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Preface 
 

This thesis is submitted for the degree of Philosophiae Doctor (PhD) in Chemistry at 

the University of Bergen, Norway. The work has been carried out at Department of 

Chemistry, University of Bergen, during the period 2003-2007. The thesis consists of 8 papers 

preceded by an abstract. 

One aim of the present work was to isolate and determine the chemical structures of 

anthocyanins in different European and African plants, for documentation and 

chemotaxonomic considerations with respect to these pigments. The findings of new 

anthocyanins will expand the diversity of structures, which may through further examinations 

display other chemical and biological properties than previously known.  

Another purpose was to enhance knowledge about the chemical properties of 

anthocyanins, 5-carboxypyranoanthocyanins in particular. The pyranoanthocyanins have 

interestingly been reported to display under weakly acidic to neutral conditions other 

properties (colours, higher stability etc.) than the common anthocyanins. After preparation of 

pyranoanthocyanins in a semi-preparative scale, the aim was to focus on comparative studies 

of various forms and specific structural positions of pyranoanthocyanins and common 

anthocyanins using advanced NMR instrumentation. 

A third aim was to present accurate information about the reducing potential of 

various 5-carboxypyranoanthocyanins and anthocyanins. The value of anthocyanin literature 

with respect to antioxidant measurements on single anthocyanins are in many cases reduced 

due to limited considerations concerning the purity state of examined anthocyanin samples. 

Literature in the field has contradictory nature, and the relationship between anthocyanin 

structure and antioxidant capacity is not completely understood. 

Chapter 1 gives an introduction to the thesis, chapter 2 presents the methods used in 

this work and chapter 3 gives the results covered by the papers I-VIII. The Appendix section 

includes presentation of the pigments (A) involved in the thesis and their structures (B). 

Appendix C and D present the 1H and 13C NMR data obtained in this work, respectively. 
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Abstract 
 

This dissertation focuses on isolation and structural elucidation of anthocyanins, and 

their chemical properties.  

The characterization of anthocyanins from castor (Ricinus communis), fourteen 

cultivars of European gooseberry (Ribes grosssularia), three other Ribes spp., two cultivars of 

Jostaberry (R. × nidigrolaria), seven Hippeastrum (Amaryllis) hybridum cultivars, and 

nineteen species belonging to Caprifoliaceae (genera Sambucus, Lonicera and Viburnum) are 

described. New anthocyanins include: Cyanidin 3-O-β-xylopyranoside-5-O-β-

glucopyranoside (11), cyanidin 3-O-β-xylopyranoside-5-O-β-(6'''-malonylglucopyranoside) 

(19) and the methyl esterified product (18), cyanidin 3-O-β-(6''-E-caffeoylglucopyranoside) 

(15), and cyanidin 3-O-β-(6''-α-arabinopyranosylglucopyranoside) (6), which is the first 

complete identification of the disaccharide vicianose. Pigment 15 together with cyanidin 3-O-

β-(6''-E-caffeoylglucopyranoside) (17) constitute the major anthocyanin content in the 

cultivars; ‘Samsø’, ‘Hinnomäki Red’, ‘Taastrup’, ‘Lofthus’ and ‘Glendal’. These cultivars 

may thus be good candidates for consumption, colorant and breeding programmes, because no 

other commercial available berries have been reported to contain as high proportions of 

aromatic acylated anthocyanins. 

Anthocyanins from black beans (Phaseolus vulgaris) are for the first time 

hemisynthesized directly from a partly purified anthocyanin extract. The three mother 

anthocyanins (delphinidin 3-O-β-glucopyranoside (22), petunidin 3-O-β-glucopyranoside 

(26), malvidin 3-O-β-glucopyranoside (27)) and their hemisynthesis products, 5-

carboxypyranoanthocyanins (32-34), were isolated in a preparative scale using Sephadex LH-

20 column chromatography. The individual pigments (22, 26, 27, 32–34) were characterized 

by NMR; the structures of 32 and 33 have previously only been tentatively identified. 

The 3-O-β-glucopyranosides of delphinidin, petunidin and malvidin (Phaseolus 

vulgaris) (22, 26, 27) and cyanidin 3-O-β-galactopyranoside (from Aronia melanocarpa) (4) 

have been dissolved in deuterated methanolic solutions without and with acid (5%, 

CF3COOD). Their hemiacetal (hemiketal) forms were characterized by NMR as two epimeric 

2-hydroxy-hemiacetals. This is the first report of 13C NMR assignments regarding two 

epimeric anthocyanin hemiacetal forms. 

Displacement of nuclear hydrogen by deuterium at various sites on the aglycone part 

of delphinidin 3-O-β-glucopyranoside (22), petunidin 3-O-β-glucopyranoside (26), and 

 vi



 
 

malvidin 3-O-β-glucopyranoside (27) in their flavylium cationic and hemiketal forms were 

examined based on integration data obtained by 1H NMR spectroscopy. Similar 

measurements were performed on the three corresponding pyranoanthocyanins (32–34), and 

the flavonol rutin (quercetin 3-O-β-(6''-α-rhamnopyranosylglucopyranoside), 35. H→D 

exchanges were observed for the nuclear protons of the A-rings (H-6 and H-8) of 22, 26, 27 

and 35. No similar H→D exchanges were observed for 32–34. This is explained with a 

generalized mechanism including a positively charged σ–complex. Since the oxygen (6-O) 

included in the pyrano-ring of 32–34, has not the same electron donating effect as the 5-OH 

group of 22, 26 and 27, the positively charged σ–complexes of 32–34 can not stabilize 

themselves to the same level as the corresponding complexes of 22, 26 and 27. The H→D 

exchange reactions appeared to be independent upon the concentration of the substrates and 

concentration of D+, in accordance with a first order reaction. 

 Most antioxidant measurements are concentration dependent, and purity determination 

of examined compounds are crucial. To improve correctness in determination of anthocyanin 

purity, 1H and 13C NMR spectroscopy have been combined with HPLC-DAD and UV-Vis 

spectroscopy in analysis of anthocyanidin 3-glycosides and 5-carboxypyranoanthocyanidin 3-

glycosides. The molar absorptivity (ε) values were found to be relatively similar, in contrast 

to previously reported literature values. The ε-values for both anthocyanidin 3-

monoglycosides and 5-carboxypyranoanthocyanidin 3-glycosides were proposed to be 21800 

and 22700 in acidified aqueous and methanolic solutions respectively. To assess the influence 

of structure on the potential antioxidant capacity of anthocyanins, the 3-glucosides of 

pelargonidin (1), cyanidin (5), peonidin (24), delphinidin (22), petunidin (26), malvidin (27), 

5-carboxypyranopelargonidin (28), 5-carboxypyranocyanidin (30), 5-

carboxypyranodelphinidin (32), 5-carboxypyranopetunidin (33), and 5-

carboxypyranomalvidin (34) were examined by ferric ion reducing antioxidant power assay, 

FRAP. The reducing capacities of the individual anthocyanins were in the range of 0.9 to 5.2 

Trolox equivalents. The two 5-carboxypyranoanthocyanins 30 and 32, possessing pyrogallol- 

or catechol-type of B-rings, showed the highest potential antioxidant capacity measured by 

FRAP for any anthocyanin. The relative order of the reducing capacity of the various 5-

carboxypyranoanthocyanidin 3-glucosides and anthocyanidin 3-glucosides were nearly alike 

whether determined by coulometric array detection or FRAP. The inclusion of the 5-hydroxyl 

in the D-ring and just one oxygen substituent on the B-ring as in 28, diminished the reducing 

capacity considerably. 
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Chapter 1 
INTRODUCTION 

 

1.1 Flavonoids 
 

Flavonoids are phenolic substances isolated from a wide range of vascular plants, and more 

than 8150 different flavonoids have been reported (Andersen and Markham, 2006). They act 

in plants as antioxidants, antimicrobials, photoreceptors, visual attractors, feeding repellents, 

and for light screening (Pieatta, 2000). Many studies have suggested that flavonoids exhibit 

biological activities, including antiallergenic, antiviral, anti-inflammatory, and vasodilating 

effects.  
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Figure 1. Basic flavonoid structure including the numbering system. 

 

The basic flavonoid structure contains the flavan nucleus, which consists of 15 carbon atoms 

derived from a C6-C3-C6 skeleton (Figure 1). 
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The 12 main classes of flavonoids differ in the level of oxidation and the substitution 

pattern on the C ring, while individual compounds within a class differ in the substitution 

pattern on the A and B rings.  

 

1.2 Anthocyanins 
 

The word anthocyanin, derived from the Greek words anthos (flower) and kyanos (blue) was 

originally used to describe the blue pigments of the cornflower, Centaurea cyanus (Marquart, 

1835). Anthocyanins are polyphenolic compounds responsible for cyanic colours ranging 

from salmon pink through red and violet to dark blue of most flowers, fruits, leaves and 

stems. They comprise the largest group of the water-soluble pigments in the plant kingdom 

(Strack and Wray, 1994), and during the last then years it has been an exponential increase in 

the report of new anthocyanin structures (Andersen and Jordheim, 2006). This can partly be 

explained by the use of improved analytical techniques, but the potential use of anthocyanins 

as health beneficial compounds is another reason for the increased scientific interest in these 

pigments. At the moment the actual number of anthocyanins reported with complete structure 

elucidation is 575 (Andersen and Jordheim, 2006; Andersen, 2007). 

 

1.2.1 Structures 
 

The anthocyanins consist of an aglycone (anthocyanidin), sugar(s), and, in many cases, 

acyl group(s). The classical anthocyanin aglycone is based on a C15 skeleton (C6–C3–C6 

skeleton) while the pyranoanthocyanins discussed in this thesis have an additional C3 unit 

(Figure 2) (Andersen and Jordheim, 2006). Anthocyanins are positively charged at acidic pH 

(see 1.2.3), and this equilibrium form is called flavylium cation (2-phenylbenzopyrylium). 

Even though there are around 30 different anthocyanidins, approximately 90% of all 

anthocyanins are based on the six most common anthocyanidins; pelargonidin, cyanidin, 

delphinidin, peonidin, petunidin and malvidin, which only differ by the hydroxylation and 

methoxylation pattern on their B-rings (Figure 2, left). The anthocyanins will differ with 

respect to glycoslyation of hydroxyl groups, nature of glycosyl units, substitution pattern, and 

potential aliphatic and aromatic acylation (Andersen and Jordheim, 2006). The 3-

deoxyanthocyanidins found in Sorghum; spagnorubins and rosacyanin B are the only 

anthocyanidins (aglycones) found in their nonglycosidated form in plants (Andersen and 

Jordheim, 2006) until Macz-Pop et al. (2006) indicated the presence of cyanidin, peonidin 

 2
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and pelargonidin in black dried beans (Phaseolus vulgaris L.). 

 Pyranoanthocyanins (Figure 2, right) have been discovered in small amounts in wines 

and grape pomace (Bakker et al., 1997; Bakker and Timberlake et al., 1997; Fulcrand et al., 

1998; Mateus et al., 2004; Cheynier, 2006), petals of Rosa hybrida cv. ‘M’me Violet (Fukui 

et al., 2002, 2006), black carrot (Daucus carota) juice (Schwarz et al., 2004), and blood 

orange (Citrus sinensis) juice (Hillebrand et al., 2004). Among the 

carboxypyranoanthocyanins, vitisin A and acetylvitisin A were identified as the 3-glucoside 

and the 3-acetylglucoside of malvidin containing an additional C3H2O2 unit linking the C-4 

and the C-5 hydroxyl group. More recently, glucosides of carboxypyranocyanidin have been 

isolated from red onion (Fossen and Andersen, 2003), and carboxypyranopelargonidin 3-

glucoside from strawberry (Andersen et al., 2004) extracts. 
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Figure 2. Left: Structures of the most common anthocyanidins occurring in nature.  

Right: Structures of some 5-carboxypyranoanthocyanidins. 

 

Analogous delphinidin and petunidin derivatives have been indicated in various pigment 

mixtures (Fulcrand et al., 1998; Benabdeljalil et al., 2000; Vivar-Quintana et al., 2002; 

Hayasaka et al., 2002; Wang et al., 2003; Alcalde-Eon et al., 2004; Villiers de et al., 2004; 

Calvo et al., 2004; Salas et al., 2005; Mazzuca et al., 2005; Faria et al., 2005).  

 Four reported methylpyranoanthocyanins from black currant seeds (Lu et al., 2000) 

were shown to be the oxidative cycloaddition products of the acetone extraction solvent and 

the natural anthocyanins (Lu et al., 2001). Pyranocyanin C and D and pyranodelphinidin C 

and D, were also isolated by the same group from an extract of black currant seeds (Lu et al., 
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2002). These pigments were absent in fresh extracts, and their levels increased gradually with 

time. Their formation was likely to be from the reaction of the anthocyanins and p-coumaric 

acid in the extracts. Recently, analogous pigments have been isolated from strawberry and 

raspberry juices after addition of cinnamic acids (Rein et al., 2005). 

 

Sugar moieties 

Most anthocyanins are mono-, di-, or tri-glycosylated at the C-3 hydroxyl. Ternatin A1 

(isolated from Clitoria ternatea) (Terahara et al., 1990) and cyanodelphin (isolated from 

Delphinium hybridum) (Kondo et al., 1991) are two impressing exceptions with seven 

glucosyl units. Beside the 3-position, anthocyanins can also be glycosylated at 5, 7, 3', 5' and 

more rarely at the 4' position (Brouillard 1988; Fossen et al., 2003b, Williams and Grayer, 

2004, Bjorøy et al., 2007). The sugar moieties are found connected to the anthocyanidins 

through O-linkages, but in the purple flowers of Tricyrtis formosana 8-C-glucosylcyanidin 3-

[6-(malonyl)glucoside] and 8-C-(6-O-E-sinapoyl)-glucosylcyanidin 3-[6-(malonyl)glucoside] 

have been reported (Saito et al., 2003; Tatsuzawa et al., 2004).  
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Figure 3. Structures of the monosaccharides found in anthocyanin structures. 

 

The most common monosaccharide is glucose (90%), followed by rhamnose, galactose, 

xylose and arabinose (Figure 3) (Andersen and Jordheim, 2006). Glucuronic acid is the rarest 

monosaccharide found in anthocyanins. 

 

 4



CHAPTER 1.  INTRODUCTION 
 

Acyl moieties 

More than 65% of the reported anthocyanins with properly identified structures are acylated, 

and anthocyanin diversity is highly associated with the nature, number, and linkage positions 

of the acyl groups (Andersen and Jordheim, 2006). The sugar units of anthocyanins may be 

acylated with aliphatic and/or aromatic acyl groups (Figure 4). The aromatic acyl groups 

include various hydroxycinnamic acids (p-coumaric, caffeic, ferulic, sinapic, and 3,5-

dihydroxycinnamic acids) and two hydroxybenzoic acids (p-hydroxybenzoic- and gallic acid). 

Acylation with aliphatic acids includes malonic acid, which is the most frequent aliphatic acyl 

group, acetic, malic, succinic, tartaric and oxalic acids (Andersen and Jordheim, 2006). 

Because of the labile nature of the ester bond in case of aliphatic acylation, hydrolysis might 

occur during the workup procedure or storage in acidified solution. Anthocyanins acylated 

with dicarboxylic acids are subjected to both hydrolysis and esterification of the free carboxyl 

group in acidified alcoholic solutions (Fossen et al., 2001; Takeoka and Dao, 2002; Andersen 

and Francis, 2004). 
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Figure 4. Structures of the aromatic and aliphatic acyl substituents found in anthocyanins. 

 

1.2.2 Equilibrium forms 
 

Anthocyanins are considered to occur in several equilibrium forms. Thermodynamic and 

kinetic studies have led to a generally accepted scheme with respect to the different 

transformations (proton transfer, isomerisation and tautomerization) of the flavylium cation of 

simple anthocyanins under various pH conditions (Sondheimer, 1953; Jurd, 1963a, 1963b; 

McClelland, 1980; Brouillard 1977a, 1977b; Brouillard and Dangles, 1994; Pina, 1998).  

In strongly acidic solutions (below pH 2) the flavylium cation is predominant (Figure 5, 

structure 1) giving rise to anthocyanin solutions which are red in colour. In slightly acidic or 
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neutral aqueous solutions anthocyanins are believed to exist as neutral and/or ionized 

quinonoidal bases (Figure 5, structure 2–4 and 5–7, respectively) after deprotonation. By 

hydration in weakly acidic solutions the flavylium cation form is more or less rapidly changed 

to the more stable colourless hemiketal (alternatively hemiacetal or carbinol pseudobase) and 

chalcone form. The hydration at the flavylium cation seems to occur mainly at the 2-position 

to give the hemiketal 2-adduct, but the possibility of a 4-adduct is also present (Figure 5, 

structure 8 and 9). The chalcone form is a result of a ring opening of the hemiketal form, and 

is considered to be an equilibrium form of the hemiketal (Figure 5, structure 10 (Z, E) and 11 

(Z, E)). The different equilibrium structures have been proposed with different methods 

including pH-jump method, UV-visible and fluorescence spectroscopy (e.g., Pina, 1998) and 

in a few cases NMR spectroscopy (Cheminat and Brouillard, 1986; Mistry et al., 1991; Santos 

et al., 1993; Terahara et al., 1993; Bakker et al., 1997; Jordheim et al., 2006b; Fossen et al., 

2007).  
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Figure 5. General scheme showing some possible anthocyanin transformations in aqueous 

solution. X = glycoside, R1 and R2 can be hydroxyl and/or methoxyl groups, depending on the 

type of aglycone. Other reactions may be involved (see references above). 
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The structural transformation reactions are mainly responsible for the fact that NMR and MS 

spectral methods previously were of limited value in the structural investigations of the 

equilibrium forms of anthocyanins (Hrazdina, 1982.). 

 

1.2.3 Biosynthesis and anthocyanin cell accumulation 
 

The initial step in biosynthesis of all flavonoids is the condensation of 4-coumarate coenzyme 

A (shikimate derived, B ring) with three malonyl coenzyme A molecules (polyketid origin, A 

ring) to give 2', 4', 6', 4-tetrahydroxychalcone, which is catalysed by the enzyme chalcone 

synthase (Strack and Wray, 1994). The chalcone is then isomerised to the flavanone 

naringenin, a key indermediate, which can be converted to several end-products including 

anthocyanins (Figure 6). (Strack and Wray, 1994; Cooper-Driver, 2001). 
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Figure 6. Schematic representation of the biosynthetic pathway of anthocyanins. 

 

Based on the known biosynthetic pathways of flavonoids, it is assumed that different 

flavonoid groups have appeared sequentially during plant evolution. This assumption 
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presumes that the simple structural compounds or groups of compounds (e.g. flavanones) 

which appear early in the biosynthetic pathway, evolved in the first photosynthetic plants, 

whereas compounds synthesized later in the biosynthetic pathway (e.g. anthocyanins) would 

occur in the most recently evolved plants or extant plant taxa (Cooper-Driver and 

Bhattachary, 1998 and references therein; Swain, 1986; Stafford, 1991). But these 

assumptions have been questioned, and new data have become available. Anthocyanins are 

for example found in liverworts and ferns, so the ability to synthesize anthocyanins is an 

ancient one, and over the course of evolution the anthocyanins have developed varied 

functions in the biology of plants. 

