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Abstract

The work in this thesis is a part of a strategic work at the Institute of Marine Research,
which aims to develop a variety of methods to be used in investigating potential

endocrine disruption in Atlantic cod (Gadus morhua).

Produced water, a by-product of offshore oil production, contains significant amounts
of alkylphenols (APs). Many studies have shown that long-chain para-substituated APs
cause endocrine disruption in freshwater fish, but relatively little is currently known
about their long-term effects on the biology of marine fish. Here we describe the
results from two experiments studing in detail the effects of some APs present in
produced water on the reproductive potential of first-time spawning Atlantic cod.
Groups of cod were fed pastes containing four APs (4-tert-butylphenol, 4-n-
pentylphenol, 4-n-hexylphenol and 4-n-heptylphenol), at different concentrations for
either 4 months (experiment 1) or 5 weeks (experiment 2). AP-exposed fish were
compared to unexposed fish and to fish fed paste containing natural estrogen (17 B-
estradiol). The results of the present study suggest that multiple mechanisms underlie
the responses in the AP treated cod. The exposure to APs influences the plasma
concentration of several male and female sex hormones and the egg yolk precursor
protein, vitellogenin, in Atlantic cod. This study also shows that AP-exposure down to
20 pg/kg body burden interferes with the maturation of the sex organs, and that this
effect is likely caused by disruption of the sex hormone system. There were also found
effects of the AP treatment on the hepatic P450 systems (CYP1A and CYP3A) as well
as glutathione, glutathione-related enzymes and changes in the lipid composition in

liver and brain membranes.

Even though the concentrations used in our experiments are higher than may be
reasonably expected as the result of oil production alone, measurements of actual AP
levels in the sea indicate that APs may still be a significant risk factor in the marine

environment.
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1. Introduction

1.1 Background

There is need for more knowledge of the effects on the marine environment due to
discharges to the sea from the offshore oil and gas industry. Norway is currently in a
period where discharges of produced water from the petroleum sector are increasing
rapidly as the oil fields ages. Produced water is defined as the water that comes up
with oil and gas from sea bed reservoirs, separated on the platform from the oil and
discharged into the sea. In 2004 it was estimated that 143 million m* of produced
water was released (OLF, 2005). The prognoses show that the increasing trend will
continue until 2011, and the discharges may reach 180 million m® a year before it starts
to decline. More knowledge of the long-term effects on the marine environment are
essential for the authorities to ensure a healthy development of this sector and to
coordinate the exploitation of Norwegian oil and gas reserves with other uses of the
marine environment. A central aspect of this is that the total impact on the marine
environment must not lead to changes in biological diversity or in the marine
ecosystem.

In 1997, the Institute of Marine Research started the project “The hormonal effects of
alkylphenols on cod (Gadus morhua)” that aimed to clarify potential harmful effects of
alkylphenols (APs) on cod. Significant quantities of APs are released into the sea by
petroleum installations as a result of discharges of produced water. It has been shown
that APs may have estrogenic (feminising) effects on fish and animals, resulting in
reproductive disturbances. The question was whether cod, Norway’s most important
commercially fished species, might be similarly affected. Experiments with long-term
exposure of cod by environmental relevant doses of selected APs were therefore

carried out.
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1.2 Brief overview of the endocrine regulation of fish
reproduction

The endocrine system plays a essential role for a successful reproduction, and is
involved in multiple reproductive functions in vertebrates, like: sex differentiation and
development of sexual organs, initiation of puberty, development of secondary sexual

characteristics, sexually behavior and controlling the reproductive cycles.

There are more than 24000 different fish species and between these there are large
variety both in mechanism of sex determination and reproductive physiology (Nelson,
1994). In thise thesis, the focus will be on gonochoristic teleosts, like cod
(gonochoristic: species with separate sexes, the male and female reproductive organs
being in different individuals, as opposed to hermaphroditic, gynogenetic, and

hybridogenetic).
Sex determination and sex differentiation.

Sex determination and sex differentiation are defined as two different, but closely
connected processes (reviewed in Devlin and Nagahama, 2002). The sex determination
is the primary control (often predetermined genetically at fertilization) that leads to sex
differentiation, the development and expression of the male or female phenotypes
(development of testis or ovary). In fish embryos, the germ cells are only present as
undifferentiated primordial germ cells (PGCs) and are similar for both sexes, and will
later differentiate into oogonia (females) or spermatogoina (Males). Sex differentiation
takes first place after hacthing, but there are large differences between species where in
the larvae development this takes place. However, it appears to be common that there
are a relative short “critical period” where the fish larvae is especially sensitive for the
hormonal signals that initiate cell differentiation of PGC and somatic gonadal cells.
The endocrine regulation of sex differentiation is not completely understood, but it
involves a complex interplay between the brain and gonad and it is clear that sex
steroid plays a very important role. Steroid producing enzymes (chapter 1.3) can be

detected prior to sex differentiation and especially aromatase, the enzyme responsible
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of the last steep in the estrogen synthesis, is found present in the brain (of both sexes)
and the gonad (for females) in the time of sex differentiation (Devlin and Nagahama,
2002). Since the appearance of steroid synthesizing cells requires cells differentiation,
it is unlikely that the steroids themselves are the primary factors involved in
determination of sex (“who came first the hen or the egg”?). Nevertheless, steroid
production is very closely correlated with early steps of gonadal differentiation. This is
clearly showed by the adverse affect on sex differentiation that can be caused by
interfering with the steroid balances. For example, inhibition of estrogen synthesis in
early development using aromatase inhibitors can cause masculinization while

treatment with exogenous estrogen can cause feminization in many fish species.

The essential role of steroid hormone makes the sex differentiation event vulnerable

for endocrine disruption as will bediscussed later in the thesis.

Puberty.

Puberty is the development that brings an immature juvenile to a mature adult
reproductive system (Schulz and Goos, 1999). The timing of puberty is in addition to
genetic factors also controlled by a variety of external stimuli like photoperiod, water
temperature and availability of food. The pubertal maturation is synchronized via the
brain-pituitary-gonadal (BPG) axis, and the onset of puberty starts with stimulation of
the synthesis of the neuroendocrine decapeptide gonadotropins-releasing hormones
(GnRH) in the brain (Welzien et al., 2004; Whitlock et al., 2006). These do in turn
control the secretion of gonadotropins (GTH) from the pituitary (follicle-stimulating
hormone (FSH) and luteinising hormone (LH)). The GTHs are heterdimeric
glycoproteins, consisting of a common glycoprotein a-subunit and a hormone-specific
B-subunit. The GTHs are transported by the blood to the gonads and binds to specific
membranes reseptors on the gonadal somatic celles, Leydig and Sertoli cells in testis
and thecal and granulosa cells in the ovary. The GTHs stimulate the maturation of the

gonads and cause these to produce sex steroid hormones, 17 B-estradiol (E2) and
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testosterone (T) in female fish; T and 11-ketotestosterone (11KT) in males. Sex
steroids have important feedback effects on secretions of hormones from the pituitary
and the brain, but are also required in the gonads for germ cell maturation (for details,
see (Baroiller et al., 1999; Nagahama, 2000)). Puberty is the first step into oogenesis

and spermatogenesis.

Oogenesis

After sex differentiation at larvae stages, the oogonia increase in numbers in the
gonads through mitotic proliferation. Oogenesis begins at puberty, when a portion of
the oogonia entry into meiosis and becomes primary oocytes. The meiosis is arrested in
diploytene stages of prophases I, and the oocyte stays like that through out the growth
phases, and until final oocyte maturation where the first meiotic division is completed.
The second meiotic division of the oocyte is first completed after fertilization.
Together with the onset of previtellogenic growth the folliculogenesis is started and the
ovarian follicle is formed (figure 1). In the follicle the oocyte is covered with granulosa
cells, which in turn is surrounded by thecal cells. A part of the formation of the follicle
is the zonagenesis. Eggshell proteins, zona radiator proteins (Zrp) are synthesized in
the liver under the influence of E2 and transported to the ovary and incorporated in the
corian around the ooctye. Vitellogenisis is the major growth phases of the oocyte and
account for as much as 90 % of the final egg weight. Vitellogening (VTG) is a
glycophospholipoprotein and the main source of yolk proteins and lipids in the
growing oocyte. VTG is, like Zrp, synthesized in the liver in response to E2 and
transported by the blood and taken up by the oocyte through receptor-mediated
endocytosis (Tyler and Sumter, 1996; Tyler et al., 1999).

The BPG axis plays a central role in regulating the oogenesis by controlling the
synthesis of sex steroids (T and E2) that in turn are stimulating the oocyte growth
(illustrated in figure 3). In the end of vitellogenisis the BPG axis stimulates a shift in

the steroidogenesis of the ovary from synthesizing E2 to produce maturation-inducing
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steroids (MIS), which leads to the breakdown of germinative vesicles, maturation of
the oocyte and ovulation. At least two different steroid hormones have been identified
to induce final maturation in teleost: 17a,20p,-dihydroxy-4-pregnen-3-one (17a,2083-
P) and 17,20B,21-trihydroxy-4-pregnen-3-one (17,208,21-P) (Nagahama, 1997).

Blood vessel

Granulosa-cells

S 23

[] \\ &
-0"" "ln\\\“\\o, g
ApeC
<

Germinal vesicl Y
%) '\"‘1

Zona radia

Fig 1. Diagram of a primer ovarian follicle in fish. The oocyte is covered by zone radiata (also
known as chorion and wich lather becomes the egg shell). The oocyte is closely connected with
granulosa cells by microvilli located in the chorionic pores. The oocyte and granulosa cells are
separated from the surrounding theca cells, blood vessel and fibroblast by a basement membrane.

(Mustration: Stein H. Mortensen, IMR).

Spermatogenesis

During spermatogenesis the male germ cells go through four major phases:

1). Mitotic proliferation, where the Spermatogonial stem cells undergo a specific
number of mitotic cycles, leading to both new stem cells and differentiated
spermatogonia. 2). Meiosis, where the differentiated spermatogonia undergo meiosis
and becomes primary spermatocytes, secondary spermatocytes and finally haploid
spermatides. 3). Spermiogenesis, where spermatides are transformed into flagellated
spermatozoa. 4). Sperm maturation, where nonfunctional spermatozoa develop into

mature spermatozoa (fully capable of motility and fertilization) (Schulz and Miura,
16



2002; Miura and Miura, 2003; Welzien et al., 2004). The germ cells development is
depending on close association with Sertoli cells. Sertoli cells enclosed the germ cells
into so called spermatocyst. Each spermatocyst contains clone of germ cells that all are
in the same stages of development (figure 2). Cell-Cell communication through gap
junctions between Sertoli-Sertoli, Sertoli-germ and germ-germ cells in the
spermatocyst is essential for the spermatogenesis. This junctional complexe does
together with the basement membrane result in a blood-testis barrier, isolating the
germ cells to a Sertoli cell determinated enviroment. The testis lobules are separated by
connective tissue containing fibroblast, blood vessels and Leydig cells.

Sex steroids play an important role several places in the spermatogenesis. E2 is part of
the regulation of spermatogonia renewal, spermatogonial proliferation toward meiosis
1s promoted by 11-KT and sperm maturation is regulated by 170,203-P (MIS) (Miura
and Miura, 2003). Figure 3 gives a simplified schematic diagram of hormone

regulation through the BPG axis.

Lumen Fibroblast

Spermatogonia (1) _ Spermatozoa (4)

Sertoli-cells |/ X
ertoll CE//S“/.{\ .
oL

Fig. 2. Cross-section of testicular lobule with spermatocysts (germ cells surrounded by Sertoli-cells)
containg the different stades of sperm development. The number shows the chronological order in

development. (lllustration: Stein H. Mortensen, IMR).
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Fig. 3. The reproductive system of fish and possible sites of action of contaminants. The brain-
pituitary-gonadal axis is aktivated by external stimuli (like temperature, photoperiod, pheromones,
social behavere, etc) and internal stimuli (biological cloks, nutritional status, etc). The hormonal
system is regulated by a series of complex feedback mechanisms between the organs involved. (Da =
dopamine; GnRH = gonadotropin-releasing hormone; FSH = follicle-stimulating hormone; LH =
luteinising hormone; E2 = 17p-Estradiol; T = testosterone; KT = 11-ketotestosterone; 17,20-5P =
17a, 20p-dihydroxy-4-pregnen-3-one). Black — structures, red — hormones/neurotransmitter, green —
protein, blue — processes.

1.3 Steroid biosynthesis

The steroidogenesis is a complex process converting cholesterol into biological active
steroids. The biosynthesis of steroid hormones is mainly happening in the gonads
(ovaries and testes), the adrenals and the brain (Kime, 1987; Nagahama, 2000;
Schumacher et al., 2003).
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Figure 4 shows the biosynthesis pathways, even though it looks very complex it is only
involving a small numbers of enzymes:

e Desmolase/lyase that cleave the side chain between carbon 20 — 22 (P450scc = P450,,,,) and
carbon 17 — 20 (P450,,).

e Hydroxylases that incorporate hydroxyl groups at different places (P450,,5, P450,,,, P450,,).

e Hydroxysteroid dehydrogenase/oxidoredutase that oxidize hydroxyl-groups into keto-groups
or reducing keto-groups to hydroxyl-groups (3p-HSD, 113-HSD, 17B-HSD, 203-HSD).

e Aromatase that converts androgens into aromatic estrogens (P450,,,,= P450¢,,).

The steroidogenic enzymes are located both in the mitochondria and in the
endoplasmic reticulum and the synthesis involves transport between the different
organelles. The rate-limiting step in the steroidogenesis is the transport of cholesterol
between the outer and inner mitochondria membrane where the P450scc is located and
the first conversion of cholesterol to pregnenolone takes place. Cholesterol cannot
move over the intermembranal space by itself, but is actively transported by the

steroidogenic acute regulatory (StAR) protein (Stocco and Clark, 1996).

In the teleost gonads both the StAR and the steroidogenic enzymes are regulated by the
GTHs (FSH and LH). The seasonal pattern of FSH and LH differ between different
species (Hellgvist et al., 2006), but there are some common mechanisms. In female
fish increasing secretion of GTH from the pituitary glands stimulates increased
synthesis of sex steroids (E2, T) in the gonads. Plasma levels of E2 and T are rising
during vitellogenesis and peaks just before the start of spawning. Changes in the GTH
signal then create a shift in the steroidogenesis by down-regulation of P450,,,,, and up-
regulating 20B8-HSD, leading to a drop in E2 production and a rise in 17a,20B3-P
(inducing final maturation of the oocyte) (Senthilkumaran et al., 2004). Similar
regulation of the steroid synthesis is also seen throughout the spermatogenesis (Schulz
and Miura, 2002). The synthesis of E2 in the ovary is mediated by a two-cell system,
where thecal cells in the outer follicular layer are converting cholesterol into T. T is
secreted from the thecal cells and taken up by the granulosa cells in the inner follicular
layer, where T is aromatized into E2 (Nagahama, 1994). In the testis, all steroid
synthesis occurs in the Leydig cells.
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Fig. 4. Biosynthesis pahtways of steroids in teleosts. Cholesterol is converted to pregnenolone by the
enzyme (1) cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc). The other enzymes
involved in the steroid synthesis are: (2) 3f-hydroxysteroid dehydrogenase (3f-HSD); (3) 17a-
hydroxylase/17,20 lyase (P450,,,); (4) 21-hydroxylase (P450.,),; (5) 11p-hydroxylase (P450,,,); (6)
20B-hydroxysteroid dehydrogenase (20p-HSD), (7) 17p-hydroxysteroid dehydrogenase-oxidoredutase
(17p-HSD); (8) 11p-hydroxysteroid dehydrogenase (115-HSD); (9) aromatase (P450,,,y)-
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1.4 Distribution and reproduction physiology of Atlantic cod

There are a number of separated stocks of Atlantic cod spread all over the north
Atlantic from the coast of Newfoundland Canada/USA in west to the Barents Sea in
east. Atlantic cod is a cold-water species and the southern distribution limit is in the
English Channel (ICES, 2005). The Arcto-Norwegian cod in the Barents Sea is the
largest cod stock in the world and is one of the few stocks that are in reasonably good
conditions. Many of the other cod stocks have experienced a dramatic decline since the
late 1980s, and several stocks have collapsed and have problems recovering (Myers et
al., 1996; Cook et al., 1997; Fu et al., 2001). In the Norwegian part of the Atlantic, the
North Sea cod stock is now at a historically low size (Cook et al., 1997; Rice, 2006).
The main factor of the collapse in the cod stocks is overfishing. However, there are
speculation on whether ecosystem regime shifts, probably driven by climate changes,
can be the reason for the lack of recovery that are observed (Gao, 2002; Beaugrand et
al., 2003; Alheit et al., 2005). This study has been initiated by the question if pollution
and especially endocrine disrupting chemicals (EDC) from the oil industry discharges

play a role in the poor recruitment of the North Sea cod.

