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Summary 

The prevalence of obesity has increased substantially in the recent decades, along with 

associated co-morbidities such as insulin resistance, type 2 diabetes mellitus (T2DM) and 

cardiovascular diseases (CVDs). Moreover, obesity is associated with a state of chronic low-

grade inflammation which is thought to be one of the main driving forces for the 

development of insulin resistance and T2DM. However, the causal relationship is still 

controversial. The inflammation in adipose tissue has been characterized by the secretion of 

pro-inflammatory cytokines and infiltration of pro-inflammatory macrophages. In particular, 

an increased tendency of accumulating fat in the visceral adipose tissue have been 

associated with adipose tissue inflammation and an increased risk of associated co-

morbidities. 

In this project, we aimed to quantify the level of macrophage infiltration into subcutaneous 

(SAT) and visceral adipose tissue (VAT) of severely obese subjects undergoing bariatric 

surgery. Furthermore, we phenotypically characterized pro-inflammatory M1-like 

macrophages (CD11c+CD206+) and anti-inflammatory M2-like macrophages (CD11c-

CD206+) by the expression of known pro-inflammatory receptors and investigated whether 

the level of pro- and anti-inflammatory macrophages associated with insulin resistance and 

other clinical parameters relevant for metabolic syndrome. We also analyzed the expression 

level of pro- and anti-inflammatory genes and performed functional analysis on isolated 

mature adipocytes from SAT and VAT, focusing on differences between the two depots.  

We found that macrophages are more abundant in SAT than in VAT. Moreover, insulin 

resistance (HOMA-IR) was associated with a higher ratio of the anti-inflammatory M2/M1-

like macrophages and a higher expression of the anti-inflammatory receptors CD163 and 

TREM2 in SAT. We also found that systemic inflammation was associated with a higher ratio 

of pro-inflammatory M1/M2-like macrophages and a pro-inflammatory gene expression 

pattern in VAT. Moreover, the chemotactic receptor, CCR2, was found to be highly 

expressed by M1-like macrophages and almost absent from M2-like macrophages. Further, 

we found that lipolysis was significantly higher in VAT compared to SAT of obese subjects, 

and the lipolytic response correlated negatively with insulin sensitivity in VAT.   
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1. Introduction 

 

1.1 Obesity 
 

Obesity is a complex disease and a major public health concern because of its increasing 

prevalence worldwide. Obesity results from excessive caloric intake over time. Excessive 

calories in the form of carbohydrate, fat and proteins are converted into triglycerides which 

are stored in adipose tissue leading to expanding adipose tissue (Burhans, Hagman et al. 

2018).  A common method to quantify the level of obesity have been the BMI (body-mass 

index) scale, where the weight in kilograms is divided by the square of the height in meters 

(Chooi, Ding et al. 2019). A BMI of 20-25 defines the normal healthy level, 25-29 as 

overweight and above 30 as obesity, while above 40 is considered morbidly obese. However, 

using the BMI designation to quantify obesity is limited by the fact that it cannot distinguish 

between fat and muscle mass and is not diagnostic of the body fatness, health status and 

associated risks. Furthermore, BMI do not differentiate between different fat depots (Chooi, 

Ding et al. 2019).  

Obesity is associated with elevated risk of several severe implications, such as metabolic 

syndrome, insulin resistance and T2D, atherosclerosis and an elevated risk of several forms 

of cancer which has brought a lot of attention in research on the pathogenesis of obesity 

(Apovian 2016).  

 

1.2 Epidemiology 
 

The prevalence of obesity has increased substantially in the last four decades and, nearly a 

third of the world population is now classified as overweight or obese. If the current trend 

continues it is estimated that more than half of the world population will be overweight or 

obese by 2030 (Chooi, Ding et al. 2019). Obesity is considered a major risk factor for 

developing insulin resistance and T2DM. Studies show that about 80% of the individuals 

diagnosed with T2DM are obese (Kennedy, Martinez et al. 2009). Besides increasing the risk 

of several serious diseases, obesity has a major socioeconomic cost by impacting on quality 

of life, work productivity and health costs. The cause of the obesity epidemic has been 
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attributed to the modern western diet consisting of more processed, energy dense, nutrient 

poor and affordable food and beverages which facilitates overconsumption. A major 

contribution also comes from a coincidence of decreased physical activity in the population 

owing to modernization of lifestyles (Chooi, Ding et al. 2019). In high income countries, 

obesity is most prevalent among poor and disadvantaged groups at all ages, while in low 

income countries obesity mostly affect middle-aged people from wealthy and urban 

environments. Also, the prevalence of obesity is generally higher in women than men at all 

sociodemographic levels (Chooi, Ding et al. 2019). During the last decade or so it has been 

observed that the increase in obesity rates have levelled off to some extent in many of the 

high-income countries. On the other hand, the obesity rates have accelerated in other parts 

of the world, especially in developing countries. This is most likely a result of rapid change in 

socioeconomic status, and adaption of a western diet accompanied by a more sedentary 

lifestyle, but globally the rate is still increasing (Chooi, Ding et al. 2019). It is debated 

whether the obesity epidemic may be slowing down in Norway as well. But a large study in 

the adult population in Norway (n = 90000) found that from the period 1984-1986 through 

1995-1997 to 2006-2008 the mean BMI increased from 25.3 to 26.5 and 27.5 kg/m2 in men 

and from 25.1 to 26.2 and 26.9 kg/m2 in women respectively. While the increase in 

prevalence of obesity (BMI >30 kg/m2) raised from 7.7 to 14.4 and 22.1% for men and from 

13.3 to 18.3 and 23.1% in women during the same period and found no signs of reduction in 

incidence of obesity during the follow-up period (Midthjell, Lee et al. 2013). Concomitant 

with the increase in obesity there have been a rapidly increase in incidence and prevalence 

of T2DM. A large metanalysis of 751 studies including 4 372 000 adults from 146 countries 

found that the global prevalence increased from 4.3% in 1980 and up to 9% in 2014 for men 

and from 5.0% up to 7.9% for women (Collaboration 2016). The number of total diabetes 

cases raised from 108 million up to 422 million during the same period. Lowest prevalence 

was observed in northwestern Europe and highest prevalence was observed in Polynesia and 

Micronesia (Collaboration 2016). In Norway, the incidence rate has been reported to level 

off to some degree in recent years. From 2009 to 2014 it was reported that the incidence 

decreased from 609 cases per 100 000 persons a year down to 398 cases per 100 000 

persons a year in 2014. Meanwhile the prevalence is still increasing, up from 4.9% to 6.1% 

during the same period, and is probably explained by diagnosis at a younger age and 

increased longevity (Ruiz, Stene et al. 2018). 
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1.3 Insulin resistance and Type II diabetes 
 

Because of the increasing prevalence of T2DM worldwide, it has been put down a lot of 

effort to understand the mechanisms of insulin resistance and β-cell dysfunction which are 

the leading cause of T2DM (Kahn, Cooper et al. 2014). In the normal healthy state, glucose 

metabolism is regulated by a feedback loop involving the insulin secreting islet β-cell of the 

pancreas and insulin sensitive tissue such as liver, muscle, and adipose tissue (Kahn, Cooper 

et al. 2014). Insulin is secreted in response to elevated blood glucose levels in the 

postprandial phase and acts by suppressing glucose production in the liver and stimulates 

uptake of glucose in liver, muscle and adipose tissue by promoting translocation of GLUT4 to 

the plasma membrane (Kahn, Cooper et al. 2014). Most of insulin action is mediated by AKT 

which is activated in a signaling cascade downstream of the insulin receptor (Figure 1.1.A). 

AKT also stimulates anabolic processes such as glycogenesis, de novo lipogenesis and protein 

synthesis, while at the same time inhibiting the opposing pathways (Huang, Liu et al. 2018). 

Perturbation of components in the insulin signaling cascade is a characteristic of insulin 

resistance and consequently lack of AKT stimulation diminishes GLUT4 translocation to the 

membrane leading to elevated blood glucose levels, which is magnified by the lack of 

inhibition of gluconeogenesis in liver (Figure 1.1. B). Lack of AKT signaling also diminishes the 

inhibitory effect on lipolysis, increasing the levels of circulating free fatty acids (FFA) which is 

taken up by muscles, liver and pancreas or deposited on ectopic places, contributing to 

lipotoxicity (Huang, Liu et al. 2018). It has been found that FFA and other metabolites that 

are increased during insulin resistance such as diacylglycerol (DAG), ceramides and acyl-CoA, 

could stimulate several protein kinases such as IKK-β, JNK and several isoforms of PKC to 

phosphorylate IRS-1 (Figure 1.1.B) attenuating the insulin signaling pathway (Szymczak-Pajor 

and Sliwinska 2019).  
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Figure 1.1 The insulin signaling pathway during normal physiological conditions (A) and insulin resistance (B). Insulin 

binding to its receptor is followed by dimerization and autophosphorylation of tyrosine residues on the cytosolic part of the 

receptor. Phosphotyrosine functions as docking sites for insulin-receptor substrate proteins which gets phosphorylated by 

the receptor and promote activation and translocation of PI3K to the membrane were PI3K phosphorylates PIP2 to PIP3. 

Elevation of PIP3 promotes activation of serine threonine kinase PDK1, which phosphorylates PKC and AKT leading to their 

activation. AKT and PKC mediates translocation of glucose transporters GLUT4 to the plasma membrane to elevate glucose 

uptake.  AKT also promote glycogenesis, lipogenesis and protein synthesis. During insulin resistance (B), the insulin signaling 

pathway is attenuated by inhibitory phosphorylation of IRS1 by several kinases such as IKK-β, JNK, and different isoforms of 

PKC. Failure of translocating GLUT4 to the plasma membrane leads to elevated blood glucose, in addition AKT will not 

mediates its other actions in response to insulin such as inhibiting lipolysis and gluconeogenesis in adipose tissue and liver, 

respectively (Szymczak-Pajor and Sliwinska 2019).     
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 The amount of insulin secreted from the β-cells are dependent upon the sensitivity of the 

target tissue, and when insulin resistance develops the β-cells try to cope with that by 

increasing insulin secretion to maintain glucose homoeostasis. Impaired glucose tolerance 

recognized by prolonged elevated glucose levels after a meal arise when the β-cells are 

incapable of increasing insulin secretion to cope with the worsening insulin resistance 

eventually leading to β-cell dysfunction (Kahn, Cooper et al. 2014). T2DM is a heterogeneous 

disease characterized by β-cell dysfunction in the pancreas, affecting insulin secretion and 

the insulin sensitivity in target tissues. The causes include both genetic and environmental 

contributions (Kahn, Cooper et al. 2014). Obese individuals are found to have a higher risk of 

developing T2DM suggesting that adipose tissue is likely to play a role in the pathogenesis of 

the disease (Scheen 2003). The level of insulin resistance has commonly been quantified by 

the HOMA-IR scale, which is calculated on the fasting levels of glucose and insulin (equation 

1.1) (Kim, Seol et al. 2019). 

(1.1) 

𝐻𝑂𝑀𝐴 − 𝐼𝑅 =  
𝐺𝑙𝑢𝑐𝑜𝑠𝑒 (

𝑛𝑚𝑜𝑙
𝐿 ) ∗ 𝐼𝑛𝑠𝑢𝑙𝑖𝑛 (

µ𝑈
𝑚𝐿)

22,5
 

 

 

1.4 Adipocytes and adipose tissue 
 

Adipose tissue serves several important physiological functions in our body and is commonly 

divided into two subtypes, white adipose tissue (WAT) and brown adipose tissue (BAT) 

(Saely, Geiger et al. 2012). WAT is most abundant and could broadly be divided into 

subcutaneous adipose tissue (SAT) which is located underneath the skin, and the visceral 

adipose tissue which surrounds the internal organs. The main role of WAT is to store excess 

calories consumed in the form of triglycerides, which can be used later for energy 

(Murawska-Cialowicz 2017). WAT also serves an important function as an endocrine organ, 

secreting adipokines, such as leptin, adiponectin and omentin which have important 

regulatory functions on fatty-acid oxidation, lipogenesis, gluconeogenesis, glucose uptake 

and insulin signaling in metabolically important tissues such as skeletal muscle, liver and 
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brain (Chait and den Hartigh 2020). BAT serves a function in heat production by metabolizing 

fatty acids and dissipates the energy as heat through mitochondrial uncoupling. BAT is most 

abundant in newborns and in particular small mammals enabling them to thrive in cold 

environments. The extent of BAT in adults and its physiological relevance is still not fully 

elucidated (Saely, Geiger et al. 2012). WAT is composed mostly of adipocytes, loose 

connective tissue and the stromal vascular fraction (SVF), which includes fibroblasts, 

preadipocytes, vascular endothelial cells and immune cells such as macrophages, NK-cells, T- 

and B-lymphocytes (Martyniak and Masternak 2017). WAT exhibits a tremendous capacity of 

expansion, mostly through the process of cell growth known as hypertrophy, but also 

through division of stem cells and differentiation of pre-adipocytes, a process known as 

hyperplasia (Zhang, Xie et al. 2017). Several studies have shown that there are great inter-

individual differences in the capacities of hypertrophy and hyperplasia, which could have 

implications for disease risk (Zhang, Xie et al. 2017). 

