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Abstract We calculate higher-order corrections to the
quenching factor of heavy-quark jets due to hard, in-medium
splittings in the framework of the BDMPS-Z formalism.
These corrections turn out to be sensitive to a single mass-
scale ∼ (q̂ L)

1/2, where q̂ is the medium transport coefficient
and L the path length, and allow to draw a distinction between
the way light, with m < (q̂ L)1/2 (in contrast to massless
m = 0), and genuinely heavy, with m > (q̂ L)1/2, quark jets
are quenched in the medium. We show that the corrections to
the quenching factor at high energies are double-logarithmic
and qualitatively of the same order as for the massless quark
jet.

1 Introduction

Jets are formed in the process of soft and collinear QCD radi-
ation that results in a spray of collimated hadrons and energy
deposition in the detector [1]. In heavy-ion collisions, par-
tons traverse a hot and dense nuclear medium that leaves
an imprint on the subsequent jet formation, for reviews see
[2–4]. Currently it is widely accepted that the BDMPS-Z
formalism of radiative energy loss [5–7] describes the prop-
agation and multiple scattering of quark and gluon jets in the
nuclear QCD medium that is produced in heavy ion collisions
at LHC, for a review see Ref. [8].

Jet quenching is a multi-scale problem. Even for massless
partons, there is a convoluted interplay between the intrin-
sic jet scales, such as the mass of the jet, and the scales of
the medium, including typically the medium transport coef-
ficient and the medium size. For quarks, the non-zero mass
introduces another scale. It is well known that the collinear
divergence is regulated by the characteristic dead-cone angle

�0 = m

E
. (1)
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where m is the mass of the heavy quark and E ≡ pT is the
jet energy. As a consequence of the strong suppression of
gluon radiation inside the dead-cone angle, heavy-quark jets
fragment differently from jets originating from their massless
counterparts or from gluons [1,9–11].

Radiative energy loss was calculated by BDMPS-Z for
massless partons [5–7]. It was first pointed out in Ref. [12]
that the quenching of massive quarks would be different from
massless ones because of the dead-cone effect. The resulting
restriction of the phase space for radiation, and hence energy
loss, leads to a systematically smaller suppression of single-
inclusive hadron spectra the larger the mass of the constituent
quarks. This was followed up by a more thorough analysis in
[13,14], where it was shown that the heavy quark quenching
factors get further corrections when the correct phase space
constraints are taken into account. For results within the limit
of dilute media, see also [15,16]. In summary, based on radia-
tive processes alone one expects a smaller rate of emissions
off massive quarks compared to massless ones, that brings
about a mass-hierarchy of the suppression. In contrast, low-
pT heavy mesons have a similar modification as the pions
[17–19]. This has prompted many investigations of addi-
tional elastic energy loss processes, for a review see [20].
It is however worth keeping in mind that the final suppres-
sion of heavy mesons and heavy flavor jets depends also on
the details of the partonic cross sections and the problem is
still an open one.

While most of the previous contributions has focussed
on small pT , where the cross sections are the largest, we
will mainly focus on the genuinely high-pT regime where
perturbative corrections play a crucial role. This regime is
within the reach of the experiments at LHC, see e.g. [19,21].
Recently higher-order corrections to the quenching of inde-
pendent, massless quark/gluon jets were calculated [22,23].
The results demonstrate how these contribution lead to the
enhanced quenching of massless quark/gluon jets as com-
pared to single partons. The role of in-medium jet splittings
and their color coherence properties has also been empha-
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sized in other contexts, see e.g. [24,25]. Consequently, it will
be of interest to extend the previous efforts to include mass
effects. In this work, we consider higher-order corrections
to the quenching of a heavy-quark jet, i.e. a jet formed as a
result of the fragmentation of a leading massive quark.

Our main result is that higher-order corrections lead to
an enhanced suppression for heavy-quark jets relative to the
leading BDMPS-Z result, corresponding to the quenching of
a single parton. The magnitude is determined by the phase
space available for the radiation of hard gluons within the jet,
and is of similar magnitude as for quark/gluon jets in general.
However, due to the restricted phase space determined by the
dead-cone (1), the mass sets the scale where significant devi-
ations between massive and massless jets can be observed.
We identify a critical mass scale that permits to observe such
discriminating features in the high-pT regime.

The paper is organized in the following way. In Sect. 2, we
introduce the generalized quenching weight and discuss its
expansion in terms of the strong-coupling constant. We calcu-
late the radiative energy loss due to multiple, soft BDMPS-Z
radiation off a single heavy quark and a heavy quark-gluon
dipole in Sect. 3, and obtain the evolution equations and
expressions for related quenching factors. The details of the
calculations of the associated spectra and rates are given in
Appendices A and B, respectively, where the basic formu-
lae for the interference contributions to antenna radiation are
derived in detail. In Sect. 4, we finally map out the logarithmic
phase space for higher-order corrections and present explicit
expressions for the collimator function of heavy-quark jet
together with numerical results. We summarize our results
and give a brief outlook in Sect. 5.

2 Generalized quenching weight

Assuming small energy losses in the medium, ε � pT , and
accounting for a steeply falling hard spectrum, the spectrum
of heavy-quark jets in heavy-ion collisions can be written as

dσ

dp2
T

=
∫ ∞

0
dε P(ε, L|m)

dσ0

dq2
T

∣∣∣∣∣
qT =pT +ε

� dσ0

dp2
T

Q(pT ).

(2)

where dσ0/dp2
T is the Born-level jet production cross section,

P(ε, L|m) is an energy-loss probability distribution associ-
ated with a massive particle and L is the medium length
(below we shall suppress the arguments L and m, unless
it is unclear from the context). The jet suppression factor
Q(pT ), introduced in the second step, is the Laplace trans-
form of the energy loss distribution P(ε), i.e. Q(pT ) ≡
P̃(n/pT ) = ∫∞

0 dε e−nε/pTP(ε),1 where the effective power

1 Assuming that dσ we have only accounted for the first term in the
expansion (1 + x)−n ≈ e−nx (1 + nx2/2 + · · · ).

of the steeply falling spectrum is n = d
d ln pT

ln dσ0
dp2

T
[12,26].

