
ENGINEERING OPTIMIZATION
https://doi.org/10.1080/0305215X.2020.1717482

Optimization of reliable cyclic cable layouts in offshore wind farms

Arne Klein and Dag Haugland

Department of Informatics, University of Bergen, Bergen, Norway

ABSTRACT
A novel approach for optimizing reliable cable layouts in offshore wind
farms is presented.While optimizationmodels traditionally are designed to
suggest acyclic cable routes, those developed in this work recognize that
cyclic layouts reduce the consequences of cable failures. Themodels under
study take into account that cables cannot cross each other, which, par-
ticularly in instances with restrictive cable capacity, can make it attractive
to let cables follow a joint trajectory, and visit turbines without connect-
ing to them. A two-layered optimization process is developed. The outer
layer is associated with an integer programming problem, which is subject
to simultaneous generation of rows and columns representing cable paths.
In the inner layer, a problem identifying feasible low cost paths is solved,
guided by optimal dual variable values in the continuous relaxation of the
former problem. Results from experimental applications to existing wind
farms show good promise of the method.
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1. Introduction

Wind energy has been the most steadily growing energy sector in the European Union in the last 15
years. In 2015 and 2016, it overtook hydro and coal power generation capacity in the EU, and is now
the second largest energy sector after natural gas. Offshore wind energy made up about 10% of the
installed wind capacity in 2017, with a growing market share (WindEurope 2017).

As of 2017, the first bid for large-scale subsidy-free offshore wind farms was made by Ørsted,
committing to build two 240MW projects, which are planned to be in operation by 2024 (Dong
Energy 2017). Later, Vattenfall was also awarded contracts to develop subsidy-free offshore wind
farms (CleanTechnica 2019): Hollandse Kust Zuid 1&2 offshore wind farms, with a total capacity
of up to 750MW, are planned to become operative in 2022. According to this plan, they will be the
first subsidy-free offshore wind farms to go into operation. In 2019, Vattenfall won the contract also
to develop Hollandse Kust Zuid 3&4 (up to 760MW) without subsidies. Even though projects with-
out subsidies are emerging, and the levelized cost of energy (LCOE) of offshore wind energy has been
drastically reduced over the last decade, the challenge of reducing costs remains.

By optimizing the layout of offshore wind farms, the LCOE can be cut. This is accomplished
either in terms of reductions in the investment, operational or maintenance costs, or by increas-
ing the energy yield. In wind farms characterized by homogeneous soil conditions, optimal turbine
placement has little effect on the construction costs, and will mainly be targeted at increased power
production (Larsen et al. 2011). In contrast to that, the purpose of optimizing the routes of intra-
array power cables, which connect the turbines to power substations, is to cut the construction costs.
Fagerfjäll (2010) and Pillai et al. (2015, 2017) study how cable routes and turbine positions can be
optimized concurrently. This requires a complex cost model, setting construction costs into context
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with power production, and possibly including fatigue calculations, operations andmaintenance, and
more (Larsen et al. 2011).

A cyclic cable layout, also referred to as a closed-loop structure (Fischetti and Pisinger 2018b),
entails higher construction costs of the wind farm, but can compensate financially in terms of
improved reliability. In the case of a cable failure, the repair process may be time consuming because
specialized vessels and crew have to be available and the maintenance operations require favourable
weather conditions. The advantage of a reliable cyclic cable layout is that the wind turbines can
continue to operate by using the alternative path for power transport. The economic advantage of
being able to produce power in the case of failure can outweigh the additional construction costs
of reliable cabling. Cyclic cable routes also have a technological advantage. Many electronic power
components require grid synchronicity, and the loss of grid connection can therefore damage these
components. Either a cyclic (reliable) or an acyclic and possibly ramified (branching) cable layout
must be used. Which of these to choose has to be determined in the planning phase of an offshore
wind farm, taking into account, amongst other things, expected failure rates, repair times and loss of
production.

The goal of the present work is to compute intra-array cable layouts in offshore wind farms such
that the costs are minimized. The focus is on instances where reliable cable layouts are required, and
to be accomplished by means of cyclic cable paths. Not only do the turbines have to be connected to a
substation by a cable, they also have to remain connected in the case of a cable breakdown occurring.
In the presumably unlikely event of multiple failures on the same cable, it is however not guaran-
teed that every turbine remains connected. The approach taken is thus that the redundancy level of
the cable layout is fixed. Trade-off between shortfall in production revenues and costs in enhanced
reliability is consequently disregarded.

Operation and maintenance constitute a major part of the lifetime costs of offshore wind-farm
projects. Such cost components are also strongly correlated with the cable laying costs, which in their
turn depend heavily on the cable length and type. Omission of costs incurred in the operational phase
is therefore not likely to introduce a strong bias in the comparison of two alternative cable layouts,
given that they have identical redundancy levels. For the purpose of simplicity andmodel tractability,
the study is consequently confined to costs incurred in the construction phase, while implications
that the choice of routes might have on operation, maintenance and fatigue are neglected.

1.1. Literature review

Since the frequently cited work by Mosetti, Poloni, and Diviacco (1994), a large number of research
articles on optimization of turbine locations have emerged. Approaches that have been applied include
various metaheuristic methods, such as genetic algorithms (Grady, Hussaini, and Abdullah 2005;
Emami and Noghreh 2010; Chen et al. 2013; Pillai et al. 2016, 2017), particle swarm optimization
(Chowdhury et al. 2013; Pillai et al. 2018), simulation of viral life (Ituarte-Villarreal and Espiritu 2011)
and evolutionary algorithms (González et al. 2010; Rodrigues, Bauer, and Bosman 2016). Optimized
turbine location has also been approached by pattern search (Du Pont and Cagan 2012), simulation
(Marmidis, Lazarou, and Pyrgioti 2008), and mathematical programming techniques, such as linear
(Fagerfjäll 2010) and quadratic (Quan andKim 2019) integer programming, and constraint program-
ming (Zhang et al. 2014). For an overview of research on optimized turbine location in onshore and
offshore wind farms, published before 2014, the reader is referred to the survey by Herbert-Acero
et al. (2014).

Research on the optimization of cable layouts in offshore wind farms has proved thatmixed integer
linear programming (MILP) models are powerful tools. Works in this vein include models based on
minimum Steiner tree (Fagerfjäll 2010) and capacitated spanning tree (Lindahl et al. 2013; Svend-
sen 2013) problems, as well as the capacitated clustering model developed by Pillai et al. (2015). The
model presented by Lindahl et al. (2013) is the basis for Ørsted’s cabling methodology. Metaheuris-
tic methods, especially genetic algorithms (Lingling, Yang, and Xiaoming 2009; Gonzalez-Longatt et
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al. 2012; Pillai et al. 2016; Shin and Kim 2017), and, more recently, particle swarm methods (Pillai
et al. 2018) have also been applied for optimizing turbine locations and cable routes connecting the
turbines.

