
Cryptanalysis of AES

By Kristoffer Rye

Dissertation for the degree of Master’s in Secure and reliable communication
at the University of Bergen

2020

2

Acknowledgements

First of all, I would like to thank my supervisor Sondre Rønjom for letting me work
on this very interesting project in cryptanalysis of AES. It has been a pleasure to work
on this thesis under his guidance. He has shown passion and interest in new ideas
and guided me in the right directions when help was needed. He has always answered
my questions related to the topic of cryptography and his insightful comments and
encouragement have been essential to my understanding of the material.

Many hours have been spent on programming, writing, trying out different attack meth-
ods, thinking of possible solutions to different problems, calculating and understanding
complex mathemathics in cryptography and trying to improve existing techniques. I
will therefore also take this opportunity to give a huge thanks to my friends and family
for being patient and understandable when work had to be prioritized.

Kristoffer Rye
Bergen, 16.06.2020

ii Acknowledgements

Abstract

This is my thesis for the degree of Masters in Secure and reliable communicationation
at the University of Bergen, Department of Informatics at the Faculty of Mathemat-
ics and Natural Sciences. The aim of this project is to implement and study subspace
attacks on 5-rounds AES and the so-called yoyo-trick, two recent and successful tech-
niques for analysing AES. An important part of the project is to implement these two
attacks and investigate and experiment with them to see whether there is room for im-
proving the attacks and/or whether there exist variations of the attacks that are better.
We will list the conclusions drawn from first-hand experimenting with the techniques
in Chapter 6, present some newly discovered properties of AES in Chapter 5 and also
make some suggestions for further research as a summary. The project has also a the-
oretical survey component consisting of presenting and surveying these attacks in the
context of cryptanalytics attacks on AES, thus we introduce the knowledge, concepts
within cryptanalysis and the building blocks for how to perform these attacks in great
detail.

iv Abstract

Outline

This thesis consists of an introductory part of how the symmetric cipher AES works
in detail and how truncated differential cryptanalysis can be used to break some round
reduced versions of AES. All the main attacks in this analysis has been successfully
implemented using C#, and we have improved the overall data complexity of the key
recovery attack on 5 rounds from 211.3 ACC to roughly 210.59 ACC by doing some
slight adjustment in the implementation of the attack.

Chapter 1 gives a short introduction to the concepts within cryptography and the impor-
tance of cyber security in general. Chapter 2 gives an insight in how symmetric cryp-
tosystems works and the design principles of block ciphers and SP-networks. Chapter
3 gives a detailed explanation of how the AES algorithm works. Chapter 4 gives an
overview of existing attack methods that is applied on round reduced versions of AES.
Chapter 5 lists all the cryptanalysis tools to perform the exchange attack on AES. The
main attacks on 5 rounds for this thesis is described in Chapter 6 where we also add
some self-made attacks based on the same principles of the main attacks. We list our
conclusions and findings in Chapter 7.

vi Outline

Contents

Acknowledgements i

Abstract iii

Outline v

1 Introduction 1

2 Symmetric cryptosystems 3
2.1 Symmetric ciphers . 3

2.1.1 Block ciphers . 5
2.1.2 Substitution Permutation Network 6

3 Description of AES 9
3.1 The AES algorithm . 10

3.1.1 AddRoundKey . 12
3.1.2 SubBytes . 12
3.1.3 ShiftRows . 15
3.1.4 MixColumns . 16
3.1.5 Key Schedule . 17

4 Attacks on AES 19
4.1 Cryptanalysis of symmetric ciphers . 19

4.1.1 Distinguishing attack . 20
4.1.2 Key recovery attack . 21

4.2 How AES is designed to prevent attacks 21
4.3 Comparison of round reduced attacks on AES 23

4.3.1 Distinguishing attacks on round reduced AES 23
4.3.2 Key recovery attacks on round reduced AES 24

5 Truncated differentials for AES 25
5.1 Introduction of truncated differential cryptanalysis 25
5.2 Adaptive exchange functions . 26

5.2.1 Properties of the exchange function 27
5.3 Simplification of the AES rounds . 29
5.4 Subspace trails . 30
5.5 Different exchanges . 33

viii CONTENTS

6 Cryptanalysis of AES 37
6.1 A key recovery on 1 round . 37
6.2 Exchange attack for 1-3 rounds . 39
6.3 Distinguishing attack for 5 rounds . 45
6.4 Key recovery for 5 rounds . 48

7 Summary 57
7.1 Comparisons and conclusions . 57
7.2 Further research . 58

Chapter 1

Introduction

Cryptography is the science of protecting information and communication through the
use of secret codes with the goal of hiding the meaning of the message from malicious
third parties. The field of cryptography deals with the practice and study of different
cryptographic techniques that provides the most secure form of communication in the
presence of such adversaries. We all use cryptography almost daily whether we know
it or not. When we surf the web, communicate with our cell phones, unlock the car
or when we shop groceries at the store with our credit card, cryptography is used in
one way or another. The purpose of cryptography is to be able to communicate with
something or someone safely without anyone else being able to see the content, inter-
cept and change the content without our knowledge and to prevent anyone else from
pretending to be someone else. These categories fall under the topic of authentica-
tion, authorization, accounting and identity management, all of which are sub-genres
in cryptography.

The specific techniques and methods for achieving these goals are through the use of
different cryptographic algorithms, also referred to as ciphers. The earliest forms of
cryptography dates back to ancient Egypt in the year 2000 B.C. in the form of secret hi-
eroglyphs and in ancient Rome, techniques to manipulate traditional text by scrambling
individual characters in a messages was developed. Since then, the field of cryptogra-
phy has evolved into a much more sophisticated field of science where we distinguish
between the old classical cryptography and modern cryptography.

While classical cryptography is mainly based on security through obscurity by using
secret ciphers that only the involved parties known about, modern cryptography relies
on publicly known mathematical algorithms for encoding information. This is achieved
by mixing a secret key into a cryptographic algorithm which produces a unique data
stream that is dependent on the secret key. We categorize cryptography into three main
branches, all of which have their own purpose and uses: symmetric ciphers, asymmetric
ciphers and cryptographic protocols. Symmetric ciphers use the same secret shared key
for encryption and decryption, asymmetric ciphers are often used in key exchanges and
use different encryption and decryption keys while cryptographic protocols deals with
the use and implementation of cryptographic algorithms. In this theses we will focus
on symmetric cryptography, as AES falls under this category.

2 Introduction

History is filled with examples of situations where the importance of hiding informa-
tion, or communicating through a secure channel is critical. The importance of cryp-
tography has become more relevant today as the world is becoming more and more
connected and hackers trying to get their hands on others information for malicious
purposes. Therefore, the field of cryptography is constantly evolving to develop newer
and more secure technologies to make the world safer. At the same time, a specific field
of study is evolving for cracking cryptographic codes known as cryptanalysis, often re-
ferred to as the art of breaking cryptosystems. As cryptographic methods becomes more
secure and reliable, different techniques for exploiting vulnerabilities in ciphers also be-
comes more complex and sophisticated. Out of those who deals with code breaking,
we distinguish between black hat, white hat and gray hat hackers. Black hat hackers
are the ones who break cryptosystems for malicious reasons, white hats tries to find
and repair security holes before someone with evil intentions does and gray hats is in a
gray area in between. As in many other areas, the best defense mechanism is often to
attack first, as cryptanalysis is all about analyzing cryptosystems to find vulnerabilities
which can be exploited and attacked before other takes advantage of it. When such a
vulnerability has been found and exploited in a way that weakens the cipher, the cipher
is considered as broken and no longer secure.

The two fields of cryptography and cryptanalysis is commonly generalized under the
term cryptology, which is the study of the mathematics, number theory and the crypto-
graphic algorithmns that underpin cryptography and cryptanalysis. In cryptology, there
is a constant race between those who tries to make secure codes and those who tries
to break them. Thus, the progress and findings in cryptology are distinguished by the
hidden work of the military, the secret work of black hats and the open academic com-
munity where scientific discoveries are shared in public.
There is an ongoing debate in the academic cryptology community about how much
work is done secretly, especially considering the work of the USA National Security
Agency (NSA) which is the largest employer of mathematical personal in the world and
who has designed many of the cryptographic standards used worldwide. There has also
recently been a growing number of cyber attacks against large corporations from ma-
licious hackers that we constantly hear about in the media, which means that we must
constantly develop new methods to secure our systems. It is therefore fair to say that
considerable work has been done in secret and that people who understand cryptogra-
phy and cyber security in general are needed to help maintain better system security
and prevent new cyber attacks from happening in the future.

Chapter 2

Symmetric cryptosystems

In this chapter we will cover the basics in symmetric cryptography and how encryption
and decryption works in a symmetric cryptographic system to give the reader a basic
understanding of the terms and concepts used later in this theses.

To encrypt a message means that we make the message unreadable or not understand-
able to those who see the message. This is done by manipulating the information in
such a way that if the information gets intercepted, it’s virtually worthless without the
code or key that would revert it to its original format. The whole purpose of encrypt-
ing data is to make the information unavailable for others who should not have access
to the information. Decrypting a message is the direct reverse process of encryption
and means that we make an incomprehensible message understandable. We refer to an
unencrypted human readable message as a plaintext and an encrypted message as a ci-
phertext.
Traditionally, cryptography has been used to manipulate text directly by scrambling
individual letters in a specific way according to a specific pattern which also relies
on a secret key. Doing these processes manually is both slow and often requires the
entire codebook to communicate securely. Today, encryption and decryption is done
automatically by computers in a few milliseconds and instead of using encryption and
decryption directly on text, it is used on bits and bytes that represent information. Many
cryptosystems rely entirely on software, while others are implemented directly in hard-
ware. Advanced Encryption Standard (AES), which is the most widely used symmetric
key cryptosystem, can be implemented in both. Since the focus of this thesis is about
cryptanalysis of AES, we need to be familiar with the underlying algorithms in cryp-
tography and cryptosystems in general. We begin by introducing the most fundamental
properties of symmetric key cryptosystems.

2.1 Symmetric ciphers

While asymmetric encryption is a relatively new form of cryptography, symmetric en-
cryption is the oldest cryptographic technique in the book. A symmetric cipher is a
specific symmetric key algorithm that uses the same secret key for encryption and de-
cryption, hence the name symmetric. Because of the use of only one single key, this
it is also generally faster then asymmetric encryption. A symmetric key cryptosystem

4 Symmetric cryptosystems

works in both directions as it converts a plaintext to a ciphertext and a ciphertext to
a plaintext by the help of a cryptographic algorithm and one single secret key that is
shared between those communicating through the cryptosystem. One can think of the
specific cipher used as a black box that takes a plaintext and a secret key as input and
mixes them together with a mathematical function to produce a ciphertext as output.
To get the corresponding plaintext from the ciphertext, the same key needs to be used
for decryption, as using another key than the original will destroy the information and
make it unreadable.

Figure 2.1: Symmetric key cryptosystem

Sending a message to another person can be done in many ways through various medi-
ums, such as an electrical wire or through the air via electromagnetic signals. The
medium we send the message in is referred to as a channel where we distinguish be-
tween secure channels (encrypted channels) and insecure channels (unencrypted chan-
nels). If we have complete control over those who have access to the channel, it is not
necessary to encrypt the information because we can be sure that no one else can access
it, but since there are countless ways to eavesdrop a channel, we should always assume
that the channel we are sending information through is unsecured. Especially when we
communicate over the Internet where anyone with a little technical knowledge can ac-
cess the information through various interception attacks, like for instance a so-called
Man In The Middle attack. We therefore secure an insecure channel by encrypting the
traffic we send through it, so that if such an attacker gets hold of the information, they
would just see the unreadable ciphertext instead.

In mathematical terms we can think of the cryptographic algrorithm used for encryption
and decryption as a function F that takes two input arguments and returns an output
where Fenc works in the encryption direction and Fdec works in the decryption direction.
Let P denote the plaintext, C the ciphertext and K the secret key. Then C and P is
expressed as follows: C = Fenc(P,K), P = Fdec(C,K).
We see that given P and K, we can calculate C directly by the function F which we also
calculate P directly with, given C and K. In a strong cipher, there should be impossible
to guess either P or C without K. Some cryptographic attacks which is called "known
plaintext/ciphertext" attacks is based on finding the secret key given the plaintext and
the ciphertext as input. A cipher is considered much stronger if it can resist such an
attack.

A cryptographic algorithm usually consists of many sub-functions with their own prop-
erties, and for it to be a symmetric algorithm it needs to be reversible. There are mainly
two categories when it comes to symmetric ciphers that use such algorithms: stream
ciphers and block ciphers. The main differences between these are that stream ciphers

2.1 Symmetric ciphers 5

encrypt each bit of a text individually, while block ciphers encrypts a whole block of
text at the same time. We will take a closer look at block ciphers because this is the
type of symmetric cipher that AES is.

2.1.1 Block ciphers
A block cipher is a symmetrical cipher that operates on groups of fixed lengths of bits.
To encrypt a text with a block cipher, we must first convert each letter of the text into
its binary equivalent, which is usually done by ASCII conversion where each character
is mapped to a specific byte value. The bytes are then fed into a block of fixed length
called a block state, which we will represent as a matrix [0,1]n. For a block size of
length n bits, there can be 2n different block states. The block sizes vary between the
different block ciphers, but the most commonly used block sizes are 64, 128, 192 and
256 bits. If the length of the text is greater than the length of the block, the rest of the
text moves to a new block and so on. The same process is also applied to the secret key.
A block cipher algorithm takes the block states of the plaintext and the key as input and
produces a new block state of the same size as the output, which is the ciphertext. The
encryption process is described as

Ek(P) = E(K,P) = [0,1]nK× [0,1]nP→ [0,1]nC

where E is the encryption function and [0,1]nK , [0,1]nP and [0,1]nC represent the block
states of the key, plaintext and ciphertext respectively. The decryption function D can
be expressed as the inverse of the encryption function

Dk(C) = E−1
k (C) = D(K,C) = [0,1]nK× [0,1]nC→ [0,1]nP.

The most common structure of a block cipher is to use an iterative algorithm where
several sub-functions are repeated one after another a limited number of rounds where
the output of one round is used as input in the next round. In a such iterated block
cipher, several round keys are generated from the main key by a key schedule algorithm
and mixed into each round function to destroy any traces of the original text where the
goal is to scramble the original text so much that it is unrecognizable and looks like
random gibberish. Each round R has an associated round key rk which is different
from the other round keys such that each iteration becomes unique based on the round
key. For n number of rounds, this process can be described as

Rn(x,K) = F(x,rk0)×F(x,rk1)× ...×F(x,rkn−1)

where x is any block state and F is just a representation of all the sub-functions included
in a one round. It usually becomes harder to find any patterns in the cipher the more
rounds that’s used as this mixes up the block state even more. However, this also
affects the efficiency of the cipher since this means that the algorithm takes more time
to complete. The time also depends on how much computation must be performed in
each round function. In today’s society when time is of the essence, we want to have an
encryption method that is instantaneously and at the same time as secure as possible,
and thus we must limit the number of rounds and make sure that the sub-functions
used in each round mixes up the block state enough to to provide a good safety margin.

6 Symmetric cryptosystems

Furthermore, a good block cipher should also be easy to analyze so that it can be shown
how many rounds that’s enough to be confident that the cipher is secure.

There are usually two common ways of constructing the round functions in an iterated
block cipher. One of them is to split the intermediate values of the block state in half
and perform a function and a key addition to one of the half’s, which is what a feistel
network does. The other design principle is called an SPN cipher, which we will take a
closer look at.

2.1.2 Substitution Permutation Network
An SP network (Substitution Permutation network) consists of a combination of substi-
tution layers and permutation layers that contain different properties. In a block cipher
that is designed by the SPN principle, each block state goes through the different layers
in the SP network in each round.

Figure 2.2: Block cipher encryption through a SPN network

The substitution layer is a non-linear transformation which usually consist of a map-
ping function called an S-box where all the bytes are mapped to another byte. The
transformation is performed on each individual byte regardless of the value of the other
bytes in the block state. A requirement for decryption is that the S-box uses a bijective

2.1 Symmetric ciphers 7

mapping system to prevent collisions, e.g. the letter A is mapped to the letter E and in
the reverse S-box, E is then mapped to A and so on. This adds a level of confusion to
the cipher and many ciphers are built only by this principle, like for instance the clas-
sical substitution cipher which only needs one lookup table to encrypt/decrypt a letter.
An SPN cipher can use many different S-boxes per round, but considering the imple-
mentation of the cipher, this also requires storing more lookup tables in memory.

The permutation layer is a linear mapping function applied to an array of bytes where
the byte positions are interchanged. An example of this is when we shuffle a deck
of cards to destroy the order. It becomes more difficult to restore the deck back to its
original state, the more we shuffle the cards. In cryptography this is known as diffusion,
which is one of the key elements in many ciphers, such as transposition cipher and
affine cipher to name a few. An array of n bytes has exactly (n!) ways to be permuted
and we call a specific permutation function a P-box.

The substitution and permutation layers in an SP network are often abbreviated as the
S and L layer (due to the linearity of the P-box). We denote α = (α0,α1, ...αn−1) as
the representation of a block state. The encryption and decryption of one round in a SL
system can then be described as

R(α) = S(L(α))

R−1(α) = S−1(L−1(α))

where R−1 is the decryption of one round an S−1 and L−1 are the inverse function of
S and L respectively. In an SPN cipher, a block states goes through multiple S-boxes
and P-boxes before its get totally encrypted. A simplified version of an SP network in
the encryption direction is depicted in Figure 2.2 where the block states of a key and a
plaintext is used to produce a ciphertext. Decryption is easily done by doing all the steps
in reverse, as an SP network is easy to reverse in itself when we know the algorithm.
Because of this, it would be useless without a secret key. Normally the different round
keys are added in between each round by a bitwise XOR of the intermediate state
and the round key to make each round different. Frequently, prewhitening is used in
addition to this where the original key rk0 is usually XOR-ed directly with the plaintext
before the round functions begin to make the cipher even more secure.