The jet suppression factor permits an expansion in the strong-
coupling constant that accounts for the energy loss of in-
medium jet splittings,

Q(pT ) = Q(0)(pT ) + Q(1)(pT ) + O(α2
s ). (3)

The first term in the expansion is the quenching of the jet
total charge which, for a heavy-quark initiator, is given by
Q(0)(pT ) = P̃q(n/pT ). This distribution is dominated by
soft gluon radiation that transfers energy from the jet axis to
large angles.

The resummation of higher-order terms leads to an addi-
tional suppression factor which was referred to as the “colli-
mator” function in Ref. [23]. These corrections correspond to
the energy-loss of composite, partonic systems created inside
the medium during the jet formation. Hard splittings in the jet
cone can be described by vacuum splitting functions. Hence
the next-to-leading correction to the jet quenching factor,
that involves the (real and virtual) emission and subsequent
quenching of an additional gluon [23], emitted at angle θ and
carrying the light-cone momentum fraction z off a quark with
mass m and light-cone energy E ≡ pT , and takes the form

Q(1)(pT ) =
∫ R2

0

θ2dθ2

(θ2 + �2
0)

2

∫ 1

0
dz

αs

2π
Pgq(z)�(tf � L)

×[Qgq(θ, pT |m) − Qq(pT |m)], (4)

where Pgq(z) is the Altarelli–Parisi splitting function and
Qgq(θ, pT ) is the quenching factor of a composite quark-
gluon system propagating in the medium [22]. This equation
holds whenever the splitting takes place early in the medium
and enforces that the formation time,

tf = 2

z(1 − z)Eθ2 + z
1−z E�2

0

, (5)

to be short compared to that of any process in the medium, in
particular the medium length L . Note that tf is the formation
time of the vacuum hard splitting, not to be confused with
the characteristic time scale related to medium-induced radi-
ation that we in the following will denote by tbr. The angle
θ constitutes the effective opening angle of the jet which is
limited from above by the jet cone angle R.

As will be discussed in more detail later, an important
time-scale is the so called decoherence time td which corre-
sponds to the time when a dipole of size x⊥ ∼ θ t , charac-
terized by its opening angle θ , is resolved by medium fluc-
tuations. The characteristic wave-length of the latter can be
estimated via diffusive broadening as λ⊥ ∼ (q̂t)−1/2, where
q̂ is the broadening coefficient in the medium, also called the
jet quenching parameter. The two length-scales become of
the same order at td ∼ (q̂θ2)−1/3. In this limit, tf � td � L ,
the splitting process completely factorizes out on the level of
the cross section [27] and effectively forms a color-charged
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antenna. This composite system undergoes further medium-
induced radiation in the medium that turns out to be sensi-
tive to its opening angle [22]. However, there can also be
strong cancellations between the two quenching factors in
the squared brackets in (4) for small-angle emissions, when
td > L due to interference effects. This corresponds to split-
tings with θ < θc, where θc ∼ (q̂ L3)−1/2 is the minimal
angle of splittings that are resolved by medium interactions.
The corresponding gluons interact with the medium only via
the total color charge of the jet.

Higher-order corrections naturally follow a similar logic,
becoming sensitive to more complicated radiation patterns.
In the large-Nc limit the picture is simplified further, since
a jet in this case can be decomposed into a set of mutually
independent color-singlet dipoles, whose radiation is added
to that of the total charge radiation [28]. The quenching of
the total charge can therefore be factorized out, and the total
quenching factor becomes,

Q(pT |m) = Qq(pT |m) C(pT , R|m), (6)

where C(pT , R|m) is the collimator function that accounts
for the quenching of higher-order (real and virtual) jet emis-
sions. The resummation of such emissions takes, in the gen-
eral case, the form of a non-linear evolution equation for the
collimator function but, in the limit of strong quenching, one
can neglect all real emissions and resum the virtual terms,
i.e. the second term in the squared brackets of Eq. (4). We
will discuss the collimator in more detail in Sect. 4. In the
remaining part of the paper, we will describe the radiative
quenching of a heavy-quark system and identify the rele-
vant time-scales that play a role in this problem in order to
compute and resum these corrections. We focus on the high-
pT regime and (relatively) large quark masses, where elastic
energy losses, see e.g. [20], can be neglected. Our results
at low-pT are therefore not completely realistic. However,
we emphasize that for genuinely heavy quarks the high-pT

regime (meaning pT � 20 − 50 GeV, see below for more
details) is relevant for the phenomenology of heavy-quark
jets.

3 Computing the quenching factors

In this section we compute the quenching weights, that is
energy loss probability distributions that resum multiple soft,
gluon radiation responsible for transporting energy from the
leading particle to large angles. As mentioned in the Intro-
duction, it will be convenient to work directly in Laplace
space, defined as

P(ε, L|m) =
∫
C

dν

2π i
P̃(ν, L|m)eνε, (7)

where the contourC runs parallel to the imaginary axis in the
complex-ν plane, Reν = const., to the right of any singularity
of P̃(ν, L|m). To recap, P(ε, L|m) acts as a probability dis-
tribution for radiating gluons that in total carry an energy ε off
a particle with massm after propagating through a medium of
length L , and the quenching factor Q(pT ) = P̃(n/pT , L|m).
It will be convenient to define a “regularized” splitting rate,

γi j (ν, t) =
∫ ∞

0
dω (e−νω − 1)�i j (ω, t), (8)

where γi (ν, t) ≡ γi i (ν, t) and we have already anticipated
the possibility of interference contributions between two dif-
ferent particles labeled “i” and “ j” that refer to quarks, anti-
quarks or gluons. Here �i j (ω, t) is the rate of (interference)
emissions in the medium, where the soft gluon is emitted by
a parton i and absorbed by the parton j in the complex con-
jugate amplitude. We derive the generic interference spec-
trum off a color-charged antenna in Appendix A, and derive
concrete expressions for the direct and interference rates in
Appendix B within the multiple-soft scattering approxima-
tion.