According to Pillai et al. (2015) and Fischetti and Pisinger (2018a, 2018b, 2018c, 2019), a number
of limitations apply to possible cable lines. Each cable can only transport a certain amount of power,
which imposes an upper bound on the number of turbines connected to it. The maximum number
of turbines per cable is decided upfront, taking into account the power losses caused by this choice.
In addition, cable crossings are disallowed due to technical limitations: the mooring process of the
cables would become significantly more complex with cable crossings, and maintenance and repairs
would become more difficult and expensive. Cable cost can be reduced by minimizing the total cable
length in the wind park.

Recent scientific publications (Lindahl et al. 2013; Bauer and Lysgaard 2015; Klein et al. 2015; Pillai
et al. 2015, 2016, 2018; Cerveira, Baptista, andPires 2016; Cerveira et al. 2016;Wędzik, Siewierski, and
Szypowski 2016; Hertz et al. 2017; Fischetti and Pisinger 2018a, 2018b, 2018c, 2019; Klein and Haug-
land 2019) assume that all turbines are connected to substations in a tree with the substation as the
root node. From each turbine therefore, there exists a unique cable path to the substation. Bauer and
Lysgaard (2015) introduce an integer programming (IP) model with hop-indexed variables, resem-
bling a planar open vehicle routing problem.However, their formulation does not allow for branching
at the turbine nodes. The resulting layouts are trees without branches, which is a directed star, with
the substation as the root.

MILP models supporting ramified cable routes, where branching at turbine nodes is allowed, are
introduced by Pillai et al. (2015), Klein et al. (2015), Wędzik, Siewierski, and Szypowski (2016) and
Fischetti and Pisinger (2018a, 2018b). Pillai et al. (2015) also suggest a way to handle obstacles, by cal-
culating the shortest path between pairs of turbines, taking into account obstacles, in a pre-processing
step. This technique is useful for handling realistic instances with realistic costs. It does, however, not
change the optimization model.

To avoid cable routes intersecting forbidden areas on the seabed, including physical obstacles,
Fischetti and Pisinger (2018b) introduce optional connection points at the boundary of such areas.
Bymeans of the additional points, referred to as Steiner points, the best obstacle-avoiding cable routes
can be assessed. Fischetti andPisinger (2018c) further extend theMILPmodel by incorporating future
reduced revenues due to power losses. Independently of the above work, the idea of Steiner points is
also applied by Klein and Haugland (2019). They present a model where segments of different cables
are allowed to share a joint trajectory, and cables can be laid in the close vicinity of turbines they do
not connect. The latter is achieved by introducing Steiner points on arbitrarily small circles centred
on the turbine locations to which the cables are allowed to connect. A similar method is applied to
allow for (multiple) cables laid around obstacles.

The reliability of cable layouts is an important feature that does not appear to have been
studied extensively in the optimization literature. As pointed out by Wei et al. (2017), cyclic lay-
outs have been used in several cases, for example in the London Array and Robin Rigg offshore
wind farms (The Kingfisher Information Service—Offshore Renewable & Cable Awareness Project
(KIS-ORCA) 2016a, 2016b). Quinonez-Varela et al. (2007) compare different types of offshore
wind-farm layout, including reliable and ramified layouts, and highlight the advantages of reliable
ring-layouts with a structure as introduced in Section 1. While targeting the needs for a partic-
ular company, Fischetti and Pisinger (2018b) propose an optimization model supporting cyclic
cables. Their implicit assumption is that the wind farms have a single substation, in contrast to, for
example, the London Array instance. Gong, Kuenzel, and Pal (2018) develop particle swarm meth-
ods adapted to instances demanding a possibly higher redundancy level than is offered by purely
cyclic cables. Compared with the ring layout, the multi-loop layouts studied by Gong, Kuenzel,
and Pal (2018) have additional cable connections, increasing the reliability further. More failures
are tolerated before turbines are disconnected, but such structures also increase the cable costs
significantly.
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1.2. Contributions

A review of the literature on the optimization of cyclic cable layouts for offshore wind farms reveals
the following gaps.

(1) Following Fischetti and Pisinger (2018b), it is straightforward to extend hop-indexed formula-
tions (Bauer and Lysgaard 2015; Klein and Haugland 2019) such that they account for reliable
cyclic cable layouts. In instances where multiple substations are allowed, however, the extension
implies a duplication of the binary variables over the set of substations. This is likely to render
the model size intractable for general-purpose solvers, and calls for tailored solution strategies.

(2) Because of the non-crossing constraints, the route of one cable represents an obstacle to other
cables. The optimizationmodelmust respect such endogenous obstacles, in addition to any exoge-
nous ones. As a result, whenever costs can thus be cut, two cable trajectories should partly
coincide. Figure 1 depicts one such instance, where the solution with partly joint trajectories
(right) incurs a lower cost than the one without (middle). Joint trajectories complicate the mod-
elling of the non-crossing requirements (see Section 2), and the scientific literature seems to offer
no study of cyclic cable layouts where this feature is incorporated.

In this work, contributions to the literature on cable layout optimization in offshore wind energy
are made by closing the above gaps. First, a model supporting reliable cable layouts is formulated.
That is, all turbines are connected to the substation by cyclic cables, the routes of which are allowed
to coincide. Second, a novel path-based model and an associated solution procedure are developed,
along with numerical experiments examining the computational performance of the procedure.

Reflecting the possibility of joint cable trajectories, it is necessary to distinguish between connecting
and non-connecting cables visiting a turbine. In any feasible cable layout, each turbine is visited by
exactly one connecting cable, and any number (zero ormore) of non-connecting ones. In the solution
in Figure 1 (right), the turbines closest to the substation are visited by both of the cables, but connected
only by the short cable (solid line). The turbines located remotely from the substation are visited only
by the long cable (dashed line), which also connects them. Between the substation and the closest
turbines, the two cables follow a joint trajectory.

