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Mitochondrial DNA (mtDNA) encodes vital respiratory machinery. Populations of mtDNA
molecules exist in most eukaryotic cells, subject to replication, degradation, mutation,
and other population processes. These processes affect the genetic makeup of cellular
mtDNA populations, changing cell-to-cell distributions, means, and variances of mutant
mtDNA load over time. As mtDNA mutant load has nonlinear effects on cell functionality,
and cell functionality has nonlinear effects on tissue performance, these statistics of cel-
lular mtDNA populations play vital roles in health, disease, and inheritance. This mini
review will describe some of the better-known ways in which these populations change
over time in different organisms, highlighting the importance of quantitatively understand-
ing both mutant load mean and variance. Due to length constraints, we cannot attempt
to be comprehensive but hope to provide useful links to some of the many excellent
studies on these topics.

Introduction
Mitochondria are endosymbiotic organelles that facilitated and continue to support all complex life.
Due to their evolutionary history, mitochondria in present-day eukaryotic cells retain highly reduced
genomes, which encode genes vital for cellular bioenergetics. Eukaryotic cells may contain hundreds
or thousands of mitochondrial DNA (mtDNA) molecules. This mini review will discuss how these
cellular mtDNA populations evolve over time, particularly focussing on populations involving a
mixture of mtDNA types.
The gene content of mtDNA varies dramatically across life [1,2]. Parasitic organisms typically have

highly reduced genomes; some have lost mtDNA altogether, retaining highly reduced mitochondrion-
related organelles or MROs [3,4] (which may sometimes retain aerobic capacity [5]). Many bilaterians
have similar mtDNA complements, although some diversity in gene content and genome structure
certainly exists, and in non-bilaterian animals, this diversity expands [6]. Plants often retain more
genes and can have huge mtDNA genomes largely filled with non-coding content [7,8]. The highest
mtDNA gene counts yet found are retained in some protists [9]. The reasons for this diversity in gene
content remain debated but may involve species- and environment-specific resolutions to an evolu-
tionary tension [7,10] between retaining genes for local convenience [11–13] and transferring them to
the nucleus for genetic robustness [14–16].
In addition to this diversity in gene content, mtDNA sequences vary within cells and populations.

MtDNA is subject to mutation [17–20]. In animals, mtDNA sequence mutation rates are higher than
nuclear mutation rates [17,18]. Plant mtDNA, by contrast, has a lower sequence mutation rate than
the nucleus [21]. However, the rate of structural mutation (reorganisation of mtDNA molecules) is
high in plants [21–25], while animal mtDNA structure is relatively stable [10,19]. Fungi differ again:
while mtDNA recombination is common [26,27] and structural variants frequently arise (including
the well-known ‘petite’ mutant, with large deletions and an inability to respire [28]), mtDNA muta-
tion rates remain high relative to the nucleus [17,18].
Given this potential for sequence changes, population histories lead to, for example, geographical

variation in mtDNA types. In humans, this variation is used to track population histories [29,30] and
is a potentially important source of stratification in personalised medicine [31].
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MtDNA is physically contained within mitochondria. Animal and fungal mitochondria have physically flex-
ible forms, undergoing fusion into reticulated networks and fission into smaller fragments, and with each
organelle typically containing several copies of mtDNA [32]. These molecules are packaged in nucleoids, the
size of which is debated [33–35] but which recent evidence suggests usually contain under two mtDNA mole-
cules [36] and are internally genetically homogeneous [37]. Plant mitochondria usually (with some exceptions
[38]) remain more as discrete, dynamic organelles [39–43] and often contain no mtDNA [44].
Within cells, different processes act to dynamically change the structure of mtDNA populations (Figure 1).