8 Symmetric cryptosystems

Chapter 3

Description of AES

AES (Advanced Encryption Standard) is the best known and most widely used secret
key cryptosystem in the world. It is a strong symmetric block cipher used in many real
world applications today to encrypt and decrypt data. Almost all secure connections on
the Internet use AES as its cryptosystem. The cipher is based on the Rijndael algorithm
developed by Vincent Rijmen and Joan Daemen in 1998, who submitted the algorithm
as a proposal to NIST (National Institute of Standards and Technology) during the AES
selection process that lasted from 1997 - 2000. The Rijndael algorithm was selected
as the new encryption standard in the year 2000 as a replacement for the earlier DES
(Data Encryption Standard) [28] cipher.
DES (developed by IBM) had been used as the encryption standard since the 1970s and
was considered secure at that time, but as computing power increased and new attacks
evolved, it was later considered broken. This was primarily because of the small key
length of only 56 bits which could easily be brutefored, but there was also shown that
the DES algorithm itself had some weaknesses. There was also some controversy
about how the cipher was chosen as the encryption standard since the National Se-
curity Agency (NSA) along with the National Bureau of Standards (NBS) had chosen
a slightly modified version of IBM’s version of DES with some classified element de-
sign, leading to speculation about that the NSA had planted a back door in the cipher.
In addition, DES was designed primarily for hardware and was relatively slow when
implemented in software.
When NIST requested a new encryption standard in 1997, there were certain require-
ments it had to meet. First of all, it had to be impossible to break the new cipher with
the technology of the time, but also in the future. To ensure this, it was decided that the
new cipher needed to be able to support implementation of 128, 192 and 256 bit keys.
Unlike the DES development, the AES selection was an open process with several con-
tributions where the security of each proposal was rigorously tested and checked for
any back doors so that people could feel confident using it. It also had to be able to
run fast in software so that it wouldn’t slow down any applications. The Rijndael algo-
rithm met all of this requirements and was verified by many cryptologists around the
world who tried to break the cipher, but none of them had any luck. Thus, AES was
selected as the new encryption standard. Today, AES is one of the most well studied
block ciphers and there is yet no known attacks who can break it.

10 Description of AES

3.1 The AES algorithm

The Rijndael cipher [10] itself is a flexible block cipher that can operate with different
key and block sizes which can be any multiple of 32 bits. AES, on the other hand, is
a variant of the Rinjndael algorithm with a fixed block size of 128 bits and a key size
of 128, 192, or 256 bits. Each block is divided into a 4 x 4 matrix called a state, where
each entry holds a value of 1 byte. When we encrypt a plain-text with a secret key using
AES, each ASCCI character of the plain-text and the key is first transformed to its byte
representation and stored in a block where the bytes are padded so that it is a multiple
of the block size. The bytes are arranged like this:

α0 α4 α8 α12

α1 α5 α9 α13

α2 α6 α10 α14

α3 α7 α11 α15

Table 3.1: Arrangement of bytes in the block state

The key is used to scramble the plain-text to a cipher-text that is unrecognizable from
the plain-text. Since AES is a Symmetric key cryptosystem, we use the same key
to decrypt the cipher-text back to its original plain-text, as AES is a reversible algo-
rithm.

The design principle of the algorithm is based on a Substitution - Permutation (SPN)
network which is a series of linked mathematical operations performed on a block state
that provides confusion and diffusion to the original input. In a SPN network, a state
goes trough multiple layers (or rounds) of substitution boxes (S-boxes) and permutation
boxes (P-boxes) to produce the output. The number of internal rounds a state goes
trough in AES depends on the key length that’s used. For a key length of 128 bits there
are 10 rounds, for 192 bits there are 12 rounds and for 256 bits there are 14 rounds.
When it comes to the security of cryptosystems, it is usually better the more rounds
you have, but this also effects the run time of the algorithm. The reason why AES can
have a relatively small number of rounds compared to other cryptosystems is because
all 128 bits of the block state gets totally encrypted independently of each other in each
iteration. So 10, 12 and 14 roundts is more than enough to feel confident that this cipher
is secure.

One round of AES consist of smaller, sub-algorithms which will be explained in more
details in the next sub-sections. These are called SubBytes, ShiftRows, MixColumns
and AddRoundKey. In the decryption direction we reverse these functions and they
are then called InvSubBytes, InvShiftRows and InvMixColumns. The AddRoundKey
function is the same in both directions, as this is just an XOR operation. Figure 2.1
shows the sequence of these functions in both the encryption and decryption direc-
tion for a key length of 128 bits. The sequence of the round functions is the same in
all the AES variants where the only difference is number of rounds and key length.
The MixColumn function is omitted in the last round for reasons discussed in section
2.1.4.

3.1 The AES algorithm 11

Figure 3.1: AES algorithm with 10 rounds

All the calculations operating on the block states are done within the realm of a partic-
ular finite field of order 28 called a Galois Field, denoted GF(28), where each byte is
treated as polynomials of order x7 with coefficients in GF(2). Within this finite field,
we can add, subtract, multiply and divide without any overflow as long as we follow
the rules of polynomial arithmetic. In cryptography, finite fields is of particular inter-
est when designing cryptosystems because it gives us a limited number of elements to
work with inside a closed system. GF(28) is used in AES because the total number of
combinations is exactly 1 byte, making it easier to implement in software. Out of the
28 = 256 possible polynomials, each element A ∈ GF(28) is represented as:

A(x) = a7x7 +a6x6 +a5x5 +a4x4 +a3x3 +a2x2 +a1x+a0

Addition and subtraction is simply an XOR operation in the underlying field GF(2),
which is done by adding all the bits individually and reduce the sum modulo 2, wheres
multiplication and division is a bit more tricky. Multiplication of two polynomials is
done by first multiplying the polynomials by regular polynomial multiplication, then
dividing the product by the irreducible polynomial

P(x) = x8 + x4 + x3 + x+1

12 Description of AES

and then taking the remainder after the polynomial division. This is done because
when we usually multiply polynomials, it is possible that the product might end up
with a higher power outside the finite field. To stay inside GF(28), we therefore have
to reduce the product modulo P(x), which is a part of the AES specification. This is
written as C(x)≡ A(x) ·B(x) mod P(x)

Division, on the other hand, is the same as inverting a polynomial A(x) in GF(28) and
is done by finding the multiplicative inverse A−1(x) of the polynomial A(x) that makes
the product A(x) ·A−1(x) congruent to 1 modulo P(x), which can be done using e.g. the
Extended Euclidean Algorithm. Multiplication and inversion in GF(28) is an important
part of the SubBytes and MixColumn layer.

3.1.1 AddRoundKey
AddRoundKey is the first function in the AES algorithm in the encryption direction
where we XOR the key with the plain-text. In cryptography, this step is often called
"pre whitening" (or key whitening) because it is usually applied before the first round
to increase the complexity of a brute force attack. AddRounKey is also applied in every
round function by XOR-ing the intermediate state with the corresponding round key for
each round. For a block state α = (α0,α1, ...,αn−1) and a key K = (K0,K1, ...,Kn−1),
the AddRoundKey function (denotes as AK) is described as:

AK(α,K) = (α0⊕K0,α0⊕K1, ...,αn−1⊕Kn−1)

where each byte in the block state are XOR-ed individually.

3.1.2 SubBytes
The first function in the internal rounds in the encryption direction is SubBytes. This is
a substitution function (denoted as SB) where each byte αi of the state gets individually
substituted with another byte βi according to a substitution box (S-box). In contrast to
other cryptosystems, the AES S-box is the same in every round. In the S-Box, all of
the 256 possible bytes are one-to-one mapped to different output bytes without any
collisions, i.e., different bytes cannot be transformed into the same byte. This is called
bijective mapping and allows us to reverse the substitution function, which is needed for
decryption. For two states α and β , it holds that SB(α) + SB(β) 6= SB(α +β), making
the substitution layer a highly nonlinear transformation and assures that changes in
individual state bits propagate quickly across the data path.

The structure of this one-to-one mapping is not random, but designed with an algebraic
structure that gives the S-box some unique mathematical properties that provides confu-
sion to the algorithm, making the cipher stronger against analytical attacks. It consists
of two steps: first an inversion in GF(28) followed by an affine mapping function. A
table of all 256 possible inversions in GF(28) is given in table 2.2.

We display the coefficients in their hexadecimal equivalent of the byte value. The only
byte mapped to itself is 0, which the inverse in GF(28) does not exist, but defined
this way in the AES S-box so that each input value has an output value. To invert

3.1 The AES algorithm 13

Table 3.2: Multiplicative inverse in GF(28)

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 00 01 8D F6 CB 52 7B D1 E8 F4 29 C0 B0 E1 E5 C7
1 74 B4 AA 4B 99 2B 60 5F 58 3F FD CC CC FF 40 EE
2 3A 6E 5A F1 55 4D A8 C9 C1 0A 98 15 30 44 A2 C2
3 2C 45 92 6C F3 39 66 42 F2 35 20 6F 77 BB 59 19
4 1D FE 37 67 2D 31 F5 69 A7 64 AB 13 54 25 E9 09
5 ED 5C 05 CA C4 24 87 BF 18 3E 22 F0 51 EC 61 17
6 16 5E AF D3 49 A6 36 43 F4 47 91 DF 33 93 21 3B
7 79 B7 97 85 10 B5 BA 3C B6 70 D0 06 A1 FA 81 82
8 83 7E 7F 80 96 73 BE 56 9B 9E 95 D9 F7 02 B9 A4
9 DE 6A 32 6D D8 8A 84 72 2A 14 9F 88 F9 DC 89 9A
A FB 7C 2E C3 8F B8 65 48 26 C8 12 4A CE E7 D2 62
B 0C E0 1F EF 11 75 78 71 A5 8E 76 3D BD BC 86 57
C 0B 28 2F A3 DA D4 E4 0F A9 27 53 04 1B FC AC E6
D 7A 07 AE 63 C5 DB E2 EA 94 8B C4 D5 9D F8 90 6B
E B1 0D D6 EB C6 0E CF AD 08 4E D7 E3 5D 50 1E B3
F 5B 23 38 34 68 46 03 8C DD 9C 7D A0 CD 1A 41 1C

e.g. the byte αi = 0x45, we read the table from the vertical index number 4 and then the
horizontal index number 5 and end up with the inverted value α

−1
i , which is 0x31.

After the inversion in GF(28), each inverted byte α
−1
i goes trough an affine mapping

process where each byte is multiplied by a constant 8 x 8 bit-matrix and then added
with a constant 8 bit vector like so:



b0
b1
b2
b3
b4
b5
b6
b7


≡



1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1
0 0 0 1 1 1 1 1


·



a−1
0

a−1
1

a−1
2

a−1
3

a−1
4

a−1
5

a−1
6

a−1
7


+



1
1
0
0
0
1
1
0


mod 2,

where the output value βi = (b7, ...,b0) is the new substituted value for αi. The constant
matrices in this affine step is carefully chosen to make sure that the structure in GF(28)
gets destroyed, preventing attacks that can exploit the inversion step. One can of course
compute this calculation for each byte in the state matrix, but in software it is much
faster to implement a pre-built lookup table where each possible substitution value
exist. For decryption, we reverse the GF(28) inversion and the affine mapping step to
make an inverse S-box, which also is usually stored as a lookup table in software.

14 Description of AES

Table 3.3: The AES S-box for encryption

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76
1 CA 82 c9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0
2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15
3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75
4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84
5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF
6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8
7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2
8 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73
9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB
A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79
B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08
C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A
D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E
E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF
F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16

Table 3.4: The AES S-box for decryption

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 52 09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 FB
1 7C E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB
2 54 7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA C3 4E
3 08 2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25
4 72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92
5 6C 70 48 50 FD ED B9 DA 5E 15 46 57 A7 8D 9D 84
6 90 D8 AB 00 8C BC D3 0A F7 E4 58 05 B8 B3 45 06
7 D0 2C 1E 8F CA 3F 0F 02 C1 AF BD 03 01 13 8A 6B
8 3A 91 11 41 4F 67 DC EA 97 F2 CF CE F0 B4 E6 73
9 96 AC 74 22 E7 AD 35 85 E2 F9 37 E8 1C 75 DF 6E
A 47 F1 1A 71 1D 29 C5 89 6F B7 62 0E AA 18 BE 1B
B FC 56 3E 4B C6 D2 79 20 9A DB C0 FE 78 CD 5A F4
C 1F DD A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5F
D 60 51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF
E A0 E0 3B 4D AE 2A F5 B0 C8 EB BB 3C 83 53 99 61
F 17 2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0C 7D

3.1 The AES algorithm 15

3.1.3 ShiftRows
ShiftRows is the second step in the internal rounds, and constitutes the diffusion layer
in AES along with the MixColumns transformation. Together, they make sure to mix
up the state matrix in a way that only after three rounds, every byte of the state matrix
depends on all bytes in the plaintext. In the ShiftRows function, bytes are shuffled
around to destroy the individual byte position pattern in the block state. It does this
by cyclically shifting the rows in the block state either some positions left or right
according to the row numbers. We can think of the block state as a 4 x 4 matrix where
the rows are indexed from 0 to 3. In the encryption direction, row 1 is shifted 1 position
to the left, row 2 is shifted 2 positions to the left and row 3 is shifted 3 positions to the
left, as depicted here:

α0,0 α0,1 α0,2 α0,3

α1,0 α1,1 α1,2 α1,3

α2,0 α2,1 α2,2 α2,3

α3,0 α3,1 α3,2 α3,3

−→

α0,0 α0,1 α0,2 α0,3

α1,1 α1,2 α1,3 α1,0

α2,2 α2,3 α2,0 α2,1

α3,3 α3,0 α3,1 α3,2

Table 3.5: ShiftRows in encryption direction

The first row always remains the same. This also applies to the decryption direction,
where we instead of shifting to the left, we shift to the right like this:

α0,0 α0,1 α0,2 α0,3

α1,0 α1,1 α1,2 α1,3

α2,0 α2,1 α2,2 α2,3

α3,0 α3,1 α3,2 α3,3

−→

α0,0 α0,1 α0,2 α0,3

α1,3 α1,0 α1,1 α1,2

α2,2 α2,3 α2,0 α2,1

α3,1 α3,2 α3,3 α3,0

Table 3.6: ShiftRows in decryption direction

By shifting the rows in this way, we make sure that each column depends on bytes
in other columns, which benefits the MixColumn layer. When it comes to differential
cryptanalysis, it is good to know that this is a linear transformation and that the equation
SR(α) + SR(β) = SR(α +β) holds. It is also worth mentioning that a state α becomes
itself by applying the ShiftRows function 4 times in a row, which also applies to the
InvShiftRows function

α = SR(SR(SR(SR(α)))) = SR−1(SR−1(SR−1(SR−1(α)))).

16 Description of AES

3.1.4 MixColumns
One of the most interesting sub-layers in AES is the MixColumns step. This is a linear
transformation that effects each of the columns in the state matrix individually and
provides a high level of diffusion. MixColumns is one of the reasons why AES has a
strong resistance against differential cryptanalysis, as this step destroys the differential
pattern among chosen plaintexts after only few rounds which prevents many types of
differential attacks.

The MixColumn function consists of multiplying each individual column in the state
matrix with a fixed 4 x 4 matrix over GF(28). Each input column αi,0, ...,αi,3 is treated
as individual vectors that does not effect the output for the other columns, as a matrix
multiplication between a 4 x 4 matrix and a 4 x 1 matrix results in a new 4 x 1 matrix.
The MixColumns matrix M is defined by the circular 4 x 4 matrix


α α ⊕ 1 1 1
1 α α ⊕ 1 1
1 1 α α ⊕ 1

α ⊕ 1 1 1 α


In general, we can treat each 4-byte column α(x) of the state as polynomials over
GF(28), multiply them with a fixed polynomial C(x) = 03 ·x3+01 ·x2+01 ·x+02 and
reduce it modulo L(x) = x4 +1 to get the new output column β (x).

β (x) =C(x) ·α(x) (mod x4 +1)

The fixed polynomial C(x) is coprime to the reducible polynomial L(x) in GF(28) and
is therefore invertible, which is needed for decryption. For encryption, this modular
multiplication can be written as the matrix multiplication:


β0
β1
β2
β3

=


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

 ·


α0
α1
α2
α3


Here, α0, ...,α3 is one input column and β0, ...,β3 is the output column. The numbers
01, 02 and 03 in the fixed 4 x 4 matrix, represented in hexadecimal, were chosen based
on the smallest possible values to get reliable diffusion with invertible properties and
such that implementation in software became easier. This is due to the fact that mul-
tiplying a byte by 01 is the same as multiplying by the identity matrix, which does
nothing. Multiplying by 02 is the same as a binary left shift by one place followed by a
modular reduction with P(x) = x8+x4+x3+x+1, which is the same as an XOR with
the binary digits 100011011 (0x11B in hexadecimal) after the left shift if the leftmost
bit of the original byte is 1. Multiplying by 03 can be done with a binary left shift by
one place followed by an XOR with the original byte and then reduce the sum mod-
ulo P(x). These are easy and fast computations for a computer, but implementation in
software can also easily be done trough lookup tables.