3.1 Quenching of a single parton

Let us start by considering a single propagating parti-
cle. Medium interactions can enhance the probability of
gluon emissions. In Laplace space, the resummation of soft,
medium-induced gluons takes the form of a rate equation,

∂t P̃i (ν, t) = γi (ν, t)P̃i (ν, t), (9)

with initial condition P̃(ν, 0) = 1, whose solution is simply

given by P̃i (ν, L) = e
∫ L

0 dt γi (ν,t). For a massive quark, the
emission rate of soft gluons was derived in Eq. (B11), and
reads

�q(ω, t |m) = ᾱ �2
[
−Im ψ0

(
−1 + i

4
ζ 3/2

)
− ζ−3/2 − 3

4
π

]
,

(10)

where ψ0(x) is the digamma function, ᾱ ≡ αsCF/π and the
expression in the squared brackets is a function of the scaling
variable ζ ≡ ω/ω DC, where

ω DC = (q̂/�4
0)

1/3 = (q̂ p4
T/m

4)1/3. (11)

Since medium-induced gluons typically have a branching
time tbr ∼ √

ω/q̂ and therefore an emission angle θbr ∼
(q̂/ω3)1/4, this energy scale corresponds to the characteristic
frequency of medium-induced emissions at the dead-cone
angle, θbr ∼ �0.

The expression (10) is valid only for ζ < 1. It turns out
the spectrum is strongly suppressed at ω > ω DC, implying
that θbr < �0, where we also observe negative contributions
owing to the treatment of the high-energy behavior which

123



560 Page 4 of 15 Eur. Phys. J. C (2019) 79 :560

goes beyond the leading-logarithmic accuracy of our calcu-
lation.2 In order to avoid these unphysical contributions, and
retain the information about the physical scales, we approx-
imate the rate by

�q(ω, t |m) ≈ ᾱ

√
q̂/ω3 �(ω DC − ω). (12)

In Laplace space, this becomes

γq(ν, t |m) = 2ᾱ

√
q̂

ω DC

[
1 − e−νω DC

− √
πνω DC erf

(√
νω DC

) ]
, (13)

≈ −2ᾱ
√
q̂
(√

πν − √
ω DC

)
for ν−1 � ω DC,

(14)

where erf(x) is the error function. This is qualitatively similar
to what is obtained in Ref. [12], although the precise form of
the cut-off at ω DC determines a numerical constant in front of
the second term in the brackets (according to the authors of
Ref. [12], this factor is ∼ 1.5). The corresponding rates for a
massless quark is found by taking m → 0 and for gluon by
futher replacing the color factor CF → Nc, e.g.

�q(ω, t |m = 0) = ᾱ

√
q̂/ω3 and γg(ν, t |m = 0)

= −2ᾱ
√

π q̂ν, (15)

for massless quarks. Neglecting corrections O(1/Nc), which
shortly will be further motivated, we find that the gluon rates
by �g = 2�q and γg = 2γq .

While these rates are time-independent in the limit of
soft gluon emissions, this is violated at large energies. This
approximation breaks down for emissions with formation
times of the order of the medium length, corresponding to
a critical energy ωc ∼ q̂ L2 that brings about a power-like
cut-off of the spectrum and, therefore, the rate as well. The
constraint from the dead-cone angle is stronger than this
absolute limit whenever ω DC < ωc which, in turn, implies
that �0 > θc. This marks the regime where the mass of the
quark should start affecting the general properties of radiative
energy loss that is dominated by LPM interference effects.

3.2 Quenching of a two-parton system (color-charged
dipole)

Let us now turn to the higher-order corrections to this picture,
that arise from a quark-gluon antenna propagating in dense
QCD media. Considering for the moment the energy loss
of a quark-gluon dipole that is formed quasi-instantaneously

2 All results for the medium-induced spectra and rates hold in the
soft limit where we have explicitly subtracted the vacuum component.
Negative contributions in these quantities therefore indicate an over-
subtraction at larger gluon energies.

after the hard vertex, in Laplace space the joint energy loss
distribution factorizes in the large-Nc limit into the product
of energy loss off a total charge (triplet) and a color-singlet
dipole,

P̃gq(ν, t |m) = P̃q0(ν, t)P̃q1q2(ν, t |m), (16)

where P̃q0(ν, t) ≡ P̃q0(ν, t |m = 0) and we have decom-
posed the gluon into a quark-antiquark pair g = (q0, q1)

(where q1 is an antiquark). Recall that only the quark that
forms part of the dipole q = q2 is massive. Note that the
quenching of the total (quark) charge is not sensitive to the
mass of the initial particle, since it is inherited from the radi-
ated gluon. Instead, the mass controls the energy loss of the
additional irreducible singlet P̃q1q2(ν, t |m) ≡ P̃sing(ν, t |m).
We will confirm below that, in the completely decoherent
limit, the mass will be associated with the total color charge,
as expected.

The two factors in (16) satisfy two separate evolution
equations. First, the single-particle quenching is given by
Eq. (9), where the splitting rate γq is explicitly given by (15),
keeping in mind that this fictitious quark is massless. The
singlet, dipole quenching weight is determined by solving
the differential equation [22]

∂t P̃sing(ν, t |m) = γdir(ν, t)P̃q1(ν, t)P̃q2(ν, t |m)

+ γint(ν, t)S2(t). (17)

In this equation,S2(t) is the survival probability of the dipole
color correlation and will be discussed in more detail below
and in Appendix B.