 

1.5 Adipose tissue depots and metabolically healthy obesity 

Some obese individuals appear to be better protected against metabolic abnormalities and 

has been referred to as metabolic healthy obese (MHO) (Iacobini, Pugliese et al. 2019). It is 

widely accepted among researchers in the field that central body fat distribution and 

impaired adipose tissue function are better predictors of obesity-associated metabolic 

syndrome than total fat mass and BMI (Iacobini, Pugliese et al. 2019). To eliminate subjective 

bias, it has been suggested that six parameters should be considered in classifying metabolic 

syndrome: waist circumference, insulin resistance, blood sugar levels, blood pressure, 

cholesterol levels and physical fitness. Which parameters best defining MHO has not been 

established yet, but most researchers agree on reduced accumulation of visceral adipose 

tissue (VAT) and ectopic fat, preserved insulin sensitivity and a lower degree of systemic and 

adipose tissue inflammation to be some of the defining features of MHO (Iacobini, Pugliese 

et al. 2019).  

Several factors regulate fat distribution in various adipose tissue depots. Age, sex and total 

body fat content are the main predictors of body fat distribution, but evidence indicates that 

genetic factors also have a major impact on fat distribution at any given BMI. Several studies 
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have attested the waist to hip ratio, a measure of fat distribution and found it to be highly 

heritable with estimates of up to 60% (Goodarzi 2018). SHOX2 is an example of a gene 

pointed out as a major determinant of regional fat distribution. SHOX2 expression in 

subcutaneous adipose tissue (SAT) correlates positively with both lipolysis activity of SAT 

adipocytes and visceral adiposity (2016). Also, there is evidence that developmental genes 

are differentially expressed in various fat depots and might play a role in the regulation of fat 

distribution and thereby also obesity-related metabolic traits (2016). This suggest that the 

difference between the MHO and metabolically unhealthy obese (MUO) phenotype is partly 

caused by genetic traits modulating body fat distribution between the different fat depots, 

which hold diverse biological properties and functions. Evidence indicates that not all fat 

depots are equally hazardous for health. Stronger associations are found between VAT and 

ectopic fat accumulation around liver, heart and muscles, with insulin resistance and CVD 

(Lebovitz and Banerji 2005). The type of fat also matters, WAT is strongly associated with 

obesity related metabolic disorders. BAT, on the other hand has a large potential of fat 

burning and confers a protective role for metabolic and cardiovascular health, although its 

contribution on whole body glucose homeostasis is still questionable (Chondronikola, Volpi 

et al. 2014).  

MHO subjects are characterized by a greater tendency of storing fat in the SAT depot and 

less in VAT, and ectopic sites compared to MUO at the same BMI and fat mass. A greater 

tendency of fat accumulation in the lower part of the body compared to abdominal fat 

accumulation is also a determinant of MHO (Iacobini, Pugliese et al. 2019). Therefore, the 

reason why MHO are better protected against obesity related disorders could in part be 

explained by the divergent regulatory functions of VAT and SAT, contributing to a greater 

capacity of SAT expansion to buffer against lipid overflow, and thereby reducing fat 

deposition in abdominal VAT and at ectopic sites such as muscle, pancreas and liver 

(Iacobini, Pugliese et al. 2019). In summary, the metabolic health of an individual is likely to 

depend on the adipogenic capacity of adipose tissue, which favor lipid buffering. For each 

individual there is a threshold for the adipogenic capacity, and once this threshold is 

exceeded, lipids get deposited on ectopic sites leading to metabolic abnormalities (Iacobini, 

Pugliese et al. 2019).  This hypothesis of a personal fat threshold could also explain the 

existence of metabolic unhealthy lean individuals. In addition, studies have found that 
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lifestyle habits might partly explain the heterogeneity of obesity in terms of metabolic 

abnormalities. In line with that, MHO phenotype is more frequently observed in younger and 

female adults, and in addition, the MHO is more likely to exercise and less likely to smoke or 

drink heavily (Iacobini, Pugliese et al. 2019). 

 

1.6 Adipocyte cell size and insulin resistance 
 

In order to maximize the amount of energy stored by each adipocyte, these cells are forming 

a large lipid droplet comprising almost the entire volume of the cell, only separated from the 

plasma membrane by a thin rim of cytoplasm (Zhang, Xie et al. 2017). During obesity the 

adipocytes increase their volume tremendously, and studies have found that adipocyte size 

has been correlated with obesity associated diseases such as T2DM and insulin resistance 

(Zhang, Xie et al. 2017). In line with this finding, obese subjects with a greater quantity of 

smaller adipocytes, indicative of a greater tendency of hyperplastic growth seems to be 

better protected against obesity related diseases (Zhang, Xie et al. 2017). In support to this, 

GWAS has found associations of genes involved in regulation of adipocyte development such 

as PPAR-γ with insulin resistance, and failure of adipocyte development as occurs in some 

lipodystrophy diseases causes severe systemic insulin resistance (Petersen and Shulman 

2018). The orphan nuclear receptor NR4A1, also known as NUR77 is an important 

component in the regulatory control of adipocyte quiescence, and its expression is found to 

have a negative influence on the metabolically beneficial adipose tissue plasticity (Zhang, 

Federation et al. 2018). NR4A1 could thus be a major contributor to the tendency of mature 

adipose tissue to expand primarily through hypertrophic rather than hyperplastic growth 

and may account for some of the inter individual variability. It has been hypothesized that 

obesity represent a state with relative resemblance to lipodystrophy, and that T2DM arise 

when the adipocyte hypertrophic and hyperplastic capacity is insufficient to accommodate 

the metabolic stress of chronic caloric excess, leading to an increasing tendency towards 

lipids being deposited on ectopic places such as the liver, pancreas and muscle (Zhang, 

Federation et al. 2018).   
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1.7 Ectopic fat deposition, adipocyte lipolysis and insulin resistance 
 

Adipocytes serve important functions during period of energy demand such as fasting or 

physical exercise by mobilizing fatty acids to serve as energy in tissues such as muscle, and to 

provide fatty acids and glycerol to the liver for synthesis of ketone bodies, and to serve as 

precursor for production of glucose in the process of gluconeogenesis respectively (Lass, 

Zimmermann et al. 2011). During lipolysis, triacylglycerols are hydrolyzed into fatty acids and 

glycerol by the sequential action of the three major lipases adipose triglyceride lipase 

(ATGL), hormone sensitive lipase (HSL) and monoacylglycerol lipase (MAGL). FFA and glycerol 

are released into the circulation and transported to tissues such as muscle and liver (Lass, 

Zimmermann et al. 2011).  

Lipolysis is carefully regulated by the actions of catecholamines, natriuretic peptides and 

insulin. Catecholamines and natriuretic peptides are considered the main stimulators of 

lipolysis, although some catecholamines are inhibitory, while insulin is considered the main 

hormone for inhibition of lipolysis (Lass, Zimmermann et al. 2011). Studies have found that 

the lipolytic response of catecholamines is reduced in SAT but increased in VAT of obese and 

insulin resistant subjects (Lass, Zimmermann et al. 2011). Moreover, it is reported that the 

basal rate of lipolysis is increased in the obese state, which could be a consequence of the 

tremendous volumetric expansion of adipocytes in obesity to the point were further 

expansion is not feasible. It is hypothesized that the increased rate of basal lipolysis worsens 

the lipid accumulation on ectopic sites such as liver, pancreas and muscle, leading to 

impaired insulin sensitivity in those tissues (Lass, Zimmermann et al. 2011). In addition, 

higher rates of lipolysis may modulate the secretory profile of adipocytes to release 

adipokines and promote adipose tissue inflammation by stimulate resident adipose tissue 

macrophages (ATM) to production of cytokines and chemokines, attracting additional 

macrophages. Numerous studies have pointed on the association between ectopic lipid 

accumulation and insulin resistance. Ceramides and DAG is pointed out as the suspected 

molecular species impairing insulin signaling, and studies has shown that lipid infusion in 

healthy lean people transiently increase cytosolic DAG content and promote insulin 

resistance (Morigny, Houssier et al. 2016). Moreover, studies in rats has shown that DAG is 
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able to activate PKCε which directly interfere with the insulin signaling pathway by 

phosphorylating components in the pathway such as IRS1 and RPS6 (Gassaway, Petersen et 

al. 2018).  It is also believed that the increase in circulating FFA and glycerol exacerbate 

hyperglycemia by serving as precursors and also stimulate gluconeogenesis (Morigny, 

Houssier et al. 2016). In addition, elevated FFA can acts as ligands for TLR4 receptors on 

macrophages, activating the NF-κB pathway leading to cytokine release (Kim, Seol et al. 

2019).  

 

1.8 Adipose tissue as an endocrine organ 
 

Although adipose tissue traditionally has been recognized for its function in energy storage 

the latest decades of research have firmly elucidated its endocrine function. Already in 1987 

it was discovered that adipose tissue has an important function in metabolism of sex 

hormones, and in 1994 followed the discovery of leptin, a hormone which have shown to 

play a major role in obesity (Mark 2013). It is now well established that adipose tissue 

secretes a wide variety of autocrine, paracrine and endocrine peptide hormones known as 

adipokines (Kershaw and Flier 2004). It is also found that adipose tissue expresses an array 

of receptors that enables the tissue to respond to signals from endocrine organs elsewhere 

in the body and the central nervous system. Through this network it is shown that adipose 

tissue is an important contributor in coordinating processes such as energy metabolism, 

neuroendocrine function and immune function (Kershaw and Flier 2004). 

Leptin has been discovered as an adipokine with a central role in energy homeostasis which 

is mediated through hypothalamic signaling. Secreted leptin signals energy sufficiency by 

inducing sensation of satiety and contribute to reduced food intake and increased energy 

expenditure (Kershaw and Flier 2004). Leptin knock-out mice present with severe obesity 

which is shown to be reversed by leptin replacement. Nevertheless, many obese experience 

elevated levels of leptin and is resistant to the action of leptin, and thus cannot be treated 

by supplementing exogenous leptin (Kershaw and Flier 2004).  

Adiponectin is another adipokine that is highly expressed and secreted by adipose tissue and 

accounts for 0.01% of total serum levels. Its expression is found to have a beneficial effect on 

insulin sensitivity, atherosclerosis and inflammation, and moreover, decreased expression of 



18 
 

adiponectin is closely associated with obesity (Chen, Montagnani et al. 2003). It is discovered 

that adiponectin has key roles in energy metabolism in several metabolically important 

tissues. Adiponectin is shown to activate AMPK, mediated through binding AdipoR1 receptor 

leading to increased insulin sensitivity and glucose uptake in adipose tissue, muscle and liver. 

