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A B S T R A C T

Many view preregistration as a promising way to improve research credibility. However, scholars have argued that using pre-analysis plans in
Experimental Economics has limited benefits. This paper argues that preregistration of studies is likely to improve research credibility. I show that in
a setting with selective reporting and low statistical power, effect sizes are highly inflated, and this translates into low reproducibility. Preregistering
the original studies could avoid such inflation of effect sizes—through increasing the share of “frequentist” researchers—and would lead to more
credible power analyses for replication studies. Numerical applications of the model indicate that the inflation bias could be very large in practice,
and available empirical evidence is in line with the central assumptions of the model.

1. Introduction

Frequentist statistics rely on the assumption that the analysis of an experiment is independent of how the results turn out. If we
regard the estimates as a random draw from some fixed population model, the parameter estimates and p-values will, on average, be
correct (Neyman, 1937). In contrast, if the data analysis is contingent on the data, the p-values and parameter estimates are hard to
interpret (Gelman & Loken, 2014; Simmons, Nelson, & Simonsohn, 2011). A way to ensure that the frequentist assumption holds is to
tie our hands in advance — preregister the choices to be made before the data have been seen.

Researchers have claimed that preregistering studies is a major step toward greater research credibility (Munafò et al., 2017; Nosek,
Ebersole, DeHaven, & Mellor, 2018). However, the literature offers little justification for the use of preregistration in Experimental Eco-
nomics. Based on a paper by Brodeur, Lé, Sangnier, and Zylberberg (2016), several prominent researchers have claimed that Experimental
Economics seems to suffer less from p-hacking – selective reporting of statistically significant results – than other applied fields in Economics
(Camerer et al., 2016; Coffman & Niederle, 2015; Maniadis, Tufano, & List, 2017). If researchers do not selectively report statistically
significant findings, there is no reason for advocating for policies that will force them to tie their hands in advance of the data analysis.
Moreover, Coffman and Niederle (2015) make a theoretical argument that preregistration of studies offers limited benefits, except for
conducting replication studies. They argue that preregistration would have a small effect on the conditional probability that published
significant findings are true, and that scientific beliefs typically rapidly converge to the truth even in absence of preregistration.

This paper offers a theoretical justification for preregistration in Experimental Economics and argues that available empirical
evidence supports this theoretical account. I present a simple model in which the research community is populated by agents who
may report their results unconditionally or conditionally on statistical significance and show that greater reliance on preregistration
improves the estimation of the effect sizes through increasing the share of “frequentist” researchers. As replicators are likely to
estimate statistical power based on the published effect sizes, preregistration is therefore also expected to improve reproducibility
rates. Numerical illustrations show that the bias from effect size inflation may be very large in practice.

The model assumes that researchers access many possible tests of the same hypothesis, that some fraction in the population selectively
report their main findings and that the statistical power is low on average. Empirical evidence seems to support these assumptions. First, a
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re-analysis of Brodeur et al. (2016) suggests similar patterns of p-hacking in Experimental Economics as in other applied fields. Second,
recent attempts to quantify statistical power in Economics (Ioannidis, Stanley, & Doucouliagos, 2017; Zhang & Ortmann, 2013) suggest
that studies tend to be underpowered, and attempts to estimate the “inflation bias,” the extent to which published effects are over-
estimated, show that the published effects are inflated by a factor of two or more (Ioannidis et al., 2017). The latter estimate is very close to
the “worst-case” theoretical magnitude of the inflation bias suggested in the numerical applications of the model.

This paper contributes to a small but growing number of studies in the intersection between “meta-research” – the field of research that
studies the institutions and practices of scientific research (Ioannidis, 2018) – and economic theory (Gall, Ioannidis, & Maniadis, 2017; Gall
& Maniadis, 2019; Maniadis et al., 2017). Specifically, this paper is an application of Ioannidis’s (2008) and Gelman and Carlin’s (2014)
ideas to Economics. These papers showed that even if the null hypothesis is false, selective reporting and low statistical power together lead
to highly exaggerated published effect sizes that, in turn, lower reproducibility. Specifically, the contribution of this paper is to put these
ideas into a simple economic model and show that a move toward preregistration within the context of the model may improve re-
producibility through a shift to an equilibrium with a higher share of “frequentist” researchers.