The initial condition at t = 0 (corresponding to the time
when the antenna was formed in the medium) is again trivial,
P̃sing(ν, 0|m) = 1. The direct and interference rates were
derived in Appendix B, and are given by

γdir(ν, t) = γ1(ν, t) + γ2(ν, t), (18)

γint(ν, t) = γ12(ν, t) + γ21(ν, t). (19)

The two direct terms correspond to emissions off the two legs,
and similarly the interference terms correspond to emitting
a gluon from one leg and “absorbing” it (in the complex
conjugate amplitude) on the other (see Fig. 4 for details).
For the singlet dipole we have γdir(ν, t) = 2γq(ν, t), since
γ1(ν, t) = γ2(ν, t) ≡ γq(ν, t).

Note that Eq. (17) contains a inhomogeneous term aris-
ing from the possibility of interferences between the dipole
constituents. The interference spectra have a more complex
structure since they involve both color and quantum deco-
herence processes [29–31]. The interference spectrum asso-
ciated with a massive dipole is given explicitly in Eq. (A9)
(see also [32]), and evaluated in the multiple-soft scattering
approximation in Eqs. (B20) and (B21). As discussed further
in Appendix B, color decoherence is related to the survival

123



Eur. Phys. J. C (2019) 79 :560 Page 5 of 15 560

probability of a color-singlet dipole and is explicitly factor-
ized out in the so-called decoherence parameterS2(t) in (17).
This factor is responsible for the previously introduced time
scale td ∼ (q̂θ2)−1/3 where, in the case we are considering, θ
is the opening angle of the quark-gluon system. At late times,
t > td, the dipole decoheres and the particles can radiate
independently. Conversely, a coherent splitting corresponds
to the situation when td > L and the pair remains coherent
during the passage through the medium. This applies to the
regime of small angles, θ < θc where θc ∼ (q̂ L3)−1/2.

In our formulation, the medium-induced interference rates
(in energy-space) are themselves suppressed at a time-
scale tquant ∼ (θ2ω)−1 due to color coherence, as in vac-
uum. Indeed, tquant is proportional to the time-scale td that
corresponds to the decoherence of the emitter-dipole sys-
tem, tquant ∼ (θbr/θ)4/3td, where we re-introduced the
typical branching angle of medium-induced gluons θbr ∼
(q̂/ω3)1/4. Since energy loss is governed by soft gluons,
with frequencies ω ∼ ᾱ2ωc, that parametrically correspond
to large emission angles, in particular the ones out of the jet
cone θbr ∼ ᾱ−3/2θc > R > θ , this implies that td < tquant

[22,30]. Thus emission inside the cone, i.e. with θbr < R, are
rare, N (ω > ᾱ2ωc) ∼ O(αs), and do not contribute to jet
energy loss but rather to the redistribution of energy within
the cone. The proper treatment of these modes goes beyond
the scope of the current work and we will therefore neglect
such vacuum-like effects in the following. Hence, for our
purposes, i.e. at times t < td < tquant, the interference rate is
approximated as γint(ν, t) ≈ −γdir(ν, t), see Eqs. (B22) and
(B23). This property is independent of the mass.

The solution to the rate equation can be written symboli-
cally as

P̃sing(ν, L|m) = P̃1(ν, L)P̃2(ν, L|m)

+
∫ L

0
dt P̃1(ν, L − t)P̃2(ν, L − t |m)γint(ν, t)S2(t).

(20)

The extension of the time-integral of the second term is lim-
ited by the shortest time-scale where interferences are sup-
pressed. In the leading-logarithmic approximation it is suffi-
cient to consider only large-angle radiation where, parametri-
cally, the energy radiated via medium-induced gluons leave
the jet cone. In this case the integral is limited by t < td,
as discussed above, and the singlet distribution can then be
approximated by

P̃sing(ν, L|m) ≈ P̃q1(ν, L − td)P̃q2(ν, L − td|m), (21)

where we have reinstated the mass dependence. Hence, the
decoherence time acts as a “delay” for when energy loss
processes start affecting the irreducible dipole and, in the
limit td � L , the dipole constituents decohere early in

the medium and lose energy independently along the whole
medium length.

To summarize, the delay effect is strictly associated with
the color dynamics of the dipole and, since this involves the
shortest relevant time-scale, does not depend on the mass of
the constituents. It might, at first look, seem strange that the
mass-effect on quenching is delayed although it is intimately
linked with the quark-initiator and, hence, the total charge.
For instance, considering long decoherence times, td ≥ L ,
applying to small-angle emissions θ ≤ θc, the color-charged
antenna is quenched as a massless quark, rather than a mas-
sive one. This effect gives rise to a mismatch between real
and virtual emissions at small angles. This turns nevertheless
out to be a sub-leading effect, see Eq. (30).

4 Heavy-quark collimator function

4.1 Quenching of total charge

The first term in the expansion in (3) corresponds to the
quenching of a single, massive quark. After implementing
the result in (14), we find that

Q(0)(pT |m) ≡ Qq(pT |m) = exp

[
−2ᾱL

(
π q̂n

pT

)1/2
]

× exp

[
2ᾱL

(
q̂m2

p2
T

)1/3
]

, (22)

where the first term corresponds to the quenching of a mass-
less color parton, while the second is a mass-dependent
enhancement factor. It plays an important role in the regime
ω DC < ωc. The mass-independent term implies that the
regime of strong quenching of massless quarks, − lnQ(0) ∼
O(1), is given by

pT < nωs, (23)

up to numerical factors, where ωs ∼ ᾱ2q̂ L2 is a soft scale
corresponding to large multiplicity of medium-induced emis-
sions, N (ω < ωs) > O(1). We can rewrite the quenching
factor as Q(0)(pT |m = 0) ≈ exp

[ − √
πN (pT/n)

]
[26],

which is interpreted as a Sudakov suppression factor for
medium-induced gluons with energies ω > pT/n.