Across species, mtDNA replication and degradation changes the makeup of the cellular population over time.
This is often pictured as ‘relaxed replication’ [45], (replication co-ordinated with, but not directly linked to, the
cell cycle [46]), and under nuclear control [47–50]. In animals, mtDNA is largely asexual and exists in reason-
ably consistent circular forms (with some exceptions, including mtDNA networks in the human heart [51]). In
fungi and plants, active recombination mixes and reforms mtDNA content [27,52,53]. This may result in a
large variety of branched and linear forms containing different gene content [7,54,55]. The susceptibility of
mtDNA to processes including degradation and recombination depends on the physical dynamics of mitochon-
dria, coupling the physical and genetic structure of the mitochondrial population [7,50,56]. De novo mutation,
and mtDNA transfer between cells, also influence the makeup of mtDNA populations.
The reader will notice the analogy with ecology. Individual mtDNAs exist in cellular ‘ecosystems’, replicating

and degrading, mutating, potentially moving between ecosystems, occupying new ground when cells divide,
and in some systems also undergoing recombination. The natural question emerges — how heterogeneous are
these populations [50]?

Heteroplasmy
While several mechanisms exist to keep cellular mtDNA populations homogeneous ([59]; see below), sequence
and structural differences between mtDNA molecules can result in so-called heteroplasmy, a mixture of differ-
ent mtDNA variants in the same cell [35,60]. These variants may involve single nucleotide polymorphisms or
more dramatic structural changes. Heteroplasmy may emerge from de novo mutation, intercellular transfer,
recombination, inheritance of different mtDNA types, or synthetically via gene therapies.

Figure 1. Processes influencing evolving mtDNA populations.

Within a heteroplasmic cell containing different types of mtDNA molecule (left), different processes (right) can change the

structure of the cellular mtDNA population. These include replication, degradation, de novo mutation, intercellular transfer, and

recombination. Cell divisions, where mtDNA molecules may be partitioned between daughter cells according to several

possible mechanisms, also influence mtDNA statistics. The rates of these processes depend on organism-, sequence-, tissue-,

and time-dependent factors. Several correspond directly to processes from the theory of stochastic population processes

[57,58].
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Naturally occurring mtDNA heteroplasmy is common across life [61]. Early examples of heteroplasmy were
reported in organisms as diverse as fly [62], seaweed [63], fungi [64], maize [65], brittle stars [66], flatfish [67],
and vegetatively propagated olive trees [68]. Low-level heteroplasmy is ubiquitous in humans [69] and more
broadly across vertebrates [70].
Some sequence variants may compromise bioenergetic functionality. However, because of the many copies of

mtDNA in each cell and some redundancy, these variants typically need to be present above a certain mutant
load in order to have a detrimental effect (Figure 2A) [71,72]. This is the so-called threshold effect in mito-
chondrial disease [73].
The threshold effect means that cell-to-cell differences in mtDNA mutant load are important. Imagine that

an organism carries a mutant at an average 50% mutant load. If all cells are identical, none will pass a 60%
threshold for the disease. However, if substantial cell-to-cell variability exists, some cells may exceed the disease
threshold (Figure 2B). This potential for threshold crossing is important because of another nonlinearity. Some
tissues require the concerted functionality of many cells working together. Just a small number of compromised
cells can then lead to a pathology (Figure 2C). The presence of mitochondrially compromised cells has been
shown to cause pathologies including arrhythmias in the heart [74] and damage in muscle fibres [75].
As this mini review will argue, these nonlinearities mean that it is important to study at least both the mean

and the cell-to-cell variance of mutant statistics in mtDNA populations (and ideally the full distributions
[58,76,77]). Changes to either can lead to pathological situations (Figure 2B) and both have consequences in

Figure 2. Thresholds in mtDNA mutant load.

