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Summary 

Gelatinous zooplankters, also known as jellies, are ubiquitous in the marine pelagic. 

Medusae, siphonophores and ctenophores are voracious predators that can, when 

abundant, have significant structuring effects on the pelagic community. Many jellies 

exhibit opportunistic life history characteristics such as short generation times, 

asexual reproduction or hermaphrodism, high fecundity, rapid growth, and ability to 

exploit high food concentrations effectively. While siphonophores and ctenophores 

are generally holoplanktonic, most scypho- and hydromedusae are meroplanktonic 

with a benthic polypoid stage. These characteristics contribute to the naturally pulsed 

occurrence of jellies in the plankton. In order to assess the role of jellies in the fjord 

ecosystems, information on the identity, seasonal abundance, distribution and 

behaviour of the species constituting the gelatinous community is necessary. This 

thesis attempts to fill in several gaps in knowledge regarding the systematics and 

ecology of gelatinous zooplankton in western Norwegian fjords. In order to do so, 

both net based sampling and remotely operated vehicles (ROVs) have been utilized.  

Seasonal changes in the gelatinous community as a whole as well as the abundances 

of the individual species in Korsfjord and Fanafjord, western Norway, were 

examined. The gelatinous communities showed a clear seasonal succession, with 

maximum diversity and abundance occurring in April-June. Aglantha digitale was 

numerically dominant in both fjords.  Meroplanktonic hydromedusa species appeared 

sequentially and were most common during the summer months. During the winter, 

the siphonophores Nanomia cara, Lensia conoidea and Dimophyes arctica formed 

the bulk of the community especially in Korsfjord. While the two fjords had rather 

similar faunas, they differed in terms of the relative importance of the observed 

groups. Siphonophores were prominent in the more oceanic Korsfjord, while 

Fanafjord was characterized by meroplanktonic hydromedusae. A community of 

deep-water hydromedusae was found at the deeper stations at Korsfjord. Two new 
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species presumed to be members of this deep-water community, Foersteria quadrata 

and Parateclaia norvegica, are described in this thesis.  

The vertical distribution of animals in a fjord has relevance in terms of degree of 

overlap with prey and predator distributions as well as the likelihood of being 

advected from the fjord. Exchange of fjord water is most pronounced in the layers 

occurring above sill depth, while the sill promotes the retention of basin water. The 

holoplanktonic Aglantha digitale and Nanomia cara both seem to facilitate their 

retention in the fjords by residing below sill depth when mature. Younger stages of 

both species are known to have a shallower distribution, and may thus be more 

susceptible to advective transport. 

Comparison with results from the northern portions of the Mid-Atlantic Ridge 

(MAR) show that the same species of planktonic cnidarians (A. digitale, N. cara, L. 

conoidea and D. arctica) dominated the epipelagic both in Korsfjord and the 

corresponding latitudes at the MAR. However, the mesopelagic siphonophores and 

medusae common at the MAR (e.g. Chuniphyes multidentata, Gilia reticulata, 

Pantachogon haeckeli and Aeginura grimaldii) seem to have been unable to colonize 

the fjords.  

The notable exception to the above rule is Periphylla periphylla, a coronate mid-

water scyphomedusa with abundant populations in certain west Norwegian fjords. 

Large P. periphylla in Lurefjord were shown to feed primarily on Calanus spp., but 

also on krill and ostracods. They behaved as ramming predators, approaching their 

prey tentacles first in order to minimize fluid disturbance, and were found to have 

clearance rates comparable with other gelatinous predators of similar size. The 

horizontal and vertical distributions of siphonophores were found to be negatively 

correlated with P. periphylla distribution.  
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1. Introduction 

Gelatinous zooplankton, also known as jellies, is a taxonomically diverse group of 

organisms whose soft bodies consist of at least 95% water. They are often (but not 

always) transparent, and close to neutrally buoyant. Many jellies are 

macroplanktonic, i.e. >2 cm. The high water content facilitates growth with a 

minimal investment in organic matter, and large size increases predation efficiency 

through higher encounter rates with prey (Harbison 1992, Acuña 2001) as well as 

protects from predation by smaller species (Nival & Gorsky 2001). Gelatinous 

zooplankton encompasses, but is not limited to, cnidarians, ctenophores, heteropods, 

pteropods, salps, doliolids, appendicularians, as well as several types of 

meroplanktonic larvae. The organisms dealt with in this study are the planktonic 

members of the group that for historical reasons is jointly referred to as coelenterates: 

the phyla Cnidaria and Ctenophora (Fig. 1).  