Although there are several applications based on Ioannidis (2005) in Economics (Coffman & Niederle, 2015; Maniadis et al., 2014,
2017), there are, to my knowledge, no applications of the framework presented in Ioannidis (2008). This distinction is important in
practice. Coffman and Niederle (2015) follow Ioannidis (2005) model setup, where hypotheses are modeled as either “true” or
“false,” and conclude that preregistering studies offers little benefit to experimental economists because it has little effect on the
probability that a significant finding is true, and beliefs tend to converge to the truth even in absence of preregistration of studies. In
contrast, I adopt the focus on effect sizes taken by Ioannidis (2008) and reach the opposite conclusion. A move toward more pre-
registration will, in general, improve the credibility and reproducibility of published results through reducing effect size inflation and
improve power estimates based on published effect sizes. Importantly, Bayesian updating in this setting rapidly leads to convergence
on a true belief that the null hypothesis is false both when effects are inflated and unbiased — showing that correct belief formation is
not necessarily an argument against preregistration of studies. Thus, this paper is in line with the recommendation not to always treat
research evidence as “true” or “false”(McShane & Gal, 2017): A finding may be “true” but still misleading.

This paper proceeds as follows. Section 2 presents a simple economic model of the reporting process of main experimental
findings and shows that given this model setup, greater reliance on preregistration would improve the quality of our estimates of
treatment effects and improve reproducibility through more accurate power estimates. Using numerical illustrations for a specific
assumed probability distribution, I show that the bias in the absence of preregistration may be very large in practice and illustrate
how belief formation is affected in different scenarios. In Section 3 I discuss how the key assumptions of the model fit with available
empirical evidence. Finally, Section 4 concludes.

2. Theoretical framework

2.1. Inflation of effect sizes

Suppose researchers want to infer whether an effect exists ( 0) or not =( 0) and aim to estimate the size of the true effect.
Each researcher accesses multiple possible choices of test results of the point null hypothesis that = 0 and parameter estimates from
some set and decides which of these possible choices to report as her main finding. The set can be considered a set of realized
draws from some underlying “latent” joint distribution of estimates and test results. We denote by f t( , | ) the latent joint dis-
tribution of the test results and estimates with correlation , conditional on the true value , which is normalized to be positive. The
estimate may be thought of as measuring some treatment effect of interest in a randomized experiment, which ensures that the
unconditional expectation of is equal to the true value . Denote by V the number of available tests for which >t t| |

¯k (the test is
statistically significant) and denote by <Pr t t(| | ¯ )k the type II error probability for test k. For K independent tests, the probability of at
least one correct rejection is

= <
=

V t tPr( 1| ) 1 Pr(| | ¯| ),
k

K

k
1 (1)

where <= t tPr(| |
¯
)k

K
k1 is the joint probability of only making type II errors, which converges to zero as K .1 We will assume K is

sufficiently large so that =VPr( 1| ) 1. Researchers access at least one possible test that rejects the null hypothesis.2 One in-
terpretation of this assumption is that we simply assume the underlying hypothesis being tested is somewhat “flexible”, and there are
many ways of rejecting the null hypothesis if so desired. This interpretation captures what Simmons et al. (2011) refer to as “re-
searcher degrees of freedom” and Gelman and Loken (2014) call the “garden of forking paths”: Researchers typically have at their
disposal at least one possible test that would corroborate their underlying theory. Another way to make sure to access enough choices

1 Suppose that < < <t t a k{Pr(| | ¯ )| } 1k k . Then =lim a( ) 0,K
K which implies that < ==lim t t[ Pr(| | ¯| )] 0.k k

K
k1 This result does not rely

on the independence assumption and could be extended to conditionally dependent tests. For independent tests, convergence is fast; for only 20
independent tests and assumed power at 20%, Eq. (1) yields a 98.8% chance of at least one statistically significant test. For dependent tests, the
convergence depends on how correlated the tests are.
2 In our model setup, the choice set generally contains different choices for each researcher as each possible choice is a random draw from some

joint probability distribution. However, this does not matter in practice as long as we assume that each researcher has a sufficient number of choices
so that at least one statistically significant result is available.
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is to conduct multiple experiments testing the same hypothesis.
I assume that the researcher reports a single result ( t, )k k . As a simplification, I consider this choice as a choice between two

possible reporting strategies: The researcher can report her parameter estimate either unconditionally and choose a random result or
conditionally on statistical significance and report an estimate for which >t t