Although the biosynthetic pathways for anthocyanins and their regulation have been 

well studied, the mechanism of anthocyanin accumulation in the cell is poorly understood. In 

most plants anthocyanins are normally found dissolved uniformly in the vacuolar solution of 

epidermal cells. However, in certain species, the anthocyanins are localised in discrete regions 

of the cell vacuole. Markham and co-workers (2000) described these regions as intensely 

coloured intravacuolar bodies and defined them as anthocyanic vacuolar inclusions, AVIs, 

based on observations in blue-grey carnation and in purple lisianthus. Here AVIs occurred 

predominantly in the adaxial epidermal cells and their presence was shown to have a major 

influence on flower colour by enhancing both intensity and bluish hue. Electron microscopy 

studies on lisianthus epidermal tissue failed to detect a membrane boundary in AVI bodies, 

and AVIs isolated from lisianthus cells were shown to have a protein matrix with 

anthocyanins bound. Flavonol glycosides were not bound, showing AVIs specificity as 

vacuolar anthocyanin traps. Zhang et al. (2006) have recently used light and electron 

microscopy to investigate AVIs in different regions in petals of lisianthus. They observed 

three different forms of the AVIs; vesicle-like, rod-like and irregular shaped. No membrane 

was encompassing the AVI, which was in accordance with previous observations (Markham 

et al. 2000). Further analysis demonstrated the accumulation of anthocyanins in vesicle-like 

bodies in the cytoplasm, which themselves were contained in prevacuolar compartments, 

PVCs (Zhang et al., 2006). The vesicle-like bodies seemed to be transported into the central 

vacuole through the merging of the PVCs and the central vacuole in the epidermal cells. 

These results suggest the existence of mass transport of anthocyanins from the biosynthetic 

sites in the cytoplasm to the central vacuole where the PVCs play a major role. 
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1.2.4 Colour 
 

Considerable effort has been made to give explanations for the colour variations expressed by 

anthocyanins in plants, and especially the blue colours (Brouillard and Dangles, 1994; 

Andersen and Jordheim, 2006). Four mechanisms, namely self-association, intramolecular co-

pigmentation, intermolecular co-pigmentation between different molecules and complexation 

of anthocyanins with metal ions, have been suggested to stabilize the anthocyanins in the cell 

sap (Nerdal and Andersen, 1991). In addition various factors including sample concentration 

and nature of anthocyanin, anthocyanin equilibrium forms, the extent of anthocyanin 

glycosidation and acylation, and influence of external factors like pH, solvent, temperature, 

etc. may interact with previously mentioned stabilization mechanisms. Co-pigmentation is 

supposed to be the most common mechanism in the formation of blue flower colours, and 

together with pH probably the most important factor influencing the flower colour (Goto and 

Kondo, 1991; Brouillard and Dangles, 1994; Harborne and Williams, 2000). 

The co-pigments of anthocyanins may include other flavonoids such as flavonols or 

flavones, with delphinidin as the most commonly described anthocyanidin and flavones as the 

co-pigments with most pronounced effects (Harborne and Williams, 2000). Intra- or 

intermolecular association may exist between the chromophore (anthocyanin) and the co-

pigment when the two units are covalently linked through a dicarboxylixc acid (Eichhornia 

crassipes, Toki et al., 1994, 2004; Allium schoenoprasum, Fossen et al., 2000; lupins, Takeda 

et al., 1993 and orchids, Strack et al., 1989; Uphoff, 1982), or when the anthocyanin moiety is 

covalently linked directly to a flavanol unit (strawberry, Fossen et al., 2004).  

The stability of and shift to blue colours for polyacylated anthocyanins have also been 

explained by intra- or intermolecular co-pigmentation involving stacking between 

anthocyanidin and aromatic acyl moieties (Dangles et al., 1993, 1994, 1997; Redus et al., 

1999; Honda et al., 2001). The bathochromic effects have been shown to depend on the 

number of aromatic acyl groups present and their linkage positions. The proposed “sandwich” 

configuration with the 3'-acylglycosyl chain folded “over” and the 7-acylglycosyl chain 

folded “under” the chromophore, constituted the minimum energy conformation, providing 

effective protection against nucleophilic attack of the pyrylium ring by the solvent (water) 

(Figueiredo et al., 1999; Honda et al., 2001). 

In a few cases anthocyanin complexation with metal ions has shown to be efficient in 

influencing anthocyanin colour. Kondo et al. presented in 1992 the extraordinary macro-

molecule Commelinin found in flowers of Commelina communis. Here, two magnesium 
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molecules were central in a macro-molecule with six self-associated anthocyanin units and six 

flavone units. The stability and the intense blue flower colour were explained by 

intermolecular hydrophobic association. In 1998 Kondo et al. proposed a new molecular 

mechanism for blue colour expression based on protocyanin from cornflower, Centaurea 

cyanus. The blue colour was found to be caused by ligand to metal charge transfer (LMCT). 

However, recently it has been shown that additional presence of two Ca2+-ions was essential 

for the formation of protocyanin (Shiono et al., 2005; Takeda et al., 2005). Another 

metalloanthocyanin, protodelphin, similar to commelinin and protocyanin, has been isolated 

from flowers of Salvia patens (Takeda et al., 1994). Recently an anthocyanin complex 

containing a cyanidin derivative, two or more equivalents of kampferol derivatives, 1/6 

equivalents of Fe3+ and excess of Mg2+-ions has been proposed to constitute the blue petal 

colour of Himalayan blue poppy (Meconopsis grandis) (Yoshida et al., 2006). It is also 

known that anthocyanins with hydroxyl groups in ortho-position to each other form 

complexes with triple charged metal ions leading to bathochromic and hyperchromic shifts in 

their absorption spectra (Dangles et al., 1994; Elhabiri et al., 1997). For example, the colour 

change of hydrangea (Hydrangea macrophylla) has been suggested to be caused by free Al3+ 

complexation, where the complex responds to slight vacuolar pH change (Kondo et al., 1999; 

Yoshida et al., 2004). 

 The different mechanisms described above are most probably influenced by the in vivo 

equilibrium form(s) of anthocyanin(s) (section 1.2.2), which occur in plants. Under 

physicochemical conditions close to those prevailing in the vacuoles of floral cells, the 

common anthocyanins have been shown to exist essentially in their colourless forms 

(Brouillard et al., 1977a, 1977b). 

 

1.2.5 Stability 
 

Considerations about anthocyanin stability are related to colour, equilibrium forms and co-

pigmentation (section 1.2.2 and 1.2.4). These factors are again affected by pH, temperature, 

oxygen, light, ascorbic acid, nucleophilic agents, free sugars, sulphur dioxide and enzymes 

present (Iacobucci and Sweeny, 1983; Jackman et al., 1987; Francis, 1989; Cabrita, 1999).  

Brouillard (1982) found that starting from the flavylium cationic form each of the 

reactions in the equilibrium scheme (Figure 5) were endothermic (Iacobucci and Sweeny, 

1983). By heating an anthocyanin solution, the equilibrium was driven towards the chalcone 

form giving decreased quantities of the coloured flavylium cation form. Cooling reversed the 
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change. Iacobucci and Sweeny (1983) have reported cyanidin 3-rutinoside to be more stable 

than cyanidin aglycone, and the hydroxyl groups at the B-ring increased the stability of the 

anthocyanin compared to analogues methoxyl groups. More recent studies on the stability of 

various acylated anthocyanins in weak acidic or neutral aqueous solutions (mostly di- or poly-

acylated pigments) have shown these anthocyanins to be more resistant to hydration, and 

hence possess a higher colour stability in weakly acid or neutral solutions compared to non-

acylated anthocyanins (Goto el a., 1983, 1984; Saito et al., 1985, 1995; Idaka et al., 1987; 

Yoshida et al., 1991, 1992). With respect to the alkaline pH area the aromatic acylated petanin 

(petunidin 3-O-β-(6''-O-(4'''-O-E-p-coumaroyl-O-α-rhamnosyl)glucopyranoside)-5-O-β-

glucopyranoside) afforded a higher colour intensity and higher or similar stability throughout 

the whole pH range compared to the simple cyanidin 3-glucoside (Fossen et al., 1998). The 

increased stability of aromatically acylated anthocyanins in alkaline solutions was also 

reported by Torskangerpoll and Andersen (2005). In addition, they experienced that cyanidin 

3-(2''-glucosylglucoside)-5-glucoside was more unstable than cyanidin 3-glucoside at most 

pH values.  

 

1.2.6 Functions in plants 
 

Anthocyanins are involved in attraction of insects and animals for pollination and seed 

dispersal purposes as they constitute the chemical basis of flower colour in angiosperms 

(Strack and Wray, 1994; Harborne and Williams, 1995). Their presence in young leaves, 

seedlings, roots and stems are not that obvious. There is increasing evidence that 

anthocyanins, particularly when they are located at the upper surface of the leaf or in the 

epidermal cells, also have a role in the physiological survival of plants. It has been outlined 

that foliar anthocyanins accumulate in young, expanding foliage, in autumnal foliage of 

deciduous species, in response to nutrient deficiency, temperature changes or ultraviolet (UV) 

radiation exposure, and in association with damage or defense against browsing herbivores or 

pathogenic fungal infections (Harborne and Williams, 2000; Gould and Lee, 2002; 

Simmonds, 2003; Close and Beadle, 2003). The functions of anthocyanins have in this 

context mainly been hypothesized as a compatible solute contributing to osmotic adjustment 

to drought and frost stress, as antioxidant and as UV and visible light protectant. 
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1.2.7 Potential health effects  
 

Anthocyanins have received increasing attention during the last fifteen years related to 

potential health effects, and they are nowadays regarded as important nutraceuticals. This is 

mainly due to their possible antioxidant effects, and they have been given a potential 

therapeutic role related to cardiovascular diseases, cancer treatment, inhibition of certain types 

of virus including the human immunodeficiency virus type 1 (HIV-1), and improvement of 

visual acuity (Talavera et al., 2006; Stintzing et al., 2002; Moyer et al., 2002; Sandvik, 2004; 

Rechner and Kroner, 2005; Cecchini et al., 2005; Kamei et al., 1995; Cooke et al., 2005; 

Beattie et al., 2005; Andersen et al., 1997; Jang et al., 2005; Nakaishi et al., 2000; Wrolstad et 

al., 2002). The extent of the anthocyanin antioxidant potential in humans, and other observed 

positive health effects studied in vitro, are of course in vivo dependent on the absorption, 

metabolism, distribution, and excretion of these compounds within the body after ingestion 

(Rice-Evans, 2003). 

 

1.2.8 Bioavailability 
 

To reveal the potential health effects of anthocyanins it is essential to understand their in vivo 

bioavailability and functions. Bioavailability studies involving anthocyanins are often 

performed with HPLC equipped with UV-Vis spectroscopy detector, and the detection is 

mainly based on the coloured flavylium cation form. In a study by McGhie et al. (2003) rats 

were fed with boysenberry extract. The stomach of the rats was thereafter coloured, indicating 

the presence of the flavylium cation. The small intestine did not show any traces of coloured 

anthocyanins, but after acidifying the intestinal tissue turned red. By acidifying plasma, urine 

and liver tissue colourless anthocyanins were transformed to the coloured flavylium cation 

forms and detected by UV-Vis spectroscopy (McGhie et al., 2003; Tsuda et al., 1999; 

Miyazawa et al., 1999; Matsumoto et al., 2001; Cao et al., 2001; Felgines et al., 2002; 

Felgines et al., 2003; Cooney et al., 2004; Passamonti et al., 2005; Talavera et al., 2004, 

2006).  

During the passage of anthocyanins through the gastrointestinal tract (GIT), they are 

exposed to different pH environments and might therefore exist at different forms (section 

1.2.2). The anthocyanin forms present in the different regions and tissues of the GIT, and 

eventually during absorption, are not known with certainty (McGhie et al., 2003). It is likely 

that the flavylium cation will exist only in the lumen of the stomach due to low pH, and the 
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other forms will predominate lower down the GIT. McDougall and co-workers (2007) 

assessed the stability of red cabbage anthocyanins to simulated gastrointestinal digestion. 

They found that the anthocyanins were effectively stable under acidic gastric digestion 

conditions, but the total recovery after simulated pancreatic digestion was around 25% 

compared to around 100% recovery of phenol content. Acylated anthocyanins showed higher 

stability against pancreatic digestion than non-acylated forms, and anthocyanins with sinapic 

acid reduced the stability compared to the other hydroxycinnamic acids. They concluded that 

it is unlikely for the anthocyanins to reach the serum or survive long under serum conditions, 

and they attributed the biological activities of anthocyanins to be carried out by their 

metabolites.  

Metabolites of anthocyanins are found in urine, kidney and liver tissue (Tsuda et al., 

1999; Wu et al., 2002; Talavera et al., 2004, 2006). For example were methylated cyanidin 3-

glucoside (peonidin 3-glc) and their glucuronidated derivatives identified in urine and plasma 

from aorta and mesenteric vein together with native cyanidin 3-glucoside. Native cyanidin 3-

glucoside and its methylated derivatives appeared in the bile after as little as 25 minutes 

(Talavera et al., 2005). This supports the findings of Miyazawa et al. (1999), who reported a 

high concentration of methylated cyanidin 3-glucoside in rat liver and a low concentration in 

the plasma, indicating that these metabolites were excreted from the liver directly into the 

bile. Even sulfoconjugated cyanidin derivatives have been identified in the urine (Felgins et 

al., 2005). Anthocyanidin sulfoconjugate formation requires hydrolysis of the anthocyanin to 

the aglycone followed by sulfoconjugation of the aglycone by sulfotransferases present in 

numerous tissues, including intestine and liver. The metabolic fate of anthocyanins may also 

differ according to their aglycone structure and the main metabolites of blackberry 

anthocyanins found in human urine were anthocyanidin monoglucuronides (Felgins et al., 

2005). 

Anthocyanin concentration in plasma results from a balance between absorption and 

elimination (Passamonti et al., 2005). Both parameters are complex, because absorption may 

depend on gastrointestinal motility, blood flow, and the activity of membrane carriers. The 

removal rate of anthocyanins from the plasma depends on their uptake and metabolism in 

peripheral tissues, including excretion into bile and/or urine, and on the conversion between 

the different equilibrium forms of the anthocyanins. The occurrence of anthocyanins in the 

plasma could be related to their binding to proteins, which ensures their chemical stability. 

The variable levels of anthocyanins in the plasma may reflect individual differences with 

respect to the content of endogenous and exogenous competitors for protein-binding sites in 
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the blood. The rate of anthocyanin breakdown in the plasma is also influenced by different 

active redox compounds present. The mean concentration of anthocyanins in plasma, 

although low, seems to be adequate for antioxidant effect (Passamonti et al., 2005).  

The fact that cyanidin 3-glucosides and cyanidin 3,5-diglucosides are found in rats and 

human (low concentration) plasma, strongly confirms the ability of glycosides to cross the 

small intestine (Tsuda et al., 1999; Miyazawa et al., 1999). Matuschek et al. (2006) found that 

cyanidin 3-glucoside was mainly absorbed in the jejunum of the small intestine, which 

suggests involvement of an active transport mechanism. Tsuda et al. (1999) studied cyanidin 

3-glucoside and its metabolites in the jejunal tissue of rats after direct stomach incubation. 

The cyanidin 3-glucoside, the cyanidin aglycone and the oxidation product of cyanidin 3-

glucoside, protocatechuicacid/3,4-dihydroxybenzoic acid, were all detected in the jejunal 

tissue. Cyanidin 3-glucoside was then rapidly detected in the plasma and its oxidation product 

was detected at concentrations eight times higher. The cyanidin aglycone was not found in the 

plasma. Whether anthocyanins can be transported by SGLT1 (Na–dependent glucose 

transporter in small intestine and kidney), as quercetin 3-glucoside, or they are liable to be 

attacked by the glycosidases has not yet been confirmed. It can be the case that anthocyanins 

and anthocyanidins have the same transport system as quercetin 3-glucoside, but the fast 

degradation of the unstable anthocyanidins prevents their detection. 

Other studies have demonstrated the possibility of anthocyanin absorption from the 

stomach (Passamonti et al., 2002, 2003). Bilitranslocase, an organic anion membrane carrier 

expressed in epithelial cells of the gastric mucosa, is suggested to be involved. Anthocyanins 

are rapidly absorbed following oral administration; the absorption through the gastric wall 

may provide an explanation (Matuschek et al., 2006). Interestingly Passamonti et al. (2005) 

found anthocyanins intact in rat brains just a few minutes after administration into the 

stomach. This is unexpected because of the presence of the blood-brain barrier which is 

thought to be impermeable to >98% of small, polar molecules occurring in the blood. The 

area of penetration has not been detected. Another study done by Talavera et al. (2005) 

reports anthocyanins in rat brains after intake of anthocyanin rich diet, though with a different 

timing of the experiments.  

Elimination of anthocyanins (mixed anthocyanins from berries) is quite rapid (t1/2 = 

1.5-3 h compared to; quercetin t1/2 = 11-28 h), and accumulation is not likely to occur to any 

significant extent following normal dietary consumption (Kay, 2006). Studies identifying 

anthocyanins exclusively as unmetabolized parent compounds may result from either 

saturation of metabolic pathways following mega-dose interventions, insufficient extraction 
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procedures, and misidentification as a result of insufficient detection methods (i.e. using UV-

Visible HPLC exclusively for identification) (Kay, 2006). He et al. (2006) have performed a 

long term (3 months) trial on rats, with a chokeberry-, bilberry-, and grape-enriched diet. In 

this study they observed a larger urinary excretion of methylated anthocyanins than in several 

shorter (less than 8-day adaptation) previously reported studies, suggesting the possible 

accumulation of anthocyanins in tissues or induction of methyltransferase. For the first time 

the occurrence of intact acylated anthocyanins in plasma and urine was demonstrated. 

However, this study supports the finding by numerous researchers that anthocyanins have 

very low absorption, and it was suggested that anthocyanins in the gut content may influence 

GIT health without being delivered by the blood circulation system. He et al. (2006) observed 

high concentrations of possible metabolites in plasma, which emphasises the importance of 

further investigation of the significance of the accumulation of colonic metabolites and 

aglycone breakdown products.  

The pyranoanthocyanins have received increasing interest during the last years 

(Jordheim et al., 2006a). 5-carboxypyranomalvidin 3-glucoside (34) has been reported to be 

more stable at gastrointestinal condition, and may be more serum-available and exert 

biological effects at a cellular level (McDougall et al., 2005). No data on the serum uptake of 

pyranoanthocyanins have been reported, although there have been a number of studies on the 

bioavailability of red wine anthocyanins (Lapidot et al., 1998; Bub et al., 2001; Frank et al., 

2003). Initial in vitro experiments have suggested that 5-carboxypyranomalvidin 3-glucoside 

derivatives are slightly less biologically effective than their parent anthocyanins (Garcia-

Alonso et al., 2004), but their enhanced stability compared to the more common anthocyanins 

makes further research interesting.  

 

1.2.9 Various applications 
 

The almost universal distribution of anthocyanins in flowering plants, makes them also 

suitable for chemotaxonomic considerations both at the family and genus level (Cooper-

Driver, 2001). With respect to flower colour breeding the flavonoid pathway which leads to 

anthocyanin biosynthesis, is well characterised (Tanaka et al., 2005). The genes encoding for 

the pathway enzymes have been cloned from many plants and can be easily extracted from 

public DNA data bases. Metabolic engineering of the flavonoid pathway has generally been 

the focus with respect to modification of flower colour, but the final visible colour of a flower 

is also a function of other factors like co-pigmentation and vacuolar pH (section 1.2.4). These 
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factors are again regulated by a number of genes, many of which have now been cloned and 

characterised. The application and commercialization in this context is today limited by the 

lack of efficient transformation systems for floricultural species. 