The Atlantic cod is an asynchronous batch-spawner. The ovary of the cod contains
therefore ooctyes at many different stages of development through out the oogenesis
and the process of vitellogenesis, final maturation and ovulation are ongoing paralleled
in the spawning period. Large cod can spawn 20 batches of eggs over a period of 6-8
weeks from February to April (Kjesbu et al., 1996). The cod have small eggs and a
very high fecundity. It is normal that large cod spawn more than 2 million eggs. The
cod, as a species (or in local terms, as a stock) has a long spawning season of more
than two months and sometimes as long as three months (Brander, 1993). However, in
UK waters as many as two thirds of the eggs are spawned during a period of four to six
weeks. The spawning season appears to be centred on the period of plankton blooms,
with Calanus finmarchicus as an important species (Brander, 1994). It is important to

ensure that as many eggs as possible will hatch at a time when the availability of food
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and the level of predation are optimal, thus ensuring good larval survival (Ellertsen et

al., 1986; Gotceitas et al., 1996).

The photoperiod is considered the most important factor for the timing of the sexual
maturation of the cod (Norberg et al., 2004). Vitellogenesis starts in October (Kjesbu
and Holm, 1994) but the main oocyte growth phase is in the month just prior to
spawning. As for other teleost species, the oocyte grow by taking up VTG, which is
synthesized in the liver and regulated by E2 (Silversand et al., 1993). The steroid
hormone levels in the plasma reflect well the timing of maturation and spawning of
cod. In female cod, the E2 levels rise from < 1 ng/ml early in the vitellogenesis up to
40 ng/ml prior to spawning. Testosterone follows a similar seasonal fluctuation as E2,
but with lower concentrations (maximum 3-4 ng/ml) (Norberg et al., 2004). Male fish
mature earlier that the females and the males often have testis with running sperm
many weeks before the spawning. The plasma levels of T and 11-KT are strongly

correlated with testis growth (Dahle et al., 2003).

Aquacultured cod mature much earlier than wild fish, and it is normal that farmed cod
are first-time spawners at the age of 2 years due to optimal food conditions (Karlsen et
al., 1995). Wild cod on the other hand mature between 4 and 8 years old (Norwegian

coastal cod and Arcto-Norwegian cod, respectively) (Godo and Moksness, 1987).

1.5 Effects of pollution on reproduction

Aquatic pollution may have severe effects at several different levels in the reproductive
cycle of fish (Kime, 1995). Since the beginning of the 90s there has been a sharp focus
on hormone-disrupting substances. A large number of chemical compounds have been
shown to “resemble” hormones or in other ways to affect the hormonal balance, thus
disturbing natural reproductive processes. Chemicals with “estrogen mimicking”
effects have caused most concern (Reviewed by (Arukwe and Goksoyr, 1998)).
Growing attention is now also paid to other classes of hormones, such as the androgen

system (Kelce and Wilson, 1997; Fang et al., 2003) and the thyroid hormones
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(Oberdorster and Cheek, 2001; Brown et al., 2004). Among the xenobiotics that have
been shown to have estrogen-disrupting effects (whether agonistic or antagonistic) we
find APs, phthalates, bisphenol A, chlorinated hydrocarbons such as polychlorinated
biphenyls (PCBs), dioxins and pesticides such as chlordane, dieldrin, DDT and its
metabolite DDE (Arukwe and Goksoyr, 1998).

The endocrine apparatus is a complex system with many factors and is therefore liable
to suffer disturbances at many levels as described by the general definition of
hormone-disrupting substances, i.e. that they are “exogenous agents that interferes with
the production, release, transport, metabolism, binding, action or elimination of natural

hormones” (Kavlock et al., 1996).

The high degree of “plasticity” in the sexual development of fish results in the
existence of “critical windows” in early life stages. During these periods fish are
particularly sensitive to effects from EDCs. Even brief exposures or exposures to low
concentrations may have important and irreversible consequences. This phenomenon is
actively exploited in aquaculture in order to produce monosex fish cultures. Hormonal
treatment of fish in aquaculture is forbidden in Norway, although it is widely used in
many other countries. Hormonally controlled feminisation of a number of different
species of fish is widely used. This is primarily carried out by treating eggs and/or

larvae with estrogens (Piferrer, 2001).

The sensitivity of early life stages to the effects of estrogen is also reflected in results
from field works. The clearest evidence of hormonal disturbance in wild fish comes
from reports of the feminisation of male fish, with findings of intersex/ovo-testis
gonads (testis that contain morphological characteristics of female fish; i.e.
hermaphroditism) in a number of freshwater fish species (Jobling and Tyler, 2003) and
saltwater fish (Matthiessen, 2003).

The yolk protein VTG is a sensitive biomarker, widely used in studies of the effects of
estrogen mimics in fish. Even though VTG is a protein specific to female fish, males

also possess all of the genetic system needed for VTG protein synthesis. Estrogen
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induces VTG synthesis in the liver of both males and females, and a rise in the level of
VTG can therefore be used as an indication of estrogen influence. Several studies have
found increased VTG levels in wild male fish and in fish kept in cages in polluted
areas. Most of these studies have been done on freshwater fish (Jobling and Tyler,
2003). Abnormally high levels of VTG have also been found in saltwater fish: flounder
(Platichthys flesus) caught off the British coast (Allen et al., 1999a; Allen et al., 1999b;
Lye et al.,, 1997; Kirby et al.,, 2004; Kleinkauf et al., 2004) and near offshore
installations in the UK sector of the North Sea (Matthiessen et al., 1998), flounder
(Pleuronectes yokohamae) and goby (Acanthogobius flavimanus) caught in coastal
areas around Japan (Hashimoto et al., 2000, Ohkubo et al., 2003), swordfish (Xiphias
gladius) and red mullet (Mullus barbatus) in the Mediterranean (De Metrio et al.,
2003; Fossi et al., 2004; Martin-Skilton et al., 2006b) and cod from the North Sea
(Scott et al., 2006).

Unlike the great deal of interest that has been shown in estrogenic effects and
feminisation of male fish, there are only a few reports of masculinizing effects on
females. It is known that eels (Anguilla anguilla) are particularly sensitive to early
exposure to environmental hormones, and it has been suggested that the high
proportion of male eels that are found in European rivers is due to environmental
factors (Beullens et al., 1997). It has also been shown that discharges of wastewater
from papermills can contain substances with androgenic or anti-estrogenic effects
(Bortone et al., 1989; Bortone and Cody, 1999; Bortone and Davis, 1994; Karels et al.,
1999; Hegrenes, 1999; Larsson et al., 2000).

A few laboratory studies have shown that certain environmental toxins may interact
with receptors for maturation-stimulating hormones, but there are no data from field
studies that confirm this (Thomas et al., 1998; Das and Thomas, 1999; Thomas, 2000;
Tokumoto et al., 2005). Similarly, there is little information in the literature regarding
disruptions of the thyroid hormones in fish (Oberdorster and Cheek, 2001; Zhou et al.,
2000; Brown et al., 2004).
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In spite of the relative comprehensive list of field studies given above a, most of the
evidence for hormonal disturbances caused by hormone mimics is the result of
laboratory studies. There has been some criticism of the fact that many of these studies
have been carried out using unrealistically high concentrations in comparison with the
concentrations that are actually found in nature (Cooper and Kavlock, 1997;
Oberdorster and Cheek, 2001; Tyler et al., 1998). More field studies, and lower more
realistic concentrations in the laboratory studies, as well as a sharper focus on long-

term effects have been called for.

1.6 Alkylphenols in the aquatic environment.

Most of the research in this field has dealt with the two long-chain APs nonylphenol
(NP) and octylphenol (OP). These are derivatives of degradation products of the non-
ionic surfactants known as alkylphenol ethoxylates (APE). APE consist of an
alkylphenol group, principally NP (82%) but also OP or dodecylphenol, coupled to
long ethylene oxide chains (see (Nimrod and Benson, 1996b)). APE is and has been
utilised in a large number of products, including herbicides, paint and industrial
cleaning and degreasing agents (Naylor et al., 1992). APE is one of the most widely
used surfactants in the world, with an annual production of around 500,000 tons
(Renner, 1997). In Norway, the use of APE has been very limited, and has fallen
significantly during the 90s, from 615 tons in 1995 to 113 tons in 2000 (www.SFT.no,
2001). The use of NP, OP and their APEs has been forbidden in Norway since January
2002 (www.miljoverndepartementet.no, 2001). The EuropeanUnion is also planning to

forbid the use of these substances (Directive 2003-53-EC, 2003). The APE and APs

are on the Oslo-Paris Commission’s (OSPAR) list of toxic chemicals, which ought to

be phased out.

The long-chain APEs have low toxicity and have no hormone-mimicking effects.
However, they are broken down gradually and relatively rapidly in waste-treatment

plants into the more resistant alkylphenol mono- and di-ethoxylates AP1E and AP2E
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and the short-chain carboxylic acid derivatives (the alkylphenol carboxylates AP1EC
and AP2EC). These are in turn partly broken down into pure APs (Nimrod and
Benson, 1996b). A large proportion of these degradation products finally end up in the
aquatic environment. There have been concern about AP in environment for more than
two decades (McLeese et al., 1981; Giger et al., 1984; Waldock and Thain, 1986), but
the research and monitoring of AP was intensified in middle of the 1990es. NP and OP
have now been found in a large number of freshwater systems all over the world, in
water concentrations of up to 644 pg/l in particularly highly polluted areas, but with
typical values from ng/1 to the low pg/l range. In sediment, concentrations are found up

to 60 mg/kg (Ying et al., 2002).

The APs are transported by the rivers and eventually ends up in the marine
environment. Measurements of seawater from coastal areas near cities and river
estuaries have shown concentrations of up to 9 pg/l (table 1), while values from
sediment samples can be as high as 15 mg/kg at exposed sites (table 2). The effuents
from the great rivers are the main sources of AP into the oceans (Heemken et al., 2001;
Stachel et al., 2003; Jonkers et al., 2005a). However, NP, OP and their APE have been
found in atmospheric samples (Dachs et al., 1999; VanRy et al., 2000; Cincinelli et al.,
2003; Berkner et al., 2004; Xie et al., 2006). It is therefore also possible that air-sea
exchanges contribute to distribution of AP into the sea (Xie et al., 2006). The
concentrations of APs in the open sea are, as one should expect, much lower than in
coastal areas. Kannan et al. (1998) found very low levels of NP in the Sea of Japan
(0.002 - 0.093 ng/l), while measurement from the North Sea showed significantly
higher values. In samples from the German Bight, NP and OP concentrations were
found between 0.09 - 4.4 ng/l and 0.013-0.3 ng/l respectively (Bester et al., 2001;
Heemken et al., 2001; Xie et al., 2006). In sediment, sampled more than 100 km
offshore, concentrations up to 13 ug/kg NP were found (Bester et al., 2001). The
concentration of NP in water from the Dutch coastal zone was found to be as high as

1700 ng/l (median concentration 77 ng/l) (Jonkers et al., 2005b).

26



In addition to the long-chain OP and NP, there are a number of other APs that are used
in industrial chemicals and also found in the environment (Remberger et al., 2003).
2,6-Di-tert-butyl-4-methylphenol (butylated hydroxytoluene = BHT) is a commonly
used antioxidant and stabiliser in large groups of products. BHT is found in river water
in concentrations up to 365 ng/l (Kolpin et al., 2002; Fries and Puttmann, 2004) and in
marine sediments around the coast of UK in concentrations up to 90 pg/kg (CEFAS,
2006). 4-tert-butylphenol (4-tert-BP) are widely used in paint, plastics, rubber and glue
industry and is found in rivers and coastal areas in both water (up to 2300 ng/l) and
sediments (up to 3.2 mg/kg) (Heemken et al., 2001; Kannan et al., 2001; Inoue et al.,
2002; Remberger et al., 2003; Uguz et al., 2003; Basheer et al., 2004; Brossa et al.,
2004; Kawaguchi et al., 2004; Koh et al.,, 2006). Other long-chain APs, 4-n-
pentylphenol (4-n-PP); 4-n-hexylphenol (4-n-HexP) and 4-n-heptylphenol (4-n-HepP)
are reported found in Japanese rivers (30-80 ng/l) (Inoue et al., 2002), coastal waters
from Singapore (10-2920 ng/l) (Basheer et al., 2004) and 4-n-PP are found in the North

Sea in concentration up to 8 ng/l (Heemken et al., 2001).

APs are fully biologically degradable in water, but the degradation rate falls rapidly
with increasing chain length. Brendehaug et al. (1992) measured the biological
degradation of phenols in produced water diluted in seawater, and found that phenol
and cresol (methylphenol) degraded very rapidly (only 0.1% remaining after one
week), on the other hand, did 33% of the initial concentration of HexP and 60% of
HepP still remained after one month (Brendehaug et al., 1992). NP also shows
relatively high resistance to biodegradation. In lake water only 9 % was lost by
microbial activity in a 57 days experiment (Lalah et al., 2003). Another study of the
degradation of NP in seawater indicated a very slow rate at the beginning of the study
(0.06% per day), but that the degradation rate increased rapidly after 28 days to 1% per
day. This suggests that the microorganisms in the seawater adapt to NP as a substrate
after a while. After 58 days, 50% of the original quantity of NP was still in the water
(Ekelund et al., 1993).
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APs have high capability of sorption to colloidal particles (Johnson et al., 1998) and
the primary sink for NP is the sediments. Ahel et al., (1994) found that sediment
concentrations were up to 5100 times higher than the concentrations in river water. In
addition to high sedimentation rates it is also important that the degradation rate can be
very low in surface sediments (Lalah et al., 2003). In anaerobic conditions deeper in
the sediment core, the degradation is extremely slow and analysis of sediments cores
can give information of the historical discharges of AP (Shang et al., 1999b; Isobe et
al., 2001; Hashimoto et al., 2005; Heim et al., 2006; Koh et al., 2006). Profiling the
NP distributions in sediment cores from Tokyo Bay showed a maximum of NP in the
layer deposited around the mid-1970s (Isobe et al., 2001, Hashimoto et al., 2005).
Similarly maximum NP concentrations were found in 1972 sediment cores from
Venice Lagoon, Italy (Marcomini et al., 2000). Also in Yeongil Bay, Korea, was the
highest sendiment concentrations found in sediment cores from 1971-1980 (Koh et al.,
2006). This kind of investigation can track sedimentation of NP all the way back to
1920s in Venice Lagoon, Italy (Marcomini et al., 2000) and 1950s in Tokyo Bay
(Isobe et al., 2001).

