumber spectrum PD(ηr, z2, 700kHz)

The magnitude of the transmitted pressure wavenumber spectrum PD(ηr, z2, 700 kHz)
is plotted in Fig. 5.8. Here the highest peak is not at ηr = 0 rad/m but rather at
ηr = 467.5 rad/m. Also worth noting is the fact that the magnitude in Fig. 5.8 is
significantly lower than that of Fig. 5.4. Because f = 700 kHz is not in the vicinity a
leaky Lamb mode at normal incidence.

FIGURE 5.9: Directly calculated magnitude of transmission
coefficient, TD(ηr, 700kHz)

In Fig. 5.9 the magnitude of the transmission coefficient TD(ηr, 700 kHz) is shown.
The magnitude of the transmission coefficient at ηr = 0 is |TD(0, 700 kHz)| = 0.06454.
This explains why |PD(0, z2, 800 kHz)| = 33.51 Pa ·m2/Hz whilst |PD(0, z0, 700 kHz)| =
519.3 Pa ·m2/Hz. The peaks of |TD| do not overlap with peaks of PD(ηr, z0, 955 kHz)|,
resulting in the low transmission shown in Fig. 5.8. This is an example of how the
excitation of leaky Lamb waves impact the transmitted pressure wavenumber spec-
trum.
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FIGURE 5.10: Directly calculated magnitude of the pressure
wavenumber spectrum for PD(ηr, z0, 955kHz)

In Fig. 5.10 we see the magnitude of the pressure wavenumber spectrum PD(ηr, z0, 955 kHz).
Here with a main at ηr = 0 with diminishing side-lobes and a peak at ηr = h f =
4040.7rad/m.

FIGURE 5.11: Zoomed in |PD(ηr, z0, 955 kHz)| from Fig. 5.10

Fig. 5.11 shows |PD(ηr, z0, 955 kHz)| from 5.10 without the peak at ηr = h f . The
magnitude at ηr = 0 is consistent with Figs. 5.3 and 5.7.
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FIGURE 5.12: Directly calculated pressure wavenumber spectrum for
PD(ηr, z2, 955kHz)

In Fig. 5.12 the magnitude of PD(ηr, z2, 955 kHz) is plotted. Here the peak from
|PD(ηr, z0, 955 kHz)| is transmitted fully, with no other larger peaks along ηr.

FIGURE 5.13: Directly calculated transmission coefficient,
TD(ηr, 955kHz)

Fig. 5.13 shows the transmission coefficient |TD(ηr, 955 kHz)|. The transmission co-
efficient shows why |PD(ηr, z2, 955 kHz)| has a peak at ηr = 0 as the transmission
coefficient is equal to 1, meaning full transmission and the presence of a mode. The
other peaks of |TD| do not overlap with any large magnitude of |PD(ηr, z0, 955 kHz)|,
resulting in lack of other peaks in |PD(ηr, z2, 955 kHz)|.
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5.1.3 Pressure Spectrum Components

In this section the simulated pressure spectrum pr(r, z, f ) is presented. These are
inversely Hankel transformed from the pressure wavenumber spectra of Sect. 5.1.2.
They are calculated using the inverse Hankel transformation in Eqs. 2.58 and 2.59.
The parameters of these transformations are given in Table. 4.1. Components of the
pressure spectrum are presented in the plots. The same frequencies as in the Sect.
5.1.2 will be used.

FIGURE 5.14: Calculated magnitude of the pressure spectrum
component, pr(r, z0, 455 kHz)

The simulated magnitude of pressure spectrum component pr(r, z0, 455 kHz) is plot-
ted in Fig. 5.14. Along the vertical axis the magnitude |p(r, z, f )| is given and the
radial distance r is along the horizontal axis. We see a clear main-lobe at r = 0 m with
weaker side-lobes further along. As the side-lobes diminish in magnitude, they ex-
tend along r. The simulated spectrum component stops at r = 0.32 m as this is
maximum extent used in this simulation.

FIGURE 5.15: Calculated magnitude of the pressure spectrum
component pr(r, z2, 455 kHz)
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In Fig. 5.15 the magnitude of the transmitted pressure component pr(r, z2, 455 kHz)
is plotted. A clear main-lobe is visible at r = 0 with some faint side-lobes further
out. Note the pressure increase of 2.7dB from r p(0, z0, 455 kHz) to pr(0, z2, 455 kHz),
qualitatively consistent with [27, 11].

FIGURE 5.16: Calculated magnitude of the pressure spectrum
component pr(r, z0, 700 kHz)

Fig. 5.16 has the magnitude of the pressure spectrum p(r, z0, 700 kHz) plotted. The
spectrum is very similar to that of Fig. 5.14, but with a slightly narrower main lobe
and more side-lobes. The pressure is also greater for pr(0, z0, 700 kHz) caused by the
narrowing of the main-lobe.

FIGURE 5.17: Calculated magnitude of the pressure spectrum
component pr(r, z2, 700 kHz)

|pr(r, z2, 700 kHz)| is plotted in Fig. 5.17 . Here the main lobe is significantly damp-
ened from plate when compared to Fig. 5.16. The side lobes are not well defined and
oscillate rapidly. This oscillation is accurate, as the parameters of PD(ηr, z0700 kHz)
are more than enough to give this accurate of resolution in the r-domain.
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FIGURE 5.18: Calculated magnitude of the pressure spectrum
component pr(r, z0, 955 kHz)

In Fig. 5.18 the pressure spectrum component |pr(r, z0, 955 kHz)| is plotted. Com-
pared to Figs. 5.14 and 5.18 the main-lobe is narrower and greater than both pr(0, z0, 455 kHz)
and pr(0, z0, 700 kHz).

FIGURE 5.19: Calculated magnitude of the pressure spectrum
component pr(r, z2, 955 kHz)

The pressure spectrum component |pr(r, z2, 955kHz)| is plotted in Fig. 5.19 . Here
the main-lobe is very visible and is far greater than any side-lobes.
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5.1.4 Post-processing Verification

In this section the simulation discussed in 4.2.5 will be presented. In this simulation
the parameter rmax = 63 m is increased in order to increase the resolution in the
wavenumber-domain to ∆ηr = 0.01 rad/m. The parameters and variables of this
simulation are given in Tables. 4.1 and 4.3.

FIGURE 5.20: Calculated magnitude of the pressure spectrum
pr(r, z0, 455 kHz)

In Fig. 5.20 magnitude of the pressure spectrum component pr(r, z0, 455 kHz) is
shown. This spectrum continues till r = 63 m. With rmax = 63 m the pressure spec-
trum component is approaching zero, however there is still pressure at r = 63 m.
This is the result of the simulation being lossless. As the p is not zero at the end of
the component, this may have effects on the Hankel transformation. This calculation
is also performed for pr(r, z2, 455 kHz).

FIGURE 5.21: Magnitude comparison: |PH(ηr, z0, 455kHz)| and
|PD(ηr, z0, 455kHz)| from Fig. 5.2

Comparing the pressure wavenumber spectrum that was Hankel transformed from
the pressure spectrum in Fig. 5.20, PH(ηr, z0, 455 kHz), with the directly calculated
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wavenumber spectrum from Fig. 5.14, PD(ηr, z0, 455 kHz). We see very similar
curves. The most significant difference is the peak at ηr = h f where PH does not
reach the same value as PD. PH(1925.2 rad/m, z0, 455 kHz) = 740 Pa ·m2/Hz while
PD(1925.2 rad/m, z0, 455 kHz) ≈ 24500 Pa ·m2/Hz. This is caused by the rmax being
insufficient for the resolution, ∆ηr, needed to calculate these values.

FIGURE 5.22: Magnitude comparison: |PH(ηr, z2, 455kHz)| and
|PD(ηr, z2, 455kHz)| from Fig. 5.4

The comparison in Fig. 5.22 PH(ηr, z2, 455 kHz) and PD(ηr, z2, 455 kHz) from Fig. 5.4
we see they are almost identical as well.

FIGURE 5.23: Zoomed in Fig. 5.22 |PH(ηr, z2, 455kHz)|,
|PD(ηr, z2, 455kHz)| from Fig. 5.3

Zooming in on a section near the peak of Fig. 5.22, Fig. 5.23 shows the interval ηr =
100 rad/m to ηr = 200 rad/m. Here the variation is negligible at ∆P = 0.4Pa ·m2/Hz.
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FIGURE 5.24: Comparison: |TH(ηr, 455kHz)|, |TD(ηr, 455kHz|
from Fig. 5.5

Using PH(ηr, z0, 455 kHz), PH(ηr, z2, 455 kHz) and Eq. 2.60 we can compare TH with
the calculated transmission coefficient, from Eq. 2.48, in Fig.5.24. Here the differ-
ences between the transformed spectra and the calculated ones becomes easier to
see, as small differences between PH and PD can have large outcomes in the trans-
mission coefficient.

FIGURE 5.25: Zoomed in comparison from Fig. 5.24 |TH(ηr, 455kHz)|,
|TD(ηr, 455kHz)

In Fig. 5.25 the vertical axis is scaled down and the differences from Fig. 5.24
are more evident. In general both follow transmission coefficients follow the same
path, but at certain values TH increases exponentially. This is caused by differences
in PH(ηr, z0, 455 kHz) and PH(ηr, z2, 455 kHz), where PH(ηr, z0, 455 kHz) approaches
zero, but PH(ηr, z2, 455 kHz) does not. The effect of the larger rmax is beneficial when
compared to the pressure wavenumber spectrum of the next section.

The result of this simulation shows that the Hankel transformation of the pressure
spectrum component in Fig. 5.20 and the z2 equivalent does approximate |PD|,
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shown in Figs. 5.21 and 5.22. However as this simulation is not lossless the trans-
formation will not be identical, because the pressure is never zero. The transmission
coefficient in Fig. 5.25 showed that the transmission coefficient is not identical, but
showed overall agreement in the lower wavenumbers. This would most likely im-
prove with a larger rmax. The post processing method is shown to be usable.

5.1.5 Effects of Limited Spatial Resolution and Extent

In order to study the effect of the limited spatial extent and resolution of the mea-
surements, the Hankel transformation from p(r, z, f ) to P(ηr, z, f ) is utilized. The
pressure spectra components from Sect. 5.1.3 along with the complex phase com-
ponents are Hankel transformed to the wavenumber domain. This calculation is
detailed in Sect. 4.2.3. The wavenumber resolution here is ∆ηr = 20 rad/m. The
pressure wavenumber spectra are compared to the directly calculated spectra from
Sect. 4.2.1.

FIGURE 5.26: Magnitude comparison: |PH(ηr, z0, 455kHz)| and
|PD(ηr, z0, 455kHz)| from Fig. 5.2

In Fig. 5.26 the magnitude of PH(ηr, z0, 455 kHz) for the Hankel transformed wavenum-
ber spectrum |PH | and the directly calculated wavenumber spectrum |PD| from Fig
5.2 are compared. |PH | is transformed from the pressure spectrum component in Fig
5.14. Here there are several significant difference between the spectra. Firstly the
magnitudes at ηr = 0 are not the same. |PH | starts at the value |PH | = 527.4Pa ·
m2/Hz while |PD| = 519.3 Pa ·m2/Hz. following this |PH | does not reach the mini-
mum of |PD|. While |PD| reaches a first minimum of 0.00014 Pa ·m2/Hz, |PH | reaches
a minimum of 3.558 Pa ·m2/Hz. This continues for the next three minimums. After
the minimum near ηr = 1260 rad/m |PH | diverges from the path of |PD| and does
not include the peak at ηr = h f . Following the peak at ηr = h f |PD| is zero, however
|PH | does not reach zero. When compared to Fig. 5.21 where |PH | follows the path
of PD it is evident that the lack of extent in the spatial domain impacts the pressure
wavenumber spectrum.
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FIGURE 5.27: Zoomed in view from Fig 5.26, |PH(ηr, z0, 455kHz)|
after ηr = h f

Zooming in on the area after the peak at ηr = h f we see in Fig. 5.27 that PH does
in fact not decrease, but rises, while |PD| approaches zero. The calculation of |PH |
ends at 4300 rad/m, but it seems as the magnitude would rise further if a larger
ηr,max was used. The magnitude is minimal when compared to the value at ηr = 0
from Fig. 5.26, but shows that there are issues with the implementation Hankel
transformation. Specifically the pressure spectrum components being nonzero at
the r-limit.

FIGURE 5.28: Magnitude comparison: |PH(ηr, z2, 455kHz)| and
|PD(ηr, z2, 455kHz)| from Fig. 5.4

In Fig. 5.28 the magnitude of the transmitted wavenumber pressure spectra P(ηr, z2, 455 kHz)
are plotted. |PD| is from Fig. 5.4 and |PH| is Hankel transformed from the pressure
spectrum component in Fig. 5.15 along with the complex phase component. In this
figure the resolution of |PH | is more evident. This can be seen at the peaks of |PD|
and |PH |. The large ∆ηr means that the peaks of |PD| are not replicated by |PH |.
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FIGURE 5.29: Zoomed in view from Fig 5.28, |PH(ηr, z2, 455kHz)|
after ηr = h f

Showing the interval after ηr = h f for |PH(ηr, z2, 455 kHz)| in Fig. 5.29 we see the
same effect as in Fig. 5.27. The magnitude of PH rises while PD approaches zero.