In addition, adiponectin also inhibits gluconeogenesis in the liver by activating AMPK (Yilmaz, 

Biyikoglu et al. 2003), (Nawrocki, Rajala et al. 2006). Other actions of adiponectin are 

mediated through AdipoR2 receptors which activate the PPAR-α pathway leading to 

increased fatty acid oxidation and reduce inflammation (Kubota, Terauchi et al. 2002). The 

anti-inflammatory activity of adiponectin has implications for several inflammatory diseases 

including insulin resistance, atherosclerosis and cardiovascular diseases (CVDs). In vitro 

studies have shown that the anti-inflammatory actions of adiponectin are mainly driven by 

activation of AMPK and cAMP-PKA in macrophages, endothelial, epithelial and muscle cells, 

which stimulate the expression of anti-inflammatory IL-10. Moreover, in macrophages 

adiponectin also attenuates expression of the pro-inflammatory cytokines TNF and IL6 

through inhibitory actions on the pro-inflammatory NF-kB pathway (Ouchi and Walsh 2007).  

 

 

1.9 Adipose tissue as an immune organ and its implications for disease 
 

Besides its roles in fat storage and endocrine functions, adipose tissue has also been 

recognized as an immune organ (Stolarczyk 2017). Adipose tissue hosts a vast array of 

immune cells such as macrophages, NK-cell, T- and B-lymphocytes. Research have 

discovered that composition of different immune cell populations is modulated in the setting 

of obesity, and obesity is now recognized as a low-grade chronic inflammatory disease 

(Stolarczyk 2017). In lean individuals, adipose tissue secretes anti-inflammatory adipokines 

such as IL-10 and resident immune cells exhibit an anti-inflammatory phenotype (Pahlavani, 

Ramalho et al. 2017). In obesity, it has been reported that secretion of IL-1β, TNF, IFN-γ and 

MCP-1 by adipocytes and resident immune cells attracts additional immune cells such as 

macrophages, NK-cells, T- and B-cells into the tissue and exacerbate the inflammation. 

(Stolarczyk 2017). Moreover, the proinflammatory cytokines TNF and IL6 have been shown 

to suppress the insulin signaling in adipocytes suggesting a causal link between inflammation 
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and insulin resistance (Stolarczyk 2017). The most prominent of the infiltrating immune cells 

are the macrophages which is found to account for 30-50% of the non-adipocyte cell fraction 

in adipose tissue (Boutens and Stienstra 2016). Although obesity is associated with a state of 

chronic low-grade adipose tissue inflammation, the immune cells that infiltrates adipose 

tissue during obesity also perform important homeostatic functions such as breaking down 

extracellular matrix (ECM) proteins to permit healthy expansion of adipose tissue by creating 

room for new adipocytes, followed by creation of new ECM, a process known as tissue 

remodeling. This process is mainly driven by macrophages which also stimulate 

angiogenesis, the development of new blood vessels to provide oxygen and nutrients to the 

expanding adipose tissue (Burhans, Hagman et al. 2018). Macrophages are also able to take 

up FFA that expanded adipocytes are unable to store. It has been discovered that 

macrophages gather around dying adipocytes, making up an aggregate which is described as 

crown-like structures, where macrophages contribute to clearance of lipids and removal of 

cellular debris. Through these mechanisms macrophages thereby provide an additional layer 

of lipid buffering capacity (Cinti, Mitchell et al. 2005).   

More recent research has led to the hypothesis that adipose tissue in obesity transform from 

healthy expanding tissue into becoming inflamed when the ability of the tissue to induce 

adipogenesis and differentiate new adipocytes becomes limited. The continued exposure to 

excess nutrients leads to a stress response in enlarged adipocytes, causing them to express 

and secrete pro-inflammatory adipokines such as TNF-α, MCP-1 and IL6 which results in 

infiltration of bone-marrow derived monocytes and a polarization of macrophages into a 

pro-inflammatory state (Burhans, Hagman et al. 2018). It is proposed that the adipose tissue 

inflammation is part of a protective mechanism, by inducing insulin resistance to prevent cell 

death, and to provide additional lipid buffering capacity from the macrophages. During 

short-term caloric excess, low-level inflammation and adipose tissue macrophage (ATM) 

activation could be beneficial in the sense of providing enough time for the adipose tissue to 

expand. But in situations of chronic caloric excess, the non-resolving inflammation could be 

detrimental, and the continued insulin resistance would lead to elevated lipolysis, 

overwhelming the lipid buffering capacity of macrophages and contribute to ectopic lipid 

storage (Burhans, Hagman et al. 2018).  
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Traditionally, two populations of ATMs have been described. In lean individuals they mostly 

confine to an alternative activated M2-like phenotype characterized by increased expression 

of IL10 and arginase and has mostly been associated with homeostatic functions such as 

facilitating adipogenesis. Another ATM population which is increased in obesity shows 

characteristic of the classical activated M1 macrophages and are distinguished by their high 

expression of the integrin CD11c, and other markers of classical M1-macrophages such as IL6 

and nitric oxide synthase (Wentworth, Naselli et al. 2010). The macrophages are highly 

plastic cells and are likely to respond and adapt to their environment, and a phenotypic 

switch from the M2-like macrophages towards a pro-inflammatory M1-like phenotype has 

been associated with insulin resistance. Moreover, studies in obese mice have shown that 

ablation of CD11c+ cells improves insulin sensitivity (Patsouris, Li et al. 2008).      

Immunohistochemistry and flow cytometry have been the most commonly used methods to 

quantify ATMs, usually by antibodies against the surface receptors CD68, CD14 CD206 or 

CD11c (Morgan-Bathke, Harteneck et al. 2017). However, the two methods show poor 

correspondence, and the fact that there is no unifying concept on how to best characterize 

macrophages and other immune cells possess a challenge when comparing results from 

different studies in this field of research. Immunohistochemistry has good intra-individual 

reproducibility and the advantage of being able to quantify ATMs from preserved whole 

tissue samples but requires high amount of tissue and is time consuming. However, 

improvements in software assisted immunohistochemistry quantification has refined the 

procedure (Morgan-Bathke, Harteneck et al. 2017). Flow cytometry requires less tissue and 

can count millions of cells in a few minutes. In addition, flow cytometry permits the 

simultaneous use of multiple antibodies, providing additional cellular information in one 

experiment. However, this can be complicated by the extensive macrophage 

autofluorescence (Fay, Carll-White et al. 2018). Another big obstacle by using flow cytometry 

is that the individual cell populations within the adipose tissue have to be effectively 

isolated, intact while preserving cellular function (Hagman, Kuzma et al. 2012). The cell 

populations are usually liberated from the tissue by the use of one of two different 

enzymatic preparations; either collagenase alone or a combination of collagenase, liberases 

and other proteases (Hagman, Kuzma et al. 2012). It is reported that there are marked 

differences in cell yields, viability and surface antigen expression between the two methods, 
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which makes it difficult to compare results across studies (Pilgaard, Lund et al. 2008). Studies 

comparing the different methods have reported the use of collagenase alone as superior to 

the use of liberase or liberase collagenase mixtures with respect to cell yield and 

preservation of cell surface receptors, with an optimal digestion time of 60-75 minutes 

(Hagman, Kuzma et al. 2012).    

  

 

 

1.10 Aim of this study  
 

The introduction is aimed to give an overview of how the physiological aberrations caused 

by obesity can lead to inflammation in the adipose tissue and how this could be linked to 

development of insulin resistance and T2DM. Our hypothesis is that inflammation arise 

when the hyperplastic and hypertrophic capacity of adipose tissue is insufficient to 

accommodate to lipid burden caused by chronic caloric excess leading to increased lipolysis, 

ectopic lipid storage, inflammation and insulin resistance.  

The main questions we want to assess in this study are: 

- Does the macrophages polarization correlate with severity of obesity and insulin 

resistance?   

- Could the alleged pro-inflammatory M1-like macrophages be characterized by the 

expression of other know pro-inflammatory receptors? 

- Is the expression level of proinflammatory cytokines in adipose tissue correlated with 

insulin resistance or circulating markers of inflammation?  

- What is the relative difference between the adipose tissue depots with respect to 

inflammation and insulin resistance? 

- How is lipolysis and glucose uptake in isolated adipocytes associated with systemic 

measures of insulin resistance (HOMA-IR) and other markers of metabolic syndrome? 
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2. Materials 
 

2.1 Antibodies  
Name Fluorochrome Dilution Supplier Cat.nr 

CD3 

CD11c 

CD14 

CD16 

CD19 

CD40 

CD44 

CD45 

CD56 

CD163 

CD192 (CCR2) 

CD206 

HLA-DR 

PE-Cy5 

PE-Cy7 

BV605 

BV711 

PE-Cy5 

PE 

PE-CF594 

AF700 

PE-Cy5 

AF647 

BV421 

BB515 

APC-Cy7 

1:50 

1:100 

1:100 

1:100 

1:100 

1:25 

1:200 

1:400 

1:50 

1:100 

1:100 

1:200 

1:400 

Biolegend 

Biolegend 

Biolegend 

BD Biosciences 

Biolegend 

Biolegend 

BD Biosciences 

Biolegend 

Biolegend 

BD Biosciences 

Biolegend 

BD Biosciences 

Biolegend 

300410 

337215 

301834 

563127 

302210 

313006 

562818 

304024 

304607 

562669 

357209 

564668 

307617 

 

 

2.2 Biological samples 
Tissue Group Source 

Human blood and adipose tissue  

Human Blood and adipose tissue 

Bariatric Surgery patients 

Cholecystectomy 

Voss hospital 

Voss hospital 

 

 

2.3 Reagents and chemicals 
Name Supplier Cat.no 

Collagenase type 1 Life Technologies 171000017 

Formaldehyde (2% v/v in PBS) Sigma  P6148 

LIVE/DEAD Fixable Aqua Dead Cell Stain Kit Invitrogen L349665 

Lymphoprep Stemcell Techonologies 7851 

Glucose, D-[14C(U)] Perkin Elmer NEC042X050UC 

Insulin (Actrapid 100 IU/mL) Novo Nordisk  

Isoprenaline (247.72 g/mol) Sigma I5627-5g 

Ultima Gold MV Perkin Elmer 6013159 

Dinonyl phthalate, 97% Acros Organics 408771000 
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2.4 Buffers 

 

Krebs-Ringer phosphate 

buffer (KRP) 

Kreps-Ringer Hepes 

buffer (KRH) 

Dulbecco`s Phosphate 

Buffered saline (D-PBS, 

Sigma #D5652) 

Fluorescence activated 

cell sorting buffer (FACS) 

• 136 mM NaCl 

• 20 mM HEPES 

• 5 mM KCI 

• 5 mM MgSO4 

• 5 mM NaH2PO4 

• 1 mM CaCl2 

• pH 7.4 

• 120 mM NaCl 

• 30 mM HEPES 

• 10 mM NaHCO3 

• 4 mM KH2PO4 

• 1 mM MgSO4 

• 1 mM CaCl2 

• 200 nM 

Adenosine 

• 1 % BSA (w/v) 

• pH 7.4 

• 8 g/L NaCl 

• 1.15 g/L 

Na2HPO4 

• 0.2 g/L KH2PO4 

• 0.2 g/L KCI 

• pH 7.4 

• D-PBS (Sigma 

• #D5652) 

• 2 % (v/v) fetal 

bovine serum 

(FBS) 

• 2 mM EDTA 

 

 

 

2.5 Commercial kits 
Name  Supplier Cat.no 

High-Capacity cDNA Reverse Transcription Kit Applied Biosystems 4368814 

Free Glycerol Reagent 

LightCycler 480 SYBR Green I Master 

RNA/Protein/DNA purification PLUS kit 

Sigma-Aldrich 

Roche 

Norgen Biotec Corp 

F6428 

04887352001 

47700 
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2.6 qPCR primers 

Target Forward primer Reverse primer 

CD68 

CD163 

IFN-γ 

IL6 

IPO8 

MCP1 

NR4A1 

TNF 

TREM1 

TREM2 

CCACACAGGGGTCTTTGG 

GAAGATGCTGGCGTGACAT 

GAACTCTTTTCTTAGGCATTTTGAAG 

ATAGGACTGGAGATGTCTGAGG 

CGGATTATAGTCTCTGACCATGTG 

AGTCTCTGCCGCCCTTCT 

ACAGCTTGCTTGTCGATGTC 

CAGCCTCTTCTCCTTCCTGAT 

AGTTACAGCCCAAAACATGC 

ACAGAAGCCAGGGACACATC 

GATGAGAGGCAGCAAGATGG 

GCTGCCTCCACCTCTAAGTC 

CACTCTTTTGGATGCTCTGGT 

GCTTGTGGAGAAGGAGTTCATAG 

TGTGTCACCATGTTCTTCAGG 

GTGACTGGGGCATTGATTG 

GGTTCTGCAGCTCCTCCAC 

GCCAGAGGGCTGATTAGAGA 

CAGCCCCCACAAGAGAATTA 

CCTCCCATCATCTTCCTTCA 

 

 

2.7 Instruments 
Name Supplier 

Axiocam ERc 5s 

Centrifuge 5810  

GeneAmp PCR System 9700 

Heraeus Fresco 21 Centrifuge 

Inkubator 1000 

Light Cycler 480 Real-Time PCR 

LSR Fortessa  

Tri-Carb 4910 TR Liquid Scintillation Analyzer 

Spectra Max Plus 384 

Zeiss 

Eppendorf  

Applied Biosystems 

Thermo Scientific 

Heidolph 

Roche 

BD Bioscience  

PerkinElmer 

Molecular Devices 

 

 

2.8 Software 
Name Supplier Identifier 

FlowJo 10 Tree Star https://www.flowjo.com 

R R core team https://www.r-project.org 

 

 
 

 

https://www.flowjo.com/
https://www.r-project.org/
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3. Methods 
 

To address the aims of this study, we characterized ATMs by flow cytometry, performed 

gene expression analysis in adipose tissue (AT), and measured glucose uptake and lipolysis in 

isolated mature adipocytes from SAT and VAT. The workflow in this study is illustrated in 

Figure 3.1.  