Cnidarians and ctenophores are among the major planktonic predators of the pelagic. 

They prey on other zooplankton as well as on fish eggs and larvae, and can have a 

structuring effect on the pelagic community through direct predation as well as by 

competition for food (Alldredge 1984, Purcell 1985, Matsakis & Conover 1991, 

Behrends & Schneider 1995, Purcell 1997, Nicholas & Frid 1999). Abundant 

gelatinous predators have also been implicated in phytoplankton blooms through 

trophic cascading (Lindahl & Hernroth 1983, Verity & Smetacek 1996, Schneider & 

Behrends 1998). Furthermore, the release of nutrients and dissolved organic carbon 

(DOC) by jellyfish may stimulate bacterial production (Hansson & Norrman 1995, 

Riemann et al. 2006, Titelman et al. 2006).  

Many jellies are able to quickly react to changes in resource availability. Short 

generation times, high fecundity, and rapid growth typical of many gelatinous 

zooplankters allow fast population growth under favourable conditions (Alldredge 

1984, Graham et al. 2001). Gelatinous planktivores are also able to maintain feeding 

rates proportional to food concentration over a wide range, allowing them to  
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Fig. 1. Common groups of ctenophores and cnidarians occurring in Norwegian fjords: a) 

scyphomedusa, b) leptomedusa, c) anthomedusa, d) trachymedusa, e) physonect siphonophore, f) 

diphyid siphonophore (polygastric stage), g) lobate ctenophore, h) cydippid ctenophore. Note that 

figures are not drawn to scale.
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efficiently exploit high prey densities (e.g. Alldredge 1984, Båmstedt 1990, Båmstedt 

1998, Sørnes & Aksnes 2004). These life history characteristics may at times result in 

a competitive edge in resource utilization with respect to other, slower growing 

consumers of zooplankton, e.g. many crustaceans and fish (Alldredge 1984), and 

contribute to the naturally pulsed occurrence of many species of gelatinous predators 

in the plankton as well as the extraordinary blooms of jellies frequently observed 

(Arai 1992, Boero et al. 2001, Boero 2002).  

Gelatinous zooplankton has often been considered a cul-de-sac of pelagic food webs, 

channelling energy away from the economically important fish (Verity & Smetacek 

1996). One hypothesis proposes that two major pathways exist in the marine pelagic 

food web: a low energy pathway characterized by small zooplankton feeding on 

small phytoplankton and terminating in gelatinous planktivores, and a high energy 

pathway moving from large phytoplankton, through large zooplankton, to fish (Greve 

& Parsons 1977, Parsons and Lalli 2002, criticized by Longhurst 1995, Mills 1995). 

However, the view of jellies as trophic dead-ends may not be entirely justified. While 

the watery composition of gelatinous animals has been thought to render them 

unattractive to predators (Verity & Smetacek 1996, Robison 2004), jellies may in fact 

be more nutritious than their reputation, with the high water content compensated for 

by higher rates of digestion and assimilation by their predators (Arai 2005). Due to 

rapid digestion and deterioration during fixation processes, the extent of gelatinous 

content in fish stomachs may have been consistently underestimated (Arai 2005). A 

number of fish and other animals are known consumers of gelatinous zooplankton 

(e.g. Davenport 1998, Purcell & Arai 2001, Arai 2005).  

“Working with net-caught specimens is akin to trying to construct a snowball  

after it has hit a wall.”       
        Peter Herring, 2002 

The feature unifying the several taxa encompassed by the term ‘gelatinous 

zooplankton’ is their jelly-like consistency. Consequently, traditional plankton nets 

are generally poorly suited for collecting jellies. Unless special precautions are taken, 
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the animals caught in the net tend to disintegrate and pass through the mesh, fall to 

pieces, or be damaged beyond recognition (Hamner et al. 1975, Larson et al. 1991). 

The emphasis given to net based quantitative zooplankton studies in the 20th century 

has therefore been a major setback for research on gelatinous zooplankton, and has 

led to consistent underestimation of the abundance as well as diversity of gelatinous 

animals (Raskoff et al. 2003, Haddock 2004).  

During recent decades, advances in undersea technology have made in situ work 

feasible. Blue-water scuba diving techniques developed in the 60’s and 70’s (Hamner 

1975, Hamner et al. 1975) and the subsequent development of human occupied 

vehicles (HOVs), remotely operated vehicles (ROVs) and other optical methods such 

as under water video profilers (UVPs) for research purposes has presented scientists 

with an unprecedented opportunity to delve ever deeper to observe pelagic life first 

hand. The ability to observe the animals in their natural environment and to collect 

specimens in good condition has greatly improved our understanding of the ecology 

of gelatinous zooplankton in the midwater realm. One of the main findings has been 

that jellies are more diverse and account for a larger proportion of the mesopelagic 

biomass than previously assumed (Haddock 2004, Robison 2004). It has also become 

possible to observe the detailed vertical distribution (e.g. Mackie 1985, Larson et al. 