The regime with an additional strong enhancement of
heavy compared to massless quarks arises for

pT < mθ−1
s ∼ ᾱ3/2m(q̂ L3)1/2, (24)

where θs ∼ θbr(ωs) ∼ ᾱ−3/2θc. This condition is equiv-
alent to demanding that θs < �0, which implies that the
regime of multiple, soft gluon emissions is cut off by the
dead-cone angle. So, there exists a regime where massless
and massive quarks are quenched very differently whenever
these scales are separated mθ−1

s < nωs , i.e. for masses
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m < nᾱ1/2
(
q̂ L
)1/2. To limit the scope of our qualitative

analysis, we will assume that the index of the steeply falling
spectrum n, combined with the medium parameters q̂ and L ,
is large enough to work in the regime of strong quenching
effects.

4.2 Scale analysis

Let us now turn to the next-to-leading correction (4), coming
from the emission of an additional hard gluon off the initiat-
ing heavy quark early in the medium. We will currently focus
on the leading-logarithmic contributions, leaving an analy-
sis of sub-leading logarithmic contributions for the future.
In this context we only consider strong ordering of scales
and we will therefore not typically keep track of numerical
factors that are anyway beyond the precision of this analysis.
We will also work in the large-Nc limit, where we can exploit
the factorization of the color-charged dipoles, as in Eq. (16).

4.2.1 Massless quarks

Before turning to effects related to the mass of the jet
particles, let us summarize the scale analysis for massless
partons. In terms of angles, we have several characteristic
scales: the jet radius R, the minimal medium resolution angle
θc ≡ θbr(ωc) and the typical angle for soft gluon emissions
θs ≡ θbr(ωs). Note that the two medium scales are paramet-
rically separated by the smallness of the coupling constant,
θs ∼ ᾱ−3/2θc.

If R > θs the energy loss of jet is small since all radiated
BDMPS gluons remain inside the jet. On the other hand, if
θc > R, i.e. the jet angle is less than decoherence angle, the
propagation of the jet is not influenced by subjet structure,
and it is equivalent to propagation of a total color charge, i.e.
one parton through the medium. The typical ordering that
interests us, where the quenching could be substantial and
where higher-order effects are non-trivial, is therefore

θs > R > θc. (25)

In what remains, we will assume that this hierarchy holds and,
besides, that it is also the phenomenologically most relevant
one.

However, note that the minimal angle θc is only relevant
for high-pT jets, pT > ωc. Conversely, for pT < ωc the deco-
herence time is necessarily always shorter than the medium
length, td < L . In this case there is still the possibility for
a regime of short formation times, tf < td where tf is the
vacuum formation time given by (5), but in this case this
condition implies that θ > θd , where

θd ∼
(

q̂

p3
T

)1/4

. (26)

For massless quarks, this regime is double-logarithmic in the
jet scale [23], see below, but the pT -range is automatically
limited by ωc. The window for a regime of short forma-
tion times closes whenever θd = R, or pT ∼ (q̂/R4)1/3. In
the following, we will therefore distinguish between high-pT

(with pT > ωc) and low-pT (with pT < ωc) jets.

4.2.2 Massive quarks

For massive quarks, the dead-cone angle (energy, etc.) intro-
duces another physical scale to the problem. For a finite
dead-cone, QCD radiation is no longer genuinely collinearly
enhanced which necessitates a scale-dependent scheme to
properly include mass-effects for resummed observables,
see e.g. [1]. We will only stick to the leading-logarithmic
approximation and only consider emissions θ > �0, i.e.
θ2/(θ2 +�2

0)
2 ≈ θ−2�(θ −�0) in (4). Hence, for R ∼ �0

the heavy-quark jet only contains a single quark.
Comparing the mass scale to other relevant medium scales,

in particular comparing � and θc, can become involved
because of the pT -dependence of the former. In order to orga-
nize the discussion, it will be useful to introduce a critical
value of the mass, namely

m ∼ (q̂ L)
1/2. (27)

From now on we will call quarks with m > (q̂ L)1/2 gen-
uinely heavy, and quarks with m < (q̂ L)1/2 for light (in
contrast to massless, m = 0). We have also summarized the
discussion about the relevant scales in Table 1.

For heavy quarks, the dead-cone angle becomes compa-
rable to the coherence angle, �0 = θc, at large-pT , i.e.
pT > ωc. Rewriting the same condition, this happens at a crit-
ical energy pT = mθ−1

c ∼ m(q̂ L3)1/2. Hence, we expect the
heavy-quark jet quenching to deviate from the light-quark jet
quenching at a scale that is parametrically larger, by a factor
ᾱ−3/2, than the soft scale identified for the quenching of the
total charge, cf. Eq. (24). In other words, while the quenching
of a single heavy quark starts deviating from the massless one
at relatively low pT due to the enhancement factor in (22),
a jet initiated by a heavy-quark should start deviating from
the behavior of a massless quark or gluon jet already in the
high-pT regime, since by definition m(q̂ L3)1/2 > ωc. Con-
sidering high-pT single-inclusive mesons to be proxies of
single-parton dynamics, see e.g. [33], this analysis therefore
predicts a different behavior of heavy-quark jets and heavy-
quark mesons over a large range in pT . We will come back to
a possible experimental signature for this effect in Sect. 4.4.

For light quarks, �0 = θc for pT ≥ ωc and we have
instead to consider the low-pT regime, i.e. pT < ωc. In this
regime, the condition tf < td implies that θ > θd which is
estimated in (26). Therefore �0 = θd when pT ∼ m4/q̂ ,
which can be considered a relatively soft energy-scale (com-
paring it to the soft scale in (24) gives m ∼ ᾱ1/2(q̂ L)1/2
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Table 1 Summary of the scales for light and heavy quarks. The char-
acteristic angle for a massive quark jet is defined as the angle where �0
becomes equal to the minimal angle of coherence, where the quenching
of a massive jet becomes different from that of a massless jet. This takes

place at the critical jet pT scale given in the third column. For a single
parton, massless and massive quark quenching starts deviating at the
characteristic parton pT , given in Eq. (24)

Quark mass Characteristic angle Critical jet pT Critical parton pT

m < (q̂ L)1/2 (q̂/p3
T )

1/4 m4/q̂ ᾱ3/2m(q̂ L3)1/2

m > (q̂ L)1/2 (q̂ L3)−1/2 m(q̂ L3)1/2 ᾱ3/2m(q̂ L3)1/2

which is compatible with the prior assumption about the
smallness of the mass). We conclude therefore that the light-
quark jets behave similarly to massless jets, as far as the
higher-order corrections go, and start deviating from this
behavior only when �0 ∼ θs , where the quenching of the
total charge gets suppressed. This follows very closely the
trend of single-parton, or single-inclusive meson, quenching.

