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Abstract. Fluid-induced slip of fractures is characterized by strong multiphysics
couplings. Three physical processes are considered: Flow, rock deformation and
fracture deformation. The fractures are represented as lower-dimensional objects
embedded in a three-dimensional domain. Fluid is modeled as slightly compress-
ible, and flow in both fractures and matrix is accounted for. The deformation of
rock is inherently different from the deformation of fractures; thus, two different
models are needed to describe the mechanical deformation of the rock. The medium
surrounding the fractures is modeled as a linear elastic material, while the slip of
fractures is modeled as a contact problem, governed by a static-dynamic friction
model. We present an iterative scheme for solving the non-linear set of equations
that arise from the models, and suggest how the step parameter in this scheme
should depend on the shear modulus and mesh size.

1 Introduction

Slip or reactivation of fractures and faults in the earth’s crust can be caused
by natural changes in the stress field in the rock, but concerns also arise
related to human induced seismicity. Over 700 cases of seismicity related to
human activities have been reported, caused by a variety of different activ-
ities [4]. In this paper, we focus on fracture reactivation due to injection of
fluids in underground reservoirs, which concerns applications such as CO2

storage, enhanced oil recovery and production of geothermal energy. The
seismic events related to these types of activities are usually not noticeable
except by very sensitive equipment, but events of magnitude up to M3.5 have
been recorded [12].

Reactivation of fractures is a strongly coupled problem involving disparate
physical processes, including fluid flow, deformation of rock surrounding the
fractures and the plastic deformation of fractures. In this work we will cou-
ple models for each of these sub-problems to simulate fracture reactivation
and corresponding aperture changes. One of the main challenges of model-
ing fractures in the subsurface is the absence of scale separation between
fractures, which can range from sub-resolution micro-fractures to fractures
and faults spanning the whole reservoir. In the model presented here, small
scale fractures are assumed to be up-scaled into effective matrix parameters,
such as permeability, while the large macroscopic fractures are explicitly re-
solved. To reduce the computational cost further, fractures are represented as
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lower-dimensional domains with an associated aperture. We apply this mixed
dimensional hybrid approach to model fluid flow following the ideas of [3].

The fluid pressure will act as a trigger mechanism for fracture reactiva-
tion, which is governed by a Mohr-Coulomb criterion: A fracture slips when
the shear traction equals the coefficient of friction times the effective nor-
mal traction. This bound on shear traction introduces a non-linear inequal-
ity constraint to the system of equations, and various techniques have been
employed to handle this constraint [1,7]. We use a static-dynamic friction
model where the coefficient of friction drops instantaneous when a fracture
slips. Results from this model should be interpreted with caution, as it falls
into the category of ”inherently discrete” models due to this discontinuous
drop [9]. Nevertheless, it has been shown to give feasible results in modeling
of fracture reactivation as a consequence of fluid injection at elevated pres-
sures [8]. Finding the regions of slip on a fracture is one of the challenges
of this model, due to the discontinuous change in the coefficient of friction
between stick and slip regions. We will give a mathematical formulation of
the friction problem, and then present a simple solution strategy following
the ideas Ucar et al. [10], who use an idea of excess shear stress to estimate
fracture slip based on the shear and normal stress. The slip length that each
time step was approximated based on how much the Mohr-Coulomb criterion
is violated, multiplied a “fracture stiffness” parameter. In the current work,
we improve this approach by suggesting how this stiffness parameter should
depend on the shear modulus and mesh size.

2 Governing Equations

We consider three processes in the subsurface; fluid flow, rock deformation,
and fracture deformation. Each of the problems will be defined in different
domains of different dimensions, and the domains and processes are coupled
together. As mentioned above, fractures are represented as lower dimensional
objects in the reservoir. The intersection of two fractures is, correspondingly,
represented by a line-segment. The reservoir is in this way divided into do-
mains Ωd of different dimension d; the rock matrix Ω3, fractures Ω2, intersec-
tion of fractures Ω1, and the intersection points of these lines Ω0, as shown
in Fig. 1.