(A) The severity of symptoms associated with a pathogenic mtDNA type (red) is low or negligible until a mutant load threshold

value (dashed line) is crossed, whereupon the disease severity increases dramatically [73]. (B) Influence of cellular processes

on cell-to-cell mutant load distributions (PðhÞ is the probability of a cell having a given mutant load h). Segregation widens

mutant load distributions; selection shifts their mean. Wider distributions have more probability of crossing mutant load

thresholds (dashed lines). (C) Even a small number of high-mutant-load, dysfunctional cells can compromise organ-wide

functionality [74,75]. If the cell-to-cell variance of heteroplasmy is low, few cells will cross the threshold and the organ can

function as normal. If the cell-to-cell variance is high, even with a low mean mutant load, more cells will cross the mutant load

threshold and disease will be manifest. We therefore need to understand (at least) both the mean and the cell-to-cell variance

of heteroplasmic cells.
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the fundamental biology of inheritance and evolution [27,35,60]. In this mini review, we will highlight some of
the several classes of biological process that alter these statistics of cellular mtDNA populations over time. We
will focus on selection and segregation, respectively, changing the mean and variance of mutant mtDNA statis-
tics. Due to length constraints, we can only briefly mention recombination, de novo mutations, and intercellular
mitochondrial transfer, other processes which impact mtDNA populations in cells.
Within this scope, the big questions are: under what circumstances (organism-tissue-mtDNA sequence-time)

does mtDNA selection pressure act? And how is cell-to-cell variability generated in mtDNA populations?

Changing mean heteroplasmy
Perhaps the most dramatic process influencing cellular mtDNA populations in many sexually reproducing
organisms is the clearing of mtDNA from one parent (usually paternal). This clearance strongly diminishes or
removes mtDNA content from one parent around fertilisation, avoiding admixtures of maternal and paternal
mtDNA. Postulated reasons for this clearance include the general exclusion of any foreign DNA from the ferti-
lised oocyte, the avoidance of nuclear-mtDNA or mtDNA-mtDNA incompatibilities, and the mitigation of
selfish mtDNA behaviour (reviewed in [59,78]). However, the search for a universal explanation is complicated
by the diverse modes of mtDNA inheritance across life [27,61,79–82]. While maternal mtDNA inheritance is
common, some organisms display parental or doubly unipaternal inheritance (DUI), and rare mtDNA ‘leakage’
(for example, rare retention of limited paternal mtDNA) can retain some heteroplasmy.
Animal mtDNA inheritance is usually maternal [27,61], with some exceptions including bivalves adopting

DUI [83,84], and paternal leakage sometimes reported (and highly debated) in humans [85,86]. Plants usually
inherit mitochondria maternally, with exceptions including paternal leakage [87], inheritance, or DUI in some
species [88–91]. Fungal mtDNA inheritance is more complex and different species may undergo uniparental
inheritance and/or DUI [26,27] and can also involve the inheritance of mitochondrial ‘plasmids’ [92].
If heteroplasmy exists after fertilisation (for example, due to leakage or mutation), cellular processes may

change heteroplasmy statistics over time (Figure 1). In developing animals, heteroplasmy changes in a tissue-,
sequence-, and time-dependent way [93]. Animal models have allowed increasingly detailed insight into these
dynamics. Typically, a model is constructed or acquired harbouring an admixture of two mtDNA types, and
techniques including pyrosequencing, qPCR, and dPCR are used to compare heteroplasmy in aged organisms
against some reference. Mouse models have been particularly well explored here, including a widely used pairing
of C57BL/6 or BALB and NZB [94–96], other pairings [97,98], and the more recent construction of admixtures
with a range of genetic distances between the interrogated haplotypes [99,100]. Fly [101,102] and livestock
[103,104] models have also been investigated. Recent advances in these model systems have included minipigs
[105], and an elegant system in Drosophila allowing different modes of mtDNA selection to be characterised [106].
The ongoing development of diverse models has underlined that selection, leading to systematic changes in