¯k . The expected value of the effect across researchers
who report unconditionally is then =E( )k whereas the expected value of the effect across researchers who report conditionally on
the test passing the threshold of statistical significance is written as = >: E( |t t̄)T

k k . The assumptions behind the selective reporting
strategy conform to standard models of publication selection that assume selective reporting follows a one-sided form of “incidental
truncation” where the reported effect is selected subject to the value of a test statistic passing some threshold in a desirable direction
(Stanley & Doucouliagos, 2013).

I assume that the expected utility gain from choosing a strategy of selective reporting, relative to choosing an unconditional
reporting rule, is =u b . Here, b +b b[

¯
, ¯] is a fixed material benefit parameter, and +[¯ , ¯] is the subjective cost of

the selective reporting strategy, with corresponding cumulative distribution function G ( ). The term b may be regarded as a fixed
incentive parameter that captures the fact that behaving according to a selective reporting rule may benefit researchers in material
terms through the increased chance of a good publication, while is the subjective cost component that captures that some re-
searchers may experience a cost from deviating from an unconditional reporting rule.3 While b in reality will be a function of a vector
of policy variables, Db b b: [

¯
, ¯], we will for notational convenience treat it as a parameter that is set exogenously by an agent

outside of the model. Thus a higher b will in reality reflect a chosen policy vector D1 such that >D Db b( ) ( )1 0 where D0 was the initial
policy vector before the policy change.

This utility function is adopted from the literature on cheating behavior (Andvig & Moene, 1990; Brocas & Carillo, 2018; Tirole,
1996), which, in our context, would be understood as “p-hacking” (Simmons et al., 2011). However, it is also possible to make data-
contingent choices without consciously looking for statistically significant results. The researcher may simply intend to describe the
data in the best possible way and ends up conditioning on statistical significance (Gelman & Loken, 2014). For this reason, I choose
the neutral term “frequentist” for a researcher who reports unconditionally and I choose not to put a particular label on researchers
who report conditionally on statistical significance.

In the setup above, researchers may choose a strategy of selective reporting and gain b or choose to report their main result
unconditionally on the observed data and gain zero. Thus, researchers will choose to be “frequentist” if > b. We denote by the
subjective cost parameter for the marginal agent who is indifferent between the two strategies ( =b ) so that in equilibrium the share
of frequentist researchers is determined by the complementary cumulative distribution function = >Ḡ ( ) Pr( ). A fraction Ḡ ( )
chooses to report unconditionally, and a fraction G1 ¯ ( ) chooses a strategy of selective reporting. Note that an increase in
b—increasing the incentives to choose a strategy of selective reporting —lowers the share of agents choosing to engage in “fre-
quentist” reporting of results ( < 0G

b
¯ ( ) ).

The mean effect reported in the literature is a weighted sum of the expected estimates reported by the two types of researchers.
We can express the mean effect as follows, where Ḡ ( ) is the share of “frequentist” researchers:

= +G G¯ ¯ ( ) [1 ¯ ( )] .T

Given the simple model outlined here, we may immediately establish an important result.

Proposition 1. Suppose > 0. Then the inflation bias, ¯ , is decreasing in Ḡ ( ), the share of frequentist researchers.

Proof. Write the inflation bias as

= = G¯ [1 ¯ ( )]( )T

Now consider two arbitrary distributions of the frequentist types in the population, Ḡ ( )0 and Ḡ ( )1 , with >G G¯ ( ) ¯ ( )1 0 . The difference
in inflation bias is given by

= =G G G G[1 ¯ ( )]( ) [1 ¯ ( )]( ) [ ¯ ( ) ¯ ( )]( )T T T
1 0 1 0 0 1

As T is an incidentally truncated mean and the correlation between t and is > 0, truncation from below pushes the sampling
distribution to the right; thus, >T . As <G G¯ ( ) ¯ ( ) 00 1 by assumption, the difference ( )1 0 is strictly negative. Thus, the inflation
rate is strictly lower for >G G¯ ( ) ¯ ( )1 0 .