3.1 The AES algorithm 17

For decryption, we use the inverse MixColumn function (InvMixColumns), which is
similar to MixColumns, but instead of multiplying with C(x), we multiply by the poly-
nomial D(x) = 0B · x3 +0D · x2 +09 · x+0E. This polynomial is derived from

(03 · x3 +01 · x2 +01 · x+02) ·D(x)≡ 1 (mod x4 +1)

where D(x) is the polynomial that when multiplied by C(x) makes them congruent to
1 (mod L(x)). The InvMixColumns matrix M−1 is the matrix version of D(x) and the
whole InvMixColumns step for a column α = (α0,α1,α2,α3) is represented by the
following matrix multiplication:


β0
β1
β2
β3

=


0E 0B 0D 09
09 0E 0B 0D
0D 09 0E 0B
0B 0D 09 0E

 ·


α0
α1
α2
α3


Similar to the ShiftRows function, a state α(x) becomes itself after 4 concatenating
MixColumns transformations which also yields for 4 concatenating InvMixColumns
transformations. When combining ShiftRows and MixColumns, then due to the linear-
ity of the functions, they must be applied 8 times in a row on a state for it to become
itself again, which we can write as

α = (MC(SR(α)))8 = (MC−1(SR−1(α)))8

and when combined this way in an SP network forms a strong diffusion layer. Although
the MixColumn function operates on seperate columns like a linear layer, it can be
thought of as a non-linear diffusion layer because of the way it mixes each column. By
not including the MixColumn layer in the final round, we save some computation time
and it will not affect the overall security of the cipher.

3.1.5 Key Schedule
The key schedule is a recursive algorithm for expanding the main key into several
independent round-keys that are used between every round function. The key schedule
produces 10, 12 or 14 individual round keys according to the key length n. To make
sure each round gets its own associated round-key, each round-key is produced by
inputs of its previous key and a fixed array of size 4×n called Rcon. The Rcon matrix
for AES-128 is shown in Table 3.7

Table 3.7: The Rcon matrix used for key expansion in AES-128

01 02 04 08 10 20 40 80 1b 36

00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00

where each 32-bit word (column) of Rcon is named Rcon0,Rcon1, ...,Rcon9. We de-
scribe the key schedule for AES-128, which is the same as for the other versions ex-
cept the number of round-keys. The expanded key can be viewed as a 4× 44 matrix

18 Description of AES

in AES-128 where each 32-bit word W is numbered from 0 to 43. This is the same
as ordering 11 block states in succession where we have 1 initial block state which
is the main key and the 10 others are the different round keys. We name each word
(column) in the intermediate block state as W0,W1,W2,W3. Let W i = (W i

0,W
i
1,W

i
2,W

i
3)

denote an intermediate block state of the i-th round-key where each word W i
i is col-

umn number 0, 1, 2 and 3 in the block state. Similarly, we define a new block state
W i+1 = (W i+1

0 ,W i+1
1 ,W i+1

2 ,W i+1
3) which will be the next round-key. To produce W i+1

from W i, we do the following operations:

We call W i
3 = (W i

3,0,W
i
3,1,W

i
3,2,W

i
3,3) the RotWord. The first action we perform on the

RotWord is a cyclic shift of the byte positions in the word where the bytes are shifted
left once and W i

3,0 is moved to the end of the word so that the new RotWord becomes
W i′

3 = (W3,1,W3,2,W3,3,W3,0). Then we perform a substitution of all the bytes in W i′
3

using the AES s-box so that S(W i′
3,0) = (s(W i′

3,0),s(W
i′
3,1),s(W

i′
3,2),s(W

i′
3,3)) where s is the

representation of 1 s-box. Now, to form the first word of the (i+1)-th round-key, we do
the following XOR operation: W (i+1)

0 =W i
0⊕W i′

3 ⊕Rconi. To form the second word in
the (i+1)-th round-key, we calculate: W (i+1)

1 =W (i+1)
0 ⊕W i′

1 . To form the third word
in the (i+1)-th round-key, we calculate: W (i+1)

2 =W (i+1)
1 ⊕W i′

2 and to form the fourth
word in the (i+ 1)-th round-key, we calculate: W (i+1)

3 = W (i+1)
2 ⊕W i′

3 . This process
repeats for the next round-keys where we use the last word in the current round-key as
the RotWord.

Chapter 4

Attacks on AES

Ever since the introduction of the Rijndael algorithm and the AES selection, there have
been many attempts to break the cipher. The different attack methods are often given
their own names and have different performances. Some attacks methods are based
on information gained from the implementation of the cipher rather than weaknesses
in the cipher itself, such as Side Channel Attacks [2], Cross VM Attacks [20], Timing
Attacks [1], Differential Power Analysis [13], Reply Attacks and Key Reinstallation
Attacks [15]. Such attacks often requires technical knowledge of the internal operating
system, network, software or hardware implementation of the cipher where vulnera-
bilities in the systems itself like power consumption, electromagnetic leaks, software
bugs or transmission weaknesses are exploited. Although some of these attacks have
been successfully demonstrated, it does not weaken the cipher itself, but rather shows
that there will always be vulnerabilities in systems when the systems are not properly
designed with the security in mind. In many scenarios when systems are breached, us-
ing a strong cryptographic algorithm can be critical to the security. The focus of this
theses is cryptanalysis of the AES algorithm itself, where the system implementation
of the cipher is of no significance.

4.1 Cryptanalysis of symmetric ciphers

Cryptanalysis is the study of analyzing ciphers and cryptosystems in general with the
aim of understanding how they work and finding and improving techniques to break
them. The act of breaking a crypto algorithm in a cipher is sometimes referred to
as cracking, which stands out from the concept of hacking that can refer to any type
of system manipulation. Although cracking or weakening a cipher is sometimes done
with malicious intentions by some, the research results within the open academic crypt-
analysis community are used by cryptographers to improve and strengthen a cipher for
the benefit of everyone. This also includes replacing flawed algorithms that have been
found to be vulnerable to any type of cryptanalysis attack before others takes advan-
tage of them. Since AES is one of the most widely used ciphers today, it is also one
of the most studied ciphers by cryptanalysts, but even though it has now been over
20 years since AES was put into use, no obvious weaknesses have been found that
weaken the cipher. Some theoretical attacks on the full versions of AES 128, AES 192

20 Attacks on AES

and AES 256 has been proposed, but the computational complexity of these attacks is
quite impractical. Because of this, AES is considered safe to use and is even used to
encrypt top-secret documents, classified material and most of the Internet communica-
tions.

At least there has been some progress on round reduced versions of AES, which is just
the AES algorithm, but with fewer rounds than normal. While this does not pose a direct
threat to the full version of the cipher (yet), it does raise some concerns as the number of
rounds begins to approach the number of rounds that the full version of AES uses. Time
has shown that as technology improves, so does attacks on ciphers, and where some
attack methods were assumed to apply only to a fixed number of rounds, it has recently
been shown that they can be extended to cover even more rounds. Sometimes these
attack methods reach limitations where they cannot be extended to multiple rounds
simply because they are based on weaknesses that only appeal to properties found in
a few rounds, and sometimes new techniques emerge that have not yet reached their
full potential because they haven’t been studied enough. It is therefore important to
continue the research on such techniques that may be crucial for further analysis of
AES. We will cover some of these recent techniques in the next chapters.

When analyzing a cipher, we look at certain properties in different scenarios to see how
the cipher responds when manipulating it in a given way and try to see if we can get
some information or find a specific pattern we can use to either predict the outcome
in a certain setting or extract the key, plaintext or ciphertext without the knowledge of
these. There are mainly two categories of attacks related to cryptanalysis of a cipher:
distinguishing attacks and key recovery attacks.

4.1.1 Distinguishing attack
A distinguishing attack is an attack form where the goal is to distinguish a cipher from
random data. Given a black box with an unknown block cipher, a distinguishing at-
tack on the cipher can tell us which kind of cipher the black box uses. The goal of a
strong cipher is to confuse a diffuse anyone who is trying to get some meaningful in-
formation from the encrypted data, so it is important that the cipher does not contain
any obvious patterns that can be analyzed and understood. We can distinguish a cipher
from pure randomness by analyzing the relation between different inputs or outputs in
the cipher, and if the relation is predictable, we know that the cipher has some struc-
tural, non-random properties that can be exploited. In a real world scenario when the
key is unknown to the attacker, this does not compromise the confidentiality of cipher,
but as many key recovery attacks are developed from a distinguishing attack, it is im-
potent that a cipher is not distinguishable. The scenarios which these attacks applies
to is where we are given some information, either a plaintext, ciphertext or a key or
some of those, and wonder which encryption method that’s used. For example, if we
got ciphertext and do not know which encryption method is used on it, we can run a
distinguishing attack on the ciphertext for a given cipher, and the result of the attack
will give us an answer as to whether it is the particular cipher or not. A distinguish-
ing attack is often the first attack method performed on a ciphertext where we do not
know the encryption method used, as it becomes pointless to try to make sense out of

4.2 How AES is designed to prevent attacks 21

the ciphertext when we do not know which cipher we are analyzing. When a cipher is
identified by a distinguishing attack, it will be easier to perform further analysis on the
ciphertext and even perform a key recovery attack if the cipher is vulnerable to that. If
we can distinguish a cipher from random data faster than a brute force search, the ci-
pher is considered broken. For this reason, modern ciphers are designed to be immune
to such attacks, and considering AES, there have yet been a attack that can distinguish
AES from random data.

4.1.2 Key recovery attack
A key recovery attack is an attack on a cipher where the goal is to recover the secret key
that’s used in the ciphertext. That way, we can read every encrypted message that uses
the same key, so if a cipher is vulnerable the a key recovery attack, it is considered not
safe to use. Most key recovery attacks on a ciphers require known values of plaintext
and ciphertext to be performed, but some key recovery attacks can also be performed by
only accessing the ciphertext if we know the encryption method used and that the cipher
is weak. Most ciphers are immune to such attacks, but some symmetric ciphers have
a weakness for key recovery attacks where both the ciphertext and its corresponding
plaintext are known, especially when we are allowed to generate chosen plaintexts
to encrypt and chosen ciphertexts to decrypt with the secret key. There is always a
relation between a plaintext and its corresponding ciphertext that are dependent on the
encryption key, and a usual method for key recovery attacks is to use a candidate key
to encrypt or decrypt the information we have and compare the result to the original
information. We can then search for differences that meets a certain requirement and
reveal more and more information from the original key. This method becomes even
more practical in the adaptively chosen plaintext / ciphertext ACP/ACC scenario where
we can generate custom plaintexts or ciphertexts based on information gained in the
attack process. Some of the key recovery attacks on round reduced versions of AES
that we present in chapter 6 are build upon this principle. There are also many other
ways to perform a key recovery attack and we list some of the most common attacks
on round reduced version of AES in section 4.4.

4.2 How AES is designed to prevent attacks

There are various ways to make a cipher robust for attacks. In a scenario where we only
know one ciphertext, one of the ways to recover the plaintext is to perform a frequency
analysis on the ciphertext to see which character repeats the most. If the frequency
of the characters in the plaintext is reflected in the ciphertext directly, such as in the
classical substitution cipher, this is a poor design and makes the cipher vulnerable to a
frequency analysis attack. The famous Enigma [21] machine solved this by always sub-
stituting a character to a different character so that the frequency pattern was destroyed.
Another way to approach the plaintext from the ciphertext is just by brute-forcing all
the key combinations and look at the decryption with each key to see if the plaintext is
recognizable. To prevent this, a cipher should use a key space that is larger than what a
computer can brute-force in a given time. If it only takes one year to brute-force all the
possible key combinations for a computer today, we can be sure that a computer can do

22 Attacks on AES

this way faster in a couple of years since the computing power always increases by the
years. To have a good security margin, ciphers today use key spaces that takes longer
to brute-force than our lifetimes, where time complexity is often measured in years. In
AES, key lengths of 128, 192 and 256 bits are used, which makes the total key com-
binations of each key length 2128, 2192 and 2256 respectively. For one of the fastest
supercomputer today, Sunway TaihuLight [14] which can perform at 93 PetaFLOPS,
it would take 1 billion billion years to crack AES-128 using a brute force attack, and
considering AES-256, this would take 2.7337893 ·1055 years.

So we can say with high confidence that AES is secure against pure brute-force at-
tacks when we only know the ciphertext. But there are many other ways to attack a
symmetric cipher than just brute-force, and the structure of a cipher is often based on
the knowledge of these attacks so that the cipher can prevent such attacks. The most
typical attack methods on symmetric ciphers is known-plaintext attacks (assuming we
already know the ciphertext), chosen-plaintext attacks (where a ciphertexts from a cho-
sen plaintext is requested), differential cryptanalysis (where differences in two or more
plaintexts / ciphertexts are compared) and linear cryptanalysis (which is based on find-
ing affine approximations to the action of the cipher). To make sure that AES was
secure against such attacks, careful construction of the round functions for each round
was designed, making sure that the structure of the intermediate block state gets more
and more randomized.

The randomization in a cipher can be divided into two categories: confusion and diffu-
sion. Confusion is the property of hiding the relationship between plaintext and cipher-
text by making each byte in the ciphertext dependent on the entire key, so that if only
one byte in the key was flipped, this change would affect most bytes in the encrypted
text. In a SPN-network, the non-linear proved a high level of confusion in the cipher.
The property of diffusion in a SPN-network is mostly accomplished by the byte per-
mutation in the linear layers and have an effect to statistically change half of the bytes
in the ciphertext. Since AES uses both linear and non-linear layers in every round that
provides a high level of confusion and diffusion and also includes an XOR operation
with the associated round-key, the level of randomness in the cipher increases for every
round.

The MixColumn function in AES is one of the most interesting layers that provides an
extra confusion effect by being a non-linear diffusion layer, which makes AES stand
out among other ciphers. In a theoretically scenario where Mixcolumns is used in the
last round, an attacker could swap the order of the last AddRoundKey function and the
MixColumn function, undoing the inverse MixColumn step for free which theoretically
can leave the attacker with some information from the last round-key. Although this
can be shown to not add or remove any security to the cipher itself, excluding the Mix-
Column function in the final round prevents any structural pattern (if any) throughout
the round functions to be seen in the ciphertext.

Since the number of rounds only increase the randomness in an iterative block cipher,
one would think that the more rounds we have, the more secure the cipher is. Although
this is true, it also affect applications that uses the encrypting by performing more
slowly. Because of that, the number of rounds in AES is 10, 12 and 14, which is
actually not many rounds compared to other block ciphers, but since AES provides a

4.3 Comparison of round reduced attacks on AES 23

high level of confusion and diffusion in each round function, there is no need to increase
the number of rounds.

4.3 Comparison of round reduced attacks on AES

In this section we will give a brief overview of the existing common attacks on round
reduced AES and their performance. All the attacks works in the chosen plaintexts/-
ciphertexts scenario (CP/CC) and some are based on the adaptively chosen plaintext/-
ciphertexts (ACP/ACC) scenario where we can request custom plaintexts and cipher-
texts.

4.3.1 Distinguishing attacks on round reduced AES
We begin by reviewing some common distinguishers for 3-6 rounds. We adopt the com-
mon calculation of the complexity of for the distinguishers where the data complexity is
measured in a minimum number of chosen plaintexts/ciphertexts CP/CC or adaptively
chosen plaintexts/ciphertexts ACP/ACC and the time complexity is measured in equiv-
alent number of AES encryptions (E), memory accesses (M) and/or XOR operations
(XOR) where 20M ≈1 round of AES.

Table 4.1: Comparison of Secret-Key Distinguishers for AES

Property Rounds Data Cost Ref.
Exchange Attack 3 3 ACC 2 XOR [23]

Trun. Diff 3 24.3 CP 211.5 XOR [7; 18]
Integral 3 28 CP 28 XOR [9]

Exchange Attack 4 4 ACC 2 XOR [23]
Imp Diff 4 216.25 CP 222.3 M [5]

Mixture Diff. 4 217 CP 222.3 M [16]
Integral 4 232 CP 232 XOR [9]

Multiple-of-8 4 233 CP 240 M [19]

Exchange Attack 5 225.5 ACC 224.8 XOR Sec. 6.3
Imp Diff 5 298.2 CP 2107 M [5]

Struct. Diff 5 233 CP 236.6 M [19]
Integral 5 2128 CP 2128 XOR [24]

Multiple-of-8 5 232 CP 235.6 M [19]
Variance Diff. 5 234 CP 237.6 M [17]
Boomerang 5 239 CP/ACC 239 M [6]

Exchange Attack 6 2122.83 ACC 2121.8 XOR [23].
Integral 6 6 ·232 CP 272 M [22].

Boomerang 6 271 CP/ACC 271 M [6]

24 Attacks on AES

There are many more distinguishers for round reduced AES that are not included in
table 4.1, but we list some common ones to give an insight in the complexity of the
distinguishers for the different rounds where we see that the average complexity of the
distinguishers increases for every round. A computational complexity of 232 is doable
on a laptop in some minutes, but when the complexity gets round 240, it can take days
to finish the attack as the time increases exponentially. We will cover the Exchange
distinguishing attack in section 6.3.

4.3.2 Key recovery attacks on round reduced AES
We now show some common attacks for reduced AES that have a fairly low complex-
ity that can be implemented and tested on a laptop. Although attacks on more than 5
rounds exists, they usually have a complexity that is too high to work in practice. We
cover the Integral Exchange Attacks for 1-3 round in section 6.2 and the Exchange At-
tack on 5 rounds in section 6.4.

Table 4.2: Comparison of Key recovery attacks for round reduced AES

Attack Rounds Data Computation Memory Ref.
Exchange 3 1CP/CC+16ACP 16 ·28 220(+227) Sec. 6.2

Square 4 29 CP 26 small [27].

Exchange 5 211.3 ACC 231 small Sec. 6.4
Boomerang 5 239 ACC 239 233 [6].

Imp. Polytopic 5 15 CP 270 241 [26]
MitM 5 8 CP 264 256 [12].