 

 

Figure 3.1: Flowchart depicting the main steps of this project. The project is divided in three main branches: gene 
expression analysis by qPCR, characterization of ATM by flow cytometry and glucose and lipolysis assay. Each branch 
includes a separate cohort of patients. Ultimately the data was subject for statistical analysis in R.   

 

 

3.1 Subjects 
 

The study includes subjects from three different cohorts. The first cohort of subjects includes 

57 morbidly obese patients undergoing bariatric surgery at Voss Hospital. SAT and VAT 

biopsies from this cohort was used for gene expression analysis. The second cohort was 

included in the flow cytometry analysis and comprise blood, SAT and VAT from 25 patients, 

21 of which were morbidly obese and underwent bariatric surgery and 4 lean controls who 
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underwent cholecystectomy. The last cohort consists of SAT and VAT from 22 morbidly 

obese bariatric surgery patients at Voss hospital and was included in the glucose uptake and 

lipolysis experiments.  

 

Gene expression analysis 

3.2 Isolation of RNA 
 

The adipose tissue was stored at -80°C freezer immediately after surgery and until usage. 

Total RNA was isolated from approximately 100 mg adipose tissue from the subcutaneous 

and visceral depot using the RNA/Protein/DNA purification kit. This work was done by a 

technician in our group.  

 

3.3 Validation of input RNA in cDNA synthesis 
 

An initial experiment resulted in high Ct values in the qPCR for some of the genes, and an 

additional experiment was therefore performed in order to validate the efficiency of the 

cDNA synthesis and find the best suitable concentration of cDNA to use in the RT-qPCR 

reactions. Two samples were selected, and for each sample three reactions were run with 

100, 350 and 1000 ng of input RNA diluted in PCR grade water to give a total volume of 14.2 

µL. A master mix was made using the High-Capacity Reverse Transcription Kit composed of 2 

µL 10x RT Buffer, 0.8 µl 25x dNTP mix (100 mM), 2.0 µL 10x RT Random Primers and 1.0 µL 

Multiscribe Reverse Transcriptase. The RNA was added to the master mix to a total volume 

of 20 µL for each of the samples, and the reaction was run at the thermal cycler GeneAmp 

PCR System 9700 using the thermal cycling program listed in Table 3.1.  

 

Table 3.1: Thermal cycling program for cDNA synthesis. 

Time Temperature 

10 minutes 25°C 

120 minutes 37°C 

5 minutes 85°C 

>5minutes 4°C 
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The cDNA was diluted 1:2 in PCR-grade water and qPCR was performed on selected genes, 

each sample run in triplicate according to Table 3.2. qPCR was run on Light Cycler 480 Real-

Time PCR using the thermal cycling program listed in Table 3.3.   

Based on this experiment, 350 ng of input RNA and a 1:2 dilution of the resulting cDNA was 

applied for the qPCR on all the target genes including reference gene.  

 

3.4 qPCR 
 

RT-qPCR was performed to quantify the relative expression of target genes. IPO8 was used 

as a reference gene in order to normalize for differences in input mRNA among samples. 

IPO8 is a nuclear protein involved in import of proteins into the nucleus through the nuclear 

pore complex (NPC) and studies have found it among the most stably expressed genes in 

both SAT and VAT (Hurtado del Pozo, Calvo et al. 2010). Sequence of the reference and 

target genes primers can be found in Table 2.6. A reaction master mix was made, composed 

of 1740 µL SYBR GREEN Master reagent, 174 µL (20 µM) each of forward and reverse primer, 

and 957 µL PCR grade water. Then a mix was made for triplicates of each cDNA sample, 

containing 24,5 µL of the mastermix and 3,5 µL of cDNA. The mix was transferred to a 384-

well plate, 8 µL of each sample in triplicates. qPCR was run on Light Cycler 480 Real-Time 

PCR using the thermal cycling program listed in Table 3.3. The average expression levels for 

each triplicate was calculated relative to the expression of IPO8. Then the ∆∆Ct-approach 

was used to calculate the fold change in expression level using the mean of all SAT samples 

as normalizer. 

 

 

Table 3.2: Reaction mix for qPCR 

Reagent Volume (µL) per sample 

Forward primer 0.4 

Reverse Primer 0.4 

SYBR GREEN master 4 

PCR-grade water 2.2 

cDNA 1 
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Table 3.3: The thermal cycling program used in qPCR reactions consist of one pre-

denaturation step and 45 cycles of denaturation, annealing and extension. 

 

 

 

45 Cycles 

 

 

 

 

3.5 Isolation of PBMC from blood samples 
 

Blood was collected in heparin tubes and stored overnight at room temperature (RT). 15 mL 

of blood was diluted 1:1 in PBS then carefully layered on top of 15 mL Lymphoprep and 

centrifuged (25 min, 2000 rpm) to separate PBMC from plasma and red blood cells. The layer 

containing PBMC was isolated and washed by adding 45 mL PBS and centrifuged (6 minutes, 

1800 rpm), followed by staining for flow cytometry. 

 

3.6 Isolation of stromal vascular cells from adipose tissue biopsies 
 

Adipose tissue biopsies from SAT and VAT collected at Voss hospital were transported to our 

lab in 20 mL KRP buffer. Most of the biopsies were further processed after an overnight 

incubation at 4°C, while some were processed the same day. Larger blood vessels were 

excised from the biopsies and the remaining tissue cut into small pieces before enzymatic 

digestion with 0.66 mg/mL collagenase type I for 1 hour with shaking at 37°C. The tissue was 

filtered through 100 µm filters to remove connective tissue. The stromal vascular fraction 

was then isolated from the floating layer containing mature adipocytes, washed in PBS and 

centrifuged (5 minutes, 300g) before resuspending the pellet in PBS, followed by staining for 

flow cytometry.  

 

 

 

 Time Temperature 

Pre-denaturation 5 minutes 95°C 

Denaturation 10 seconds  95°C 

Annealing 20 seconds 60°C 

Extension  30 seconds 72°C 
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Flow cytometric analysis 

3.7 Compensation 
 

Compensation controls were performed because of overlap in the emission spectra between 

several of the fluorochromes in the panel illustrated in Figure 3.2. For compensation, three 

drops of BD TM CompBeads containing Anti-Mouse Ig kappa and negative control beads 

were vortexed and mixed with 1.2 mL FACS buffer. Then, 50 µl of the beads was transferred 

into a 96-well plate and mixed with 0.5 µL of each of the antibodies listed in Table 2.1. 

Followed by a 20 minutes incubation in the dark at RT, the beads were washed twice with 

FACS buffer and centrifuged (3 minutes, 1600 rpm). Lastly, the beads were resuspended in 

200 µL FACS buffer and run on 18-color LSR Fortessa equipped with 407, 488, 561 and 640 

nm lasers. The compensation matrix was calculated in FlowJo 10.6.2 and adjusted manually.   

 

 

Figure 4.2. Spectral analysis of the flow cytometry panel (Biolegend). Spectral analysis of the 12-color panel used in the 

staining of PBMC and SVF from SAT and VAT. Excitation (dotted line), emission (line), laser (vertical line) and filter (vertical 

band) are indicated.  
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Table 4.4: Overview of the Macrophage panel used in staining for flow cytometry. Antibody 

targets and dead cell marker, fluorochromes, dilution factors, wavelength for excitation and 

filters used for detection are listed.  

Antibodies/marker  Fluorochrome Dilution  Excitation(nm) Filter/bandpass(nm)  

CD3 PE-Cy5 1:50 561 661/20 

CD11c PE-Cy7 1:100 561 780/60 

CD14 BV605 1:100 405 610/20 

CD16 BV711 1:100 405 710/50 

CD19 PE-Cy5 1:100 561 661/20 

CD40 PE 1:25 561 586/15 

CD44 PE-CF594 1:200 561 610/20 

CD45 AF700 1:400 639 730/45 

CD56 PE-Cy5 1:50 561 661/20 

CD163 AF647 1:100 639 670/30 

CD192 (CCR2) BV421 1:100 405 450/50 

CD206 BB515 1:200 488 530/30 

HLA-DR APC-Cy7 1:400 639 780/60 

DCM aqua Pacific Orange 1:100 405 525/50 

 

 

3.8 Staining of PBMC and SVF for flow cytometry 
 

Freshly isolated PBMC and SVF were counted under the microscope using Burker counting 

chamber, and three million cells from each sample were added to a 96-well plate for 

centrifugation (3 min, 1600 rpm). The cells were resuspended in 50 µL of the master mix, 

containing antibodies, dead cell marker Aqua-Pacific Orange and FACS buffer, as listed in 

Table 3.5. The cells were incubated in 20 minutes in the dark at RT, followed by washing 

twice in FACS buffer (150 & 200 µL), and centrifuged (3 min, 1600 rpm). In addition, 2 million 

cells from selected PBMC sample were applied as unstained negative control. The cells were 

fixated in 2% formaldehyde (v/v in PBS) for 15 minutes in the dark at RT followed by washing 

twice in FACS buffer and centrifuged (3 min, 1600 rpm). Lastly, the cells were resuspended in 

200 µL FACS buffer and applied on LSR Fortessa. The flow cytometry data was analyzed using 

FlowJo version 10.6.2. 
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Table 3.5: Volume of Antibodies and dead cell marker used for staining of PBMC and SVF for 

each sample, FACS buffer was added to a total volume of 50 µL. 

Antibodies/marker Volume (µL)  

CD3 1.00 

CD11c 0.50 

CD14 0.50 

CD16 0.50 

CD19 0.50 

CD40 2.00 

CD44 0.25 

CD45 0.13 

CD56 1.00 

CD163 0.50 

CD192 (CCR2) 0.50 

CD206 0.25 

HLA-DR 0.13 

DCM aqua 0.50 

FACS buffer 41.80 

Total 50.00 

 

 

3.9 Gating strategy for quantification of macrophages 
 

Gating was performed using FlowJo version 10.6.2. First, time versus forward scatter area 

was plotted, and a gate was drawn in order to exclude electronic noise. Then, forward 

scatter area was plotted against forward scatter height to gate for singlet cells, followed by 

gating for lymphocytes and monocytes/macrophages by plotting side scatter area against 

forward scatter area. Next, viable CD45 positive cells was gated for by plotting CD45 against 

the dead cell marker DCM-aqua. Then, a dump channel was applied by plotting CD11c 

against CD3, CD19 and CD56, and a gate was drawn to exclude the CD56, CD19 and CD3 

positive NK-cell, B- and T- lymphocytes respectively. Lastly, side scatter area was plotted 

against HLA-DR in order to gate for the HLA-DR positive macrophages and monocytes. The 

fraction of macrophages was normalized to total of CD45 positive viable cells. To calculate 

fraction of M1-, M2-like macrophages and monocytes of the total macrophage count, CD206 

was plotted against CD11c and the subpopulations were defined as monocytes (CD11c+ 
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CD206-), M1-like macrophages (CD11c+ CD206+) and M2-like macrophages (CD11c- 

CD206+). For each subpopulation, the fraction of CCR2, CD16 and CD163 expressing cells was 

calculated by plotting side scatter area against CCR2, CD16 and CD163, respectively and a 

gate was drawn on cells positive for the respective markers (supplementary Figure 1). The 

expression of CD14, CD40, CD44 and HLA-DR was calculated by applying the geometric mean 

function in FlowJo and results presented as log mean fluorescence intensity. 