It is clear that APs (especially NP and OP) are widely distributed in the aquatic
enviroment. Analyses of sediment cores from different time periodss show a declining
trend in NP concentrations, indicating that the discharges to the enviroment are
decreasing. Because APs are biodegradable, the potential environmental problems
caused by these substances can disappear in a relatively short time when (if) the
production and use of APEs are phased out. There are big differences in the view on
AP legislation around the world, the European Union wants to reduce and ban the use
of these substances (Directive 2003-53-EC, 2003; OSPAR Commission, 2004), while
APE:s are still widely used in the USA (Renner, 1997). Increasing use in Asia is also

causing concern (Zhou et al., 2003).
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Table 1. Concentration of NP and OP (ng/l) in marine and estuarine waters around the World.

Location NP OP Reference

Venice lagoon, Italy 200 (Marcomini et al., 1989)
Krka River estuary, Croatia <20-1200 (Kvestak and Ahel, 1994)
Tyne and Tees estuaries, UK <80-5200 <100-1300  (Blackburn and Waldock, 1995)
Sea of Japan 0.002 - 0.093 (Kannan et al., 1998)
Tyne and Tees estuaries, UK 30-9050 2-340 (Lye et al., 1999)
Shipyards in Virginia, USA 1.0-6300 (Hale et al., 2000)
North Sea, Germany 1-33 (Bester et al., 2001)
Jamaica Bay, USA 77-416 1.6-8.3 (Ferguson et al., 2001)
North Sea, Germany 0.3-84 0.1-16 (Heemken et al., 2001)
The coast of Spain 150-4100 (Petrovic et al., 2002b)
Tokyo Bay, Japan 10-100 (Hando et al., 2003)
The coast of China 1-10 (Hando et al., 2003)

San Francisco estuary, USA <0.25-4 (Oros et al., 2003)
Costal water from Singapore 200-2760 10-540 (Basheer et al., 2004)
Coastal area, Okinawa and Ishigaki Islands, Japan <50-150 (Kawahata et al., 2004)
Tokyo Bay, Japan 0.5-104 (Hashimoto et al., 2005)
Baltic Sea, Germany 2.5-13.8 0.4-0.95 (Beck et al., 2005)
Scheldt and Rhine estuaries, Holland 12-962 (Jonkers et al., 2005a)
North Sea, Holland 31-1700 (Jonkers et al., 2005b)
Ariake sea, Japan 11-49 (Kim et al., 2005)
Saemangeum Bay, Korea 7-298 (Li et al., 2005)

North Sea, Germany 0.09-1.4 0.013-0.3  (Xie etal., 2006)

Table 2. Concentration of NP and OP (ug/kg dry weight) in marine surface sediments around the

world.

Location NP OP Reference

Barcelona, Spain 6-70 (Chalaux et al., 1994)
Nile estuary, Egypt 19-44 (Chalaux et al., 1994)
10 estruaries, UK <100-15000 (Blackburn et al., 1999)
Masam Bay, Korea 113-3890 (Khim et al., 1999)
Tyne and Tees estuaries, UK 30-9050 2-340 (Lye et al., 1999)

Strait of Georgia, British Columbia, Canada 280-320 (Shang et al., 1999a)
Jamaica Bay, USA 7-13700 <2-45 (Ferguson et al., 2001)
Shipyards in Virginia, USA 0.5-14100 (Hale et al., 2000)
Tokyo Bay, Japan 30-13000 3-670 (Isobe et al., 2001)
North Sea, Germany <10-153 (Bester et al., 2001)
Elbe estuary, Germany 370-480 (Heemken et al., 2001)
The coast of Spain 8-1050 (Petrovic et al., 2002b)
Delaware river estuary, USA 0.14-13 (Ashley et al., 2003)
Coastal area, Okinawa and Ishigaki Islands, Japan <5-44 (Kawahata et al., 2004)
Urdaibai estuary, Spain 140-1100 (Bartolome et al., 2005)
Pearl River estuary and South China Sea, China 59-571 1-18 (Chen et al., 2005)
Scheldt and Rhine estuaries, Holland 3-1026 (Jonkers et al., 2005a)
North Sea, Holland 0.3-86 (Jonkers et al., 2005b)
Tokyo Bay, Japan 2-4560 (Hashimoto et al., 2005)
Bohai Bay, Japan 203 (Hu et al., 2005)
Southern California bight, USA 122-3200 <2-8 (Schlenk et al., 2005)
The coast of UK <10-5888 <10-530 (CEFAS, 2006)
Yeongil Bay, Korea 2-1430 <1-24 (Koh et al., 2006)
Odense fjord, Denmark 800-3300 (Madsen et al., 2006)
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1.7 Alkylphenols and offshore oil and gas production

Historically, large quantities of APE have been used in offshore petroleum production,
both as detergents for platform washing purposes and as additives in the production
process. Blackburn et al., (1999) suggest that discharges on the British continental
shelf may have been as much as 100 tons a year per platform. NP and NPE are found
in high concentrations (up to 68 mg/kg) in the sediments around North Sea platforms
(CEFAS, 2005, Jonkers et al., 2005b). The use of APE is now forbidden in the
Norwegian sector of the North Sea (letter from SFT to all operators on the Norwegian
shelf, dated 31.08.98). The Danish and UK authorities are also working on phasing out
APE in their sectors of the North Sea (Lye, 2000).

In addition to being degradation products of the APEs, APs are natural components of
crude oil (Ioppolo-Armanios et al., 1992, loppolo-Armanios et al., 1995, Taylor et al.,
1997, Rolfes and Andersson, 2001, Bastow et al., 2005). As a result of their solubility
in water, a high proportion of APs will be found in the aqueous phase after water/oil
separation and discharged into the sea with the produced water. The APs are typically
found in concentrations of 0.6 - 10.0 mg/l in produced water. About 80 % of the total
amount consists of the most water-soluble APs (phenol and cresol). Of the remaining
components, the higher APs from BP - to HepP occur in low concentrations of 0.07 -
237 ng/l (Grahl-Nielsen, 1987; Brendehaug et al., 1992; Ree and Johnsen, 1996;
Boitsov et al., 2004).

It is showed that produced water contains estrogen receptor agonists and APs have
been identified to be the major contributor to this effect (Thomas et al., 2004a; Thomas
et al., 2004b; Tollefsen et al., 2006). In vitro screening have found estrogen equivalents
form <0.03 — 91 ng E2 /1 in produced water from different installations in the UK
sector of the North Sea (Thomas et al., 2004a).

Very little is known about the fate of these substances in the marine offshore

environment. There are no empirical data on concentrations of long-chain APs in the



sea around North Sea offshore installations. One study showed that phenol and
lighter APs (C1-C4) occur at the concentrations of 486 and 140 ng/l, respectively
(Riksheim and Johnsen, 1994). The discharges of produced water from the Norwegian
petroleum sector are continuously increasing with the age of the oil fields, and were in
2004 143 million m®. In 2004, approximately 13 tons of long-chain (>C,) APs were
released from installations on the Norwegian continental shelf in connection with

discharge of produced water (OLF, 2005).

1.8 Bioconcentration of alkylphenols

NP and OP are both bioconcentrated and have been identified in aquatic organisms in
nature. Ahel et al. (1993) found concentrations of NP of up to 1600 pg/kg (dry weight)
in various freshwater fish in Swiss rivers. NP has been found in carp (Cyprinus carpio)
caught in Lake Mead, Nevada (up to 184 pg/kg) (Snyder et al., 2001a) and in
Cuyahoga River, Ohio (32-920 ng/kg) (Rice et al., 2003). Fish from various lakes in
Michigan, USA had tissue concentrations of <3.3 to 29.1 pg/kg NP (Keith et al.,
2001). Fish from Japanese rivers have been shown to contain from 1 - 110 pg/kg NP
(Tsuda et al., 2000b) and similar concentrations are also found in periphytons, 8-130
png/kg NP and benthos, 8-140 pg/kg NP (Takahashi et al., 2003). Lower levels NP
were found in fish from Chinese rivers (up to 2 pg/kg) (Shao et al., 2005). Breams
(Abramis Brama) caught in German rivers contain up to 130 pg/kg NP (Klein et al.,
2005). Retrospective monitoring of APs in aquatic biota (from the German
Environmental Specimen Bank) from 1985 to 2001 shows a decrease of NP
concentration in biota from all sampling sites after 1997, the NP content in mussels
from the German Bight dropped from 4 pg/kg in 1985 to 1.1 pg/kg in 1995 (Gunther et
al., 2001; Wenzel et al., 2004). Wahlberg et al., (1990) found between 200 and 400
ng/kg NP in mussels gathered from the sea near the wastewater outlet of a Swedish
plant that produced APE. Molluscs, crustaceans and fish from the Adriatic Sea, Italy,
contained 9.5-1431 pg/kg NP and 0.3-4.3 pg/kg OP (Ferrara et al., 2001; Ferrara et al.,
2005). NP and OP were found in the bile of red mullet from the Franch coast of the
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Mediterranean Sea (Martin-Skilton et al., 2006b). Flounders caught in brackish water
outside the rivers Tyne and Tees in England have been shown to contain 5 - 118 ng/kg
NP (Lye et al., 1999). NP was not found (above a detection threshold of 100 pg/kg) in
fish caught in the British offshore sector of the North Sea (Blackburn et al., 1999).
Apart from one special case in the Detroit River in the USA, where large amounts of
2,4 di-tert-pentylphenol were found (Shiraishi et al., 1989), all the studies of APs of
which we are aware of concerned OP and NP. We have found no field studies that

have analysed petroleum-related APs.

APs are a highly diverse group of substances in terms of their physico-chemical
properties. The water solubility of phenol and the short-chain APs are high, but falls
drastically with increasing chain length and therefore increasing hydrophobicity. Table
3 presents an overview of three important physico-chemical properties of importance
for the behavior of these substances in the environment, aqueous solubility, the
logarithm of the water/octanol partitition coefficient (K,,) and the bioconcentration
factor (BCF). A number of studies have shown that OP and NP are readily taken up by
fish, both via exposure in the water (Lewis and Lech, 1996; Arukwe et al., 2000b;
Ferreira-Leach and Hill, 2001; Pedersen and Hill, 2002; Pickford et al., 2003) and by
the food (Thibaut et al., 1998b; Arukwe et al., 2000b; Madsen et al., 2002; Pickford et
al., 2003; Madsen et al., 2006). The APs are rapidly metabolised, mainly by phase 1l
enzymes that conjugate intact APs to their corresponding glucuronides. The APs are
excreted primarily in the bile and faeces (Ferreira-Leach and Hill, 2001; Thibaut et al.,
2002; Smith and Hill, 2004). The APs accumulate particularly in the bile, digestive
system and liver, but it has also been shown that AP is taken up by the brain in Atlantic
salmon (salmo salar) (Arukwe et al., 2000b), rainbow Trout (Oncorhynchus Mykiss)
(Ferreira-Leach and Hill, 2001; Thibaut et al., 2002), roach (Rutilus rutilus) (Smith and
Hill, 2004) and cod (Tollefsen et al., 1998). This is of particular interest with respect to
hormone-disrupting effects in the central-nervous-system. Studies with PCB have
shown that cod (lean fish) are more likely than trout (fat fish) to accumulate lipophilic

compounds in the brain (Ingebrigtsen et al., 1990).
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Arukwe et al. (2000) have compared tissue distributions of NP in salmon following
two different exposure regimes, via the water and via food. They found that dosing in
the water results in higher uptake and a more regular distribution throughout the body
than oral dosing, where NPs are more concentrated around the digestive system.
Similarly, Pickford et al. (2003) found a 10 fold higher sensitivity for NP in fish

exposed via the water compared to oral exposure of corresponding doses.

The bioaccumulation factor (BCF) for long-chain APs (>C4) is in the range of 75 -
1250 (Table 3). In fish, the biological uptake of chemicals with log K, <4 (logarithm
of the octanol/water partitition coefficient) mainly takes place via the water
(theoretically 20 times as fast as uptake via food). For more hydrophobic substances
with log K, > 6, the situation is reversed, with uptake via food being more important
(Mackay and Fraser, 2000). As far as the APs are concerned, this means that
bioaccumulation in nature properly takes place primarily via uptake through the gills
and skin and not by being biomagnified through the food chain. However, little is
known about the metabolism of these compounds in organisms that belong to the lower
end of the food chain. High BCFs have been reported for NP in estuarine amphipods
and this indicates that biomagnification can be an important source of NP in higher

trophic levels, such as juvenile fish (Hecht et al., 2004).
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Table 3. Selection of physicochemical properties of APs that may have relevance for their
environmental fate. Aqueous solubility, the logarithm of the water/octanol partitition coefficient (K,,)
and the bioconcentration factor (BCF"). The overview is from (Shiu et al., 1994, Servos, 1999)

Water solubility LogK,, BCF in fish Species Reference
(mg/)

Phenol 67000-93325 1,46-1,6 17-158 Div. fish  (Servos, 1999)
p-Cresol 1800-53000 1,62-2,06 - (Servos, 1999)
4-Ethylphenol 5000 2,39-2,58 - (Servos, 1999)
4-n-Propylphenol 1278 3,18-3,20 - (Servos, 1999)
4-sec-BP - 2,1 37 Salmon  (McLeese et al., 1981)
4-tert-BP 580-1848 3,04-3,31 118 Golden Ide (Freitag et al., 1985)

125 Cod (Sundt and Baussant, 2003)
4-n-PP - - 90 Cod (Sundt and Baussant, 2003)
4-HexP - 3,60 346 Salmon  (McLeese et al., 1981)

592 Cod (Sundt and Baussant, 2003)
4-n-HepP - 4,00 578 Cod (Tollefsen et al., 1998)

520 Cod (Sundt and Baussant, 2003)
4-tert-OP 12,6 4,12 261 Killifish ~ (Tsuda et al., 2001)

1134 Roach (Ferreira-Leach and Hill, 2000)
4-NP 5,4-7 4,20-6,36 75-1250 Div. fish  (Servos, 1999)

" The Bioconcentration Factor (BCF) is the relationship between the concentration in the fish and
the concentration in the water; and describes only uptake via gills and skin (Mackay and Fraser, 2000).

1.9 Estrogen receptor (ER) and the binding affinities of
alkylphenols to ER.

The steroid hormone, E2 is a key regulator of growth, differentiation and physiological
functions in a wide number of target tissues, including the male and female
reproductive system, neuronal, skeletal and cardiovascular systems. The predominating
mechanisms of estrogen action are mediated through binding to the nuclear estrogen
receptor (ER), which induces transcription of target genes containing estrogen
response element (ERE) (Zhang and Trudeau, 2006). The ER is part of a large nuclear
receptor superfamily that shares common structure and function/domains. This
receptor family acts as the signal transmitter for most of the known fat-soluble
hormones, including steroids (androgen receptor, (AR); progesterone receptor,
glucocorticoid receptor, mineralocorticoid receptor), retinoids, thyroid hormones and
vitamin D (Mangelsdorf et al., 1995). Other groups of nuclear receptors, so called

“Orphan” receptors (the ligands are unknown), pregnane X-receptor (PXR) and
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constitutive androstane receptor (CAR) are regulating some of the cytochrome P450

genes and other detoxification genes, (Kretschmer and Baldwin, 2005).