In what follows, two cables are said to be parallel if they partly share a joint trajectory. Practical
implementations of parallel cables require a physical separation between them, such that their trajec-
tories will not be exactly identical. Small practical adjustments of the optimized cable layout may also
be necessary to account for other technical details, such as bend radii and cable turns. It is assumed
throughout the current text that such adjustments are too modest to have a significant impact on the
best choice of cable layout, and will consequently not be considered further. Owing to the needs for
isolation and cable repair for example, cables must be laid at some minimum distance from the tur-
bines that they do not connect. Therefore, the presence of non-connecting cables visiting a turbine
might induce practical adjustments of the cable routes, which also are assumed to be negligible. Near

Figure 1. Example of a case where parallel cables give a better solution. Left: disallowed due to cable crossings. Middle: feasible
solution without cable crossings. Right: improved solution with parallel cables.



ENGINEERING OPTIMIZATION 5

the substations, it might be necessary to modify the cable trajectories in such a way that their angular
separation is sufficient. This also falls into the category of adjustments that are assumed to be made
after optimization of the cable layout, and is consequently not incorporated in the analysis to follow.
It is further assumed that none of the adjustments incur extra costs.

The article is organized as follows. In Section 2, the problem is defined in precise mathematical
terms. The master problem and the subproblem, as well as the iterative algorithm exploiting the solu-
tions to both problems, are explained in detail in Section 3. In Section 4, the experiments that have
been conducted are described, and experimental results are presented.

2. Problem definition

Before describing in detail the problem to be solved, this section introduces the notationwhich is used
throughout the article. It is assumed that a set T of turbine nodes and a set D of substation nodes are
given. The node set is denotedN = D ∪ T. Together with the setA ⊆ N × N of arcs, representing the
possible cable connections between the nodes, the node set defines a directed graphG = (N,A). The
set of end nodes of arcs leaving node i ∈ N is denoted N+

i = {j ∈ N : (i, j) ∈ A}, and the set of start
nodes of arcs entering i is denoted N−

i = {j ∈ N : (j, i) ∈ A}. Let CT denote the maximum number
of turbines a single cable line can connect. For simplicity, it is assumed that all cables have the same
cross-section, and thereby that the bound CT applies to all cable lines. As explained in Section 1.2,
any given cable subdivides the set of turbines it visits into two subsets, such that the first contains
all turbines that the cable connects, and the second contains the turbines connected by some other
visiting cable. Let CN ∈ [CT , |T|] denote an upper bound on the total number of turbines a cable can
visit.

In this text, a path p in G is understood to be a pair (N(p),T(p)) consisting of

• a sequence of nodes on the form N(p) = (dp, t1p , . . . , tmp , dp), where dp ∈ D, t1p , . . . , tmp ∈ T and
m ≥ 1 is the number of turbine nodes that the path p visits, and

• a non-empty subset T(p) ⊆ {t1p , . . . , tmp }.

In this definition, p represents a cable line, N(p) represents the substation and the turbines vis-
ited by the cable, the set T(p) represents the turbines that the cable connects, and N(p) \ T(p) \ D
represents the visited turbines connected by other cables. The arc set of path p is denoted A(p) =
{(dp, t1p), . . . , (tmp , dp)}, and G(p) denotes the corresponding directed subgraph. Let P be the set of
paths p in G satisfying |T(p)| ≤ CT and |T ∩ N(p)| ≤ CN .

The injective function L : N �→ R
2 defines the embedding of the nodes in the plane. Corre-

spondingly, the embedding of an arc (i, j) ∈ A is the closed line segment from L(i) to L(j), written
as L[i, j] = {L(i) + λ(L(j) − L(i)) : λ ∈ [0, 1]}. The corresponding open line segment is denoted
L(i, j) = {L(i) + λ(L(j) − L(i)) : λ ∈ (0, 1)}. The embedding of a path p ∈ P is the concatenation of
the embedding of its arcs A(p), and thus defined as L(p) = ⋃

(i,j)∈A(p) L[i, j]. Further, the interior of
the polygon bounded by L(p) is denoted I(p). A list of symbols introduced is given in Table 1.

The installation cost of the intra-array grid is composed of a number of different types of expense.
However, many of those will be constant irrespective of the chosen cable layout, and thus do not need
to be considered when optimizing intra-array cable layouts. For cyclic cable layouts, the number of
turbine–cable connections is constant, as each turbine has exactly two cable connections. The focus
of the current work is thus the variable costs, which are mainly incurred by the cables themselves and
the trenching process. It is therefore reasonable to assume the costs to be approximately proportional
to the cable length. The optimization problem is to find a cable layout, i.e. a set of cyclic cable paths
fulfilling all requirements detailed below, which has a minimal total cable length.

Several requirements are imposed in the reliable intra-array cabling problem: to ensure delivery
of the generated electricity, each turbine t ∈ T must be connected to a substation d ∈ D by a cable
p ∈ P. Reliability of the cable paths implies that there must be two distinct paths for the electricity
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Table 1. Nomenclature.

Symbol Explanation

T Set of turbine nodes
D Set of substation nodes
N Set of nodes (N = T ∪ D)
A Set of arcs representing possible cable segments
G Digraph representing possible cable layouts (G = (N, A))
P Set of feasible paths in G
N+
i Out-neighbours of node i in G

N−
i In-neighbours of node i in G

CT Cable capacity, i.e. an upper bound on the number of turbines to which a cable can connect
CN An upper bound on the number of turbines a cable path can visit
N(p) The cyclic sequence of nodes visited by cable path p
T(p) The set of turbines connected by cable path p
A(p) The set of arcs in path p
G(p) The graph with node set N(p) and arc set A(p) corresponding to path p
L(i) The plane embedding (coordinates) of node i
L(i, j) The plane embedding (open interval) of arc (i, j)
L[i, j] The plane embedding (closed interval) of arc (i, j)
L(p) The plane embedding of path p
I(p) The interior of the polygon bounded by L(p)
χp The set of paths crossing path p
� The set of crossing arc pairs
cij The length of a linear cable segment L[i, j]
cp The length of the cable corresponding to path p

transported from each turbine. Cyclic cables enable continued use of all turbines without restrictions
in the case of a single cable failure. For simplicity, the cyclic routes are assumed to be fully rated, such
that, in the event of a single cable failure, full power can still be exported. Also in the case of a turbine
failure, which cuts power transport in the turbine, all other turbines can continue to operate. In graph
theory terms, each subgraph G(p) must be a cycle intersecting D.

The following three categories of disallowed cable crossing are considered.

(1) Arc crossing: for some arcs (i, j) 
= (i′, j′), L(i, j) and L(i′, j′) intersect. That is, L(i, j) ∩ L(i′, j′) 
=
∅.

(2) Node crossing: for paths p and p′, where p contains arcs (i, t) and (t, j), and p′ contains arcs (i′, t)
and (t, j′), conditions L(j′) ∈ I(p) and L(i′) /∈ I(p) ∪ L(p) hold.