mean heteroplasmy, is common among mtDNA pairings. Within a pairing, one type may experience an advan-
tage in some tissues and a disadvantage in others. Selective differences are often particularly pronounced in
liver, spleen, kidney, and blood (observed in most references above), but are manifest in many tissues, including
post-mitotic tissues including brain, heart, and muscle [99,105]. For some pairings, we have found that selective
differences depend on time and developmental stage [99]. The expansion of mouse models has suggested that
the magnitude of these selective differences may be related to the genetic diversity of the mtDNA pairing, with
more diverse pairs showing stronger differences [99] and similar pairs showing little difference [100]. However,
in vitro results from human oocytes and oocyte-derived material have challenged this picture, showing little
relationship between heteroplasmy shift and genetic diversity [107,108] (see corrected data [109] for Ref.
[108]). The mapping between these in vitro results, with associated passage protocols, culture conditions, etc.,
and natural development is not yet completely straightforward. However, a potential reconciliation of all
approaches involves viewing selective differences as resulting from a combination of genetic features; more
diverse molecules have a higher probability, but not a necessity, of differing at these features. The substantial
mtDNA diversity present in human populations suggests that selective differences may be common in pairings
arising from gene therapies [110].
Individual-level mtDNA selection is observed in disease-causing human mutations. MtDNA carrying the

3243A.G mutation, for example, is depleted over time in leucocytes [111]. Notably, the presence of the
3243A.G mutation affects overall cellular mtDNA copy number, perhaps via a compensatory mechanism
aiming to maintain a given wild-type content [112,113].
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Selection in the germline has proved more controversial, due in part to the lower magnitudes of selective dif-
ference observed. Studies on mammalian germline development have shown that the development of oocytes
and development post-fertilisation can show different patterns of selection. Several studies in mice [114] and
human [115,116] found random drift to explain heteroplasmy distribution in oocytes. However, selection has
been observed to act on these random oocyte distributions before, or during, their development to offspring
[117–119]. Selection acting on deleterious human mutations, for example, the 3243A.G mutation above, has
been suggested in germline development [120,121], and a recent large-scale study has found evidence for germ-
line selection, under nuclear control, at different mtDNA loci [122]. To dissect the dynamics of germline
mtDNA selection, we recently described mtDNA dynamics during development and between generations in
two mouse models with different mtDNA pairings [123]. One showed selection for mtDNA content in oocytes
that was subsequently reversed in transmission to pups; the other contrasting case showed no selection appar-
ent in oocytes, but a clear selective difference was found in pups. This work both revealed mammalian germline
mtDNA selection and identified haplotype-specific timing differences in its manifestation [123].
In plants, the diversity of naturally occurring mtDNA forms supports a wider range of dynamic behaviour.

Heteroplasmy in mtDNA structure, as well as sequence exists, perhaps reflecting a functional difference
between large and small/absent molecules and their corresponding organelles [7,39–42,124–126]. Some plants
seem to maintain a relatively simple tripartite system of one large and two smaller mtDNA molecules
[125,127]. Others partition their genome into dozens of different ‘chromosomes’ [22,128]. Some structural var-
iants are present at very low copy numbers, 10–1000 times lower than the dominant genomes [52], so that
sometimes only a small fraction of plant cells contains these so-called ‘sublimons’ [129]. Of particular note is
substoichiometric shifting, where sublimon mtDNA types at initially low copy number are rapidly elevated to
dominate mtDNA populations [130,131]. These fast heteroplasmy shifts often have dramatic phenotypic conse-
quences including cytoplasmic male sterility (CMS) [55,132–134], where the ability to produce functional
pollen, anthers, or male gametes is compromised. CMS has been observed naturally in over 150 species [135].
This is detrimental for the plant but of profound use in crop breeding, allowing the easy construction of pro-
ductive hybrids [134,136], increasing crop production in an increasingly challenged world [137].
In fungi, a history of literature has considered competition between ‘petite’ mutants where mtDNA suffers a

deletion (r�) or is absent (r0) and wildtype (rþ) in single yeast cells [138,139]. Selfish replication is often
observed, where small mtDNAs with relatively many origins of replication outcompete longer mtDNAs [140].
The magnitude of this advantage can be changed by modulating the functional challenges that the cell’s mito-
chondria face [141].
These species-, sequence-, tissue-, and time-dependent observations mean that the circumstances under