Flow

We will assume that the fluid flow follows Darcy’s law in all domains, and
extend the approach of Boon et al. [2] to compressible flow. For a detailed
explanation of notation we refer the reader to the same work. The mixed-
dimensional formulation for the conservation of mass is given by

φcp
∂p

∂t
−∇ · K∇p+ T = q in {Ωd}d=0,...,3, (1)
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Fig. 1. A mixed dimensional domain. The
red cube represents the 3D domain, the
green squares represent the 2D domains,
the blue lines represent 1D domains, and
the black dot the 0D domain

where φ is the porosity, cp the fluid compressibility, K the effective perme-
ability (taking into account the scaling with fracture aperture and viscosity),
p the fluid pressure, T the transfer term between domains of different dimen-
sions, and q the source and sink term.

Rock Deformation

The rock is modeled as an elastic medium, and assumed to always be in
quasi-static equilibrium. The conservation of momentum can be written as

∇ · σ = 0, σ = G(∇u+ (∇u)>) + λI∇ · u in Ω3, (2)

where as for the flow, we have neglected the gravitational term. The variable σ
is the stress tensor, G and λ are the Lamé parameters, I the identity matrix,
and u the displacement vector. Because a fracture will have exactly two
interfaces with Ω3, we adopt the notation that Γ+ defines one side, while Γ−

the other.
We will neglect any elastic effects of contacting asperities of the fracture

surfaces and potential gouge filling the fractures, thus, the traction on the
two fracture boundaries must balance

T+ + T− = 0, (3)

where the traction is defined as T = σ · n, with n being the normal vector
of the surface.

In addition to boundary conditions on the reservoir domain, we need a
total of six equations defined on the fracture interfaces since we have three
degrees of freedom on each fracture side. The first three are obtained from
the force balance Equation (3) and the last three equations are defined by
the coupling to the fracture deformation model, which governs the fracture
response to rock stress and strain.

Fracture Deformation

For two surfaces in contact, the magnitude of the shear traction is bounded
by the coefficient of friction times the effective normal traction

|T s| ≤ µ(Tn − p), (4)
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where T s is the shear traction, µ the coefficient of friction, and Tn the normal
traction. We use a static-dynamic friction model, where the coefficient takes
one value when the fracture is not slipping µ = µs (static friction), and
another, lower value when it is slipping µ = µd (dynamic friction).

We introduce the slip distance d which defines the relative fracture dis-
placement

d = u+ − u−,

where u+ and u− are the displacements on the positive and negative side of
a fracture. When a fracture slips, the aperture can increase due to asperities
on the fracture surfaces, and we approximate this increase by letting the
aperture depend linearly on slip distance.

According to the Mohr-Coulomb criterion, slip on a fracture is triggered
when Inequality (4) reaches equality, using the static coefficient of friction.
We define Γs to be the part of the fracture that is slipping, and enforce
Inequality (4) as an equality in this domain, using the dynamic coefficient of
friction. Further, when a fracture is slipping it should slip in the direction of
shear traction.

To sum up, the friction condition on the fractures can be formulated as

|T s| < µs(Tn − p) x ∈ Ω2 \ Γs (5a)

d = 0 x ∈ Ω2 \ Γs (5b)

|T s| − µd(Tn − p) = 0 x ∈ Γs (5c)

d = χT s, χ > 0 x ∈ Γs (5d)

Γs = {x ∈ Ω2 : d 6= 0}, (5e)

where we have included the definition of the slip region to stress the fact that
Γs is not known, but one of the unknowns in this system.

3 Spatial Discretization

Both the flow equation and the elasticity problem are discretized using finite
volume schemes. The flow equation is discretized using the two-point flux
approximation, while the elasticity is discretized using the multi-point stress
approximation [6,11]. The implementation has been done in PorePy, which is
an open source Python code for simulating fractured and deformable porous
media [5].

4 Solution Strategy

We will use an iterative scheme to solve the set of Equations (1), (2) and (5).
At each step in the scheme we will first estimate the slip region Γs and then
solve the equations using a linearized approximation of Equation (5c).
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We start by solving Equation (1) using backward Euler. To solve (2)
and (5), we first assume that the fractures do not slip at the current time
step, Γs = ∅, thus, the current slip vector dk+1 must equal the slip vector at
the previous time step dk. Together with the stress condition, T+ = −T−,
the number of unknowns equals the number of equations and we have a
closed system. After we obtain the displacement uk+1, we can calculate the
stress, and from this traction, on the fractures from Equation (2). We check
if the Mohr-Coulomb criterion (5a) is satisfied; if it is, our assumption that
we have no slip is good, and we continue to the next time step. If the con-
dition is violated, we update the slip region Γs by including all faces that
violate the condition. We define the “excess shear stress” to be the residual
of Equation (5c),