In addition to the classical mechanism of genomic effects there are also increasing
evidence for non genomic effects of E2 and other steroids, possible mediated through
membrane receptors and secondary messenger cascades (such as release of
intracellular Ca**, mitogen activated protein kinase (MAPK), protein kinase A (PKA)
and C (PKC), phospholipase C (PLC), phosphoinositide turnover and adenylate cylase
(cAMP)) (Sak and Everaus, 2004, Zhang and Trudeau, 2006). The genomic effect has
time delays from hours to days, while the non-genomic mechanism are characterised
by very fast signal transmission, from seconds to minutes. Two novel seven-
transmembrane spanning steroid membrane receptors, membrane progestin receptor o
and membrane estrogen receptor (mER), GRP30, have resently been identified in
several vertebrates (Thomas et al., 2006).

In mammals, there have been found two distint forms of nuclear estrogen receptors,
ERa and ERPB (Enmark and Gustafsson, 1999). Teleosts have in addition to ERa, two
different forms of ERPB (ERPa and Erfib) (Hawkins et al., 2000; Menuet et al., 2002;
Hawkins and Thomas, 2004; Sabo-Attwood et al., 2004). The tissue distribution in
teleost of the different ERs largely overlaps, and ERs are mainly found in the brain,
pituitary gland, liver and gonads (Menuet et al., 2002). There are reported differences
in the relative affinity of AP between the ERa and Erf3. In channel catfish, NP showed
100-fold lower affinity for ERa and 10000-fold lower affinity for ERP than for E2
(Gale et al., 2004). On the other hand, difference in NP affinity to the two ERs in an
assay using recombinant human ERa and ER[}, was not observed (Kuiper et al., 1998).

The capability of synthetic non-steroid compounds to bind and activate the ER have
been known for more than 70 years (Cook et al., 1933). Dodds and Lawson, (1938)
found that among many others compounds, also 4-tert-PP and 4-n-propylphenol had
weak estrogenic effects measured by changes in vaginal cytology in ovariectomized
rats. The estrogenicity of APs were further studied by Mueller and Kim, (1978) and

many AP isomers were showed to be able to bind and displace E2 from the ER. But it
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was first in the beginning of the 1990es, after Soto et al., (1991) had rediscovered the
estrogenic effects of NP that the scientific community started the massive focus that
have made this group of compounds some of the most intensively studied endocrine

disruptors.

Amino acid sequence of the ER and the crystal structures of the E2-ER complex (see
figure 5) have together with quantitative structure — activity relationship (QSAR) study
of antagonists identified several criteria for high binding affinity to the ER: (1)
Phenolic ring with hydrogen-bonding ability; (2) H-bond donor mimicking the 17p3-
OH and right O-O distance between 3- and 178-OH; (3) Hydrophobic moiety
mimicking the ring structure of E2 (Brzozowski et al., 1997; Sadler et al., 1998;
Schmieder et al., 2000; Tanenbaum et al., 1998; Fang et al., 2001; Klopman and
Chakravarti, 2003; Tong et al., 2003).

4nHepP.
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Fig 5. A). Model of the ERa-ligand binding domain holding E2. The specific binding domain of the
ER is holding the 3-hydroxy-group of E2 in a water (W) mediated hydrogen-bonding network
involving glutamic acid (Glu), arginine (Arg) and phenylalanine (Phe). The 17-hydroxy-group of E2
is bound by hydrogen bonds to histidine (His). In addition, the ligand-binding pocket is covered with
hydrophobic amino acids making van der Waals contacts with the carbon skeleton of E2. The figure
are taken from the crystal structure of the E2 complex with the human ERo (Tanenbaum et al., 1998).
B). Chemical structure of the four alkylphenols used in this study: 4-tert-butylphenol (4-tert-BP), 4-n-
pentylphenol (4-n-PP), 4-n-hexylphenol (4-n-HexP) and 4-n-heptylphenol (4-n-HepP).
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Beacause of the phenol ring, APs fulfil the must important criteria for binding to the
ER. APs do also have the capability of hydrophobic interaction by the alkyl-chain, but
as seen on figure 5B the APs are lacking other important structures, like hydrogen-
bond donor capability mimicking the 178-OH of E2. The APs have therefore relatively
low affinity to the ER.

In vitro studies (table 4) have found that the size and degree of the branching of the
alkyl chain, as well as its position relative to the phenolic hydroxy-group are important
for binding affinity to the ER. The most vital factor for high estrogenic activity of APs
are that the alkyl chain is in the para-position (para>meta>ortho) and that the chain-
length is > C4. Maximum activity (400 - 6000 times less potent than E2) has been
found for C, — C, para-substituted tertiary APs, but para-substituted Cs, C, and C; APs
are also have weak estrogenic effects (10° - 107 times less potent than E2) (table 5).
Routledge and Sumpter, (1997) found that the tertiary isomers have the highest
estrogenic effects (tertiary>secondary=normal), and that 4-tert-OP is 60 times more
potent than 4-sec-OP. Similarly 4-tert-HepP is 25 times more potent than 4-n-HepP,
while 4-n-PP on the other hand is three times more potent than 4-tert-PP. Other
investigations confirm that tertiary isomers are more potent than the normal isomers,
but with less difference than found by Routledge and Sumptor (1997). 4-tert-OP was
2-10 times more potent than 4-n-OP (Tabira et al., 1999; Blair et al., 2000; Schultz et
al., 2000). However, the structure of the carbon chain is important. A recent study has
examined the estrogenic effects of the alkyl chain of 22 isomers of 4-NP in detail.
They found that high “bulkiness” on the B-carbon was the most important factor for the
high estrogenic activity and that the activity could differ as much as 3000 times

between the most and the least potent 4-NP (Shioji et al., 2006).

In vivo studies also suggest that the estrogenicity of branched APs is higher than that of
linear isomers (Pedersen et al., 1999; Chikae et al., 2003).
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Table 4. Estrogen receptor (ER) binding affinities of APs. The most potent isomers are given in bold.
IC5, value: the concentration of competitor needed to displace half of the bound ligand.

ilgglﬁ;?fj 2) (Tabiraet 3) (Blair et (Schmzi)e der et 1) (Schultz et 23\(5;;;(1
1997) al., 1999) al., 2000) al., 2000) al., 2000) 2003)

Compound Relativto E2  IC5y (M) IC5y (M) IC5, (M) IC5, (M) ICy, (M)

E2 1 21x10° 9.0x10™ - 39x10™ 23x10°®
4-dodecylphenol - 20x10*  46x10° 93x10* - -
4-sec-decylphenol 1/100000 - - 7.6x 10 - -
2-sec-decylphenol Nonactive - - Nonactive - -
4-NP 130000 37x10¢ ZAX10C_ 54 04 - -

47x10°

4-n-NP - 42x10° 2.8x10° - - 9.5x 10

4-tert-OP 1/1000 63x10° 60x10° 11x107 1.8x107 14x10°7
4-sec-OP 1/60000 - - - - -
4-n-OP - 1.0x10° 19x10° - 1.9x10°¢ -
2.6-di-butylphenol Nonactive - - Nonactive - -
2.4-di-butylphenol Nonactive - - - - -
4-tert-HepP 1/3000 - - 2.6x107 - -
4-n-HepP 1/75000 - - 9.8x10°¢ - -
4-tert-HexP 1/6000 - - 58x107 - -
4-n-HexP - 1.7x107 - - - -
4-tert-PP 1/100000 - 1.7x10*  31x10° 48x10° -
4-n-PP 1/30000 - - 1.3x10°  95x10° -

4-tert-BP 1/1500000 - 3.7x10*  1.6x10* - 1.0x10°3
3-tert-BP Nonactive - - Nonactive - -
2-tert-BP Nonactive - - Nonactive - -

4-sec-BP 1/3900000 - 21x10* 39x10"* - 58x10"*

2-sec-BP - - 32x10*  Nonactive - 1.4x10°°
4-n-BP - 8.5x10° - - - -
4-n-Propylphenol  1/20000000 - - 22x10°%  15x10* -

4-Ethylphenol Nonactive  6.0x 102 13x10°7 - Nonactive  1.7x 107
3-Ethylphenol - - 6.6x10* - - -
2-Ethylphenol - - >1.0x 107 - - -

Phenol Nonactive ~ 2.9x 107 - - - 9.5x 10

'Recombinat Yeast assay (YES screen)
? Estrogen receptor competitive-binding assay (Recombinant human oestrogen receptor. hERa)
? Estrogen receptor competitive-binding assay (ER from uterine cytosol from Sprague-Dawley rats)

In addition to be an agonist for the ER, APs have also been shown to interfere with
several other classes of nuclear receptors. Even though this is not well investigated and

the results are not as consistent as for effects on the ER, it tells us that AP can act as a
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endocrine disruptor in a much broader way than only being an estrogen mimic

(Goksoyr and Male, 2006).

4-tert-OP (ICs,=5 x 10 M) and NP (ICs,=2.6 x 10°° M) are potent antagonists for AR
and can induce anti-androgen effects (Paris et al., 2002; Lee et al., 2003a). On the
contrary, Sohoni and Sumpter, (1998) found NP to be a weak agonist to AR. It is also
reported that NP and 4-tert-OP can be both agonists to PR (Scippo et al., 2004) or PR
antagonist (Tran et al., 1996). The thyroid hormone function can be disrupted by APs
(Ghisari and Bonefeld-Jorgensen, 2005; Schmutzler et al., 2004). The two orphan
nuclear receptors that are involved in regulation of several detoxifications enzymes are
also target for AP endocrine disruption, NP is agonist for PXR and CAR (Masuyama et
al., 2000, Mikamo et al., 2003, Kretschmer and Baldwin, 2005).

There are also evidence for NP to induce similar effects as E2 via membrane initiated
signalling pathways (Loomis and Thomas, 2000; Bulayeva and Watson, 2004; Watson
et al., 2005; Wozniak et al., 2005; Thomas and Dong, 2006). The binding affinity of
AP to the nuclear ER is about 1000 times weaker than E2, but the effect-concentration
of the membrane initiated effect seems to the more equal for E2 and NP. Intracellular
Ca®" changes are induced in pituitary tumor cell lines by 10"'? M of both E2 and NP
within 30 sec of administration, resulting in prolactin (PRL) secretion (Wozniak et al.,
2005). Thomas and Dong, (2006) found that NP binds 47 times weaker than E2 to
plasma membranes prepared from HEK293 cells transfected with the seven-

transmembrane estrogen receptor, GPR30.

1.10 Estrogen-receptor mediated and receptor-independent
mechanisms for the biological effects of alkylphenols

Numerous in Vitro screening systems have been developed to characterise the binding
affinity of chemicals to ER (reviewed in (Zacharewski, 1997; Soto et al., 2006)). APs
are shown to bind and induce effects through ER, similar to E2. It has also been shown

that the effects can be blocked by ER antagonists like tamoxifen or ICI 182,780. The
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variety of assays used in studying the estrogenic effects of APs includes: competitive
ER binding assay (White et al., 1994); cell proliferation assay, (e.g. E-screen (MCF7-
cells) (Soto et al., 1995)); protein expression assay, (e.g. VIG expression in fish
hepatocyte culture (Jobling and Sumpter, 1993)); recombinant assays, (e.g. yeast-based
screen (YES-screen) (Routledge and Sumpter, 1996) and cell lines (Shelby et al.,
1996)).

Recent developments in screening for xenoestrogenic effects are by use of
toxicogenomics (Moggs, 2005) where cDNA microarrays containing multiple
estrogen-responsive genes can be used both in vitro and in vivo (Terasaka et al., 2004;
Naciff et al., 2005; Terasaka et al., 2006). Such approache clearly show the complexity
in estrogen signalling and the disturbers therein. Moggs (2005) reported as many as
3538 genes to be E2-responsive in the mouse uterus, and through gene ontology, the
genes are categorised into 35 different biological partways. Toxicogenomics have an
enormous potential in providing detailed information regarding the molecular response
to xenoestrogens and revealing new biomarkers. Microarray analysis of gene
expression profiles in mouse exposed for NP or E2 reveal tissue differences in
response to E2 and xenobiotics. The gene expression in the gonade was very similar
after E2 and NP exposure, indicating that these effects mainly are induced through the
ER or other estrogen receptors. Gene expression in liver, on the other hand was more
affected by NP than by E2 and activation of many genes involved in lipid and fatty
acids metabolism were only found in the NP groups (Watanabe et al., 2004).
Undoubtedly, the “omics” technologies (Genomics, proteomics, metabolomics,
lipomics) will also play a very important role in the future for studying endocrine
disruption in fish and other aquatic organisms. Today there is still some limitation in
that the genome is only sequenced in very few teleosts, but smaller scale DNA
microarrays are now available for several model species (Miracle and Ankley, 2005;
Moens et al., 2006; Watanabe and Iguchi, 2006). However, the challenge for this
approach is the same as for all other use of biomarkers; to create bridges between

information of gene expression to physiological and toxicological endpoints that can
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be used to extrapolate the effect to fitness of individuals and populations. (“Fitness =
the relative contribution of an allele, genotype or phenotype to future generations”

Wikipedia, the free encyclopedia).

The following chapters give an overview of different physiological events affected by

AP exposure.

1.10.1 Effect of AP on sex differentiation and gonad development.

In non-mammalian vertebrates the genotypic sex can be overridden by exposure to
steroid hormones and the sex differentiation are therefore vulnerable to EDC. Exposure
to AP in the early life stages of fishes (Gimeno et al., 1996; Gray and Metcalfe, 1997)
and amphibians (Kloas et al., 1999; Mosconi et al., 2002) can induce feminization of

males and result in intersexuality or higher number of female phenotypes.

AP are stimulating estrogen-dependent uterine growth in rodents (Bicknell et al.,
1995). The rat uterotrophic bioassay is validated as “standard in vivo method” for
screening of xenobiotics by the Organisation for Economic Co-operation and
Development (OECD). The lowest observed effect level (LOEL) in the uterotrophic
assay is found to be 75 mg/kg/day for NP (Kanno et al., 2003; Owens and Koeter,
2003). Testis development in rats can also be affected by AP, and reduction in testis
growth and induction of apoptosis have been reported (Han et al., 2004b; Kim et al.,
2004). NP induced apoptosis in rat testis in a similar way as E2 does through the
FAS/FASL Pathway (Wang et al., 2003; Han et al., 2004a). Apoptosis is also induced
by NP and OP in human embryonic stem cells, and these effects are also related to the
FAS/FASL Pathway (Kim et al., 2006b). The FAS-signalling pathway is important in
the paracrine-signalling system between Sertoli cells and germ cells (Richburg et al.,
2002). In addition to the FAS/FASL pathway, apoptosis can also be induced by a
variety of other signal transitions leading to stimulation of calcium flux, cAMP
production, PLC activation, inositol phosphate generation and mitochondrial
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membrane transition pore permeability. OP and NP also induce apoptosis in Sertoli

cell lines by inhibiting endoplasmic reticulum Ca” pumps (Hughes et al., 2000).

Even though the evidences that AP give endocrine disruption in mammalian
reproductive tracts are clear, it is important to note that the in vivo effects are only seen
at relative high doses. Multigenerational studies with rats show a “no observable
adverse effect level” (NOAEL) of NP > 100 mg/kg/day for effect on the reproduction
development, (Chapin et al., 1999; Nagao et al., 2001; Tyl et al., 2006).

The reproductive system of fish seems more sensitive for AP exposure than that of the
mammalians. Concentrations down to 5 pg/l levels of NP or OP are inhibiting the
spermatogenesis of male fish, resulting in reduced testis growth, trigging of necrosis
and apoptosis and altertion of testis morphology (Jobling et al., 1996; Gimeno et al.,
1998; MilesRichardson et al., 1999; Weber et al., 2002). The oogenesis in the female
fish is also affected by APs, but at higher dose than what is seen for the male fish. As
example, 100 pg/l NP reduces the ovary weight and increases follicle atresia in
zebrafish (Weber et al., 2003). End point like fertilization success from life cycle tests
with zebrafish comfirm the high teleost sensibility for AP, ECs, values = 28 pg/1 for 4-
tert-OP (Segner et al., 2003b).