1991, paper III), behaviour (e.g. Matsumoto & Harbison 1993, Raskoff 2002, paper 

IV) and species associations (e.g. Drazen & Robison 2004, Gasca & Haddock 2004, 

Raskoff & Robison 2005) of gelatinous zooplankters, impossible to deduct from net 

samples. The ability to capture and bring to surface relatively unharmed specimens 

has allowed scientists to conduct controlled experiments on jellies (e.g. Biggs 1977, 

Bailey et al. 1995). These new techniques have also resulted in a renaissance of 

descriptive taxonomic work, especially for the fragile siphonophores and ctenophores 

(Raskoff et al. 2003, Haddock 2004; e.g. Madin & Harbison 1978, Hissmann et al. 

1995, Matsumoto et al. 2003, Dunn et al. 2005). 
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2. Scope of the thesis 

This thesis attempts to fill in several gaps in the knowledge regarding the systematics 

and ecology of gelatinous zooplankton in Norwegian fjords. In order to assess the 

role of jellies in the fjord ecosystems, information on the identity, seasonal 

abundance, distribution and behaviour of the species constituting the gelatinous 

community is necessary. A one-year study examining the species composition, 

seasonal abundance and succession of the gelatinous fauna in Korsfjord and 

Fanafjord, western Norway, was conducted in order to provide such necessary 

baseline information (Papers I and II). As a by-product of this study, two new species 

of hydromedusae, Foersteria quadrata and Parateclaia norvegica, were described 

from Korsfjord (Paper III). The vertical distribution of animals in a fjord has 

relevance in terms of degree of overlap with prey and predator distributions as well as 

the likelihood of being advected from the fjord. An ROV was used to study the 

vertical distributions of Aglantha digitale and physonect siphonophores in western 

Norwegian fjords (Papers I and II). The ROV was also utilized for an in situ study on 

the feeding ecology of Periphylla periphylla, a coronate midwater medusa 

extraordinarily abundant in certain western Norwegian fjords (Paper IV). Finally, a 

paper on the distribution of cnidarian fauna at the Mid-Atlantic Ridge (MAR) is 

presented for comparison with the western Norwegian fjord fauna (Paper V). 

The rest of this synthesis will focus on gelatinous zooplankton residing in the fjords 

of western Norway and attempt to integrate results from the constituent papers in this 

context. I will first summarize some of the hydrological characteristics of west 

Norwegian fjords relevant to plankton populations residing in fjords (section 3.1), as 

well as give a short overview of prior research on gelatinous zooplankton in 

Norwegian fjords (section 3.2). In a section on the gelatinous fauna of fjords (3.3), 

the biogeographic influences shaping the west Norwegian fjord fauna are outlined 

(section 3.3.1). The differences in the species composition and abundance of 

gelatinous zooplankton between fjords and oceanic North Atlantic (section 3.3.2), as 
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well as the implications of the observed vertical distribution of some of the dominant 

gelatinous carnivores in the fjords (section 3.3.3) are discussed. There is also a short 

section on Periphylla periphylla (3.3.4). Finally, concluding remarks on 

anthropogenic influences on the gelatinous fauna and emerging further questions are 

made (section 4).   

3. Gelatinous zooplankton in west Norwegian fjords 

3.1 Fjord hydrology  

As advective processes may be significant in transporting plankton in and out of 

fjords (Aksnes et al. 1989, Salvanes et al. 1995), it is useful to shortly review basic 

features of fjord circulation. Modifications to the simplified scheme presented below 

can occur due to local characteristics such as the topography of the fjord and 

prevailing winds and tides (Aksnes et al. 1989).  

Fjords in western Norway are often long, narrow and much deeper than the 

continental shelf outside, from which they are separated by a sill of varying depth. 

The fjord waters can, from the surface down, be divided into several distinct layers: a 

few meters thick layer of brackish surface water, a layer of intermediate water below 

this and down to the sill level, and basin water found below sill level (Stigebrandt 

2001, Tande 2001) (Fig. 2). The surface layer of fjords is characterized by an 

estuarine circulation, where fresh water runoff into the fjord drives net transport of 

brackish surface water out of the fjord. Entrainment of the more saline water 

underneath leads to increased salinity of the surface waters towards the mouth of the 

fjord and the formation of a compensation current moving in the opposite direction.  