which selection acts on mtDNA populations (i.e. inducing a systematic, reproducible change in mean hetero-
plasmy) remain unresolved. How are these different dynamics manifest at the molecular level? Several possible
mechanisms for selective differences likely compete [142]. In several systems, ‘selfish’ behaviour of molecules
with an intrinsic replicative advantage has been found [78,143,144]. These include deletion mutants in nema-
todes [145], short molecules with high replication origin density in yeast [140] and plants [146], and possibly
particular D-loop variants in humans [108,147,148].
Features beyond replication rate may also influence mtDNA selection. Some nuclear-encoded factors influen-

cing segregation have been identified [149]. Mitochondrial quality control [56] acts to remove poorly perform-
ing organelles, which may have a selective effect if different mtDNA types vary in metabolic or bioenergetic
function. Differences in oxidative phosphorylation exist between human haplogroups [150] and in reactive
oxygen species production in mouse strains [151]. Some evidence exists for the magnitudes of selective differ-
ences being linked to the turnover rate of mtDNA in cells (or cells themselves) [99]. Environmental pressures
may provide further selective pressures. Although association studies with mtDNA are challenging [152,153],
evidence in fish suggests that mtDNA variants have been shaped by local climate [154], and environmental
effects on human mtDNA have been reported [155] including a role for altitude [156] and temperature [157].

Changing heteroplasmy variance
In parallel with changing mean heteroplasmy, the cell-to-cell variance in heteroplasmy is also changed by
several biological processes. Typically, changes in variance are harder to detect than changes in mean, and the
large uncertainties involved are often ignored [158]. This is because limited sampling challenges estimates of
variance, measurement noise can confound observations of variance, and averaging across cells (as in, for
example, amalgamated tissue samples) loses information on cell-to-cell variance.
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In animals, a developmental ‘genetic bottleneck’1 increases cell-to-cell heteroplasmy variance from the ferti-
lised oocyte (which, as a single cell, has zero variance) [159,160]. One purpose of this process appears to be to
generate heteroplasmy variance between oocytes in the next generation. Cells carrying low levels of pathogenic
mutations can then be fertilised and those carrying high levels can be discarded, overcoming Muller’s ratchet
[161] via cell-level selection.
The genetic bottleneck was originally found in cattle [162,163] and has since been demonstrated in animals

from mice [160,164–166] and salmon [167] to humans [168–172]. The mechanism of the genetic bottleneck
remains debated [160,164–166]. A physical bottleneck, involving a reduction in cellular mtDNA copy number
during germline development, occurs in several animals [164,166,170,173,174]. This physical bottleneck likely
plays a role both through the amplification of genetic drift and variability induced from mtDNA population
processes (Figure 1) but is not equivalent to the genetic bottleneck [160,175]. Other processes generating
mtDNA variability — that may be amplified by the physical bottleneck — include random turnover due to sto-
chastic mtDNA replication and degradation [45,47,164], (related) participation of a random subset of mtDNA
molecules in replication [166], and random partitioning of individual mtDNAs [164], or clusters of mtDNA
molecules [165] at cell divisions. Using all available experimental data from mice, and new experiments, we
used an unbiased approach to compare these mechanisms and found that random turnover and binomial parti-
tioning (BDP or birth-death-partitioning) was the most supported mechanism [160].
In plants, germline development is complex and debated [176,177]. Different modes of inheritance are

observed (paternal, maternal, biparental) for mitochondria (and plastids) in different species [87,88,91].
MtDNA variance certainly exists, with a suggestion of a ‘bottleneck’ in plants made after observing mean and
variance changes after two generations of sexual reproduction [68]. Tissue variability in subgenomic mtDNA
molecules has been reported [178] and is predicted to arise from random mtDNA dynamics [146,179].
In fungi, segregation of mtDNA at cell divisions was reported in the 1970s [180], and the interplay of segre-

gation, recombination, and uniparental inheritance in increasing or stabilising mtDNA variance has been
explored since [181,182]. In yeast, tighter control (i.e. closer to perfect halving than random binomial sampling)
of mtDNA partitioning has been demonstrated [183], limiting but not removing mtDNA variability.
During organismal ageing, and in somatic tissues, the variance of mtDNA populations also increases over