In the human diet, anthocyanins are found in red wine, certain varieties of cereals and 

certain leafy and root vegetables (aubergines, cabbage, beans, onions, radishes), but they are 

most abundant in fruits. Overall cyanidin is the most common anthocyanidin found in foods 

(Manach et al., 2004). The anthocyanin content in foods (fruits, berries etc.) is generally 

proportional to colour intensity, and reach values up to 2–4 g/kg fresh wt in blackcurrants and 

blackberries. These values increase as the fruit ripens. Wine contains approximately 200–350 

mg anthocyanins/L, and involved anthocyanins are transformed into various complex 

structures as the wine ages. As an example showing the difficulties of estimating the daily 

intake of anthocyanins one can compare the intakes of anthocyanins tabulated by Clifford and 

Brown (2006) (5–9 mg/daily), with the estimated daily intake of anthocyanins in USA 

reported by Kühnau (1976), which was estimated to be 215 mg during the summer and 180 

mg during the winter. 

 There is a worldwide interest in increased use of food colorants from natural sources 

as a consequence of consumer preferences as well as legislative action in connection with 

synthetic dyes. The principal commercially available anthocyanin food colorants are derived 

from grapes (Vitis spp.), elderberry (Sambucus nigra), red cabbage (Brassica oleracea) and 

roselle (Hibiscus sabdariffa). Other commercial anthocyanin extracts can be obtained from 

blood orange (Citrus sinensis), black chokeberry (Aronia melanocarpa) and sweet potato 

(Ipomoea batatas) (Bridle and Timberlake, 1997). However a major problem with most 

anthocyanins has been insufficient stability in aqueous solutions at pHs above 3, and today 

the use of anthocyanins as food colorants is mainly limited to beverages and candies.  
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Chapter 2 
EXPERIMENTAL METHODS USED 

 

The isolation, purification and structure determination of pure anthocyanins are relatively 

time consuming processes, and because most anthocyanins are prone to be relatively unstable 

these processes must be handled with care. During the workup procedure the anthocyanins 

may also become more fragile because of the removal of stabilizing factors like free sugars 

and other phenolic compounds. Storage of anthocyanins in the dark, at low temperature and in 

the dry state, to reduce hydration and degradation, is therefore preferable. Typical procedures 

for isolation and characterization of pure anthocyanins consist of several steps: 1) extraction 

of the plant material, followed by a preliminary purification, step 2) fractionation of the 

mixture followed by isolation of pure pigments, and finally step 3) characterization and 

identification of pure anthocyanins (Strack and Wray, 1989). 

 In this chapter follows some details regarding experimental procedures and principles. 

See the individual papers for further details concerning exact procedures. 

 

2.1 Extraction and purification 
 

Extraction. Anthocyanins were normally extracted with methanol containing 0.5% 

trifluoracetic acid (TFA) (v/v). The black beans (Phaseolus vulgaris) were also pre-soaked in 

water containing 0.5% TFA (paper V–VIII). In this case this was done to improve the 
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extraction yields of anthocyanins because direct methanolic extractions provide very poor 

yield. The extraction was performed in refrigerator (5ºC) at low temperatures to avoid 

hydrolysis of potential acyl groups in the anthocyanin structure, and degradation. After 

extraction the extract was filtered, and the methanol was removed by evaporation under 

reduced pressure at relatively low temperatures (<30ºC). 

 

In all papers (I–VIII) the following purification procedures with ethyl acetate and Amberlite 

XAD-7 column chromatography were performed. 

 

Liquid-liquid partition. The combined aqueous concentrates after evaporation were purified 

by partition against ethyl acetate to remove chlorophylls, stilbenoids, less polar flavonoids 

and other non polar compounds from the mixture. 

Amberlite XAD-7 (adsorption chromatography). The aqueous extracts obtained after the 

liquid-liquid partition step will also contain other water soluble compounds than 

anthocyanins, like free sugars and aliphatic acids. These non-aromatic compounds were 

removed with the use of Amberlite XAD-7 column chromatography. Amberlite XAD-7 

adsorbs the aromatic compounds including anthocyanins and other flavonoids in aqueous 

solutions, whereas free sugars and other polar non-aromatic compounds were removed by 

washing with distilled water until the eluted water has a neutral pH. Then the adsorbed 

anthocyanins and other flavonoids were eluted using methanol containing 0.5% TFA (v/v) as 

mobile phase (Andersen, 1988a).  

 

2.2 Sample fractionation and isolation of pure pigments 
 

Size-exclusion chromatography and preparative HPLC have been used in fractionation and 

isolation of pure pigments. 

 

Gel filtration column chromatography. In this work both Sephadex LH-20 (paper I, IV–VIII) 

and Toyopearl HW-40F (paper I–VIII) were used as column material. Both theses materials 

separate with respect to molecule size. The Toyopearl HW-40F material has smaller particle 

sizes than Sephadex LH-20, which implies a slower elution, higher degree of gel filtration and 

exclusion (Frøytlog et al., 1998). This makes Toyopearl HW-40F material suitable for 

separation of structurally similar pigments. But both techniques can provide excellent 

separation (Andersen and Francis 1996, Frøytlog et al., 1998; Andersen and Francis 2004; 
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Jordheim et al., 2006a). The purified XAD-7 extracts were dissolved in a small amount of the 

initial mobile phase (MeOH/H2O/TFA; 20:80:0.5, v/v) followed by application. Separation 

was achieved by isocratic or gradient elution using increasing amounts of methanol. Since the 

main principle for the two types of column material used is size-exclusion, the anthocyanins 

may be mainly eluted in order of decreasing molecular mass. For example anthocyanidin tri-

glycosides are eluted prior to anthocyanidin di-glycosides followed by anthocyanidin mono-

glycosides. Acylated anthocyanins are usually more retarded than non-acylated anthocyanins 

because of increased adsorption (Henke, 1995). The anthocyanin containing fractions were 

collected on the basis of observed visual band separation. 

 

Preparative HPLC. This is a technique with high resolving power. The instruments used was 

a Gilson 305/305 pump equipped with C18 reversed-phase column (ODS-Hypersil column (25 

× 2.2 cm, 5 µm)) coupled to a multidiode array detector (HP-1040 A) (paper II) and a Gilson 

305/306 pump equipped with a UV 6000LP detector and an ODS Hypersil column (25 × 2.2 

cm; i.d.; 5 µm) (paper I and IV). The latter instrument was operated by Robert Byamukama at 

Makerere University, Kampala, Uganda. Information about the pigment retention times, 

UV/Vis spectra and peak purities could be obtained. The polar mobile phase used was a 

gradient consisting of variable proportions of H2O-HCOOH (WF) (9:1, v/v) and H2O-

HCOOH-CH3OH (WFM) (4:1:5, v/v).  

 

2.3 Quantitative determination 
 

Prior to the quantitative determination of various berries described in paper II, the berries 

were freeze-dried and pulverized. 1 g of each pulverized sample was weighed accurately, 

placed into a 15 mL screw-cap glass and extracted with 5 mL acidified methanol (0.5 % TFA) 

with magnetic stirring for 2 h followed by centrifugation at 3000g for 5 min. The supernatant 

was removed and stored in a sealed glass tube in freezer at -20ºC. This procedure was 

repeated twice. The combined supernatants were transferred into a volumetric flask to 

determine the total volume followed by HPLC analysis.  

The quantitative determination of anthocyanins of Hippeastrum cultivars described in 

paper IV was performed on an extract (10 mL) of 5 g of fresh plant material. After one 

extraction no remaining visible colour could be observed in the plant material. 
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Prior to injection the solutions were filtered through a 0.45 µm Millipore membrane filter and 

15 µl of the extract(s) was injected on the HPLC. The quantitative amounts were determined 

from a HPLC calibration curve of pure cyanidin 3-O-β-galactoside (isolated from Aronia 

melanocarpa), without taking into account the variation of molar absorption coefficients for 

individual pigments. The calibration curve was based on HPLC chromatograms recorded at 

520 ± 20 nm for four (II) and seven (IV) different pigment concentrations. Statistical 

significance of 5 % (p < 0.05) was chosen, and a Student’s t-test (Minitab) was performed.  

 

2.4 Hemisynthesis of carboxypyranoanthocyanins 
 

The simplest procedure to obtain the flavylium ring system was provided by the 100 years old 

work of Bülow and Wagner (Harborne, 1982; reviewed by Iacobucci and Sweeny, 1983).  
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Figure 7. Mechanism postulated for the reaction between pyruvic acid and malvidin 3-

glucoside (Fulcrand et al., 1998). 

 

The procedures developed by Robinson and co-workers in the 1930s on synthesis of natural 

anthocyanin glycosides were epochal. An alternative approach to the synthesis of 

anthocyanidins and anthocyanins is provided by hemisynthetical procedures based on the 

reduction of flavanones, dihydroflavonols or flavonols to the corresponding anthocyanins.  

 In 1998 Fulcrand and co-workers identified carboxypyranoanthocyanins to be a class 

of stable pigments that could be derived from the reaction between pyruvic acid and grape 

anthocyanins. The formation of carboxypyranoanthocyanins are postulated to result from 

cyclisation between C-4 and the hydroxyl group at C-5 of the original flavylium moiety with 

the double bond of the enolic form of pyruvic acid, followed by dehydration and re-

aromatisation steps (Figure 7). The reaction is thought to be an important route for conversion 

of grape anthocyanins into more stable pigments during maturation and ageing of wine. 
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In paper V carboxypyranoanthocyanins were produced by mixing the Amberlite XAD-

7 purified anthocyanins (10 g), isolated from black beans (Phaseolus vulgaris), dissolved in 

ethanol (100 mL) containing 2 mL TFA and 2-oxopropanoic acid (pyruvic acid) (100 g) 

(Fluka, Germany) dissolved in distilled water (900 mL) (Fulcrand, et al., 1998; Jordheim et 

al., 2006a). The mixture was kept at 45ºC, and the synthesis was monitored by on-line HPLC 

(Agilent 1100 Series) after 5 min, 2 h, 5 h, 9 h, and 23 h. The reaction was terminated after 23 

h by placing the reaction bottle in a refrigerator (4ºC). After termination of the synthesis, the 

ethanol in the reaction mixture was removed under reduced pressure, before the remaining 

aqueous concentrate was applied to an Amberlite XAD-7 column (70 × 5 cm). Excessive 

pyruvic acid was washed away with water (2 L), before the pigment mixture was eluted with 

methanol containing 0.5% TFA (v/v) (1 L). 

 

2.5 Characterization and structure determination 
 

For characterization and structure determination of individual pigments different 

chromatographic and spectroscopic techniques have been used; thin layer chromatography 

(TLC) (paper I, III, IV and V), colour measurements (paper IV), analytical HPLC, UV-Vis 

spectroscopy, mass spectrometry (MS) (paper I-III) and Nuclear Magnetic Resonance 

spectroscopy (NMR). TLC, HPLC and UV-Vis spectroscopy may give a lot of characteristic 

information about the type of anthocyanin, MS provides the molecular mass of the 

anthocyanin, but the application of a powerful NMR instrument is usually required for 

complete structure identification of anthocyanins. Structure elucidation of anthocyanins 

comprises 1) aglycone, 2) sugar units, and 3) acyl groups, as well as 4) determination of 

linkage positions between the different sub-groups. 

In paper VIII coulometric determinations and FRAP were used to measure the reducing 

capacity of anthocyanins, these experimental methods were performed at Matforsk AS, 

Norwegian Food Research Institute, Oslo, Norway, by Kjersti Aaby. 

 

Thin Layer Chromatography (TLC). TLC is considered to be one of the simplest of the 

chromatographic techniques. TLC facilitates short acquired time, and is a relatively 

inexpensive procedure. TLC was carried out on 0.1 mm cellulose F (Merck) plates (stationary 

phase) with the solvent FHW (HCO2H – conc. HCl – H2O; 25:24:51, v/v) (mobile phase). 

Authentic anthocyanins from the following sources were used as standards; strawberry 

(Fragaria ananassa) (Nerdal et al., 1992), black currant (Ribes nigrum) (Frøytlog et al., 
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1998), lingonberry (Vaccinium vites-idaea) (Andersen, 1985), black elderberry (Sambucus 

nigrum) (Andersen et al., 1991) and American elderberry (Sambucus canadensis) (Johansen 

et al., 1991; Nakatani et al., 1995).  

In the FHW solvent system anthocyanins with similar structure regarding sugars and acyl 

units will be separated with respect to the number of hydroxyl and methoxyl groups on the B-

ring of the aglycone. Increasing hydroxylation and methoxylation will result in a decreasing 

retention factor (Rf). The hydroxyl groups have a greater impact than the methoxyl groups. 

The retention time will also increase with increasing number of sugars and acyl groups in the 

anthocyanin structure (Andersen, 1988b.). 

 

Reversed phase analytical HPLC. HPLC is the method of choice for the accurate 

determination of both the composition and the concentration of anthocyanins in a given 

sample (Andersen and Francis, 2004 and reference therein; Merken and Beechner, 2000). In 

the papers (I-VIII) the HPLC equipped with a diode-array detector, analyses are performed 

using a C18 reverse phase column (250 × 4.6 mm, 5 µm particles). The elution system was 

binary, with an aqueous acidified solvent (A) and a less polar acidified acetonitrile (B) 

solvent. 

 The main chromatographical separation principle involved in reversed-phase HPLC is 

the partition of solutes between the polar mobile phase and the non-polar stationary phase. 

The overall polarity and the stereochemistry of the anthocyanins are the key factors for 

separation (Strack and Wray, 1989, 1994; Andersen and Francis, 2004). The elution of 

anthocyanins in reversed-phase HPLC columns depends on the pattern of 

hydroxylation/methoxylation of the aglycone, the degree of glycoslyation and acyl 

substitution, as well as on the mobile phase composition and solvent gradient steepness. The 

nature of the aglycone contribute to anthocyanin retention in the order; delphinidin < 

cyanidin < pelargonidin < petunidin < peonidin < malvidin. Anthocyanin glycosides elute in 

the following order: 3, 7-diglucosides < 3, 5-diglucosides < 3-sophorosides < 3-galactosides 

< 3-lathyrosides < 3-sambubioscides < 3-glucosides < 3-arabinosides < 3-rutinosides < 3-

rahmnosides. The presence of aromatic or aliphatic acylation increases retention times 

compared to the corresponding non-acylated derivatives. 

 

UV-Visible spectroscopy (UV-Vis). UV-Vis spectra of the compounds discussed in this work 

were obtained online during the various analytical HPLC analyses or with a Cary 3 UV-

instrument. The most important spectral parameters derived from the UV-Vis spectra of 
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anthocyanins are; λVis-max, the absorption (A) at λ = 440 nm compared to A at λVis-max 

(A440/AVis-max), and A at λUv-max compared to A at λVis-max (AUv-max/AVis-max). The absorption 

maxima in the visible region are mainly dependent of the nature of the aglycone, the position 

of sugar substituents on the aglycone, and the presence of aromatic acyl groups. In general, 

for anthocyanin 3-O-glycosides having a free 5-hydroxyl, the value of A440/AVis-max is in the 

range of 0.2-0.3. When the 5-position is glycosylated, A440/AVis-max is in the range of 0.1-0.2 

(Harborne, 1958). The presence of aromatic acylation can be determined using the ratio AUv-

max/AVis-max. Typical mono-aromatic acylation of anthocyanins may give a AUv-max/AVis-max 

ratio of ~ 0.6-1.3. A higher ratio may indicate several aromatic acyl residues (Ando et al., 

1999). Since aliphatic acyl groups are lacking significant UV-Vis absorption, their presence 

can not be directly detected by UV-Vis spectroscopy. 

 

Colour measurements (CIELab system). Colour measurements were performed with an Ultra 

Scan XE Hunter Colorimeter and the colours were described with the basis in the CIEL*C*hab 

system (Figure 8). Colour measurements were performed in paper IV. 
 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 8. The three-dimensional CIELab colour space, showing hab (hue angel), C* (chroma) 

and L* (lightness). (Modified figure from http://www.linocolor.com) 

 

The colour measurements were performed on anthocyanins dissolved in acidified methanol 

(0.5 % TFA). The L* describes the lightness of the colour, going from black (L* = 0) to white 

(L* = 100). The C* parameter describes the chroma or saturation of the colour, a measure of 
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how far from the grey tone the colour is. The higher the C* value, the more saturated is the 

colour. The hue angle (hab) describes the colour tonalities (red (0º), green (180º/-180º), blue 

(270º/-90º) and yellow (90º)). The hue angel is based on the CIEL*a*b* system, where a and 

b are Cartesian coordinates, and these Cartesian coordinates are based on the tristimulus 

values X, Y, and Z (Gonnet, 1998). 

 

Coulometric detection. Electrochemical (EC) detectors measure chemical properties of a 

compound, and not a physical property such as UV absorption (Manach, 2003). Different 

electrochemically active substituents on similar compounds can lead to characteristic 

voltammetric behaviour. Coulometric detection has been used fragmentary for 

characterisation and quantification of flavonoids (Gamache et al., 1993; Milbury, 2001; 

Manach, 2003). A positive, linear correlation between antioxidant activity of fruits and 

vegetables measured as ORAC values and the total electrochemical responses obtained by 

HPLC coupled to a coulometric array detector, has been reported by Guo et al. (1997). Yang 

and co-workers (2001) have suggested that electrochemical properties of related flavonoids 

may be used as indexes of their antioxidant activities in biological systems. With respect to 

anthocyanins, Kozminski and Brett (2006) have recently showed that HPLC with 

electrochemical detection is more sensitive than using a photodiode array detector for 

separation and determination of six common anthocyanins. Aaby et al. (2004) have studied 

what parameters in the coulometric analysis, which best describe the antioxidant activities of 

anthocyanins and other phenolic compounds.  

 

Nuclear Magnetic Resonance (NMR). The establishment of the detailed structure of 

anthocyanins usually requires information from several different techniques, including 

analytical HPLC and UV-Vis spectroscopy, NMR and mass spectrometry (MS). Recent 

technological advances in development of high-field magnets and cryoprobe technology have 

further improved the resolution and sensitivity of the powerful NMR techniques. With a 

combination of various 1D and 2D NMR experiments the assignment of all 1H and 13C 

resonances in an anthocyanin structure is possible (Pedersen, 1996; Andersen and Fossen, 

2003; Fossen and Andersen, 2006; Jordheim et al., 2006b). Different NMR experiments used 

in this work are commented below. 

 

1D 1H NMR. The 1D proton spectra of anthocyanins provide quantitative information about 

proton chemical shifts and their coupling constants (JHH) and give quantitative information by 
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integrating baseline-separated signals or selected spectral regions. Information about the 

nature of the aglycone, type and number of sugar and acyl substituents can also be provided. 

The chemical shift values also indicate linkage positions between different sub-units of the 

anthocyanin. 

 

1D 13C NMR. Spin Echo Fourier Transform (SEFT) and Compensated Attached Proton Test 

(CAPT) have been used along with different 2D techniques to obtain the accurate carbon 

chemical shifts. The SEFT sequence suffers from the use of a 90º-excitation pulse, which 

requires long repetition times. This feature has been significantly improved with CAPT.  