(3) Path crossing: for paths p and p′, where, for an integer k ≥ 1 denoting the number of turbines
visited jointly by p and p′, p contains arcs (i, t1), (t1, t2), . . . , (tk−1, tk), (tk, j), and p′ contains arcs
(i′, t1), (t1, t2), . . . , (tk−1, tk), (tk, j′), conditions L(j′) ∈ I(p) and L(i′) /∈ I(p) ∪ L(p) hold.

Node crossing is a special case of path crossing (k = 1). The categories are illustrated in Figure 2.
Arc crossing is avoided by constraints defining two arcs to be mutually exclusive. In optimization

models that are formulated in terms of binary variables defined over the arc set, crossing of two given

Figure 2. Illustration of different types of cable crossing. Left: arc crossing. Middle: node crossing. Right: path crossing.
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arcs is avoided by restricting the sum of the corresponding variables to be no more than one. This
applies not only to models consisting uniquely of binary variables (Bauer and Lysgaard 2015; Klein
andHaugland 2019), but also tomodels containing continuous power flow variables (Pillai et al. 2015;
Fischetti and Pisinger 2018a, 2018b, 2018c, 2019). To disallow node crossings, constraints excluding
at least one out of four arcs are required. Further intractability occurs when considering path crossing,
the avoidance of which requires constraints involving an arbitrary number of variables.

Constraints corresponding to all cable crossing categories are formulated straightforwardly in
terms of path variables. To that end, the following formal definition of mutually exclusive paths is
useful.

Summarizing the crossing categories (1)–(3) above, two paths p, p′ ∈ P are said to be crossing if
and only if G(p) 
= G(p′) and both of the following conditions are fulfilled.

• The interior of the bounded regions enclosed by the paths overlap, i.e. I(p) ∩ I(p′) 
= ∅.
• None of the paths are embedded entirely within the bounded region enclosed by the other path.

That is, L(p) \ L(p′) \ I(p′) 
= ∅ 
= L(p′) \ L(p) \ I(p).

Define χp′ = {p ∈ P : pcrossesp′} ⊂ P as the set of paths crossing path p′ ∈ P, and � as the set of
arc pairs (i1, j1), (i2, j2) satisfying the definition of an arc crossing.

For arc (i, j) ∈ A, define the length (also referred to as the cost) cij = ‖L(j) − L(i)‖2 as the
Euclidean distance between its end nodes. It is assumed that the cable cost is proportional to the
cable length, and that the length cp = ∑

(i,j)∈A(p) cij of the path embedding L(p) represents the cost
of path p ∈ P.

The problem under study can now be formulated as follows: find a set of paths P∗ ⊆ P such that

• {T(p) : p ∈ P∗} is a partition of T, i.e. for all t ∈ T, there is a unique p ∈ P∗ such that t ∈ T(p),
• if p, p′ ∈ P∗, then p 
∈ χp′ and p′ 
∈ χp, and
• ∑

p∈P∗ cp is minimized.

3. Solutionmethod

As indicated in Section 2, the non-crossing constraints are easy to formulate in terms of binary vari-
ables defined over the path set P. However, the number |P| of such path variables is exponential in
the number |T| of turbines. In the worst case, the number of conflicts between crossing paths in P
also grows exponentially with |T|. A model formulation including all variables and all non-crossing
constraints is thus intractable to MILP-solvers.

3.1. Overview of the solution approach

Exponential growth in variables and constraints calls for a solution method that inherits from both
column generation and row generation. However, traditional column-generation methods do not
apply. This is because the generation of a new path (column) requires also that a set of new constraints
be added, namely the non-crossing constraints involving the newly generated path. Analogously, con-
straint generation techniques fall short because they fail to identify new paths to be added. Examples
include the iterative procedures for generating crossing constraints studied by, for example, Pillai
et al. (2015), Lindahl et al. (2013) and Bauer and Lysgaard (2015). Whereas these procedures gen-
erate only rows, an algorithm that generates rows and columns simultaneously is developed in the
current work.

The solution procedure developed below consists of two layers, each of which identifies an opti-
mization problem. By solving the subproblem, cable paths in P are identified. Paths thus encountered
are represented by a corresponding variable (column) in the master problem. They also induce
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master problem constraints excluding pairs of crossing paths. A solution to the master problem then
represents an optimal subset of generated paths.

The solution algorithm repeatedly solves instances of the two problems. Each instance of the mas-
ter problem is identified by a subset P̄ ⊆ P of paths in G. In the hypothetical case where P̄ = P, the
optimal solution to themaster problem is also the solution to the problemdefined in Section 2. Other-
wise, only a feasible solution is guaranteed. By gradual extensions of P̄, the optimal cost in the master
problem instance decreases. It does, however, not necessarily run until P̄ contains an optimal solution
P∗, and hence it does not guarantee that the original problem is solved to optimality.

3.2. Master problem

For each path p ∈ P̄, define the decision variable vp such that vp = 1 if path p is used, and vp = 0
otherwise. Let χ̄p = χp ∩ P̄ denote the set of paths in P̄ that cross path p ∈ P̄. An optimal subset of
cable paths in P̄ is found by solving the following integer program:

min
∑
p∈P̄

cpvp (1)

s.t.
∑

p:t∈T(p)

vp = 1 ∀ t ∈ T, (2)

vp + 1
|χ̄p|

∑
p′∈χ̄p

vp′ ≤ 1 ∀ p ∈ P̄, (3)

vp ∈ {0, 1} ∀ p ∈ P̄. (4)

Constraint (2) assures that every turbine is connected by exactly one path, while constraint (3) guar-
antees that no two crossing paths are part of the solution. A stronger version of this constraint is
the formulation vp + vp′ ≤ 1 for all pairs (p, p′) of crossing paths. Formulation (3) has, however, the
following advantages: first, the number of constraints is linear in the number of paths, and only one
new constraint needs to be generated when P̄ is extended by one new path; second, and as explained
below, the formulation enables the extraction of information about the value of avoiding crossings
with any given path in P̄.

3.2.1. The continuous relaxation and its dual
Consider the continuous relaxation of problem (1)–(4), and denote by μt , t ∈ T, the dual variable
corresponding to (2). Large positive values of μt indicate that it is expensive to connect turbine t by
one of the paths currently in P̄, and suggest that P̄ be extended by some q ∈ P \ P̄, where t ∈ T(q).
The dual variable corresponding to (3) is denoted by ηp, p ∈ P̄. It is interpreted as the negative of the
marginal cost of having to avoid all paths in χ̄p. Thus, large values of −ηp discourage extensions of P̄
by crossing paths q ∈ χp \ P̄.