FIGURE 5.30: Magnitude comparison: |TH(ηr, 455kHz)| and
|TD(ηr, 455kHz)| from Fig. 5.5

The difference between the directly calculated results and the Hankel transformed
results are very evident in the magnitude of the transmission coefficient. In Fig. 5.30
the directly calculated transmission coefficient |TD|, from Fig 5.5, and the transmis-
sion coefficient, |TH |, calculated from PH(ηr, z0, 455 kHz) and PH(ηr, z2, 455 kHz) are
plotted. The calculation of TH is detailed in Sect 4.2.4. The first peak of the trans-
mission coefficient is replicated by |TH |. However |TH | does in fact exceed unity
with a value of |TH(160 rad/m, 455 kHz)| = 1.005. This is easily visible at the sec-
ond peak. The third peak is not replicated by |TH | because the width of the peak
is smaller than the resolution of |TH |. Following this |TD| is somewhat replicated.
After the minimum of |TH | at ηr = 1120rad/m |TH | diverges from |TD| and becomes
exponential.
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FIGURE 5.31: Magnitude comparison: |PH(ηr, z0, 455kHz)| from Fig.
5.26 and |PH(ηr, z2, 455kHz)| from Fig. 5.28

In Fig. 5.31 the magnitude of the two pressure wavenumber spectra PH(ηr, z0, 455 kHz)
and PH(ηr, z2, 455 kHz) from Fig. 5.26 and 5.28 respectively. Here we see what causes
the exponential growth of |TH |. The peak at ηr = 1380 rad/m signifies the minimum
of |TH |. Following this the decrease of |PH(ηr, z0, 455 kHz)| causes the exponential
growth. This does not happen for |TD|.

FIGURE 5.32: Magnitude comparison: |PH(ηr, z0, 700kHz)| and
|PD(ηr, z0, 700kHz)| from Fig. 5.6

The magnitude of PH(ηr, z0, 700 kHz) and PD(ηr, z0, 700 kHz), from Fig. 5.6, are plot-
ted in Fig. 5.32. |PH | is Hankel transformed from the pressure spectrum component
in Fig. 5.16 with the complex component of the phase. Here the same effects as in
Fig. 5.26 are observed. Although the disparity between the two at ηr = 0 is smaller
than in Fig. 5.26, with |PH | = 521.6 Pa · m2/Hz. Following this the same effects as
discussed for Fig. 5.26 are observed here. |PH | not reaching the minimum of |PD|
and diverging from |PD|. Although |PH | diverges from |PD| further along ηr when
compared to Fig. 5.26. The effect of rise in magnitude after ηr = h f is observed for
|PH(ηr, z0, 700 KHz)| as in Fig. 5.27.
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FIGURE 5.33: Magnitude comparison: |PH(ηr, z2, 700kHz)| and
|PD(ηr, z2, 700kHz)| from Fig. 5.8

In Fig. 5.33 the Hankel transformed pressure wavenumber spectrum |PH(ηr, z2, 700 kHz)|
is compared to the directly calculated wavenumber spectrum from Fig. 5.8. |PH | is
Hankel transformed from the pressure spectrum component in Fig. 5.17 along with
the complex phase component. In the plot some significant differences are observed.
At ηr = 0 there is a relatively large difference in magnitude. The opposite effect of
what is observed in Fig. 5.32 and the other Hankel transformed z0-spectra. Here
|PH | has a magnitude of 30.62Pa ·m2/Hz compared to |PD|which has a magnitude of
33.51Pa ·m2/Hz. The largest peak of |PD| is not fully replicated by |PH | either. This is
caused by the peak being narrower than 20 rad/m. The minimum and peak around
780 rad/m is not shown by |PH | in any form, again caused by the lack of resolution.
The effect of increase in magnitude after ηr = h f is observed for |PH(ηr, 700 kHz)| as
in Fig. 5.29.

FIGURE 5.34: Magnitude comparison: |TH(ηr, 700kHz)| and
|TD(ηr, 700kHz)| from Fig. 5.9

In Fig. 5.34 the plots of TD(ηr, 700 kHz) from Fig. 5.9 and the transmission coefficient
TH. TH is calculated from the spectra PH(ηr, z0, 700 kHz) and PH(ηr, z2, 700 kHz) from
Figs. 5.32 and 5.33. Fig. 5.34 is similar to Fig. 5.33 in that many of the peaks become
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too narrow for TH to replicate. |TH| replicates |TD| to the level of detail possible with
these parameters for the first and third peak. The second peak and the minimum are
not visible in |TH | other than a small increase. The third peak of |TD| is replicated at
first, but |TH | deviates and becomes exponential. This is caused by the discrepancies
in the Hankel transformed pressure wavenumber spectra.

FIGURE 5.35: Magnitude comparison: |PH(ηr, z0, 955kHz)| and
|PD(ηr, z0, 955kHz)| from Fig. 5.10

|PD(ηr, z0, 955 kHz)|, from fig 5.10, and |PH(ηr, z0, 955 kHz)| are plotted in Fig. 5.35 .
|PH | is Hankel transformed from the pressure spectrum component of Fig. 5.18 with
the complex phase component. The same effects of Fig. 5.26 and 5.32 can be seen for
|PH |. Effects such as the slight different value at 0 rad/m, the higher minimum when
compared to |PD| and the deviation from |PD|. The effect of increase in magnitude
after ηr = h f shown in Fig. 5.27 is not as evident in |PH(ηr, z0, 955 kHz)| as the peak
at ηr = h f is at 4040.7rad/m and the calculation continues to ηr,max = 4300 rad/m.
However |PH | does not seem to approach zero.

FIGURE 5.36: Magnitude comparison: |PH(ηr, z2, 955kHz)| and
|PD(ηr, z2, 955kHz)| from Fig. 5.12
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In Fig 5.36 the pressure wavenumber spectra |PD(ηr, z2, 955 kHz)|, from Fig. 5.12,
and |PH(etar, z2, 955 kHz)|. |PH | is Hankel transformed from the pressure spectrum
component of Fig. 5.19 with the complex phase component. The effect after ηr = h f
is not as visible as in Fig. 5.29 because the calculation ends at ηr = 4300 rad/m, but
|PH(ηr, z2, 955 kHz)| does not seem to be approaching zero as |PD|.

FIGURE 5.37: Magnitude comparison: |TH(ηr, 955kHz)| and
|TD(ηr, 955kHz)| from Fig. 5.13

In Fig. 5.37 |TD(ηr, z0, 955 kHz)|, from fig 5.13, and |TH(ηr, z0, 955 kHz)|. TH is calcu-
lated from the pressure wavenumber spectra PH(ηr, z0, 955 kHz) and PH(ηr, z2, 955 kHz)
from Fig. 5.35 and 5.36. |TD| and |TH | have approximately the same magnitude at
0 rad/m, with TH slightly lower. The transmission coefficient, |TD| has several nar-
row peaks following the first peak. These are too narrow to be replicated by |TH |.

Through the inspection of the Hankel transformed wavenumber spectra and the
corresponding transmission coefficients, it has been observed that PH is a reason-
able approximation of |PD| at lower wavenumbers. The approximation’s similari-
ties seem to end when |PH | approaches the singularity of ηr = h f , seen in Fig. 5.26.
The point at which |PH | deviates from |PD| is frequency dependant and increases
with f . In conclusion the effect of the lack of extent and resolution coupled with the
implementation of the Hankel transformation means a full approximation of |PD| is
not possible with the current post-processing method. However a reasonable ap-
proximation of the pressure wavenumber spectrum and transmission coefficient is
possible for lower wavenumber values below ηr = h f , with this method and param-
eters.
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5.2 On-axis Measurement Results

In this section the results from the conducted on-axis measurements will be pre-
sented. Examples of the sampled waveforms are presented. Following this the post-
processing results from the on-axis measurements are shown with comparison to
previous work.

5.2.1 On-axis Measurement Waveforms

The following waveforms will be a representation of the measurements. The same
carrier frequencies, fc will be used as the frequencies used in Sect. 5.1 f = 455, 700, 955 kHz,
at positions z0 and z2.

FIGURE 5.38: Sampled voltage, V(x0, z0, t) without transmitted
signal

Fig. 5.38 shows the sampled interval from when the hydrophone was placed in
the tank and sampled the noise, without the transducer. Along the vertical axis the
magnitude of the measured voltage is shown. Along the horizontal axis the time
from when the oscilloscope is triggered is shown. As mentioned in Sect. 3.3.3 the
oscilloscope is triggered 1600 µs before the transducer radiates the signal. The noise
level is relatively low, with no distinguishing features, meaning no periodic signal
will be received other than that of the transducer. This gives a baseline of the noise
present in the tank and will be referred to later on.
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FIGURE 5.39: Sampled voltage, V(x0, z0, t) with carrier frequency f =
455 kHz

In Fig. 5.39 the sampled time interval of 4000 µs for the measurement of the carrier
frequency fc = 455 kHz. The signal is very visible with a time of arrival (TOA)
of t = 0.0001825 s. This is consistent with a calculated TOA of approximately t ≈
0.000182 s. This is calculated using the direct path and velocity c f = 1485. Along
the sampled time interval other signals are also visible. The first of which is right
behind the direct signal. This is attributed to reflections off the side wall as the TOA
coincides with this distance traveled. The next two signals have TOA’s equal to
t = 0.00130 s and t = 0.00166s. These amount to such long paths of travel that it is
difficult to deduce what they are reflected off of and the path taken.

FIGURE 5.40: Zoomed in 5.55, V(x0, z0, t). With carrier frequency
455 kHz

In Fig. 5.40 the section of the sampled interval from Fig. 5.39 containing the direct
signal is shown. The signal has a length of approximately 132 µs. The start and end
of the signal are well defined and the signal strength is very stable throughout.
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FIGURE 5.41: Sampled voltage, V(x0, z0, t). With carrier frequency
700 kHz

The sampled time interval for carrier frequency fc = 700 kHz at position z0 is plotted
in Fig. 5.41. The first noticeable difference from Fig. 5.39 is the decrease in voltage,
this is due to the transducer being most effective around 575 kHz [11]. The two
distinct trailing signals have equivalent TOAs of that in Fig. 5.39.

FIGURE 5.42: Zoomed in Fig. 5.41, V(x0, z0, t). With carrier frequency
700 kHz

The time interval containing the signal from Fig. 5.41 is shown in Fig. 5.42. The
TOA is approximately t ≈ 0.000182 s and lasts approximately 140 µs. This increase
in signal length is caused by the trail seen towards the end of the signal. This trail
is attributed to the same reflection as seen right behind the signal in Fig. 5.39. Com-
pared to Fig. 5.40 we see a sharp increase of the voltage before stabilizing. This is
caused by the transient region before the transducer stabilizing. Overall the signal
is stable throughout.
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FIGURE 5.43: Sampled voltage, V(x0, z0, t). With carrier frequency
955 kHz

V(x0, z0, t), the sampled time interval with carrier frequency 955 kHz is plotted in
Fig. 5.43. Again a significant drop in voltage can be seen when compared to both
Figs. 5.39 and 5.41. With two spikes at the start and end of the direct signal caused
by the transient region before and after the steady state region. The trail right after
the signal is clearly visible here and is attributed to reflections off the side wall. The
two distinct signal following the direct signal have equivalent TOAs of that in Figs.
5.39 and 5.41.

FIGURE 5.44: Zoomed in Fig. 5.43, V(x0, z0, t). With carrier frequency
955 kHz

In Fig. 5.44 the interval containing the direct signal from 5.43 is shown. The direct
signal has a approximate time of arrival t ≈ 0.000182 s and lasting approximately
130 µs. Here the two spikes at the start and end are visible. The signal is stable
throughout the steady state.
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Next the sampled waveforms for the received transmitted signal are shown, at posi-
tion z2.

FIGURE 5.45: Sampled voltage, V(x0, z2, t) with carrier frequency
455 kHz

In Fig. 5.45 sampled interval at position z2 for carrier frequency 455 kHz is shown.
This signal has been transmitted through the steel plate and has been subject to the
effects of this, such as dispersion, diffraction and reflection. Here we also see re-
flected signals trailing the transmitted signal. In addition to reflected signals off
walls, reflected signals within the plate can also contribute to this. The longer trail of
the signal is most likely caused by these reflections within the plate. The larger signal
seen with a TOA t = 0.00061 s is not seen in any of the z0 measurements. This means
the presence of the plate is causing this signal. However accounting for the time of
flight through the fluid, using the distance z2 − d, 0.37m/1485m/s = 0.00025s. This
remaining time results in a distance travelled within the plate amounting to 1.44m if
using cl which seems unlikely as the plate is 500 mm wide and would result in mul-
tiple reflections within the plate before transmission. What this signal is reflected
from is therefore uncertain. There are also three other distinct signals visible after
this larger one. These signals have such high TOA’s a path is difficult to assign.
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FIGURE 5.46: Zoomed in Fig. 5.45, V(x0, z2, t). With carrier frequency
455 kHz

In Fig 5.46 the interval containing the transmitted direct signal is plotted. The time
of arrival is t = 0.00025s, which is close to expected if using an averaged velocity of
ca = 1515 m/s. This velocity is described in Sect. 3.4.2. The signal is overall stable.