 

Glucose uptake and lipolysis 

3.10 Isolation of mature adipocytes 
 

Subcutaneous and visceral adipose tissue biopsies arrived directly from surgery in 20 mL KRP 

buffer. First, the biopsies were cut clean of larger blood vessels and connective tissue, 

followed by weighing in from 1-1.5 gram of adipose tissue. The tissue was succumbed in 5 

mL of prewarmed (37°C) KRH buffer and cut into small pieces. Then, the tissue was 

incubated in 1 mg/mL collagenase I for 30-40 minutes at 37°C and shaking at 214 rpm. 

Followed by digestion, 5 mL of KRH buffer was added to dilute the enzyme, and the tissue 

was filtered through 400 µm filters and placed in 37°C water bath for 5 minutes to let the 

adipocytes separate from the SVF by floatation. The bottom layer, containing the SVF, was 

removed with a syringe and the adipocytes washed in 5 mL KRH buffer twice followed by 

incubation for 50-60 minutes at 37°C water bath to let the mature adipocyte float and pack 

densely as a top layer. Lastly, the KRH buffer was removed and the isolated adipocytes were 

diluted in KRH buffer to a 7.5% cell suspension.  

 

3.11 Glucose uptake 
 

The cell suspension was placed on a magnetic stirrer to ensure a homogenous suspension, 

and 200 µl of the cell suspension was transferred, and added 200 µL insulin diluted in KRH 

buffer to a final concentration of 10 nM. To measure basal glucose uptake, 200 µL of the cell 

suspension was added equal amount of KRH buffer. After 30 minutes of incubation at 37°C 

with shaking, 100 µL (9,25 kBq/mL) of C-14 glucose was added and incubated for another 30 

minutes. Lastly, 300 µL of the cell suspension was layered on top of Dionyl phthalate and 

centrifuged 1 minute at 12000 rpm to separate the cells from the medium. The samples 
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were then frozen at -20°C and transported to the Hormone laboratory in Bergen for further 

analyses.  The first samples from the first 13 patients were run in duplicates, while the last 

nine were run in triplicates. 

  

3.12 Scintillation counting 
 

The separation of cells resulted in three distinct layers, with the cells at the top separated 

from the medium by the oil layer in the middle composed of Dionyl phtalate. The tubes were 

taken directly from -20°C freezer and cut in two. The upper part containing the cells were 

transferred to a 25 mL scintillation tube together with 15 mL of Ultima Gold scintillation 

fluid. The disintegrations from the C-14 glucose taken up by the cells was then counted in 

PerkinElmer Tri-Carb 4910 TR Liquid Scintillation Analyzer at 5 minutes with 1-minute pre-

count delay.  

 

3.13 Lipolysis assay 
 

For the first six patients samples the cell suspension was diluted to 3.75%, and for the 

seventh patient onward a 7.5% cell suspension was used. To measure both stimulated and 

basal lipolysis, 400 µL of the cell suspension was incubated both with and without 10 nM of 

the β-adrenoreceptor agonist, isoprenaline, for 30 minutes at 37°C while shaking. The cell 

suspension was then placed on ice for 30 minutes to stop the assay and let the adipocytes 

float. 160 µL of the glycerol containing medium was then transferred by a thin pipette and 

frozen at -20°C until further analyses. All samples were run in duplicates. 

 

3.14 Glycerol detection assay 
 

In periods of energy demands, adipocytes mobilize their fat store by hydrolytic cleavage of 

TAGs, releasing non-esterified fatty acids and glycerol into the circulation in a 3:1 

stoichiometry (Lass, Zimmermann et al. 2011). To quantify the lipolysis, we measured 

glycerol released from the cells into the medium using the Free Glycerol detection Reagent 

(Sigma Aldrich). The Glycerol Reagent generates a quinoneimine dye using coupled enzyme 
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reactions. The dye shows an absorbance maximum at 540 nm and the absorbance is directly 

proportional to the free glycerol concentration of the sample.  

For each of the samples from the lipolysis assay, 30 µL was mixed with 100 µL Free Glycerol 

reagent and incubated for 15 minutes in dark at RT, in addition to a dilution series of 0.125, 

0.25, 0.50, 1.00, and 2.00 mM glycerol in KRH buffer and a sample of ddH2O to serve as 

blank. The dilution series were used to set up a standard curve in order to calculate the 

glycerol concentrations of the samples (equation 3.1). The absorbance was measured at 540 

nm in spectrophotometer Spectra Max Plus 384.  

 

Equation 3.1:              
(𝑨𝒔𝒂𝒎𝒑𝒍𝒆−𝑨𝒃𝒍𝒂𝒏𝒌)

(𝑨𝒔𝒕𝒂𝒏𝒅𝒂𝒓𝒅−𝑨𝒃𝒍𝒂𝒏𝒌)
 𝒙 𝑪𝒐𝒏𝒄𝒆𝒏𝒕𝒓𝒂𝒕𝒊𝒐𝒏 𝒐𝒇 𝒔𝒕𝒂𝒏𝒅𝒂𝒓𝒅 

 

 

3.15 Statistical analysis  
 

All statistical analyses were performed in R studio. Shapiro-Wilk test was performed to check 

for normality and all variables from flow cytometry, gene expression, lipolysis and glucose 

uptake data were log transformed. Two-sided paired t-test was performed to compare 

macrophage populations and gene expression between SAT and VAT. Paired Wilcoxon 

Signed-rank test was performed to compare lipolysis and glucose uptake between SAT and 

VAT. It was performed Pearson and Spearman correlation analysis between flow cytometry, 

gene expression, lipolysis and glucose uptake data with clinical data.  
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4. Results 
 

4.1 Comparison of monocytes, M1- and M2-like macrophages in SAT and VAT 
 

Flow cytometry was used to assess whether there are fat depot specific differences with 

respect to macrophage infiltration. PBMC were isolated from human blood by density 

gradient centrifugation and the SVF obtained from SAT and VAT by collagenase digestion 

from a cohort of 21 severely obese patients undergoing bariatric surgery. Gating strategy to 

isolate total macrophage and monocyte population from one representative VAT sample is 

depicted in Figure 4.1.A, and gating strategy to quantify the fraction of monocytes, M1-like 

and M2-like macrophages from one representative PBMC, SAT and VAT sample is depicted in 

Figure 4.1.B.  
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Figure 4.2. Gating scheme for isolating monocytes, M1- and M2-like macrophages. A: First a time gate was applied to 

exclude electronic noise, then forward scatter area is plotted against forward scatter height to gate for single cells excluding 

any doublets, followed by plotting forward scatter area versus side scatter area to gate for lymphocytes and monocytes. 

Then cells positive for CD45 and negative for the dead cell marker DCM aqua was gated for followed by plotting CD3-CD19-

CD56 PE-Cy5 against CD11c PE-Cy7 to exclude T- and B-lymphocytes and NK-cells respectively. Lastly HLA-DR APC-Cy7 was 

plotted against side scatter area to isolate the HLA-DR positive macrophages and monocytes. B: CD11c PE-Cy7 was plotted 

against CD206 BB515 to quantify the fraction of the CD11c+ CD206+ M1-like macrophages, CD11c- CD206+ M2-like 

macrophages and CD11c+ CD206- monocytes from the total macrophage and monocyte population. 
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The macrophages and monocytes were isolated based on their expression of CD45 and HLA-

DR, and absent of CD3, CD19 and CD56 expression. The different macrophage populations 

were then isolated and categorized based on the expression of CD11c and CD206; M1-like 

macrophages CD11c+CD206+, M2-like macrophages CD11c-CD206+ and monocytes 

CD11c+CD206-. First, we assessed the fraction of macrophages from the total of CD45+ cells 

in PBMC, SAT and VAT. We found that there was a significant (p<0.001)  higher number 

(mean %, ± sd) of total macrophages in SAT (22.7 ± 8.0) and PBMC (23.5 ± 9.8) compared to 

VAT (10 ± 5.3) (Figure 4.2.A). The higher fraction in total macrophage and monocyte 

population seemed to arise from a significant higher fraction of monocytes in SAT versus 

VAT (Figure 4.2.B), indicating a higher infiltration of monocytes into SAT. However, the 

number of M2-like macrophages were higher in VAT than in SAT, but not enough to account 

for the difference in total macrophage and monocyte content. In PBMC, M2-like 

macrophages were only detected in a few samples and at a very low number. The fraction of 

M1-like macrophages was similar between SAT and VAT, and only present at a very low 

amount in peripheral blood (0.82 ± 0.7) which mostly contained the CD11c positive 

monocytes.    

 

 

Figure 4.3.  Macrophage populations from PBMC, SAT and VAT. Scatter plot showing; A: The fraction of macrophages and 

monocytes in PBMC, SAT and VAT from the total of CD45+ viable cells isolated. B: The fraction of monocytes, M1-like and 

M2-like macrophages from the total macrophage and monocyte population in PBMC, SAT and VAT (n=21). *** = p<0.001. 
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4.2 Characterizing the phenotype of monocytes, M1-like and M2-like macrophages 
 

In order to assess whether the CD11c+CD206+ M1-like and CD11c-CD206+ M2-like 

macrophages exhibit a pro- and anti-inflammatory phenotype respectively, the expression of 

the established pro-inflammatory surface receptors such as CD14, CD16, CD40, CD44, CCR2, 

HLA-DR and the anti-inflammatory receptor CD163 was assessed by flow cytometric analysis. 

Most notable was the significant higher number of cells expressing the chemotactic receptor 

CCR2 (Lim, Yuzhalin et al. 2016) among the M1-like macrophages compared to the M2-like 

macrophages, in both SAT and VAT. Similarly, a high fraction of monocytes in SAT and VAT 

expressed CCR2 suggesting that these cells are recruited to the adipose tissue. There was 

also a significant higher number of the M1-like macrophages in VAT (90.9 ± 8.8) versus SAT 

(74,3 ± 27,5) expressing CCR2 suggesting that a higher fraction of the macrophages in VAT 

are recruited pro- inflammatory cells and not arise from proliferating resident cells. CD44, a 

receptor that is known to be involved in cell migration but also proliferation and activation 

of cells (Senbanjo and Chellaiah 2017), were found to be higher expressed on M1-like 

macrophages and monocytes in both SAT and VAT compared to M2-like macrophages, 

supporting that these cells are infiltrating pro-inflammatory cells. CD14, a pattern 

recognition receptor known to be involved in innate immune responses as a co-receptor for 

TLR`s (Kelley, Lukk et al. 2013) was higher expressed on both M1-like and M2-like 

macrophages compared to monocytes in VAT, and significantly higher on the M2-like 

macrophages in VAT versus M2-like macrophages in SAT, supporting a more inflammatory 

phenotype in VAT. However, no significant differences were found between M1-like and M2-

like macrophages. CD163, which is best known for its homeostatic and anti-inflammatory 

functions (Etzerodt and Moestrup 2013), was significantly higher expressed on M2-like 

versus M1-like macrophages in VAT supporting an anti-inflammatory phenotype of M2-like 

macrophages. However, this was not observed in SAT. Additionally, monocytes expressed 

significantly lower levels of CD163 in all tissues. There is no significant difference in the 

expression levels of the pro-inflammatory receptors CD16, CD40 and HLA-DR between 

monocytes, M1-like and M2-like macrophages and between the different tissues. However, 

a large variation in the expression levels was observed, indicating different subpopulations 

with pro- and anti-inflammatory characteristic within the populations of M1- and M2- like 

macrophages. The intensity plot in Figure 4.3.H from one representative VAT sample are 
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illustrating the vast differences in expression of CCR2 on monocytes and M1-like 

macrophages compared to M2-like macrophages.  