1.10.2 Effect of AP on brain and the central-nervous-system (CNS).

Estrogens are one of many neuroactive steroids and play a vital role in many
neurophysiologic events such as the sexual differentiation and early development of
the brain; feedback effect on brain-pituitary-gonad axis; higher cognitive functions like
behavior, memory, etc.; and have neuroprotective effects. (McEwen, 2002; Melcangi
and Panzica, 2006). The multiple effects are found mediated both by nuclear ER
receptors and membrane signalling pathways. However, much are still not known and
there are increasing discoveries of new targets and mechanisms of estrogen effects to

the CNS (Toran-Allerand, 2004; Ronnekleiv and Kelly, 2005).
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A particular attention has been put on APs and neuroendocrine disturbances on the
brain-pituitary-gonadal axis in fish (Jones et al., 1998; Piva and Martini, 1998; Harris
et al., 2001; van Baal et al., 2000; Zilberstein et al., 2000; Yadetie and Male, 2002;
Maeng et al., 2005; Vetillard and Bailhache, 2006). The underlying mechanisms of the
effects of AP on the GnRH and GTH are still unknown and the literature demonstrates
contradictory effects in different fish species; Harris et al. (2001) found that NP
reduces the expression of FSH gene in the pituitary gland and FSH secretion to the
plasma in water exposed female rainbow trout, even at very low concentrations (they
found a significant effect at the lowest exposure dose; 0.7 pg/l). Similarly, the quantity
of LH-mRNA is reduced in the pituitary gland on exposure to NP (8.3 pg/l) (Harris et
al., 2001). As opposed to this, Yadetie and Male (2002) stated that intraperitoneal
injection of NP (50 mg/kg) strongly induces gene expression of LH in female juvenile
Atlantic salmon pituitary gland. No effects were seen in male fish. The gene
expression of FSH was unaffected in both sexes (Yadetie and Male, 2002). Injection of
low dose (10 mg/kg) of NP induced the GTHa and LHB mRNA levels in the pituitary
gland of juvenile masu salmon (Oncorhynchus masou). A high dose (50 mg/kg) did,
however, not induce this effect on GTHa and LH mRNA, but did instead slightly
reduce FSHB mRNA levels (Maeng et al., 2005). Tilapia (Oreochromis niloticus)
showed a suppressed expression of FSH mRNA, but not LH mRNA in the pituitary
gland after 5 weeks water exposure to NP (10 pg/l) (Zilberstein et al., 2000). In
African catfish (Clarias garipinus) the amount of LH (protein) was increased in the
pituitary gland of both sexes, but not in plasma after 7-14 days water exposure of NP
(10 pg/l) (van Baal et al., 2000). In vitro studies showed an inhibitory effect of NP on
the secretion of LH from African catfish cultured pituitary cells (van Baal et al., 2000).
Water esposure of NP (2.2 pg/l to 2.2 mg/l) reduced GnRH in the brain of juvenile

rainbow trout in a dose dependent manner (Vetillard and Bailhache, 2006).

The effects from AP on the CNS may be mediated through mimicking estrogenic
feedback effects. In general, E2 (and other sex steroids) is known to exert positive

feedback effects on LH levels, but there is species related variation. The feedback
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control of E2 on FSH levels is much less clear, and both positive, negative or no
effects are reported from juvenile teleost (Dufour et al., 2000: Kah et al. 2000). It is
important to recognize that estrogen often shows reproductive stage-dependent effects

on the gonadotropin secretion (Thomas, 2000).

Bevan et al., (2003) found a high increase of apoptotic cells in the nervous systems of
developing tadpoles (Xenopus laevis) after low NP exposure (100 nM). This
observation is also correlated with increased morphological deformations and high
mortality. Stimulation of apoptosis by NP exposure are also found in embryonic
murine neural stem cells (NSC) (Kudo et al., 2004). NP disturbs the cell cycle of NSC
by accumulation of cells in the G,/M phase by down-regulation the expression of
cyclin A and B1, which are the major regulatory proteins for the G, to M transition of
the cell cycle. The NP exposure can also lead to apoptosis of NSCs by activating the
caspase cascade (Kudo et al., 2004). Apoptosis is also suggested as the mechanism for
reduction in tyrosine hydroxylase active cells in the brain of neonatal rats exposed for
4-n-OP. The effects are thought to explain the hyperactivity behavior in exposed rats
(Ishido et al., 2004).

On the contrary, NP can also disturb the neuronal functions by stimulating the
synthesis of catecholamine (dopamine, epinephrine and norepinephrine) in bovine
adrenal medullary cells after increased tyrosine hydroxylase activity (Yanagihara et al.,
2005). The effects were not inhibited by ER antagonist (ICI182,780) or protein
synthesis inhibitors (actinomycin D and cycloheximide), suggesting that NP stimulates
tyrosine hydroxylase and catecholamine synthesis in a nongenomic manner. This was
confirmed by the finding of effects of short-term treatment (10 min), and the authors
suggest that activation of MAP kinase system induces the effects. Behavioral studies
show that NP exposure has effects on fear response in rats. This is probably induced

through alterations of the catecholamine systems (Negishi et al., 2004).

The neurotransmitter acetylcholine can also be affected by AP exposure, both by

inhibition of acetylcholinesterase activity (Talorete et al., 2001) and modulation of the
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nicotinic acetylcholine receptor (Nakazawa and Ohno, 2001) or the muscarinic

acetylcholine receptor (Jones et al., 1998).

The focus on AP as a environmental problem have mainly been for the para-
substituated APs, but the APs found in crude oil and in produced water contains a large
number of isomers (Ioppolo-Armanios et al., 1995). It may therefore be interesting to
draw attention to the ortho-substituated APs. Propofol® is the name of the widely used
intravenous general anaesthetic, 2,6-diisopropylphenol. Propofol® has an inhibitory
effect on the neurotransmiter y-aminobutyric acid (GABA) by binding to the GABA ,
receptor, a property in common with many other general anaesthetics (Trapani et al.,
2000). Similar effects are found with other ortho-substituted AP analogues to 2,6-
diisopropylphenol, like 2,6-dimethylphenol, 2,6-diethylphenol etc. Also mono ortho-
substituted isomers like 2-isopropylphenol show such effects (Krasowski et al., 2001a;
Krasowski et al., 2001b). No studies on the effects of ortho-substituted APs in wild life
were found in the literature. However, when working with complex mixtures of AP,
one should keep in mind that other isomers than para-substituted can also have

specific biological effects at low concentrations.

1.10.3 Effects of AP on biosynthesis and metabolism of steroids.

In addition to affecting the steroid biosynthesis indirectly through the GTH and the

brain-pituitary-gonadal axis, APs can also act directly on steroidogenesis enzymes.

In vitro studies with Leydig cells from rats show that 4-tert-OP has a biphasic effect on
T biosynthesis, with induction of T synthesis at low concentrations (1 and 10 nM) and
a reduction of T synthesis at high concentrations (100 - 2000 nM). By using different
steroid precursors like 22(R)-hydroxycholesterol, pregnenolone, progesterone and
androstenedione as substrate for the T synthesis, inhibitory effects of OP were shown
early in the biosynthesis of P450,., 3B8-HSD and P450., but not 17B-HSD, (the
enzyme that converts androstenedione to T). No similar effect was seen with E2 and

the effects of OP were not inhibited by ER antagonist (ICE 182,780), demonstrating
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that these effects are not modulated through the ER (Murono et al., 1999; Murono et
al., 2001). NP are also found to decrease T synthesis by inhibiting P450,, in vitro in
cells from rat testis, but only minimal effects were seen on T-dependent endpoints in
vivo (Laurenzana et al., 2002a). 4-tert-PP, 4-tert-OP and 4-NP are inhibiting P450,,
and the hydroxylases (P450,,5, P450.;, P450,,) in human andrenocortical H295R
cells, resulting in a decrease in cortisol secretion (Nakajin et al., 2001). In microsomes
from carp testis, NP had no effects on 17B-HSD, but increased 203-HSD activity
dramatically and induced production of MIS (17a,203-P) (Thibaut and Porte, 2004).
Expression of P450,,; mRNA was completely inhibited in the testis of medaka
(Oryzias latipes) exposed to > 413 ng/l 4-tert-PP (Yokota et al., 2005). Similar
inhibition of P450,;; mRNA is found in the brain of salmon exposed to NP (Arukwe,
2005). The same study also found induction of StAR protein mRNA and P450,, in the
brain of NP exposed salmon, showing a possible stimulation of the early steps of the
steroid synthesis (Chapter 1.3). Several studies have found that NP are inducing
aromatase (P450,,,,,) mRNA expression in the brain (Kazeto et al., 2003; Kazeto et al.,
2004; Meucci and Arukwe, 2006a) and the liver (Min et al., 2003), but not in the gonad
(Kazeto et al., 2004) of fish.

Beside effects on the biosynthesis, an increase or a reduction of the metabolic
elimination rate can also alter the steroid levels. NP is an agonist of the PXR and the
CAR, and may therefore alter several phase I, II and III enzymes that are impotant for
the metabolism of natural steroids (Masuyama et al., 2000; Mikamo et al., 2003;
Kretschmer and Baldwin, 2005; Meucci and Arukwe, 2006b). PXR and CAR are
regulating many important phase I cytochrome P450 enzymes (CYP2A, CYP2B,
CYP2C and CYP3A), phase II enzymes, like uridine diphospho-
glucuronosyltransferases ~ (UDPGT),  glutathione-S-transferases  (GST)  and
sulfotransferases (SULT), and phase III transporters (multidrug resistance proteins that
are active in transporting polar metabolites across the membranes for excretion). NP
exposure increases the hepatic microsomal progesterone hydroxylase activity and

CYP3A proteins in rat liver (Lee et al., 1996). Gender-specific induction of
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cytochrome P450s is seen in NP treated mice. NP exposure increase expression of
CYP1B subfamily members in both males and females, but CYP3A is exclusive down
regulated in the females and CYP2A is induced only in the males (Hernandez et al.,
2006). Arukwe et al., (1997a) found that low levels of NP induce steroid hydroxylase
activity, but high doses inhibit the activity in vivo in juvenile Atlantic salmon. They
also found a reduction in CYP1A, CYK2K-like and CYP3A-like proteins in the
highest exposed group (125 mg NP/kg) together with reduction in UDPGT activity.
Jurgella et al., (2006) demonstrated that NP (100 uM) did not effects E2 metabolism in
neither liver nor kidny tissue from lake trout (Salvelinus namaycuch). OP (100 uM)
inhibit E2 metabolism in the liver tissue but not in kidney tissue. As seen from this
discussion 1s it not clear if AP increase or decrease steroid metabolism, some
investigations have found increased metabolism (Baldwin et al., 2005), other have
found reduction or no effects (Laurenzana et al., 2002b; Vaccaro et al., 2005; Jurgella

et al., 2000).

The effects of APs on the steroidogenic or metabolic enzymes, either by direct
inhibition or by altering the gene-expression and protein synthesis (up or down) may
affect the seasonal pattern of steroids that is so important for synchronising all the
reproductive events. Induction of P450,.,, can increase the production of E2, and
unnatural high levels of E2 have been reported in juvenile male flounders (Mills et al.
2001), male and female fathead minnow (Giesy et al. 2000) exposed to OP and NP.
Offspring of NP exposed rainbow trout had increased levels of E2 in males and T in
females, even though the offspring were grown in clean water for 3 years (Schwaiger
et al., 2002). However, reduction in E2 and other steroids in plasma have also been
reported as results of AP exposure. Arukwe et al. (1997) found a reduction in the
plasma levels of E2 in juvenile Atlantic salmon at relatively low AP concentrations (1
and 5 mg/kg, injected into the abdomen) but found no effect at higher concentrations
(25 and 125 mg/kg). Female rainbow trout exposed to NP has reduced E2
concentration in plasma, but only at the high doses (85.6 pg/l) (Harris et al. 2001). NP

exposure reduced androgen and estrogen levels in plasma and testis of juvenile male
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turbot, while no effect was found in female turbot (Labadie and Budzinski, 2006). In
the same study, the amount of glucoronidated steroids in the bile was reduced in male
fish, indicating that the drop in steroid concentration was not a result of increased

metabolism.

The effects of AP on the steroidogenesis are rather contradictory and several studies
find biphasic responses with different doses. However, a lack of a linear dose-response
relationship is typical for the steroid system where the nature of the response often is
different with low and high doses of steroids. For example, low doses of E2 and
testosterone stimulate the secretion of gonadotropin in fish, while is inhibited by high

doses (Jalabert et al. 2000).

1.10.4 Effects of AP on the immune system

Estrogen plays an important role in the immune system and are involved in
differentiation and maturation of T-cells in the thymus and B cells in the bone marrow,
and has other immunoregulatory properties as secretion of cytokines and production of
antibodies (Sakazaki et al., 2002). NP have been found to mimic estrogenic effects on
the immune system like inhibition of lymphocyte mitogenesis (Sakazaki et al., 2002)
and to induce thymocyte apoptosis (probably by the FAS/FASL pathway) (Yao and
Hou, 2004, Yao et al., 2005, Yao et al., 2006). NP inhibit lipopolysaccharide induced
nitric oxide (NO) and tumor necrosis factor-o (TNF-a) production in mouse
macrophages (You et al., 2002, Hong et al., 2004). 4-tert-OP increases the production
of the pro-inflammatory cytokine, interleukin-4 in T-cells. The effect was blocked by a
calcineurin inhibitor, FK506, but not by the ER antagonist ICI 182.780, showing that
the effect was activated by the Ca*"-calcineurin partway independent of ER (Lee et al.,
2003b, Lee et al., 2004). NP is found in vitro to have inhibiting effects on one of the
key enzymes, cyclooxygenase-1 (COX-1), that converts arachidonic acid (20:4 n-6) to

prostaglandines. This can also affect the immune system since prostaglandins play a
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central role in regulation of inflammation, together with many other physiological
processes (Fujimoto et al., 2005). Multi generation exposure experiments on rats show
that NP alters the activity of splenic natural killer cell and increases the numbers of
splenocyte subpopulations in second generation (F,), while no effect was seen in first
generation, (F,) (Karrow et al., 2004). NP has also myelotoxic potency in F, male rats
(Guo et al., 2005). The expermints found that the effects on the immune system were
gender-specific. Although we not are aware of any studies on effects of AP on the
immune responses in teleost, AP may probly also interact with the immune systems of

fish.

1.10.5 AP induction of oxidative stress and DNA damage.

Ortho-substituted APs have good antioxidant properties because of the ability to
stabilise free radicals and thereby reduce autooxidation. BHT is a well known
antioxidant. A side effect of the anaesthetic, 2,6-diisopropylphenol (propofol®) is also
that it protect cells against oxidative stress (De la Cruz et al., 1999). Many other
phenolic compounds also have antioxidant properties, including estrogen. It has been
suggested that the neuroprotective effects that are found for estrogens are mediated by
antioxidant activity, even though it is not likely to be the most important mechanism
(Amantea et al., 2005). As for most antioxidants, phenols can have the opposite pro-
oxidant effect leading to production of reactive oxygen species (ROS), such as
hydrogen peroxide (H,0,) and superoxide anion (O,), and induction of lipid
autooxidation. There is several defence systems that can be activated for protection
against oxidative stress: glutathione, glutathione peroxidases, superoxide dismutase
(SOD) and catalase (CAT). NP exposure of male rats is found to increase H,O,
generation and lipid peroxidation in the sperm. This increase in oxidative stress is
over-activating the antioxidant defense systems, resulting in reduced activity of CAT,
SOD, glutathione peroxidase and glutathione reductase (Chitra et al., 2002). Formation
of hydroxy radicals is also found in rat striatum (Obata and Kubota, 2000) and rat
Sertoli cells (Gong and Han, 2006) after NP exposure . The NP induced inhibition of
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cell growth in bacteria and yeast cultures can be suppressed by adding antioxidants
showing that the NP effects possibly are associated with ROS generation (Okai et al.,
2000a, Okai et al., 2000b). Similar does DJ-1 (a protein having anti-oxidative
function) protect against NP induced cell death in cultured medaka cells (Li et al.,

2006).