FIGURE 5.47: Zoomed in sampled voltages V(x0, z0, t) and
V(x0, z2, t). With carrier frequency 458 kHz

V(x0, z0, t) and V(x0, z2, t) are plotted in Fig. 5.47. This is with the carrier frequency
458 kHz, because this is the frequency of strongest transmission. We can see the time
displacement of approximately ∆t = 0, 00007s. In addition to the time displacement
another effect of signal transmission is observed. The transmitted signal has an in-
creased voltage, which has been noted by others e.g. [11, 27]. This is due to the
excitation of leaky Lamb modes. This difference is not however on the scale seen in
Fig. 5.15. Here an approximate increase of 1.12 dB is observed. The ASM simulation
is lossless and the on axis measurements are subject to slight deviance in position
from the main-lobe. This contributes to the values not being equal.
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FIGURE 5.48: Sampled voltage, V(x0, z2, t). With carrier frequency
700 kHz

In Fig. 5.48 the sampled time interval for V(x0, z2, t) with fc = 700kHz is plotted.
The voltage here is weaker than in other measurements resulting in the signal to
noise ratio (SNR) being low. However what appears to be a signal can be seen at
approximately t = 0. This is not caused by the direct signal as the oscilloscope is
triggered by the signal generator. Compared to the sampled noise of Fig. 5.38 where
we do not see the presence of such signals. Meaning they are caused by radiation
from the transducer. This indicates that the burst rate of 50 Hz is too high. These
may be present in previous measurements, but because the SNR is higher they are
not visible. There is also here a signal is visible with a TOA of t = 0.0006 s similar
to Fig. 5.45. The same distinct signals at t ≈ 0.0013 s and t ≈ 0.0016, but are not as
defined as previously.

FIGURE 5.49: Zoomed in voltages from Fig 5.41 and 5.48,
V(x0, z, t). With carrier frequency 700 kHz

When comparing the z0 and z2 voltages, as in Fig. 5.47, for f = 700 kHz we see in
Fig. 5.49 a significant drop of 27, 4dB between the two measurements. This drop in
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voltage is due to little excitation of leaky Lamb waves. Indicating a small |T| for this
frequency.

FIGURE 5.50: Sampled voltage, V(x0, z2, t). With carrier frequency
955 kHz

In Fig. 5.50 the sampled interval at position z2 , with carrier frequency 955 kHz, is
plotted. Also here a signal at approximately t ≈ 0. What differs in Fig. 5.50 from
Fig. 5.45 and 5.48 is the lack of a significant signal at t = 0.0006 s. Rather we see a
signal at t = 0.0012 s. The cause of this signal is unclear. The differing factor between
fc = 455 kHz and fc = 955kHz being what leaky Lamb mode is excited. If this is the
cause is uncertain.

FIGURE 5.51: Zoomed in voltages from Fig 5.43 and 5.50,
V(x0, z, t). With carrier frequency 955 kHz

Comparing the voltage at z0 and z2 in Fig. 5.51 we see a decrease in voltage, but not
on the scale of Fig. 5.49. Here there is a drop of approximately 8, 1dB. This is not
as significant a drop as in Fig. 5.49, but not an increase as seen in Fig. 5.47. This
indicates a transmission coefficient lower than 1 but not as low as for fc = 700 kHz.
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Through the inspection of the measurement results in the form of these waveforms
several effects have been noted. The presence of reflections trailing the direct signal
have been seen in all the sampled intervals. The presence of signals with TOA’s
before the direct signal, seen in Fig. 5.48. Finally signals that appear due to the
presence of the plate. These signals do not impact the direct signal and thus do not
effect the post-processing of the direct signal.

5.2.2 Pressure-to-Pressure Transfer Function

FIGURE 5.52: Hpp Transfer function with indicated leaky Lamb
modes cut-off frequencies

The post-processing of the results from Sect. 5.2.1 is described in Sect. 3.4.3. Using
Eq. 3.2 the Hpp transfer function is obtained. The function is plotted as 20log(Hpp)
in Fig. 5.52 with the measured frequencies along the horizontal axis. In addition
to the the plot the theoretical plane-wave leaky Lamb modes cut-off frequencies are
marked. The leaky Lamb modes were labeled previously by e.g. [11, 39, 27]. How-
ever, the mode labeled S−2 here has previously been labeled S1. The S−2 label is
consistent with [14]. The first effect to be noted is the shift in frequency for the
maximum transmission from S−2, which is the maximum transmission in the the
plane-wave model [11], to f = 458 kHz in the measurements. This shift is noted by
[11, 39, 27] and explained in [27]. The transmission at f = 458 kHz does exceed unity.
This means the ratio 20log(V(x0, z2, 458 kHz)/V(x0, z0, 458 kHz) exceeds 0. The ef-
fect is explained by among others Aanes [11]. The S−2 mode (S1 in [11]) is exited by
plane-waves at small incidence angles at lower frequencies. A transducer with with
a wide beam with none-zero incident plane-wave components will excite the S−2
mode at lower frequencies. The leaky Lamb modes can be regarded as narrow band
pass filters in the frequency-wavenumber domain, allowing for only a small number
of incident plane-wave components through the plate. But due to the behaviour of
the S−2 mode at lower frequencies this allows for a wider range of incident plane-
wave components through when the beam is at low incident angles. This is why the
maximum near the S−2 mode exceeds unity.
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FIGURE 5.53: Comparison of Hpp-transfer function from Fig. 5.52 and
Aanes’ results [11]

In Fig. 5.53 a measurement result from Aanes [11], with permission from Aanes, is
plotted against the previous plot, 5.52. There is general consensus between the re-
sults. Although at the maximum transmission Aanes’ results show a higher value.
This can have been caused by numerous reasons in this measurement. The posi-
tioning of the hydrophone may not have been optimal or the transducer may have
been at an angle. Another discrepancy between the results is the measured maxi-
mum near the S−2 mode. As stated previously the the maximum was measured to
f = 458 kHz, while Aanes measured it to f = 457 kHz, this discrepancy is prevalent
on the other modes as well. The different maximums measured here and by Aanes
along with simulation results done by Aanes [11] are included in Table. 5.1.

TABLE 5.1: leaky Lamb modes measured and simulated

Symbol Frequency [kHz] S/A Type
Measured Measured M.A. [11] Simulated (FEM) M. A. [11]

f S
l1 458 457 459 S−2 TE

f S
t1 518 519 518 S2 TS

f A
t2 773 774 774,5 A2 TS

f A
l1 956 955 957 A3 TE
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5.3 Transverse Measurements Results

In this section the results from the transverse measurement are presented. Firstly
some waveforms are presented followed by post-processed results.

5.3.1 Transverse Waveforms

In this section som of the sampled waveforms, V(x, z, t), from transverse measure-
ments will be presented. The waveforms from positions x = 0 mm, x = 100 mm
and x = 320 mm will be shown for the carrier frequencies, fc = 455 kHz, 700 kHz
and 900 kHz. The waveforms are shown in order to discuss the effects that can be
observed, and what impact the sampled results can have on the post-processing.
Before the waveforms used in post-processing are presented results from a failed ex-
periment are shown. These are shown because this impacts what was available for
post-processing and the final results.

FIGURE 5.54: Comparison between Sampled voltages, V(x0, z2, t)
with carrier frequency 455 kHz

The two waveforms shown in Fig. 5.54 are from the transmission measurements
of measurement 1 and measurement 2, detailed in Sect. 3.2.6, for the same car-
rier frequency 455 kHz and position (x0, z2). A clear drop in voltage is visible be-
tween the two measurements. This drop in voltage is present for all frequencies at
z2 in measurement 2. The drop in voltage is too significant to be caused by a mis-
placed hydrophone or transducer and through inspection of the transmission results
of measurement 2 these are deemed unusable. Therefore the results of measurement
3 are utilized for the carrier frequencies 700 kHz and 955 kHz. The positions of the
presented measurements are x = 100 mm and x = 210 mm. The effects of this are
discussed later on. For the fc = 455 kHz the results from measurement 1 are used.
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FIGURE 5.55: Sampled voltage, V(x0, z0, t) with carrier frequency
455 kHz

In Fig. 5.55 the entire sampled interval for V(x0, z0, t) with fc = 455 kHz from the
transverse measurement is plotted. When compared to Fig. 5.39 they are very sim-
ilar, which is to be expected. The trailing signals have however shifted in location.
This is most likely due to the change in placement of the transducer, detailed in Sect.
3.2.3.

FIGURE 5.56: Comparison of sampled voltage, V(x0, z0, t) from Fig.
5.39 and Fig. 5.55

V(x0, z2, t) from the on-axis measurement, Fig. 5.39, and the transverse free field
measurement, from Fig. 5.55 are compared in Fig. 5.56. The time of arrival differs
slightly from the two signals. This can be caused by slight differences of the posi-
tioning of the hydrophone. Another possible cause can be the temperature of the
water. This is logged for the on-axis measurement, but not for the transverse. The
on-axis measurement had a temperature of 21.7◦ Celsius. The temperature for the
transverse measurement is not logged as it is subject to change over the entirety of
the measurement. The on-axis measurement was conducted in December and the
transverse measurement was conducted in late April, so a difference in temperature
of the water is not unlikely. In May the temperature of the water was logged at 23.0◦



72 Chapter 5. Results and Discussion

Celsius a week after the transverse measurement. This difference in temperature
does influence the fluid velocity, and thereby influencing the TOA of the direct sig-
nal. For the other sampled waveforms at (x0, z0) and (x0, z2) the results from the
on-axis measurements of Sect. 5.2.1 are representative.

FIGURE 5.57: Sampled Voltage, V(100mm, z0, t). With carrier
frequency 455 kHz

In Fig. 5.57 the sampled interval for V(100, z0, t) with fc = 455 kHz is plotted. The
signal is prominent with a TOA at t = 0, 000192s which is expected. The approx-
imate TOA for the transverse measurement uses the Pythagorean theorem and c f .
The voltage is significantly lower when compared to that at x = 0 from fig 5.55.
In addition to this signals can be seen on the negative side of the time axis as in
Fig. 5.48. The signals in the negative t direction are also more prominent and have
shifted position. This may be caused by the change in position of the transducer. The
trailing signals have become more prominent as well, when compared to previous
sampled intervals. This may be caused by the movement of the hydrophone and the
magnitude of these signals being larger at these positions.

FIGURE 5.58: Zoomed in Fig. 5.57, V(100 mm, z0, t). With carrier
frequency 455 kHz



5.3. Transverse Measurements Results 73

In Fig. 5.58 the interval containing the direct signal is plotted. When compared to
5.55 we see a significant drop in voltage. The signal has slight fluctuation, but is
stable.

FIGURE 5.59: Sampled voltage, V(100mm, z0, t). With carrier
frequency 700 kHz

The sampled interval V(100, z0, t) with fc = 700 kHz is plotted in Fig. 5.59. This is
from measurement 3. The transducer position is therefore in the middle of the tank,
instead of to the side as in measurement 1. The signal is visible but also significantly
weaker than in Fig. 5.41. Here the direct signal is closely followed by the arrival
of a another signal, possibly caused by the reflection off the wall. We can discern
the direct signal with a calculated approximate time of arrival of t = 0, 00019 s. Fol-
lowing the direct signal we see a stronger signal with a TOA of t = 0.0013 s. This
signal is 9.4 dB stronger than the direct signal. This may be caused by a reflection
with an incident angle to the hydrophone closer to zero. As the tolerance angle of
the hydrophone is noted in Sect. 3.1.2.

FIGURE 5.60: Zoomed in Fig. 5.59, V(100 mm, z0, t). With
carrier frequency 700 kHz
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Zooming in on the signal portion of the sampled interval the signal in Fig.5.60 is still
visible. The signal strength has also dropped by a significant margin compared to
Fig. 5.42. The signal is however still reasonably stable.

FIGURE 5.61: Sampled voltage, V(100 mm, z0, t) with carrier
frequency f = 955 kHz

V(100, z0, t) with carrier frequency fc = 955 kHz is plotted in Fig. 5.61. This mea-
surement is from measurement 3, with the transducer in the middle of the tank. Here
the signal at approximately t ≈ 0 is visible as in previous plots. The effect noted in
Fig. 5.59 where the trailing signal is stronger than the direct signal is not observed.
Although the trailing signal has a TOA of t = 0.0013 s, the same as in Fig. 5.59. Here
again the incident angle may be factor in the magnitude of the trailing signal.

FIGURE 5.62: Zoomed in Fig. 5.61, V(100 mm, z0, t).
With carrier frequency 955 kHz

In Fig. 5.62 the direct signal from Fig 5.61 is shown. Compared to Fig. 5.43 the signal
strength has dropped. However the signal is still stable and distinct from the noise.
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FIGURE 5.63: Sampled voltage, V(320 mm, z0, t) with carrier
frequency f = 455 kHz

Fig. 5.63 shows the entirety of the sampled interval V(320 mm, z0, 455 kHz). Here the
signal is visible with a time of arrival of t = 0, 000283 which is expected. The signal
is closely followed by what is assumed to be a reflection. Signals can be seen on the
negative side of the time axis as seen previously.

FIGURE 5.64: Zoomed in Fig. 5.63, V(320 mm, z0, t).
With carrier frequency 455 kHz

Looking at the direct signal from 5.63 closely in Fig. 5.64 the following signal can be
seen to the right, but still the direct signal is visible and is reasonably stable.
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FIGURE 5.65: Sampled voltage, V(210 mm, z0, t) with carrier
frequency f = 700 kHz

In Fig. 5.65 the sampled time interval of V(210 mm, z0, t) with fc = 700kHz is plotted.
The direct signal here is not visible. This is found by the estimated TOA of t =
0.00023 s for this position. At this time no signal is visible.