Water transport in the intermediate layer of fjords along the west coast of Norway is 

primarily wind driven. Southerly winds generate coastal downwelling and inflow of 

water in the upper intermediate layer, while northerly winds result in upwelling and  
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Fig. 2. Longitudinal section of an idealized fjord (modified from AMAP 1998) 

the flushing of the upper intermediate waters out of the fjord, with compensatory 

counter currents forming below (Asplin et al. 1999, Tande 2001). The relative 

importance of water transport in the intermediate layer increases together with sill 

depth and is often dominant (Stigebrandt 2001). 

The exchange of basin water in the fjords is limited by the presence of the sill. 

However, frequent renewal generally does take place as coastal upwelling due to 

north wind causes dense water to rise above the sill depth, often in late winter. Basin 

waters thus generally remain oxygenated (Tande 2001). 

Advection can be an important factor regulating zooplankton abundances especially 

above sill depth. The amount of advected mesozooplankton may at times 

significantly exceed local production, especially in relatively open fjords (Aksnes et 

al. 1989, Salvanes et al. 1995). The deep fjord basins, in contrast, are rather 

conservative environments (Brattegard 1979) and may act as refuges for zooplankton 

populations local to the fjord (Aksnes et al. 1989, Gorsky et al. 2000, Sørnes et al. in 

press).  
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BOX: Note on systematics and nomenclature  

The systematics of Hydrozoa are in a state of change and can appear somewhat confusing 

(Fautin 2002, Collins et al. 2006; the latter provide a comparison of suggested hypotheses 

regarding the phylogeny of medusozoan Cnidaria published since 1940). While there is 

an intuitive division into siphonophores and medusae, the latter of which are often 

referred to as hydromedusae or hydroidomedusae (Bouillon et al. 1992), such a 

dichotomy does not correctly reflect the current understanding of the phylogeny of these 

groups (Marques 2001). Instead, it has been suggested that Hydrozoa should be divided 

into two clades: clade Trachylina, consisting of the groups Limnomedusae, 

Trachymedusae and Narcomedusae (and possibly Actinulidae), and clade Hydroidolina, 

containing the groups Capitata and Filifera (previously jointly considered 

Anthomedusae), Hydridae, Leptomedusae, Laingiomedusae and Siphonophora (Collins 

2000, 2002, Collins et al. 2006). Molecular phylogenetics have also challenged the 

traditional classification within Siphonophora (Dunn & Wagner 2005). Nevertheless, 

although not phylogenetically sound, Hydrozoa is in my thesis for practical reasons 

divided into the conceptual groups siphonophores and hydromedusae. 

The systematic and nomenclatural situation is particularly difficult within the non-

siphonophoran hydrozoans, many of which have a medusoid as well as a hydroid phase. 

Since most researchers have only concentrated on one of the two life stages, two parallel 

taxonomies exist (Bouillon et al. 1992). To further complicate the situation, the 

corresponding hydroids and medusae have in many cases not been matched.  

While it is very exciting that new species of gelatinous zooplankton are frequently 

described, it also presents an extra challenge for those working with these groups: with 

the exception of the recent Fauna of the Mediterranean Hydrozoa (Bouillon et al. 2004), 

little of the ensuing new literature has been collected into comprehensive faunistic 

accounts or identification keys. The situation is especially frustrating with ctenophores, 

for which no good account of diversity exists (but see Phylum Ctenophora: list of all 

valid species names, Mills 1998-present). There are also at least two dozen known but as 

of yet undescribed species of ctenophores, mostly in new genera (Haddock 2004). 

Indeed, readers well versed in the subject will probably go ‘Aha!’ upon reading the 

description of the unidentified cydippid in Paper I.  
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3.2 Overview of research from Norwegian fjords 

Early research on gelatinous zooplankton in Norway focused mostly on faunistics of 

medusae. Studies dating from 1776 to 1921 are reviewed in Les Méduses de la 

Norvège by Kramp and Damas (1925). As well as presenting extensive original 

material covering most of the Norwegian coast, including the description of the deep-

water hydromedusae Calycopsis simplex and Ptychogena crocea form west 

Norwegian fjords, the paper lists the records of medusae from Norwegian waters 

prior to its publication. While not specifically focusing on Norway, several later 

works by Kramp (e.g. 1937, 1947, 1959, 1961) are also significant in describing the 

Norwegian hydromedusan fauna. The coelenterate fauna of Herdla-, Hjelte- and 

Mangerfjord in the vicinity of Bergen has been studied by Runnström (1931) and 

Rees (1938, 1952). Rees (1938) also includes a description of a new species of 

anthomedusa, Thamnostoma russeli, from Herdlafjord. The cnidarian fauna of 

Korsfjord, with emphasis on the seasonal biology of Aglantha digitale, has been 

previously examined by Rasmussen (1971), but his study suffered from 

instrumentation poorly suited for sampling small or fragile gelatinous zooplankton.  