Due to low abundance (1.1%) and the lesser favourable magnetogyric ratio of 13C 

compared to 1H, the 13C-spectra have lower signal to noise levels than the corresponding 1H-

spectra. In addition will the 13C signal normally decrease in intensity because of the JCH-

couplings, which will split the signals into multiplets. But the last problem is eliminated with 

proton decoupling where multiplets collapse into singlets. The signals (C, CH, CH2, CH3) are 

differentiated with the aims of different delays in the pulse-program. The C and CH2 signals 

will be distinguish from the CH and CH3 signals by having opposite phases. 

 

2D 1H-1H TOtal Correlation SpectroscopY (2D TOCSY). This is a two dimensional homo-

nuclear NMR technique which has diagonal peaks, and identical proton chemical shift axes as 

the COSY technique. TOCSY is used to find the proton chemical shifts for all protons which 

belong to the same spin system, even if the protons are not directly J-coupled. Thus, TOCSY 

is very useful for determination of individual 1H chemical shifts of the various sugar units 

linked to the anthocyanidin. This is particularly relevant when the anthocyanin contains more 

than one sugar unit.  

 

2D 1H-1H gradient selected, Double Quantum Filter Correlation SpectroscopY (gs-DQF-

COSY). This technique is used to assign the different proton signals based on the couplings 

through bonds (J-coupling). COSY is a 2D homo-nuclear technique where the diagonal peaks 

represent the actual proton spectrum and the crosspeaks show which protons are J-coupled to 

each other (Figure 9). 

 

 

 

 

 
 

25



CHAPTER 2.  EXPERIMENTAL METHODS USED 
 

 

 
 

Figure 9. 1H-1H COSY NMR spectrum (600.13 MHz) of the sugar region of cyanidin 3-O-β-

(6''-E-caffeoylglucopyranoside) (15) in CF3CO2D–CD3OD (5:95, v/v) recorded at 25ºC, 

isolated from gooseberries (Ribes grosssularia L.). 

 

 

2D 1H-1H Nuclear Overhauser and Exchange Effect SpectroscopY (2D NOESY). This is a 2D 

homo-nuclear technique which is based on coupling through space. The method can provide 

information about the molecular geometry, conformation and linkage between anthocyanin 

sub-units. Exchange cross peaks between analogous protons of species that are in equilibrium 

with each other may be observed in NOESY spectra, which will result in positive cross peaks 

(Figure 10). A cross peak due to NOE correlation will be negative (Santos et al., 1993; paper 

VI: Jordheim et al., 2006b). 
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Figure 10. 1H-1H NOESY NMR spectrum (600.13 MHz) of the expanded aromatic region of 

malvidin 3-O-β-glucopyranoside (27) in pure CD3OD recorded at 25ºC, isolated from black 

beans (Phaseolus vulgaris). Negative cross-peaks due to NOE correlation are blue. Positive 

cross-peaks due to chemical exchange are red. 

 

2D 1H-13C gradient-selected Heteronuclear Single Quantum Coherence (gs-HSQC). The 

inverse-detected 2D-heteronuclear experiment correlates 1H and 13C chemical shifts through 

single-bond heteronuclear couplings 1JCH. The HSQC spectrum shows only protons that are 

directly attached to a carbon atom and vice versa. 

 

2D 1H-13C gradient-selected Heteronuclear Multiple Bond Correlation (gs-HMBC). The 

HMBC correlates 1H and 13C chemical shifts through multiple-bond heteronuclear couplings. 

The most important ones are 2JCH and 3JCH, for which the strongest cross-peaks are observed. 

In addition some 1JCH correlations and some long distance correlations may be observed. In 

the spectra recorded for the anthocyanins the 1JCH large doublet may be observed in the 
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HBMC spectra because of incomplete suppression. In the heteronuclear multiple-bond 

correlation spectra, most quaternary carbon resonances may be assigned. 

 

Mass Spectrometry (MS). Mass Spectrometry has in the present work been applied to measure 

the molecular mass, and only in some cases fragment ions, with the purpose of verification of 

the various structure determinations. Mass spectral measurements were obtained by 

electrospray ionization in positive (ESP+) mode using a JMS-T100LC with an AccuTOF LP 

mass separator in paper I and II performed by the Jeol Company (Paris). In paper III the 

electrospray mass spectrometry analysis was performed on a Quattro II MS/MS (Micromass, 

UK) with API source and flow injection at Polyphenols Laboratory AS (Sandnes, Norway). 

 

The Ferric Reducing Ability of Plasma (FRAP assay). The FRAP assay is a simple, automated 

test measuring the ferric reducing ability of plasma, and the assay is presented as a method 

which measures the “antioxidant power” (Benzie and Strain, 1996). This test was used in 

connection with paper VIII following the procedure described by Benzie and Strain (1996) 

with modifications (Aaby et al., 2004). The assays were carried out on a FLUOstar OPTIMA 

plate reader (BMG Labtech GmbH, Offenburg, Germany) using the 595 nm absorbance filter. 

Anthocyanin solution (250 µM, 10 µL) was added manually to the plate, and mixed with 

freshly prepared FRAP reagent (190 µL) added by the plate reader. The reaction was 

conducted at 27 °C, and absorbance measured every 2 min for 60 min. 
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Chapter 3 
RESULTS AND DISCUSSION 

 

3.1 New anthocyanin sources (I-IV) 
 

Documentation of the anthocyanin content of different botanical sources is important for 

determination of structural diversity as well as for food and health perspectives. In this work 

different part of plants have been examined for anthocyanins including stem bark (I), berries 

(II, III) and flowers (IV). Novel compounds have been identified, and new information about 

anthocyanin composition in plants has been revealed. 

 

3.1.1 New anthocyanins from stem bark of castor, Ricinus communis (I) 
 

Ricinus communis L. (Euphorbiaceae) is a soft-wooded small tree widespread throughout the 

tropic and sub-tropic regions of the world (Ivan, 1998). It is an important oilseed crop that 

produces an oil rich in ricinoleic acid, which confers unique properties to the oil (Velasco et 

al., 2005; Rojas-Barros et al., 2004; Zhang et al., 2005). The structure of the anthocyanins in 

the castor plant has previously not been reported. 

The HPLC chromatogram of the fresh acidified methanolic extract of the stem bark of 

Ricinus communis L. detected in the visible spectral region revealed two anthocyanins (11 and 

18). After storage in the extraction solvent, the HPLC chromatogram showed three 
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anthocyanins (11, 18, 19) (Figure 11). The relatively amounts of 11 and 18 in the initial 

extract were 21 and 79 %, respectively. After storage in the extraction solvent for weeks, the 

relative amounts of 11, 18 and 19 were 51, 12 and 37% respectively. The UV–Vis spectra of 

the three anthocyanins recorded on-line during HPLC analysis showed visible maxima around 

520 nm, and their A440/AVis-max were in the range of 15 to 20%, indicating a 3,5-diglycoside 

based on cyanidin or peonidin aglycones. 

 

 
 

Figure 11. HPLC profile of the anthocyanins (11, 18 and 19) in the Ricinus communis extract 

after storage. 

 

Structural elucidation of pigments (11, 18 and 19) 

The downfield part of the 1D 1H NMR spectrum of 11 showed a singlet at 9.04 ppm (H-4), a 

3H AMX system at 8.42 ppm (dd, 8.8 Hz, 2.3 Hz; H-6'), 8.15 ppm (d, 2.3 Hz; H-2') and 7.12 

ppm (d, 8.8 Hz; H-5') and an unresolved 2H AB system at 7.17 ppm (H-8) and 7.13 ppm (H-

6), respectively, in accordance with the anthocyanin, cyanidin. The sugar region of the 1D 1H 

NMR of 11 showed the presence of two sugar units revealed by two anomeric protons with a 

β-configuration (H-1'': 3JHH = 7.0 Hz, H-1''': 3JHH = 7.9 Hz). The COSY and TOCSY spectra 

were in accordance with 13 sugar protons, which indicated that one of the sugar units was a 

pentose, and the other a hexose. Starting from H-1'' at δ 5.49 (J =7.0 Hz), the observed cross-

peak at 5.49/3.81 ppm in the COSY spectrum supported by corresponding crosspeak in the 

HSQC spectrum, permitted the assignments of H-2'', H-3'', H-4'', H-5A'' and H-5B''. The 
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chemical shifts and the coupling constants of this glycosyl unit were in accordance with a β-

xylopyranosyl. A crosspeak at δ 5.49/145.26 in the HMBC spectrum between H-1'' and C-3 of 

the aglycone confirmed the connection point of the xylosyl unit to the 3-position of the 

aglycone. By using the doublet at δ 5.28 (J = 7.9 Hz) as the starting point in the COSY and 

TOCSY spectra, it was likewise possible to assign all the chemical shifts for the second 

monosaccharide moiety, β-glucopyranosyl. A cross peak at δ 5.28/156.95 in the HMBC 

spectrum confirmed the connection point of this unit to be in the 5-position of the aglycone. 

The molecular mass (m/z 581.1495) in the ESI+ high resolution mass spectrum of 11 

corresponding to C26H29O15
+, confirmed the structure to be cyanidin 3-O-β-xylopyranoside-5-

O-β-glucopyranoside, which is a new anthocyanin in plants.  

The NMR resonances of pigment 18 shared many similarities with the corresponding 

resonances of 11, in accordance with a cyanidin 3-O-β-xylopyranoside-5-O-β-

glucopyranoside derivative. However, the chemical shift values of H-6A''' (δ 4.62), H-6B''' (δ 

4.42), H-5''' (δ 3.89) and C-6''' (δ 65.3), indicated the presence of acylation at the 6'''-hydroxyl. 

The crosspeaks at δ 4.62/168.7 (H-6A'''/MI) and 4.42/168.7 (H-6B'''/MI) in the HMBC 

spectrum confirmed that an acyl moiety was linked to this hydroxyl group. The molecular 

mass (m/z 667.1478) in the ESI+ high resolution mass spectrum of 18 corresponding to 

C29H31O18
+ , was in accordance with cyanidin 3-xylopyranoside-5-glucopyranoside with an 

additional malonyl unit. Thus, the identity of 18 was determined to be the new anthocyanin 

cyanidin 3-O-β-xylopyranoside-5-O-β-(6'''-malonylglucopyranoside).  

Pigment 19 was identified as the esterified form of pigment 18. Methyl esterification 

of the terminal carboxyl group of malonyl units may occur easily in the acidified methanolic 

solvents normally used for extraction and isolation (Fossen et al., 2001; Bloor and Abrahams, 

2002). The molecular ion at m/z 681.1478 in the positive ion ESI was in accordance with 

cyanidin 3-O-β-xylopyranoside-5-O-β-(6'''-malonylglucopyranoside) with an additional mass 

of 14 amu. The crosspeak at δ 3.76/168.6 (H-MIV/C-MIII), and the crosspeaks at δ 4.66/167.9 

(H-6A'''/C-MI) and 4.42/167.9 (H-6B'''/C-MI) in the HMBC (Figure 12) confirmed the identity 

of pigment 19 to be cyanidin 3-O-β-xylopyranoside-5-O-β-(6'''-

methylmalonateglucopyranoside).  
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Figure 12. Expanded region of the HMBC spectrum of pigment 19 in CF3CO2D–CD3OD 

(5:95, v/v) recorded at 25ºC. 
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3.1.2 Anthocyanins in berries of Ribes including gooseberry cultivars with high content 

of acylated pigments (II) 

 

In slightly acidic to neutral aqueous solutions most anthocyanins without aromatic acylation 

occur on their most instable equilibrium forms (Cabrita et al., 2000). Some acylated 

anthocyanins have been reported to have unique physiological functions (Matsui et al., 2001; 

Noda et al., 2000), however, the absorption and bioavailability of anthocyanins with aromatic 

acylation in humans are controversial (Suda et al., 2002; Harada et al., 2004; Giusti and 

Wrolstad, 2003; Kurilich et al., 2005; Karakaya 2004; Fleschhut et al., 2006; Ichiyanagi et al., 

2006). Several species belonging to the genus Ribes, such as black currants (R. nigrum L.) 

and red currants (R. rubrum L.), are among the most commonly consumed berries in the 

Western diet. The gooseberries are cultivated in many private gardens; however, in recent 

years they have been of limited commercial value.  
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Figure 13. Structures of the anthocyanins identified in the examined Ribes species. 3: Cy 3-

xyl, 5: Cy 3-glc, 9: Cy 3-[6-(rha)glc], 15: Cy 3-[6-E-(caf)]glc, 17: Cy 3-[6-E-p-(cum)glc], 22: 

Dp 3-glc, 23: Dp 3-[6-(rha)glc], 24: Pn 3-glc, 25: Pn 3-[6-(rha)glc], pigment 16 is similar to 

17, but the p-coumaroyl has cis configuration. Cy = cyanidin; Dp = delphinidin; Pn = 

peonidin; xyl = xyloside; rha = rhamnoside; glc = glucoside; cum = coumaroyl; caf = 

caffeoyl. 

 

In fourteen cultivars of European gooseberry (R. grossularia var. uva crispa), the alpine 

currant (R. alpinum L.), golden currant (R. aureum Pursh), red flowering currant (R. 

sanguineum Pursh) and the two cultivars of Jostaberries (R. × nidigrolaria Bauer) altogether 
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nine (3, 5, 9, 15, 17, 22-25) different anthocyanins where identified (Figure 13), with the aims 

of different chromatographic and spectroscopic techniques.  

 

Structural elucidation of pigments (15 and 17) 

The 1D 1H NMR spectra of both 15 (Figure 14) and 17 revealed the existence of a cyanidin 

aglycone, one monosaccharide, and one E-hydroxycinnamic acyl group. 

 

 
 

Figure 14. 1H NMR spectra (600.13 MHz) of cyanidin 3-O-β-(6''-E-caffeoylglucopyranoside) 

(15) in CF3CO2D–CD3OD (5:95, v/v) recorded at 25ºC. 

 

HMBC spectra were used to assign C-8, C-10, C-3, C-9, C-5, C-2, C-4 and the carbons 

belonging to the anthocyanidin B-ring. Exact 13C chemical shift values were obtained from a 
13C CAPT spectrum (Figure 15). The 1H and 13C resonances of the monosaccharides of 15 

and 17 were assigned by a combination of 1D 1H NMR, DQF-COSY, TOCSY, and HSQC 

experiments, in accordance with β-glucopyranose. The crosspeaks at 5.41/145.1 (15: H-1''/C-

3) and 5.39/144.7 (17: H-1''/C-3) in the HMBC spectra confirmed the linkage between the 

aglycone and the sugar unit to be at the 3-hydroxyl.  

The doublets at δ 6.99 (d, 1.8 Hz; H-2'''), 6.26 (d, 15.9 Hz; H-α) and 7.45 (d, 15.9 Hz; 

H-β), together with the multiplets at 6.84 (H-5''') and 6.86 (H-6''') in the 1D 1H NMR 

spectrum of 15 where in accordance with a caffeoyl unit.  

 34



CHAPTER 3.  RESULTS AND DISCUSSION 

 

 

 
 

Figure 15. Expanded region of the 13C CAPT NMR (600.13 MHz) spectrum of cyanidin 3-O-

β-(6''-E-caffeoylglucopyranoside) (15) in CF3CO2D–CD3OD (5:95, v/v) recorded at 25ºC. 

 

The crosspeaks at δ 4.61/168.9 (H-6A''/C=O caffeoyl) and δ 4.45/168.9 (H-6B''/C=O 

caffeoyl) confirmed the linkage between the 3-glucose and the caffeoyl moiety to be at the 6''-

hydroxyl, and the molecular ion at m/z 611.1379 in the high-resolution MS spectrum, were in 

accordance with cyanidin 3-O-β-(6''-E-caffeoylglucopyranoside). Pigment 15 has been 

tentatively identified in extracts of several plant species. However, this is the first 

examination of this pigment by NMR revealing the anomeric configuration and ring size of 

the β-glucopyranosyl, and the 6''-linkage to the caffeoyl moiety.  

Most of the chemical shift values in the 1D 1H NMR spectrum of 17 were similar to 

those of 16. However, the shifts at δ 7.36 (d, 8.6 Hz; H-2''',6'''), 6.86 (d, 6.9 Hz; H-3''',5'''), 

6.31 (d, 15.9 Hz; H-α) and 7.51 (d, 15.9 Hz; H-β), were in accordance with a p-coumaroyl 

unit. Figure 16 shows the HSQC spectrum of the sugar region of pigment 17. The large 

downfield shift effects observed for 6A'' and 6B'', respectively (Table D-2), are due to the 

substitution by the p-coumaroyl unit. The 13C NMR data supported the determination of the 

pyranose-form of the sugar moiety, and the identity of 17 was confirmed to be cyanidin 3-O-

β-(6''-E-p-coumaroylglucopyranoside).  
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Figure 16. 1H-13C HSQC NMR spectrum of the sugar region of pigment 17 in CF3CO2D–

CD3OD (5:95, v/v) recorded at 25ºC. 

 

Figure 17 shows the UV-Vis spectrum of the two pigments, 15 and 17, with Vismax at 523 nm, 

(local UVmax 283 nm, 329 nm) and Vismax at 522 nm (local UVmax 283 nm, 314 nm), 

respectively. 

 

 
 

Figure 17. UV-Vis spectrum of cyanidin 3-(6''-E-caffeoylglucoside) (15) (red) and cyanidin 

3-(6''-E-p-coumaroylglucoside) (17) (blue) recorded on-line during HPLC analysis. 
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Qualitative and quantitative content 

All the examined European gooseberry (R. grossularia) cultivars showed nearly the same 

qualitative anthocyanin content including pigments 3, 5, 9, 15-17, 24 and 25 (Figure 12) 

Peonidin 3-glucoside (24), cyanidin 3-(6''-E-caffeoylglucoside) (15) and cyanidin 3-(6''-E-p-

coumaroylglucoside) (17) have only tentatively been assigned in gooseberries before (Mäattä-

Riihinen et al., 2004; Wu et al., 2004). Pigment 16 was tentatively identified as cyanidin 3-

(6''-Z-p-coumaroylglucoside) based on high-resolution MS data (m/z 595.1405), and online-

HPLC. The major anthocyanins of the two jostaberry (Ribes x nidigrolaria) cultivars ‘Josta’ 

and ‘Jostine’, (5, 9, 15, 17, 22, 23) reflected the major anthocyanins of both of its original 

parents, gooseberry and blackcurrant (Slimestad and Solheim, 2002; Frøytlog et al., 1998).  