FIGURE 5.66: Zoomed in Fig. 5.65, V(210 mm, z0, t).
With carrier frequency 700 kHz

The time interval from Fig. 5.65 that should contain the direct signal from V(210 mm, z0, t)
with fc = 700kHz is shown in Fig. 5.65. In this interval no discernible signal is
present. This means that the post-processing window from this position at this car-
rier frequency may not include the direct signal. In a more robust setup this would
be addressed, but in this setup this is not done. Although the magnitude in this inter-
val is minimal compared to other positions and frequencies, meaning the magnitude
in the voltage spectrum is minimal as well.
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FIGURE 5.67: Sampled voltage, V(210 mm, z0, t) with carrier
frequency f = 955 kHz

In Fig. 5.67 the sampled time interval of V(210 mm, z0, t) with fc = 955 kHz is plot-
ted. The voltage has significantly dropped further from Fig. 5.61. The SNR is very
low and the direct signal is not discernible from the other signals in the interval.
Using the calculated approximate TOA of t = 0.00023 s we can identify the direct
signal.

FIGURE 5.68: Zoomed in Fig. 5.67, V(210 mm, z0, t).
With carrier frequency 955 kHz

The interval containing the direct signal from V(210 mm, z0, t) with fc = 955kHz is
shown in Fig. 5.68. Here the signal is heavily distorted, although still discernible.
This will most likely have effects on the result from the temporal fft discussed in
Sect. 3.4.3, especially in regards to the phase.

In this next part the sampled intervals from the transverse transmission measure-
ment are presented. As in the previous figures the results for fc = 700 kHz, 955kHz
are from measurement 3 at positions x = 100 mm, 210 mm. The results for fc =
455 kHz are from measurement 1 at positions x = 100 mm, 320 mm.
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FIGURE 5.69: Sampled voltage, V(100 mm, z2, t) with carrier
frequency f = 455 kHz

In Fig. 5.69 the sampled voltage for V(100 mm, z2, t) with carrier frequency 455 kHz
is plotted. The direct signal has a calculated TOA of approximately t ≈ 0.00026 s and
is observed with an actual TOA of t = 0.000265 s. Trailing the direct signal several
signals from what is assumed to be reflections are seen, one large one in particular
has a TOA of approximately t ≈ 0.00125 s. This signal is stronger than the direct
signal, which may indicate an incident angle closer to zero, but this may also be
caused by reflections within the plate. The TOA of this signal is however too large
to accurately guess at the path.

FIGURE 5.70: Zoomed in Fig. 5.69, V(100 mm, z2, t).
With carrier frequency 455 kHz

The interval containing the direct signal from Fig. 5.69 is shown in Fig. 5.70. The
voltage shows a slight distortion of the direct signal when compared to Fig. 5.69 and
a significant drop in voltage in comparison with V(100 mm, z0, t) from Fig. 5.58. The
signal is however reasonably stable over the interval.
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FIGURE 5.71: Sampled voltage, V(100 mm, z0, t) with carrier
frequency f = 700 kHz

In Fig. 5.71 the sampled interval for V(100 mm, z2) with fc = 700 kHz is plotted. The
direct signal is discernible even though the SNR is low. The calculated approximate
TOA is t = 0.00026 s and is observed with an TOA of approximately t = 0.000264 s.
The precise TOA is difficult to assert as the SNR is low. In addition to the trailing
signals observed in other sampled intervals what seems to be a fluctuation over the
entire sampled interval is observed with a significantly lower frequency. This should
be filtered out by the bandpass-filter with a lower threshold of 200 kHz. The cause
of this fluctuation is only speculated on, but electrical interference seems likely.

FIGURE 5.72: Zoomed in Fig. 5.71, V(100 mm, z0, t).
With carrier frequency 700 kHz

Fig. 5.72 shows the interval containing the direct signal from Fig. 5.72. The signal
is heavily distorted and a stable interval is not observed. This will most likely affect
the fft of the assigned post-processing window for this interval.
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FIGURE 5.73: Sampled voltage, V(100 mm, z0, t) with carrier
frequency f = 955 kHz

V(100, z2, 955 kHz), the sampled interval with fc = 955 kHz is plotted in Fig. 5.73.
The direct signal is not visible in this plot because it is buried within the noise. This
means the post-processing window for this interval may just contain noise. Also
visible in the interval is the fluctuation of the entire sampled interval.

FIGURE 5.74: Sampled voltage, V(320 mm, z0, t) with carrier
frequency f = 455 kHz

Plotting the sampled interval of V(320 mm, z2, t) with fc = 455 kHz in Fig. 5.74 a
large signal can be seen at approximately 0.0006 s but the calculated approximate
time of arrival would place the direct signal around t ≈ 0.00033 s. This means the
signal is buried in noise, and not visible.
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FIGURE 5.75: Sampled voltage, V(210 mm, z2, t) with carrier
frequency f = 700 kHz

In Fig. 5.75 the sampled interval for V(210 mm, z2, t) with fc = 700 kHz is plotted.
The direct signal has a calculated approximate TOA of t = 0.000284 s and a signal
with an observed TOA of t = 0.000291 is visible. The underlying fluctuation here is
noticeable and shifts the centre of the sampled interval below zero.

FIGURE 5.76: Zoomed in Fig. 5.65, V(210 mm, z2, t).
With carrier frequency 700 kHz

Fig. 5.76 shows the interval containing the direct signal from Fig. 5.75. The signal is
heavily distorted but still visible.
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FIGURE 5.77: Sampled voltage, V(210 mm, z2, t) with carrier
frequency f = 955 kHz

In Fig. 5.77 the sampled interval V(210 mm, z2, 955 kHz) is plotted. No distinguish-
able signal is visible within the interval. The fluctuation of the sampled interval is
visible throughout. Another effect of this fluctuation is observable where V = 0 V is
not the center value of V(210 mm, z2, t).

Through the inspection of the sampled intervals of V(x, z, t) from the transverse
measurements many effects have been noted. Some of which were also noted in the
on-axis results. The main effect impacting the post-processing of the results is the
distortion of the received signals and lack of visible signals all together. As has been
mentioned previously, the assignment of the post-processing window does not ad-
dress these effects. The magnitude of the processed results in the areas of high SNR
should not be affected by this, but areas of low SNR and especially where the signal
is not visible are most likely affected. This could be artificially higher magnitude at a
position for a frequency. The fluctuation of the sampled interval may also have this
effect on the post-processed results. These effects likely contributed to the phase of
the processed signals being unusable.
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5.3.2 Symmetrical Transverse Measurement Results

The post-processed results of measurement 3 are shown here. The measurement is
detailed in Sect. 3.2.5. Examples of the waveforms are shown in Sect. 5.3.1. Using
the fft function of Matlab and extracting the maximum voltage amplitude and phase,
detailed in 3.4.3, we obtain the the voltage spectrum V(x, z, f ).

FIGURE 5.78: Measured voltage spectrum magnitude, |V(x, z0, f )|

The magnitude of the measured voltage spectrum, V(x, z0, f ) is plotted in Fig. 5.78.
Along the vertical axis of the plot is the frequency, along the horizontal axis is the hy-
drophone position x and the colour-bar indicates the magnitude of V(x, z, f ). What
we see in Fig. 5.78 is the transducers output for each frequency. The lines indicate at
what frequency and position the waveforms were shown. Although the waveforms
for fc = 455 kHz were from measurement 1 and at x = 320 mm, not x = 210 mm. As
expected the maximum output of the transducer is at f = 575 kHz [11]. We also see
slight minimums along the frequency axis at x0.

FIGURE 5.79: Measured voltage spectrum magnitude, |V(x, z2, f )|

In Fig. 5.79 the magnitude of the measured transmitted voltage spectrum V(x, z2, f )
is plotted. The lines from Fig. 5.78 are also applicable in this figure. In this figure
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we see a small area of high voltage magnitude. This area surrounds the measured
frequency of maximum transmission, from Fig. 5.52, and extends slightly along the
x-axis before decreasing rapidly. We also see a larger area lower voltage around the
frequency 575 kHz which is to be expected as this correspond to the most efficient
frequencies of the transducer [11].

FIGURE 5.80: Measured magnitude of the Hpp transfer function

With the measurements from Fig. 5.79 and the measurements along the x0-line from
Fig. 5.78, and using the pressure-to-pressure transfer function Eq. 3.2. We can map
the magnitude of the Hpp transfer function as a function of frequency and position
In Fig. 5.80. Here we see for what positions and frequencies there is the greatest
amount of transmission. The segment stretching from f = 350 kHz to 1 MHz along
x0 is the Hpp of the plot in Fig. 5.52. We see the greatest amount of transmission
along x0. Although other areas such as just below the measured S−2 and between
500 kHz and 600 kHz have wider areas, in the x-domain, of transmission. This plot
was also presented by M. Aanes using a FEM simulation [11]. In this simulation the
transducer was modelled after the piezoelectric transducer used in these measure-
ments.

FIGURE 5.81: left: Measured magnitude of the Hpp transfer function
Right: FEM simulated magnitude of the Hpp transfer function by

Aanes [11] with leaky Lamb modes marked

In Fig. 5.81 the measured plot from Fig. 5.80 (left) and Aanes’ simulated results
[11] (right) are compared. The x-extent of 5.80 has been shortened in order to match
Aanes’ results. The comparison is only possible visually as the data for this simu-
lation were not available. However they are visually very similar. The measured
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plot has a lower resolution because of the parameters of the measurement. Aanes’
simulation marks the simulated leaky Lamb modes. These are also visible in the
measured results with the same shape of the area around the S−2 mode (S1 in [11]).
The larger area of transmission between 500 kHz and 600 kHz is also visible in both
plots. A slight difference can be seen in the area between 350 kHz and 420 kHz. Here
the simulation shows a wider range of transmission in the x-domain.

5.3.3 Voltage Spectrum Components

After the temporal Fourier transform described in 3.4.3, we can plot the magnitude
of the V(x, z, f ) components for each frequency. In this section the magnitude of
the voltage spectrum components for the carrier frequencies from Sect. 5.3.1 will be
presented. These plots show the magnitude of the values that are used in Hankel
transformation described in Sect. 4.2.3. All the plots are adjusted if needed along
the horizontal axis such that the highest voltage value is at x = 0 which is needed
for the Hankel transformation. Because the results of measurement 2 were not used,
the results from measurement 3 are utilized. Because the Hankel transformation
assumes symmetry around the z-axis only the positive x-values from measurement
3 are used in the Hankel transformation.

FIGURE 5.82: Magnitude of voltage spectrum component
V(x, z0, 455kHz), from measurement 1

In Fig. 5.82 the magnitude of the voltage spectrum component V(x, z0, 455 kHz) is
plotted. These results are obtained from measurement 1. This is the corresponding
measurement result to the simulation result in Fig. 5.14. A clear main-lobe is visi-
ble with defined side-lobes. The peak of |V(x, z0, 455 kHz)| was 1 mm off x = 0 and
was shifted 1 mm in the negative x-direction. At |V(320 mm, z0, 455 kHz)| the mag-
nitude is 5.8 V/Hz. This may cause issues in the Hankel transformation that will be
discussed in the next section, Sect. 5.3.4.
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FIGURE 5.83: Magnitude of voltage spectrum component
V(x, z2, 455kHz), from measurement 1

The magnitude of the voltage spectrum component V(x, z2, 455 kHz) is plotted in
Fig. 5.83. This result is from measurement 1. This is the corresponding measurement
result to the simulation result in Fig. 5.15. In the plot a clear main-lobe is visible
with a secondary peak at x = 24 mm. We see the effects of transmission near the
S−2 mode discussed in Sect. 5.2.2. The main lobe is narrower than in Fig. 5.82
and an increase in voltage is observed. This is not at the measured transmission
measurement maximum of 458 kHz, but the effects are observable in Figs. 5.82 and
5.83. The maximum of |V(x, z2, 455 kHz)| was off by −5 mm and was shifted 5 mm
in the positive x-direction. This means the x-limit for the Hankel transformation of
V(x, z2, 455 kHz) is 325 mm, but because the the limits of the z0 and z2 measurements
need to be equal, the x-limit is set to 319 mm. This results in a resolution in the
wavenumber-domain of ∆hx = 19.7 rad/m. With a spatial step of ∆x = 1 mm the
extent in the wavenumber-domain is hx,max = 6283.2 rad/m

FIGURE 5.84: Magnitude of voltage spectrum component
V(x, z0, 700kHz), from measurement 3

In Fig. 5.84 the magnitude of the voltage spectrum component V(x, z0, 700 kHz) is
plotted. This result is from measurement 3. This is the corresponding measurement
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result to the simulation result of Fig. 5.16. The lack spatial resolution of measure-
ment 3, ∆x = 5 mm, can be observed here when compared to Fig. 5.82 which has a
spatial resolution of 1 mm. The maximum of V(x, z, 700 kHz) was found at x = 0, so
no shift was needed.

FIGURE 5.85: Magnitude of voltage spectrum component
V(x, z2, 700kHz), from measurement 3

In Fig. 5.85 the magnitude of the voltage spectrum component V(x, z2, 700 kHz)
is plotted. These results are from measurement 3. This plot are the correspond-
ing measurement results to the simulation results in Fig. 5.17. The maximum of
|V(x, z2, 700 kHz)| was found at −5 mm. The plot was shifted 5 mm in the positive
x-direction.