Imp. Polytopic 5 15 CP 270 241 [26]
Partial Sum 5 28 CP 238 small [25]

Integral 5 211 CP 245.7 small [11]
Imp. Diff 5 231 CP 233(+238) 238 [16]
Mix. Diff 5 233.6 CP 233.3 234 [16]
Zero Diff. 5 229.19CP+232ACC 231 small [3]

Lastly we mention some of the attacks that can in theory break 6 - 10 rounds of AES.
By breaking a cipher, we mean that the attack is faster than an exhaustive brute-force
attack, which is 2128 for AES-128 with 10 rounds.

The first attack that had a lower computational complexity than a brute-force attack on
10 rounds was the Biclique [8] attack which had a complexity of 2126.18, improving
the complexity of a brute-force attack by a factor of four. There is also a Meet In The
Middle attack that can break 9 out of 10 rounds. The Biclique attack can be thought of
as an enhanced version of the Meet In The Middle attack. The best Square attack can
break up to 8 rounds and the best Impossible Differential attack can break 7 rounds,
which also the Boomerang attack can.

Chapter 5

Truncated differentials for AES

5.1 Introduction of truncated differential cryptanalysis

In cryptography, truncated differential cryptanalysis is a sub-genre within differential
cryptanalysis against block ciphers that considers differences that are only partially de-
termined between two block states while ordinary differential cryptanalysis in general
is about analyzing the full difference between two states. This type of differential crypt-
analysis can be used to makes predictions of one or some of the words or bytes in the
block state instead of the full block.

In this chapter to combine truncated differential cryptanalysis with exchange functions
of different subspaces in a block state. The exchange technique was first introduced by
Eli Biham and Adi Shamir against the block cipher Skipjack (developed by the U.S.
National Security Agency (NSA) in 1993) when they discovered an attack against 16
of the 32 rounds using exchange techniques between two block state which became
known as The Yoyo Game [4]. The concept behind the Yoyo Game is as follows:
given a plaintext pair and its corresponding ciphertext pair after encryption through a
black box where the ciphertext pair has a specific property, how can we generate other
plaintext pairs that makes the new ciphertexts have the same property? As there is
always some structure in a block cipher, it is possible to exchange certain elements
from the plaintext that makes different properties in the ciphertext in different round
where there sometimes is some nested zero difference patterns. The specific differences
through each round is also referred to as subspace trials, which we will cover more in
detail.

This attack method is similar to the Boomerand attack [6], but with some certain dif-
ferences. A main part of this thesis is to study and implement the so-called Yoyo
trick (also known as adaptive exchange attack, mixture attack or exchange invariant
generalized truncated differences) on 5 round AES to see if there is room for improve-
ment. The attack is based on adaptively making new pairs of plaintexts and ciphertexts
(called exchange pairs) that preserve a common property inherited from the original
pair. The sum (or difference) in an exchange pair can typically be partitioned into sub-
sets of other pairs in a set that satisfy the same property when they are closed under
exchange operations within a certain subspace. A typical scenario is that a exchange

26 Truncated differentials for AES

pair shares a common zero difference in a subspace with other exchange pair after n
rounds of ecryption that can be used to predict differences between other similar pairs
in the same subspace. We will demonstrate how certain zero differences between ex-
change pairs and original pairs appeal directly to 4 rounds of AES that can be used to
attack 5 rounds based on properties of the MixColumn function.

This chapter focuses mainly on introducing the concepts and cryptographic tools used
in the attacks presented in chapter 6. We start by describing how the exchange functions
work and its different properties.

5.2 Adaptive exchange functions

Let α be the representation of the block state consisting of n = 4 words: α0,α1,α2,α3
where each word αi refers to a specific subspace in the state matrix over Fn

q where
q = 2k. An exchange function is simply a word-swapping operation between two block
states that leaves us with a new pair of block states.

Definition of the exchange function:
For a vector v ∈ Fn

2 and a pair of states (α,β) ∈ Fn
q we define a new pair of states (α ′,

β ′) ∈ Fn
q by interchanging words between α and β according to the binary coefficients

of v.
Let α ′ = ρv(α,β) and β ′ = ρv(β ,α) where

ρv(α,β)i =

{
αi if vi = 1
βi if vi = 0

ρv(β ,α)i =

{
βi if vi = 1
αi if vi = 0

which also can be written as: ρv(α,β)i = αivi⊕βi(vi⊕1), ρv(β ,α)i = βivi⊕αi(vi⊕
1). The new pair (α ′,β ′) = (ρv(α,β),(ρv(β ,α)) is then called a Yoyo pair.

Example: Let v = (0110), α = (α0,α1,α2,α3), β = (β0,β1,β2,β3). Then

α ′ = ρ0110(α,β) = (β0,α1,α2,β3)
β ′ = ρ0110(β ,α) = (α0,β1,β2,α3)

If we let v̄ be the complement of v, which from the example would be v̄ =
(1001), it is easy to see that ρ v̄(α,β) = ρv(β ,α) and also (ρv(α,β),ρv(β ,α)) =
(ρ v̄(α,β),ρ v̄(β ,α)), implying that v̄ and v results in the same exchange pair. There
are in total 2n swap combinations, but only 2n−1 swaps results in unique pairs including
the original pair. For AES, where the block size is 128 bits, n = 4 and thus the number
of possible unique exchange pairs is 24−1 = 8. Table 4.1 lists all the possible exchange
pairs for v ∈ F4

2.

If two states α and β are different in only 1 out of 4 words, we can not make a new
exchange pair that differs from α and β since swapping the only different word among
them only makes α = β and β = α , which still is the same pair (α,β) = (β ,α). This
also applies when there is no difference between α and β . When the difference is 2,

5.2 Adaptive exchange functions 27

Table 5.1: All possible exchange pairs for v ∈ F4
2

v α ′ = ρv(α,β) β ′ = ρv(β ,α) v̄ α ′ = ρ v̄(α,β) β ′ = ρ v̄(β ,α)

0000 (β0,β1,β2,β3) (α0,α1,α2,α3) 1111 (α0,α1,α2,α3) (β0,β1,β2,β3)
0001 (β0,β0,β0,α3) (α0,α1,α2,β3) 1110 (α0,α1,α2,β3) (β0,β1,β2,α3)
0010 (β0,β1,α2,β3) (α0,α1,β2,α3) 1101 (α0,α1,β2,α3) (β0,β1,α2,β3)
0011 (β0,β1,α2,α3) (α0,α1,β2,β3) 1100 (α0,α1,β2,β3) (β0,β1,α2,α3)
0100 (β0,α1,β2,β3) (α0,β1,α2,α3) 1011 (α0,β1,α2,α3) (β0,α1,β2,β3)
0101 (β0,α1,β2,α3) (α0,β1,α2,β3) 1010 (α0,β1,α2,β3) (β0,α1,β2,α3)
0110 (β0,α1,α2,β3) (α0,β1,β2,α3) 1001 (α0,β1,β2,α3) (β0,α1,α2,β3)
0111 (β0,α1,α2,α3) (α0,β1,β2,β3) 1000 (α0,β1,β2,β3) (β0,α1,α2,α3)

then only 2 new exchange pairs can be generated that differs from the original pair
(α,β). With a difference in 3 out of 4 words, we can generate up to 6 new unique
pairs and when all the words are different between α and β , in total 8 new unique
pairs can be generated. Therefore, to produce a new unique exchange pair between two
random states, we need them to be distinct in at least two words, which happens with
probability (1−2−94).

5.2.1 Properties of the exchange function
The exchange function has some interesting properties that allow us to use this function
as a tool in cryptanalysis for AES. To better understand these properties, we need to
be familiar with some basic terminologies and notations. We begin by defining The
Hemming weight.

Definition of the Hemming weight:
For a vector x = (x0,x1, ...,xn−1), we define the Hemming weight ωt(x) as the number
of non-zero components of x

Example:
Let x = (x0,x1,x2,x3) = (5B, 9A, 07, 00). Then the Hemming weight ωt(x) = 3.

If every byte of the vector is zero, then the Hemming weight of that vector is also zero.
We let ωtc(α) denote the number of non-zero vectors in a state α . A zero column is
when every byte in a column is zero, thus ωtc is also called the column weight. In a
similar way, we define the diagonal weight ωtd(α) as the number of non-zero diagonals
in a state α , where diagonal 0 to 3 is defined as α j,(i+ j) mod 4 where i is the diagonal
number and j increases from 0 to 3 for every byte position. In differential cryptanalysis
we are often interested in a certain difference between states, or more precisely the zero
difference. If two columns in different states are the same, they sum up to zero. This
brigs us to the definition of the zero difference pattern of a state.

Definition of the zero difference pattern:
The zero difference pattern is simply a binary vector that indicate which words in a
state that is zero. For a state α = (α0,α1,α2,α3) ∈ Fn

q. We define the zero difference
pattern

28 Truncated differentials for AES

ν(α) = (z0,z1,z2,z3) ∈ Fn
2 where zi

{
1 if αi = 0
0 otherwise

Definition of the activity pattern:
The activity pattern is the compliment of the zero difference pattern. While the zero
difference pattern indicates a 1 when αi is zero, the activity pattern indicates a 0 when
αi is zero. For a state α = (α0,α1,α2,α3) ∈ Fn

q. We define the activity pattern

ν̄(α) = (z0,z1,z2,z3) ∈ Fn
2 where zi

{
0 if αi = 0
1 otherwise

Example: Let α = (α0,α1,0,α3). Then the zero difference pattern for α is ν(α) =
(0010). The activity pattern is then ν̄(α) = (1101).

With these definitions in mind, we will explore some interesting properties of the ex-
change function. A simple one to observe is that if we have a pair of states (α,β)
with a certain Hemming weight ωt(x) in their difference α ⊕ β , if we then make
a new exchange pair (α ′,β ′), we see that the Hemming weight in the difference
α ′⊕ β ′ is the same as ωt(x). We can keep on and make more and more exchange
pairs and observe that ωt(α ⊕β) = ωt(α ′⊕β ′) always holds because for all v ∈ Fn

2
we have that ωt(ρv(α,β)⊕ ρv(β ,α)) = ωt(ρv(β ,α)⊕ ρv(α,β)). It also holds that
ν(α ⊕β) = ν(α ′⊕β ′). In other words, the zero difference pattern between two dif-
ferent states is preserved after applying the exchange function on them. This follows
directly from that α ′⊕β ′ = α⊕β , which can be proven by

ρv(α,β)i⊕ρv(β ,α)i =

{
αi⊕βi if vi = 1
βi⊕αi if vi = 0.

Lets look at what happens with a exchange pair if we apply other functions to α and β .
Let S be a nonlinear permutation s-box over Fn

q formed by concatenating n smaller s-
boxes over Fq so that S(α) = (s(α0),s(α1),s(α2),s(α3)). Then for two different states
α 6= β it follows from the non-linearity of S that S(α)⊕S(β) 6= S(α⊕β) since αi⊕βi =
0 if and only if S(αi)⊕ S(βi) = 0, but we see that ν(α ⊕β) = ν(S(α)⊕ S(β)), thus
the zero difference pattern in the difference is preserved trough S. This also means that
ν(S(α)⊕S(β)) = ν(S(ρv(α,β))⊕S(ρ(β ,α))) since the zero difference is preserved
trough the exchange function as well. In fact, the exchange function commutes directly
with the s-box layer by operating independently on individual words in the block state
so that S(ρv(α,β)) = ρv(S(α),S(β)) and S(ρv(β ,α)) = ρv(S(β),S(α)), leading to
S(α)⊕S(β) = S(α ′)⊕S(β ′), which can easily be proven by

s(ρv(α,β)i)⊕ s(ρv(β ,α)i) =

{
s(αi)⊕ s(βi) if vi = 1
s(βi)⊕ s(αi) if vi = 0.

We now let L be a linear transformation L(α) = L(α0,α1,α2,α3) on the block cipher
acting on n words over Fn

q. Due to the linearity of L we have that L(α)⊕ L(β) =
L(α⊕β) always holds. Since α⊕β = ρv(α,β)⊕ρv(β ,α)=α ′⊕β ′ it follows directly
that also L(α)⊕L(β) =α ′⊕β ′ and thus L(α)⊕L(β) = L(α ′)⊕L(β ′). We see that this
relation is similar to the S functions relation S(α)⊕S(β)= S(α ′)⊕S(β ′). Lets see what

5.3 Simplification of the AES rounds 29

happens if we try to combine the S function and the L function together. Since S(α)⊕
s(β) = S(ρv(α,β))⊕ S(ρv(β ,α)) holds, we clearly have that L(S(α))⊕ L(S(β)) =
L(S(ρv(α,β)))⊕L(S(ρv(β ,α))) also holds since applying any linear transformation
after a linear relation does not effect the linearity.

L(S(ρv(α,β)i))⊕L(S(ρv(β ,α)i)) =

{
L(S(αi))⊕L(S(βi)) if vi = 1
L(S(βi))⊕L(S(αi)) if vi = 0

However, S(L(α))⊕ S(L(β)) = S(L(ρv(α,β)))⊕ S(L(ρv(β ,α))) does not generally
hold because applying a non-linear function after L will destroy the linearity, but
since the zero difference pattern between two pairs does not change when we ap-
ply S or L on them ν(S(α) ⊕ S(β)) = ν(S(ρv(α,β)) ⊕ S(ρv(β ,α))), ν(L(α) ⊕
L(β)) = ν(L(ρv(α,β)) ⊕ L(ρv(β ,α))), we have that ν(S(L(α)) ⊕ ν(S(L(β))) =
ν(S(L(ρv(α,β)))⊕S(L(ρv(β ,α)))) holds. Same goes for ν(L(S(α))⊕ν(L(S(β))) =
ν(L(S(ρv(α,β)))⊕L(S(ρv(β ,α)))) which directly implies that ν(S(L(S(α)))⊕ν(S(L(S(β))))=
ν(S(L(S(ρv(α,β))))⊕S(L(S(ρv(β ,α))))) also holds. Adding different functions one
after another to a block state like this is called concatenation. For the sake of no-
tation we often put a ” ◦ ” between the functions where the rightmost function is
the first one to be applied on the block state. The relation above is then written as
ν(S◦L◦S(α)⊕S◦L◦S(β)) = ν(S◦L◦S(α ′)⊕S◦L◦S(β ′)). As we will see in many
of the exchange attacks, this relation is the primary property of AES we take advantage
when we generate adaptive chosen plaintext and ciphertext.

5.3 Simplification of the AES rounds

The L and S notation for the linear and nonlinear layers are used to describe the different
rounds in SPN networks and also in AES where S= SB◦MC◦SB and L= SR◦MC◦SR.
One round of AES is written as AK ◦MC◦SR◦SB, but the AddRoundKey AK is usually
omitted in terms of differential cryptanalysis, as applying this function to two different
states does not change the difference between the states.

Two rounds of AES can therefore be expressed as R2′ = (MC◦SR◦SB)2. Although the
order of MC ◦SR◦SB is given in the definition of AES, we can actually mix the order
of these in a certain way without causing any change. Since the SubBytes function
works individually on each byte and the ShiftRows function only changes the position
of the bytes in the state, it doesn’t matter what order we do it in. We can therefore
paraphrase two rounds as R2′ = MC ◦ SR ◦ SB ◦MC ◦ SB ◦ SR by switching positions
between SB and SR in the first round. We can now substitute SB◦MC ◦SB with only S
so we get R2′ = MC ◦SR◦S ◦SR. Because the first ShiftRows function does not affect
the difference between two states we can now also omit this function which leaves us
with R2 = MC ◦SR◦S.

While three rounds of AES is initially R3′ = (MC◦SR◦SB)3, it can be simplified down
to a shorter expression by removing the linear SR layer before the first s-box and the

30 Truncated differentials for AES

linear layer (MC ◦SR) after the last s-box layer to get the following:

R3′ = (MC ◦SR◦SB)◦ (MC ◦SR◦SB)◦ (MC ◦SR◦SB)

R3′ = MC ◦SR◦ (SB◦MC ◦SR)◦ (SB◦MC ◦SB)◦SR

R3′ = MC ◦SR◦Q◦S◦SR

R3 = Q◦S

where Q = SB◦MC◦SR. In a similar way, the three rounds in reverse can be expressed
as R−3 = S−1 ◦Q−1 where Q−1 = SR−1 ◦MC−1 ◦SB−1.

To simplify four rounds, we use the same reduction by removing the leading and trailing
linear layers before the first and after the last s-box to end up with R4 = S ◦L ◦ S. In
SPN networks like AES, we often simplify the rounds by compositions of linear and
non-linear layers and this SLS-form applies directly to even number of rounds, which
makes six rounds equal to R6 = S ◦L◦S ◦L◦S and so on. For odd numbers of rounds,
we use the same SLS-system and usually replace the first linear layer with a round
Q′= SR◦MC◦SB, which makes five rounds equal to R5 = S◦L◦S◦Q′ and so on.

5.4 Subspace trails

In differential cryptanalysis, there is an interest in differences within a set of block
states that share a common property. Many differential attacks on block ciphers is
based on bruteforcing all possible combinations of a particular vector space V in a
block state, often called a subspace. One can think of the whole block state as one
big space over F4×4

q where we can divide the block state into several subspaces. The
definition of a subspace is as follows:

Definition of subspaces
For a binary vector z ∈ F4

2 of weight t let Vz denote the subspace of q4·(4−t) states
x = (x0,x1,x2,x3) formed by setting xi to all possible values of F4

q if zi = 0 or zero
otherwise.

Example:
Let t = 1, z = (1,0,0,0) and Vz = V(1,0,0,0) so that q4·(4−t) = 284·(4−3)

= 2564. Then
subspace V1,0,0,0 represents all 232 different states x formed by setting all of the bytes in
the first column x0,0,x0,1,x0,2,x0,3 to all possible 232 values and x1,x2,x3 to zero.