time.2 Re-analysis of data from Ref. [93] shows increasing variance even in tissue-averaged samples in mouse
brain (slow cell turnover) and intestine (fast cell turnover) (Figure 3). Somatic, tissue-specific increases in het-
eroplasmy variance have been inferred during human embryogenesis using a powerful population phylogenetic
approach [172]. In the mouse germline, we recently showed that cell-to-cell variance continues to increase as
mothers age [123]. This observation supports theoretical modelling [48] and re-analysis of earlier results from
fly [102] and mouse [166] (in Ref. [48]).
In humans, increasing heteroplasmy variance — via the mtDNA bottleneck and other processes — has the

effect of complicating clinical planning for inherited diseases, because the mutant load inherited by a given
child is a random variable. The increase in heteroplasmy variance between generations is different for different
mtDNA mutations [184]. A striking example is the fast shifts towards homoplasmy for 8993T.C/G mutations
compared with the slower increase in variance associated with 3243A.G [120,184]. In human cell lines har-
bouring the 3243A.G mutation, a variety of outcomes exists, reflecting either direction of drift or comparative
stability, perhaps modulated by nuclear genes [185,186].

Mutations and intercellular transfer
While not a focus of this mini review, we briefly note that the appearance and physiological influence of de
novo mutations in evolving mtDNA populations has been a matter of some debate. Redox imbalance is
hypothesised to be an important source of DNA damage [187,188]. However, the link between mitochondrial
redox activity and mutation is not uncontroversial. In some experiments, more severe oxidative damage did not
dramatically influence mtDNA mutation rates [189], and mtDNA mutational profiles suggest that other

1When discussing ‘the bottleneck’ it is important to be clear about which process is being referred to. The ‘genetic bottleneck’ is a model describing
how much heteroplasmy variance is generated over a given period, but it corresponds to an ‘effective’ quantity that does not reflect a given observable
number of mtDNA molecules [48,79]. There is also a ‘physical bottleneck’, a specific observable depletion of mtDNA copy number, that contributes to,
but is not identical to, the genetic bottleneck.
2Here, we avoid the term ‘genetic bottleneck’ because of its aforementioned potential confusion with mtDNA population size reduction.
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sources like replication errors may be more important [190,191]. Regardless of generative mechanism, in
humans, de novo point mutations are a common cause of mtDNA disease [192].
To dissect the role of mtDNA mutations in physiology, the elegant ‘mutator mouse’ system has been devel-

oped, where defective mtDNA polymerase leads to the accumulation of mtDNA mutations over time [193].
These mice show severe phenotypes reminiscent of ageing [193], though the inference that these phenotypes
provide a causative link between mtDNA mutations and ageing has been debated [194].
Another way in which cellular mtDNA populations can change is through the ‘immigration’ of mitochondria

from external sources. Horizontal transfer of mitochondria between cells has been reported in a variety of
(often pathological) circumstances, and through a range of mechanisms including tunnelling nanotubes, extra-
cellular vesicles, gap junctions, and cell fusion (reviewed in [195–197]). Several studies have shown that, in cells
lacking mtDNA, external acquisition of mtDNA rescues depleted respiratory function and tumorigenic poten-
tial [198,199]. In accordance with stochastic theory [57,58], this external ‘immigration’ of mtDNA can stabilise
heteroplasmy distributions that may otherwise be unstable [200].

Theory
The analogy of organisms in an ecosystem translates through to several ideas from population genetics that
have been used to describe the dynamics of mtDNA populations. Approaches from statistical genetics (i.e.
focussing on summary statistics of populations) [76,201,202], stochastic modelling (i.e. considering the influ-
ence of random processes on populations of molecules) [45,47,48,58,146,160,179], and simulation (i.e. compu-
tational representation of mixed or spatially distributed molecules) [203–206] have been proposed and recently
reviewed in ref. [207]. A theory has been proposed describing the stochastic behaviour of general physical orga-
nelles [208] and associated steady-state [77] and time-dependent [58] distributions have been calculated.
Stochastic approaches specific to mtDNA have characterised changes in heteroplasmy mean [99] and variance
[123,160], identified the general prediction that heteroplasmy variance increases linearly with time and mtDNA

Figure 3. Changes in heteroplasmy mean and cell-to-cell variance in germline and somatic tissues.