Besides the non-positivity of ηp (p ∈ P̄), the dual constraints of the continuous relaxation of the
master problem read

∑
t∈T(p′)

μt + ηp′ +
∑
p∈χ̄p′

1∣∣χ̄p
∣∣ηp ≤ cp′ ∀ p′ ∈ P̄. (5)

3.3. Subproblem

The master problem in Section 3.2 relies on a mechanism for generating new and unexplored paths,
bywhich the path set P̄ is to be extended. Identifying the best newpath is referred to as the subproblem.
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3.3.1. Path formulation of the subproblem
Consider an arbitrary path q ∈ P \ P̄ and an optimal dual solution (μ, η) to the continuous relaxation
of (1)–(4). Because q 
∈ P̄, (3) does not apply to (is not binding for) path q, and ηq = 0 can be assumed.
Following the idea of column-generation algorithms, q can be priced into P̄ if the dual constraint
corresponding to q is violated, i.e. if

cq −
∑
p∈χ̄q

1∣∣χ̄p
∣∣ηp −

∑
t∈T(q)

μt < 0.

Identifying such a path, or concluding that none exists, is accomplished by solution of the subproblem

z(P̄) = min

⎧⎨
⎩cq −

∑
p∈χ̄q

1∣∣χ̄p
∣∣ηp −

∑
t∈T(q)

μt : q ∈ P \ P̄
⎫⎬
⎭ . (6)

If z(P̄) < 0, P̄ is extended by a path q for which the minimum is attained. Otherwise, the optimal
objective function value of the relaxed master problem cannot be reduced by further extensions of P̄,
and the column-generation process is concluded.

3.3.2. Node rewards andmodified arc costs
Problem (6) is recognized as a constrained shortest-path problem, which acknowledges the rewardμt
to paths q that connect turbine t. Costs are incurred according to the total arc costs cq = ∑

(i,j)∈A(q) cij,
and a penalty −ηp/|χ̄p| for each path p ∈ χ̄q.

To formulate (6) as a binary program with variables associated with arcs, the penalty −ηp/|χ̄p|
must be attributed to one of the arcs in q. In the case of an arc crossing between (ip, jp) ∈ A(p) and
some (iq, jq) ∈ A(q), arc (iq, jq) is chosen. In the case of a node or path crossing between p and q,
it is less straightforward to assess where to assign the penalty. Denote by ξp the set of arcs to which
the penalty −ηp/|χ̄p| is imputed. It follows that ξp contains all arcs crossing some arc in A(p), but to
reflect node and path crossings, it may also contain others, as detailed in the next section.

The set of paths included in P̄ incurring a penalty on an arc (i, j) ∈ A is reciprocally given as

�ij = {p ∈ P̄ : (i, j) ∈ ξp}.

3.3.3. Node and path crossings
To complete the assessment of ξp, it is shown in this section how all crossing categories between path
p and some other path, q, can be represented in terms of arc crossings. By small perturbations of the
path embeddings, the routes of p and q are transformed into slightly separated routes, even if the
original embedding of p and q partly coincide. Further, by careful choice of the perturbing function,
the separated routes intersect at one point if and only if q ∈ χp (the two cables cross according to
the definition in Section 2). If an intersection is detected, the arc containing the intersection point is
included in the set ξp. Otherwise, because of the absence of crossings between p and q, it is concluded
that the two paths can be selected simultaneously.

Consider a function L̃ : N �→ R
2, where L̃(i) = L(i) for all nodes i ∈ D ∪ (N \ N(p)), and L̃(t) ≈

L(t) for t ∈ N(p) \ D. That is, for all turbine nodes t visited by path p, L̃(t) is a slight perturbation
of the original embedding L(t) in the plane. At all other nodes, the new embedding coincides with
the original. For the sake of simple notation, the dependency of L̃ on p is suppresed. The idea behind
L̃ is that each node or path crossing p is to be transformed into an arc crossing. Define L̃(i, j), L̃[i, j]
and L̃(p) ((i, j) ∈ A) analogously to L(i, j), L[i, j] and L(p), respectively. If, for some (ip, jp) ∈ A(p)
and (i, j) ∈ A, L̃(ip, jp) ∩ L(i, j) 
= ∅, a crossing with p is attributed to arc (i, j), which accordingly is
included in ξp.
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For a precise definition of L̃, consider a (small) real number ε > 0. Consider also three consecutive
nodes i, t, j ∈ N(p) on path p, where t is a turbine node. Such nodes exist, even if p visits only one
turbine, in which case i = j ∈ D. Define

L̃(t) = L(t) ± ε√
2

(
L(i) − L(t)

cti
+ L(j) − L(t)

ctj

)
, (7)

where the plus sign applies if t ∈ T(p), and the minus sign applies if t ∈ N(p) \ T(p). That is, L̃maps
t to a point a distance ε from L(t). If t ∈ T(p), L̃(t) is located on the internal bisector of the angle
between the vectorsL(i) − L(t) andL(j) − L(t), whereas if t ∈ T \ T(p), L̃(t) is located on the external
bisector of the said angle. Consequently, if L embeds no three consecutive nodes of p on a joint straight
line, and the polygon bounded by L(p) is convex, then L̃(t) ∈ I(p) if and only if t ∈ T(p). Hence,
the transformation L̃ maps t to some point in the interior I(p) of the polygon bounded by L(p) if p
connects t, and maps the turbine to a point outside the polygon otherwise.

The perturbed embedding L̃ is defined with respect to a given path p. Figure 3 illustrates L̃ for two
different choices of p. Consider the situation on the left, where only one path has been generated. Its
perturbed embedding is shown by a solid line, which is seen (illustration in the middle) to fall inside
the region bounded by the embedding of another path (dashed line). It is thus concluded that the two
paths do not cross. On the right, the perturbed embedding with respect to the second path is also
illustrated.

Consider a path q that makes a node or path crossing with p. The crossing implies that there
exist nodes iq, jq ∈ N(q) and t ∈ T ∩ T(p) ∩ N(q) such that (iq, t), (t, jq) ∈ A(q), and either iq ∈ I(p)
or jq ∈ I(p). Assume jq ∈ I(p). For sufficiently small ε, L(t, jq) intersects L̃(p) at one of the two line
segments incident to L̃(t), analogously to an arc crossing. In the case where iq ∈ I(p), an analogous
argument shows that the embedding of arc (iq, t) intersects the perturbed embedding of p at some
point near L(t).