Relatively little work has been done on siphonophores in Norwegian waters. In his 

work Fauna Littoralis Norvegiae Sars (1846) described three new species of 

siphonophores from the vicinity of Florø, western Norway,: Diphyes truncata, now 

known as Lensia conoidea (Keferstein & Ehlers, 1860)1; Diphyes biloba, now 

Sulculeolaria biloba (Sars, 1846); and Agalmopsis elegans. The latter was a 

compound species; While tricornuate tentilla belonging to the species now called 

Agalma elegans (Sars, 1846) were also described, the majority of the description 

pertained to what is now known as Nanomia cara Agassiz, 1865 (Totton 1965). This 

may have caused confusion with later identifications of agalmid physonects from 

                                              

1 Despite the apparently conflicting priority of these names, the European Register of Marine Species 
(ERMS; http://www.marbef.org/data/erms.php) gives Lensia conoidea (Keferstein & Ehlers, 1860) 
as the accepted name for this species, while Diphyes truncata Sars, 1846 is given as its unaccepted 
basionyme. The reasons for this are beyond the scope of this thesis. 
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Norwegian waters. Runnström’s (1931) study from Herdla- and Hjeltefjord included 

siphonophores, and Kramp (1937) also included notes on the distribution of 

siphonophores in Norwegian waters. In recent years, invasions of the southern 

siphonophores Apolemia uvaria and Muggiaea atlantica have been observed in  

western Norway; both species caused great problems for fish aquaculture during their 

mass occurrences  (Båmstedt et al. 1998, Fosså et al. 2003).  

During the last decades research has been geared towards the ecology of gelatinous 

zooplankton. The biology of Aglantha digitale has been studied in Oslofjord 

(Smedstad 1972) and Korsfjord (Rasmussen 1971). The composition and diet of 

cnidarian zooplankton as well as the potential predatory effect of A. digitale close to 

what was assumed to be its annual maximum abundance in Hardangerfjord were 

studied by Pagès et al. (1996). They concluded that while the predatory effect of A. 

digitale on the copepods (up to 5.7 % and 8.7 % of the total population of Temora 

longicornis and Oithona similis, respectively, removed daily) may not have been 

enough to reduce the standing stocks, the combined predatory effect of the total 

cnidarian zooplankton may have been significant, and that the abundant Obelia spp. 

could have an impact on the microplankton community. Gorsky et al. (2000) utilized 

an underwater video profiler (UVP) to compare the vertical distribution of 

macrozooplankton in Sognefjord, Lurefjord, Herdlafjord and Korsfjord in western 

Norway, finding significant differences between fjords in the relative abundances and 

vertical distribution of six main groups including ctenophores, siphonophores and the 

scyphomedusa Periphylla periphylla. The latter species has in some western 

Norwegian fjords developed extraordinarily abundant, persistent populations, which 

have been subject to several investigations in recent years (see section 3.3.4). Other 

research on scyphozoans includes several studies on the distribution and trophic 

biology of the jellyfishes Aurelia aurita and Cyanea capillata in Norwegian waters 

(e.g. Matsakis et al. 1993, Båmstedt et al. 1994, Berstad et al. 1995, Martinussen & 

Båmstedt 1995). Several papers have also examined the trophic and functional 

ecology of the ctenophores Pleurobrachia pileus and Bolinopsis infundibulum 
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(Falkenhaug 1996, Båmstedt 1998, Sørnes & Aksnes 2004, Båmstedt et al. 

submitted). 

3.3 Fjord fauna 

3.3.1 Biogeography 
The western coast of Norway belongs to the East Atlantic boreal biogeographic 

region. The hydromedusan fauna within this region is relatively uniform, with the 

North Sea containing the highest number of species and diversity decreasing towards 

the north (Kramp 1959). The hydromedusan fauna of the North Sea is a mixture of 

northern and southern species, but with a predominance of southern species and only 

a few primarily Arctic ones (e.g. Bougainvillia superciliaris and Euphysa tentaculata, 

the latter of which is an Arctic survivor in the Baltic and Kattegat (possibly also 

Korsfjord, paper I). Further north along the Norwegian coast, in the Barents Sea 

region, there is a clear influence of Arctic species (Kramp 1959).  