Mouse models consisting of wild-derived mtDNA haplotypes in cellular admixture with the C57Bl/6N haplotype have recently

demonstrated diverse mtDNA behaviour [93,123]. Here, HB and LE are two different mouse models, consisting of an admixture

of wild-derived mtDNA (either haplotype HB or LE, referring, respectively, to Hohenberg and Lehsten, the localities where the

original wild mice were captured) with C57BL/6N mtDNA. (A) The HB model shows an overall germline mean shift manifest by

an increase in oocyte mutant load and an overcompensatory decrease in pup mutant load, followed by the somatic selection

that shows tissue-specific variation in direction. The LE model, like other mouse models, shows little overall germline shift but

does show an inverted decrease in oocyte mutant load matched by a compensatory increase in pup mutant load. LE also

shows tissue-specific selection during development, in different patterns to HB. (B) We generally find an increase in cell-to-cell

mutant load variance over time (i). Even when coupled with a mean decrease in mutant load (ii), an increase in variance can still

lead to threshold crossing. (C) Increasing variance in HB oocytes and pups, from Ref. [123]. The increased spread of mutant

load values over time (sketched in shaded regions) leads to oocytes and pups from older mothers (with comparable initial

heteroplasmies, red stars) crossing thresholds. (D) Increasing mtDNA heteroplasmy variance in many-cell samples from the

brain (low cell turnover) and intestine (high cell turnover) from Ref. [93].
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turnover [48], described the capacity for cellular control on mtDNA [48,209], elucidated recombination dynam-
ics in plants [146,179], revealed links between physical and genetic mitochondrial dynamics [203–205,207],
and dissected variability arising from natural and experimental sources [158,206].
Some straightforward insights from this body of theory can help increase the power and reliability of studies

on heteroplasmy. First, it must be remembered that the analysis of percentage point differences in mutant load
(e.g. labelling a change of 50% to 60% as 10 percentage points) has several limitations when analysing mtDNA
data. Under the same selective pressure, the mutant load will change by different amounts depending on its
initial value (for example, a change of 10 percentage points from 50 to 60% is very possible, but a change from
95% to 105% is not). Heteroplasmy changes across samples with different starting values are therefore not
immediately comparable. Mathematical theory motivates a simple transformation [48,99], reflecting the differ-
ence in fitness between two mtDNA types [94,101], that accounts for this and allows heteroplasmy readings at
different levels to be compared:

bt ¼ ln
hðh0 � 1Þ
h0ðh� 1Þ

� �
; (1)

where h is an observed ‘final’ mutant load, h0 is a reference ‘initial’ mutant load, and t (if known) is the time
between these measurements. bt reflects a selective difference b acting over a time t, arising from the mathem-
atical prediction that mean mutant load will evolve through sigmoidal dynamics according to:

EðhÞ ¼ 1

1þ 1� h0
h0

e�bt

(2):

This representation fails in homoplasmic situations (h ¼ 0 or h ¼ 1); including homoplasmy requires a more
detailed distributional picture (see below).
Predictions of heteroplasmy variance are challenging in the face of selection. For neutral mtDNA evolution

and no cell divisions, a detailed, stochastic, microscopic model of mtDNA dynamics predicts that cell-to-cell
mutant load variance VðhÞ (linked to the widths of the distributions in Fig. 2) increases linearly with time t [48]:

VðhÞ/ h0ð1� h0Þ2ntN ; (3)

where n is the rate of mtDNA turnover and N the size of the cellular mtDNA population. The constant of pro-
portionality is predicted in recent work to be f , the fraction of fragmented mitochondria (i.e. those subject to deg-
radation) [50]. Variance increase due to cell divisions [210] can also readily be included via an additional term in
equation (3) [48]. This linear increase in VðhÞ is compatible with our recent experimental observations above
[123,160]. Previous work often uses expressions including VðhÞ ¼ hð1� h0Þ=Neff or VðhÞ ¼ hð1� h0Þð1� bÞ to
define an effective ‘bottleneck parameter’ b [76] or ‘bottleneck size’ Neff (found in several studies based on a bino-
mial sampling model of the bottleneck). Equation 3 allows us to start linking these effective quantities (which, as
above, do not directly correspond to observable numbers of molecules) to real biological measurements n; f ; t,
and N .
Under neutral conditions (no systematic selection), the Kimura distribution has been proposed as a model

for cell-to-cell distributions of mutant load [76]. This has advantages over normal and binomial alternatives,
although it must be remembered that a fit to a Kimura distribution does not necessarily provide evidence
against selection: an mtDNA population where the mean heteroplasmy has changed over time may still
conform to a Kimura distribution. A truncated Kimura distribution has been proposed to include one mode of
selection in distributional calculations, by disallowing mutant load values above a given cutoff [121]. The full
distributional solutions for mtDNA populations that may be under selection, undergo cell divisions, and sys-
tematically change population size through a physical bottleneck have been derived [160], though as these are
complex, a more heuristic combination of a truncated normal distribution accounting for homoplasmy has
been heuristically used [160].
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Another branch of mtDNA modelling has addressed evolutionary questions, including the interplay between
mtDNA and the evolution of sex [211] and uniparental inheritance [212], recombination strategies
[146,179,213], and the emergence of a distinct germline [214]. We recently used a modelling approach to
reveal the features governing mtDNA gene loss across life [10] and to propose a hypothesis for the differences
between plant and animal mtDNA structure and dynamics based on the immobility of plants [7].

Conclusions
This mini review has argued that both mean and cell-to-cell variance, and ideally full distributions, of mtDNA
mutant load are important to understand both for basic science and clinical planning. Heteroplasmy variance
can lead to pathological thresholds being exceeded even for populations with lower mean mutant load and pro-
vides an important source of cell heterogeneity both within and between generations. Ongoing progress in
characterising the processes that affect the cell-to-cell variance of mtDNA populations is highly desirable.
The expansion of available animal models, in conjunction with developing theory, is increasing our knowl-

edge of the diverse ways that mtDNA populations change over time. One recent example is coupled experimen-
tal evidence [123] and theoretical support [48,50] for a linear increase in heteroplasmy variance over time
during ageing.
An expansion of theory that is able to describe the mean and variance (and distributional details) of mtDNA

populations under selection will improve our ability to characterise mtDNA populations. Currently, several
common analytical approaches are not robust to even small selective differences. The field will in future benefit
from an expansion of the available mtDNA pairings that can be considered in biological models, which will
increase our ability to identify and verify the genetic features governing these biologically and medically import-
ant shifts in mtDNA population structure.

Perspectives

• Evolving mtDNA populations within cells are vital across eukaryotic life, from plants and fungi
to humans. How they change with time underlies fundamental biology and translational bio-
energetics, from inherited diseases to crop sterility. Nonlinear links between mutant load and
cellular phenotype mean that it is important to understand both the cell-to-cell mean and vari-
ance (and ideally the full distributions) of mtDNA populations.

• Model organisms and increasingly high-resolution technology provide valuable insight into the
dynamics of mtDNA populations, but many mechanistic questions remain. This is particularly
true in non-mammalian organisms, where mtDNA dynamics can be much more complex (for
example, mtDNA recombination in plants). The organism-, tissue-, sequence-, and time-
dependent features that cause changes in mtDNA population structure remain poorly
understood.

• More diverse biological models, in tandem with more developed quantitative theory, will in
future help to reveal the mechanisms shaping these essential populations.
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