The total anthocyanin content in the examined gooseberry cultivars varied from 0.30 

mg/g dry weight in ‘Pax’ to 2.23 mg/g dry weight in ‘Glendale’. When assuming the water 

content of the fresh berries to be 88% (Wu et al., 2006), the anthocyanin amounts in ‘Pax’ and 

‘Glendale’ corresponded to 3.60 and 26.76 mg/100 g fresh weight (FW), respectively. The 

two jostaberry cultivars, which originally are hybrids between gooseberry and black currant, 

had higher total anthocyanin content (40.0 and 45.7 mg/100 g FW) than the gooseberries, 

however, considerably lower content than reported for black currant (Clifford 2000; Mäattä et 

al., 2001, Wu et al., 2006). The anthocyanin content in commercial available berries such as 

strawberry, red currant and black currant have been reported to be 15-41 mg, 13-18 mg and 

130-500 mg/100 g FW, respectively (Clifford 2000; Mäattä et al., 2001; Wu et al., 2006). The 

gooseberry cultivars with the highest anthocyanin content (‘Glendal’, ‘Samsø’, ‘Rolanda’) are 

thus in the range of red currant and strawberry. Several of the gooseberry cultivars contained 

relative high amounts of the aromatic acylated pigments, 15 and 17. In ‘Lofthus’, ‘Samsø’, 

‘Martlet’, ‘Hinnonmäki Red’ and ‘Taastrup’ these pigments constituted together as much as 

57, 52, 52, 49 and 49% of the total anthocyanin content, respectively. When the total amount 

of acylated anthocyanins in the various cultivars are considered, ‘Samsø’, ‘Hinnomäki Red’, 

‘Taastrup’, ‘Lofthus’ and ‘Glendal’ are the most obvious candidates for consumption, 

colorant and breeding programmes. As far as we know there exists no report on cultivated 

berries of commercial value used in the human diet containing anthocyanins acylated with 

aromatic acyl groups as the major pigments. 
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3.1.3 Anthocyanins in Caprifoliaceae (III) 
 

Plants in the family Caprifoliaceae are perennial and mostly woody plants that include vines, 

shrubs, and small trees with berries taking colours from orange to black. Fruit characters are 

found to be particularly important in the classification of individual genera (Manchester and 

Donoghue, 1995). Caused by potential health benefits, the anthocyanin content in berries of 

some Caprifoliaceae species has received attention, in particular juices and extracts from 

elderberry, Sambucus nigra, which have been used in clinical studies (Abuja et al., 1998; 

Netzel et al., 2002; Wu et al., 2002; Bitsch et al., 2004). In a detailed study of floral anatomy 

and morphology it is suggested that the genus Lonicera has a different origin than Sambucus 

and Viburnum (Wilkinson, 1949). These studies indicated that Sambucus and Viburnum 

shared several characteristics not found in the rest of the family, and a segregation of these 

genera into two or more families have been discussed.  
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Figure 18. 1 = Pg 3-glc, 4 = Cy 3-gal, 5 = Cy 3-glc, 6 = Cy3-[6-(ara)glc], 7 = Cy 3-[2-

(xyl)gal], 8 = Cy 3-[2-(xyl)glc], 9 = Cy 3-[6-(rha)glc], 13 = Cy 3-[2-(xyl)-6-(rha)glc], 14 = Cy 

3-[2-(xyl)glc]-5-glc, 20 = Cy 3-[2-(xyl)-6-Z-p-(cum)glc]-5-glc, 21 = Cy 3-[2-(xyl)-6-E-p-

(cum)glc]-5-glc, 22 = Dp 3-glc. Pg = pelargonidin; Cy = cyanidin; Dp = delphinidin; Pn = 

peonidin; ara = arabinoside; rha = rhamnoside; xyl = xyloside; gal = galactoside; glc = 

glucoside; cum = coumaroyl. 

 

Twelve (1, 4-9, 13, 14, 20-22) (Figure 18) anthocyanins where identified by NMR and co-

chromatography with authentic anthocyanins in the analysis of nineteen species belonging to 
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the Sambucus, Lonicera and Viburnum genera (Caprifoliacea). The authentic anthocyanins 

were from the following sources: Fragaria ananassa: 1 (Nerdal et al, 1992); Ribes nigrum: 5, 

9 and 22 (Frøytlog et al., 1998); Vaccinium vitis-idaea: 4 (Andersen, 1985); Sambucus 

nigrum: 13 (Andersen et al., 1991); Sambucus canadensis: 14, 20 and 21 (Johansen et al., 

1991; Nakatani et al., 1995). NMR elucidation of pigment 6 (cyanidin 3-O-β-(6''-α-

arabinopyranosylglucopyranoside) is the first complete identification of the disaccharide 

vicianose (6''-α-arabinopyranosyl-β-glucopyranose), linked to an anthocyanidin. 

 

Structure elucidation of cyanidin 3-O-β-(6''-α-arabinopyranosylglucopyranoside) (6) 

The UV-Vis spectrum of 6 showed visible maximum at 528 nm with A440/A528 of 27% in 

agreement with a cyanidin or peonidin 3-glycoside. A molecular ion at m/z 581 in the ESI-

MS spectrum of 6 was in accordance with cyanidin connected to one hexose and one pentose 

unit. On the basis of the signals in the 1D 1H NMR, 1H-1H COSY, 1H-1H TOCSY, 13C SEFT, 
1H-13C HSQC and 1H-13C HMBC spectra, the chemical shifts (1H and 13C) of 6 were in 

agreement with cyanidin linked to one β-glucopyranose and one α-arabinopyranose unit. A 

possible way to determine the ring size of monosaccharides was to use the carbon shift values 

(Bock and Thøgersen, 1982). In arabinosides the 13C shifts of C-2 and C-4 in 

arabinofuranoside were found to be 10-15 ppm downfield to the corresponding signals C-2 

(72.9 ppm) and C-4 (69.6 ppm) in arabinopyranoside. The carbon shifts observed for the 

arabinoside unit in 6 were thus in agreement with the arabinopyranoside form. The cross-peak 

at δ 5.33/145.59 (H-1''/C-3) in the HMBC spectrum revealed that the glucose unit was 

attached to the aglycone 3-hydroxyl position. The high-field position of the anomeric proton 

of the arabinose unit (d 4.26) indicated a terminal sugar unit. The pronounced down-field shift 

of C-6'' (d 69.51), and the cross-peak at d 4.26/69.51 in the HMBC spectrum between H-1''' 

and C-6'' confirmed that the arabinose residue was connected to C-6'' of the glucose ring, in 

accordance with cyanidin 3-O-β-(6''-α-arabinopyranosylglucopyranoside) (6). 

 

Chemotaxonomy 

The berries of species belonging to Sambucus vary from orange through red to black, but 

most of them are characterized by the same anthocyanins; cyanidin 3-sambubioside-5-

glucoside (14) and its (Z)- and (E)-p-coumaroyl derivatives (20 and 21). When it comes to 

species in the genera Lonicera and Viburnum, the chemotaxonomic importance of their 

anthocyanin content is more limited. Simple anthocyanin 3-monoglucosides (mainly 5) 

predominate in berries of Lonicera species, however, this is the most common anthocyanin 
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found in nature (Andersen and Jordheim, 2006). L. maximowiczii var. sachalinensis contained 

86% pelargonidin 3-glucoside (1) in addition to cyanidin 3-rutinoside, 9, (11%), while L. 

maakii contained delphinidin 3-glucoside, 22, (25%) and cyanidin 3-sambubioside-5-

glucoside, 14, (75%). Three of the species (L. maakii, L. henryi and L. caucasica) contained 

14, including the disaccharide sambubiose, which has been found in all examined Sambucus 

species. The examined species of Viburnum contained one or more cyanidin 3-glycosides, 

however, with differences in their individual anthocyanin pattern. Berries of V. opulus were 

rather outstanding containing the novel pigment cyanidin 3-vicianoside (6).  

The segregation of Sambucus and Viburnum from the rest of Caprifoliaceae, as 

suggested by Wilkinson (1949), is thus not supported by the anthocyanin content found in the 

examined species of this study. 
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3.1.4 Anthocyanins from flowers of Hippeastrum cultivars (IV) 
 

The genus Hippeastrum, also referred to as Amaryllis (Hofmann et al., 2003), belongs to the 

family Amaryllidaceae. Many of the species in this genus have large and colourful flowers 

favourable for instance as Christmas and New Year ornamentals (Silberbush et al., 2003). In 

the family Amaryllidaceae the 3-glucoside and 3-xylosylglucoside of pelargonidin and 

cyanidin have previously been identified in Lycoris (Arisumi, 1971), and the 3,5-diglucoside 

of cyanidin, peonidin and pelargonidin, the 3-glucoside of cyanidin and pelargonidin, 

cyanidin 3-sophoroside and two partly identified anthocyanins have been detected in Nerine 

(Arisumi and Shioya, 1970). Furthermore the anthocyanin pelargonidin 3-glucoside has 

previously been identified in Hippeastrum petals as a minor component (Hrazdina, 1988). 

This tentative identification was based on HPLC of the petal extract hydrolysate and TLC 

examination of Hippeastrum petal extracts, which showed five major components. 
 

 
 

Figure 19. Three of the six examined Hippeastrum cultivars. A. ‘Royal velvet’, B. ‘La Paz’, 

C. ‘Magic Green’. 

 

Flowers of Hippeastrum x hybridum cv. spp. collected from Makerere University campus in 

Kampala (Uganda) in August 2004 and flowers of six Hippeastrum hybridum cultivars (‘Red 

Lion’, ‘Royal Velvet’, ‘La Paz’, ‘Jungle Star’, ‘Magic Green’ and ‘Liberty’ (dark red)) 

purchased in Bergen (Norway) in November 2004, were examined. Pictures of ‘Royal 

Velvet’, ‘La Paz’ and ‘Magic Green’ are shown in Figure 19. 
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Qualitative and quantitative anthocyanin content 

The anthocyanins, cyanidin 3-O-β-(6''-α-rhamnopyranosylglucopyranoside) (9) and 

pelargonidin 3-O-β-(6''-α-rhamnopyranosylglucopyranoside) (2), were isolated from the 

ornamental flowers of a Ugandan Hippeastrum cultivar by a combination of chromatographic 

techniques. Their structures were elucidated mainly by the use of homo- and heteronuclear 

NMR spectroscopy and electrospray mass spectrometry. The same two anthocyanins were 

found in six different Hippeastrum cultivars purchased in Norway. However, the absolute 

amount of the anthocyanins (0.08 to 1.79 mg/g, fresh weight) and their relative proportions 

varied considerably from cultivar to cultivar (13.2 to 96.5% of 9). 

 

In vivo petal colour versus anthocyanin content 

The colours of fresh petals of the three Hippeastrum cultivars ‘Red Lion’, ‘Royal Velvet’ and 

‘Liberty’ were described by the CIELab coordinates L* (lightness), C* (chroma) and hab (hue 

angles). The other cultivars (‘Magic Green’, ‘Jungel Star’ and ‘La Paz’) have not been 

analysed by these coordinates due to lack of uniform petal colours. The three former samples 

were described by having hue angles corresponding to scarlet nuances (hab = 22–358) with 

the highest numerical value for ‘Red Lion’. This latter cultivar also revealed the highest L* 

and C* values. The hybrids ‘Liberty’ and ‘Royal Velvet’ showed similar quantitative 

anthocyanin content and similar L* values, while ‘Red Lion’ had the lowest anthocyanin 

content and highest L* value. With respect to a correlation between the CIELab parameters 

and the qualitative anthocyanin content in the three hybrids, both the C* and hab values 

increased with increasing proportions of 2 relative to 9. The most reddish petals, which was 

expressed by ‘Royal Velvet’, contained the highest relative proportion of the anthocyanin (9) 

with the highest λmax-value (510 nm). Flowers containing pelargonidin (2) as the major 

anthocyanidin revealed a more orange colour than those having the corresponding cyanidin 

derivative (9) as the major anthocyanin. Thus, the in vivo colours of Hippeastrum cultivars 

seem to be correlated with the type and proportions of anthocyanins present in their petals. 
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3.2 Anthocyanins – new structural characteristics (V-VII) 
 

Carboxypyranoanthocyanins have been reported to have other properties (colour, higher 

stability etc.) than analogous anthocyanins under weakly acidic to neutral conditions, but the 

availability of isolated and synthetically prepared carboxypyranoanthocyanins has only been 

achieved in the low milligram scale. Hemisynthesis and isolation of 

carboxypyranoanthocyanins in a preparative scale (V) allowed comparative examinations of 

these pigments with analogous anthocyanins. Hemiacetal (hemiketal) forms of some 

anthocyanins have been structural elucidated (VI), and reactivity at specific structure sites of 

some anthocyanins and carboxypyranoanthocyanins in neutral and acidified CD3OD have 

been revealed (VII). 

 

3.2.1 Preparative isolation and NMR characterization of carboxypyranoanthocyanins 

(V) 

 

It has been shown that anthocyanins with 4-substituted aglycones like 

carboxypyranoanthocyanins have favourable properties such as higher resistance to 

bleaching by sulfur dioxide, higher colour intensity and restricted formation of the unstable 

colourless equilibrium forms under weakly acidic-neutral solution conditions compared to 

analogous anthocyanidin 3-glucosides (Bakker et al., 1997; Andersen et al., 2004; Romero 

and Bakker, 2000; Mateus and de Freitas, 2001). The carboxypyranoanthocyanins may thus 

be used as colour additives in food, or as antioxidants, etc. Although several methods have 

been developed for separating anthocyanins, even on a preparative scale (Andersen and 

Francis, 2004), no method has addressed isolation of individual pigments in mixtures of 

carboxypyranoanthocyanins.  

 

Hemisynthesis and preparative isolation of carboxypyranoanthocyanins 

Three carboxypyranoanthocyanins (32-34) (Figure 20) were produced by nucleophilic 

addition of pyruvic acid to a purified extract of black beans (Phaseolus vulgaris) containing a 

mixture of the 3-glucosides of delphinidin (22), petunidin (26) and malvidin (27) (Figure 20). 

The reaction was monitored by on-line HPLC and terminated after 23 hours, when the 

original anthocyanins (22, 26 and 27) and the synthesised carboxypyranoanthocyanins (32, 

33 and 34) occurred in considerable amounts.  
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Figure 20. The structures of the 3-glucosides of delphinidin (22), petunidin (26) and 

malvidin (27), 5-carboxypyranodelphinidin (32), 5-carboxypyranopetunidin (33) and 5-

carboxypyranomalvidin (34). 
 

During separation of the pigment mixture on a Sephadex LH-20 column a total of seventeen 

fractions were collected manually on the basis of band colours. The pigment content of each 

fraction was analysed by analytical HPLC and TLC. UV-Vis spectra of pigments 26 and 33 

are given in Figure 21.  

 
 

Figure 21. UV-Vis spectra of 26 (red) and 33 (blue) recorded on-line during HPLC analysis. 
 

Altogether six bands with mauve to red colours were chromatographically separated (Figure 

22). Both the carboxypyranoanthocyanins and the anthocyanins were separated according to 

their molecular masses. Thus, the 5-carboxypyranomalvidin 3-glucoside (34) was eluted 

prior to the corresponding pyruvic adducts of petunidin 3-glucoside (33) and delphinidin 3-

glucoside (32) followed by the 3-glucosides of malvidin (27), petunidin (26) and delphinidin 

(22). The separation procedure applied to a 6.5 gram sample of the pigment mixture from the 

first synthesis yielded in a one-step separation 376, 325, 376, 165, 163, and 140 mg of 22, 32 

26, 33, 27 and 34, respectively, with purities of up to 98, 89, 99, 87, 55, and 81%. The low 
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purity of pigment 27 (55 %), which was eluted in band 4, was due to co-elution with another 

phenolic compound detected at 280 nm. This impurity was removed by chromatography on a 

Toyopearl HW-40F column.  

 

 
 

Figure 22. Left: Picture of the Sephadex LH-20 column during separation of 

carboxypyranoanthocyanins and anthocyanins. 5-carboxypyranomalvidin 3-glc (34) (band 1) 

was eluted prior to 5-carboxypyranopetunidin 3-glc (33) (band 2) and 5-

carboxypyranodelphinidin 3-glc (32) (band 3) followed by malvidin 3-glc (27) in band 4, 

petunidin 3-glc (26) (band 5) and delphinidin 3-glc (22) (band 6). Right: HPLC 

chromatograms of the reaction mixture at 520 ± 20 nm after various time intervals. glc = 

glucoside. 

 

The individual pigments (22, 26, 27, 32–34) were subjected to NMR analysis. The structures 

of 32 and 33 have previously been tentatively identified mainly by mass spectrometric data 

acquired from complex mixtures in wine samples or from modified blueberry extract (Faria 

et al., 2005). In the next section follows a detailed structural NMR elucidation of 5-
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carboxypyranopetunidin 3-glucoside (33). The structure of 5-carboxypyranodelphinidin 3-

glucoside (32) was similarly assigned. 

 

NMR elucidation of 5-carboxypyranopetunidin 3-O-β-glucopyranoside (33) 

In Figure 23 the 1H NMR spectrum of petunidin 3-glucoside (26) (A) is compared to the 1H 

NMR spectrum of 5-carboxypyranopetunidin 3-glucoside (33) (B). For pigment 33 five 

signals were found in the aromatic region; namely a singlet at δ 8.08 (H-4), two meta-

coupled hydrogens at δ 7.25 (d, 1.9 Hz; H-7) and δ 7.34 (d, 1.9 Hz; H-9), and a AX system at 

δ 7.62 (d, 2.2 Hz; H-6') and δ 7.82 (d, 2.2 Hz; H-2'), respectively, revealing a 4-substituted 

anthocyanin having an asymmetrically substituted B-ring. The assignments of H-9 and H-7 

may be reversed. The crosspeaks at δ 8.08/161.1 (H-4/COOH), δ 8.08/136.2 (H-4/C-3), δ 

8.08/155.7 (H-4/C-5), δ 8.08/110.9 (H-4/C-9b), and the 1JCH correlation at δ 8.08/107.4 (H-

4/C-4) in the HMBC spectrum of 33 were used to assign COOH, C-3, C-5, C-9b and C-4. 

Furthermore, C-2 was identified by its long-range correlation with H-2' and H-6' (δ 

7.82/166.2, and δ 7.62/166.2) respectively. 

 

 
 

Figure 23. 1H NMR spectra (600.13 MHz) of (A) petunidin 3-O-β-glucopyranoside (26) and 

(B) 5-carboxypyranopetunidin 3-O-β-glucopyranoside (33) in CF3CO2D–CD3OD (5:95, v/v). 

The spectra were recorded at 25ºC. See Figure 20 for structures. 
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The anthocyanidin A-ring 13C signals were assigned by the crosspeaks at δ 7.34/169.7 (H-

9/C-8), δ 7.34/154.5 (H-9/C-9a), δ 7.34/110.9 (H-9/C-9b), δ 7.34/101.9 (H-9/C-7), δ 

7.25/169.7 (H-7/C-8), δ 7.25/154.6 (H-7/C-6a), δ 7.25/110.9 (H-7/C-9b), and δ 7.25/101.6 (H-

7/C-9), respectively, observed in the HMBC spectrum (Figure 24). The carbons belonging to 

the anthocyanidin B-ring were assigned by the crosspeaks at δ 3.99/149.9 (OCH3/C-3'), δ 

7.82/143.9 (H-2'/C-4'), δ 7.62/143.9 (H-6'/C-4'), δ 7.82/149.9 (H-2'/C-3'), δ 7.62/147.3 (H-

6'/C-5'), δ 7.82/113.5 (H-2'/C-6'), δ 7.62/108.7 (H-6'/C-2') and δ 7.82/120.2 (H-2'/C-1'). There 

were no obvious crosspeaks in the HMBC spectrum involving C-3a, however, a resonance at 

149.70 in the CAPT spectrum was assigned to this carbon. Thus, the aglycone of 33 was in 

agreement with 5-carboxy-2-(3,4-dihydroxy-5-methoxyphenyl)-3,8-dihydroxy-pyrano[4,3,2-

de]-1-benzopyrylium, 5-carboxypyranopetunidin. The 1H and 13C signals of the sugar region 

of 33 were in accordance with β-glucopyranose (Pedersen et al., 1993). The crosspeak at 

4.81/136.2 (H-1''/C-3) in the HMBC spectrum confirmed the linkage between the aglycone 

and the sugar unit to be at the 3-hydroxyl. 
 