 

 

Figure 4.4. Expression of surface receptors on Monocytes (Mo), M1-like and M2 like macrophages. A, D and C: Scatter plot 

showing the percentage of cells expressing the proteins CCR2(A), CD44(B), CD14(C) and CD163(D) on Monocytes (grey), M1-

like (red) and M2-like (blue) macrophages. B, C, F and G: Scatter plot showing the log mean fluorescence intensity (MFI) 
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from staining of CD44 (B), CD14 (C) and CD40(F), and HLA-DR (G) on Monocytes, M1-like and M2-like macrophages in PBMC, 

SAT and VAT. H: Intensity plot from the staining of proteins in A-G from a representative VAT sample. Black dot represents 

mean and error bar represent SEM (n=21). * = p<0.05, ** = p<0.01, *** = p<0.001.  

 

 

4.3 Quantifying M1- and M2-like macrophages in normal weight, obese and T2DM subjects 
 

Next, we wanted to investigate whether there was a different in composition of M1- and 

M2-like macrophages in SAT and VAT of normal weight subjects, obese or obese subjects 

diagnosed with T2DM. We included 3 normal weight subjects undergoing cholecystectomy 

to represent the control group and identified 9 subjects diagnosed with T2DM from our 

cohort of severely obese bariatric surgery patients. Data from 4 of the subjects in the obese 

group were excluded from the analysis due to a low number of cells. We observed no 

significant differences in the fraction of each cell type within SAT or VAT between normal 

weight, obese or subjects with T2DM (Figure 4.4).  

 

 

Figure 4.5. Macrophage populations in SAT and VAT of normal weight (control), obese and T2DM subjects. Scatter plot 

showing the percentage of M1- and M2-like macrophages of the total macrophage population In SAT and VAT in normal 

weight (control, n=3), obese(n=8) and T2DM(n=9) subjects. Black dot represents mean and error bar represent SEM. ** = 

p<0.01. 
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4.4 Depot specific associations of ATM populations with clinical parameters.  
 

We also wanted to investigate whether the composition of pro-inflammatory M1-like and 

anti-inflammatory M2-like macrophages from adipose tissue was associated with clinical 

parameters relevant for systemic insulin resistance or the lipid profile, and markers of 

inflammation measured in peripheral blood. For 4 of the subjects, we were not able to 

provide clinical data. The analysis includes 16 subjects in total from the control group, obese 

and obese with T2DM. All variables were log transformed due to non-normally distributed 

data and there was performed a Pearson correlation analysis (Figure 4.5). Interestingly, the 

pro-inflammatory M1/M2-ratio in VAT was significantly correlated with the circulating 

markers of inflammation, CRP (R2 = 0.535, p = 0.032) and leukocytes (R2 = 0.763, p = 0.0006). 

Similarly, there was a significant, negative correlation of M2-like macrophages in VAT with 

CRP and leukocytes, indicating that macrophage polarization towards a more pro-

inflammatory phenotype is associated with systemic inflammation. Moreover, there was a 

positive, but non-significant correlation of leukocytes and monocytes in VAT, suggesting a 

higher infiltration of monocytes into VAT than in SAT in the setting of inflammation. Insulin 

correlated positive with the anti-inflammatory M2-like macrophages (R2 = 0.533, p = 0.033) 

in SAT and negatively with the pro-inflammatory M1/M2-ratio (R2 = -0.569, p = 0.021). The 

same association was seen for HOMA-IR, although not significant (R2 = 0.437, p = 0.090 and 

R2 = -0.474, p = 0.063). Interestingly, this association was not seen in VAT. There were no 

significant correlations between the macrophage populations and the lipid profile in the 

blood or BMI and age. Because some of the variables were not normally distributed, we also 

performed a Spearman correlation, which showed the same trends, although none remained 

significant.   
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Figure 4.6. Correlation plot of macrophage populations versus clinical parameters. Pearson correlation of Monocytes, M1- 

, M2-like macrophages and M1/M2 ratio with clinical parameters measured in peripheral blood (n=16). Size and color of 

circles indicate correlation coefficients and squares indicate non-significant correlations (p>0.05) 

 

4.5 Depot specific differences in expression levels of pro- and anti-inflammatory genes 
 

In addition to analyzing the inflammatory phenotype of macrophages in adipose tissue, we 

wanted to assess how the expression level of genes relevant for adipose tissue inflammation 

differed between SAT and VAT in a cohort of 54 severely obese subjects. The expression 

levels were quantified at the mRNA level by RT-qPCR. The fold change (2-∆∆Ct) was calculated 

relative to IPO8 as reference gene and normalized to the mean of the SAT samples, and then 

log transformed due to non-normally distributed data. There was no significant difference in 

the expression levels of the pro-inflammatory genes TNF (Figure 4.6.A), IFN-gamma (C) and 

IL6 (D) between SAT and VAT. However, the chemotactic ligand MCP-1 (B) (Kanda, Tateya et 

al. 2006) and the macrophage associated protein CD68 (H) was significantly higher expressed 

in SAT, which supports the findings from the flow cytometry analysis (Figure 4.2.A) that total 

macrophage content is higher in SAT than VAT. The lipid receptor TREM2 (Jaitin, Adlung et 

al. 2019) is considered to have an anti-inflammatory role in maintaining metabolic 

homeostasis. We observed that TREM2 was significantly higher expressed in SAT, suggesting 

a less inflammatory profile in SAT versus VAT. Contrary, CD163 (I), which is also considered 

to be involved in anti-inflammatory responses (Etzerodt and Moestrup 2013), was 

significantly higher expressed in VAT than in SAT, contradicting the suggested difference in 
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the inflammatory profile between SAT and VAT. There were no significant differences in the 

expression levels of TREM1 (E), or NR4A1 (G) between SAT and VAT.   

 

 

 

Figure 4.7. Relative expression level of pro- and anti-inflammatory genes between SAT and VAT. The expression levels of 

the pro- inflammatory genes TNF (A), MCP1 (B), IFN-gamma (C), IL6 (D), the anti-inflammatory genes TREM1 (E), TREM2 (F), 

The adipocyte specific transcription factor Nr4A1 (G) and the macrophage specific proteins CD68 (H) and CD163 (I) were 

analyzed by qPCR and results are presented as log transformed fold change (2-∆∆Ct) of the target gene relative to the 

reference gene IPO8. The expression levels were normalized to the mean of the SAT samples. Red line indicates the mean 

and the line is connecting the SAT and VAT sample from the same patient (n=54). * = p<0.05, ** = p<0.01, *** = p<0.001.  

 



44 
 

4.6 Co-expression of pro- and anti-inflammatory genes within and between fat depots 
 

Next, we wanted to assess the inflammatory profile in SAT and VAT by analyzing patterns of 

co-expression among the pro- and anti-inflammatory genes. A strong significant correlation 

between the macrophage associated protein CD68 with CD163, TREM1, TREM2 and MCP1 in 

SAT could indicate that the immune cells infiltrating SAT present with an anti-inflammatory 

gene expression pattern. (Figure 4.7.A) CD68 also correlate strongly with CD163 and TREM2 

in VAT but not with MCP1 or TREM1. In addition, NR4A1, which expression is found to be 

associated with impaired adipose tissue plasticity and inflammation (Zhang, Federation et al. 

2018), was significantly correlated with the pro-inflammatory genes TNF, IFN-γ and IL6 

supporting an inflammatory response in VAT (Figure 4.7.B) related to impaired adipose 

tissue plasticity. We also wanted to assess whether upregulation of pro- or anti-

inflammatory genes in one fat depot is reflected by upregulation of the same gene in the 

other depot, or is reflected by up- or down regulation by one of the other genes (Figure 4.8). 

In fact, the expression of NR4A1 and the pro-inflammatory genes TNF, MCP1, IFN-γ, and IL6 

were found to exhibit a significantly correlated expression between SAT and VAT. Most 

prominent was the strong correlation of IFN-γ, which is known as the most important 

cytokine for activation of pro-inflammatory M1-like macrophages (O'Rourke, White et al. 

2012). This suggests that inflammation in one fat depot was reflected by inflammation in the 

other depot as well. Interestingly, the upregulation of NR4A1 in one depot was reflected by 

upregulation of IFN-γ in the other depot, supporting the notion that NR4A1 plays a role in 

adipose tissue inflammation.     
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Figure 4.8. Co-expression of pro- and anti-inflammatory genes in SAT and VAT. Correlation plot showing the Person 

correlation between expression levels of the Pro-inflammatory genes TNF, MCP1, IFN-gamma, IL6, the anti-inflammatory 

genes TREM1, TREM2, the transcription factor Nr4A1 and the genes for the macrophage associated receptors CD68 and 

CD163 in SAT (A) and VAT (B) (n=54). Size and color of circles indicate correlation coefficients and squares indicate 

insignificant associations (p>0.05).  

 

 

 

 

Figure 4.8. Correlation between pro- and anti-inflammatory genes expressed in SAT and VAT. Correlation plot indicating 

the Pearson correlation of the Pro- inflammatory genes TNF, MCP1, IFN-gamma, IL6, the anti-inflammatory genes TREM1, 

TREM2, the transcription factor Nr4A1 and the genes for the macrophage associated receptors CD68 and CD163 expressed 

in SAT and VAT (n=54). Size and color of circles indicate correlation coefficients and squares indicate insignificant 

associations (p>0.05).   
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4.7 Associations between the expression levels of pro- and anti-inflammatory genes with 

clinical data. 
 

In order to establish whether a pro-inflammatory gene expression pattern in adipose tissue 

is associated with systemic insulin resistance, an unhealthy lipid profile or markers of 

inflammation measured in peripheral blood, a correlation analysis was performed. 

Interestingly, HOMA-IR and HbA1C, a measure of insulin resistance and glucose intolerance, 

respectively, and triglyceride levels were all found to be positively correlated with CD68 and 

CD163 expression in SAT, indicating a higher number of macrophages in SAT of insulin 

resistant subjects. TREM2 expression in SAT also correlated with HOMA-IR (R2 = 0.408, p = 

0.002) and HbA1C (R2 = 0.312, p = 0.024) suggesting a more anti-inflammatory profile in SAT 

of insulin resistant subjects. Interestingly, IL6 correlated negatively with HOMA-IR in SAT (R2 

= -0.305, p = 0.028), and a similar trend was observed in VAT (R2 = -0.244, p = 0.081), 

although not significant. Moreover, IL6 expression in SAT (R2 = 0.284, p = 0.041) and VAT (R2 

= 0.255, p = 0.067) associated positively with HDL, an indicator of a healthy lipid profile, 

which supports the notion of a pleiotropic function of this cytokine beyond its role in 

inflammation (Kurauti, Costa-Junior et al. 2017). It is noteworthy that there are no 

associations of HOMA-IR, HbA1C or triglycerides with CD68 and CD163 or the anti-

inflammatory gene TREM2 in VAT. A significant correlation of MCP1 (R2 = 0.412, p = 0.002) 

with BMI suggests a higher infiltration of monocytes into VAT in the setting of obesity. In 

SAT, however, BMI only showed a significant association with CD68.  It is also intriguing that 

expression of NR4A1 (R2 = 0.294, p = 0.034) and also CD163 in VAT correlated positively with 

CRP. In addition, there, was a positive but not significant association of the pro-inflammatory 

genes TNF, MCP1 and IFN-gamma in VAT with CRP, suggesting a link between systemic 

inflammation and AT inflammation in VAT.  