Both estrogens and APs can be metabolized to catechols, phenoxyl radicals, o-
quinones, and semiquinone radicals, all of which could cause damage to cells through
alkylation or oxidation of cellular macromolecules including DNA (Krol and Bolton,
1997; Schweigert et al., 2001; Bolton, 2002). DNA damages can in the ultimate
consequences lead to cancer. Studies of biotransformation show that the majority of
NP are rapidly conjugated at the phenol group by glucuronidase followed by excreted
through the bile (Lewis and Lech, 1996). But small amounts of AP are also oxidated to
catechols, and covalently bound residues are found in trout (1.7 % of the total labelled
NP) and in rudd (Scardinius erythrophtalmus) (12-62 % of total 4-tert-OP) (Coldham
et al., 1998, Pedersen and Hill, 2000).

The metabolism of AP into reactive metabolites shows a potential for DNA damage.
However, NP is not carcinogenic by itself (Sakai, 2001). NP are, on the other hand,
shown to promote rat lung carcinogenesis, possibly via mechanisms involving DNA
damage caused by ROS (Seike et al., 2003). Absence of promoting effects by NP have
been seen in other carcinogenesis models, like thyroid carcinogenesis (Son et al.,
2000b, Son et al., 2000a), and prostate carcinogenesis (Inaguma et al., 2004). Even
inhibitory effects of NP are reported for rat ovarian carcinogenesis (Tanaka et al.,
2002) and 4-n-OP and NP are reducing mammary tumor development (Han et al.,
2002). DNA damages in human sperm and lymphocytes after NP exposure have been
found by the Comet assay (Anderson et al., 2003). DNA damage after 4-n-NP
exposure is found in larvae of barnacle, an aquatic invertebrate (Atienzar et al., 2002).
Exposure of turbot to 30 pg/l NP for 3 weeks did not give chromosomal damage,
determined as micronuclei frequency in the fish erythrocytes. On the other hand, a

mixture of North Sea oil + APs (oil related isomers) , induced a very high micronuclei
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frequency showing genotoxicity (Bolognesi et al., 2006). 24 hours exposure to high
doses of NP (890 pg/l) to juvenile sea bass induced erythrocytic nuclear abnormalities

(Teles et al., 2004).

1.10.6 Effects of AP on the cell membrane

Evidence of APs as membrane active compounds including membrane swelling,
increase in fluidity, lowering of the phase transition temperature and increased ion
permeability have been established from two intensively studied APs: the antioxidant
BHT (Lanigan and Yamarik, 2002) and the intravenous anaesthetic Propofol® (Singer,
1977; James and Glen, 1980; Tsuchiya, 2001). There are also good support of para-
substituted long-chain APs can be related to membrane effects that are independent of
the estrogenic pathways. NP provokes vesiculation of the Golgi apparatus of epidermis
cells from fish at concentration of 20 uM (Lamche and BurkhardtHolm, 2000).
Similarly, 4-tert-BP and 4-tert-OP cause formation of lipid droplets and other changes
in Leydig cell membrane structures of rats (Haavisto et al., 2003). Schwaiger et al.,
(2000) suggest that anaemia found in NP exposed fish is a consequence of an
interaction between NP and the erythrocyte membrane. NP increases membrane
permeability of mitochondria membranes to protons and act therefore as an uncoupler
of the oxidative phosphorylation (Bragadin et al., 1999). Mitochondrial depolarization
by NP has also been suggested as one of the mechanisms behind NP induced
thymocyte apoptosis (Yao et al., 2006). Several investigations have shown that APs
disrupt Ca*" homeostasis by affecting Ca’" membrane channels (Michelangeli et al.,
1990; Beeler and Gable, 1993; Ruehlmann et al., 1998; Hughes et al., 2000; Logan-
Smith et al., 2002; Kirk et al., 2003; Khan et al., 2003; Lee et al., 2003b; Walsh et al.,
2005; Wang et al., 2005). Gap junctional intercellular communication is reduced in
murine Sertoli cell line by NP, the effect is partly explained by reduction in
phosphorylation of connexin 43 (Aravindakshan and Cyr, 2005), but the gap junction
may also be affected by changes in the membrane lipid bilayer (Cascio, 2005).
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1.10.7 Alkylphenols and their potential effects on fish reproduction and
recruritment.

As discussed in the previous chapters is it quite clear that APs can interfere with a
large number of biological pathways. There are particularly good evidence from
laboratory studies that AP can induce endocrine disruption and alter the reproduction
in fish, and there are also many indications that NP in combinations with other EDCs
are involved in reproductive disruption in wild freshwater fish (Jobling and Tyler,
2003) and marine fish (Matthiessen, 2003). Linking the impacts of EDCs with effects
on population levels is however still lacking and is one of the largest challenges within

this scientific field (Mills and Chichester, 2005).

Table 8 (Appendix 1) gives an overview of 176 in vivo laboratory studies that have
been investigating effects of APs on teleost fish. The majority of the literature is
related to freshwater fish and the toxicology model species dominate, with Cyprinids
(zebrafish, fathead minnow, sheephead minnow and goldfish), Salmonides (trout and
salmons) and Beloniformes (medaka) constituting for more than 60 % of the total
reports. It is therefore clear that our knowledge of the effects of ECDs on teleost only
cover a limited number of the more than 24000 different teleost. Especially, there is
lacking information on endocrine disruption on marine fish, even though the numbers

of reports are increasing rapidly.

Table 8 lists the species, exposure regime and lowest effect concentrations for the
different effect parameters, including: toxicity data (lethal dose), growth inhibition,
inappropriate production of VTG in male and juvenile fish, inhibited ovarian or
testicular development (lower GSI), abnormal blood steroid concentrations, up
regulation of ER, alteration in pituitary hormones, alteration in sterodogenisis
enzymes, intersexuality and/or feminisation of the gonads, skewed sex ratio, changes
in male and/or female maturation, increased ovarian atresia, decreased sexual
behaviour in males, reduced spawning success, reduced hatching success and/or larval
survival, altered growth and malformations in early development. Some of these

measurements can directly be correlated to adverse endpoints like survival, growth,
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morphological development and reproduction. These endpoints tell about the fitness
of the individual and the effect concentrations can be transferred into “predicted no
effect concentrations values” (PNECs) necessary for modelling the risk for damages on
population levels. On the other hand, many of the biomarkers are not easily linked to

adverse effects.

Many of the studies on the effects of APs on fish are short-time experiments presenting
results with different biomarkers. These experiments are very useful in identifying
which compounds that are having endocrine disruption effects and it can give
mechanistic information, but it is difficult to transfer results from such studies into
fitness parameters. One example; APs induce VTG in fish at doses down to 0.1-5 pg/l
(Jobling et al., 1996; Fent et al., 2000; Hemmer et al., 2001; Kashiwada et al., 2002).
Induction of VTG is the most used estrogen specific biomarker, because of its very
high sensitivity and clear link to estrogenic effects. However, the relationship between
VTG induction and adverse effects on fish reproduction is unclear. Pathological effects
in liver and kidney have been seen in connection with very high VTG induction after
exposure of high potent estrogens like E2 or ethynylestradiol (Herman and Kincaid,
1988; Folmar et al., 2001; Palace et al., 2002), but these effects are found after million-
fold increase of VTG, resulting in plasma concentrations at the high mg/ml levels.
Exposure to weak xenoestrogens like APs is mostly resulting in lower-level induction

of VTG and the impact of this is not well defined (Mills and Chichester, 2005).

The optimal experimental design for EDC testing is full life-cycle tests, where
multiendpoints are used for investigation of both developmental and reproductive
effects. In these tests, the fish are exposed from embryos till the stages of sexual
maturation and through the spawning periods. In some cases also multigenerational
studies are preformed and the exposure is continued on the second generation. Of
practical reasons, full life-cycle tests have only been done on small fish with short
generation time (< 4 month) like the zebrafish, fathead minnow and medaka. However,
even with small laboratory fish that mature rapidly, full-life toxicity tests require very

long experiment time and are very costly and work intensive. Therefore most studies
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are done by partial life-cycle test, where the experiments focus on special sensitive
periods in the fish life. Embryonic and larval development, especially during the
critical stages of sexual differentiation and gonadal development, has received much
attention. Similarly, many experiments with adult fish are done in the time of

vitellogenisis and gonadal maturation.

The lethal concentrations (LC) of NP are found to be between 18-940 ng/1 for different
species and developmental stages. New hatched fish larvae are most sensitive for the

acute toxicity of AP, while the LC for juvenile and adult fish are over 100 pg/l for NP
(table 7).

Full-life-cycle test shows that NP and OP exposure reduces the reproduction potential
in zebrafish at 28-100 pg/l (Hill and Janz, 2003; Segner et al., 2003b) and in medaka at
2-50 pg/l (Gray and Metcalfe, 1997; Gray et al., 1999b; Yokota et al., 2001; Knorr and
Braunbeck, 2002; Seki et al., 2003b), while the AP with shorter chain length, like 4-
tert-PP are less potent, inducing reproduction disturbance around 200 pg/l both in
medaka (Seki et al., 2003b) and fathead minnow (Panter et al., 2006). These effect
concentrations are in good agreement with the results from partial life-cycle tests, but
there are some differences in sensitivity between different species. The lowest adverse
effect concentrations reported in the literature are in rainbow trout. Lahnsteiner et al.
(2005) found that 60 days of exposure to 750 ng/l NP completely inhibits male semen

production and doses down to 130 ng/l NP significant reduced semen production.

As discussed in Chapter 1.6 NP is found in freshwater systems, mostly in the
concentration range ng/l to the low pg/l, but up to 644 ng/l in highly polluted areas. In
seawater the concentrations are lower, from low ng/l to 9 pg/l. The environmental
water concentrations correspond well with reported levels of NP found in wild
freshwater fish, being of the order 1-1600 pg/kg, in view of the fact that the BCF are
reported to occur from 75-1250 (table 3). As seen here NP is found at exposed sites in
the natural environment at concentrations high enough for adverse effects on fish to

occur, but the majority of the measurements are below the known PNEC values. It has
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been suggested that APs in the marine environment are partly responsible for
testicular abnormalities and VTG induction in male flounder (Platichthys flesus) from
the UK estuary (Lye et al., 1999), but no clear evidence is available. It is important to
note that real environmental exposure will always be a complex mixture of many
different compounds, never APs alone. Nevertheless, there have been several attempts
to use the available toxicological data to risk assessment. Brown et al (2003, 2005)
have estimated that long-time exposure (20 years) to 30 pug/l NP could lead to severe
decline in population levels of freshwater fish. The U.S. Environmental Protection
Agency estimated that NPs PNEC values for freshwater organisms is 28 pg/l (acute
toxicity) and 6.6 pg/l (chronic toxicity) and NPs PNEC values for saltwater organisms
are 7 pg/l (acute toxicity) and 1.7 pg/l (chronic toxicity) (EPA, 2005). These PNEC
values agree with those of Staples et al. (2004) who estimated the chronic effect value

of NP to be 5.7 pg/l.

1.11 Analytical methods for determination of alkylphenol in
biological tissue and produced water.

APs can be analyzed with different chromatographic and electrophoresis methods
(reviewed in (Lee, 1999, Petrovic et al., 2002a)). For analysis of the whole profile of
individual isomers of Aps, gas chromatography (GC) is preferred because of the high-
resolution power. Many are analysing phenols directly without derivatisation both with
GC-FID (Ioppolo-Armanios et al., 1992; Chee et al., 1996; Lye et al., 1999) or GC-MS
(Giger et al., 1981; Bhatt et al., 1992; Wheeler et al., 1997; Gunther et al., 2001;
Espejo et al., 2002).

The APs contain an “active” hydrogen atom and are therefore often converted to
thermally stable and less polar compounds to improve their chromatographic
performance before GC. Most of the derivatization methods are used together with
GC-MS or for the halogenated derivatives with GC-ECD as the detectors. Many

different derivatization techniques are used for GC these involve: Akylation to methyl
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ethers (Bolz et al., 2000, Fiamegos et al., 2003), 3,5-bis(trifluromethyl)benzyl ethers
(Cheung and Wells, 1997), pentaflurobenzyl ethers (Chalaux et al., 1994; Nakamura et
al., 2000; Doerge et al., 2002) and 4-tetrafluoropyridyl derivatives (Kojima et al.,
2003); silylation to trimethylsilyl ethers (Heberer and Stan, 1997; Mol et al., 2000; Li
et al.,, 2001; Guenther et al., 2002). There are also several arylation based
derivatization methods of phenols. Among the most used methods are acetylation
(Llompart et al., 1997; Louter et al., 1997; Croley and Lynn, 1998) and
pentafluorobenzoyl derivatization (McCallum and Armstrong, 1973; Renberg, 1981;
Granmo et al., 1986; Wahlberg et al., 1990; Bao et al., 1996; Kuch and Ballschmiter,
2001; Xiao et al., 2001; Bianchi et al., 2002). Other not so common arylation methods
are determination of phenols in crude oil as ferrocenecarboxylic acid esters using GC
withatomic emission detection (Rolfes and Andersson, 2001) and extractive
derivatization of phenols in oil produced water with methylchloroformat (Grahl-

Nielsen and Landgren-Skjellerudsveen, 1982).

Table 9 (Appendix 2) gives an overview of different methods developed for analysing
AP in biota samples, and table 10 (Appendix 2) shows methods for AP analysis in

produced water.
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2. Aims of the Thesis

The work 1n this thesis is a part of a strategic work at the Institut of Marine Research,
which aim to develop a variety of methods to be used in investigating potential
endocrine disruption in Atlantic cod. The main concern that initiated the project were
whether discharges of APs from the oil industry give endocrine disruption in Atlantic
cod and thereby effect the reproduction and recruitment of cod and other species in the

North Sea.

The major aims of this thesis are:

e Development of analytical methods for determination of low levels of APs in

produced water and fish tissue (Paper I, Paper II)

e To study long-term effects of selected para-substituted APs (4-tert-BP, 4-n-PP,
4-n-HexP; 4-n-HepP) on the reproduction of male and female cod. The
objective of this investigation has been to study a wide spectra of biological end
points (growth and morphological development), biomarkers (GSI, plasma
steroids, VTG and gonad histology) (Paper III, Paper IV), effects on the redox
status (glutathione and glutathione-related enzymes) (Paper V), effects on the
hepatic CYP1A and CYP3A protein expressions and enzyme activities (Paper
VI) and effects on the phospholipids in the liver and brain (Paper VII) of AP

exposed cod.
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4. General discussion

4.1 Analytical methods for determination of alkylphenols in
produced water and biological tissues

The aim of the analytical chemistry study was to develop selective and sensitive
methods for determination of APs, from phenol to NP, in produced water (Paper I)

and biota samples (Paper II).

Establishment of analytical methods has three main challenges.
1. Extraction of target compounds.
2. Sample Clean-up to remove matrix effects.
3. Sensitive and selective analysis.