 
 

Figure 24. 1H-13C HMBC NMR spectrum of the aromatic region of pigment 33 in CF3CO2D–

CD3OD (5:95, v/v) recorded at 25ºC. Number in brackets corresponds to analogous positions 

in common anthocyanins. 
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3.2.2 Characterization of hemiacetal forms of anthocyanidin 3-O-β-glycopyranosides 

(VI) 

 

The structures of the 3-O-β-glucopyranosides of delphinidin, petunidin and malvidin (22, 26 

and 27) and cyanidin 3-O-β-galactopyranoside (4) dissolved in deuterated methanolic 

solutions without and with acid (5%, CF3COOD) were identified by homo- and heteronuclear 

NMR techniques. The hemiacetal forms of all the four anthocyanins (Figure 25) were 

characterized as two epimeric 2-hydroxy-hemiacetals based on assignments of both proton 

and carbon NMR signals together with chemical shift considerations. This is the first report of 
13C NMR assignments of two epimeric anthocyanin hemiacetal forms. Under slightly acidic 

to neutral conditions, which is a relevant pH range for in vivo conditions in plants and in the 

human gastrointestinal tract, this type of anthocyanins has previously been considered to 

occur predominantly as hemiacetals (Brouillard and Dangles, 1994; Markakis, 1982).  

 Traditionally the hydrated forms of the flavylium cationic form are named 

hemiacetals, however, with respect to their chemical nature these colourless forms are 

hemiketals and not hemiacetals. In this work we have used the traditionally term; hemiacetals. 
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Figure 25. Equilibrium forms of 4, 22, 26 and 27 dissolved in non-acidified CD3OD. Whether 

the hemiacetal R- or S-form constitute the major (a) or the minor (b) form is not known. 
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Structural elucidation of major (a) and minor (b) hemiacetal forms of malvidin 3-O-β-

glucopyranoside (27) 

In the downfield region of the 1H NMR spectrum of pigment 27 dissolved in pure CD3OD 

more than twelve aromatic proton signals were present (Figure 26, B). Four of these had 

similar chemical shift values and coupling constants as the four aromatic proton signals 

representing the flavylium cationic form of 27 in CF3COOD–CD3OD (5:95, v/v) (Figure 26, 

A). The relationship between the proton resonances of the flavylium cation and other signals 

in the downfield region were revealed by exchange crosspeaks in the 2D 1H-1H NOESY 

NMR spectrum of 27 dissolved in pure CD3OD (Figure 27). Two more anthocyanidin forms 

(27a and 27b) in addition to the flavylium cationic form were thus identified.  
 

 
 

Figure 26. 1H NMR spectra (600.13 MHz) of malvidin 3-O-β-glucopyranoside (27) in 

CF3CO2D–CD3OD (5:95, v/v) (A) and in pure CD3OD (B). Both samples are recorded at 

25ºC. f = flavylium cation; a = hemiacetal a (major); b = hemiacetal b (minor); * = 

impurities. 

 

 Starting with the H-4f/H-4a exchange crosspeak at δ 9.13/6.58 in the NOESY 

spectrum (Figure 27), which is used to assign H-4a, the proton and carbon chemical shifts of 

27a (the major form) were thereafter assigned; crosspeaks at δ 6.58/103.1 (H-4a/C-2a), δ 
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6.58/154.6 (H-4a/C-5a), δ 6.58/152.9 (H-4a/C-9a), δ 6.58/145.4 (H-4a/C-3a) in the HMBC 

spectrum of 27 were used to assign C-2a, C-5a, C-9a and C-3a, respectively (Figure 28). 

 

  
 

Figure 27. Expanded region of the NOESY spectrum (600.13 MHz) of malvidin 3-O-β-

glucopyranoside (27) in pure CD3OD recorded at 25ºC. A negative crosspeak due to NOE 

correlation between H-4 and H-1'' of the flavylium cation is enclosed in a box. Other labelled 

crosspeaks are positive and caused by chemical exchanges between the flavylium cation (f) 

and its corresponding hemiacetal forms (a, major and b, minor) (27a, 27b). 

 

Similarly, the carbons belonging to the B-ring of 27a were assigned from the crosspeaks at δ 

6.97/103.1 (H-2'a,6'a/C-2a), δ 6.97/136.8 (H-2'a,6'a/C-4'a), δ 6.97/148.5 (H-2'a,6'a/C-3'a,5'a), 

δ 6.97/132.2 (H-2'a,6'a/C-1'a), δ 6.97/105.9 (H-2'a,6'a/C-2'a,6'a) and δ 3.91/148.5 (-OCH3-

a/C-3'a,5'a) (Figure 28), while the rest of the A-ring carbons were identified from crosspeaks 

at δ 6.046/158.4 (H-8a/C-7a), δ 6.046/101.8 (H-8a/C-10a), δ 6.046/97.2 (H-8a/C-6a), δ 

6.065/158.4 (H-6a/C-7a), δ 6.065/154.6 (H-6a/C-5a), δ 6.065/101.8 (H-6a/C-10a), δ 

6.065/95.1 (H-6a/C-8a). 
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Figure 28. Expanded region of the HMBC spectrum (600.13 MHz) of malvidin 3-O-β-

glucopyranoside (27) in pure CD3OD recorded at 25ºC. f = flavylium cation; a = hemiacetal 

a (major) (27a); b = hemiacetal b (minor) (27b). 

 

The chemical shift of C-4a was assigned by a crosspeak at δ 6.58/98.6 (H-4a/C-4a) in the 

HSQC spectrum. The remaining problem was to address the structural differences between 

the flavylium cation and anthocyanidin form a. The most apparent difference between the 1H 

NMR spectra of these two forms consisted of the 2.55 ppm upfield shift of H-4 of 

anthocyanidin form a (Figure 26). This upfield shift of H-4 indicated a lower conjugation of 

anthocyanidin form a compared to the flavylium cation, in accordance with a hemiacetal. 

Likewise the outstanding 60.9 ppm and 38.5 ppm upfield shift of C-2 and C-4 of 

anthocyanidin form a compared to the flavylium cation were consistent with the 2-hydroxy 

hemiacetal form. In an analogous manner the 1H and 13C chemical shifts of anthocyanidin 

form b (minor) were assigned.  

 

The sugar region of the 1H NMR spectrum of 27 (Figure 26) revealed three anomeric signals 

(δ 5.45, δ 4.97 and δ 4.83) with similar anomeric coupling constants (7.8 Hz). The most 

downfield anomeric signal showed highest intensity and was assigned to the flavylium cation 
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(f) by a HMBC crosspeak at δ 5.44/145.3 (H-1''f/C-3f). The NOESY spectrum of 27 (Figure 

27) revealed exchange crosspeaks at δ 4.97/5.44 (H-1''a/H-1''f) and δ 4.83/5.44 (H-1''b/H-1''f) 

between the anomeric signal of the flavylium cation and the other anomeric signals of the 

two hemiacetal forms respectively. 

 

Proportions of hemiacetal forms 

Limited information exists about elucidation of anthocyanin hemiacetal structures (Cheminat 

and Brouillard, 1986; Mistry et al., 1991; Santos et al., 1993; Terahara et al., 1993; Bakker et 

al., 1997). Under in vivo conditions simple anthocyanins like 4, 22, 26 and 27 may occur on 

several equilibrium forms, of which some are regarded as relatively unstable even at short 

storage intervals (Cabrita et al., 2000). Reduced solubility of most anthocyanins in aqueous 

solutions compared to alcoholic anthocyanin solutions may be another limiting factor. In the 

present studies, the anthocyanins (4, 22, 26 and 27) were dissolved in pure deuterated 

methanol, which facilitated full assignments of chemical shifts of both the hydrogens and 

carbons of two epimeric 2–hydroxy hemiacetals of each of these four anthocyanins. In the 

NOESY NMR spectra strong exchange crosspeaks between analogous signals of the 

hemiacetals and the flavylium cationic form were observed, showing that the two epimeric 

hemiacetal forms were in equilibrium with the flavylium cationic form. Similar exchange 

crosspeaks between the two epimeric hemiacetal forms were not detected for any of the four 

pigments. It is also interesting to note that the molar ratio between the flavylium cation, the 

hemiacetal a form and the hemiacetal b form for each anthocyanidin (Table 1) remained 

essentially unchanged for several weeks. The individual proportions of the flavylium cationic 

form and the two hemiacetal forms is hereby proposed to be nearly similar for anthocyanidin 

3-monoglycosides, regardless of the nature of the anthocyanidin or monosaccharide, at least 

when dissolved in deuterated methanol. 

 

Table 1. Proportions (%) of the flavylium cation/hemiacetal a/hemiacetal b recorded by 

integration of 1H NMR spectra of cyanidin 3-galactoside (4), delphinidin 3-glucoside (22), 

petunidin 3-glucoside (26) and malvidin 3-glucoside (27) after 24 h storage in CD3OD at 

25ºC. 

 flavylium cation hemiacetal a hemiacetal b 
4 67 20 13 
22 82 10 8 
26 79 12 9 
27 75 15 10 
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3.2.3 Reactivity of anthocyanins and pyranoanthocyanins; studies on aromatic 

hydrogen-deuterium exchange reactions in methanol (VII) 
 

Anthocyanins are good candidates for studies of aromatic H→D exchange reactions, which 

may occur because of presence of aromatic hydroxyl groups, various resonance structures 

arising through three conjugated ring systems, and the occurrence of various equilibrium 

forms. It has previously been reported that H-6 and H-8 of the flavylium cationic form of 

pelargonidin (Pedersen et al., 1993) and malvidin (Santos et al., 1993) in anthocyanins are 

exchanged with deuterium in acidified D2O and acidified CD3OD. Detailed chemical studies 

with focus on potential H→D exchange reactions at specific sites of the various anthocyanidin 

structures, delphinidin 3-O-β-glucopyranoside (22), petunidin 3-O-β-glucopyranoside (26), 

and malvidin 3-O-β-glucopyranoside (27), in their flavylium cationic and hemiketal 

equilibrium forms, their three corresponding pyranoanthocyanins (32–34), and the flavonol 

rutin (quercetin 3-O-β-(6-α-rhamnopyranosylglucopyranoside), 35, were in the present study 

based on integration data obtained by 1H NMR spectroscopy. The aim was to aid the 

understanding of properties, metabolism and functions of the anthocyanin molecules 

commonly found in berries, fruits, vegetables and in derived products. 

 

Deuterium exchange of aromatic hydrogens 

The H→D exchange reactions of the hydrogens at various sites of the aglycones of 22, 26, 27, 

32–35 were measured during storage of these pigments (~ 10 mM) dissolved in CF3CO2D-

CD3OD (5:95, v/v) at room temperature. No exchange was found to occur for H-4 (22, 26, 27) 

or any of the B-ring hydrogens (H-2', H-5' and H-6') (22, 26, 27, 32–35) even after storage for 

weeks.  

After 24 hours the integrated area of the 1H NMR signals of H-6 and H-8 on the A-

rings of 22, 26 and 27 were reduced with 23 to 36% compared to the corresponding signals 

measured 30 minutes after sample preparation (Figure 29). After 7 to 11 days the three 

pigments had experienced around 90% H→D exchange; after around five months the signals 

representing H-6 and H-8 were barely detectable. When 22, 26 and 27 were dissolved in 

CD3OD at room temperature; similar exchange patterns and rates were observed for the 

hemiketal forms as for the flavylium forms. Correspondingly, none of the 

carboxypyranoanthocyanins (32–34) experienced H→D exchange at their A-rings, even after 
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10 days of storage. On the other hand, even faster H→D exchange was observed for H-β (H-

4) at their D-rings.  
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Figure 29. Relative integrated area (r.i.a) of H-6 (left) and H-8 (right) in the 1H NMR spectra 

of the flavylium forms of delphinidin 3-glc (●) (22), petunidin 3-glc (♦) (26) and malvidin 3-

glc (▲) (27) plotted against time (hours). The first 1000 hours (~42 days) after sample 

preparation are shown in the figure. glc = glucoside. 

 

Impact of acidity and concentration  

Exchange experiments performed with petunidin 3-glucoside (26) dissolved in CD3OD 

without acid, and with 5% and 15% CF3CO2D (v/v), respectively, showed very similar H→D 

exchange rates for H-6 and H-8.  

Kolar (1971) has examined H→D exchange reactions for H-6 and H-8 of some 

methylated flavanols in D2O/dioxane (3:1) solutions after heating for 16 h at 95° in Pyrex 

glass. He concluded that the observed exchange reactions, following first order kinetics, were 

typical electrophilic aromatic substitution reactions being catalyzed by acid. When no acid 

was present the observed exchange reactions were suggested to be promoted by the Pyrex 

glass of the applied NMR–tube assisting in the exchange process. Our experiments with 26 in 

pure CD3OD using both Wilmad Pyrex glass and Norell N-51A glass NMR tubes, the latter 

carefully cleansed with 0.2 M NaOH prior to use to remove possible surface acidity, led to no 

change of exchange rates of H-6 and H-8 during the first 24 h. This suggests that impurities 

may not be the cause of the relatively rapid H→D exchange reactions observed for 22, 26 and 

27 dissolved in pure CD3OD. D+ formation from CD3OD, as H+ formation from CH3OH, will 

only take place at elevated pressure and temperature (Raveendran et al., 2005). 
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Studies of the potential influence of pigment concentration on the H→D exchange 

rates of H-6 and H-8 were performed with 10 mM, 20 mM and 40 mM samples of petunidin 

3-O-β-glucopyranoside (26) dissolved in CF3CO2D–CD3OD (5:95, v/v). Each of the 

individual samples of pigment 26 dissolved at these three different concentrations led to 

similar H→D exchange rates for both H-6 and H-8, showing the exchange mechanism not to 

be significantly affected by the anthocyanin concentration.  

 

Impact of structure 

The generalized scheme for H→D exchange reactions of the aromatic A-ring hydrogens of 

22, 26 and 27, including a positively charged σ–complex, is shown in Figure 30. Contrary to 

the H→D exchanges observed in the A-rings of 22, 26 and 27, pigments 32–34 in their 

flavylium cationic forms showed in the present study no aromatic H→D exchange for any of 

their A-ring hydrogens (H-6 and H-8). Apparently, the oxygen atom (6-O) in the D-ring of 

32–34 does not have the same electron donating effect as the 5-OH group in 22, 26 and 27, 

and the positively charged σ–complexes of 32–34 can not be stabilized to the same extent as 

the corresponding complexes of 22, 26 and 27.  

 

OHO

O
4

6

R

A

H
8 OHO

O
4

6

R

D
8OHO

O
4

R

DH

D H

 
 

Figure 30. Generalized scheme showing the proposed mechanism for the deuterium exchange 

of H-8 of the A-ring of anthocyanins 22, 26 and 27 and the flavonol rutin (35). Similar 

scheme may represent the corresponding exchange of H-6 in 22, 26 and 27.  

 

For comparison, similar experiments were performed involving quercetin 3-rutinoside 

(34). When this flavonol was dissolved in CF3CO2DCD3OD (5:95, v/v), the rate of the H→D 

exchanges of the aromatic A-ring hydrogens were reduced compared to the corresponding 

reactions of anthocyanins 22, 26 and 27. However, the H→D exchange rate of H-8 in rutin 

was considerably higher than the corresponding rate of H-6; 12% and 2% reduction of signal 

responses in the NMR spectra after 24 h, respectively. Preferences for the exchange reaction 
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at C-8 (Figure 30) suggests that this position may have a more positive charge than C-6 in the 

intermediate σ–complex, leading to higher stability of the σ–complex involved in the 

exchange of H-8. This effect was not obvious in the study of anthocyanins 22, 26 and 27. 

 

Reactivity of anthocyanins and pyranoanthocyanins 

The compounds 22, 26 and 27 exchange hydrogen with deuterium quite readily at position C-

6 and C-8 in the A-ring with approximately equal rates. The reactions, as viewed by the 

decrease of the relative integrated area (r.i.a) versus time (Figure 29), appear to be of first 

order. Since attempts to apply second order rate equations on these reactions failed, the 

observed reactions may not appear to be initiated by any form of stacking of the compounds 

when they are dissolved in the applied solvent mixtures. This conclusion is substantiated by 

the fact that the observed H→D exchange rates are independent upon the concentration of the 

substrates. 

 No H→D exchange was observed for the B-ring hydrogens of 22, 26 and 27, despite 

the presence of OH and OCH3 substituents in the C-3' and C-5' positions. These substituents, 

however, may seem to influence the exchange rates at C-6 and C-8 in the A-ring to some 

extent. From Figure 29 one may conclude that the exchange rates of H-6 and H-8 of 26 and 

27 are twice as fast as that of 22, with half-lives of ~50 h and ~100 h, respectively. In contrast 

to 26 and 27, pigment 22 has only OH-groups as oxygen substituents on the B-ring. 

 One notable result in the present study is the observation that the H→D exchange rates 

at the C-6 and C-8 positions in 26 are essentially the same in pure CD3OD and in CD3OD 

containing 5 % or 15 % CF3CO2D (v/v), respectively, corresponding to CF3CO2D being 0.7 

M or 2.1 M. Although [D+] will be significantly less than 0.7 M and 2.1 M for these high 

concentrations, particularly since acids are known to be less dissociated in methanol than in 

water (pKa of CF3COOH in H2O is ~ 0.0), the present data seem to indicate that the H→D 

exchange reactions of these anthocyanins are independent upon the concentration of D+. 

H→D exchange reactions in aromatic compounds dissolved in deuterated water and alcohols, 

even when substituted with donor substituents as in the 1,3,5–trimethoxybenzene, are known 

to proceed only extremely slowly at room temperature when no acids are present (Kresge and 

Chiang, 1961; Junk and Catallo, 1997; Bai et al., 2000). Generally, these reactions (when 

measurable) take place with an early transition state forming a Wheland (Pfeiffer) 

intermediate (Dewar and Dougherty, 1975), presumably through a non-planar aromatic ring 

with some sp3- hybridization of the ipso-carbon atom. One may speculate whether such 
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intermediates may be possible allowing for H→D exchange of A-ring hydrogens in 

anthocyanins - without being influenced by acid being present. 
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3.3 The reducing capacity of anthocyanins and carboxypyranoanthocyanins (VIII) 

 

Most antioxidant measurements are concentration dependent, and the purity determination of 

the examined compounds are crucial. Today many of the different antioxidant measurements 

have presented contradicting results. In paper VIII the importance of NMR techniques 

together with DAD–HPLC in purity determinations has been highlighted. The diversity of 

molar absorptivity values has been discussed, and new values have been proposed. After 

careful purity considerations, new information about the reducing capacity of 

pyranoanthocyanins and anthocyanins has been revealed.  

 

3.3.1 Molar absorptivities and reducing capacity of pyranoanthocyanins and other 

anthocyanins (VIII) 
 

A variety of methods used for determination of antioxidant capacity of anthocyanin samples 

have been described (Prior et al., 2005). In order to get comparable results the measurements 

for individual anthocyanins have usually been compared with similar measurements for 

ascorbic acid or Trolox; often expressed as Trolox equivalents (Garcia-Alonso et al., 2004). 