FIGURE 5.86: Magnitude of voltage spectrum component
V(x, z0, 955kHz), from measurement 3

The magnitude of V(x, z0, 955 kHz) is plotted in Fig. 5.86. These results are from
measurement 3. This is the corresponding measurement result to the simulation
result in Fig. 5.18. As in Fig. 5.84 the peak was observed at x = 0 mm, so no shift is
needed.
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FIGURE 5.87: Magnitude of voltage spectrum component
V(x, z2, 955kHz), from measurement 3

In Fig. 5.87 the magnitude of the voltage spectrum component V(x, z2, 955 kHz) is
plotted. These results are from measurement 3. These are the measurement results
corresponding to the simulation results of Fig. 5.19. An effect of the lower spacial
resolution is observed in this plot when compared to Fig. 5.92. Here the maxi-
mum of |V(x, z0, 955 kHz)| is observed at x = 0 mm compared to x = −5 mm of
V(x, z2, 700 kHz). This can not have been caused by movement of the hydrophone
as it is not moved between measurements at the same x-position. This is most likely
caused by the actual maximum being somewhere between x = −5 and x = 0. Due
to this fact the value of x0 is not shifted. This results in an x-limit for the Hankel
transformation of 210 mm for measurement 3. The resolution in the wavenumber-
domain is ∆hx = 29.9 rad/m. With a spatial resolution of ∆x = 5 mm the extent in
the wavenumber domain is hx,max = 1256.6 rad/m. This also results in the peak of
V(x, z2, 700 kHz) not being included in the transformation.



5.3. Transverse Measurements Results 89

5.3.4 Voltage Wavenumber Spectrum

In this section the voltage wavenumber spectra V(hx, z, f ) obtained through the
Hankel transformation of the voltage spectrum components of V(x, z, f ) from Sect.
5.3.3. The Hankel transformation is detailed in Sect. 5.3.4. These plots are the equiv-
alent measured results to the pressure wavenumber spectrum, |P(ηr, z, f )|.

FIGURE 5.88: Voltage wavenumber spectrum, |V(hx, z0, 455kHz)|

The magnitude of the voltage wavenumber spectrum V(hx, z0, 455 kHz) is plotted in
Fig. 5.88. Along the horizontal axis is the horizontal wavenumber hx and along the
vertical axis is the magnitude of V(hx, z0, 455 kHz). V(hx, z0, 455 kHz) was Hankel
transformed from the spatial distribution V(x, z0, 455 kHz) of Fig. 5.82 along with
the complex component of the phase. The resolution and extent of this plot is ∆hx =
19.7 rad/m and hx,max = 6283.2 rad/m. V(hx, z0, 455 kHz) has a clear peak at hx = 0
and smaller peaks further along hx. From theory we know for this frequency h f =
1925.2 rad/m meaning the values above this should be zero as this is the evanescent
region. However we see an increase in magnitude towards the end of hx-axis. As
mentioned in Sect. 5.3.3 the magnitude at xmax for V(x, z0, 455 kHz) is not zero. This
abrupt end in the voltage spectrum component can cause this rise in magnitude of
V(hx, z0, 455 kHz) at larger hx-values as an aliasing effect. This increase is also seen
in the simulated results from Sect. 5.1.5 in Fig. 5.26, but not to this degree, although
the simulated results were not simulated to 6283 rad/m.
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FIGURE 5.89: Zoomed in |V(hx, z0, 455kHz)|, from Fig. 5.88

In Fig. 5.89 we see the voltage wavenumber spectrum up to the theoretical singu-
larity point of η = h f from Fig. 5.88. No increase in magnitude is seen towards
hx = h f .

FIGURE 5.90: Voltage wavenumber spectrum, |V(hx, z2, 455kHz)|

In Fig. 5.90 the magnitude of the voltage wavenumber spectrum V(hx, z0, 455 kHz)
is plotted. This is the measurement result equivalent to the simulation result of
Fig. 5.28 and was Hankel transformed from the voltage spectrum component in
Fig. 5.102 along with the phase component. In Fig. 5.90 we see the maximum is not
at hx = 0 which is in agreement with the simulation in Fig. 5.28 and the theoretical
transmission coefficient. Here we also see an increase in magnitude further along
the hx-axis. Although the magnitude does not seem to approach zero throughout
the spectrum.
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FIGURE 5.91: Voltage wavenumber spectrum |V(hx, z0, 700kHz)|,
from Fig. 5.90

The magnitude of the voltage wavenumber spectrum |V(hx, z0, 700 kHz)| is plotted
in Fig. 5.91. This was Hankel transformed from the results shown in Fig. 5.84 along
with the phase component. The effect of the measurement parameters from mea-
surement 3 are visible here. The plot ends well before the evanescent region after
ηr = h f .

FIGURE 5.92: Voltage wavenumber spectrum |V(hx, z2, 955kHz)|

In Fig. 5.92 the magnitude of the voltage wavenumber spectrum of V(hz, z2, 700 kHz)
is plotted. This was Hankel transformed from the results from Fig. 5.85, but shifted
5 mm in the negative z-direction because of the discrepancy between the maximum
of |V(x, z2, 700 kHz)| and |V(x, z2, 955 kHz)|. Here we see a maximum at hx = 0 rad/m.
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FIGURE 5.93: Voltage wavenumber spectrum |V(hx, z2, 955kHz)|

In Fig. 5.93 the voltage wavenumber spectrum |V(hx, z0, 955 kHz)| is plotted. The
voltage wavenumber spectrum is Hankel transformed from Fig. 5.86 along with the
phase component. We see a peak at hx = 0 but no other discernible features. The
wavenumber spectrum ends well before hx = h f of 4040.7rad/m.

FIGURE 5.94: Voltage wavenumber spectrum |V(hx, z2, 955kHz)|

In Fig. 5.94 the magnitude of the wavenumber spectrum V(hx, z2, 955 kHz) is plot-
ted. This spectrum was Hankel transformed from the plot in Fig. 5.106 with the
phase. Here the plot starts at a local minimum before quickly rising to the maxi-
mum magnitude. Further along hx no other discernible features are present.
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5.3.5 Transmission Coefficient

In this section the transmission coefficient calculated from the voltage wavenumber
spectra in Sect. 5.3.4 will be presented. The transmission coefficient is calculated
using Eq. 3.5 and is detailed in Sect. 3.4.8.

FIGURE 5.95: Magnitude of transmission coefficient TM(hx, 455kHz),
from measurement 1

In Fig. 5.95 the transmission coefficient for |TM(hx, 455 kHz)| is plotted. The vertical
axis shows the magnitude of TM and the horizontal axis shows the wavenumber hx.
This transmission coefficient is calculated using the voltage wavenumber spectrum
V(hx, z0, 455 kHz) from Fig. 5.88 and V(hx, z2, 455 kHz) from Fig. 5.90. The absolute
value of transmission is between 0 and 1. As is evident in the figure this limit is
exceeded. This is caused by inconsistencies in the voltage wavenumber spectrum.
The highest peaks of |TM| can be found between hx = 1500 and hx = 4900. Theoret-
ically |TM| should be zero after hx = h f , which is at hx = 1925.2 rad/m. This is not
however what is observed in Fig. 5.95. This is caused by the voltage wavenumber
spectra used in the calculation. In theory the magnitude of these should also be zero
in the evanescent region. This is not the case and the result are these very large peaks
in |TM|.
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FIGURE 5.96: Zoomed in |TM(hx, 455kHz)| from Fig. 5.95

Fig. 5.96 shows the region of |TM| before the evanescent region of Fig. 5.95. In this
interval |TM| still exceeds unity but by a smaller margin. The first peak of |TM| has a
value of 1.057.

FIGURE 5.97: Magnitude of transmission coefficient TM(hx, 700kHz),
from measurement 3

The transmission coefficient TM(hx, 700 kHz) calculated from the voltage wavenum-
ber spectra from measurement 3 in Fig. 5.91 and Fig. 5.92 is shown in Fig. 5.97. The
transmission coefficient |TM| never rises above unity for the frequency f = 700 kHz.
There is a peak at hx = 0 with a minimum afterwards. Further there are two signifi-
cant peaks at hx = 468 rad/m and hx = 760 rad/m.
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FIGURE 5.98: Magnitude of transmission coefficient TM(hx, 955kHz),
from measurement 3

In Fig. 5.98 the transmission coefficient TM(hx, 955 kHz) is plotted. This transmission
coefficient is calculated from the voltage wavenumber spectra of Figs. 5.93 and 5.94.
The plot has a maximum of just above 1, |TM| = 1, 06, at hx = 29 rad/m but then has
a peak far exceeding unity at hx = 175 rad/m.

FIGURE 5.99: Magnitude of transmission coefficient TM, from
measurement 3

The entirety of the calculated magnitude transmission coefficient |TM| is plotted in
Fig. 5.99. This is the result from measurement 3. Here the frequency f is plotted
along the vertical axis and the wavenumber hx along the horizontal axis. There
aren’t many features discernible in this plot as some large peaks of |TM| diminish
other values.
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FIGURE 5.100: Magnitude of transmission coefficient TM from
Fig. 5.99. With indicated lines

One feature from Fig. 5.99 worth noting are what seem to be two distinct lines
marked here and seen in Fig. 5.99 which start at hx = 0. These lines do follow
the same path as the S−2 and S2 modes. This will be compared in the next section.

5.4 Comparison of ASM Results and Measurement Results

In this section the different results from the ASM model and measurements will
be compared and discussed. This includes pressure/voltage spectra components,
pressure/voltage wavenumber spectra and transmission coefficient. To begin with
the pressure/voltage spectra components will be compared.

FIGURE 5.101: Magnitude comparison of pr(r, z0, 455kHz) from
Fig. 5.14 and Vx(x, z0, 455kHz) from Fig. 5.82

In Fig. 5.101 the magnitude of the simulated pressure spectrum component, p(r, z0, 455 kHz)
from Fig. 5.14 denoted |pr|, and the magnitude of the measured voltage spectrum
component, V(x, z0, 455 kHz) from Fig. 5.82 denoted |Vx|, are compared. The figure
has two different vertical axes, one for each spectrum component. The left axis cor-
responding to |pr| and the right axis corresponding to |Vx|. This means the plots are
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fitted as to be able to compare them, this is a qualitative comparison. Comparing
|pr| and |Vx| they follow a similar path along the main lobe with |pr| having a min-
imum at r = 0.052 m and |Vx| having a minimum at x = 0.049 m. |pr| has narrower
side-lobes compared to |Vx| which results in divergence between the paths. Overall
the measured and simulated results are qualitatively similar.

FIGURE 5.102: Magnitude comparison of pr(r, z2, 455kHz) from
Fig. 5.15 and Vx(x, z2, 455kHz) from Fig. 5.83

In Fig. 5.102 the magnitude of the simulated pressure spectrum component pr(r, z2, 455 kHz),
from Fig. 5.15, and the magnitude of the voltage spectrum component Vx(x, z2, 455 kHz),
from Fig. 5.83, are compared. Throughout the graph the plots are qualitatively sim-
ilar. Both |pr| and |Vx| have a local minimum at r or x = 0.018 m. More fluctuation is
observed in |Vx| further along the x-axis when compared to |pr|.

FIGURE 5.103: Magnitude comparison of pr(r, z0, 700kHz) from
Fig. 5.16 and Vx(x, z0, 700kHz) from Fig. 5.84

In Fig. 5.103 the simulated pressure spectrum component |pr(r, z0, 700 kHz)| and
the voltage spectrum component from measurement 3,|Vx(x, z0, 700 kHz)|. The mea-
sured spectrum component has a narrower main-lobe than that of the simulated one.
Both have roughly the same shape and are comparably similar.
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FIGURE 5.104: Magnitude comparison of pr(r, z2, 700kHz) from
Fig. 5.17 and Vx(x, z2, 700kHz) from Fig. 5.84

The simulated pressure spectra component |pr(r, z2, 700 kHz)|, from Fig. 5.17 and
the voltage spectrum component |Vr(x, z2, 700 kHz)|, from Fig. 5.85, are compared
in Fig. 5.104. Both figures show the large drop in pressure when compared to the z0
position of Fig. 5.103. Both also show the relatively high pressure/voltage compared
to the main lobe of the pressure/voltage further along the r or x-axis. |Vx| has a
∆x = 5 mm and is therefore less detailed than pr which has a ∆r = 1 mm. This makes
the detail of the spectrum component not possible to sample for |Vx|.

FIGURE 5.105: Magnitude comparison of pr(r, z0, 955kHz) from
Fig. 5.18 and Vx(x, z0, 955kHz) from Fig. 5.86

Fig. 5.105 shows the comparison of the magnitude of the simulated pressure spec-
trum component pr(r, z0, 955kHz) from Fig. 5.18 and the magnitude of the voltage
spectrum component Vx(x, z0, 955 kHz) from Fig. 5.86. Both have a narrower main-
lobe when compared to previous frequencies at position z0. Vx has however an in-
crease in voltage at x = 0.107 m, which is not found in pr.
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FIGURE 5.106: Magnitude comparison of pr(r, z2, 955kHz) from
Fig. 5.19 and Vx(x, z2, 955kHz) from Fig. 5.86

In Fig. 5.106 the magnitude of pr(r, z2, 955 kHz) from the simulated results in Fig.
5.19 is compared with the magnitude of the voltage spectrum component Vx(x, z2, 955 kHz)
from Fig. 5.87. Both show a large main-lobe, with no discernible features further
along the horizontal axis. The voltage of |Vx| further along x is comparably higher
than |pr| when compared to the magnitude at x or r = 0. This may be the result
of the low SNR at these positions for V(x, z0, t), which results in artificially high
magnitudes.

Overall the simulated pressure spectra component, |pr|, are fair approximations of
the measurement results |Vx|. There are discrepancies for every frequency, but the
main-lobe is in general approximated quite well.