Vector spaces in columns is also referred to as column spaces Ci where the col-
umn space Ci =< x0,i,x1,i,x2,i,x3,i > | ∀ x ∈ Fq represents all possible combinations
in column i. Based on the column space, we define the diagonal space Di, the
inverse-diagonal space IDi and the mixed space Mi as Di = SR−1(Ci), IDi = SR(Ci),
Mi = MC(IDi) where C0, D0 and ID0 is represented as

C0 = D0 = ID0 =

5.4 Subspace trails 31

and M0 on the other hand, can be represented as the symbolic matrix:

M0 =

2 · x1 x4 x3 3 · x2

x1 x4 3 · x3 2 · x2

x1 3 · x4 2 · x3 x2

3 · x1 2 · x1 x3 x2

.

Each of these subspaces have a dimension of 4 · |I| where |I| ⊆ {0,1,2,3} and higher
dimensions are made by adding them together. For a state α = (α0,α1,α2,α3) with
activity pattern (1,0,0,0), there can be generated a set P of 232 other states in subspace
C0 =V1,0,0,0 which have the exact same zero difference as α . However, for a block state
α where each byte in the state has a random non-zero value, there cannot be generated a
set P in subspace V1,0,0,0 with the same zero difference as α , but XOR-ing α with each
state x in subspace V1,0,0,0 defines a new subspace (α ⊕ x) |x ∈ V1,0,0,0 where (α ⊕ x)
is not in V1,0,0,0, but in its own particular subspace. The new subspace V ⊕α is then
called a coset of the subspace V . This means that any state defines its own coset of a
subspace according to another subspace.

We can also define a new subspace by applying any function F to the coset (V ⊕α). If
V⊕α spans the same subspace as F(V⊕α), then (V⊕α) is called an invariant coset of
V for the function F . For instance, if we let F be the MixColumn function, then for any
state α = (α0,α1,α2,α3) where all the bytes in α0 are active and the rest is initialized
to zero, we have that e.g. C0⊕α and M0⊕α are both invariant cosets of the subspace
C0 for the MixColumn function since applying the MixColumn function on a column
space only change the coset. If we rather apply the SubBytes function on a subspace,
then, since SubBytes is a bijective mapping function that operates on individual bytes,
it maps a coset of column and diagonal spaces to another coset of column and diagonal
spaces. The ShiftRows function is used to change a coset of a diagonal space to a coset
of a column space and from a coset of column space to a coset of an inverse-diagonal
space.

Invariant subspace cryptanalysis is of particular interest when it comes to iterative key-
alternating block ciphers like AES as adding a secret key K to a coset V ⊕α spans
a key-dependent subspace. For two different block states α and α ′ that meets the
condition F(V ⊕α) = V ⊕α ′ and a key K ∈ V ⊕ (α ⊕α ′), it follows that we get an
iterative invariant subspace F(V ⊕α)⊕K = V ⊕α dependent on the secret key. A
set of subspaces (V1,V2, ...,Vr+1) that meets this condition is referred to as subspace
trail.

Definition of subspace trail
Let (V1,V2, ...,Vr+1) denote a set of r + 1 subspaces with dimension dim(Vi) ≤
dim(Vi+1). For each i = 1, ...,r and for each αi ∈ V⊥i there exist αi+1 ∈ V⊥i+1 such
that

FK(Vi⊕αi)⊆Vi+1⊕αi+1,

32 Truncated differentials for AES

then (V1,V2, ...,Vr+1)) is subspace trail of length r for the function FK . If all the pre-
vious relations hold with equality, the trail is called a constant-dimensional subspace
trail.

If we divide the block state into several subsaces of unlike dimension, we can think of
subspace trails as cosets of a plaintext subspaces that encrypts to proper subspaces over
several rounds where the most typical scenario is that plaintexts within low dimention
subspaces encrypts to higher dimension subspaces for each round. For example,

Figure 5.1: Subspace trails from D0 throughout the encryption process

a plaintext within the diagonal space Di maps to a column space Ci after encryption of
one round and a plaintext within the column space Ci maps to a mixed space Mi after
encryption of one round. The trails are clearly seen by the active bytes in the intermedi-
ate ciphertext when encrypting a plaintext which is only active in one subspace. These
properties combined with the exchange function becomes quite useful in differential
cryptanalysis in the adaptive chosen plaintext/ciphertext setting as the exchange func-
tion preserves the differences in subspace trails between a set of plaintexts. Although
the clear pattern seems to disappear after three rounds, we can use the exchange func-
tion on exchange invariant sets to combine two or more trails together to form longer
trails that preserve a predictable structure.

In chapter 6 we will cover some round reduced techniques which takes advantage of
particular subspace trails and exploits properties of the MixColumn function.

5.5 Different exchanges 33

5.5 Different exchanges

In some of the attacks on AES that we will introduce, we use a simplified swapping
technique called SimpleSwap, which simply swaps the first word that differs between
two states and returns a new state. The following algorithm explains the SimpleSwap
function:

Algorithm 1 Swaps the first different word between two states
Input: Two states α and β where α 6= β

Output: A new state α ′

function SimpleSwap(α,β)

1: α ′← β

2: for i from 0 to 3 do
3: if (αi 6= βi) then
4: α ′i ← αi
5: return α ′

6: end if
7: end for

end function

To make an exchange pair with the SimpleSwap function, wee need to apply it twice,
once with input (α,β) to get α ′ and one with input (β ,α) to get β ′. There are also
other variants of the Yoyo function with other swapping techniques that we will take a
closer look at. So far we have only exchanged columns between block states to form a
new pair called a yoyo pair. In theory we can do any swap operation between states to
form a new pair, e.g swapping individual bytes between the states, or swapping rows
between them, but there are certain exchange functions with some unique properties
that we will use in our cryptanalysis. To better explain these exchange functions it is
useful to define the column exchange difference first.

Definition of the column exchange difference
For a vector v∈F4

2 and a pair of states (α,β) we define the column exchange difference
∆

α,β
v ∈ F4x4

2 where the i-th column is defined by

(∆
α,β
v)i = (αi⊕βi)vi

where αi and βi is the i-th columns of α and β .

Example: Let v = (1010) and

α =

11 11 11 11
11 11 11 11
11 11 11 11
11 11 11 11

, β =

22 22 22 22
22 22 22 22
22 22 22 22
22 22 22 22

, then (∆
α,β
1010)=

33 00 33 00
33 00 33 00
33 00 33 00
33 00 33 00

The following formulas is used to calculate the column exchange difference ∆
α,β
v :

34 Truncated differentials for AES

(∆
α,β
v)0 =(α⊕β)v0, (∆

α,β
v)1 =(α⊕β)v1, (∆

α,β
v)2 =(α⊕β)v2, (∆

α,β
v)3 =(α⊕β)v3.

Notice that ∆
α,β
v = ∆

β ,α
v as the column exchange difference is just the sum between α

and β where binary vector v is 1 and zero otherwise. If we let ωtc(x) be the number of
non-zero columns in x, there are 2ωtc(α⊕β) possible column exchange differences for a
pair of states. From the column exchange difference we define three different exchange
operations: column exchange, diagonal exchange and mixed exchange.

Definition of the column exchange
For a vector v ∈ F4

2 and a pair of states (α,β) we define the column exchange

ρv
c (α,β) = α⊕∆

α,β
v , ρv

c (β ,α) = β ⊕∆
α,β
v .

Notation wise, this is the most straight forward exchange as this can also be written
as ρv

c (α,β)i = αivi⊕βi(vi⊕ 1), ρv
c (β ,α)i = βivi⊕αi(vi⊕ 1). The column exchange

is simply an exchange function where we form a new state by swapping individual
columns among two states according to the value of the binary vector v. Example: Let
v = (1000) and

α =

11 11 11 11
11 11 11 11
11 11 11 11
11 11 11 11

, β =

22 22 22 22
22 22 22 22
22 22 22 22
22 22 22 22

, then (ρ1000
c (α,β)=

22 11 11 11
22 11 11 11
22 11 11 11
22 11 11 11

Definition of the diagonal exchange
For a vector v ∈ F4

2 and a pair of states (α,β) we define the column exchange

ρv
d(α,β) = α⊕SR−1(∆

SR(α),SR(β)
v), ρv

d(β ,α) = β ⊕SR−1(∆
SR(α),SR(β)
v).

Instead of swapping columns, the diagonal exchange is performed by applying the
inverse ShiftRows function on the column exchange difference between SR(α) and
SR(β) and then adding one of the states. We can also write the diagonal exchange in
terms of the column exchange like so: ρv

d(α,β) = SR−1(pv
c(SR(α),SR(β))). This is

equivalent to swapping individual diagonals among two states according to the value
of the binary vector v. Example: Let v = (1000) and

α =

11 11 11 11
11 11 11 11
11 11 11 11
11 11 11 11

, β =

22 22 22 22
22 22 22 22
22 22 22 22
22 22 22 22

, then (ρ1000
d (α,β)=

22 11 11 11
11 22 11 11
11 11 22 11
11 11 11 22

Definition of the mixed exchange
For a vector v ∈ F4

2 and a pair of states (α,β) we define the column exchange

ρv
m(α,β) = α⊕L(∆L−1(α)),L−1(β

v)), ρv
m(β ,α) = β ⊕L(∆L−1(α)),L−1(β

v))

5.5 Different exchanges 35

where L = MC ◦SR and L−1 = SR−1 ◦MC−1

We can also write ρv
m(α,β) = α ⊕MC ◦ SR(∆SR−1◦MC−1(α)),SR−1◦MC−1(β

v)) in terms of
the column exchange: pv

m(α,β) = MC ◦ SR(ρv
c (SR−1 ◦MC−1(α),SR−1 ◦MC−1(β)).

This exchange operation is not as straight forward as the previous two as we can not
just swap individual columns or diagonals among the states because the MixColumns
function will change the bytes in both block states. Instead of forming a new state
which looks like a direct combinations of two other states, the mixed exchange looks a
little more randomized.
Example: Let v = (1000) and

α =

11 11 11 11
11 11 11 11
11 11 11 11
11 11 11 11

, β =

22 22 22 22
22 22 22 22
22 22 22 22
22 22 22 22

, then (ρ1000
m (α,β)=

77 22 22 44
22 22 44 77
22 44 77 22
44 77 22 22

Common for all the exchange operations is that the difference between α and β does
not change when we apply any of the exchange functions them, i.g α⊕β

= ρ
v
c (α,β)⊕ρ

v
c (β ,α)

= ρ
v
d(α,β)⊕ρ

v
c (β ,α)

= ρ
v
m(α,β)⊕ρ

v
c (β ,α)

The relation between these exchange operations is that a diagonal exchange between
two states after 1 encryption round equals a column exchange after 2 rounds which
equals a mixed exchange after 3 rounds. We will use this principle in the attacks on
AES in chapter 6

36 Truncated differentials for AES

Chapter 6

Cryptanalysis of AES

In this chapter, we will cover in detail some cryptanalysis attacks on round reduced
AES and how they work in practice. The attacks in the section 6.1 and 6.2 are self-
made attacks based on own analysis and section 6.3 and 6.4 covers attacks that are
newly discovered. The techniques used in the attacks are based on the material covered
in Chapter 5. All the attacks presented in this chapter are practical attacks that are easy
to implement and have low data and computational complexity.

6.1 A key recovery on 1 round

In this section we will cover a self-made attack based on own cryptanalysis. We start
by introducing a key recovery attack on the first round of AES that only needs 1 non-
adaptive plaintext / ciphertext pair.

A general round in AES is a composition AK ◦MC ◦ SR ◦ SB where the round key
addition is the only function that makes the round unique. We can therefore merge
MC ◦SR◦SB together to one big function F since these are known functions. Let K be
any key value and α an intermediate state in the block cipher where β is the result of
the encryption of α through one round function so that β = F(α)⊕K. From this rela-
tion, it becomes easy to extract the key value for known values of α and β , as the key
can be calculated directly: K = F(α)⊕β . A cipher that is designed only by this princi-
ple is clearly vulnerable to known plaintext/cipher attacks, but it would still be difficult
to extract the key if we only knew the plaintext or the ciphertext, since we would then
have two unknowns in the equation. So if we introduce a second key in the cipher so
that β = F(α)⊕K1⊕K2 where K1 and K2 are different, it becomes much harder to ex-
tract the key values from known values of α and β . We know that in an equation with
two unknowns that are independent of each other, we need at least two equations to find
the right value for the two. If not, there would be as many unique solutions to the equa-
tion as the whole key space. In AES, an XOR operation between the plaintext and the
key is added to the cipher as prewhitening before the round functions starts, thus a more
accurate expression of the first round is AK ◦MC ◦SR◦SB◦AK. Because we have two
unknown keys here, we can apply the same logic and say that we need at least two pairs
of known plaintext and ciphertext in order to find the right key combination. While this
is not entirely accurate since the value of the two keys depends on each other for the

38 Cryptanalysis of AES

key schedule and we can brute-force the solution, it is at least much easier to find the
key with a pair of plaintexts and ciphertext that we can observe the differences between.

The attack method is now as follows: generate two random plaintexts (p0, p1) and
request the encryption of them (c0,c1) through the first AES round with an unknown
key so that

c0 = enc1(p0,K) = rk1⊕MC ◦SR◦SB(p0⊕ rk0)))

c1 = enc1(p1,K) = rk1⊕MC ◦SR◦SB(p1⊕ rk0))).

When we solve the equation set with respect to the first round key we get the follow-
ing:

rk0 = p0⊕SB−1 ◦SR−1 ◦MC−1(c0⊕ rk1)))

rk0 = p1⊕SB−1 ◦SR−1 ◦MC−1(c1⊕ rk1)))

and when the right round key rk1 is plotted in, the relation

p0⊕SB−1 ◦SR−1 ◦MC−1(c0⊕ rk1))) = p1⊕SB−1 ◦SR−1 ◦MC−1(c1⊕ rk1)))

must hold. Let the left hand side of the equation be α and the right hand side be β .
If we now plug in a candidate key cand for rk1 which is only correct in one column,
it then follows directly from the equation that SR(α ⊕ β) must be zero in the exact
same column. However, for a set of 232 possible values, there might exist many false
positives that fulfills this requirement. The number of false positives in the column
space is ranging from 24 to 211 dependent on the values in the other columns in the
round key. Thus, we have to store the value in a list when we get a hit. We can now
begin to attack each column individually by iterating through all possible values for the
candidate key and storing all the hits in separate lists for the respective columns. This
process has a computational complexity of 4 ·232 = 234. After this process, we combine
the hits in the list to form a whole candidate key for rk1 for which we use the reverse
key schedule algorithm on and test an encryption with one of the plaintext to see if it
match its corresponding ciphertext. The computational complexity of this combination
process is at least 216 considering the lowest amount of 16 hits for each column which
makes the total complexity of the attack 234. The attack also works for attacking rk0

directly instead of rk1 so we don’t need to perform the reverse key schedule for each
key guess where the relation we then need to balance is

c0⊕MC ◦SR◦SB(p0⊕ rk0) = c1⊕MC ◦SR◦SB(p1⊕ rk0)

However, since the reverse key schedule only need to be performed 216 times in the
second phase of the attack, this does not affect the total computational complexity of
234 for the attack which is dominated by guessing the right sub-keys in every column.
Although this complexity is a bit high for a key recovery in just one round, the data
complexity outweighs this by only 2 CP/CC. The algorithm for this attack is described
in Algorithm 2.

6.2 Exchange attack for 1-3 rounds 39

Algorithm 2 Key recovery attack on One AES round
Input: A pair of plaintexts (p0, p1) and its corresponding ciphertexts (c0,c1) after 1 round
Output: The secret key k

1: Make an empty set S= {S0,S1,S2,S3}
2: for i from 0 to 3 do
3: for k0 from 0 to 28−1 do
4: for k1 from 0 to 28−1 do
5: for k2 from 0 to 28−1 do
6: for k3 from 0 to 28−1 do
7: candi = (k0,k1,k2,k3)
8: α ← p0⊕SB−1 ◦SR−1◦MC−1(c0⊕ candi)
9: β ← p0⊕SB−1 ◦SR−1◦MC−1(c1⊕ candi)

10: x← SR(α⊕β)
11: if xi = (0,0,0,0) then
12: Si← candi
13: end if
14: end for
15: end for
16: end for
17: end for
18: for all combinations of hits in S0,S1,S2,S3 do
19: candRK0← S0, candRK1← S1, candRK2← S2, candRK3← S3
20: k← reverseKeySchedule(candRK)
21: if enc1(p0,k) = c0 then
22: Return k
23: end if
24: end for
25: end for

6.2 Exchange attack for 1-3 rounds

Here we will cover a key recovery attack that works in the adaptively chosen plaintext
/ ciphertext setting and have the same data complexity and computational complexity
for 1, 2 and 3 rounds using the fact that a diagonal space maps to a column space and a
column space to a mixed space. Let’s start by analyzing some simple facts. We choose
two plaintext p0 and p1 that are only different in the first byte

p0 =

∗ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

p1 =

∗ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

and encrypt them 1 round using a random key to form c0 and c1. We observe that the
difference between c0 and c1 only lies in the first column space after the encryption of

40 Cryptanalysis of AES

1 round. If we then do a column exchange between c0
0 and c1

0 to form

c′0 = ρ
v
c (p0, p1),c′1 = ρ

v
c (p1, p0)

where v = (1,0,0,0) and decrypt c′0 and c′1 with the same key to form p′0 and p′1, we
will actually end up with the same pair of plaintext as we started with where p0 = p′1

and p1 = p′10. This is because the column exchange does not create any unique pairs
when we swap the only column that differ between two state and it simply makes c′0 =
c1 and c′1 = c0. So if we rather do a diagonal exchange between the ciphertexts

c′0 = ρ
v
d(p0, p1),c′1 = ρ

v
d(p1, p0),

we get a unique ciphertext pair where (c′0,c′1) 6= (c0,c1), but the zero difference re-
mains the same: ν(c′0⊕ c′1) = ν(c0⊕ c1). We observe that the difference in c0⊕ c1 =
c′0⊕ c′1 is the same whether we do a column exchange or a diagonal exchange

ρ
v
c (c

0,c1)⊕ρ
v
c (c

1,c0) = ρ
v
d(c

0,c1)⊕ρ
v
d(c

1,c0).