Cases where paths p and q have turbine nodes in common, while q 
∈ χp, are analysed next. Let
t1, . . . , tk ∈ T ∩ N(p) ∩ N(q) be a sequence of k ≥ 1 consecutive turbine nodes on both paths, and
for r = p, q, let ir , jr ∈ N(r) be adjacent nodes on path r satisfying (ir , t1) ∈ A(r) and (tk, jr) ∈ A(r),
respectively. Assume ip ∈ I(q), which implies jp ∈ I(q), since q 
∈ χp. Correspondingly, iq, jq 
∈ I(p).
If t1 
∈ T(p), a better path than p is obtained by removing t1. This would create no conflict with path
q, since L(ip, t2) ⊂ I(q). Therefore, t1, tk ∈ T(p) can be assumed, yielding L̃[ip, t1], L̃[tk, jp] ⊂ I(q),
which means that neither L[iq, t1] nor L[tk, jq] intersects L̃(p). Thus, checking whether the embed-
ding L(i, j) of an arc (i, j) intersects the perturbed embedding L̃(p) of path p does not lead to false
conclusions in instances where paths are laid partly in parallel.

Arc crossings are preserved by the perturbation L̃ of the node embedding. If L(ip, jp) ∩ L(i, j) 
= ∅
((ip, jp) ∈ A(p), (i, j) ∈ A), then also L̃(ip, jp) ∩ L(i, j) 
= ∅ for sufficiently small ε. Likewise, L̃[ip, jp] ∩
L[i, j] = ∅ if L[ip, jp] ∩ L[i, j] = ∅.

Figure 3. Illustration of the modified embedding L̃ of two paths. The path drawn as a dashed line connects the two turbines at the
top (unfilled circles). The path drawn as a solid line connects the two turbines in the middle (filled circles). The triangle represents
the substation.
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In conclusion, the set of arcs crossing p is defined as

ξp = {
(i, j) ∈ A \ A(p) : L̃(p) ∩ L(i, j) 
= ∅}

.

3.3.4. Integer programming formulation of the subproblem
The subproblem (6) is formulated in terms of binary variables indexed by the arcs and the nodes in
G, by means of which the path q ∈ P \ P̄ to be found is represented. A set of the arc-indexed variables
also have a hop index, resulting in a formulation that follows well-known principles of hop-indexed
IP-models for acyclic, possibly ramified, cable layouts (Bauer and Lysgaard 2015; Klein et al. 2015;
Klein and Haugland 2019). The hop-indexed variable xhij (h = 0, . . . ,CN , (i, j) ∈ A) equals one if (i, j)
is the hth arc (counting starts at zero) on the path q from the substation in N(q), and zero otherwise.
The dependent variable yij equals one if xhij = 1 for some h = 0, . . . ,CN , and zero otherwise. Finally,
zt equals one if q connects turbine node t (if t ∈ T(q)), and zero otherwise.

As explained in Section 3.3.2, the objective function of the subproblem reflects not only the arc
lengths, but also the optimal dual solution (μ, η) to the relaxation of the master problem. For the
purpose of increased flexibility, define the real parameters kμ and kη representing the extent to which
the dual solution is to be taken into account. Typical values of both parameters are in the interval
[0, 1]. Variable zt thus has objective function coefficient equal to −kμμt , while the coefficient of yij
equals

c̃ij = cij − kη

∑
p∈�ij

1∣∣χ̄p
∣∣ηp.

It is desirable to impose the generation of a path that connects a selected target turbine, which is
denoted t̄ ∈ T. The IP model then follows as

min
∑

(ij)∈A
c̃ijyij −

∑
t∈T

kμμtzt , (8)

suchthat yij =
CN∑
h=0

xhij ∀ (i, j) ∈ A, (9)

∑
i∈N−

t

xh−1
it =

∑
j∈N+

t

xhtj ∀ t ∈ T, h = 1, . . . ,CN , (10)

∑
t∈T

zt ≤ CT , (11)

∑
i∈N−

t

yit ≥ zt ∀ t ∈ T, (12)

∑
j∈N−

i

yji =
∑
j∈N+

i

yij ≤ 1 ∀ i ∈ N, (13)

∑
d∈D

∑
j∈N+

d

ydj = 1, (14)

yij + ykl ≤ 1 ∀ ((i, j), (k, l)) ∈ �, (15)

zt̄ = 1, (16)

xhij ∈ {0, 1} ∀ (i, j) ∈ A, h = 0, . . . ,CN , (17)

yij ∈ {0, 1} ∀ (i, j) ∈ A, (18)

zt ∈ {0, 1} ∀ t ∈ T. (19)
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In (9), the dependent variable y is defined in terms of x, enabling more concise and readable formula-
tion of constraints (12)–(15). Consider three consecutive nodes i, t, j inN(q). By constraint (9), xh̄tj = 1
for a unique hop index h̄ = 0, . . . ,CN , and constraint (10) enforces the hop-index for which xhtj = 1
to be h̄ + 1. Observe that (10) does not apply to the substation nodes D. As a result, |N(q)| ≤ CN ,
and path q has no cycles disconnected from the substation nodes.

The inequality (11) imposes the upper bound CT on |T(q)|, and constraint (12) assures that t ∈
T(q) only if t ∈ N(q). Constraints (13) ensure that each turbine node has a predecessor in q if and
only if it has a successor node in the path, and that the predecessor and successor nodes are unique
if they exist. Existence and uniqueness of a substation in N(q) is guaranteed by constraint (14), and
arc crossings are avoided by (15). The generated path q is finally enforced to connect turbine t̄ by
constraint (16).

3.4. A path-generating algorithm

In the following, a solution algorithm is developed. In each of its iterations, the algorithm solves
instances of the continuous relaxation of the master problem (1)–(4), and exploits the optimal
values of the dual variables to define new instances of the subproblem. Paths found as optimal solu-
tions to the latter problem instances induce new variables and constraints to be supplied to the
master problem instance. As each addition of a new path leads to generation of both a new col-
umn and a new non-crossing constraint, traditional column- or row-generation techniques do not
apply.

A set T̄ of target turbines that are to be connected by some new path (see constraint (16)) is con-
sidered in the algorithm. In the outer loop, T̄ is assessed, e.g. by random selection, and each t̄ ∈ T̄ is
processed in an inner loop. By solution of (8)–(19), a path q connecting t̄, and possibly other turbine
nodes, is generated. If q is not already included in P̄, the path set is extended by q.

Parameters kμ and kη are applied in order to diversify the path generation. Multiplication by their
respective terms in the objective function (8) adjusts the contribution from the dual values μ and η.
The algorithm is enabled to modify both parameters in each iteration of the inner loop. The iterative
procedure is stated in Algorithm 1.