Preregistration policies could be seen as inducing an exogenous decrease in b, the expected benefit of selective reporting, and
therefore a corresponding increase in Ḡ ( ), improving parameter estimation. One example of such a preregistration policy is for a
journal to adopt the format of a “registered replication report” where the journal commits to publishing based on a pre-analysis plan
and reviewers make sure that this plan is followed (Simons, Holcombe, & Spellman, 2014).4 Such a policy would reduce b through
lowering the set of journals that publish results based on a strategy of selective reporting, and would increase Ḡ ( ) as the critical
would now be lower for an agent to prefer unconditional reporting over a strategy of selective reporting.

3 The model abstracts from strategic interaction among agents involved in the publication process, which would be a more realistic way of
modeling the reporting process but is beyond the scope of the present paper.
4 An alternative model setup would be to assume that is endogenous; for instance, the aversion to selective reporting may be driven by social

norms in the profession. In that case, one could obtain a move toward more preregistration through means other than changing the material
incentives associated with selective reporting.
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As the inflation bias is zero only for =Ḡ ( ) 1, it also follows directly from the above that replicators who estimate the statistical
power based on previously reported effect sizes will, on average, condition on a false assumption that the underlying effect is larger
than the true effect . Therefore, replicators will in general tend to overestimate the statistical power of the replication study.5

Proposition 1 ensures that preregistration policies that reduce the incentives towards selective reporting lead to an improvement
in estimation of effect sizes. However, this is not in itself informative about the size of the inflation bias. To illustrate how big the
inflation bias may be in practice, I impose some specific distributional assumptions on the latent density f t( , | ) and show the
inflation bias numerically for different assumptions in the share of frequentist researchers in the population. I assume that each
estimate is normally distributed; thus, N( , )Nk

2 2
where is a known standard deviation common to an experimental treatment

and a control group, and is the true treatment effect in the study population. I assume a sample size of N=100 in each treatment
group in some initial study; thus, the total sample size is 200, which gives a statistical power of 20.5% for a true effect size of 8
percentage points ( =0.08) and a common standard deviation of = 0.5 assumed known to all researchers. In this setup, the formula
for an incidentally truncated random variable yields = +T

N
2 ( )

1 ( )
2

where (.) and (.) are the probability density function
(PDF) and the cumulative distribution function (CDF) of the standard normal distribution, and is the value of the Z-statistic at which
truncation occurs (Greene, 2012, p. 913). Inserting a truncation point of = [1.96 0.08/SE( )] for the Z-statistic that would make
the estimate statistically significant I obtain = 0.1783.T 6

I also display the results from hypothetical power calculations carried out by replicators who draw upon previously published results
when determining their sample size. As the standard deviation is assumed common to the control group and the treatment group and
known, I assume that the replicators estimate their necessary total sample size based on a z-test using the formula = ( )N 2.8

¯
2
(e.g.

Gelman & Hill, 2007, p. 443). The true required sample size is, however, calculated by inserting the true effect in the above formula.
Table 1 displays the mean reported effect for different shares of frequentist researchers, the sample size estimated to yield 80% power of
a replication and the true power given this estimated sample size.

Table 1 shows that in a low-powered setting, the inflation bias is generally sizeable unless the share of frequentist researchers is
very high. In the worst-case scenario, the reported effect will be, on average, 2.2 times as high as the true effect, and researchers who
estimate the power of a replication study based on this effect will set a sample size that in reality gives them only 24% power. Thus,
only 24% of replications would actually succeed in obtaining a statistically significant effect in the direction of the original study –
one of the key measures of reproducibility used in recent replication studies (Camerer et al., 2016, 2018). Even when the share of
frequentist reporting is high ( =Ḡ ( ) 0.6), the mean effect is still 1.5 times higher than the true effect, and the power is estimated to
80% with a sample size of 552 subjects while the true power is just 46.8%. Thus, in this low-powered setting a move toward full
formal preregistration would lead to major improvement in the expected reproducibility rate.