This is due to the fact that a diagonal exchange between two states that differs only
in the first column only affects the first byte between them which makes c

′0
0,0 = c1

0,0

and c
′1
0,0 = c0

0,0 and the rest equal. If we now decrypt the ciphertext pair to p′0 and p′1,
we end up with a plaintext pair where both of the plaintexts are active just in the first
diagonal and will only differ in the first byte, the same byte position that p0 and p1

differs. This is true for any key we use and the value of p′0⊕ p′1 depends only on the
first byte in the key in this scenario. This means that for a given pair (p0, p1) that differs
only in the first byte and its corresponding plaintext pair (p′0, p′1) after encryption of
one round, diagonal exchange and decryption, we only need 28 attempts to guess the
first byte of the correct key. We can then initialize a candidate key cand that is zero in
all bytes and do the following operation

α = dec1
cand(ρ

v
d(enc1

cand(p0),enc1(p1)))

β = dec1
cand(ρ

v
d(enc1

cand(p1),enc1(p0)))

for all i ∈ F28 where cand0,0 = i. Let ∆ = (α ⊕ β)⊕ (p′0⊕ p′1), then if ∆ = 0, we
have the correct key guess. In fact, there is a direct linear correlation between each
individual byte in (p0⊕ p1), ∆ and the correct key value if (p0⊕ p1) only differs in one
byte, meaning that if (p0⊕ p1) differs only in byte position x, then ∆ has one active
byte in the same position x if the key guess is wrong which becomes zero if the key
guess for that byte position is correct. In other words, if (p0⊕ p1)i, j = w where w is
any random value and zero in the rest and candi, j = ki, j where k is the original key,
then ∆i, j = 0. There are of course some false positives where ∆i, j is zero even if the
candidate key is not correct in candi, j, which can happen 2, 4 or 6 times for all 28

values, but the most common scenario is that we have 2 byte values where ∆i, j = 0.
We show the relation between (p′0⊕ p′1) and (α⊕β) in Figure 6.1 using the original
key to get (p′0⊕ p′1) and the candidate key to get (α⊕β) when we have guessed the
correct value of candi, j.

To find the whole key, we choose a plaintext p0 that is zero in all bytes that we will
use as our initial p0 value and request its corresponding ciphertext c0 after encryption

6.2 Exchange attack for 1-3 rounds 41

of 1 round with an unknown key. Then we prepare a set S of i = 16 plaintexts (since
we have 16 bytes in the block state) where plaintext i is only active in the i-th byte and
zero in the rest. We use plaintext i in S as our temporary p1 value. Then for all p1

in S we request their corresponding plaintexts (p′0, p′1) using our initial p0 value. We
now have 16 (p′0⊕ p′1) values that has an active byte only in the same position i as our
plaintesxt in S. We can then brute-force each individual byte of the key by letting our
candidate key iterate through each byte value in the i-th position and compare (p′0, p′1)i
to (α⊕β)i which will be our ∆i value. When ∆i becomes zero, we store the value of the
candidate key in a separate list for that byte position. We need 16 lists in total to hold all
the possible candidate key values and the computational complexity of this process is
only 16 ·28 = 212. When we have iterated through all the bytes in the candidate key, we
end up with 16 list that holds 2, 4 or 6 values where one of them is the correct key value.
We then simply combine the hits in the lists to make a whole key guess and use it on our
initial p0 value to see if it encrypts to its corresponding c0 value. The computational
complexity of this combination process is the amount of hits in each list multiplied
with each other, which makes the lowest theoretical computational complexity at 216 if
we only have 2 hits in each list and the highest theoretical computational complexity
at 241.36 if we have 6 hits in each list, but since it is a much higher probability that
each list holds only 2 values, the typical complexity of this is around 220 to 224. We
emphasize that this depends on the value of the only active byte we choose in the 16
plaintexts in S and the computational complexity of the whole attack will be dominated
by this. This key recovery attack on 1 round only needs 1 initial chosen plaintext and its

Figure 6.1: The ∆ relation using the original key and a candidate key that are correct in 1 byte

corresponding ciphertext + 16 chosen chosen ciphertexts from our 16 chosen plaintexts
in the set S + their 16 corresponding adaptively chosen plaintext when they are diagonal
exchanged with c0 which make the total data complexity of 1 CP/CC + 32 ACP/ACC,

42 Cryptanalysis of AES

but since we only need information from the plaintexts in the attack, we actually only
need 1 CP/CC + 16 ACP.

We will now demonstrate how to perform this attack with only 2 ACP/ACC. We start
by choosing two random plaintexts (p0, p1) that can be any random value and requests
their corresponding ciphertexts (c0,c1) after 1 round with an unknown key k, perform
a diagonal exchange on (c0,c1) to make (c′0,c′1) and ask for the decryption of (c′0,c′1)
with the same key to get (p′0, p′1). We can now do the same procedure using a candidate
key instead of k to end up with two plaintexts α and β . Since (p0, p1) consist of random
values where all the bytes are active, the linear correlation between each individual byte
in (p′0⊕ p′1), ∆ and k has now disappeared, but instead of being a direct correlation
between each individual byte, there is now a correlation between the diagonal spaces
in (p′0⊕ p′1), ∆ and k, meaning that if we only change the bytes in diagonal space Di
of the candidate key, that change will only affect the same diagonal space in ∆. It then
follows that if we do a correct key guess for a whole diagonal space Di in the candidate
key, then Di will be zero in ∆ as well. We can therefore brute-force each diagonal space
Di in the candidate key separately to check if the corresponding diagonal space in ∆

is zero, making the computational complexity of this attack equal to the attack on one
round in section 6.1.1.

This attack method can easily be extended to cover two and three rounds by using
column exchange and mixed exchange respectively instead of a diagonal exchange.
This is due to the fact that a diagonal exchange after one rounds maps to a column
exchange after two rounds, which maps to a mixed exchange after three rounds. Using
this relation, we can make the same plaintext pair (p′0, p′0) from an initial plaintext pair
(p0, p0) by performing different exchange functions in different rounds. For a plaintext
pair (p0, p0), we have the following relation:

(p′0, p′1)1 = (R−1(ρv
d(R

1(p0),R1(p1))),R−1(ρv
d(R

1(p1),R1(p0)))

(p′0, p′1)2 = (R−2(ρv
c (R

2(p0),R2(p1))),R−2(ρv
c (R

2(p1),R2(p0)))

(p′0, p′1)3 = (R−3(ρv
m(R

3(p0),R3(p1))),R−3(ρv
m(R

3(p1),R3(p0)))

where (p′0, p′1) = (p′0, p′1)1 = (p′0, p′1)2 = (p′0, p′1)3. We can then do the same attack
method on two and three rounds of AES that have the exact same data and compu-
tational complexity as for one round. The attack method applied on three rounds is
described in Algorithm 3.

There seems to be a pattern where for a given plaintext pair (p0, p1), we can produce the
exact same pair (p′0, p′1) by encrypting (p0, p1) n number of rounds to form (c0,c1),
do an exchange function F to form (c′0,c′1) and then decrypt (c′0,c′1), but for rounds
higher than 3, there seems to be no independent exchange function that will leave us
with the exact same (p′0, p′1) pair. This is because a column exchange and a diagonal
exchange operates directly on the words between two states and the mixed exchange de-
crypts two states through SR−1 ◦MC−1 and then performs a column exchange directly
between the two intermediate states. In this process, the mixed exchange actually skips
the AddRoundKey function before MC−1 since it has no effect on the difference be-
tween the two states. We end up with the same (p′0, p′1) pair when we perform an
exchange function on two states after n rounds that exchange values in the n-th degree

6.2 Exchange attack for 1-3 rounds 43

subspace and after three rounds, these subspaces becomes key dependent. This means
that to make the same (p′0, p′1) pair from an initial pair (p0, p1) after encryption of
n > 3 rounds, the exchange function also needs to be key dependent. For example, to
do an exchange function on two states (α,β) after four rounds of encryption where we
end up with the same (p′0, p′1) pair, we can do the following exchange method

ρ
v
4(α,β) = ρ

v
m(SB−1 ◦SR−1 ◦MC−1(α⊕ rk4),SB−1 ◦SR−1 ◦MC−1(β ⊕ rk4))

where rk4 is the fourth round key. Similarly, we can apply this method to infinitely
rounds so that

ρ
v
n(α,β) = ρ

v
m(R

−(n−3)(α),R−(n−3)(β))

where we need n−3 round keys to make the same (p′0, p′1) pair and when n = 10, we
remove the first MC−1 function in the exchange function. So in order to extend this
attack to more than three rounds, it requires that we know some of the correct round
keys, which we do not have. But if we theoretically could request the encryption of
any pair (p0, p1) through n rounds and ask for the decryption of the key dependent
exchange function between the two ciphertexts to get (p′0, p′1), we could break any
number of rounds only by this information. In this way, this method becomes a only
chosen plaitext attack where we choose a pair (p0, p1) and ask for its corresponding
pair (p′0, p′1), but since this method does not appeal to any real-world scenarios, it is
merely a theoretical attack and cannot be considered a real key recovery attack since it
depends on known round keys.

Also an interesting property to note is by encrypting a pair (p0, p1) n rounds, perform
a n degree exchange function between the corresponding ciphertexts and decrypt them
with the same key to get (p′0, p′1), if we then repeat the same process with (p0, p′0),
we end up with a loop where (p0, p′0) = (p1, p′1). This means that every plaintext p0

have a corresponding plaintext p′0 for a given key that ends up being the same pair
after the encryption, swapping and decryption process. The reason for this is because
the two plaintexts have a direct collision of 296 bits after encryption of 1 round and
we only exchange the 32-bit word that differs. The knowledge of such a plaintext pair
for a given key is enough to break the key with a complexity of 4 · 232, and given 16
such pairs, the complexity becomes only 16 ·28, but to do this for more than 3 rounds,
the exchange equivalent swapping functions becomes dependent on round-keys which
we do not have access to, and thus the attack only becomes theoretical. We attach an
executable GUI program in this submission that can generate such pairs by performing
an n-degree key-dependent exchange function on their corresponding ciphertexts.

44 Cryptanalysis of AES

Algorithm 3 3 round key recovery attack
Input: 1 CP/CC pair, 16 plaintexts with zero difference in 1 byte and their corresponding
encryption/decryption when mixed exchanged with the ciphertext from the initial plaintext
Output: Secret key

S←16 lists
1: for i from 0 to 15 do
2: p0 ←randomState(), p1 ←p0, p1

i = randomByte()
3: c0 ←enck(p0,3), c1 ←enck(p1,3)
4: c′0 ←ρv

m(c
0,c1), c′1 ←ρv

m(c
1,c0),

5: p0 ←deck(c′0,3), p1 ←enck(c′1,3)
6: x←(p0 ⊕ p1)
7: cand = allZeroes()
8: for j from 0 to 255 do
9: candi ← j

10: c0 ←enccand(p0,3), c1 ←enccand(p1,3)
11: c′0 ←ρv

m(c
0,c1), c′1 ←ρv

m(c
1,c0),

12: p0 ←deccand(c′0,3), p1 ←enccand(c′1,3)
13: y←(p0 ⊕ p1)
14: if (xi = yi) then
15: Si← j
16: end if
17: end for
18: end for
19: for all combinations in S do
20: recoveredKey←Si, j
21: testC←encrecoveredKey(p0,3)
22: if (c0 = testC) then
23: return recoveredKey
24: end if
25: end for

6.3 Distinguishing attack for 5 rounds 45

6.3 Distinguishing attack for 5 rounds

In this section we will review a distinguisher for 5 rounds that was presented in (Yoyo
Tricks with AES) [23] with a record breaking complexity of approximately 225,8 adap-
tive chosen ciphertexts. The visual representation of the thought process behind distin-
guisher is depicted in Figure 6.2. The distinguisher works by exploiting a fixed property

Figure 6.2: 5 rounds distinguishing attack pattern

of the MixColumn function. The main idea here is that if the difference between two
plaintexts after the first round is zero in t out of 4 words, we apply the exvhange func-
tion and return a new plaintext pairs that are zero in exactly the same word after one
round.

We begin by generating a plaintext pair (p0, p1) that has a zero difference pattern with
Hamming weight ωt(p0⊕ p1) = 3 where only the first column is active. Then we apply
the SubBytes transformation on p0 and p1 and see that the Hamming weight of the zero
difference pattern is preserved, that is ωt(ν(p0⊕ p1)) = ωt(ν(SB(p0)⊕SB(p1))) = 3.
This also applies to the MixColumn function since it operates on the columns indepen-
dently and thus ωt(ν(p0⊕ p1)) = ωt(ν(MC◦SB(p0)⊕MC◦SB(p1))) = 3. If we now
have that the two states are different in all bytes in the first column after the MixCol-
umn layer, applying the ShiftRows transformation on them will destroy the Hemming
weight of their zero difference pattern, making all the columns active. If we rather
imagine that the two states are different in only 2 out of 4 bytes after MixColumns,
then after applying the ShiftRows transformation they will have a Hemming weight of
2 where only 1 byte is active in the fist column and 1 byte is active in the last col-
umn while the two columns in the middle is the zero set. This is the scenario we want
after Q′ = SR ◦MC ◦ SB for the best performance of the attack. The probability that
a pair (p0, p1) with ωt(ν(p0⊕ p1)) = 3 encrypts trough Q′ to a pair of states with
ωt(ν(Q′(p0)⊕Q′(p1))) = t can be approximated by

Pb(t) =
(4

t

)
·q−t

where q = 28. For t = 3, this probability is about 2 ·10−7 (or roughly 2−22).

So if a pair of states (p0, p1) encrypts one round trough Q′, forming a pair of states
(Q′(a),Q′(b)), that has a zero difference pattern of weight t (only 4− t out of 4 words
are active), then the probability that any 4− t bytes are simultaneously zero in a word
in the difference a⊕ b is qt−4. When this happens, all bytes in the difference are
zero.

46 Cryptanalysis of AES

We now define the key dependent subspace trail Tz,a = Q(α⊕x) | x∈Vz and let Hi denote
the image of the i-th word in SR(α⊕x) | x∈Vz such that |Hi|= q4−t . It then follows that
T z,α

i = SB ◦MC(Hi) such that Tz,α has T z,a
i as its i-th word. Then all the pairs where

ωt(ν(Q′(p0)⊕Q′(p1))) = 3 belongs to the same set Tz,a = T z,a
0 × T z,a

1 × T z,a
2 × T z,a

3
where each set T z,a

i ⊂ F4
q has size q = q4−ωt(z). This set will be different for each secret

key that’s used in the encryption since it depends on the unknown round keys XOR-ed
between the layers. Although we do not know the set Tz,α because of this, we know
their size and we should expect one of them to be among 2−22 random pairs. If we
rather let t = 2, then the probability increases to around 9 ·10−5, reducing the run time
of the distinguisher from 2−22 to 2−13.4.

So if we generate a set of around 213 random pairs, we will expect that at least one of
the pairs will have a zero difference pattern of weight 2 after Q′. Lets imagine that we
have found such a pair and continue to encrypt the states 4 rounds trough S ◦L ◦ S to
form c0 and c1. The zero difference pattern is now destroyed, but it is here the exchange
function comes in handy. We make an exchange pair (ρv(c0,c1),ρv(c1,c0)) = (c′0,c′1)
and have that ν(c0,c1) = ν(c′0,c′1). If we now decrypt c′0 and c′1 4 rounds trough
S−1◦L−1◦S−1 to get Q′(p′0) and Q′(p′0) we see that ν(Q′(p0)⊕Q′(p1))= ν(Q′(p′0)⊕
Q′(p′1)) because the zero difference pattern between an original pair and an exchange
pair is preserved trough S−1 ◦L−1 ◦S−1. Here Q′(p′0)⊕Q′(p′1) is active in all bytes in
the first and last column, while the two columns in the middle is the zero set. We keep in
mind that this only happens if we assume that we have found a pair (p0, p1) with a zero
difference pattern of weight 2 in their difference after Q′. For two random states α and
β , the probability that 4− t bytes are zero in the difference αi⊕βi is Pb(4− t) = qt−4.
The probability that 4− t bytes are zero in the difference α ⊕β in any of the 4 words
is

4Pb(4− t) = 4 ·
(4

t

)
·qt−4

thus, the probability when t = 2 is around 2−11,4.

Now we need to decrypt the exchange pair trough Q′−1 = SB−1 ◦MC−1 ◦SR−1. When
we first go trough SR−1, the difference between the two states looks like a stair shape
where each column has 2 active bytes and 2 zero bytes. When we decrypt further
through MC−1 we will then have a predictable pattern that follows from the properties
of the MixColumn matrix M where x ·M can not contain t or more zeros if x has 4− t
zeros. For AES, we can not have more than two zeroes in each word after MC−1 if the
state before MC−1 has exactly two bytes in each word, but if it was a random cipher,
we would have that one of the 4 columns have 2 or more zeroes if we try 211 pars. This
is how we distinguish weather this is AES or a random permutation.