Cataloguing of benthic organisms found on the Norwegian coast has shown that 

Bergen is situated in a region of high diversity (Brattegard & Holthe 1997). Several 

species of hydromedusae have the northern limits of their distribution around Bergen 

(Kramp 1959).  There are also some hydromedusa species that have only been found 

in the vicinity of Bergen, e.g. Thamnostoma russeli and Margelopsis hartlaubi 

(Kramp 1959), as well as Foersteria quadrata and Parateclaia norvegica (paper III), 

although this might be an artefact due to the town historically being a centre for 

marine research.  

In addition to the permanent fauna of the region, several southern visitors are carried 

up to the Norwegian west coast by the North Atlantic Drift (NAD). In recent years, 

these have included the siphonophores Apolemia uvaria and Muggiae atlantica as 

well as the hydromedusa Pandea sp. (Båmstedt et al. 1998, Fosså et al. 2003, Fosså 

quoted in Hansen 2004). Sulculeolaria biloba described from waters close to Florø in 

western Norway by Sars in 1894 may represent a historical example, as S. biloba in 

fact is a warm water species rarely encountered in temperate waters (Kirkpatrick & 
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Pugh 1984). The sporadic appearance of such visiting species is probably dependant 

on variations in the flux of Atlantic water to the Norwegian coast (Båmstedt et al. 

1998, Edwards et al. 1999).  

3.3.2 Species composition and abundance 
Holopelagic trachy- and narcomedusae tend to be more oceanic in distribution than 

hydromedusae with a benthic stage (Kramp 1959, Goy 1991) and siphonophores are 

also considered to be a predominantly oceanic group (Kirkpatrick & Pugh 1984). 

Even though Korsfjord and Fanafjord were rather similar in terms of their faunas, the 

relative importance of the observed groups differed between the two fjords. Korsfjord 

was clearly the more oceanic of the two fjords, with siphonophores accounting for a 

significant portion of the gelatinous zooplankton, while Fanafjord, located further in 

in the fjord system, was more characterized by meroplanktonic hydromedusae (Paper 

I). Although the same species – Aglantha digitale, Lensia conoidea, Dimophyes  

Fig. 3. Percentage of observed species belonging to the different hydrozoan groups in Fanafjord and 

Korsfjord (Paper I) and the different water masses along the northern Mid-Atlantic Ridge (Paper V). 

MNAW = Modified North Atlantic Water, SAIV = Sub-Arctic Intermediate Water, NACW = North 

Atlantic Central Water. The two MNAW stations were located at ca. 60º N, i.e. approximately same 

latitude as Bergen. 
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arctica and Nanomia cara – were numerically dominant both in Korsfjord (Papers I 

and II) and at the Mid-Atlantic Ridge (MAR) stations located at corresponding 

latitude (ca. 60º N) (Paper V), the rest of the fauna was rather different in its 

composition (Fig. 3). These differences in the species composition were especially 

noticeable when considering mesopelagic animals. Mid-water depths at the MAR 

sites were numerically dominated by siphonophores, including Chuniphyes 

multidentata and Gilia reticulata in addition to the above mentioned primarily 

epipelagic species. Mesopelagic hydromedusae found at the MAR  mostly belonged 

to trachy- and narcomedusae. These mesopelagic siphonophores, narcomedusae and 

trachymedusae observed at the MAR were generally not encountered in the fjords 

(with the exception of A. digitale). Instead, primarily meroplanktonic deep-water 

hydromedusae inhabited the deeper stations of Korsfjord, and presumably form an 

important component of the mesopelagic community there (Papers I and III). Similar 

observations exist from other west Norwegian fjords2 (Kramp & Damas 1925, Kramp 

1959). The differences in the deep faunas probably partly arise from the sill acting as 

a barrier for the movement of mesopelagic species, as well as the lack of substrate for 

the benthic stages of the meroplanktonic medusae at oceanic sites.   

Gelatinous carnivores are generally more common in neritic than oceanic waters 

(Alldredge 1984). The average density of planktonic cnidaria in the upper 500 m at 

the Mid-Atlantic Ridge (Paper V) varied between 16-3006 individuals 1000m-3 in 

June 2004 (Fig. 4). The concentrations at the two northernmost stations located at ca. 