Recall from Section 2 that a path p is understood as a set of turbinesT(p) that some cable connects,
in addition to a sequence N(p) of nodes from a substation, via nodes visited by the cable (including
T(p)), and back to the substation. For each d ∈ D and t ∈ T such that (d, t) ∈ A, the first step of
Algorithm 1 finds the path p consisting of node sequence (d, t, d) and connected turbine set T(p) =
{t}, and includes it in the set P̄ of paths. Assume that this initial step yields a path set P̄ for which
the master problem has a feasible solution. This assumption is reasonable as long as, for all t ∈ T,
(d, t) ∈ A for the substation node minimizing cdt .

In each iteration of the outer loop (lines 4–18), searches for new paths are made. The inner loop
(lines 6–14) iterates over the target turbines, and searches for a new connecting path for each. This is
accomplished by solving a corresponding subproblem instance (line 8), which depends on the current
estimate of optimal values of μ and η. If the search is successful, information about arcs crossing
the new path is recorded (lines 10–13), and the path set P̄ is extended (line 14). Finally, in all outer
iterations but the last, the relaxation of the master problem is solved again in order to obtain updated
optimal values of the dual variables μ and η.

Ideally, the stopping criterion of the outer loop should be z(P̄) ≥ 0 (see 6), i.e. the non-existence
of a path q ∈ P \ P̄ for which the objective function takes a negative value. To allow for interruption
before optimality is proved, the algorithm is stated in terms of a general stopping criterion. Relevant
examples include stopping once a sufficient number of paths has been generated, and stopping when
the number of outer iterations has reached an upper bound. Once the criterion is satisfied, the non-
relaxed version of the master problem is solved, which yields an optimal subset P̄∗ of the generated
paths P̄. The effect of the number of outer iterations on the result is examined in Section 4.
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Algorithm 1
1: Let P̄ be the set of paths p ∈ P, where N(p) = (d, t, d), T(p) = {t}, d ∈ D and t ∈ T
2: for all p ∈ P̄, let χ̄p be the set of paths in P̄ crossing path p
3: Initiate μ and η to zero
4: repeat
5: Let T̄ be a set of target turbines in T
6: for all target turbines t̄ ∈ T̄ do
7: Assign values to parameters kμ and kη

8: Solve subproblem (8)–(19) to obtain a path q, with t̄ ∈ T(q)
9: if q /∈ P̄ then
10: Calculate the modified embedding L̃(q) as defined in Section 3.3.3
11: Calculate the set ξq ⊆ A \ A(q) of arcs crossing the perturbed

embedding L̃(q)
12: Let χ̄q = {

p ∈ P̄ : A(p) ∩ ξq 
= ∅}
be the set of paths in P̄ crossing

path q
13: for all p ∈ χ̄q, add path q to χ̄p
14: Add path q to P̄
15: if the stopping criterion is not satisfied then
16: Solve the continuous relaxation of master problem (1)–(4) to assess μ

and η

17: Update the objective function coefficients in (8) with the new values of μ
and η

18: until the stopping criterion is satisfied
19: Solve the master problem (1)–(4) with integrality constraints

4. Numerical experiments

4.1. Implementation

The master problem, the subproblem, and Algorithm 1 are implemented in Python� 3.6, using the
GUROBItm 8 Python bindings for defining and solving the (integer) linear programs. The algorithm
is implemented such that the paths are generated in parallel in the inner loop (see Section 3.4).
This is accomplished with the Python multiprocessor library, starting parallel instances of the
GUROBI solver in separate processes. Random choices for parameters are implemented such that
they are evaluated in a deterministic order, and, with the random generator initialized by a seed, such
that they are reproducible. Each instance of the subproblem, as well as the master problem, are solved
to optimality. An upper bound on the number of outer iterations is applied as the stopping criterion
in Algorithm 1.

4.2. Experiments

Turbine and substation layouts of the Barrow 1 and Sheringham Shoal wind farms (Klein and
Haugland 2019) are the targets of the numerical experiments. The Barrow 1 wind farm has one sub-
station and 30 turbines, while Sheringham Shoal has two substations and 88 turbines. All numerical
experiments are conducted on a virtual machine with 32 CPUs and 118GB memory.

Four parameters of the algorithmhave to be assigned values. Besides the factors kμ and kη defining
the weight of the dual values, and the set T̄ of target turbines, the bound on the number of outer
iterations must be assessed. Let the bounds CN and CT on the path size vary within a certain range in
each experiment, such that CT + 2 ≤ CN ≤ CT + 4.
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4.2.1. A small wind farmwith one substation
In the first set of experiments, the layout data of the Barrow 1 wind farm are considered. The cable
capacity is set to CT = 4, and the bound on the total number of turbines visited by a cable is set to
CN = 6. In each outer iteration of Algorithm 1, the set of target turbines is T̄ = T. Parameters kμ

and kη are assigned identical values, and k is adopted as a notation of their joint value. In the first
experiment, the cable length produced by the algorithm is investigated in terms of a function of k and
the bound on the number of iterations.

Results hence obtained are compared with the solutions found in the second set of experiments:
the values of kμ and kη are drawn randomly from a uniform distribution on the interval [0, 1]. Both
values are drawn independently for each instance of the subproblem to be solved.

The solutions obtained are listed in Table 2. For each value of k, 30 iterations of the algorithm
were processed in less than 20 minutes. It is seen from the numbers in brackets that, for all examined
values of k, almost all paths generated in early iterations of the algorithm are distinct. The maximum
possible number of unique paths after five iterations is 180 (30 initial one-turbine paths, and 30 paths
per iteration), and for most values of k around 160, distinct paths were generated. However, for fixed
values of the parameter k, after iteration 10 almost all generated paths are duplicates of earlier paths,
i.e. no new paths are generated. There is thus little benefit in using more than 15 iterations for a fixed
value of k in this particular instance. As expected, in the experiment with k = 0, i.e. where μ and η

do not contribute to the subproblem, the subproblem instances in each outer iteration are identical,
and no new paths are generated.

Independent random values of kμ and kη in each subproblem yield the best experimental results.
This holds true both in terms of a larger number of generated paths and in terms of smaller total cable
lengths. This observation does not come as a surprise, as one of the main challenges in a path-based
algorithm is the generation of paths of sufficient diversity. The cable layout computed for this choice
of parameter values, in the case of CT = 5 and CN = 7, is depicted in Figure 4. It is seen that eight
cables are used, two of which connect a single turbine.