After surveying the literature, it is obvious that these results are strongly dependent on the 

antioxidant assays applied (Garcia-Alonso et al., 2004; Tsuda et al., 1994; Satué-Gracia et al., 

1997; Miller et al., 1997; Wang et al., 1997; Pool-Zobel et al., 1999; Degenhardt et al., 2000; 

Stintzing et al., 2002; Seeram et al., 2002a, 2002b; Kim, M.-Y. et al., 2003; Chun et al., 2003; 

Kähkönen et al., 2003; Kim et al., 2004; Lapornik et al., 2004; Awika et al., 2004; Rahman et 

al., 2006), and most comparative studies conclude that each methodology gives different 

responses for the same compounds or samples (Arnao et al., 1999; Baderschneider et al., 

1999; Perez et al., 2000; Schwarz et al., 2001). The relative antioxidant capacity order of 

various anthocyanins has even been altered just by changing the concentration of the 

examined compounds (Kähkönen et al., 2003).  

 

Anthocyanin purity 

The merit of antioxidant capacity values for individual anthocyanins depends on the precision 

in determination of pigment purity or sample concentration. Whether anthocyanins are 

purchased from commercial sources or isolated by the scientific groups, the purity of 

individual compounds has mainly been determined by DAD–HPLC, LC–MS or both methods 

(Santos-Buelga et al., 2003; Andersen and Francis, 2004; Giusti and Wrolstad, 2005). 
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However, as shown in Figure 31 and 32, anthocyanin purity values obtained by DAD–HPLC 

have their limitations. When comparing the HPLC chromatograms (Figure 31) recorded both 

at 520 ± 20 nm and 280 ± 10 nm for malvidin 3-glucoside (27) after purification by 

successive use of various types of column chromatography (Amberlite XAD-7, Sephadex LH-

20 and Toyopearl HW-40F), the absence of additional peaks in the two HPLC chromatograms 

indicated indeed a very clean sample. 
 

 
 

Figure 31. HPLC chromatograms (detected at 520 ± 20 nm and 280 ± 10 nm, respectively) of 

malvidin 3-glucoside (27) after purification by XAD-7, Sephadex LH-20 and Toyopearl HW-

40F column chromatography. 

 

However, when comparing the 1D 1H NMR spectrum of the same sample (spectrum A in 

Figure 32), with a similar spectrum of pure 27 (spectrum B in Figure 32), it was clear that 27 

in the former sample was not even the major aromatic compound.  

Purity analyses based on DAD–HPLC chromatograms have to reflect the following 

considerations: Chromatograms recorded in the visible area (typical between 500 and 550 nm) 

fail to detect aromatic compounds absorbing at shorter wavelengths. When additional HPLC 

chromatograms recorded in the UV-visible region of the spectrum are included (typically 

around 280 nm), impurities lacking an UV-absorbing chromophore will still be invisible. 
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These impurities might be perceived by the use of NMR and MS. However, eventual water 

and inorganic salt content will normally not be determined by either of these methods. 

Furthermore, compounds with different chromatographic properties to those of anthocyanins 

might not show up in the HPLC chromatograms, independently of the HPLC detector, due to 

strong interaction with the stationary phase of the column. 
 

 
 

Figure 32. A. 1H NMR spectra (600.13 MHz) of the same malvidin 3-O-β-glucopyranoside 

(27) sample as shown in the HPLC chromatograms (Figure 31). B. 1H NMR spectra (600.13 

MHz) of pure malvidin 3-O-β-glucopyranoside (27). Both NMR samples (conc. ca 11 mM) 

are dissolved in CF3CO2D–CD3OD; 5:95, v/v and recorded at 25°C. 

 

This latter case is most probably the reason for the discrepancy between the DAD–HPLC and 
1H NMR results obtained for the anthocyanin sample examined in Figure 31 and 32. The 

confidence of DAD–HPLC analysis for determination of anthocyanin purity may thus be 

improved considerably in combination with NMR analysis. 

Another routinely used approach employed to define or measure purity/concentration 

of anthocyanin samples includes the utilization of molar absorptivity (ε) values. Major 

difficulties here with respect to exact mass determinations are reflected by the huge variations 

among the reported ε-values. For instance, the ε-value of malvidin 3-glucoside (27) dissolved 

in 0.1% HCl in methanol has been reported separately to be both 13900 and 29500 (L cm-1 

mol-1) (at λvis-max 546) (Giusti et al., 1999). In addition to substantial variation between ε-
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values given for the same anthocyanin, even in the same solvent, there exist inconsistent 

differences between structurally very similar anthocyanins. Other impurities than 

anthocyanins/other pigments results in the calculation of too low ε-values, which according to 

Lambert-Beer’s law (A = εcl) gives too high anthocyanin concentrations. Consequently, 

impurities or selected ε-values with too low numbers will imply that the measured antioxidant 

capacities are presented to be lower than reality. Additionally, some reported ε-values and 

purity determinations are hampered by the lack of anthocyanin counterions in the 

calculations.  

To improve the control procedure in estimations of anthocyanin purity we have 

combined 1H and 13C NMR spectroscopy with HPLC-DAD and UV-Vis spectroscopy in the 

purity analysis of various anthocyanins. Based on our measurements, we suggest the average 

ε-values for both anthocyanidin 3-monoglycosides and 5-carboxypyranoanthocyanidin 3-

glycosides to be 21900 and 22700 (L cm-1 mol-1) in acidified aqueous and methanolic 

solutions, respectively.  

 

Reducing capacity of anthocyanins and pyranoanthocyanins 

To assess the influence of structure on the potential antioxidant capacity of anthocyanins, the 

3-glucosides of pelargonidin (1), cyanidin (5), peonidin (24), delphinidin (22), petunidin (26), 

malvidin (27), 5-carboxypyranopelargonidin (28), 5-carboxypyranocyanidin (30), 5-

carboxypyranodelphinidin (32), 5-carboxypyranopetunidin (33), 5-carboxypyranomalvidin 

(34), and the 3-galactosides of cyanidin (4) and 5-carboxypyranocyanidin (29), were 

examined by the FRAP method. The concentration of each anthocyanin dissolved in acidified 

methanolic solutions was first determined by absorption spectroscopy using the reported 

molar absorptivity (ε) value of 22700 (L cm-1 mol-1) at the visible absorption maxima for the 

thirteen anthocyanins. The reducing capacities of the individual pigments were expressed as 

µmol Trolox equivalents per µmol anthocyanin. The reducing capacities of the individual 

anthocyanins were in the range of 0.9 to 5.2 Trolox equivalents. The two 5-

carboxypyranoanthocyanins 32 and 30 showed the highest potential antioxidant capacity ever 

measured by FRAP for any anthocyanin (5.2 and 4.8 Trolox equivalents, respectively). 

However, nearly similar values were obtained for 5 and 22. These four pigments possess 

vicinal trihydroxyl (pyrogallol-type) or o-dihydroxyl (catechol-type) groups on their B-rings. 

Compounds 28 and 1, with only one hydroxyl group on their B-rings, showed the lowest 

reducing capacities (0.9 and 2.7 Trolox equivalents, respectively). The large difference 
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between the latter two values indicates that the inclusion of the 5-hydroxyl in the D-ring has a 

very negative effect on the reducing capacity, when there is just one oxygen substituent on the 

B-ring.  

 

 
 

Figure 33. Top: Hydrodynamic voltammograms showing cumulative peak areas (µC/nmol 

anthocyanin) of 5-carboxypyranopelargonidin 3-glc (28) (■), 5-carboxypyranocyanidin 3-glc 

(30) (♦), 5-carboxypyranopeonidin 3-glc (31) (▲), 5-carboxypyranodelphinidin 3-glc (32) 

(●) and 5-carboxypyranopetunidin 3-glc (33) (□). Bottom: HDVs showing cumulative peak 

areas (µC/nmol anthocyanin) of pelargonidin 3-glc (1) (■), cyanidin 3-glc (5) (♦), peonidin 3-

glc (24) (▲), delphinidin 3-glc (22) (●) and petunidin 3-glc (26) (□). glc = glucoside. 

 

The reducing capacity of the 3-glucosides of pelargonidin (1), cyanidin (5), peonidin 

(24), delphinidin (22), petunidin (26), 5-carboxypyranopelargonidin (28), 5-

carboxypyranocyanidin (30), 5-carboxypyranopeonidin (31), 5-carboxypyranodelphinidin 

(32), and 5-carboxypyranopetunidin (33) were also derived from coulometric analyses using 

HPLC coupled to a coulometric array detector set from 100 to 800 mV in increments of 100 

mV. Hydrodynamic voltammograms (HDVs) for each of the 14 anthocyanins were achieved 
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by plotting the cumulative responses from 100 to 800 mV against the relative peak area in the 

chromatograms (Figure 33). Flavonoids present several waves of oxidation across the 

coulometric array, corresponding to several moieties capable of undergoing oxidation 

(Manach, 2003). According to Aaby et al. (2004) the cumulative responses at low to medium 

oxidation potentials (300-500 mV) were most relevant for addressing potential antioxidant 

capacity of various phenolics. Hence, in the present study the relative cumulative peak area at 

400 mV was used as a measure for the reducing capacity of the individual anthocyanins.  

When examining the reducing capacity of the individual anthocyanins, the most 

pronounced effect was observed for 5-carboxypyranopelargonidin 3-glucoside (28). This 

pigment remained without any significant cumulative responses even at electrode potentials as 

high as 600 mV. In full agreement with FRAP measurements the reducing capacity of this 

compound with a D-ring and only one hydroxyl group on the B-ring, was very low compared 

to the other examined anthocyanins. In fact the relative order of the reducing capacity of the 

5-carboxypyranoanthocyanidin 3-glucosides were alike whether determined by coulometric 

array detection or FRAP. With exemption of a slightly decreased value for delphinidin 3-

glucoside (22) measured by coulometric array detection, there was similarly agreement 

between the relative reducing capacity of the examined anthocyanidin 3-glucosides.  
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APPENDIX A. Presentation of pigments involved in the thesis 
 
Pigment No Struc. 

(Fig.) 
1H NMR 13C NMR Paper ref. 

Pelargonidin 3-glc 1 B-1   III(1); VIII(1) 
Pelargonidin 3-[6-(rha)glc] (Pg 
rutinoside) 

2 B-1 Tab. C-1 Tab. D-1 IV(2) 

Cyanidin 3-xyl 3 B-1   II(7) 
Cyanidin 3-gal 4 B-2 Tab. C-2 Tab. D-2 III(5); IV(4); VIII(13) 
Cyanidin 3-glc 5 B-1   II(3); III(2);VIII(2) 
Cyanidin 3-[6-(ara)glc] (Cy vicianoside) 6 B-1 Tab. C-1 Tab. D-1 III(7) 
Cyanidin 3-[2-(xyl)gal] 7 B-1   III(11) 
Cyanidin 3-[2-(xyl)glc] (Cy 
sambubioside) 

8 B-1   III(12) 

Cyanidin 3-[6-(rha)glc] 9 B-1 Tab. C-1 Tab. D-1 II(4); III(9); IV(1) 
Cyanidin 3-[6-(glc)glc] (Cy 
gentiobioside) 

10 B-1   III(8) 

Cyanidin 3-xyl-5-glc 11 B-3 Tab. C-1 Tab. D-1 I(1) 
Cyanidin 3,5-di-glc 12 B-1   III(13) 
Cyanidin 3-[2-(xyl)-6-(rha)glc] 13 B-1   III(10) 
Cyanidin 3-[2-(xyl)glc]-5-glc 14 B-1   III(14) 
Cyanidin 3-[6-E-(caf)glc] 15 B-1 Tab. C-2 Tab. D-2 II(8) 
Cyanidin 3-[6-Z-p-(cum)glc] 16    II(9) 
Cyanidin 3-[6-E-p-(cum)glc] 17 B-1 Tab. C-2 Tab. D-2 II(10) 
Cyanidin 3-xyl-5-[6(mal)glc] 18 B-3 Tab. C-1 Tab. D-1 I(2) 
Cyanidin 3-xyl-5-[6(Me-mal)glc] 19 B-3 Tab. C-1 Tab. D-1 I(3) 
Cyanidin 3-[2-(xyl)-6-Z-p-(cum)glc]-5-
glc 

20 B-1   III(15) 

Cyanidin 3-[2-(xyl)-6-E-p-(cum)glc]-5-
glc 

21 B-1   III(16) 

Delphinidin 3-glc 22 B-2 Tab. C-2 Tab. D-2 II(1); III(3); V(1); VI(3); 
VII(1); VIII(4) 

Delphinidin 3-[6-(rha)glc] 23 B-1   II(2) 
Peonidin 3-glc 24 B-1   II(5); III(4); VIII(3) 
Peonidin 3-[6-(rha)glc] 25 B-1   II(6); III(6) 
Petunidin 3-glc 26 B-2 Tab. C-2 Tab. D-2 V(3); VI(2); VII.(2); VIII(5) 
Malvidin 3-glc 27 B-2 Tab. C-2 Tab. D-2 V(5); VI(1);VII(3); VIII(6) 
5-CPpelargonidin 3-glc 28 B-2   VIII(7) 
5-CPcyanidin 3-gal 29 B-2   VIII(14) 
5-CPcyanidin 3-glc 30 B-2   VIII(8) 
5-CPpeonidin 3-glc 31 B-2   VIII(9) 
5-CPdelphinidin 3-glc 32 B-2 Tab. C-4 Tab. D-4 V(2); VII(4); VIII(10) 
5-CPpetunidin 3-glc 33 B-2 Tab. C-4 Tab. D-4 V(4); VII(5); VIII(11) 
5-CPmalvidin 3-glc 34 B-2 Tab. C-4 Tab. D-4 V(6); VII(6); VIII(12) 
Quercetin 3-[6-(rha)glc] 35 B-2   VII(7) 
Cyanidin 3-gal (hemiketal) major (a) 4a B-2 Tab. C-3 Tab. D-3  
Cyanidin 3-gal (hemiketal) minor (b) 4b B-2 Tab. C-3 Tab. D-3  
Delphinidin 3-glc (hemiketal) major (a) 22a B-2 Tab. C-3 Tab. D-3  
Delphinidin 3-glc (hemiketal) minor (b) 22b B-2 Tab. C-3 Tab. D-3  
Petunidin 3-glc (hemiketal) minor (a) 26a B-2 Tab. C-3 Tab. D-3  
Petunidin 3-glc (hemiketal) minor (b) 26b B-2 Tab. C-3 Tab. D-3  
Malvidin 3-glc (hemiketal) major (a) 27a B-2 Tab. C-3 Tab. D-3  
Malvidin 3-glc (hemiketal) minor (b) 27b B-2 Tab. C-3 Tab. D-3  
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APPENDIX B. Structures of pigments involved in the thesis 
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Figure B-1. Structures of 1 (pg 3-glc), 2 (pg 3-[6-(rha)glc]), 3 (cy 3-xyl), 5 (cy 3-xyl), 6 (cy 

3-[6-(ara)glc]), 7 (cy 3-[2-(xyl)gal], 8 (cy 3-[2-(xyl)glc], 9 (cy3-[6-(rha)glc]), 10 (cy 3-[6-

(glc)glc]), 12 (cy 3,5-di-glc), 13 (cy 3-[2-(xyl) 6-(rha)glc]), 14 (cy 3-[2-(xyl)glc]-5-glc), 15, 

(cy 3-[6-E-p-(cum)glc]), 16 (cy 3-[6-Z-p-(cum)glc]), 17 (cy 3-[6-E-p-(cum)glc]), 20 (cy 3-[2-

(xyl)-6-Z-p-(cum)glc]-5-glc), 21 (cy 3-[2-(xyl)-6-E-p-(cum)glc]-5-glc), 23 (dp 3-[6-(rha)glc]), 

24 (pn 3-glc), 25 (pn 3-[6-(rha)glc]). 
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Figure B-2. A: Flavylium cation form of anthocyanins (4, 22, 26, 27); B: Hemiketal forms of 

anthocyanins (4a,b, 22a,b, 26a,b, 27a,b); C: Carboxypyranoanthocyanins (28-34); D: Rutin 

(35). 4 = cy 3-gal (R1 = OH, R2= H); 22 = dp 3-glc (R1, R2 = OH); 26 = pt 3-glc (R1 = OCH3, 

R2 = OH); 27 = mv 3-glc (R1, R2 = OCH3); 28 = 5-CPpg 3-glc(R1, R2 = H); 29 = 5-CPcy 3-gal 

(R1 = OH, R2 = H); 30 = 5-CPcy 3-glc (R1 = OH, R2 = H); 31 = 5-CPpn 3-glc (R1 = OMe R2 = 

H); 32 = 5-CPdp 3-glc (R1, R2 = OH); 33 = 5-CPpt 3-glc (R1 = OCH3, R2 = OH); 34 = 5-

CPmv 3-glc (R1, R2 = OCH3); 35 = quercetin 3-[6-(rha)glc]. The numbers in brackets in C 

shows the normal nomenclature for positions in anthocyanins.  