The corresponding kinematical Lund planes for high- and
low-pT heavy-quark jets are illustrated in Fig. 1, where we
have spanned the plane in the logarithmic variables 1/z and
1/θ . At fixed coupling, the plane is equally filled with split-
tings with probability 2ᾱ, up to a color factor. The two diago-
nal lines, with slopes −4/3 (lower line) and −2 (upper line),
delineate the conditions tf = td and tf = L , respectively.
The area between the two lines corresponds to in-medium
radiation with td � tf < L , or k⊥ �

√
q̂ω, which is strongly

influenced by medium interactions and broadening.
The high-pT regime, pT > ωc, is plotted on the left side

of Fig. 1, where we have marked the location of the critical
angle θc with a (red) dotted line. Similarly, the dead-cone
angle is marked, and corresponds to an energy scale ω DC at
tf = td. The low-pT regime, pT < ωc is conversely plotted on
the left in Fig. 1. One observes immediately that the critical
angle θc is replaced by θd . In both figures we have assumed
that the dead-cone is appreciable, i.e. � > θc for pT > ωc

and � > θd for pT < ωc, and marked out the phase space
available for hard, in-medium splittings of the heavy-quark.

4.3 Higher-order contributions to quenching

The analysis in the preceding section allows us to calculate
the higher-order contributions to jet quenching. Isolating the
quenching of the initiating parton, that corresponds to the
total color charge of the jet, into an overall pre-factor, see
Eq. (6), these contributions are collected into the collimator
function. Using Eq. (4) and the definition in (6), we see that
the first-order correction the collimator function is

C(1)(pT |m) ≈ 2ᾱ

∫ R

�0

dθ

θ

∫ pT

min((q̂/θ4)1/3, (θ2L)−1)

dω

ω

×
[ Qq(pT )

Qq(pT |m)
Qq(pT , L − td)Qq(pT , L − td|m) − 1

]
,

(28)

where we have treated the splitting vertex in the leading-
logarithmic approximation and adopted the notations of the
previous section.

It is worth pointing out two limits of this equation. For
td � L , we can neglect the decoherence times in the real
term, i.e. the first term in the squared brackets, to obtain

ln pT

ωc

ln pT

ωDC

ln pTR
4/3

q̂1/3

ln pTR
2L

ln R−1 ln Θ−1
0 ln θ−1

c ln(pTL)
1
2

pT > ωc

ln 1/z

ln 1/θ

ln pT

ωDC

ln pTR
4/3

q̂1/3

ln pTR
2L

ln R−1 ln Θ−1
0 ln θ−1

d ln(pTL)
1
2

pT < ωc

ln 1/z

ln 1/θ

Fig. 1 Illustration of the DLA phase space for higher-order quench-
ing effects for massive particles, marked by the black, lined area. The
two lines correspond to tf = L (upper line with slope −2) and tf = td

(lower line with slope −4/3).The diagrams are drawn for the two cases:
pT > ωc and R > �0 > θc (left) and pT < ωc and R > �0 > θd
(right)
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C(1)(pT |m)
∣∣
td�L ≈ 2ᾱ

∫ R

max(�0, θc, θd )

dθ

θ

∫ pT

(q̂/θ4)1/3

dω

ω

×[Q2
q(pT ) − 1], (29)

which, when taking m → 0, is equal to the contribution
of massless quark quenching. When �0 > max(θc, θd) the
angular phase space is more restricted for heavy-quark jets,
and therefore we expect a relatively smaller impact of the col-
limator function than in the massless case. Here it is worth
pointing out that the quenching factor on the right-hand
side of (29) arises due to the quenching of the additional
(massless) gluon since, at large-Nc, Q2

q(pT ) = Qg(pT ),
which is a generic property of Sudakov suppression fac-
tors.

Before continuing, we point out a new contribution in the
small-angle limit in the regime that is unique to massive-
quark jets. It appears for td > L , or θ < θc, relevant for
pT > ωc, where Q(pT , L − td|m) = 1. We are left with

C(1)(pT )
∣∣
td>L ,pT >ωc

≈ 2ᾱ

∫ θc

�

dθ

θ

∫ pT

(θ2L)−1

dω

ω

×
[ Qq(pT )

Qq(pT |m)
− 1

]
. (30)

However, �0 < θc for pT > mθ−1
c , which leaves the factor

Q(pT )/Q(pT |m) − 1 � ᾱO(1), and therefore the contribu-
tion in this regime is sub-leading ∼ O(ᾱ2). We will therefore
altogether neglect this regime when working in the leading-
logarithmic approximation.

Let us now evaluate the next-to-leading contributions for
massless, light and heavy quarks. For completeness, we
repeat here the resulting collimator function for massless
quarks at first order in αs , that reads [23]

C(1)(pT |m = 0)

[Q2
q (pT ) − 1]

=
⎧⎨
⎩

2ᾱ ln R
θc

(
ln pT

ωc
+ 2

3 ln R
θc

)
for pT > ωc,

3ᾱ
4 ln2 pT R4/3

q̂1/3 for (q̂/R4)1/3 < pT < ωc.