Te = |T s| − µd(Tn − p) x ∈ Γs,

where we use the dynamic coefficient of friction. From Equation (5d), we
know that the slip should be in the direction of shear stress, but the variable
χ is unknown. We make a simple estimate of this distance by assuming that
all degrees of freedom are fixed except on a single face Fi on the fracture.
The displacement gradient ∇ui at this face then grows linearly with slip
distance, and from Equation (2) we obtain that the corresponding change in
shear traction grows as

∆T s ∼
G

|Fi|1/2
di,

where |Fi| is the area of the face. For each face that is slipping, we therefore
set our new guess for the slip vector to

dk+1
i = dki +

γ|Fi|1/2

G
Teτ ,

where the constant γ is a dimensionless numerical parameter which should
be chosen of the order of magnitude 1 and τ the tangential vector pointing
in the direction of maximum shear traction. We now have managed to reduce
the equations to a linear system, but its computational cost is still high as the
linear system is about three times as large as the system for the fluid flow.
Choosing the optimal step length parameter is therefore crucial to obtain
a viable scheme. After updating the slip distance for all faces violating the
Mohr-Coulomb criterion, we go back to solving Equation (2), and iterate in
this way until Equation (5a) and (5c) is satisfied. Note that we might update
the slip distance for a fracture face several times per time step before the
excess shear stress is reduced to zero.

5 Numerical Results

In this section, we will present simulations of two different reservoirs, one
with a single fracture, and the second with several fractures.
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The purpose of the first example is twofold; we wish to validate that
the slip length in fact scales with shear modulus and the mesh size, and we
will try to find an optimal γ. Meshes of two different sizes are used, one
fine and one coarse, and two different shear modulus parameters G. We will
vary γ and count the number of iterations per time step and look at the
error in approximating Equation 5. We stop the iteration procedure when
Te/G < 1e−5. The geometric domain is described by a single circular fracture
with a radius of 1500 m. Fluid is injected at the center of the fracture at a
constant rate of 1 L/s.

The total number of iterations at each time step is shown in Fig. 2. The
number of iterations is relatively low at the beginning of the injection, but
increases with time. At the first time steps, only a few cells in the vicinity
of the injection cells slip. As the pressure front moves radially out from the
center, more cells slip at each time step. When several cells slip in the same
region, the assumption we made when updating the slip distance becomes
more erroneous, and we need additional iterations to reach the stop crite-
rion. For the coarse grid, the slip is more or less limited to one or two rows
of cells around the pressure front, so the iteration numbers stay low. For the
fine grid many more cells slip, which causes the number of iterations to in-
crease drastically. Increasing the step parameter γ does as expected reduce
the number of iterations. However, as γ increases, the overshoot of the slip
distance can also increase (meaning that the excess shear stress Te becomes
negative). For the fine grid, we did not include a simulation of γ = 4 as the
scheme did not converge for this value. The maximum overshoot error |Te|/G
were on the order of magnitude 1e−4 for γ = 3, 4 and 1e−5 for γ = 2. Typ-
ically, the error for only one or two cells came close to the maximum value,
while the error for the other cells were much smaller.

In the second case, we apply the algorithm to a small fracture network
of 8 fractures. The size of the fractures varies from a few hundred meters up
to 1500 meters. We inject water at the center of the largest fracture with a
constant rate of 30 L/s for 30 minutes. Fig. 3 depicts the total slip distance at
the end of the simulation. We register slip after the shut-in of the well as the
pressure migrates through the fracture network. At the end time equilibrium
has been reached, and we observe how the slip distance varies significantly
between different fractures. This is due to the fracture’s orientation relative
to the background stress field, and how far they are located from the injection
well.

6 Concluding Remarks

This paper has presented a coupled model of compressible fluid flow, elastic
rock deformation and plastic fracture deformation. A simple iterative scheme
to handle the non-linear coupling between the rock and fracture deformation
were discussed, and we suggested an improvement to this scheme by showing
how the step length parameter should depend on the mesh size and shear
modulus. The numerical results support the choice of step length.
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Fig. 2. Number of iterations needed for each time step to find the slip distance d.
The left and right figures show the number of iteration needed on a fine grid (852
fracture cells) and a coarse grid (226 fracture cell) respectively.
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Fig. 3. Total slip at equlibrium after shut-in of well for case 2. The well is located
at the center of the biggest fracture.
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