The results shown in Table 1 depend on the assumptions made about statistical power. If the statistical power in the original study
is high (80%), then the inflation bias will generally be very small even in the worst-case scenario with only selective reporting. The
reason is that for a constant and conventional test statistics (e.g. the t-test), an increase in sample size leads to higher values of the
test statistic for lower values of the estimate. The truncated sampling distribution would then approach the “frequentist” sampling
distribution as N , and even replicators who base their power estimates on selectively reported estimates would obtain quite
accurate power estimates. Table A.1 in Appendix A illustrates how the conclusions in Table 1 change when we instead consider a
scenario with statistical power equal to 80%; in this high-powered setting, there is little to gain from promoting preregistration
policies as the scope for improvement of effect size estimation is small. However, it can be shown that as long as the statistical power
is below about 50%, the sampling distribution of only statistically significant effects will be different enough from the unconditional
sampling distribution that the difference between the two distributions will be large in practice (Gelman & Carlin, 2014).

2.2. Belief formation

A possible argument against preregistration is that Bayesian updating rapidly leads to a true belief that 0 even in its absence
(Coffman & Niederle, 2015). However, beliefs will gradually converge to a true belief on the hypothesis that 0 regardless of
whether effect sizes are unbiased or inflated. Thus, it does not follow from the fact that beliefs adjust quickly to the truth that
replications can substitute for preregistration. To see this, I outline a simple extension of the model of belief formation considered in
Coffman and Niederle (2015). The model is intended to describe a setting where no researchers preregister their studies, but they
engage in conceptual replications of an initial study, maintaining their researcher degrees of freedom. Other researchers observe the
results from each of these studies and update their beliefs using Bayesian updating. The model may not be accurate as a descriptive
model of belief formation, but serves as a useful benchmark for showing that correct belief formation on a binary hypothesis may

5 This assumes that replicators estimate power based on the assumption that the underlying latent distribution that the data are drawn from
belongs to a family of probability distributions satisfying the monotone likelihood ratio property, in which case the statistical power function will be
increasing in the effect size. This will be the case for common parametric tests such as the t-test or the chi-squared test, but may not hold if
replicators plan to use a non-parametric test and specifically try to estimate the power of that test.
6 The effect size needs to be 1.96 standard errors away from zero to be statistically significant. As the estimate is assumed to be a mean treatment

effect and the standard deviation is assumed to be known and common to both treatment groups, the standard error of the estimated effect is equal
to

N
2 2

, where N is the sample size in each group. In our context, the effect size needs to be at least 0.1386 to be statistically significant. Using the
cumulative normal distribution, the probability of an estimate higher than 0.1386 is 20.5% for a true effect size = 0.08.
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coincide with highly inflated published effects.
Denote agents’ beliefs about the likelihood that 0, conditional on the data observed in period p as t( 0| ; ).p k k We assume

that belief formation depends only on observed test results and that agents do not distinguish between different tests that are
statistically significant; thus, =t t( 0| ; ) ( 0| )p k k p k and =t t t t t t( 0|| |

¯
) ( 0|| |

¯
) ,p k p l k l. This again captures that the

underlying theory or hypothesis is “flexible” in the sense that many different tests may serve as corroborating evidence for the
association under testing. From Bayes’ rule, the belief updating rule may then be written as

=
×

t t
Pr t t t t

Pr t t
( 0|| | ¯ )

(| | ¯| 0) ( 0|| | ¯ )
(| | ¯ )

.p k
k p k

k

1

(2)

The prior belief (when p= 0) is given by 0. In addition, the probability of the reported test passing the statistical significance
threshold (the “perceived power”) can be expressed as = +Pr t t G Pr t t G V(| | ¯| ) ¯ ( ) (| | ¯| ) [1 ¯ ( )]Pr( 1| )k i where tk is the
reported test result, and ti is a random test. Pr t t(| | ¯ )k is the unconditional probability of a statistically significant effect and is equal to

+t t Pr t t t t[1 ( 0|| |
¯
)] (| |

¯
| ) ( 0|| |

¯
).p k k p k1 1 Note that we assume that agents do not hold correct beliefs about power.