60º N were 3006 and 118 individuals 1000m-3. The higher of these values is 

comparable with the levels observed in Korsfjord at the same time of the year in 

2003. However, the majority of the MAR abundances were an order of magnitude 

lower than those observed from the fjords in June. Sampling at the MAR took place 

                                              

2 Kramp (1959) included these species of hydromedusae in so called slope species, or ”species which 
occur in the deep water layers, but near the coast” and are presumably meroplanktonic. It is 
interesting to note that he also points out that several of these species have been found in the deep 
strata of the Norwegian fjords but not in the off-shore waters.  
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Fig. 4. Seasonal changes in the total abundance of gelatinous zooplankton in Korsfjord and Fanafjord 

in 2003 (paper I), with gelatinous zooplankton abundances observed in June 2004 at the MAR (Paper 

V) superimposed. Average and se shown for the Korsfjord stations. 

at a time when gelatinous zooplankton concentrations there may have been close to 

their annual maxima (Stemmann et al. submitted). The maximum concentrations of 

gelatinous zooplankton in the fjords were, however, observed already in early May, 

and the difference in the peak abundances may thus be even higher. 

3.3.3 Vertical distribution 
Examination of the vertical distribution of a few dominant groups of gelatinous 

zooplankton in the fjords revealed that the bulk of mature Aglantha digitale and 

physonect siphonophores resided below sill depth, thus reducing their risk of 

advection from the fjord and enabling the formation of resident populations (Papers I 

and II). However, due to the lower size limit for ROV observations (ca. 1 cm) the 

data is primarily on large, mature specimens. Both younger A. digitale (Russell 1938, 

Smedstad 1972, Williams & Conway 1981, Pertsova et al. 2006) and Nanomia spp. 

(Barham 1963, Rogers et al. 1978, Mackie 1985, Benfield et al. 2003) are known to 

reside at shallower depths than their larger conspecifics. Advective transport during 

earlier ontogenic stages could thus be important in structuring the populations of A. 
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digitale and N. cara. Such transport of larvae would also contribute to geneflow 

between fjord and shelf populations of A. digitale and N. cara. 

Preliminary results (paper II) indicate that the vertical distribution of physonect 

siphonophores in west Norwegian fjords may be affected by the presence of the mid-

water scyphomedusa Periphylla periphylla. 

3.3.4 Periphylla periphylla 
No work on the gelatinous fauna of west Norwegian fjords would be complete 

without mentioning Periphylla periphylla. This beautiful coronate scyphomedusa is a 

cosmopolitan mid-water species that occurs in extraordinary numbers in some 

western Norwegian fjords (Sneli 1984, Fosså 1992, Youngbluth & Båmstedt 2001, 

Sørnes 2005), assuming the position of top predator (Sötje et al. 2007). One 

hypothesis suggests that poor light conditions in certain fjords, e.g. Lurefjord, may 

favour tactile predators like P. periphylla over visual predators such as fish (Eiane et 

al. 1997, Eiane et al. 1999, Sørnes 2005, Sørnes & Aksnes 2006). The persistence, 

easy access and uniqueness of these populations have prompted large amounts of 

research. Our study showed that P. periphylla in Lurefjord were feeding primarily on 

Calanus spp., but also on krill and ostracods (paper IV). The large P. periphylla 

behaved as ramming predators, approaching their prey tentacles first in order to 

minimize fluid disturbance that could elicit an escape response, and had clearance 

rates comparable with other gelatinous predators of similar size (Paper IV, Sørnes 

2005). Recent calculations based on the metabolic demand of P. periphylla and 

observed zooplankton biomass suggest that P. periphylla may be able to exert control 

on its prey populations in Lurefjord (Sötje et al. 2007). Preliminary results suggest 

that P. periphylla has a significant structuring effect on zooplankton composition and 

distribution in the fjords it abounds in (Paper III, Youngbluth & Båmstedt 2001, Sötje 

et al. 2007, Båmstedt et al. submitted).   
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4. Concluding remarks  

The future may well be more gelatinous. In recent years, there have been reports of 

several, presumably anthropogenic changes in gelatinous faunas from around the 

world. One phenomenon observed in many places is the apparent increase in the 

numbers of jellies (Mills 2001, Purcell 2005). Such increases are generally 

considered detrimental due to their adverse effects on fish stocks and fisheries, 

tourism and their tendency to block seawater intakes (CIESM 2001, Boero 2002, 

Lynam et al. 2005, Purcell 2005 and references therein, Attrill et al. 2007). Several 

mechanisms accounting for population increases of gelatinous zooplankton have been 

proposed (see e.g. CIESM 2001). Eutrophication often results in reduced diversity 

but increased biomass of coelenterates (Arai 2001). Increased turbidity reduces light 

and may give tactile gelatinous predators a competitive edge over visual predators 