Different techniques for all of the above parts of the method development have been
tested.

Extraction of target compounds.

For the biota analysis, cyclic steam-distillation was the first extraction technique
tested. This method was originally developed by Veith and Kiwus (1977) for pesticide
analysis in water, sediments and biota. The method uses a water distillation to
concentrate the analytes and the condensated steam is extracted with a small amount of
organic solvent in a special apparatus, before it is transferred back to the distillation
chamber. This method have also been used to investigate AP levels in biota (Ahel et
al., 1993; Lye et al., 1999; Gunther et al., 2001; Keith et al., 2001; Snyder et al.,
2001a). However, even extensive attempts to optimize the steam distillation with out-
salting, pH adjustment and extraction time did not make this method work satisfactory
for AP spiked cod liver samples. At the best, only an AP recovery of 30% was

obtained. It was therefore concluded that steam distillation extraction not is a suitable
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method for extraction of APs in extremly lipid-rich samples like cod liver. The focus
was thereafter subjected to liquid-liquid extraction and dichloromethane (DCM) was
found to be a good solvent for the biota samples with recovery 67-90 % (Paper II).

The extraction of AP in produced water was done with solid-phases extraction (SPE).
Three different SPE cartridges were tested (500 mg superclean envi-chromp columns
(supelco), 200 mg Oasis® HBL and 150 mg Oasis® MAX columns (Waters)). All three
cartridges contants polymers of styrene-divinyl, this type of sorbents has been shown
to possess better extraction abilities than other typically used ons (e.g. C,g) (Liu et al.,
2004). The MAX column contains quaternary amino groups bound in the styrene-
divinyl polymers, this give these cartridges the ability to extract both acidic and
hydrophopic compounds. Oasis Max column were used further because they gave the

highest recovery and the purest extracts (Paper I).
Sample clean-up.

Biological samples have a very complex matrix containing a high amount of lipids,
proteins, etc. Therefore, purification of the extracts is usually necessary. The lipids
from the biota extracts were effectively removed by gel permeation chromatography
(GPC). It was found that a columns switch method using two GPC columns removed
more than 98 % of the lipids in the extracts (Paper II) and that thise were satisfactory
for GC-MS analysis. The produced water extracts from the Oasis® MAX columns was
so clean that it did not need any additionally clean-up before derivatisation (Paper I).

There were problems with background contamination of APs, especially from 4-NP in
the procedure blanks. It seems that some APs are widely spread in most indoor
environments (Rudel et al., 2003) and phenol and para-substituted APs (p-cresol, 4-
tert-BP and 4-NP) are intensively used in plastics industry (Cascaval et al., 1996). In
our work, 4-NP was found in most of the plastic and rubber products used in the
laboratory, including vinyl gloves, rubber stoppers for glass funnels and plastic tubes
used for the nitrogen evaporator. However, despite a significant effort to avoid these
problems, we still detect small amounts of phenol, cresols, 4-tert-BP, 4-tert-OP and 4-

NP in the blank samples. It is therefore important to have a good and intensive control
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of procedural blanks. The trace amounts of APs in blank samples increase the risk of
false positive results and the levels of contaminants may limit the use of the analytical

method (Paper II).
Analysis.

Pentafluorobenzoyl derivatisation was selected for the studies, being a sensitive and
selective method for the derivatisation of APs for GC-ECD and GC-MS (McCallum
and Armstrong, 1973, Renberg, 1981). The derivatisation methods were optimised by
the use of factorial experimental designs. Our results show that pentafluorobenzoyl
derivatisation is a good and robust method for analysing meta- and para-substituted
APs. The variations of the 7 parameters tested had no significant influence on the
recovery of the long chain para-substituted APs, but the ortho-substituted and most
water-soluble APs were significantly affected. The recoveries of the ortho-substituted
APs were low. For the most sterically hindered APs (like 2,6-dimethylphenol and
2,3,6-trimethylphenol) the recoveries were less than 10 % even at the most optimal
conditions. From this result it was concluded that the pentafluorobenzoyl derivatisation
is not suitable for analysis of sterically hindered ortho-substituted APs (Paper I).
Capillary GC with ECD detection was found to be a highly sensitive method for
analysis of standard solutions. However, GC-MS-NCI (negative ion chemical
ionisation) methods were preferred when analysing real complex samples (produced
water and biota) due to matrix effects. The complexity of APs in samples of produced
water (Paper I) makes it difficult to find good internal standards for GC-ECD. In GC-
MS on the other hand, it is possible to use an isotope-dilution method where

deuterium-labelled APs are used as internal standards.

Both methods are now in use at the laboratory of the Institute of Marine Research.
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4.2 Long-term effect study on alkylphenol effects on the
reproduction in cod .

4.2.1 Experimental design

Paper III-VII present the results from a project carried out during 1997-2001 where
the goal was to study long-term biological effects of very low concentrations of
selected C,-C; APs on sex development in Atlantic cod. The study was carried out
under controlled laboratory conditions. The compounds tested were 4-tert-BP, 4-n-PP,
4-n-HexP and 4-n-HepP.

Very little is known about the fate of these substances in the marine environment.
There are no empirical data on concentrations of long-chain APs in the sea around the
North Sea offshore installations (Chapter 1.8). We were therefore forced to use
models when estimating the levels to which fish may be exposed. Rye et al., (1996)
simulates the spread of AP discharges from produced water from the Halten Bank, and
calculates the likely uptake by pelagic fish using a model. The model simulates the
distribution of total AP discharges from two platforms, and includes biological
response (Bioconcentration Factor (BCF) and constants for uptake and elimination).
The calculations of a "worst case scenario" show that the body burden of AP in the fish

modelled will be up to 10 pg/kg (Rye et al., 1996).

Given the lack of field data, we used the model values indicated in Rye et al.(1996) as
a basis for choosing the exposure regimes in our experiments. Using an equal mixture
of the four components with differing chain lengths (C4 to C7), an attempt has been
made to take into account the wide range of different APs found in produced water.
The intention of the tests was to dose the fish to a body burden within the range of Rye
et al.’s estimates. Using the available information, it was concluded that 5 pg/kg of

each of the four AP correspond to a fairly realistic dose.

Two independent experiments were carried out (table 5 and table 6): In Experiment I

(Paper III), two groups of cod were exposed through regular food per os with a
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mixture of the four APs, from October to the end of January (14 weeks): 0.02 mg/kg
in the low dose group and 2 mg/kg in the high dose group. In Experiment II (Paper
IV-VII) five groups of cod were exposed to the same mixture of APs, ranging between
0.02 and 80 mg/kg APs and a positive control of 5 mg/kg E2, for 1 or 5 weeks. In
experiment II the APs were administered to the fish by a plastic tube directly to the
stomach. The way of exposere assured that each individual got the same defined dose
per unit weight.

Table 5. Exposure and sampling scheme.
Experiment | Experiment 11

Start of exposure 1997-09-30 1999-11-16
Sample 1 1997-10-30 1999-11-23
Sample 2 1997-11-27 1999-12-21
Sample 3 1997-12-16 -
Sample 4 1998-01-26 -

Table 6. Treatment and doses (sum of 4-tert-BP, 4-n-PP, 4-n-HexP and 4-n-HepP) for the two
experiments.

Groups Experiment | Experiment 11
Control Untreated Untreated
Positive control - 5 mg E2/kg

AP 1 0.020 mg AP/kg 0.020 mg AP/kg
AP2 2 mg AP/kg 2 mg AP/kg
AP 3 - 20 mg AP/kg
AP 4 - 40 mg AP/kg
AP S5 - 80 mg AP/kg

The results of the present study suggest a multiple mechanism response in the AP
treated cod. The exposure to APs can influence the plasma concentration of several
male and female sex hormones and the egg yolk precursor protein, vitellogenin, in
Atlantic cod. This study also shows that AP-exposure down to 20 pg/kg body burden
interferes with the maturation of the sex organs, and that this effect is likely caused by
disruption of the sex hormone system. There were also found effects of the AP
treatment on the hepatic P450 systems (CYPIA and CYP3A) as well as glutathione,
glutathione-related enzymes and changes in the lipid composition in liver and brain

membranes.
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4.2.2 Effects of APs on the glutathione-dependent antioxidant system in
cod.

The effects of AP on the glutathione-dependent antioxidant system were studied in
experiment II (Paper V). Total glutathione (reduced + oxidized forms)) increased in
the livers of female fish after one week of exposure to APs. Males were not sampled
after one week, so we do not know the early response of this group to AP exposure.
The second sampling (after 5 weeks exposure) showed a smaller difference in GSH
levels between the control and exposed groups. The level of reduced glutathione was
also measured and the ratio of reduced to total glutathione was calculated. This
relationship was relatively constant, and was similar in controls, positive controls and
the exposed groups. Overall, the results show that there may be a temporary effect on
glutathione level, but that the redox ratio remains unchanged. High, relatively stable
redox ratios also indicate that the system that keeps glutathione in its reduced form, i.e.
glutathione reductase (GR) and glucose-6-phosphate dehydrogenase (G6PDH), (which

generates NADPH) function adequately under the experimental conditions reported.

Neither the activity of glutathione S-transferase (GST) nor of G6PDH appeared to be
affected by AP exposure. This may indicate that neither of these two enzymes is
particularly important in AP metabolism. It is known that glucuronidation is the major
phase 2 metabolism of APs (Lewis and Lech, 1996; Meldahl et al., 1996; Thibaut et
al., 1998a; Arukwe et al., 2000b; Ferreira-Leach and Hill, 2001), and these results may
indicate that this metabolic pathway is sufficient to metabolise such quantities of APs

as the fish were exposed to in our experiments.

4.2.3 Effects of APs on CYP1A and CYP3A in cod.

In vivo and in vitro effects of APs exposure in cod have been studied in Paper VI. Fish
from Experiment II showed a dose-related increase in hepatic CYP1A and CYP3A
protein in male cod, but no effect was observed in the females. However, this increase

of CYP1A protein levels in the male fish was not linked to an increase in CYP1A-
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mediated ethoxyresorufin-O-deethylase (EROD) activity, implying that APs inhibit
the CYP1A activity in vivo. In addition, in vitro studies on the cod hepatocytes showed
a strong AP dose-dependent reduction in both the CYPIA and CYP3A activity.
Similar effects were also see in NP treated juvenile cod (Hasselberg et al., 2005; Sturve
et al., 2006). Kinetic study of recombinant medaka CYP3A activity also found that NP
are binding CYP3A and blocking the activity (Kullman et al., 2004). AP effects on the
P450 systems are further discussed in (Chapter 1.10.3, Paper VI).

4.2.4 Effects of APs on membrane lipids in cod liver and brain.

Paper VII demonstrated that APs and E2 alter the fatty acid profile in the polar lipids
of the liver to contain more saturated fatty acids (SFA) and less n-3 polyunsaturated
fatty acids (n-3 PUFA) compared with the control. In the brain of the exposed groups,
a similar effect was found, although with higher saturation of the fatty acids found in
the neutral lipids (mainly cholesterol ester). No effects were found in the polar lipids.
The AP and E2 exposure also gave a decline in the cholesterol levels in the brain. The
in vitro studies showed that APs increased the mean molecular areas of the
phospholipids in the monolayers at concentrations down to 5 uM, most likely due to
intercalation of the APs between phospholipids molecules. The increase in molecular
area increased with the length of the alkyl side chain. There are several other
investigations that support that APs can affect the lipid environment in the cell
membrane (see Chapter 1.10.6). Cakmak et al., (2006) found support for that NP
exposure induce a decrease the membrane fluidity by increasing the lipid order in the
liver of rainbow trout. This agrees with our finding of increased amount of SFA in the
polar lipids. The biological consequences of changes in the lipid compositions of the

membrane are unknown and need future studies.
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4.2.5 Effects of APs on sex steroids in plasma of cod.

A striking observation from both experiments is that AP exposure brings about a
considerable drop in the plasma E2 level in the females even at very AP low doses
(0.02 mg/kg). The effects depended on the maturation status of the cod. In experiment
I the reduction in E2 was first visible after 2 months of exposure in November. In the
low-dose group and the high-dose group the E2 level were 68 % and 44 % of control,
respectively. This effect became stronger in December (low-dose 71 % and high-dose
35 % of the control), but the difference was not significant before January. This was
probably because the number of fish was to low to give statistically significant effects
in November and December (see table 6, Paper III). In experiment II the exposure
first started in November. The down-regulation of E2 levels by AP treatment was
confirmed in this experiment and significant effects were found both after 1 and 5
weeks of exposure (Paper IV). The plasma level of T in female fish was also affected,

but the results were more ambiguous than for E2.

In male cod, AP exposure also affected the plasma levels of 11-KT and T, basically by
lowering the levels. However, like T in the female fish, there were large seasonal

variations and no dose-related trend.

One hypothesis explaining reductions in the steroid concentrations may be that AP
exposure increases the steroid catabolism. NP is shown to be an agonist of the orphan
nuclear receptors, PXR and CAR that are involved in regulation of several
detoxification enzymes, such as the CYP2B and CYP3A family members, which are
responsible for the metabolism of steroids and this may alter their physiological levels
(Chapter 1.10.3). The fact that we found a dose-related increase in hepatic CYPIA
and CYP3A protein in male cod could indicate an induced metabolism, however, such
effect was not observed in the females (Paper VI). The increase of CYP1A protein
levels in the male fish was not linked to an increase in EROD activity, implying that
APs inhibit the CYP1A activity in vivo. In addition, in vitro studies of cod hepatocytes
showed a strong AP dose-dependent reduction in both the CYPIA and CYP3A
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activities. The increase in the amount of CYP3A protein may indicate an increase in
the potential steroid catabolism in the male cod, but not in the females. A general
increase in steroid catabolism does not explain the observed decrease in E2 (female)
and 11-KT levels (male), because the level of testosterone was maintained or even
increased. There is also support for that AP inhibit phase II enzymes and therby
decrease steroid catabolism. Kirk et al., (2003) finds that para-substituated APs (C1-
C9) reduces E2 sulfations in liver cytosol of chub (Leuciscus cephalus). Additionally,
NP exposure has an inhibiting effect on glucuronidation of T and E2 in juvenile turbot
(Scophthalmus maximus) and juvenile cod (Martin-Skilton et al., 2006c) and NP is also
reducing E2 sulfation and glucuronidation in carp testicular microsomes (Thibaut and
Porte, 2004) and E2 sulfation in liver cytosols from two marine fish, mullus barbatus

and Lepidorhombus boscii (Martin-Skilton et al., 2006a).

Therefore, another explanation to the drop seen in E2 and 11-KT levels could be that
AP exposure affects the steroidogenic enzymes (Chapter 1.10.3, Paper IV). One
interesting finding in the present study has been that there is no clear dose-response
relationship for E2 to AP exposure. The group that received the lowest dose (0.02
mg/kg) displayed the same decrease in E2 level as those that received higher doses.
This may indicate that E2 down-regulation is a result of exceeding a threshold level.
Currently we are doing further work to reveal the mechanism of action of APs on the
steroid levels in cod. Several studies indicate that APs disrupt the natural endocrinal
feedback system of the fish somewhere in the central nervous system and this affects
the secretion of GTH from the pituitary and thereby indicretly affect the steroid
synthesis (see Chapter 1.10.2).

4.2.6 Effects of APs on VTG in plasma of cod.

A massive induction of VTG in female and male cod following exposure to E2

(5mg/kg) confirms the VTG's sensitivity as a biomarker for estrogen (Paper IV). It
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confirms previous reports on the cod's suitability as a model organism in these studies

(Hylland and Haux, 1997; Hylland, 2000).