Next the voltage/pressure wavenumber spectra calculated from the measured re-
sults, VM, from Sect. 5.3.4 and the directly calculated spectra from Sect. 5.1.2 are
compared. In some figures the Hankel transformed spectrum, PH discussed in Sect.
4.2.3, is included if it is needed to illustrate an effect. Here there are two vertical axis
as well and the plots are fitted in the vertical direction.
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FIGURE 5.107: Magnitude comparison of PD(ηr, z0, 455kHz) from
Fig. 5.2 and VM(hx, z0, 455kHz) from Fig. 5.88

The comparison of |PD(η, z0, 455 kHz)| from Fig. 5.2 and |VM(hx, z0, 455 kHz|) from
5.88 is plotted in Fig. 5.107. Here the right vertical axis corresponds to |PD| and
the left to |VM|. They both have a maximum at η/hx = 0 and have diminishing
side-lobes. |VM| has the first minimum at hx = 334, 8rad/m while PD has it at η =
363, 5rad/m. Overall there are similarities between the two wavenumber spectra.

FIGURE 5.108: Magnitude comparison of PH(ηr, z0, 455kHz) from
Fig. 5.26 and VM(hx, z0, 455kHz) from Fig. 5.88

Comparing the magnitude of PH(ηr, z0, 455 kHz) and VM(ηr, z0, 455 kHz) an interest-
ing similarity is observed. While there are differences between |PH | and |VM| both
spectra approach zero after ηr or hx = 1400 rad/m. This indicates that the measure-
ment results are a valid approximation along the same interval as |PH | is.



5.4. Comparison of ASM Results and Measurement Results 101

FIGURE 5.109: Magnitude comparison of PD(ηr, z2, 455kHz) from
Fig. 5.28 and VM(hx, z2, 455kHz) from Fig. 5.90

In Fig. 5.109 the transmitted pressure/voltage wavenumber spectra for the fre-
quency 455 kHz are compared. |PD| has its maximum at η = 150, 7rad/m, while
|VM| has it at hx = 137, 9 rad/m. |PD| and |VM| both start at a lower value before
reaching their maximum and quickly descend to a minimum. Further both |PD| and
|VM| have local maximums and minimums, but do not overlap as well as the first
maximum and minimum. Overall we see similarities between these plots before |PD|
approaches zero.

FIGURE 5.110: Magnitude comparison of PD(ηr, z0, 700kHz) from
Fig. 5.32 and VM(hx, z0, 700kHz) from Fig. 5.91

In Fig. 5.110 the magnitude of the directly calculated spectrum PD and the measured
spectrum VM for the frequency f = 700 kHz and position z = z0 are plotted. |VM|
does not seem to resemble |PD| in any significant way.
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FIGURE 5.111: Magnitude comparison of PD(ηr, z2, 700kHz) from
Fig. 5.33 and VM(hx, z2, 700kHz) from Fig. 5.92

In Fig. 5.104 it is difficult to see any correlation between |PD| and |VM|. |VM| starts
at a high value and drops quickly before having a slight curve as |PD|, but because
of the large variation in |VM| this is not necessarily indicative of anything. The other
peaks of |PD| are narrow and because of the large ∆hx of |VM| they can not be repre-
sented by |VM|. Lastly the final peak of |PD| is beyond the extent of |VM|.

FIGURE 5.112: Magnitude comparison of PD(ηr, z0, 955kHz) from
Fig. 5.35 and VM(hx, z0, 955kHz) from Fig. 5.93

In Fig. 5.112 the pressure/voltage wavenumber spectra for f = 955 kHz at z0 are
plotted. The shape of |VM| does not seem to resemble |PD| in any significant way.
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FIGURE 5.113: Magnitude comparison of PD(ηr, z2, 955kHz) from
Fig. 5.36 and VM(hx, z2, 955kHz) from Fig. 5.94

In Fig. 5.113 the pressure/voltage wavenumber spectra for f = 955 kHz is plotted.
The spectrum |VM| has the same limited extent and resolution as the other spectra
from measurement 3. |VM| does not start at a maximum as |PD|. |VM| starts lower
and rises quickly to a maximum at hx = 29 while |PD| has its maximum at η = 0. Fol-
lowing the maximum |VM| quickly decreases to a local minimum at hx = 292 rad/m.
|PD| has its first minimum at η = 362, 2 rad/m. Following the first minimum |VM|
stays at relatively low pressures, but not as low as |PD| does relative to its maximum.

Through the comparison of the pressure wavenumber spectra from the simulation
and the voltage wavenumber spectra from the measurements it was observed that
for the results from measurment 1 at the frequency 455 kHz we saw some correlation
between the spectra, both for z0 and z2. However for the results from measurment 3
at 700 kHz and 900 kHz no meaningful similarity could be observed.

Now the transmission coefficients from the ASM model shown in Sect. 5.1.2 and the
transmission coefficient obtained from the measurments shown in Sect. 5.3.5 will be
compared.
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FIGURE 5.114: Comparison of |TD(η, 455kHz)| from Fig. 5.5 and
|TM(hx, 455kHz)| from Fig. 5.95

Comparing the directly calculated transmission coefficient |TD| with the measured
transmission coefficient |TM|, in Fig. 5.114. Unlike in the pressure spectrum com-
ponents plots and pressure wavenumber spectra plots, the transmission coefficient
is not dependant on units of the input and can therefore be compared on the same
scale. Both |TD| and |TM| start at a lower |T|-value. |TD(0, 455 kHz)| = 0.3977 while
|TM1(0, 455 kHz)| = 0.23. Both |TM| and |TD| have a maximum around η or hx =
155 rad/m with |TM(158 rad/m, 455 kHz)| = 1.06 and |TD(159, 3rad/m, 455 kHz)| =
1. |TM| and |TD| are very close in the first maximum of transmission coefficient. Fur-
ther on |TM| exceeds unity by a large margin on the next maximums, this indicates
that the results are more unreliable in these regions.

FIGURE 5.115: Comparison of |TD(η, 455kHz)| from Fig. 5.5 and
|TM(hx, 455kHz)| from Fig. 5.95 with leaky Lamb modes labeled

In Fig. 5.115 the plots from Fig. 5.115 with the modes are labeled. These values
are consistent with Fig. 5.1. We can see an indication that the S−2-mode is approx-
imated through measurements for the frequency 455 kHz at hx = 158 rad/m. The
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second part of the S−2 mode is not as well reconstructed. |TM| does have a max-
imum near, but exceeds unity with |TM| = 2.46, which suggests the data is not as
reliable for this wavenumber. The A1 mode is quite narrow spanning approximately
22 rad/m, which is just above ∆hx = 19.7 rad/m. This means the mode is unlikely to
be approximated with the experimental setup used here. At higher wavenumbers
|TM| is more erratic. The peak at 630 rad/m is at a wavenumber where the transmis-
sion in theory should be quite low. There are however peaks near both the S0 and
A0 modes, how reliable this is however is questionable.

FIGURE 5.116: Comparison of |TD(η, 700kHz)| from Fig. 5.9 and
|TM(hx, 700kHz)| from Fig. 5.97 with leaky Lamb modes labeled

In Fig. 5.116 the directly calculated transmission coefficient |TD| from Fig. 5.9 and
|TM|, for f = 700 kHz are plotted. Here the lack of extent in TM is very evident. The
last two modes are outside the interval of TM. Within the extent of TM an attribute
of |TD| is noted, most of transmission coefficient resides below 1. While |TD| starts
at |TD(0, 700 kHz)| = 0.065 TM3 starts at |TM(0, 700kHz)| = 0, 57. The S2-mode is
the first mode at 700 kHz and can seem to be shown by TM, but as seen in Figs.
5.110 and 5.111 the results from measurement 3 are not necessarily indicative of
anything substantial. The S1-mode for 700 kHz is very narrow with a width at the
bottom of under 10 rad/m, significantly below ∆hx = 29.9 rad/m, so the peak of
TM at hx = 760 rad/m may be insignificant. There is no particular indication of the
A1-mode in TM.
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FIGURE 5.117: Comparison of TD(η, 955kHz) from Fig. 5.13 and
TM3(hx, 955kHz) from Fig. 5.98

In Fig. 5.117 the directly calculated transmission coefficient |TD| from Fig. 5.13 and
the transmission coefficient calculated from measurement 3, |TM| from Fig. 5.98, for
f = 955 kHz are plotted. The extent of |TM| is far below the needed hx,max for 955 kHz
and is very evident in the plot. |TD| starts at unity, while |TM(0, 35 rad/m, 955 kHz)| =
0.35. |TM| quickly rises to a local maximum at |TM(29 rad/m, 955 kHz)| = 1, 06. If
the local maximum of |TM| indicates the A3 mode is not certain, especially as |TM|
quickly exceeds unity after. Where |TD| has a large section of little transmission |TM|
gives little indication if this. The modes S2 and A2 are in close proximity and both
narrow, meaning any distinction between them would be impossible with the ∆hx
of TM. There is a slight peak close to these peaks, but this can not be asserted with
any certainty that it is caused by the modes. S1 is the last mode within the extent of
|TM|, which has a peak close to the mode, however because of the uncertainty of the
plot with regards to the other modes this can not be asserted.

FIGURE 5.118: Comparison of |TD| from Fig. 5.1 and |TM| from 5.99

The comparison of the directly calculated transmission coefficient from 5.1 and
the one obtained from measurement 3 in Fig. 5.99, is shown in Fig. 5.118. Overall the
similarities are not evident. There is only one main section of interest. The area be-
tween f = 400 kHz and f = 600 kHz below ηr or hx = 400 rad/m. Here the two faint
lines shown in Fig. 5.100 are comparable to the transmission lines of |TD|. In this re-
gion we saw from the results of measurement 1, that a more accurate representation
of the transmission coefficient was achieved.
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5.5 Final Thoughts

The results from the on-axis showed that the effects observed by among others
Lohne and Aanes [27, 11] were also observed here. Comparing the results with that
of Aanes there were some slight discrepancies between the results, but overall they
showed the same effects noted by e.g. [11, 27].

The unexpected failure of measurement 2 meant the intended data used for the
reconstruction of the transmission coefficient was not available. Instead the data
with the intended parameters was only available for the frequency 455 kHz. Luck-
ily measurement 3 was already conducted, although with different parameters, and
was usable. There were also issues with the acquisition of the data, in the form of
what seemed to be fluctuations of the sampled intervals the cause of which is un-
certain. In addition the presence of other signals on the negative side of t was also
unexpected, but did not have a direct impact on the processing of the data. Fol-
lowing the data available and the acquisition the processing of this data was also
an issue. With less than ideal post-processing of the sampled signal V(x, z, t), the
phase of the signal was not usable for any study. This is the direct result of the post-
processing window assignment and the need for a more robust method of assigning
this. Following the assignment of the post-processing window, the issue of the low
SNR observed in some sample intervals is also an area that was not addressed in
the post-processing. Lastly the issue of Hankel transforming the voltage spectrum
with nonzero magnitudes may have caused aliasing effects. Despite these issues
some promising results were acquired. From the comparison of the transverse Hpp
transfer function with the simulated results from in Sect. 5.3.2 we saw the measure-
ment results showed similar magnitudes to the simulated ones. All the measured
voltage spectrum components from Sect. 5.3.3 showed qualitative similarities with
the simulated pressure spectrum components from Sect. 5.1.3. Following this the
limited resolution and extent of measurement 3 impacted the results of the voltage
wavenumber spectra VM(hx, z, f ) of Sect. 5.3.4. However the voltage wavenumber
spectrum for f = 455 kHz from measurement 1 in Figs. 5.88 and 5.90, showed com-
parable results to the simulated results especially with |PH |. The transmission coef-
ficient from measurement 1, in Fig. 5.95 showed promising results when compared
with the simulated transmission coefficient in Fig. 5.5. This was seen in the lower
wavenumbers, which was expected when considering the effect seen in Fig. 5.108.
Here we saw that with this implementation a full approximation of the pressure/-
voltage wavenumber spectrum was not possible, and this was also supported by the
simulated |PH(ηr, z0, 455 kHz)|. Meaning |TM| is restricted to the same interval. In
Fig. 5.118 we saw that results from measurement 3 also had comparable results to
the directly calculated transmission coefficient, although in a very limited region.
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Chapter 6

Conclusion and Further Work

A short summary of the objective of the thesis and what was achieved is given.
Following this som suggestions for further work is given.

6.1 Conclusion

This thesis had as an objective to study the beam transmission through a steel plate
both on-axis and traversing along an axis. The on-axis measurement results were
compared and showed comparable results to previous work. Using the transverse
measurements and the use of the 2D Hankel transformation the measured voltage
was transformed to the horizontal wavenumber-domain. Further these results were
used to reconstruct the transmission coefficient. In conjunction with simulated re-
sults from the ASM model developed by Midtbø [24] several stages of this process
were compared. Through the comparison we saw several promising results, par-
ticularly from the measurement with the widest extent and highest resolution. The
results that were in agreement with the theoretical transmission coefficient were in
the lower wavenumbers, well below hx = h f . The results also showed the need for
a more robust post-processing method and how this can affect the results. Over-
all the results showed promising results for the the objective of reconstructing the
transmission coefficient using normal incidence ultrasonic beam transmission and
equidistant measurements.

In the middle of march the Covid-19 outbreak resulted in the closing of the univer-
sity for approximately 6 weeks. This was done understandably to hinder further
spread. The closing of the university meant that the measurements being conducted
at that time were stopped and any further physical research was not possible. Be-
cause of this the final measurements needed were not conducted until late April
until the middle of May. When measurement 2 turned out to be unusable there was
little time to troubleshoot the issue with the setup and conduct the measurement
again.