(Eiane et al. 1999, Aksnes et al. 2004, Sørnes & Aksnes 2004). It has been suggested 

that overfishing may promote increased abundances of jellies through redirection of 

the available energy to gelatinous predators (Mills 1995, Daskalov 2002, Parsons & 

Lalli 2002) as well as a reduction on  predation pressure exerted on jellies by fish 

(Purcell & Arai 2001). A variety of environmental changes resulting in a shift in the 

composition of mesozooplankton prey towards smaller size ranges have also been 

indicated, with the so called “low energy food chains” characterized by small 

flagellates and small zooplankton at the lower trophic levels favouring jellies over 

fish predators (Greve & Parsons 1977, Parsons & Lalli 2002). 

A warming climate may have an effect on the size as well as the composition of the 

gelatinous community. For many temperate species, a warmer climate may lead to 

larger populations and wider distributions (Purcell 2005). Furthermore, the 

opportunistic life history characteristics of many gelatinous predators could mean that 

the predicted increase in phenological mismatch between trophic groups due to 

climate change (Edwards & Richardson 2004) will have less adverse effects on them 

than on organisms with less flexible life cycles. A trend of poleward movement has 
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been detected for copepod communities of the northeastern Atlantic (Beaugrand et al. 

2002) and it has been predicted that a more positive North Atlantic Oscillation 

(NAO) index due to global warming will generally increase gelatinous zooplankton 

abundances in the North Sea (Attrill et al. 2007). Southern visitors may in the future 

be able to establish permanent populations in Norwegian fjords. 

Invasive gelatinous species should also be mentioned. Notorious examples include 

Mnemiopsis leidyi in the Black Sea (e.g. Daskalov 2002, Gucu 2002, Kideys 2002), 

but several less dramatic cases are also known (Purcell et al. 1999, Mills & Rees 

2000, Mills 2001, Väinola & Oulasvirta 2001, Graham et al. 2003, Genzano et al. 

2006). In 2006, while I was putting the finishing touches to this thesis, worrisome 

reports regarding Mnemiopsis leidyi observations from the North Sea and the Baltic 

started streaming in (Faasse & Bayha 2006, Hansson 2006, Javidpour et al. 2006). 

The species was also observed along the southern and western coast of Norway, up to 

the level of Bergen (T. Falkenhaug, pers.com.). Future will show weather M. leidyi 

will become a permanent member of the gelatinous fauna of Northern European 

waters, and with what consequences. 

Potential changes outlined above are likely to be reflected in the future species 

composition and abundance of gelatinous zooplankton in Norwegian waters. 

Although Norwegian fjords are far from pristine, this study contains some of the best 

available baseline information on the coelenterate fauna of Norwegian fjords. 

However, the seasonal studies presented in this thesis only cover a single year, and 

further research is needed to establish how representative this is. Also, this study only 

examined the fauna of a part of a single fjord system in detail, and it is well known 

that species composition can be surprisingly different even in neighbouring fjords 

(Brattegard 1979, Tande 2001). Knowledge on the life history and functional biology 

of several key species of gelatinous zooplankton, e.g. the siphonophores Nanomia 

cara, Lensia conoidea and Dimophyes arctica, in the fjords is also lacking.  

The surprising finding of two new species of presumably deep-water medusae from 

the well-studied Korsfjord (paper III) makes one wonder what might be lurking in the 
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depths of other fjords. The benthopelagic gelatinous fauna and its biology has been 

poorly studies due to methodological constraints (Larson et al. 1992, Robison 2004), 

and represents great potential for new discoveries.  

Finally, of course, there is Periphylla periphylla. Will it persist, will it spread, or will 

it subside and become a queer historic bloom mentioned in a few papers of its time? 

Significant changes in the population structure of P. periphylla have been observed in 

some of the fjords it dominates, indicating that the populations may not be at 

equilibrium (Jarms et al. 1999, Sötje et al. 2007). A recent hypothesis suggests that 

the persistent P. periphylla populations of Lurefjord and Halsafjord may be the result 

of anthropogenically mediated increase in light attenuation (Sørnes et al. in press), 

and P. periphylla populations have lately been discovered from several fjords in 

which it was not observed before (C. Schander and J. Titelman, pers.com.). Also, the 

mechanisms structuring the pelagic community in the Periphylla-dominated fjords 

are far from clarified.   
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