We demonstrated that the AP exposure gave a weak induction of VTG in the male cod.
Experiment I gave statistically inconclusive VTG values. Nevertheless, more male fish
were producing VTG in the exposed groups than in the control (Paper III). In
Experiment 11, there was a weak dose-related induction of VTG (Paper IV). It should
be noted that even though there was an induction of VTG following AP exposure, the

induction was several thousand times lower than in the fish exposed to E2.

Some surprising seasonal differences were observed in the control groups. November
samples from both experiments showed higher plasma VTG levels in the males than
fish from the other samples. After 1 week in Experiment II (November), measurable
quantities of VTG were found in as much as 80% of the fish in the control group, while
at the end of December (5 weeks) only 30% of the control fish had detectable levels of
VTG in their plasma. This may be the effect of normal seasonal fluctuations of

endogenous E2.

E2 plays an important role in the early part of spermatogenesis, regulating the renewal
of spermatogonia (Miura and Miura, 2003). In the few studies reporting E2 in plasma
from male teleost fish, concentrations are generally below 1 ng/ml (eel (Anguilla
japonica): 0.5 ng/ml (Miura et al., 1999); huchen (Hucho perryi): 0.35 ng/ml (Amer et
al., 2001); flounder (Platichthys flesus): 1.2 ng/ml (Scott, 2000); carp (Cyprinus
carpio): 0.25 ng/ml (Villeneuve et al., 2002): Atlantic cod: 0.04-0.37 ng/ml (Scott et
al., 2006). It is an unanswered question if these naturally occurring levels of E2 can be
enough to induce VTG in male fish. Scott et al., (2006) measure induction of VTG in
blood plasma of male cod caught in the North Sea and other areas around UK and
Norway. A positive relationship between VTG and fish size was reported, but there
were not found any correlation between plasma concentrations of E2 and VTG. It is
suggested that large cod are exposed for estrogenic compounds through the food chain.

Difference in the feeding ecology between large cod (feeding close to the bottom after
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large prey) and small cod (feeding on free-swimming organisms in the water

column) may explain the observed differents in VTG levels.

In aquaculture, there may be other sources of estrogenic substances. In mature male
aquaculture cod VTG concentrations of 6.7 = 4.5 pg/ml have been found and this is
higher than generally found in wild fish (CEFAS, 2005). This points to the presence of
elevated estrogen levels in farmed fish. At present, it can only be speculated regarding
the reason for this. It is possible that phytoestrogens found in commercial fish diets
play a role. In experimental settings, it is also possible that natural estrogen or its
metabolites, secreted through urine from female fish, influence the male hormone
levels. The recent findings of low, natural E2 levels in male fish, as well as the potency
of E2 as a VTG inductor, may indicate that VTG is unsuitable as a biomarker for
xenoestrogens at very low concentrations. Our data suggest that the hormone system
may be affected by environmental contaminants at very low concentrations, while
VTG-induction is only moderately susceptible to such influence. As research moves
towards effect-studies of lower and lower concentrations of contaminants, we believe it
will be necessary to use additional biomarkers for estrogenic substances than VTG

induction.

4.2.7 Do AP exposure have adverse effects on the reproduction of cod

The results from the present thesis (Paper III and IV) show a reduction in steroid
levels, ovary growth and testis maturation status at the lowest concentration tested, 20
ug/kg nominal body burden (sum of four APs), but it is not clear if these effects are
causing adverse effects on the cod reproduction. Table 7 gives corresponding water
concentrations and body burden (assumes a BCF factor of 500), useful when
comparing the doses of different exposure regimes. Back calculations of the 20 pg/kg
are equivalent to a theoretical total concentration of 40 ng/l, which are very low effect

concentrations and below levels reported from other studies. Our finding need to be
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confirmed in water exposure experiments, but it brings to attention to that there can be
large differences in the response to AP between different species and that effects

concentrations may be down in the ng/l levels.

Table 7. Corresponding water concentration and body burdens, using BCF = 500

Water concentration Body burden
1 ng/l — 0.5 pg/kg
40 ng/l — 20 pg/kg
100 ng/1 — 50 pg/kg
1 pg/l — 500 pg/kg
100 pg/l > 50 mg/kg

Experiment II showed considerable effects on the pattern of maturation of the testis in
males (Paper IV). There was an increase in the amount of spermatogonia. There also
appeared to be an increase in the amount of spermatocytes and a reduction in
spermatozoa. Similar effects after AP exposure have been seen in a number of other
fish species, but it still remains to find out if the changes in maturation status are
leading to reduced sperm quality and thereby affecting the cability of the male cod to

fertilize the eggs.

As discused above, the most significant effects found from these experiments are an
anti-estrogenic effect of the APs, possibly by APs causing a down-regulation of natural
E, synthesis (Paper III and IV). Normally, there is a direct relationship between E2,
vitellogenin and gonadal growth. It is therefore not surprising that low E2 levels were
accompanied by a drop in gonadal weight. The fish from the positive control group
aborted the oocyte maturation, resorbing the oocytes through atresia. The groups
exposed to APs did not show an increased occurrence of atresia. However, the oocytes
had a significant reduction in oocyte diameter. Histologically, the oocytes seem to
develop slowly but otherwise normally. The oocytes of the exposed groups were in the
beginning of vitellogenesis at a time when the controls were in late vitellogenesis. The

significantly smaller oocytes in the exposed groups predicted delayed spawning.

The natural spawning time for the North Sea cod stock are in spring, around the time
of the initiation of the seasonal plankton development. The copepod Calanus

70



finmarchicus is a key zooplankton species in Norwegian waters, and early
developmental stages (nauplius larvae) of this species are the main prey for fish larvae
(Sundby, 2000). Variation in the timing of the plankton development versus the
spawning and larval development of fish has been considered in the match-mismatch
hypothesis to be a major cause for variable recruitment of fish (Cushing, 1990;
Beaugrand et al., 2003; Platt et al., 2003). A delay in start of spawning, as estimated
for our AP-exposed fish increases the chances of the eggs being spawned too late
relative to the optimum. Data from the Baltic Sea show that over the last decade, there
has been a shift towards spawning several weeks later in the season than has been the
case in the past (Wieland et al., 2000). The temporal overlap between the developing
Baltic cod larvae and their prey has decreased since the mid-1980s and this coincides
with a massive reduction in the recruitment of this cod stock. (Hinrichsen et al., 2005).
The main theories trying to explain the shift in spawning times are changes in water
temperature during the period of gonadal maturation, density-dependent processes
related to the size of the spawning stock, and food availability. But as shown in the
present work, endocrine disrupting chemicals also effect the maturation of the gonads.
This indicates that EDCs may be at least partially responsible for the changes seen in

fish populations in the highly polluted Baltic Sea.

As support for such a theory, long-term monitoring (1988-2000) in the Baltic Sea of
the gonadal size of female perch (Perca fluviatilis) revealed a strong trend towards
decreased GSI. Pollution are suggested to play an important role as causative for this
phenomenon (Hansson et al., 2006). Similarly, Noaksson et al. found a delay in the
gonadal maturation of wild female perch, roach (Rutilus rutilus) and brook trout
(Salvelinus fontinalis) (Noaksson et al., 2001; Noaksson et al., 2003; Noaksson et al.,
2005) living in lakes receiving leakage water from old refuse dumps. The compounds
causing endocrine disruption are not identified. The observed reduction in plasma
steroid levels (T and E2) in combination with decreased GSI is, however, similar to the

findings in cod in the present publication.
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In medaka, it has been found that exposure to NP results in reduced realised fecundity
(Gronen et al., 1999; Shioda and Wakabayashi, 2000a). These authors also noted a
tendency for fewer eggs to hatch when an unexposed female spawned with an exposed
male. This aspect has not been examined in our study, but there is every reason to look
further into it. If exposure reduces both realised fecundity and the proportion of eggs

that actually hatch, this would increase the effects of delayed spawning.

It is not possible from our results to conclude that the AP exposure is resulting in
advanced effects on the cod reproduction, but the findings presented clearly calls for

more studies.

4.2.8 Bioaccumulation and oral uptake of APs in cod

Our decision to expose fish through their food in our experiments was due to the
practical and environmental consequences of exposure through the water. Large fish
were used, and they were kept in large tanks. The fish require a continuous supply of
large quantities of water (20000 I/h). A large-scale exposure experiment would require
large amounts of APs and the building of costly infrastructure to properly handle the

discharged water.

The body burden of Sug AP/kg was expected to be equivalent to the quantity that the
fish might absorb if exposed to seawater with 10 ng/l of the individual APs. This
simplified calculation assumes a BCF factor of 500 for all four APs. 5 ug/kg is
equivalent to a theoretical total concentration (sum of all four APs) of 40 ng/l. This
concentration is lower than the levels that have previously been reported to affect the

endocrine system in fish.

It may be argued that oral exposure results in APs being distributed in the body to a
lesser extent than with exposure through the water. This should, however, result in an

underestimation of the effects of the exposure. There seems to be no reason to suggest

72



that oral exposure leads to increased bioaccumulation. Consequently, our results
more likely underestimate than overestimate the effects of AP exposure. Furthermore,
the concentrations of APs actually found in the tissues are more likely overestimated
than underestimated. On this background, it is clear that the present findings represent
a minimum of expected detrimental effects of exposure to the tested concentrations of
AP. Sundt and Baussant (Sundt and Baussant, 2003) compared the uptake and tissue
distribution of the four APs used in our study in cod, using oral and waterborne
exposure. They found that the bioconcentation from seawater was much higher than
via absorption through the gut wall. A similar situation is also found in fathead
minnows (Pimephales promelas) (Pickford et al., 2003). These studies suggest that the
actual AP body burden in the current experiment can be only 10% of the nominal body
burden and, furthermore, that the exposure level giving significant disruptions in the
reproductive system of female cod may be as low as 2 pg/kg body burden, which is

equivalent to 4 ng/l in the seawater.

4.3 Alkylphenols from offshore oil production

Limited data have been available on the contents of long-chain APs (C4 - C7) in
produced water (Brendehaug et al., 1992; Ree and Johnsen, 1996). The analytical
methods generally used (GC-MS of underivatised phenols with cluster analysis of all
1somers with specific masses) have low selectivity and overestimations are likely to
have occurred. Methods with higher sensitivity and more selective detection, have now
been developed (Paper 1). A large number of APs are found in an average produced
water sample. Theoretically, there can be hundreds of isomers of C,-Cy APs. Most of
them are not commercially available. Only the long-chain, para-substituted APs have
significant estrogenic effects. Ortho-substituted, meta-substituted and short-chain APs
have very little or no estrogen effect (Routledge and Sumpter, 1997). At the IMR, an
effort is currently made to synthesise as many as possible of the long-chain para-

substituted AP isomers. We hope to be able to identify and quantify more of the para-
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substituted AP from C, to C, and then estimate the total estrogenic potential from APs
in produced water. Until such data are available, it will only be possible to obtain long-
chain AP concentrations of a few standard compounds or as the sum of all isomers.
The method described in Paper 1, have been used for determination of APs in
produced water from 9 different oil fields on the Norwegian sector and the total
concentrations of APs > C, are found to be in the range of 5-81 pg/l (in preparation).
Thomas et al used in vitro methods (yeast estrogen screen, YES) to detect estrogen
receptor (ER) agonists in produced water from the North Sea oil installation (Thomas
et al.,, 2004b; Thomas et al., 2004a). They found that produced water contains ER
agonists in amounts corresponding to E, equivalents from the low ng/l and up to 91
ng/l. This corresponds well with the levels of APs, considering that APs are in the

order of 1000 times weaker ER agonist than E2 (Routledge and Sumpter, 1997).

The produced water is rapidly diluted after being discharged from the platform.
Computer simulations show 30 and 100 times dilution 10 m and 100 m from the outlet,
respectively. Further dilution is, however, slower, and the model showed that 1:1000
dilution occurred as far as 1000 m from the outlet (Neff, 2002). The results from the
computer model and field data indicate that dispersed oil may be found in
concentrations from 1-3 pg/l in an area with a radius of 50 to 100 km around the
largest oil fields in the North Sea (Rye et al., 1998). This corresponds to a dilution
factor of approx. 1:10.000.

There are no empirical data available on concentrations of long chain APs in the sea
around North Sea offshore installations, but as discussed above, the concentrations in
the marine environment should be low. On the other hand, the discharges are
continuous and prognoses indicate increased discharges as the oil field age. Little is
known about the fate of long-chain APs in produced water after it enters the sea. The
degradation rate of APs falls rapidly with increasing chain length and APs have high
sedimentation rates (Chapter 1.6). Measurement of long chain APs in seawater and
sediment around oil installations should therefore be a priority in future risks

assessment studies.
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The results from the presented experiments have been used in a theoretical study
titled: “Risk Assessment of reproductive effects of alkyl phenols in produced water on
fish stocks in the North Sea” (Myhre et al., 2005). The modeling is done using the
DREAM software (developed by Sintef, RF-Akvamiljg and TNO, Delft, the
Netherlands). The model includes the combined discharges from three major
Norwegian oil fields (Tampen, Ekofisk and Sleipner). The fish stock distributions
(cod, saithe and haddock, from the international bottom trawl surveys (IBTS) database)
and a Predicted No Effect Concentration (PNEC) for APs of 4 ng/l were used as basis
data for the calculations. The total amount of APs>C, discharged from all the oil
installation was estimated to be 25.6 kg/day, dissolved in 364.300 m*/day produced
water. The conclusion of the risk assessment was: “The overall results of the
simulations with DREAM show that there is no significant risk potential. In other
words there were no fish particles, which accumulated APs above the critical body
burden of 2 pg/kg in any of the simulations. The highest accumulated body burden in
any of the fish particles was 0.09 pg/kg” (Myhre et al., 2005). This new modelling
work indicates that the article of Rye et al. (1996) overestimated the body burden and
that the doses used in these experiments may not be expected to arise from produced
water discharges alone. However, both models are encumbered with uncertainty,
primarily because the fate of the long chain APs in the sea is not known. It is
reasonable to believe that these relatively hydrophobic substances will bind to
biological particles in the sea. This may affect distribution, degradation and also uptake
of APs in the food chain. All these unknown factors urge for proper field studies in
order to be able to forecast the impact of these biologically active chemicals on the

marine environment.
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4.4 Conclusions.

The results presented in this thesis have shown that cod is sensitive to AP
contamination of the environment. Even though the concentrations used in our
experiments are higher than may reasonably be expected as the result of oil production
alone, measurements of real AP levels in the sea indicate that APs may still be a
significant factor in the marine environment. Only when the environmental fate of the
long-chain APs has been more thoroughly understood, the APs may possibly be ruled
out as a significant detrimental factor of proper growth and development of the
relevant fish populations. Collecting information about the concentrations of long-
chain APs in the open water and in marine sediments is mandatory for sound

evaluations of the environmental effects of long-chain APs.

4.5 Future perspectives.

New experiments have been conducted in 2005 to supplement and clarify the results
from the present study. These include exposure to lower doses of APs to provide
knowledge about the true "no effect" concentration. Furthermore, the fish have also
been exposed to real produced water with its natural high complexity of components.
Cod have also been reared through spawning after long-time exposure (20 weeks) to
APs and produced water, aiming to confirm the estimated delay in spawning shown in

this thesis, as well as searching for any effects on realised fecundity and fertilisation.

To begin elucidating the complex mechanisms involved in the response to APs,
pitutitary gene expression related to FSH and LH will be analysed, as well as
aromatase activity in the gonads and the brain. Steroid profiles will be analysed in
blood plasma, gonads and brain, together with the amount of conjugated steroids in the

bile.
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