(31)

Turning now to the new results, for light quarks we obtain

C(1)(pT |m < (q̂ L)1/2)

[Q2
q (pT ) − 1]

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2ᾱ ln R
θc

(
ln pT

ωc
+ 2

3 ln R
θc

)
for pT > ωc,

3ᾱ
4 ln2 pT R4/3

q̂1/3 for m4/q̂ < pT < ωc,

4ᾱ
3 ln pT R

m

(
ln pT R

m +ln m2

(q̂ pT )1/2

)
for (q̂/R4)1/3 < pT <m4/q̂,

(32)

and for heavy quarks we get instead,

C(1)(pT |m > (q̂ L)1/2)

[Q2
q (pT ) − 1]

=
⎧⎨
⎩

2ᾱ ln R
θc

(
ln pT

ωc
+ 2

3 ln R
θc

)
for pT > m(q̂ L3)1/2,

4ᾱ
3 ln pT R

m

(
ln pT R

m +ln m2

(q̂ pT )1/2

)
for (q̂/R4)1/3 < pT <m(q̂ L3)1/2.

(33)

Equations (31)–(33) are written with logarithmic accuracy,
i.e. we neglected all O(1) numerical factors that enter the
arguments of the logarithms. The inclusion of these factors
change the scales in the arguments of the logarithms of the
order of 1–2, but does not change any qualitative conclusions
we make.

Let us briefly comment on further contributions to the col-
limator at higher-order (next-to-next-to-leading, and higher).
Examining the structure of Eq. (16), one realizes that the
dipole that “contains” the heavy-quark is distinct from further
dipoles in the sense that it is massive while further dipoles,
originating from other gluon emissions, are massless. How-
ever, as discussed in detail above, this distinction gives rise
only to sub-leading corrections and for our purposes, having
separated out the specific quenching factor of the originating
parton (that also carried the total color charge), it is adequate
to treat all dipoles on equal footing.

The problem then reduces to the massless case with a
modified phase space, as detailed above. The resummation of
higher-order contributions to the collimator involves solving
a non-linear evolution equation and was derived in Ref. [23].
It goes beyond the scope of our investigation to solve this
equation here for the massive case. Furthermore, since we
are interested in a relatively modest pT range in order to be
sensitive to the dead-cone, the phase space is limited and the
first, non-trivial term should provide a good estimate of the

Fig. 2 The quenching factor for massless quark Q(pT |m = 0) that
enters the calculation of the collimator function. The full (lower) line
corresponds to the quenching factor with the leading BDMPS-Z soft-
gluon spectrum, cf. first term in (22), while the dashed (upper) line
contains sub-leading corrections, cf. (36). The shaded area between the
curves corresponds to the uncertainty in modeling radiative energy loss
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Fig. 3 The ratio Eq. (35) as a function of energy for a light quark
(charm, m = 1.3 GeV) (solid, black line) and heavy quark (bottom,
m = 5 GeV) (dashed, orange line). On the left we have used only the

leading term of soft-gluon approximation of the BDMPS-Z spectrum;
on the right side, we included numerical corrections to the quenching,
as in Refs. [12,26]

effects. Using the same arguments as in [23], we therefore
expect that the full collimator function is well approximated
by the virtual terms that exponentiate, leading to

C(pT ) ≈ exp[C(1)(pT )]. (34)

In particular, the strong quenching limit,Q(pT ) � 1, returns
the correct exponentiation of the virtual terms and also the
fixed point at pT → ∞, where Q(pT ) → 1 and therefore
C(pT ) → 1, is reproduced.

4.4 Numerics

To emphasize the effects of higher-order contributions we
propose the following phenomenological quantity,

JAA(pT , R|m) = Rjet
AA(pT , R|m)

Rmeson
AA (pT |m)

, (35)

which is a ratio of nuclear modification factors of heavy-
quark jets to heavy-quarks. Within our approximations, this
ratio is simply the collimator function for massless and mas-
sive quarks JAA(pT , R|m) ≈ C(pT , R|m), where we have
utilized that Rjet

AA(pT , R|m) � Q(pT , R|m) and Rmeson
AA �

Qq(pT |m). Here we neglect further differences between the
quenching of a heavy quark and that of a heavy meson, which
was studied in more detail in [13]. This can be justified since
the fragmentation into a meson typically takes place at time-
scales much larger than the medium size and is therefore
largely unaffected, see also [33,34].

Before we then present our numerical calculations, it
is worth emphasizing our approximations in computing
the single-quark quenching factors based on the soft-gluon
approximation to the full BDMPS-Z spectrum. It was already
pointed out in Ref. [26], that the sub-leading logarithmic and
numerical factors play an important role for computing the

right order of quenching effects and this was also adopted in
[12]. For the moment we focus only on the effect of massless
quark quenching, which enters the dynamics of the collima-
tor functions, cf. (4). Keeping these corrections, the massless
quenching factor in Eq. (22) should read

Q(pT |m = 0) = exp[−2ᾱ(

√
π q̂ L2n/pT

− ln(2) ln(q̂ L2n/(2pT )) − 1.84146)]. (36)

The sub-leading terms result in a faster approach of the
quenching factor to unity. We have plotted the quenching fac-
tors for massless quarks that enter the calculation of the colli-
mator function in Fig. 2, where the parameters were chose as
described below and the uncertainty arising from modeling
radiative energy loss is marked with the shaded region.

As we have done throughout, we will assume the medium
to be static and described by averaged parameters q̂ and L .
We have chosen q̂ = 1 GeV2/fm and L = 2.5 fm, and
chosen ᾱ = 0.15.3 These are are qualitatively in the same
range as the values obtained in more sophisticated extrac-
tions from comparisons to experimental data. Furthermore,
we compute the collimator function R = 0.4 jets and the
power of the steeply falling heavy-quark spectrum n = 5,
that was extracted from a fit of the jet data [35]. With these
choices (q̂ L)1/2 � 1.5 GeV, and therefore the charm quark
(m = 1.3 GeV) can be considered light while the bottom
quark (m = 5 GeV) is heavy.