6.2 Further Work

For further work the proper handling of the post-processing is important. Having
a robust method of assigning and processing the post-processing window is highly
important in order to have accurate measurements for both the magnitude and the
phase. Another possible improvement would be to have rotational control of the
hydrophone in order to have the incident angle of the direct signal be as low as
possible. Increasing the voltage input to the transducer may also be beneficial to
increase the SNR. Addressing the abrupt end of the voltage spectrum components
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would also help with aliasing effects in the voltage wavenumber spectrum. The ef-
fect of limited spacial extent and resolution was documented throughout the thesis,
and an increase of the spacial extent would be beneficial. Modelling the transmis-
sion could be done in FEM in order to have a more accurate model of the process if
the transducer is recreated in the simulation.
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Appendix A

Transverse Measurement Script

x_start = -10 %start of measurement
x_end = 320 %end of measurement
delta_x = 1 %step interval
x_tot = (x_start:delta_x:x_end);

for i = 1:length(x_tot)

x_pos = x_tot(i);

pw = pwd;
addpath(genpath(pw));

%%%%%%%%%%%%%%%%%%%%%%%written by M. Aanes

id_sig = visa(’ni’, ’GPIB0::12::INSTR’);

DPORead_par.Samples = 100e3; % antall samples pï¿ skop
DPORead_par.Ch=2; % Lese fra kanal 2 pï¿ skop
DPORead_par.Average = 256;
DPORead_par.burst_rate = 50;
DPORead_par.screenRows = 4;
DPORead_par.verticalScalings = [1e-3 10];

ScopeOffset_par.OffsetMethod=’ScopeZero’; %mode,mean,ScopeZero,Fourier
ScopeOffset_par.SampleMethod=’sample’; %sample, time, periods, auto
ScopeOffset_par.StartStop=[1 100000];
% ScopeOffset_par.Freq= 500e3; %frequency

id_scope = visa(’agilent’,’USB0::0x0699::0x0410::C024017::0::INSTR’); % new
id_scope.InputBufferSize = DPORead_par.Samples;
id_scope.OutputBufferSize = DPORead_par.Samples;

freq = 700e3:255e3:955e3; %frequency range
timeSig_gen = 130e-6; % cycles freq * timeSig_gen = 1/T * tid

%% Program starts
fopen(id_sig);
for ii = 1:length(freq)
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fprintf(id_sig,[’FREQ ’, num2str(freq(ii))]);
fprintf(id_sig,[’BM:NCYC ’, num2str(ceil(freq(ii)*timeSig_gen))]);
read_tmp = adjustAmplitudeScope_rev02(id_scope,DPORead_par,ScopeOffset_par);
wf_save{ii} = read_tmp{2};
x_save{ii} = read_tmp{1};
ii

end

fclose(id_sig);
fopen(id_scope);
samleRate = query(id_scope,’HORizontal:MAIn:SAMPLERate?’);
fclose(id_scope);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

name = [’Dispersjon’ num2str(x_pos) ’.mat’]; %Make filename
save (name, ’x_save’, ’wf_save’, ’x_pos’, ’freq’); %Save relevant variables

Micosstep(delta_x,1,0) %flytt hydrofon

end
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Hankel transformation

%Program for Hankel transform
clear;
addpath(genpath(’../subRutines’))
v_w = 1485; %fluid velocity
av_v = 1515; %average velocity
direct_pathz0 = 0.27; %path from transducer to plate
direct_path = 0.37605; %path from transducer to (x_0,z_2)
pps = 25000000; %Samples per second
periodFracJump = 1/16;
i = sqrt(-1);
samplestart_pl = 49e3; %Start sample for plate measurement
sampleend_pl = 49.5e3; %End sample for plate measurement
samplestart_wa = 47e3; % Start sample for water measurement
sampleend_wa = 47.5e3; %End sample for water measurement

min_freq = 350e3; %Start frequency
freq_step = 5e3; %Frequency step
max_freq = 1000e3; %End Frequency
frekvens = (min_freq:freq_step:max_freq);

x_step = 5e-3; %Spatial step
xstart2 = 0e-3; %x_0 value plate
xend2 = 210e-3; %x_max value plate
xmax2 = xend2-xstart2;
xstart0 = 0e-3; %x_0 value water
xend0 = 210e-3; %x_max value water
xmax0 = xend0-xstart0;

%Selecting the appropriate x-range
if abs(xmax2)>abs(xmax0)

xmax = xmax0;
elseif abs(xmax2)<abs(xmax0)

xmax = xmax2;
else

xmax = xmax2;
end

x2 = (xstart2:x_step:xend2); %x-range of plate measurements
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x0 = (xstart0:x_step:xend0); %x-range of water measurements
x = (0:x_step:xmax); %x-range of used measurements
fs = 1/x_step; %spatial frequency step
s_frek2 = (0:1/xmax:fs-1/xmax); %Spatial frequency range
kx = s_frek2*(2*pi); % horizontal wavenumber

Pn_pl = zeros(length(frekvens),length(kx));
Pn_v = zeros(length(frekvens),length(kx));
count1=1

addpath(’Dispersjon.09.01’) %Add folder
for ii = 1:length(x)

av = num2str(x2(ii)*1e3);
load([’Dispersjon’, av , ’.mat’]) %load file
freq_pl = freq; % get frequency from file
x_pl = x_save; %get time from file
wf_pl = wf_save; %get waveform from file

displacement = abs(x(ii)); %x-displacement
ray_path = sqrt(direct_path^2 + displacement^2); %calculate shortest path
time_displacement = ray_path/av_v - direct_path/av_v; %Timedisplacement
p_disp = ceil(time_displacement * pps); %pSample displacement

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% written by M. Aanes %%% edited by I. Ravndal

%%%%%%%% apply steady state region
SampleInfoStruct_pl.Start = ’sample’; %
SampleInfoStruct_pl.StartVal = samplestart_pl + p_disp;
SampleInfoStruct_pl.End = ’sample’;
SampleInfoStruct_pl.EndVal = sampleend_pl + p_disp;

for jj = 1:length(freq) %fourier transform
SigStruct_pl.x = x_pl{jj};
t01 = x_pl{jj}(samplestart_pl+p_disp)

SigStruct_pl.y = wf_pl{jj};
SigStruct_pl.SigFreq = freq_pl(jj);

CutOffIndxs = find_index_in_sig(SigStruct_pl,SampleInfoStruct_pl);
wf_pl_reg = wf_pl{jj}(CutOffIndxs(2):CutOffIndxs(3));
FT_tmp_pl = fourier_transform(SigStruct_pl.x,wf_pl_reg,1); % call on subrutine

ff = abs(FT_tmp_pl{2}).*exp(i*angle(FT_tmp_pl{2}) -i*(freq(jj)*(2*pi))*t01);
matrix.f2{jj,count1}=ff;
[a,b_indx] = max(abs(ff));
MagFT_pl = ff(b_indx);
ww = (i*angle(FT_tmp_pl{2}) -i*(freq(jj)*(2*pi))*t01);
phasez2{jj,count1} = ww;
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matrix.z2(jj,count1) = MagFT_pl; %legger til i matrise

end
%%%%%%%%%%%%%%%%%%%%%%%%%%
count1 = count1+1

end
rmpath(’Dispersjon.09.01’)

% % Same prcoess as previous loop
count2 = 1
addpath(’Platetransverse.30.01’)

for kk = 1:length(x)
av = num2str(x0(kk)*1e3);
load([’Dispersjon’, av , ’.mat’]) %load filen
freq_v = freq;
x_v = x_save;
wf_v = wf_save;

displacement = abs(x(kk));
ray_path = sqrt(direct_pathz0^2 + displacement^2);
time_displacement = ray_path/v_w - direct_pathz0/v_w;
p_disp = ceil(time_displacement * pps);

SampleInfoStruct_v.Start = ’sample’;
SampleInfoStruct_v.StartVal = samplestart_wa + p_disp;
SampleInfoStruct_v.End = ’sample’;
SampleInfoStruct_v.EndVal = sampleend_wa + p_disp;

for ll = 1:length(freq)
SigStruct_v.x = x_v{ll};
t02 = x_v{ll}(samplestart_wa+p_disp);
SigStruct_v.y = wf_v{ll};
SigStruct_v.SigFreq = freq_v(ll);

CutOffIndxs = find_index_in_sig(SigStruct_v,SampleInfoStruct_v);
wf_v_reg = wf_v{ll}(CutOffIndxs(2):CutOffIndxs(3));
FT_tmp_v = fourier_transform(SigStruct_v.x,wf_v_reg,1);
ff = abs(FT_tmp_v{2}).*exp(i*angle(FT_tmp_v{2}) -i*(freq(ll)*(2*pi))*t02) ;
matrix.f0{ll,count2}=ff;
[a,b_indx] = max(abs(ff));
MagFT_v = ff(b_indx);
%MagFT_v = max(FT_tmp_v{2})*exp(-i*(freq(ll)*(2*pi))*t02);

matrix.z0(ll,count2) = MagFT_v;
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end
count2 = count2+1

end
rmpath(’Platetransverse.30.01’)

%%%%%%%Hankel transform
count3 = 1
for ff = 1:length(frekvens)

pf_pl = matrix.z2(ff,:);
pf_v = matrix.z0(ff,:);
for nn = 1:length(kx)

et = kx(nn);
Jnll = besselj(0,x.*et);
P_pl = 2*pi.*pf_pl.*Jnll.*x;
P_v = 2*pi.*pf_v.*Jnll.*x;
step = x_step;

y_mid_pl = 1/2*(P_pl(1:end-1)+P_pl(2:end)); %trapezoidal integration
Pn_pl(count3,nn) = sum(y_mid_pl)*step;
y_mid_v = 1/2*(P_v(1:end-1)+P_v(2:end));
Pn_v(count3,nn) = sum(y_mid_v)*step;

end
count3=count3+1
end

dr = num2str(x_step*1e3);
mr = num2str(xmax*1e3);
hf = transpose((frekvens*2*pi)/v_w);

TC = Pn_pl./(Pn_v.*exp(i.*hf*0.37)); % calculation of transmission coefficient
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ASM model

%Asm
clear
i = sqrt(-1);
rhof = 1000;
rhop = 8000;
d = 6.05e-3;
fmin = 350e3;
fmax = 1000e3;
fstep = 5e3;
freq = (fmin:fstep:fmax);
cf = 1485;
cl = 5780;
cs = 3130;
z0 = 0.270;
z2 = 0.37;
a = 0.01055;
v0 = 1;
Qf = inf;

etamin = 0;
etastep = 1e-3;
etastep2 = 1.33e-8;
etastep_h =1e-3;
etamax = 4250;
eta = (etamin:etastep:etamax);
eta_h = (etamin:etastep_h:etamax);

rmin = 0;
rstep = 1e-3;
rmax = 0.32;

r = (rmin:rstep:rmax);
na = eta*a;
PZ0d = zeros(length(freq),length(eta));
PZ2d = zeros(length(freq),length(eta));
ppz2 = zeros(length(freq),length(r));
ppz0 = zeros(length(freq),length(r));
Pnz2 = zeros(length(freq),length(eta_h));
Pnz0 = zeros(length(freq),length(eta_h));
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J1 = besselj(1,na);
Jnc = (2*J1)./na;
Jnc(1,1) = 1;
Vz = pi*a^2*v0.*Jnc;

cnt = 1
for ii = 1:length(freq)

f = freq(ii);
w = 2*pi*f;
hf = w/cf;
hff(cnt,:) = hf;
hfzN = sqrt(hf^2-eta.^2);

eta1 = 0:etastep:hf-0.01;
eta2 = hf-0.01+etastep2:etastep2:hf+0.01-etastep2;
eta3 = hf+0.01:etastep:etamax;

hfz1 = sqrt(hf^2-eta1.^2);
hfz2 = sqrt(hf^2-eta2.^2);
hfz3 = sqrt(hf^2-eta3.^2);

na1 = eta1*a;
na2 = eta2*a;
na3 = eta3*a;

J11 = besselj(1,na1);
Jnc1 = (2*J11)./na1;
Jnc1(1,1) = 1;
Vz1 = pi*a^2*v0.*Jnc1;

J12 = besselj(1,na2);
Jnc2 =(2*J12)./na2;
Vz2 = pi*a^2*v0.*Jnc2;

J13 = besselj(1,na3);
Jnc3 = (2*J13)./na3;
Vz3 = pi*a^2*v0.*Jnc3;

PN = ((rhof*w)./hfzN.*Vz.*exp(i*hfzN*z0));
PZ0d(cnt,:) = PN;