A brief explanation of the algorithm
We make 213 pairs (p0, p1), then test each of them by making 211 exchange pairs and
check if they have 2 or more zeroes in p′0⊕ p′1. If they do, we go to the next pair
(p0, p1) and repeat the process of checking if its 211 exchange pairs are 2 or more in
p′0⊕ p′1. If some of the 213 survives the test of not having 2 or more zeroes in its 211

exchange pairs, we can conclude that this is AES and terminate the process. Every time
we get 2 zeroes, we discard the pair and check next pair. Continue this for 213 pairs. If
this is AES, we have at least one pair that will survive the test.

6.3 Distinguishing attack for 5 rounds 47

When performing this attack on the simplified representation of 5 rounds where R5 =
S◦L◦S◦Q′, we use the column exchanges on plaintext pairs and ciphertext pairs, but in
order for this attack to work on the full 5 round, we perform a mixed exchange between
ciphertexts and the diagonal exchange between plaintexts.

48 Cryptanalysis of AES

6.4 Key recovery for 5 rounds

In this section we will cover a key recovery attack on 5 rounds AES developed
presented in [23]. This attack works in the adaptive chosen plaintext/ciphertext
(ACP/ACC) scenario where we are allowed to generate new plaintexs and ciphertexts to
encrypt/decrypt with the real key. The mechanics behind this attack is that the attacker
queries plaintext pairs to encrypt with the real key and uses a swap operation on the ob-
tained ciphertext pairs to generate new cipertext pairs to decrypt. The attacker can then
observe differences in the new pairs and continue to generate new pairs with the same
zero difference until one of them meets a certain zero difference. When this condition
is met, the attacker takes advantage of impossible zero differentials made by the Mix-
Column layer to attack individual sub-keys by generating yoyo pairs whose difference
after a partial encryption is guaranteed to be non-zero only in the first word.

The attack had a record breaking complexity both in terms of data usage and computa-
tion where the amount of data needed is roughly 211.3 adaptively chosen plaintexts with
a computational complexity of 231. Up until now, this has been the fastest key recovery
attack on 5 round AES. There have recently been studies where others have taken the
techniques from this attack and implemented it on other AES-based SPN network like
for example AESQ, but as far as we know, no one have improved the attack on pure
AES.

A major part of this thesis is to study and implement the attack to see whether it is room
for improvement since the attack method is quite new. I have implemented the attack in
C# and experimented with it where I came up with some new and interesting ideas for
different attack methods by combining the exchange functions with techniques used in
the square attack which led to the attack covered in 6.2. Although no improvements
have been made on the theoretical computational complexity of this attack, I have made
some small adjustments in the implementation of the attack which improved the overall
data complexity from 211.3 ACC to roughly 210.59 ACC in one setting and to 210 ACC
in another setting by requesting 3 or 2 exchange pairs per sub-key guess instead of
5. Running this attack on a laptop, the time complexity varies between the different
settings depending on secret key, but after many tests it turns out that when we choose
3 pairs instead of 5 it runs faster on average.

We now take a deeper dive into the theory of this attack. We will use the same rep-
resentation of 5 rounds like in the exchange distinguisher for 5 rounds where we shift
out the SR-layer with MC ◦ SB so that R5 = S ◦L ◦ S ◦Q′ and Q′ = SR ◦MC ◦ SB. The
goal of the attack is to find the first round-key before Q′, which also is the secret key
k. The attack starts by picking a pair of plaintexts p0 and p1 with a certain zero differ-
ence, where the first words are given by p0

0 = (0, i,0,0) and p1
0 = (z,z⊕ i,0,0) where z

is a random non-zero element of Fq and the tree other words are equal as depicted here:

6.4 Key recovery for 5 rounds 49

p0 =

00 a e i

i b f j

00 c g k

00 d h l

p1 =

z a e i

z⊕ i b f j

00 c g k

00 d h l

The property for this setup is that we always have the same difference in p0
0⊕ p1

0 =
(z,z,0,0) for all values of i ∈ Fq while the difference in the three other words is always
zero. This also means that AK(p0)⊕AK(p1) = (z,z,0,0) will always hold. We now let
k0 = (k0,0,k0,1,k0,2,k0,3) be the first 4 bytes in round-key 0 XORed with the first word
of the plaintexts so that

k0,0 = rk0
0,0⊕ p0

0,0⊕ p1
0,0

k0,1 = rk0
1,0⊕ p0

1,0⊕ p1
1,0

k0,2 = rk0
2,0⊕ p0

2,0⊕ p1
2,0

k0,3 = rk0
3,0⊕ p0

3,0⊕ p1
3,0

where rk0 is the first round key. Since p0
0⊕ p1

0 = (z,z,0,0) for all i ∈ Fq, the last
two bytes in k0 will always be equal to the last two bytes in rk0

0. We also have that
the difference between the two first bytes in k0 will always be equal to the difference
between the two first bytes in rk0

0, i.e. k0,0⊕ k0,0 = rk0
0,0⊕ rk0

1,0. Since we know z =
p0

0,0⊕ p1
0,0 = p0

1,0⊕ p1
1,0 is the same for all values of i ∈ Fq we have that k0 = (z⊕

rk0
0,0,z⊕ rk0

1,0,rk0
2,0,rk0

3,0) for all i ∈ Fq. Although we don’t know the 4 bytes in rk0
0,

we can use k0 as a candidate key to find them based on this relation. Lets look at the
first word in the partial encryption of p0 and p1 trough SB◦AK:

SB◦AK(p0
0) = (s(p0

0,0⊕ k0,0),s(p0
1,0⊕ k0,1),s(p0

2,0⊕ k0,2),s(p0
3,0⊕ k0,2))

SB◦AK(p1
0) = (s(p1

0,0⊕ k0,0),s(p1
1,0⊕ k0,1),s(p1

2,0⊕ k0,2),s(p1
3,0⊕ k0,2))

where s(x) is the representation of one AES s-box. When we set the value of p0
0 =

(0, i,0,0) and p1
0 = (z,z⊕ i,0,0), they get canceled out when they are zero, thus we are

left with

SB◦AK(p0
0) = (s(k0,0),s(k0,1⊕ i),s(k0,2),s(k0,2))

SB◦AK(p1
0) = (s(k0,0⊕ z),s(k0,1⊕ z⊕ i),s(k0,2),s(k0,2))

where we see that there is only a difference in the first two bytes. We define b =
(b0,b1,b2,b3) to be the difference in SB◦AK(p0

0)⊕SB◦AK(p1
0) so that

b0 = s(k0,0)⊕ s(z⊕ k0,0)

b1 = s(k0,1⊕ i)⊕ s(k0,1⊕ z⊕ i)

where b2 and b3 is always zero and b0 is the only constant since it is independent of
i. We continue the partial encryption and define y = (y0,y1,y2,y3) to be the difference

50 Cryptanalysis of AES

between the first words after the partial encryption of the two plaintexts through MC ◦
SB ◦ AK so that (y0,y1,y2,y3) = M ◦ s4(p0

0⊕ rk0
0)⊕M ◦ s4(p1

0⊕ rk0
0) where M is the

MixColumns matrix and s4 is the concatination of 4 parallel s-boxes. Since the columns
in M is defined M = (α,1,1,α⊕1),(α⊕1,α,1,1),(1,α⊕1,α,1),(1,1,α⊕1,α), we
can calculate y this way:

y0 = αb0⊕ (α⊕1)b1

y1 = b0⊕αb1

y2 = b0⊕b1

y3 = (α⊕1)b0⊕b1

where α = 2. We know from the properties of M that the total number of zeroes before
and after M cannot be more then 3 and if t bytes in a word x are zero, then x ·M or x ·M−1

cannot contain 4− t or more zeros unless all the bytes in x are zero. If we run through
all values of i ∈ Fq with z = 0, we see that (y0,y1,y2,y3) = (0,0,0,0) because then
p0

0 = p1
0 for all values of i and thus all the bytes before M in SB◦AK(p0

0)⊕SB◦AK(p1
0)

are zero, but if we pick another constant z 6= 0, we see that y2 becomes zero for b0 = b1.
This happens at least 2 times for all i ∈ Fq. If we expand the equations like so:

y0 = α(s(k0,0)⊕ s(z⊕ k0,0))⊕ (α⊕1)(s(k0,1⊕ z⊕ i)⊕ s(k0,1⊕ i))
y1 = (s(k0,0)⊕ s(z⊕ k0,0))⊕α(s(k0,1⊕ z⊕ i)⊕ s(k0,1⊕ i))
y2 = (s(k0,0)⊕ s(z⊕ k0,0))⊕ (s(k0,1⊕ z⊕ i)⊕ s(k0,1⊕ i))
y3 = (α⊕1)(s(k0,0)⊕ s(z⊕ k0,0))⊕ (s(k0,1⊕ z⊕ i)⊕ s(k0,1⊕ i))

it is easier to see that y2 becomes zero when s(k0,0)⊕ s(z⊕k0,0) = s(k0,1⊕ i)⊕ s(k0,1⊕
z⊕ i), which happens when i ∈ {k0,0⊕ k0,1,z⊕ k0,0⊕ k0,1}. When this condition is met
and z 6= 0, we then know that y = (∗,∗,0,∗) where ∗ is any other random value in Fq.
Since we have that k0 = (z⊕rk0

0,0,z⊕rk0
1,0,rk0

2,0,rk0
3,0) where k0,0⊕k0,1 = rk0

0,0⊕rk0
1,0,

we see that the first two bytes in k0 depends on the value of z we choose and since we
know the value of i and z, we can then know the difference in the first two bytes in rk0

0.
So for each time k0,0⊕ k0,1 is equal to i or i⊕ z, we know that b0 = b1 and thus y2 = 0.
In a scenario where rk0,1 is known and we run through all values of i and set k0,0 = i,
there are at least two possible solutions of k0,0 that makes y2 = 0 where one of them is
the correct one. A simple trick in this attack is to assume that k0,0 = k0,1⊕ i when we
run trough all values of i. This way we can focus on bruteforcing the other 224 bytes in
k0.

We now know that we have at least 2 plaintext pairs (p0, p1) in the set Fq where p1
0 =

(0, i,0,0) and p1
0 = (z,z⊕ i,0,0) that makes y = (∗,∗,0,∗) and the three other words are

zero, hence the Hemming weight of the whole state is 3 with a zero difference pattern
of (0,1,1,1). If we now apply the ShiftRows function to make Q′ complete, we get a
Hemming weight of only 1 with the zero difference pattern of (0,0,1,0). This follows
directly from the well-known properties of the ShiftRows function. With a Hemming
weight of 1 in the difference of two states α ⊕β before the S ◦L ◦ S stage, we know
from the definition of the yoyo function that if we apply S◦L◦S on the two states to get
(c0,c1), make a yoyo pair c′0 = ρv(c0,c1),c′1 = ρv(c1,c0) and apply S−1 ◦L−1 ◦S−1 on
(c′0,c′1) to get (α ′,β ′), the zero difference pattern is preserved throughout this process,

6.4 Key recovery for 5 rounds 51

Figure 6.3: 5 rounds key recovery pattern

i.e. ν(α,β) = ν(α ′,β ′). This process is depicted in Figure 4.3 where we can see that
the third columns in Q′(p0⊕ p1) and Q′(p′0⊕ p′1) are zero and this is one the main
properties of AES that we will exploit in this attack.

When we generate a plaintext pair (p0
0, p1

0) = (0, i,0,0),(z,z⊕ i,0,0) where the three
other words are equal, we know that independent on which secret key that’s is used,
Q′(p0)⊕Q′(p1) are zero in the third word for at least 2 values of i. If we then use
a value for i where this condition is met to encrypt (p0, p1) to (c0,c1) with any ran-
dom key, applying the swap function to get (c′0,c′1) and returning the corresponding
(p′0, p′1), we also know that ν(Q(p′0)⊕Q′(p1)) = ν(Q′(p′0)⊕Q′(p′1)). We can then
use (p′0, p′1) as our new plaintext pair and repeat this process. In fact, we can go back
and forth with this process as many times as we want where all the returned plaintexts
will have the same zero difference pattern.

It is easy to check whether ν(Q′(p′0)⊕Q′(p′1)) is zero in the third word by just doing
the partial encryption of (p′0, p′1) through SR◦MC ◦SB and then return the sum in the
third word in their difference, but because of the ShiftRows layer, we need information
from the whole block state throughout this process, even though we only need to check
one word. Since ν(Q′(p′0)⊕Q′(p′1)) is only zero in the third word for around 2 val-
ues of i ∈ Fq in our controlled plaintexts setup and this only occurs when when y2 = 0,
we can rather check y2 directly, skipping the ShiftRows step. This way we only need
information in one word throughout the process since MC and SB operates on individ-
ual words. Not only do we save 2 · 12 s-box lookups, 2 · 3 M-functions and the whole
ShiftRows operation for the computational time, but if we look at Q′ included with the
individual round-keys: Q′ = SR◦AK(rk1)◦MC ◦SB◦AK(rk0), we also see that we re-
move the need for a second round-key. This means that we only need information from
the first 4 bytes in the first round-key to test our condition.
For our candidate key k0 ∈ F4

q = (k0,0,k0,1,k0,2,k0,3,) we can now try all 232 possi-
ble combinations to calculate b = (p0

0⊕ k0)⊕ s(p1
0⊕ k0) by the following computa-

tion:

b0 = s(p0
0,0⊕ k0,0)⊕ s(p1

0,0⊕ k0,0)

b1 = s(p0
1,0⊕ k0,1)⊕ s(p1

1,0⊕ k0,1)

b2 = s(p0
2,0⊕ k0,2)⊕ s(p1

2,0⊕ k0,2)

b3 = s(p0
3,0⊕ k0,3)⊕ s(p1

3,0⊕ k0,3)

and then calculate y2 = b0⊕b1⊕2 ·b2 ·3 ·b3 to see if it is zero or not. The probability

52 Cryptanalysis of AES

that y2 = 0 for any state is 2−8, meaning that in a set of 256 random plaintexts, this will
probably occur, but with our controlled setup of plaintext pairs where p0

0 = (0, i,0,0)
and p1

0 = (z,z⊕ i,0,0) and the three other words are equal, there is a guarantee that
y2 = 0 occurs at least 2 times when i ∈ {k0,0⊕ k0,1,z⊕ k0,0⊕ k0,1}. If we run through
all values of i ∈ Fq with our controlled plaintexts pair setup and set k0,0 = k0,1⊕ i and
ask for the encryption of every pair with a random key, then making a yoyo pair from
the two ciphertexts and returning the corresponding (p′0, p′0), we can test the rest of
the 224 bytes k0,1,k0,2,k0,3 for each i to see if any of the plaintexts pairs returned by
the yoyo function have the same value in y2 when we parital encrypt them with k0.
Because of the probability for having y2 = 0 in any state is 2−8, we will of course in
this case get around 216 hits in every value of i and around 224 hits in total, which does
not help us to find the real sub-key. If we rather ask for encryption and decryption of
2 pairs per value i, the probability that y2 = 0 in both pairs at the same time becomes
2−8·2 = 2−16, which is still not good enough to recover the key because we would then
have around 216 hits in total in our test. Increasing the number of plaintext pairs to 3
for each i leaves us with around 28 matching sub-keys, but with 4 pairs we will only
get around 2 or more matches when i ∈ {k0,0⊕ k0,1,z⊕ k0,0⊕ k0,1} where one of them
is the correct sub-key. If we now use 5 pairs instead, the probability that all 5 pairs
have y2 = 0 at the same time is 2−8·5 = 2−40, which means that when we get a hit in
i ∈ {k0,0⊕ k0,1,z⊕ k0,0⊕ k0,1}, we can with high probability say that we have found
the correct sub-key. A false positive might of course occur for this probability, but
in practice we can do some extra tests by generating a few more pairs when the test
succeeds on the first 5 pairs to see if it still holds. This will not effect the total data
complexity of the attack since this happens rarely. Thus, we need a total of 2 ·28 ·5 =
211.3 adaptively chosen plaintexts to find the first correct sub-key. The algorithm for
finding the first sub-key k0 is presented here:

Depending on how we implement this attack, we can actually get away with only 210

plaintexts by choosing only 2 pairs per sub-key guess, as we will take a look at in a
moment, but since that leaves us with 216 hits for every guess, we will need to do more
computation on guessing the remaining 294 sub-keys. So for the sake of clarity, let’s
imagine that we use a set of 5 pairs which leaves us with a comfortable margin for our
test and that we already have found the correct sub-key k0. Now we need a method for
finding the rest of the sub-keys: k1,k2,k3. It turns out that there is a fairly trivial and
quick way to do this without just bruteforcing them, which would take an unimaginable
amount of time.
When we have found the correct sub-key k0, we generate a new plaintex pair (p0, p1)
that differ only in their first byte of the first word and the rest is initialized to only zeroes
like this:

p0 =

∗ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

p1 =

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

where we will call the first word in p0 and p1 for a′0 and b′0 respectively. It does not

6.4 Key recovery for 5 rounds 53

Algorithm 4 Recovering the first sub-key k0 for 5 rounds of AES
Input: Set P contains 28 plaintext pairs (p0, p1) where p0

0 = (0, i,0,0) and p1
0 = (z,z⊕ i,0,0)

for i = 0, ...,28−1 where z is any element in Fq and p0
j = p1

j = 0 for j = 1,2,3
Output: The first sub-key k0

1: // r-round AES enc/dec without first SR and last SR◦MC
2: for i from 0 to 28−1 do
3: p0← 0, p1← 0, p0

0 = (0, i,0,0), p1
0 = (z,z⊕ i,0,0)

4: S←{(p0, p1)}
5: while len(S)< 5 do
6: c0← enck(p0,5),c1← enck(p1,5)
7: c′0← SimpleSWAP(c0,c1),c′1← SimpleSWAP(c1,c0)
8: p′0← deck(c′0,5), p′1← deck(c′1,5)
9: p0← SimpleSWAP(p′0, p′1), p1← SimpleSWAP(p′1, p′0)

10: S← S∪{(p0, p1)}
11: end while
12: for all 224 remaining candidates k0 do
13: for all (p0, p1) ∈ S do
14: if l3(s4(p0

0⊕ k0)⊕ s4(p1
0⊕ k0)) 6= 0 then

15: break and jump to next key
16: end if
17: end for
18: end for
19: end for

matter which value we choose for a′0,0 and b′0,0 as long as they are not the same so
that a′0,0⊕b′0,0 6= 0. We now want to partial decrypt p0 and p1 through Q′−1 = SB−1 ◦
MC−1 ◦SR−1 with our candidate key k0 to form a new pair. If we take a closer look at
Q′−1 included with the round keys: Q′−1 = AK(rk0)◦SB−1 ◦MC−1 ◦AK(rk1)◦SR, we
see that Q′−1 depends on two round-keys, rk1, which we do not know and rk0, which
we only know the first 4 bytes of, but now we are only interested in the difference
between the first words after Q′−1 so we can actually skip AK(rk1)◦SR−1 in this case
as this step would not effect that difference since p0 and p1 only differ in p0

0,0 and p1
0,0.