 89



APPENDIX 
 
 
 
 
 
 
 

O

OH

HO

OH

O

O

HO
OH

OH

O

HO

O

O

OH
HO

O
O

O
6

8

4

3

1''

2' 4'

6'

1'''

H3C

1118

MIII
MI

19

A

B

 
 
 
 
Figure B-3. Structure of pigments 11 (cy 3-xyl-5glc), 18 (cy 3-xyl-5-[6(mal)glc]) and 19 (cy 

3-xyl-5-[6(Me-mal)glc]). 
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APPENDIX C. 1H NMR data reported in the thesis (chemical shifts are given in ppm 
and coupling constants are given in Hz) 
 
Table C-1 1H NMR spectral data for pigment 2, 6, 9, 11, 18 and 19 dissolved in CD3OD–
CF3COOD (95:5, v/v) recorded at 25oC. 
 2 6 9 11 18 19 
4 9.10 s 9.06 s 9.09 s 9.04 s 9.06 s 9.05 s 
6 7.20 d, 2.9 6.74 d, 1.6 6.78 s  7.13 s  7.10 s  7.08 d, 1.8 
8 6.77s  6.97 d, 1.4 7.02   7.17 s  7.18 s  7.17 d, 1.6 
2' 8.69 d, 9.2 8.11 d, 2.3 8.17 d, 2.1 8.15 d, 2.3 8.15 d, 2.0 8.15 d, 2.2 
3' 7.14 d, 9.2      
5' 7.14 d, 9.2 7.09 d, 8.7 7.14 d, 9.2 7.12 d, 8.8 7.11 d, 8.9 7.11 d, 8.8 
6' 8.69 d, 9.2 8.33 dd, 2.3, 8.9 8.70 dd, 9.2, 

2.1 
8.42 dd, 2.3, 
8.8 

8.44 dd, 2.0, 
8.9 

8.42 dd, 2.3, 
8.7 

 3-glucoside 3-glucoside 3-glucoside 3-xyloside 3-xyloside 3-xyloside 
1'' 5.37 d, 7.8 5.33 d, 7.7 5.36 d, 7.7 5.49 d, 7.0 5.48 d, 6.9 5.49 d, 6.9 
2'' 3.75 dd, 9.0, 7.8 3.77 3.77 dd, 9.1, 

7.7 
3.81 dd, 7.0, 
9.4 

3.80 dd, 7.0, 
9.3 

3.80 dd 9.3, 
7.0 

3'' 3.61 m 3.63 3.62 m 3.66 m 3.65 t 9.4 3.65 t, 9.3 
4'' 3.50 m 3.56 3.50 t, 9.8 3.75 ddd, 12.3, 

9.4, 4.5 
3.74 m 3.75 m 

5(A)'' 3.81 m 3.80 3.81 m 4.11 dd, 4.9, 
11.6 

4.10 dd 11.3, 
5.0 

4.11 dd, 4.9, 
11.5 

5B''    3.60 dd, 9.4, 
11.5 

3.59 dd, 9.3, 
11.5  

3.60 dd, 9.3, 
11.5 

6A'' 4.16 dd, 11.1, 
1.5 

4.23 4.15 dd, 11.2, 
1.7 

   

6B'' 3.68 m 3.86 3.68 m    
 6''-rhamnosyl 6''-arabinosyl 6''-rhamnosyl 5-glucoside 5-glucoside 5-glucoside 
1''' 4.74 d, 1.6 4.26 d, 7.1 4.74 d, 1.6 5.28 d, 7.9 5.29 d, 7.7 5.29 d, 7.7 
2''' 3.90 dd, 3.5, 1.6 3.63 3.90 dd, 3.5, 

1.6 
3.74 m 3.73 m* 3.74 m 

3''' 3.71 m 3.50 3.72 m 3.69 m 3.65 t, 9.3 3.66 t, 9.0 
4''' 3.41 m 3.85 3.42 m 3.55 t, 9.4 3.54 t, 9.3   3.56 m 
5(A)''' 3.65 m 3.90 3.65 m 3.65 m* 3.89 ddd, 9.2, 

6.9, 1.9 
3.88 ddd, 9.5, 
6.8, 1.9 

5B'''  3.50     
6(A)''' 1.27 d, 6.2  1.26 d, 6.2 4.04 dd, 2.0, 

12.1 
4.62 dd, 2.0, 
12.0  

4.63 dd, 1.9, 
11.9 

6B'''    3.84 dd, 12.1, 
5.7 

4.42 dd, 12.0, 
6.9 

4.42 dd, 11.9, 
6.8 

     6'''-O-Malonyl 6'''-O-Malonyl 
MII     # 3.44 
MIV     # 3.76 
*Overlap; s, singlet; d, doublet, t, triplet; m, multiplets; 
#, not detected adequately. (For structures see Fig. B-1 and B-3) 
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Table C-2 1H NMR spectral data for pigment 15 and 17 dissolved in CD3OD–CF3COOD 
(95:5, v/v), and pigment 22, 26, 27 and 4 dissolved in CD3OD. All spectra are recorded at 
25oC. 
 15 17 22 26 27 4 
4 8.99 8.94 9.056 d 0.8 9.090 d 0.8 9.132 d 0.8 9.113 d 1.0 
6 6.63 d, 1.9 6.60 d 1.9 6.732 d 2.0 6.739 d 2.0 6.756 d 2.1 6.738 d 2.0 
7       
8 6.89 d, 1.9 6.82 d, 1.9 6.949 dd 

0.9, 2.0 
6.994 dd, 
0.7, 2.0 

7.060 dd, 0.7, 
2.1 

6.982 dd, 1.0, 
2.0 

2' 8.09 d, 2.3 8.07 d, 2.3 7.861 s 8.075 d, 
2.2 

8.091 s 8.158 d, 2.3 

5' 7.09 d, 8.7 7.07 d, 8.7    7.105 d, 8.8 
6' 8.32 dd, 2.3, 8.7 8.27 dd, 2.3, 8.7 7.861 s 7.867 dd, 

0.6, 2.2 
8.091 s 8.358 dd, 8.8. 

2.3 
OMe    4.088 s 4.100 s  
3-gly glucoside glucoside glucoside glucoside glucoside galactoside 
1'' 5.41 d, 7.7 5.39b 5.41 d, 7.8 5.43 d, 7.8 5.44 d, 7.8 5.35 d, 7.7 
2'' 3.79 3.82 dd, 2.1, 12.1 3.79 dd, 7.8, 

9.1 
3.76 dd, 
7.8, 9.0 

3.73 dd, 7.7, 
9.2 

4.08 dd, 7.7, 
9.6 

3'' 3.66 3.69 3.65 t 9.1 3.64 t, 9.0 3.63 t, 9.2 3.76 dd, 9.6, 
3.4 

4'' 3.56 3.58 dd, 9.8, 9.2 3.54 dd, 9.1, 
9.8 

3.51 dd, 
9.0, 9.9 

3.49 dd, 9.2, 
9.9 

4.04 dd, 0.5, 
3.4 

5'' 3.92 3.92 3.65 m 3.66 m 3.66 m 3.89 m 
6A'' 4.61 4.61 dd, 2.1, 12.1 4.00 dd, 2.3, 

12.2 
4.01 dd, 
2.3, 12.1 

4.01 dd, 2.2, 
12.2 

3.89 m 

6B'' 4.45 4.45 dd, 7.7, 12.1 3.82 dd, 6.3, 
12.2 

3.79 dd, 
6.3, 12.1 

3.78 dd, 6.3, 
12.2 

3.86 m 

 6''-O-E-caffeoyl 6''-O-E-p-coumaroyl    
1'''       
2''' 6.99 d, 1.8 7.36 d, 8.6     
3'''  6.86 d, 8.6     
4'''       
5''' 6.84 m 6.86 d, 8.6     
6''' 6.86 m 7.36 d, 8.6     
α 6.26 d, 15.9 6.31 d, 15.9     
β 7.45 d, 15.9 7.51 d, 15.9     
*Overlap; s, singlet; d, doublet, t, triplet; m, multiplets; gly, glycoside; bchemical shift value 
from the COSY spectrum, anomeric signal was overlapped by the water signal. (For structures 
see Fig. B-1 and B-2) 
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Table C-3 1H NMR spectral data for the hemiketal forms a (major) and b (minor) of pigment 
4, 22, 26 and 27 dissolved in CD3OD. All spectra are recorded at 25oC. 
 4a 4b 22a 22b 26a 26b 27a 27b 
4 6.610 d, 0.7 6.658 d, 0.7 9.056 d, 

0.8 
6.636 d, 
0.6 

6.579 d, 
0.7 

6.646 d, 
0.7 

6.582 d, 
0.8 

6.651 d, 
0.8 

6 6.044 d, 2.2 6.049 d, 2.2 6.732 d, 
2.0 

6.047 d, 
2.2 

6.051 d, 
2.0 

6.055 d, 
2.0 

6.065 d, 
2.2 

6.059 d, 
2.2 

7         
8 5.999 dd, 

0.7, 2.2 
6.017 dd, 
0.7, 2.2 

6.949 dd, 
0.9, 2.0 

6.016 dd, 
0.7, 2.2 

6.022 dd, 
0.6, 2.2 

6.028 dd, 
0.6, 2.3 

6.046 dd, 
0.7, 2.2 

6.043 dd, 
0.7, 2.2 

2' 7.105 d, 2.2 7.106 d, 2.2 7.861 s 6.678 s 6.857 d, 
1.9 

6.814 d, 
1.9 

6.968 s 6.944 s 

5' 6.792 d, 8.3 6.826 d, 8.3       
6' 7.011 dd, 

8.3, 2.2 
6.991 dd, 
8.3, 2.2 

7.861 s 6.678 s 6.795 dd, 
0.6, 2.0 

6.792 dd, 
0.6, 2.0 

6.968 s 6.944 s 

OMe     3.909 s 3.967 s 3.908 s 3.911 s 
3-gly galactoside galactoside glucoside glucoside glucoside glucoside glucoside glucoside 
1'' 4.90 d, 7.7 4.72 d, 7.7 4.93 d, 

7.8 
4.758 d, 
7.8 

4.95 d, 
7.8 

4.79 d, 
7.8 

4.97 d, 
7.8 

4.83 d, 
7.8 

2'' 3.69 dd, 
7.7, 9.8 

3.66 dd, 
7.7, 9.8 

3.38 dd, 
7.8, 9.1 

3.34 dd, 
7.8, 9.4 

3.37 dd, 
7.8, 9.1 

3.34 dd, 
7.8, 9.3 

3.36 dd, 
7.7, 9.1 

3.34 dd, 
7.8, 9.2 

3'' 3.64 dd, 
9.8, 3.4 

3.56 dd, 
9.8, 3.4 

3.52 m 3.45 t 9.4 3.52 t 9.1 3.45 t 9.3 3.52 t 9.1 3.46 t 9.2 

4'' 3.97 dd, 
1.1, 3.4 

3.95 dd, 
1.1, 3.4 

3.47 m * 3.45 m 3.49 m 3.44 dd, 
9.1, 9.9 

* 

5'' 3.78 m 3.74 m 3.54 m 3.48 m 3.52 m 3.48 m 3.52 m 3.58 m 
6A'' 3.84 m 3.89 m 3.96 m 3.82 m 3.95 m 3.99 m 3.78 m 3.82 m 
6B'' 3.80 m 3.86 m 3.81 m 3.99 m 3.79 m 3.83 m 3.94 m 3.99 m 
*Overlap; s, singlet; d, doublet, t, triplet; m, multiplets; gly, glycoside. (For structures see Fig. 
B-2) 
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Table C-4 1H NMR spectral data for pigment 32, 33 and 34 in dissolved in CD3OD–
CF3COOD (95:5, v/v) recorded at 25oC. 
 32 33 34 
4 8.12 s 8.08 s 8.07 s 
7 (6) 7.29b d, 1.9  7.25b d, 1.9 7.27b d, 1.9  
8 (7)    
9 (8) 7.24b d, 1.9  7.34b d, 1.9  7.41b d, 1.9  
2' 7.65 s 7.82 d, 2.2  7.81 s 
6' 7.65 s 7.62 d, 2.2  7.81 s 
OMe  3.99 s  
3-glucoside   
1'' 4.81 d, 7.7  4.81 d, 7.8  4.79 d, 7.8 
2'' 3.74 dd, 7.7, 9.3 3.71 dd, 7.8, 9.2 3.70 dd, 7.8, 9.2 
3'' * 3.46  * 
4'' 3.35 dd, 9.0, 8.8  3.32 dd, 9.0, 8.7  3.32 dd, 9.1, 8.9  
5'' 3.24 ddd, 9.0, 6.8, 1.9 3.24 ddd, 9.0, 6.8, 1.9 3.24 ddd, 9.1, 6.8, 1.9 
6A'' 3.82 dd, 11.7, 1.9 3.82 dd, 11.7, 1.9 3.81 dd, 11.6, 1.9 
6B'' 3.48 dd, 11.7, 6.8  3.48 dd, 11.7, 6.8 3.48 dd, 11.6, 6.8  
*Overlap; s, singlet; d, doublet, t, triplet; m, multiplets; coupling constant (Hz), bassignments 
may be reversed. (For structures see Fig. B-2) 
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APPENDIX D. 13C NMR data reported in the thesis (chemical shifts are given in ppm) 
 
Table D-1 13C NMR spectral data for pigment 2, 6, 9, 11, 18 and 19 dissolved in CD3OD–
CF3COOD (95:5, v/v) recorded at 25oC. 
 2 6 9 11 18 19 
2 165.02 164.47 163.65 164.8 165.1 165.1 
3 146.25 145.59 145.33 145.3 146.2 146.0 
4 136.52 137.65 136.25 135.0 135.0 134.6 
5 159.55 159.24 158.68 157.0 156.4 156.0 
6 103.21 103.52 104.01 105.6 105.8 105.6 
7 172.12 170.71 170.46 169.1 169.3 168.9 
8   96.50   95.35   99.56   97.5   97.3   97.3 
9 157.58 157.86 157.40 155.5 157.1 157.2 
10 112.26 113.46 113.30 113.3 113.2 113.1 
1' 121.14 121.24 121.34 120.5 121.0 120.7 
2' 135.05 118.51 118.02 118.9 118.5 118.4 
3' 118.50 147.41 146.67 147.3 147.6 147.3 
4' 166.54 155.79 149.90 157.0 156.7 156.4 
5' 118.50 117.46 117.48 117.9 117.6 117.6 
6' 135.05 128.35 128.52 129.4 129.1 129.1 
 3-glucoside 3-glucoside 3-glucoside 3-xyloside 3-xyloside 3-xyloside 
1'' 103.75 104.28 102.92 104.1 103.9 103.9 
2''   78.71   74.81   74.51   74.4   74.1   74.1 
3''   77.89   77.93   77.78   78.9   77.4   77.0 
4''   70.85   71.13   70.89   71.0   70.7   70.7 
5''   77.04   77.73   77.22   67.4   67.0   66.9 
6A''   67.69   69.51   67.50    
6B''   67.69   69.51   67.50    
 6''-rhamnosyl 6''-arabinosyl 6''-rhamnosyl 5-glucoside 5-glucoside 5-glucoside 
1''' 102.03 105.28 102.05 102.8 102.4 102.3 
2'''   71.65   72.38   71.25   74.9   74.6   74.6 
3'''   72.38   74.14   72.33   78.1   77.4   77.7 
4'''   73.72   69.58   73.70   71.5   71.2   71.3 
5'''   69.66   66.90   69.55   77.7   75.9   75.8 
6'''   17.69    17.58   62.5   65.3   65.2 
     6'''-O-Malonyl 6'''-O-Malonyl 
MI     168.7 167.9 
MII         #     # 
MIII         # 168.6 
OCH3  (MIV)        52.9 
# Not detected adequately. (For structures see Fig. B-1 and B-3) 
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Table D-2 13C NMR spectral data for pigment 15 and 17 dissolved in CD3OD–CF3COOD 
(95:5, v/v), and pigment 22, 26, 27 and 4 dissolved in CD3OD. All spectra are recorded at 
25oC. 
 15 17 22 26 27 4 
2 164.54 164.03 164.22 164.09 163.99 164.42 
3 145.08 144.71 145.87 145.81 145.81 145.72 
4 137.11 136.71 136.12 136.63 137.08 136.98 
5 158.60 158.34 159.16 159.22 159.35 159.21 
6 103.64 103.41 103.19 103.25 103.87 103.29 
7 170.62 170.41 170.24 170.44 170.69 170.42 
8   95.18   95.04   94.96   95.13   95.37   95.09 
9 157.73 157.61 157.63 157.74 157.96 157.69 
10 112.81 112.99 113.20 113.42 113.06 113.39 
1' 121.22 120.99 120.01 119.96 119.87 121.27 
2' 118.36 118.27 112.55 109.32 110.63 118.46 
3' 147.48 147.09 144.78 149.77 149.78 147.41 
4' 155.82 155.54 147.55 145.21 146.25 155.78 
5' 117.39 115.34 144.78 147.51 149.78 117.41 
6' 128.31 128.09 112.55 113.69 110.63 128.23 
OMe      57.15   57.17  
3-gly glucoside glucoside glucoside glucoside glucoside galactoside 
1'' 103.18 102.91 103.63 103.73 103.76 104.45 
2''   74.70   74.61   74.76   74.94   75.04   72.07 
3''   77.88   77.72   78.05   78.18   78.25   74.92 
4''   71.70   71.55   71.04   71.15   71.22   70.10 
5''   76.06   75.84   78.81   78.89   78.97   77.79 
6A''   64.42   64.53   62.32   62.38   62.42   62.33 
6B''   64.42   64.53   62.32   62.38   62.42   62.33 
 6''-O-E-caffeoyl 6''-O-E-p-coumaroyl     
1''' 127.57 126.60     
2''' 115.39      
3''' 146.75      
4''' 149.62 131.00     
5''' 116.46 116.64     
6''' 122.83 161.06     
α 114.63 114.20     
β 147.19 146.85     
C=O 168.96 168.8     
gly, glycoside. (For structures see Fig. B-1 and B-2) 
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Table D-3 13C NMR spectral data for the hemiketal forms a (major) and b (minor) of pigment 
4, 22, 26 and 27 dissolved in CD3OD. All spectra are recorded at 25oC. 
 4a 4b 22a 22b 26a 26b 27a 27b 
2 103.10 102.96 103.19 103.11 103.82 102.75 103.11 103.60 
3 145.48 145.53 145.55 145.39 145.47 145.47 145.39 145.27 
4   98.63   99.59   98.78   98.57   98.64   99.72   98.57   99.79 
5 154.59 154.44 154.31 154.57 153.26 154.40 154.57 153.17 
6   97.05   97.10   96.98   97.19   97.07   97.30   97.19   97.13 
7* 158.4 158.4 158.4 158.4 158.4 158.4 158.4 158.4 

8   95.09   95.25   95.14   95.29   95.13   95.29   95.10   95.25 

9 153.19 153.19 153.17 152.95 153.17 152.52 152.95 154.11 

10 101.77 101.92 101.76 101.75 101.69 101.78 101.75 101.89 
1' 133.27 133.32 132.41 132.15 132.56 132.32 132.15 132.56 
2' 115.59 115.48 107.37 105.90 103.81 107.24 105.90 103.60 
3' 146.64 145.64 146.12 148.52 148.98 146.28 148.52 148.77 
4' 146.56 146.66 134.47 136.81 135.22 134.56 136.81 135.48 
5' 115.36 115.45 146.12 148.52 145.69 146.28 148.52 145.62 
6' 119.77 119.67 107.37 105.90 109.81 107.24 105.90 103.60 
OMe       56.67   56.69   56.69   56.81 
3-gly galactoside galactoside glucoside glucoside glucoside glucoside glucoside glucoside 
1'' 102.73 103.35 102.73 102.11 102.98 103.55 102.11 102.63 
2''   71.89   71.89   71.89   74.78   74.57   74.66   74.78   74.64 
3''   74.84   74.46   74.84   77.88   78.02   77.81   77.88   77.67 
4''   70.05   69.99   70.05   71.25   71.09   70.95   71.25   70.93 
5''   76.84   77.00   76.84   78.29   78.04   78.18   78.29   78.24 
6A''   62.16   62.26   62.16   62.45   62.25   62.44   62.45   62.45 
6B''   62.16   62.26   62.16   62.45   62.25   62.44   62.45   62.45 
*13C NMR data obtained from the HMBC spectra. gly, glycoside.  
(For structures see Fig. B-2) 
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Table D-4 13C NMR spectral data for pigment 32, 33 and 34 in dissolved in CD3OD–
CF3COOD (95:5, v/v) recorded at 25oC. 
 32 33 34 
2 166.45 166.15 165.68 

3 136.25 136.18 136.08 

3a (4) 149.41 149.70 e 

4 107.40 107.44 e 

5 155.68c 155.66c 156.43c 

COOH 161.33 161.11 161.48 

6a (5) 154.39 154.55 154.52 

7 (6) 101.34b 101.92b 101.98b 

8 (7) 169.39 169.68 169.68 

9 (8) 101.75b 101.58b 101.82b 

9a (9) 154.34c 154.50c 154.56c 

9b (10) 110.71 110.94 111.01 

1' 120.21 120.23 120.23 

2' 112.12 108.66 110.08 

3' 147.24 149.93 149.56 

4' 143.38 143.93 144.95 

5' 147.24 147.31 149.56 

6' 112.12 113.45 110.08 

OMe    57.24   57.26 

3-glucoside   
1'' 105.73 105.47 105.36 

2''   75.43   75.64   75.71 

3''   77.65   77.75   77.79 

4''   71.39   71.62   71.61 

5''   78.93   79.11   79.12 

6A''   62.77   62.85   62.83 

6B''   62.77   62.85   62.83 

e, signal is missing; b,cassignments may be reversed; numbers in brackets represent 
anthocyanin positions. (For structures see Fig. B-2) 
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