In reality, individual tests are underpowered (we assume that power is equal to 20%), but agents assume that power in each period is
equal to the probability that the reported finding is statistically significant, conditional on . This expression is equal to the actual
power only when =Ḡ ( ) 1 (all researchers are frequentist).

Fig. 1 illustrates the belief updating process for a range of priors 0 in the interval [0, 1] and different assumptions about the share
of frequentist researchers. The results are displayed in Fig. 1.

Fig. 1 shows that for the scenario with full selective reporting of statistically significant findings ( =Ḡ ( ) 0), beliefs converge
rapidly to the true belief that 0. Only three significant tests for the hypothesis are necessary for a posterior belief of 1 that the
association under testing is true. Convergence to this belief is somewhat slower with full frequentist reporting ( =Ḡ ( ) 1) as the
perceived power in this scenario will be equal to true power. Thus, one would expect belief formation to be slower in a scenario
where all researchers preregistered their experiments.

This result shows that beliefs converge quickly on the truth even in a setting where the findings are severely inflated by selective
reporting. Actually, beliefs converge faster the more severe selective reporting there is. Thus, the rapid convergence of beliefs does
not tell us anything about the merits of preregistration: Beliefs will converge on the belief that 0 in the presence and absence of
effect inflation, but the reproducibility rates in these two scenarios will be very different.7

3. Discussion of assumptions

The model and numerical illustrations make three crucial assumptions for effect size inflation to be large. First, it is assumed that
there are sufficient researcher degrees of freedom such that researchers are always able to report their main estimate conditional on it
being statistically significant. Second, it is assumed that individual tests are underpowered to detect the underlying effect . Finally,
it is assumed that there is a sizeable fraction of researchers who actually engage in selective reporting of their main findings. These
researchers preferentially report results that pass the threshold associated with statistical significance.

The assumption that researchers access enough possible tests so that at least one will be statistically significant may seem strong,
but even in a simple economic experiment there is a large number of ways to test the null hypothesis of interest. For only 20 binary
choices, there are more than a million (220) ways to analyze the same data (Ioannidis, 2018). The typical economic experiment
involves many subjective choices: which treatment to focus on, whether to perform a parametric or non-parametric test, and if so,
which one (e.g., linear or non-linear regression model, Mann-Whitney test, or robust rank-order test). The researcher also chooses
what outcome variable(s) to focus on and whether to focus on the main sample or a subgroup (and if so, which subgroup), which
control variables to add in a regression, and what to do with the standard errors. There may exist a reasonable justification for each of
the possible choices, so that researchers do not need to consciously “manipulate” the data to end up reporting their main estimate
conditional on statistical significance (Gelman & Loken, 2014).

Table 1
Numerical application of the model assuming a normal distribution for the estimates and 20.5% power in the original study to detect the true effect.

Ḡ ( ) ¯ Estimated total N to achieve 80% power Actual power

0 0.08 0.1783 248 24.3%
0.2 0.08 0.1586 312 29.3%
0.4 0.08 0.13898 406 36.4%
0.6 0.08 0.11932 552 46.8%
0.8 0.08 0.09966 790 61.4%
1 0.08 0.08 1226 80%

Note: Ḡ ( ) is the share of frequentist researchers, is the true effect, and ¯ is the mean reported effect given the share of frequentist researchers.

7 In Fig. 1, it is assumed that the power is 20% for individual tests. In a scenario where true power was 80%, convergence to the belief that 0
would be very fast even in the scenario with full preregistration.
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For the assumption of statistical power, a recent study by Ioannidis et al. (2017) uses meta-analytic methods to estimate the
median power in economic research. They find that the median power in Economics is only 18% and argue that this constitutes an
empirical upper bound on true median power as publication bias will lead to overestimation of true effects and therefore, over-
estimation of power. Comparing high-powered and low-powered studies, Ioannidis et al. also suggest that estimates in Economics
tend to be overestimated by a factor of two or more, which closely corresponds to the degree of overestimation in Table 1 in this
paper for the scenario with full selective reporting. In addition, an unpublished study by Zhang and Ortmann (2013) estimates
median power only for Dictator games and finds the median power is less than 25%. These power estimates are very close to the
assumption made in the numerical applications of the model illustrated in Fig. 2.8