P1 =((rhof*w)./hfz1.*Vz1.*exp(i*hfz1*z0));
P2 =((rhof*w)./hfz2.*Vz2.*exp(i*hfz2*z0));
P3 =((rhof*w)./hfz3.*Vz3.*exp(i*hfz3*z0));
int1 = 1
for mm = 1:length(r)

rr = r(mm);
J01 = besselj(0,eta1.*rr);
J02 = besselj(0,eta2.*rr);
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J03 = besselj(0,eta3.*rr);
Integrand1=(1/(2*pi)).*P1.*J01.*eta1;
Integrand2=(1/(2*pi)).*P2.*J02.*eta2;
Integrand3=(1/(2*pi)).*P3.*J03.*eta3;
step1 = etastep;
step2 = etastep2;
step3 = etastep;

ymidt1 = 1/2*(Integrand1(1:end-1)+Integrand1(2:end));
ymidt2 = 1/2*(Integrand2(1:end-1)+Integrand2(2:end));
ymidt3 = 1/2*(Integrand3(1:end-1)+Integrand3(2:end));

ppz0(cnt,mm) = sum(ymidt1)*step1 + sum(ymidt2)*step2 + sum(ymidt3)*step3;
f
cnt
int1 = int1+1

end
cnt = cnt+1

end

cont = 1
for jj = 1:length(freq)

f = freq(jj);
w = 2*pi*f;
hf = w/cf;
hfz2 = sqrt(hf^2-eta.^2);
alphaf = 0.5*(hf/Qf);
k = hf + i*alphaf;
kapfz = sqrt(k^2 - eta.^2);
kaplz = sqrt((w/cl)^2 - eta.^2);
kapsz = sqrt((w/cs)^2 - eta.^2);

tan1 = (sin(kaplz.*(d/2))./(cos(kaplz.*(d/2))));
tan2 = (sin(kapsz.*(d/2))./(cos(kapsz.*(d/2))));
cotan1 = 1./tan1;
cotan2 = 1./tan2;

AS = ((w/cs)^2-2.*eta.^2).^2.*tan1 + 4.*eta.^2.*kapsz.*kaplz.*tan2;
S = ((w/cs)^2-2.*eta.^2).^2.*cotan1 + 4.*eta.^2.*kapsz.*kaplz.*cotan2;

Y = (rhof/rhop).*(kaplz./kapfz).*(w/cs)^4;
T = (i.*Y.*(AS+S))./((S-i.*Y).*(AS+i.*Y));
T(isnan(T) | isinf(T)) = 0;

Pzz2 = ((rhof.*w)./hfz2.*Vz.*T.*exp(i.*hfz2.*z2));
PZ2d(cont,:) = Pzz2;
int2 = 1

for ss = 1:length(r)
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rr = r(ss);
J0 = besselj(0,eta.*rr);
Integrand = (1/(2*pi)).*Pzz2.*J0.*eta;
step = etastep;

y_midt = 1/2*(Integrand(1:end-1)+Integrand(2:end));
ppz2(cont,ss) = sum(y_midt)*step;
f
int2 = int2+1
cont

end

cont = cont+1

end

% plot(abs(ppz2(105,:)));
count = 1
for pp = 1:length(freq)

pz2 = ppz2(pp,:);
pz0 = ppz0(pp,:);
int3 = 1
for nn = 1:length(eta_h)

et = eta_h(nn);
Jnll = besselj(0,r.*et);
integran1 = 2*pi.*pz2.*Jnll.*r;
integran2 = 2*pi.*pz0.*Jnll.*r;
step2 = rstep;

y_mid1 = 1/2*(integran1(1:end-1)+integran1(2:end));
y_mid2 = 1/2*(integran2(1:end-1)+integran2(2:end));
Pnz2(count,nn) = sum(y_mid1)*rstep;
Pnz0(count,nn) = sum(y_mid2)*rstep;
count
int3 = int3 +1

end
count=count+1
end

TCD = PZ2d./(PZ0d.*exp(i*hff*z2));
TCH = Pnz2./(Pnz0.*exp(i*hf*z2));

dr = num2str(rstep*1e3);
mr = num2str(rmax*1e3);
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On Axis Measurement Script and
Post-Processing

%%%Program for on-axis measurment%%%%
% 1. Init
% 2. Finne center (Parkerstep) (Micosstep)
% 3. Kjør dette scriptet

% %% Sletting og addpath
% instrreset % sletter alle lagrede instrumentobjekt
% clear % sletter data
% clear path
pw = pwd;
addpath(genpath(pw));

%% Aktuelle input verdier

id_sig = visa(’ni’, ’GPIB0::12::INSTR’);

DPORead_par.Samples = 100e3; % antall samples pï¿ skop
DPORead_par.Ch=2; % Lese fra kanal 2 pï¿ skop
DPORead_par.Average = 256;
DPORead_par.burst_rate = 50;
DPORead_par.screenRows = 4;
DPORead_par.verticalScalings = [1e-3 10];

ScopeOffset_par.OffsetMethod=’ScopeZero’; %mode,mean,ScopeZero,Fourier
ScopeOffset_par.SampleMethod=’sample’; %sample, time, periods, auto
ScopeOffset_par.StartStop=[1 100000];
% ScopeOffset_par.Freq= 500e3; %frequency

id_scope = visa(’agilent’,’USB0::0x0699::0x0410::C024017::0::INSTR’); % new
id_scope.InputBufferSize = DPORead_par.Samples;
id_scope.OutputBufferSize = DPORead_par.Samples;

freq = 455e3:5e3:455e3;
timeSig_gen = 130e-6; % cycles freq * timeSig_gen = 1/T * tid
%freq_short_Meas = 500e3;
%cycle_short = 2;
%% Program starts
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fopen(id_sig);
for ii = 1:length(freq)

fprintf(id_sig,[’FREQ ’, num2str(freq(ii))]);
fprintf(id_sig,[’BM:NCYC ’, num2str(ceil(freq(ii)*timeSig_gen))]);
read_tmp = adjustAmplitudeScope_rev02(id_scope,DPORead_par,ScopeOffset_par);
wf_save{ii} = read_tmp{2};
x_save{ii} = read_tmp{1};
ii

end
% fclose(id_sig);
% return
%% extra meas for Fourier method
% fprintf(id_sig,[’FREQ ’, num2str(freq_short_Meas)]);
% fprintf(id_sig,[’BM:NCYC ’, num2str(cycle_short)]);
% read_tmp = adjustAmplitudeScope_rev02(id_scope,DPORead_par,ScopeOffset_par);
% wf_short_save = read_tmp{2};
%x_short_save = read_tmp{1};

fclose(id_sig);
fopen(id_scope);
samleRate = query(id_scope,’HORizontal:MAIn:SAMPLERate?’);
fclose(id_scope);

%% saving parameters
save WaterTank_save.mat wf_save x_save freq samleRate

%%%%Program for Hpp transfer function%%%%%
clear

addpath(genpath(’../subRutines’))

SampleInfoStruct_wa.Start = ’sample’;
SampleInfoStruct_wa.StartVal = 47.5e3;
SampleInfoStruct_wa.End = ’sample’;
SampleInfoStruct_wa.EndVal = 48e3;

SampleInfoStruct_pl.Start = ’sample’;
SampleInfoStruct_pl.StartVal = 49e3;
SampleInfoStruct_pl.End = ’sample’;
SampleInfoStruct_pl.EndVal = 49.5e3;

% samplesForModeMean=8000;
% average_method = ’mode’; %’mode’ or ’mean’
periodFracJump = 1/16;

load(’D:\Ivar\New\Program/Dispersjon0.mat’)
% load ’/Home/siv25/msa022/Measurements/Post-Doc/Measurements Semi Tank/Low Water/WaterTank_save_water270_T21_5_lowWater_27Feb.mat’;
freq_wa = freq;
x_wa = x_save;
wf_wa = wf_save;
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load(’D:\Ivar\New\Program/Dispersjon-5.mat’)
% load ’/Home/siv25/msa022/Measurements/Post-Doc/Measurements Semi Tank/Low Water/WaterTank_save_plate376_T21_3_lowWater_26Feb.mat’;
freq_pl = freq;
x_pl = x_save;
wf_pl = wf_save;

%% Program starts

for ii = 1:length(freq_wa)
% ii=1;
SigStruct_wa.x = x_wa{ii};
% SigStruct_wa.y = wf_wa{ii} - feval(average_method,wf_wa{ii}(1:samplesForModeMean));
SigStruct_wa.y = wf_wa{ii};
SigStruct_wa.SigFreq = freq_wa(ii);

SigStruct_pl.x = x_pl{ii};
% SigStruct_pl.y = wf_pl{ii} - feval(average_method,wf_pl{ii}(1:samplesForModeMean));
SigStruct_pl.y = wf_pl{ii};
SigStruct_pl.SigFreq = freq_pl(ii);

CutOffIndxs = find_index_in_sig(SigStruct_wa,SampleInfoStruct_wa);
wf_wa_reg = wf_wa{ii}(CutOffIndxs(2):CutOffIndxs(3));
PeakInfo_wa = findPeaksAndZeros(SigStruct_wa.x,wf_wa_reg,freq_wa(ii),periodFracJump);
SteadyState_wa{ii} = PeakInfo_wa{3}; % cos signal in steady state
FT_tmp_wa = fourier_transform(SigStruct_wa.x,SteadyState_wa{ii},1);
MagFT_wa(ii) = max(abs(FT_tmp_wa{2}));
SteadyState_amplitude_wa(ii) = mean(abs(wf_wa_reg(PeakInfo_wa{1})));

CutOffIndxs = find_index_in_sig(SigStruct_pl,SampleInfoStruct_pl);
wf_pl_reg = wf_pl{ii}(CutOffIndxs(2):CutOffIndxs(3));
PeakInfo_pl = findPeaksAndZeros(SigStruct_pl.x,wf_pl_reg,freq_pl(ii),periodFracJump)
SteadyState_pl{ii} = PeakInfo_pl{3}; % cos signal in steady state
FT_tmp_pl = fourier_transform(SigStruct_pl.x,SteadyState_pl{ii},1);
MagFT_pl(ii) = max(abs(FT_tmp_pl{2}));
SteadyState_amplitude_pl(ii) = mean(abs(wf_pl_reg(PeakInfo_pl{1})));

end

Hpp_fourier = MagFT_pl./MagFT_wa;
Hpp_amplitude = SteadyState_amplitude_pl./SteadyState_amplitude_wa;

close all;plot(freq_wa,20*log10(Hpp_fourier))
legend(’Fourier’)
%figure;plot(freq_wa,20*log10(Hpp_amplitude))

%%%%Temporal Fourier transform%%%%

function out = FourierMethod(x,y,SigFreq,periodFracJump,tresh_onset,tresh_unwrap,ZeroPadSide_Method_Value,ValueCutStart_ValueCutDuration,MethodCutStart_MethodDuration,region)

% % phase_tmp_ref = FourierMethod(x_ref,y_ref,SigFreq,periodFracJump,tresh_onset,tresh_unwrap...
% % ,ZeroPadSide_Method_Value,ValueCutStart_ValueCutDuration,MethodCutStart_MethodDuration...
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% % ,ShearWaveTimePrediction_ref);
%
% clear
% % close all
% addpath(’/Home/siv25/msa022/MATLAB/AllPrograms/main/plotting’)
%
% % filenameRef = ’/Home/siv25/msa022/Results Measurements/Time_Signals/methane/Reference Meas/shear/polyEurFrontTest/shear_noRock_poly2Vpp.mat’;
% % filenameRef = ’/Home/siv25/msa022/Results Measurements/Time_Signals/methane/shear/Meas_10.mat’;
% % load(filenameRef);
% load(’test.mat’);
%
% % x = Meas{1}{2}{1};
% % y = Meas{1}{2}{2};
% x = x_pl;
% y = y_pl;
% region = ShearWaveTimePrediction_pl;
% %
% %
% % periodFracJump = 1/16;
% % tresh_onset = [2 0.3]; %[manual/relMax valueManual/fracMax]
% % SigFreq = 400e3;
% % CutDownStartAndDurationPeriods = [3 1];
% % MethodDuration = [1 1];
% % tresh_unwrap = 2;
% % SideMethodValue = [1 0 50000];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

onset_tmp = findOnsetFromMax(x,y,tresh_onset,SigFreq,periodFracJump,region);
onset = onset_tmp{1};
y2 = y(onset:end);

% Standard.x = x;
% Standard.y2 = y2;
% Standard.periodFracJump = x;
% Standard

y3_tmp= goToZeroHead(x,y2,SigFreq,periodFracJump,MethodCutStart_MethodDuration,ValueCutStart_ValueCutDuration);
y3 = y3_tmp{1};
CutDownStart = y3_tmp{2}+y3_tmp{3};
y4 = ZeroPadCutSetLength(y3,ZeroPadSide_Method_Value);

% y4 = y3(1:10000);
fourier_tmp = fourier_transform(x,y4);
X_k = fourier_tmp{2};
% break
% X_k =
phase_X_k = atan(imag(X_k)./real(X_k));
freq_fourier = fourier_tmp{1};
unwrap_tmp = UnwrappingBothWays(phase_X_k,tresh_unwrap);
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phase_unwrap = unwrap_tmp{1};

% phase_K_k_save{counter} = phase_X_k;
% phase_unwrap_save{counter} = phase_unwrap;
% counter = counter+1;
% end

out{1} = freq_fourier;
out{2} = phase_unwrap;
out{3} = phase_X_k;
out{4} = y4;
out{5} = onset;
out{6} = CutDownStart-1+onset;
out{7} = X_k;
out{8} = onset_tmp{2}; % maxIndex
out{9} = onset_tmp{3}; % maxIndexNxt

% close all;figure(’Position’, [2300, 50, 700, 450]);plot(freq_fourier,20*log10(abs(X_k)))
% figure(’Position’, [2300, 50, 700, 450]);plot(freq_fourier,phase_X_k);xlim([0 1e6])
% figure(’Position’, [2300, 50, 700, 450]);plot(y3)
% figure(’Position’, [2300, 50, 700, 450]);plot(freq_fourier,phase_K_k_save{3});xlim([0 1e6])
% figure(’Position’, [2300, 50, 700, 450]);plot(freq_fourier,phase_unwrap_save{3});xlim([0 1e6])

% y2(1:ee)
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