To summarize, this analysis suggests that insulin resistance and an unhealthy lipid profile is 

characterized by a pattern of anti-inflammatory gene expression in SAT and an absent of this 

pattern in VAT, supporting the conclusion from the flow cytometry data that insulin 

resistance is associated with a higher proportion of M2-like macrophages in SAT, which is 

not seen in VAT. The results from the gene expression analysis also suggest that a pro-

inflammatory gene expression pattern in VAT is associated with systemic inflammation, 
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which supports the conclusion from the flow cytometry data that the pro-inflammatory 

M1/M2-ratio are associated with systemic inflammation.  

 

Figure 4.9. Correlation plot of pro- and anti-inflammatory gene expression in SAT and VAT with metabolic parameters.    

Correlation plot indicating the Pearson correlation of the Pro- inflammatory genes TNF, MCP1, IFN-gamma, IL6, the anti-

inflammatory genes TREM1, TREM2, the transcription factor Nr4A1 and the macrophage associated receptors CD68 and 

CD163 expressed in SAT and VAT with metabolic parameters (n=54). Size and color of circles indicate correlation coefficients 

and squares indicate insignificant associations (p>0.05).   

 

 

 

4.8 Comparison of the rate different adipose tissue depots mobilize fatty acids. 
 

Further we wanted to assess functional characteristics of isolated mature adipocytes. From a 

cohort of 21 severely obese patients undergoing bariatric surgery, the rate of glycerol 

release were measured in freshly isolated adipocytes from SAT and VAT, with the aim of 

comparing the rate in which adipocytes mobilize their fatty acids through lipolysis between 

the two depots. A correlation analysis (Figure 4.11) was also performed to assess whether 

the degree of lipolysis associated with systemic insulin resistance, metabolic dysregulation 

or measures of systemic inflammation.  A pairwise comparison revealed that the basal rate 

of lipolysis was similar between the two tissues and there was a significant increase in 

response to isoprenaline stimulation in both tissues (Figure 4.11). As expected, the rate of 
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which isoprenaline stimulation increased lipolysis was significantly higher in VAT (Wilcox test 

p<0.001) indicating that fatty acids from VAT is first mobilized in periods of energy demand 

(Bodis and Roden 2018).   

 

 

 

Figure 4.10. The rate of basal and stimulated lipolysis in SAT and VAT. A: Boxplot showing the rate of lipolysis in SAT and 

VAT in basal and in isoprenaline stimulated conditions measured by glycerol release. B: Violin plot showing the increase in 

rate of lipolysis in response to isoprenaline stimulation in SAT and VAT (n=21). ** = p<0.01, *** = p<0.001.   

 

The correlation analysis revealed a negative correlation of LDL (R2 = -0.545, p = 0.011) and 

total cholesterol levels (R2 = -0.497, p = 0.028) in blood with the lipolytic response in VAT. 



49 
 

This was not observed in SAT, instead the lipolytic response in SAT was correlated with 

triglycerides (R2 = 0.536, p = 0.012), suggesting a negative contribution of the lipolytic 

response in SAT with respect to metabolic syndrome. Insulin levels and HOMA-IR also 

associated negatively with both basal (R2 = -0.536, p = 0.012 & R2 = -0.479, p = 0.027) and 

stimulated lipolysis (R2 = -0.619, p = 0.002 & R2 = -0.579, p = 0.005) in VAT, but not to the 

lipolytic response. This contradicts the notion that elevated basal levels of lipolysis in VAT is 

exacerbating insulin resistance and T2DM by promoting ectopic lipid accumulation (Bodis 

and Roden 2018). 

 

 

Figure 4.11. Correlation plot of lipolysis versus clinical parameters. Correlation plot indicating Person correlation between 

the rate of lipolysis and metabolic parameters measured in blood in addition to BMI and Age (n=21). Size and color indicate 

correlation coefficients and squares indicate insignificant associations (p>0.5). 

 

4.9 Glucose uptake and insulin sensitivity between different adipose tissue depots. 
 

Next, we assessed the glucose uptake and insulin sensitivity by measuring uptake of C-14 

glucose in freshly isolated adipocytes from the same cohort as the lipolysis assay including 

one additional sample. Uptake of the radioactive glucose was measured by scintillation 

counting and the results presented as disintegrations per minute in Figure 4.12.A. Both 

adipose tissue depots responded significantly to insulin stimulation, and as expected both 

the basal and stimulated glucose uptake was elevated in VAT compared with SAT in our 

cohort (Westergren, Danielsson et al. 2005). The response to insulin stimulation on glucose 

uptake was, however, similar between the two depots (Figure 4.12.B).   
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Figure 4.12. Glucose uptake in isolated adipocytes from SAT and VAT. Uptake of C-14 glucose in freshly isolated adipocytes 

from SAT and VAT of severely obese subjects were measured by scintillation counting and results presented as 

disintegrations per minute. A: Boxplot showing the degree of glucose uptake in SAT and VAT under basal and insulin 

stimulated conditions. B: Violin plot comparing the fold increase in glucose uptake in response to insulin stimulation in SAT 

and VAT (n=22). *** = p<0.001.    
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We also performed a correlation analysis of glucose uptake and insulin sensitivity in adipose 

tissue versus metabolic parameters measured in blood in order to reveal whether insulin 

resistance and glucose intolerance in adipose tissue is associated with systemic measures of 

insulin resistance or other indicators of metabolic syndrome (Figure 4.13). We found a 

significant correlation of basal glucose uptake in VAT with HDL (R2 = 0.459, p = 0.036) 

suggesting a beneficial effect on the lipid profile in blood. Moreover, a negative, but not 

significant, correlation of glucose uptake with glucose levels in blood was found, supporting 

that glucose intolerance in adipose tissue is reflective of glucose intolerance at the systemic 

level.  

 

 

 

 

Figure 4.13. Correlation plot of glucose uptake versus clinical parameters. Correlation plot indicating Person correlation of 

glucose uptake and insulin sensitivity versus metabolic parameters measured in blood in addition to BMI and Age (n=22). 

Size and color indicate correlation coefficients and squares indicate insignificant associations (p>0.5). 
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Both lipolysis and glucose uptake are essential processes in regulating the whole-body 

energy homeostasis. Therefore, we wanted to investigate how the two different processes 

associated by doing a correlation analysis (Figure 4.14). The results showed that the 

response of glucose uptake on insulin stimulation associated negatively with lipolytic 

response in VAT (R2 = -0.459, p = 0.036). Contrary, the basal level of lipolysis showed a 

positive association with insulin sensitivity (R2 = 0.440, p = 0.046) in VAT, that contradicts 

previous reports showing that insulin resistance in VAT is associated with elevated levels of 

basal lipolysis (Bodis and Roden 2018).  

 

 

Figure 4.14. Correlation plot of glucose uptake versus lipolysis. Person correlation of glucose uptake versus the rate of 

lipolysis in SAT and VAT (n=21). Size and color indicate correlation coefficients and squares indicate insignificant associations 

(p>0.5). 
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5. Discussion 
 

Adipose tissue inflammation has been pointed out as a plausible mechanistic link connecting 

obesity and associated diseases such as insulin resistance and T2DM. It is now widely 

accepted that macrophages and other immune cells infiltrate adipose tissue at a high rate 

and are contributing to a chronic state of inflammation in the tissue. However, the relative 

contribution of different immune cell populations is still heavily debated, and there is a lack 

of consensus with respect to which molecular players are contributing to the worsened 

metabolic phenotype. The aim of this thesis was to investigate fat depot-specific differences 

with respect to adipose tissue inflammation, and to phenotypically characterize the ATM 

populations. We also wanted to study whether skewing towards a more pro-inflammatory 

macrophage population is associated with systemic insulin resistance, inflammation, or an 

unhealthy lipid profile. Furthermore, we performed functional analyses in freshly isolated 

mature adipocytes to investigate how glucose uptake and lipolysis are associated with 

systemic insulin resistance, inflammation and lipid profile. 

 

5.1 SAT contains a higher fraction of ATM than VAT 
 

Insulin resistance has been associated with infiltration of macrophages in both SAT and VAT, 

observed both in HFD fed mice and obese humans (Bodis and Roden 2018). In particular, 

infiltration into VAT has been associated with a worsened metabolic phenotype (Lebovitz 

and Banerji 2005), although the relative contribution of each fat depot has been heavily 

debated.  In our study we found that SAT contains a significant higher fraction of total 

macrophages and monocytes than VAT. This was also found in another study that involved 

29 obese bariatric surgery patients where macrophages and monocytes were also 

characterized by the expression of CD11c and CD206 (Wentworth, Naselli et al. 2010). We 

also assessed the gene expression in SAT and VAT and found that CD68 and MCP1, but also 

TREM2 is higher expressed in SAT than VAT, which supports that macrophages are more 

abundant in SAT. Conversely, a study done in 55 morbidly obese gastric surgery patients, 

where the surface protein HAM56 was used to characterize macrophages by 

immunohistochemistry, found the number of infiltrating macrophages to be twice as high in 
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VAT as in SAT (Cancello, Tordjman et al. 2006), whereas a study performed in 10 lean 

cholecystectomy patients failed to find any differences between SAT and VAT (Koenen, 

Stienstra et al. 2011). Moreover, our gene expression data showed that CD163 are more 

highly expressed in VAT than in SAT, which may rise doubt about whether the macrophages 

are likely to be more abundant in SAT. The discrepancy between different studies reporting 

ATM compositions highlights the need for a more unifying concept on how to best identify 

ATMs. 

 

5.2 Alternatively activated M2-like macrophages are more abundant in VAT than SAT 
 

It is well known that there are different subsets of macrophages in adipose tissue with 

different functional properties, and earlier studies have characterized a subset of 

CD11c+CD206+ ATM that shows features of classically activated macrophages (M1) and a 

subset of CD11c-CD206+ ATM that shows features of alternatively activated macrophages 

(M2) (Wentworth, Naselli et al. 2010). We looked at how these populations of macrophages 

were distributed in the two fat depots and found the alternatively activated M2-like 

macrophages to be significantly more abundant in VAT. These findings were supported by 

the gene expression analysis showing a higher expression of the anti-inflammatory marker 

CD163 in VAT. Contrary, the monocytes were more abundant in SAT compared to VAT. 

However, there was no difference in the number of M1-like macrophages between SAT and 

VAT.  

If inflammation in VAT is more closely associated with insulin resistance than in SAT, we 

could expect a higher number of the pro-inflammatory M1 macrophages in VAT of subjects 

with T2DM. We therefore analyzed the composition of M1 and M2 macrophages after 

separating the subjects diagnosed with T2DM from our cohort of severely obese subjects. In 

addition, we included three subjects undergoing cholecystectomy with a BMI in the range 

22-29 kg/m2 to represent the control group. Somewhat unexpected, we could not find any 

significant differences in number of M1- or M2-like macrophages between the control 

group, the T2DM patients and the obese group without T2DM. A small sample size could 

explain the lack of differences observed.  
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5.3 High expression of CCR2 by M1-like macrophages supports their pro-inflammatory 

identity. 
 

There is still a debate on how to best characterize pro- and anti-inflammatory macrophages 

in adipose tissue, and studies have shown that the alleged CD11c+CD206+ M1-like 

macrophages also exhibit characteristics of anti-inflammatory M2-like macrophages such as 

high mitochondrial copy number and high expression of the anti-inflammatory cytokine IL-10 

(Vats, Mukundan et al. 2006), (Mantovani, Sica et al. 2004), (Kim, Zhang et al. 2004). 

Therefore, we sought to confirm the pro- and anti-inflammatory phenotype of M1-like and 

M2-like macrophages from SAT and VAT by the expression of additional surface receptors. 