The assumption that researchers in Experimental Economics preferentially report statistically significant results is potentially
more problematic. Several papers (Camerer et al., 2016; Coffman & Niederle, 2015; Maniadis et al., 2017) cite Brodeur et al.
(2016)—a study of 50,000 hypothesis tests published in the American Economic Review, the Journal of Political Economy, and the
Quarterly Journal of Economics in the time period 2005–2011—as evidence that Experimental Economics does not suffer from “p-
hacking” because there is little evidence for jumps in the distribution of p-values for randomized trials around the cutoff associated
with statistical significance. Thus, in terms of the model considered in this paper, we may already be in an equilibrium with close to
all researchers being “frequentist” even in the absence of formal preregistration. However, the lack of p-hacking for all randomized
trials does not in itself constitute evidence against the hypothesis of p-hacking in Experimental Economics as the Brodeur et al. (2016)
analysis does not distinguish between lab experiments and field experiments. Therefore, I re-analyze the data splitting the Brodeur
et al. data into lab experiments and field experiments. Fig. 2 displays the results.

The formal accounting method proposed by Brodeur et al. (2016) cannot be applied separately to the experimental data. Thus, we
cannot formally test for p-hacking for these data. However, visual inspection suggests that p-hacking is prevalent in lab experiments,
whereas this “eyeballing” test suggests that field experiments drive the overall smoothness of the experimental data reported in the
final published version.9 This evidence points to the need for systematic data collection of additional experimental papers in
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Fig. 1. Belief updating for different possible shares of frequentist researchers. These illustrations are based on Eq. (2) and the assumption that
statistical power of the individual tests is equal to 20%. The y-axis measures the posterior belief attached to the hypothesis that 0 in period p,

t t( 0|| | ¯ )p k .

8 Similar estimates are reported in other fields, e.g. Neuroscience (Button et al., 2013).
9 A previous working paper version of the paper (Brodeur, Lé, Sangnier, & Zylberberg, 2013) was also divided into lab experiments and RCTs, but

this division seems to have been missed in the subsequent discussion of the paper, perhaps because this split is not included in the final version
(Brodeur et al., 2016).
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Economics to test more formally for excess statistical significance. However, we should at least be skeptical of claims that Experi-
mental Economics suffers less from selective reporting than other fields in Economics.

4. Concluding remarks

Scholars have argued in the literature that preregistration is likely to have limited value in Experimental Economics (Coffman &
Niederle, 2015). However, this paper has shown that under a plausible set of assumptions about the reporting process in experimental
research, correct beliefs that the association is true may coincide with low reproducibility due to inflated effect sizes in the published
literature. Preregistration policies, e.g. allowing for a publication format where the journal commits to publishing a paper based on an
ex-ante analysis plan (e.g. Simons et al., 2014), will reduce the incentives to selectively report significant findings through restricting
the set of possible target journals for such a reporting strategy. The reduction in incentives will lead to a larger fraction of “fre-
quentist” researchers and improved effect sizes, leading replication researchers to more accurately estimate statistical power.

One interpretation of the model and available empirical evidence is that experimental economists should aim to put in place
incentives for formally preregistering studies. However, the numerical illustrations of the model also show that in a research en-
vironment with only high-powered studies, preregistration would have a small influence on the inflation bias as even findings
reported conditional on statistical significance would be close to the true effect. Thus, an alternative solution to recommending
preregistration is for experimental researchers to aim to increase statistical power. A problem with this alternative solution is that we
cannot test whether such an attempt will succeed. As power depends on the true effect, which is always unknown, there will always
be a risk of overoptimistic power calculations. However, both policies that aim to increase statistical power and policies promoting
preregistration are expected to have a positive effect on the reproducibility of experimental research.