It is further investigated how the computation time of the algorithm varies with the cable capacity
CT and the maximum number CN of visited turbines. Random values of kμ and kη are generated as
explained above. The set of target turbines T̄ is generated by drawing 16 turbine nodes from T, all
with equal probability, and with repetitions disallowed. A random set is hence found at the start of
each outer iteration of Algorithm 1.

The results from this experiment are documented in Table 3. A strong correlation between the
solution time and the bound CN on the number of visited turbines is observed. In addition, the
required computation time increases with increasing differences between CN and the bound CT on
the number of connected turbines per cable. The significant increase in running time with increasing
values of CN is expected, as the number of variables in the subproblem increases linearly with CN .

4.2.2. A larger wind farmwith two substations
The Sheringham Shoal instance is subject to the last set of experiments. Figure 5 visualizes one of the
computed cable layouts of this wind farm.

Table 2. Results for Barrow 1, CT = 4, CN = 6. The table shows the optimal total cable length in metres, and the number of
generated unique paths in brackets, for different numbers of outer iterations and values of k.

Total cable length and number of generated paths

Iteration k = 0 k = 0.2 k = 0.4 k = 0.6 k = 0.8 k = 1.0 random kη , kμ

1 86238 [59] 86238 [59] 86238 [59] 86238 [59] 86238 [59] 86238 [59] 86238 [59]
2 86238 [59] 70816 [77] 62191 [86] 76004 [86] 76004 [86] 76004 [86] 68188 [83]
5 86238 [59] 57147 [139] 56774 [161] 54470 [161] 56146 [163] 53186 [163] 52819 [158]
10 86238 [59] 50185 [155] 49315 [202] 47142 [231] 46814 [231] 48974 [233] 47393 [237]
20 86238 [59] 50185 [155] 49315 [202] 47142 [234] 46814 [234] 48974 [235] 44606 [273]
30 86238 [59] 50185 [155] 49315 [202] 47142 [234] 46814 [234] 48974 [235] 44606 [275]
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Figure 4. Solution with eight cable lines at the Barrow 1wind farm, computed with CT = 5, CN = 7, 30 iterations, paths for 16 ran-
dom turbines per iteration, and independent random values for kη and kμ . The turbines are illustrated as circles, and the connecting
cables are depicted as solid and dashed lines. The triangle represents the substation.

Table 3. Results for Barrow 1, with kμ and kη random, and the subproblem solved for 16 randomly chosen target turbines in each
iteration. The table shows the required time (in minutes:seconds) to perform 10 iterations of Algorithm 1.

Running time

CT CN = 4 CN = 5 CN = 6 CN = 7 CN = 8

4 0:14 0:48 2:29 7:58 26:47
5 – 0:34 1:22 4:03 12:41
6 – – 0:57 2:30 4:30
7 – – – 2:09 3:29
8 – – – – 2:38

Figure 5. Solution with 16 cables at the Sheringham Shoal wind farm, computed with CT = 6, CN = 7, 80 iterations, paths for
16 random turbines per iteration, and independent random values for kη and kμ . The turbines are illustrated as circles, and the
connecting cables are depicted as solid and dashed lines. The triangles represent the substations.
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Figure 6. Total cable length (solid line) and number of generated unique paths (dotted line) as a function of the number of outer
iterations, for a cable layout of the wind farm Sheringham Shoal.

A significant increase in the computational burden for this larger instance is observed, where the
number of nodes is |N| = 88. This is partially due to the larger number of paths that must be gener-
ated, but also due to higher computational costs for solving the subproblem instances. A cable layout
corresponding to the bounds CT = 5 and CN = 7 is also computed. The parameters kμ, kη and T̄ are
assigned random values, as explained in the previous experiment. In addition, the execution time of
the IP-solver is limited to 300 seconds in each subproblem instance. If a feasible solution is found,
the corresponding path q is processed according to steps 9–14 of Algorithm 1. Otherwise, the inner
iteration turns out to be unproductive. With these settings, processing 120 outer iterations took 7
hours.

In Figure 6, the total cable length and the number of generated unique paths are depicted as a
function of the number of outer iterations. It is observed that the algorithm performs well in generat-
ing new unique paths that have not been previously generated in the first 40–60 iterations. At higher
outer iteration counts, the number of calculated new unique paths decreases, as a significant amount
of the generated paths are duplicates of already existing ones.

5. Conclusions

The current work introduces a novel solution approach for computing offshore wind farm cable
layouts. Building on a model based on decision variables associated with feasible cable paths, the
approach combines a module for the selection of paths with a module for the generation of new
paths. Corresponding optimization models, referred to as the master problem and the subproblem,
respectively, are also introduced. Optimal values of the dual variable in the continuous relaxation of
the master problem are incorporated as cost or revenue coefficients in the objective function of the
subproblem. It is shown that, by perturbing the weights assigned to these coefficients, the diversity in
the paths generated is improved.

Experiments demonstrate that a small number of distinct paths can be sufficient for the compu-
tation of complete reliable cable layouts. In the instances tested, the methodology presented mainly
generates paths that are good solution candidates, as the number of paths is a small fraction of the
number of possible paths in the network.

The resulting layouts, illustrated in Figures 4 and 5, demonstrate the capability of the algorithm
presented here. An important feature of the methodology proposed is its handling of non-crossing
constraints, where it optimizes the extent to which cables are partly laid in parallel following a joint
trajectory. It seems reasonable to assume that this feature becomes more prominent in wind farms of
a size beyond that considered in the current experiments. In larger instances, more turbinesmay have
to be connected to the same substation. This creates a congestion of cables in close proximity to the
substation, and thereby an increased risk of cable routes that appear as obstacles to other cables. Such
cases are likely to benefit more extensively from opportunities to let multiple cables partly follow the
same route.
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The computational cost of solving the subproblem is high for wind farms with a large number of
turbines. Instances with large cable capacity, measured in terms of the number of turbines to which
the cables can connect, are particularly hard to solve. The running time of the solution process is
largely dominated by the generation of new paths in the subproblem. Further development of the
algorithm should therefore be focused on this part. One strategy in this direction would thus be to
develop an heuristic method for solving the subproblem, while pursuing the other components of the
solution approach.

It is highly relevant to integrate decisions concerning turbine locations and cable layout in one
model. The path-based modelling approach studied in this article is likely to be suitable for such
integration. Optimization methods intended for optimal placement of turbines often perturb the
positions of some turbines only slightly from one iteration to the next. Algorithms with this charac-
teristic motivate the reuse of cable paths, computed in earlier iterations of the turbine layout problem.
The most time-consuming part of the methodology presented, the generation of new paths, can thus
be entirely or partially omitted. Mathematical models and computational methods for integration of
the current approach with optimization of turbine locations are left as topics for future research.
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