Most strikingly, the pro-inflammatory marker CCR2 was found to be highly expressed by M1-

like macrophages and to some extent on the monocytes but was almost absent on the M2-

like macrophages. Interestingly, the level of ATM CCR2 expression varied between the fat 

depots, with CCR2 consistently expressed by a higher fraction of the M1-like macrophages in 

VAT, while there was a great variation in the number of CCR2 expressing M1-like 

macrophages in SAT, which supports a more pro-inflammatory profile in VAT.  A similar 

pattern was observed for the monocytes. CD44 was also found to be higher expressed by 

both M1-like macrophages and monocytes in both SAT and VAT. CD44 is also a receptor 

involved in cell migration and an important mediator in the cell responding to pro-

inflammatory stimuli (Lim, Yuzhalin et al. 2016), (Senbanjo and Chellaiah 2017). Studies have 

found the ratio of anti-inflammatory M2-like macrophages versus M1-like macrophages to 

be significantly higher in adipose tissue of CD44 knock-out mice fed a HFD, which supports 

that CD44 is facilitating infiltration of M1-like macrophages into adipose tissue (Kang, Liao et 

al. 2013). Interestingly, the M1-like macrophages displayed a great variation in expression 

levels of CD44 between the subjects. The alleged anti-inflammatory marker CD163 was 

highly expressed in both M1-like and M2-like macrophages in SAT and VAT, and showed only 

a marginal higher expression in M2-, relative to M1-like macrophages in VAT. This suggests 

that CD163 is probably not an appropriate marker to distinguish between pro- and anti-

inflammatory macrophages in adipose tissue. In conclusion, the high expression of CCR2 

supports a pro-inflammatory identity of M1-like macrophages. Moreover, in animal models 

of obesity, it has been found that silencing CCR2 reduces macrophage number and 

inflammation in adipose tissue and also improve insulin sensitivity (Kim, Chung et al. 2016). 
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However, the high variability in expression of CD14, CD16, CD40, CD44 and HLA-DR on both 

M1- and M2-like macrophages suggests a broad spectrum of activation states or the 

existence of different subgroups of cells within these cell populations.   

 

5.3 Elevated levels of insulin and HOMA-IR are associated with M2-like macrophages in 

SAT 
 

Similar studies have shown that insulin resistance is associated with increased numbers of 

CD11c+CD206+ M1- like macrophages and also with the pro-inflammatory M1/M2 ratio in 

both SAT and VAT (Wentworth, Naselli et al. 2010). We performed a person correlation 

analysis to investigate whether the different macrophage populations or the M1/M2 ratio 

are associated with systemic insulin resistance or other clinical parameters relevant for 

metabolic syndrome in our cohort. Surprisingly, the M1/M2 ratio in SAT correlated 

negatively with HOMA-IR. Although this association was not significant, there was clearly a 

trend, which was supported by a strong significant negative association of insulin levels with 

the M1/M2 ratio and the positive association of CD11c-CD206+ M2-like macrophages with 

insulin. Similar associations between insulin resistance and macrophage populations were 

not found in VAT. The gene expression analysis supports that insulin resistance is associated 

with increased number of M2-like macrophages in SAT by the positive association of CD68, 

CD163 and TREM2 with HOMA-IR and HbA1C, which were not detected in VAT. Although 

CD68 and CD163 are not specific for M2-like macrophages, TREM2 has been recognized for 

its role in anti-inflammatory M2-like macrophages by its ability to suppress inflammatory 

responses by blocking toll-like receptor signaling (Turnbull, Gilfillan et al. 2006), (Zhong, 

Chen et al. 2015) and subsequent secretion of the proinflammatory cytokines IL-1b, IL6 and 

iNOS. Moreover, studies in mice have found TREM2 to be a positive regulator of 

adipogenesis, and TREM2 KO-mice have been shown to have increased obesity, insulin 

resistance and impaired adipose tissue remodeling (Liu, Li et al. 2019). This suggests that 

TREM2-expressing M2-like macrophages could be involved in a protective mechanism to 

cope with insulin resistance by regulating adipogenesis and inflammation (Liu, Li et al. 2019), 

and our results indicate that this mechanism may be less active in VAT.    
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We also found that M1/M2 ratio in VAT strongly associated with CRP and leukocytes while 

M2 macrophages associated negatively with the same parameters, which supports the 

hypothesis that adipose tissue inflammation can promote systemic inflammation (Fontana, 

Eagon et al. 2007). This was further supported by the gene expression analysis showing that 

NR4A1, TNF, MCP1 and IFN-γ expression in VAT associated with systemic CRP levels. 

Contrary, from experiments in rats it has been reported that CRP are able inhibit the 

differentiation of monocytes into M2-like macrophages and instead promote polarization of 

monocytes and M2-like macrophages into a M1-like phenotype suggesting that systemic 

inflammation can promote adipose tissue inflammation (Devaraj and Jialal 2011). However, 

the fact that there was no correlation between M1/M2 ratio in SAT with neither CRP nor 

leukocytes raise doubt about the direction of causality.  

 

5.3 Pro-inflammatory gene expression is reflected in both fat depots 
 

The expression levels of the pro-inflammatory genes, TNF, MCP1, IFN-γ, IL6, and also the 

transcription factor NR4A1, were strongly associated between SAT and VAT suggesting that 

inflammation in one fat depot is reflected by inflammation in the other depot as well. 

Although the pro-inflammatory gene expression pattern was mostly similar between the two 

depots, TREM1 deviated from this pattern by its strong association with the anti-

inflammatory receptor CD163 in SAT.  In VAT, there was a stronger association of the 

transcription factor NR4A1 with the pro-inflammatory genes TNF, IFN-γ and IL6 than in SAT. 

It has been suggested that adipose tissue inflammation and insulin resistance arise when the 

adipocyte hyperplastic response is insufficient to accommodate the metabolic stress of 

caloric excess as observed in both obesity and lipodystrophy (Wang, Tao et al. 2013), 

(Pasarica, Xie et al. 2009). NR4A1 has been described as a negative regulator of adipocyte 

hyperplasia suggesting a link to adipose tissue inflammation and T2DM (Zhang, Federation et 

al. 2018). The association with pro-inflammatory genes in our study supports a role for 

NR4A1 in adipose tissue inflammation, although we could not find an association with insulin 

resistance (measured by HOMA-IR). Interestingly, the expression of IL6 negatively correlated 

with HOMA-IR in both SAT and VAT, contradicting the traditional viewpoint of IL6 as an 

important pro-inflammatory mediator in promoting insulin resistance (Bastard, Maachi et al. 
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2002). While it was earlier believed that secreted IL6 had mostly negative effect on glucose 

homeostasis by affecting insulin signaling and promoting insulin resistance, particularly in 

the liver (Klover, Zimmers et al. 2003). Recent studies have discovered an important role of 

IL6 in regulating expression of insulin degrading enzyme and facilitating insulin clearance to 

prevent sustained exposure to high levels of insulin and consequently desensitization of the 

signaling pathway (Kurauti, Costa-Junior et al. 2017). This has been supported by studies 

showing that impairment in insulin-degrading enzyme are associated with insulin resistance 

(Karamohamed, Demissie et al. 2003). Moreover, it has been shown that IL6 primes 

macrophages to IL4 mediated polarization towards the M2-like phenotype by inducing the 

expression of IL4R-α through STAT3-mediated activation of IL4rα promoter (Mauer, 

Chaurasia et al. 2014). Interestingly, it has also been found that some of the beneficial effect 

exercise has on metabolic health is mediated through IL6 released into circulation from 

contracting muscle, influencing metabolism in distant tissue and organs (Pedersen and 

Fischer 2007). This indicates that the role of IL6 is likely to be both context and tissue 

dependent (Mauer, Denson et al. 2015) and more research should be put into figuring out 

the characteristic of the different actions of IL6.      

 

5.4 VAT has a higher glucose uptake and are more sensitive to lipolytic stimulation. 
 

In this study we have demonstrated that both basal and insulin stimulated glucose uptake is 

higher in VAT than SAT in our cohort of obese subjects. This has also been found in other 

studies (Christen, Sheikine et al. 2010), (Westergren, Danielsson et al. 2005). The increased 

stimulated levels of glucose uptake are likely caused by elevated levels of GLUT4 expression 

in VAT relative to SAT (Westergren, Danielsson et al. 2005). Elevated basal levels of glucose 

uptake could be caused by increased expression of GLUT1, although that has not been 

confirmed. In our study, both depots showed equal sensitivity to insulin stimulation on 

glucose uptake, which has also been shown in other reports (Westergren, Danielsson et al. 

2005). We also showed that glucose levels in blood was associated with reduced glucose 

uptake, which was most prominent in SAT. However, the associations did not reach 

significance, and we found no association between insulin sensitivity on glucose uptake with 

glucose level in blood. It should be emphasized that muscle tissue are responsible for most 
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(75-80%) of total body glucose uptake, and that adipose tissue only account for a smaller 

fraction of total body glucose uptake, leading to the conclusion that investigating glucose 

uptake in adipose tissue independently not necessarily explain glucose intolerance at 

systemic level (Honka, Latva-Rasku et al. 2018). Numerous studies have reported that an 

increased tendency to store fat in VAT are more detrimental to health, and it has been 

pointed on the fact that this fat depot are drained by the portal circulation causing free fatty 

acids to reach the liver in high concentrations (Rebuffe-Scrive, Andersson et al. 1989). 

Consequently, it is reasonable to believe that an elevated lipolysis in VAT relative to SAT is 

associated with a worsened metabolic profile. We found that stimulated lipolysis is 

significantly higher in VAT than SAT of obese subjects, which is also confirmed in other 

reports, and suggests that increased VAT mass has the potential to cause a marked exposure 

of the liver to free fatty acids via the portal drainage (Rebuffe-Scrive, Andersson et al. 1989). 

It has been reported a strong association of lipolysis and insulin resistance, and the lipolytic 

response to β-adrenergic stimulation is reported to be increased in VAT and decreased in 

SAT in insulin resistant subjects (Morigny, Houssier et al. 2016). Moreover, follow-up studies 

of morbidly obese patients undergoing bariatric surgery has reported a positive association 

between reduction in lipolytic rate and improvement of insulin sensitivity (Girousse, 

Tavernier et al. 2013). In support to this, we found a strong negative association of the 

lipolytic response with insulin sensitivity in VAT. Unexpectedly, our data indicated a negative 

association of both basal and stimulated lipolytic rate with measures of insulin resistance 

(HOMA-IR), and a positive association of basal lipolysis with insulin sensitivity on glucose 

uptake in VAT. Moreover, BMI showed a non-significant negative association with lipolysis in 

bot SAT and VAT. However, it is important to emphasize that we measured lipolysis per 

volume fat mass, and did not take into account differences in distribution of fat mass 

between SAT and VAT. Considering the expanded fat volume of severely obese subjects, 

there is a much greater potential of causing harmful effects on metabolic health by ectopic 

lipid accumulation.   
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5.4 Summary, Limitations and future perspective 
 

In summary, our data shows that macrophages are more abundant in SAT than VAT of obese 

subjects. Both flow cytometry data and gene expression analysis support an association of 

anti-inflammatory M2-like macrophages in SAT and insulin resistance and an association 

between systemic inflammation and inflammation in VAT. We should, however, be 

precautious when interpreting the correlation analysis of the flow cytometry data due to the 

limited sample size of 16 subjects. Moreover, the gene expression data are derived from 

whole tissue biopsies and thus represents the average expression level from many different 

cell types and are thereby not directly comparable with the flow cytometry data, which 

provide a more precise information of the cellular composition. Furthermore, it has been 

shown that TREM2 is also expressed by adipocytes and non-immune cells in the adipose 

tissue (Liu, Li et al. 2019). Moreover, limited access on lean healthy controls and the fact that 

one from the control group present with highest HOMA-IR, CRP levels and M1/M2 ratio limit 

the potential to perform a statistically meaningful analysis to assess whether obesity is 

associated with adipose tissue inflammation or insulin resistance. The fact that some 

patients are medically treated for T2DM to manage their glucose intolerance and insulin 

resistance brings further complexity to the analysis. In addition, the severely obese patients 

are encouraged to follow a caloric restrict diet the last weeks ahead of bariatric surgery, 

which may lead to weight loss and modulate the composition of macrophages and level of 

insulin sensitivity. Future studies should include a higher number of lean healthy controls 

and look more into how to best define different subsets of macrophages with the aim of 

investigating their role in adipose tissue inflammation and insulin resistance. 
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Supplementary 
 

 

Figure 1. Gating strategy for quantification of CCR2, CD163 and CD16 expressing cells. The gating strategy for quantifying 
the fraction of Monocytes, M1- and M2-like macrophages expressing the receptors CCR2 (A), CD163 (B) and CD16 (C) from 
one representative population.  