A clear drawback of the simple model considered in the present paper is that it only allows for two possible choices – un-
conditional reporting, or reporting results conditionally on obtaining statistical significance. In reality, it is possible that a pre-
registration policy that reduces the incentives to engage in selective reporting will just lead agents towards other and more serious
forms of undesirable behavior, such as fabricating data. A more sophisticated, game-theoretic model of the publication process by
Gall and Maniadis (2019) studies these kinds of possible strategic spillovers between choices following a transparency policy in the
context of false positive findings. They show that across several model specifications, provided the psychological cost associated with
severe misconduct is sufficiently high, policies that aim to reduce mild misconduct will lead to a reduction in overall misconduct.
Moreover, removing “mild misconduct” from agents’ choice sets tends to shift agents’ behavior towards no misconduct rather than

Lab and field experiments     Other data 

Field experiments Lab experiments

0

.1

.2

.3

.4
D

en
si

ty

0 1.96 10
z-statistic

0

.1

.2

.3

.4

D
en

si
ty

0 1.96 10
z-statistic

0

.1

.2

.3

.4

D
en

si
ty

0 1.96 10
z-statistic

0

.1

.2

.3

.4

D
en

si
ty

0 1.96 10
z-statistic

Fig. 2. Distribution of (de-rounded) z-statistics reproduced from Brodeur et al. (2016), by data type. The lines are kernel density estimates.

E. Strømland Journal of Economic Psychology 75 (2019) 102143

7



severe misconduct. Extending the model of effect size inflation considered in the present paper to a richer strategic setting such as the
one explored in Gall and Maniadis (2019) is a promising venue for future work.

Another drawback of the model is that it does not explicitly distinguish between preregistration policies per se and policies that
require authors to be more transparent in their reporting of the analyses they have done along with the published paper (Simmons
et al., 2011). Like a preregistration policy, such a “transparency policy” could also be viewed as reducing the expected benefits of
selective reporting and thereby increase the share of frequentist researchers. In the model, these two policies could be interpreted as
two possible means of obtaining the same end. A preregistration policy could be seen as an “ex ante” transparency policy, aiming to
ensure that the analysis plan is actually adhered to ex post. Future work – theoretical and empirical – should aim to discuss the
relative costs and benefits of ex ante versus ex post transparency policies in improving effect size estimation.

Finally, it could be argued that the numerical applications of the model in Table 1 implicitly assume that replicators are somewhat
“naïve,” in the sense that they systematically base their power estimates on previously published effect sizes without taking into
account the possibility for inflated effects. This is apparently at odds with evidence from expert surveys and prediction markets
showing that researchers are surprisingly accurate in judging which results will replicate or not (Camerer et al., 2016, 2018; Dreber
et al., 2015; Forsell et al., 2018). However, systematic overestimation of power may be entirely consistent with perfectly informed
replicators who behave rationally according to incentives. To see this, suppose that to get a replication study published a replication
team needs to demonstrate that the replication study has at least 80% power to detect the original effect and that beyond this point,
increasing the sample size has no effect on the probability of getting the replication study published. Then the optimal sample size
rule for replicators will be the minimal sample size that is sufficient to achieve 80% power to detect the original effect, as further
increases in power are likely to be very costly.

Although empirical evidence is in line with the suggestion that preregistration potentially offers a large reduction in the inflation
bias, there is not enough direct evidence to draw strong conclusions. This suggests two important implications for future empirical
research. First, researchers should aim to inquire further into the extent of selective reporting in Experimental Economics, perhaps by
collecting more data from strong field journals that publish lab experiments and testing for excess significance in these journals.
Second, researchers should aim to estimate statistical power specifically for Experimental Economics, as existing estimates may not
be representative of power for laboratory experiments and the three journals reported in Brodeur et al. (2016) constitute only a small
fraction of all lab experiments. More evidence along these lines would help us make a better informed decision about whether to
recommend preregistration of all studies.

Appendix A

See Table A1.

Appendix B. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.joep.2019.01.006.

Table A1
Numerical application of the model assuming a normal distribution for the estimates and 80% power in the original study to detect the true effect.

Ḡ ( ) ¯ Estimated total N to achieve 80% power Actual power

0 0.08 0.09 968 70.16%
0.2 0.08 0.088 1014 72.16%
0.4 0.08 0.086 1060 74.04%
0.6 0.08 0.084 1112 76.05%
0.8 0.08 0.082 1166 78%
1 0.08 0.08 1226 80%

Note: Ḡ( ) is the share of frequentist researchers, is the true effect and ¯ is the mean reported effect.
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