This leaves us with only operations that operates independently on each word. So we
apply the following transformation on a′0 and b′0 to form a0 and b0:

a0 = s−14
(a′0⊕ k0)◦M−1

b0 = s−14
(b′0⊕ k0)◦M−1

where s−14 is the concatenation of 4 parallel inverse s-boxes and M−1 = B · x3 +
D · x2 + 9 · x + E is the inverse MixColumns matrix. We now have a new pair
p0 = (a0,0,0,0), p1 = (b0,0,0,0) whose difference after SR ◦MC ◦ SB ◦AK is guar-
anteed to be non-zero in only the first word independent on which round-key that is
used. This means that if we remove the ShiftRows layer in Q′, they will only be differ-
ent in the first diagonal, which is the property we will take advantage of. We can now
use the same technique on p0 and p1 to find the remaining sub-keys as we did when we
found the first sub-key k0. Now, this pair in itself is actually useless since they are equal

54 Cryptanalysis of AES

in the three last words, as this would not give us any information about the three re-
maining sub-keys, but if we request 5 more yoyo pairs from p0 and p1 with the real key,
we know with a high probability that the new pairs (p′0, p′1) will be different in the last
three words and also have the same zero difference after SR◦MC◦SB◦AK as our orig-
inal pair. This means that if we partial encrypt p′0 and p′1 through MC ◦SB◦AK with
the real key, then p′0⊕ p′1 must be active only in the first diagonal after the encryption,
thus we have the following relations:

M ◦ s4(p′00⊕ k0)⊕M ◦ s4(p′10⊕ k0) = (w,0,0,0)

M ◦ s4(p′01⊕ k1)⊕M ◦ s4(p′11⊕ k1) = (0,w,0,0)

M ◦ s4(p′02⊕ k2)⊕M ◦ s4(p′12⊕ k2) = (0,0,w,0)

M ◦ s4(p′03⊕ k3)⊕M ◦ s4(p′13⊕ k3) = (0,0,0,w)

where k = (k0,k1,k2,k3) is the right secret key and w can be any value in Fq depending
on the plaintext. We see that for each of this relations to hold, the right sub-key must
be used. In theory we could now bruteforce k1,k2,k3 individually and check which
individual sub-key that fulfills one of this relations. Since we already know k0, this
would have a complexity of 3 ·232, which is doable on a laptop in a short time, but we
can do even better by recovering all the remaining sub-keys at once with some simple
algebra. We let ∆ be the difference in SB◦AK(p′0)⊕SB◦AK(p′1) so that

∆0 = s4(p′00⊕ k0)⊕ s4(p′10⊕ k0)

∆1 = s4(p′01⊕ k1)⊕ s4(p′11⊕ k1)

∆2 = s4(p′02⊕ k2)⊕ s4(p′12⊕ k2)

∆3 = s4(p′03⊕31)⊕ s4(p′13⊕ k3).

We know that MC◦SB◦AK(p′0)⊕MC◦SB◦AK(p′1) is active only in the first diagonal
and if we remove the MixColumns step we get ∆. This means that if we apply the
inverse MixColumns matrix M−1 on our yoyo pairs, we know that the relations:

M−1 · (w,0,0,0) = w · (E,9,D,B) = (∆0,0,∆0,1,∆0,2,∆0,3)

M−1 · (0,w,0,0) = w · (B,E,9,D) = (∆1,0,∆1,1,∆1,2,∆1,3)

M−1 · (0,0,w,0) = w · (D,B,E,9) = (∆2,0,∆2,1,∆2,2,∆2,3)

M−1 · (0,0,0,w) = w · (9,D,B,E) = (∆3,0,∆3,1,∆3,2,∆3,3)

must hold for known values of M−1. If we take a look at the second equation for
example and assume that we know the first byte k1,0 in the second sub-key, we can find
the second byte in k1 by balancing the following equation according to k1,1:

B−1 · (s(p0
0,1⊕ k1,0)⊕ (p1

0,1⊕ k1,0)) = E−1 · (s(p0
1,1⊕ k1,1)⊕ (p1

1,1⊕ k1,1))

where B−1 and E−1 is the AES defined GF(28) inversion of B and E. Similar relations
also applies to the other bytes in each sub-key, thus if we only know one byte of the sub-
key, we can calculate the other one by testing all 256 values of each byte individually

6.4 Key recovery for 5 rounds 55

sub-key k1 sub-key k2 sub-key k3
B−1 ·∆1,0 = E−1 ·∆1,1 D−1 ·∆2,0 = B−1 ·∆2,1 9−1 ·∆3,0 = D−1 ·∆3,1
B−1 ·∆1,0 = 9−1 ·∆1,2 D−1 ·∆2,0 = E−1 ·∆2,2 9−1 ·∆3,0 = B−1 ·∆3,2
B−1 ·∆1,0 = D−1 ·∆1,3 D−1 ·∆2,0 = 9−1 ·∆2,3 9−1 ·∆3,0 = E−1 ·∆3,3

Table 6.1: Equations for recovering individual bytes in sub-keys

and see which byte that meets the condition. The equations we calculate for sub-key
k1,k2 and k3 is listed in table 4.2.

The attack method is now straight forward. We can now start to attack each individual
sub-key by assuming we know the first byte in the sub-key and see if the equations in
table 4.2 holds for all the 5 pairs returned by the yoyo function according to the other
bytes that we have to guess. If they doesn’t hold, we change the first byte and repeat
the process until we get a hit. Thus, we have to spend at most 3 · 28 guesses in total
to find all the correct first bytes of the sub-keys. A more detailed explanation of this
process can be seen in Algorithm 3.

This whole process goes very fast on a computer, so the complexity of this 5-round key
recovery attack is dominated by guessing the first sub-key k0 with a complexity of 231

and the rest is done under a second. The speed of guessing the first sub-key is also
dependent on how many adaptively chosen plaintext/ciphertext pairs we choose. The
more pairs we use, the more computation we need to do in the first stage for every byte
guess, which we guess in the order from 0 to 255 and set k0,0 = k0,1⊕ i so depending
on the value of the secret key, the speed of the attack will vary. But on the other hand,
if we choose less pairs, we will then, of course, have more false positives on the way
and go to the next stage for attacking the three remaining sub-keys more often. We can
easily check if we have the wrong key by simply comparing an encryption of one of the
plaintexts with the real key and the candidate key and see if they have the exact same
ciphertext. Since the second stage runs pretty fast, we can afford having no hits here
and continue attacking the first sub-key again. By choosing 3 yoyo pairs insted of 5 in
the first stage, we will iterate through all the values quicker

56 Cryptanalysis of AES

Algorithm 5 Recovering full key
Input: Secret key k, cand← allZeroes, cand0← k0
Output: Secret key
α ← [b,e,9,d], con← 0
p0← allZeroes, p1← p0, p0

0,0← 1, p0 = MC−1 ◦SR−1(p0⊕ k), p1 = MC−1 ◦SR−1(p1⊕ k)
Construct 5 yoyo pairs (p′0, p′1) from p0 and p1 with k and put them in a set S

1: for i from 1 to 3 do
2: for k0 from 0 to 28−1 do
3: for k1 from 0 to 28−1 do
4: while len(S)< 5 do
5: b0← s(p′00,i⊕ k0)⊕ s(p′10,i⊕ k0),b1← s(p′01,i⊕ k1)⊕ s(p′11,i⊕ k1)

6: if α[−(i−1) mod 4]−1 ·b0 = α[−(i−1)+1 mod 4]−1 ·b1 then
7: con← con+1
8: end if
9: end while

10: if con = 5 then
11: cand1,i← k1, con← 0
12: end if
13: end for
14: for k2 from 0 to 28−1 do
15: while len(S)< 5 do
16: b0← s(p′00,i⊕ k0)⊕ s(p′10,i⊕ k0),b2← s(p′02,i⊕ k2)⊕ s(p′12,i⊕ k2)

17: if α[−(i−1) mod 4]−1 ·b0 = α[−(i−1)+2 mod 4]−1 ·b2 then
18: con← con+1
19: end if
20: end while
21: if con = 5 then
22: cand2,i← k2, con← 0
23: end if
24: end for
25: for k3 from 0 to 28−1 do
26: while len(S)< 5 do
27: b0← s(p′00,i⊕ k0)⊕ s(p′10,i⊕ k0),b3← s(p′03,i⊕ k3)⊕ s(p′13,i⊕ k3)

28: if α[−(i−1) mod 4]−1 ·b0 = α[−(i−1)+3 mod 4]−1 ·b3 then
29: con← con+1
30: end if
31: end while
32: if con = 5 then
33: cand3,i← k3, con← 0
34: end if
35: end for
36: end for
37: end for

Chapter 7

Summary

Here we go through a summary of the main conclusions that we can draw from our
cryptanalisis of AES and point to some new suggestions for further research

7.1 Comparisons and conclusions

In this theses we have done an analysis of AES and looked at certain properties in the
round functions that makes AES a strong cipher and demonstrated how the full scale
version of AES provides a high level of security. We covered in detail how the AES
algorithm works in chapter 3 and how to exploit some interesting properties in the
algorithm. In chapter 4 we did a comparison review over existing attacks on different
rounds and concluded that attacks on over 6 rounds has a complexity that is unpractical
given the time they need to finish.

In chapter 6, we have reviewed some cryptanalysis attacks on round reduced AES in
the adaptive chosen plaintext/ciphertext setting where the attacks on 1-3 round was self-
made based on own cryptanalysis and the two other attacks on 5 rounds was already
developed. Although no improvement on the theoretical computational complexity of
the 5 round attacks was made, we were able to improve the run time of the implementa-
tion of the 5 round key recovery attack by choosing 3 ACP/ACC insted of 5 ACP/ACC,
making the iteration process of all k0 value faster and lowered the overall data com-
plexity from 211.3 ACC to roughly 210.59 ACC. All the attacks covered in chapter 6 was
implemented using C#.

In chapter 5, we have showed how the dimensions of subspace trails expands through-
out the different encryption rounds using truncated differential cryptanalysis on adap-
tivery chosen plaintexts pairs, where different exchange functions can be used to make
more plaintext/ciphertext pairs that inherits the same properties from an original pair.
This method was also used to make the exact same plaintext pair by encrypting the pair
n rounds, perform a certain key-dependent exchange function on the ciphertexts and
decrypt the new ciphertext pair.

58 Summary

7.2 Further research

We have demonstrated in section 6.2 that any number of rounds on AES can be bro-
ken by only two plaintexts (p0, p1) that share the common property that when en-
crypted through n rounds to a pair (c0,c1) and a key dependent exchange operation
is performed between (c0,c1) to make (c′0,c′1), the decrypted pair (p′0, p′1) becomes
equal to (p0, p1). When two plaintexts shares this property, doing the key-dependent
exchange function on the encrypted pair swaps all the bytes between them so that
(c0,c1) = (c′0,c′1) because of collision of 296 bits after encryption of 1 round. The
zero difference between two pairs of plaintexts after applying a column exchange after
3 rounds with different keys is the same as applying a mixed exchange after 4 rounds
if the keys that are used is the same in byte position 0, 1, 2, 3, 5, 10, 12, 13, 14 and 15.
Although the key-dependent exchange function is not possible for 4 rounds without the
knowledge of the fourth round-key, it would be interesting if there exists any method
to exploit this by approaching the the value of the forth round key in some way or if
any other key-dependent subspace exchange between the ciphertexts could reveal any
information of the secret key.

Bibliography

[1] Onur Aci, cmez1, Werner Schindler, and Cÿetin K. Ko c. Cache based remote
timing attack on the aes. 2007. 4

[2] C Ashokkumar, Bholanath Roy, M Bhargav Sri Venkatesh, , and Bernard
L.Menezes. s-box implementation of aes is not side channel resistant. 2018.
4

[3] Navid Ghaedi Bardeh and Sondre Rønjom. Practical attacks on reduced-round
aes. 2019. 4.2

[4] Eli Biham, Alex Biryukov, Orr Dunkelman, and Eran Richardson. Cryptanalysis
of skipjack-4xor. pages 5–6, jun 1998. 5.1

[5] Eli Biham and Nathan Keller. Cryptanalysis of reduced variants of rijndael. 2000.
4.1

[6] Alex Biryukov. The boomerang attack on 5 and 6-round reduced aes. 2004. 4.1,
4.2, 5.1

[7] Alex Biryukov and Dmitry Khovratovich. Two new techniques of side-channel
cryptanalysis. pages 195–208, 09 2007. 4.1

[8] Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger. Biclique
cryptanalysis of the full aes. 2011. 4.3.2

[9] Joan Daemen, Lars Knudsen, and Vincent Rijmen. The block cipher square. Lec-
ture Notes in Computer Science, 1267, 10 1998. 4.1

[10] Joan Daemen and Vincent Rijmen. The Design of Rijndael, AES The Advanced
Encryption Standard. Springer-Verlag, 2 edition, November 2001. 3.1

[11] Joan Daemen and Vincent Rijmen. The design of rijndael: Aes - theadvanced
encryption standard. 2002. 4.2

[12] Patrick Derbe. Meet-in-the-middle attacks on aes. 2013. 4.2

[13] William Diehl, Abubakr Abdulgadir, Farnoud Farahmand, Jens-Peter Kaps, and
Kris Gaj. Comparison of cost of protection against differential power analysis of
selected authenticated ciphers. 2018. 4

[14] Jack Dongarra. Report on the sunway taihulight system. 2016. 4.2

[15] Bc. Jana Ernekerova. Analysis and detection of krack attack aganinst wifi infras-
tructure. 2019. 4

60 BIBLIOGRAPHY

[16] Lorenzo Grassi. Mixture differential cryptanalysis: a newapproach to distinguish-
ers and attacks onround-reduced aes. 2018. 4.1, 4.2

[17] Lorenzo Grassi and Christian Rechberger. Rigorous analysis of truncated differ-
entials for 5-round aes. 2018. 4.1

[18] Lorenzo Grassi, Christian Rechberger, and Sondre Rønjom. Subspace trail crypt-
analysis and its applications to aes. 2016. 4.1

[19] Lorenzo Grassi, Christian Rechberger, and Sondre Rønjom. A new structural-
differential property of 5-round aes. 2017. 4.1

[20] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, , and Berk Sunar. Wait
a minute! a fast, cross-vm attack on aes. 2014. 4

[21] Alan Kaminsky and B. Thomas Golisano. Enigma 2000: An authenticated en-
cryption algorithm for human-to-human communication. 2019. 4.2

[22] Jiqiang Lu1, Orr Dunkelman, Nathan Keller, and Jongsung Ki. New impossible
differential attacks on aes. 2007. 4.1

[23] Sondre Rønjom, Navid Ghaedi Bardeh, and Tor Helleseth. Yoyo tricks with aes.
jun 2017. 4.1, 6.3, 6.4

[24] Bing Sun, Meicheng Liu, Jian Guo, Longjiang Qu, and Vincent Rijmen. New
insights on aes-like spn ciphers. 2016. 4.1

[25] Tyge Tiessen. Improved partial sums"-based square attack on aes. 2012. 4.2

[26] Tyge Tiessen. Polytopic cryptanalysi. 2016. 4.2

[27] Michael Tunstall. Improved partial sums-based square attack on aes. 2012. 4.2

[28] Harshali Zodpe, Prakash Wani, and Rakesh Mehta. Design and implementation
of algorithm for des cryptanalysis. pages 278–282, 12 2012. 3

	Acknowledgements
	Abstract
	Outline
	Introduction
	Symmetric cryptosystems
	Symmetric ciphers
	Block ciphers
	Substitution Permutation Network

	Description of AES
	The AES algorithm
	AddRoundKey
	SubBytes
	ShiftRows
	MixColumns
	Key Schedule

	Attacks on AES
	Cryptanalysis of symmetric ciphers
	Distinguishing attack
	Key recovery attack

	How AES is designed to prevent attacks
	Comparison of round reduced attacks on AES
	Distinguishing attacks on round reduced AES
	Key recovery attacks on round reduced AES

	Truncated differentials for AES
	Introduction of truncated differential cryptanalysis
	Adaptive exchange functions
	Properties of the exchange function

	Simplification of the AES rounds
	Subspace trails
	Different exchanges

	Cryptanalysis of AES
	A key recovery on 1 round
	Exchange attack for 1-3 rounds
	Distinguishing attack for 5 rounds
	Key recovery for 5 rounds

	Summary
	Comparisons and conclusions
	Further research