We have adopted the approximations and the two ways of
estimating the associated, massless quenching factors as dis-
cussed above in computing JAA(pT ) in Fig. 3. As a result,

3 Note also that the value of the strong-coupling constant αs can, in
principle, be different in the quenching factor and in the collimator
function or, more precisely, the running takes place at different scales:
in the quenching factor with the typical medium transverse scale and in
the collimator with typical jet k⊥.
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the ratio is simply given by the collimator functions that
have been explicitly computed to next-to-leading order in
Eqs. (31)–(33), with the associated quenching factors com-
puted in Fig. 2, and whose full resummation is given in
Eq. (34). The solid, black (dashed, organe) curves represent
the collimator function for charm (bottom) quark jets. On the
left side, we used the massless quenching factor associated
with the first leading term of the BDMPS-Z soft-gluon spec-
trum while, on the right side, we included the sub-leading log-
arithmic and numerical factors, as was done in Refs. [12,26].
It is clear from Fig. 3 that the order of magnitude of the effect
does depend on the inclusion of these sub-leading BDMPS-Z
corrections since the full expression (36) approaches unity
much faster than the leading term alone. However, the charac-
teristic pT where the collimator function of charm and bottom
starts deviating on the level of ∼ 10% is roughly the same in
the two cases (for our choice of parameters, this corresponds
to roughly pT ∼ 50 GeV).

5 Conclusions

We have calculated a subset of higher-order corrections for
massive-quark jet propagating in the quark-gluon plasma that
are enhanced by logarithms of the jet energy. We considered
the corrections due to rapid split of the leading particle into
hard dipoles well within the medium. This contribution also
plays an important role in the context of jet substructure [24].
We have shown that these corrections lead to the enhance-
ment of jet energy loss, and consequently to the decrease of
the jet quenching factor, like it was found for the case of
massless quark/gluon jets previously.

The additional suppression can be factorized into a colli-
mator function, that enhances the quenching factor associated
with the leading particle and is here evaluated in the leading-
logarithmic asymptotics. We have demonstrated that these
corrections are essentially determined by phase space restric-
tions available for dipole creation – on the one hand related
to the criterium of early splitting, in particular with forma-
tion times tf < td, and, on the other hand, at angles larger
than the associated dead-cone angle. These semi-quantitive
estimates show that these corrections are of the same order
of magnitude as for massless quark at high-pT , contrary to
leading order results [12], where the substantial difference
between quenching factors of massless and heavy quark jets
was found at relatively low pT . The reason is that in sig-
nificant part of the parameter space the heavy and massless
quark corrections are just the same, and in the remaining
region they only differ by the argument of the logarithm.

Our main results are given by Eqs. (32) and (33), where
we demonstrate that, from the point of view of higher correc-
tions, we can divide the quarks into light, with m < (qL)

1/2

and heavy, m > (qL)
1/2. For light quarks the corrections

are exactly the same as for the massless quark, see Eq. (31),
and start to be weakly mass dependent only for rather small
energies of order pT ≤ m4/q̂ . For heavy quarks, given in
Eq. (33), already at large pT > ωc the dead-cone effect start
to play role.

Our work shows that antenna corrections are essentially
the same for massless and heavy quarks, leading to correct
from the experimental point of view decrease of quench-
ing factors of heavy quark jets relative to the Dokshitzer-
Kharzeev result [12]. Consequently they had little influ-
ence on the problem first raised in [12], namely that, con-
trary to calculation focussing on radiative energy loss, there
is not much difference between heavy and massless quark
quenching factors experimentally [17,18] (although the situ-
ation can improve in the future [19]). Nevertheless, since the
BDMPS-Z calculation is the leading mechanism available
for jet energy loss at high-pT it is of great interest to test it
for different parts of the parameter space.

We have also derived the spectra and rates related to a
color-charged, massive dipole formed early in the medium,
see Eqs. (A9) and (A10), and (B10)–(B12) and (B16).

We did not include the restrictions on the phase space
that were found to be important for calculation of massless
and massive quark quenching weights, see [34] and [13,14].
We do not expect that these restrictions will make qualitative
influence on our results. The reason is that the corrections that
we calculated were dominated by small frequencies regime
outside the dead-cone while the corrections discussed in [13,
14] are mostly important for frequencies in, or close to, the
dead-cone region. Besides, the analysis of these constraints
needs detailed numerical investigation.

Our results are valid in the leading-logarithmic approxi-
mation at high energies. Going to higher logarithmic preci-
sion and for applications at very high energies we expect the
corrections to satisfy nonlinear integral equations similar to
the one that was suggested in [23]. In this context, the effects
of the dead-cone suppression in secondary heavy-quark pro-
duction, i.e. from the splitting of a gluon into a massive qq̄
pair, are still largely unexplored. For a clearer interpretation,
these contributions could perhaps be suppressed using state-
of-the-art grooming techniques, employed in [36].

The results worked out here demonstrate the factorization
between the leading term in the quenching weight, calculated
in [12] and higher order corrections, and introduces a new
way to address jet observables involving massive quark, e.g.
the “leading particle effect” [37–39], that we plan to address
in forthcoming works. From a phenomenological point of
view, it will be interesting to study the ratio of quenching
factors of heavy quark jet and heavy mesons as a check of
the current approach, cf. Eq. (35).
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Appendix A: Derivation of the interference spectrum

Let us derive the rates of gluon emissions of massless and
massive particles. Consider a parton splitting at very short
time-scales that quasi-instantaneously forms a dipole inside
the medium. Using conventional arguments in perturbation
theory, one can thereafter define a subsequent emission spec-
trum off this system. For further applications, it will be suf-
ficient to calculate the interference spectrum between the
two constituents of the dipole since direct emissions can be
recovered by setting the dipole opening angle to zero.

For concreteness, and in order to clarify the color structure
of the process, consider a color-charged dipole originating
from a q( �p0) → q( �p1) + g( �p2) splitting, where we have
identified the momentum flow of the splitting.4 We assume,
for the time being, that the gluon is massive; this allows us
to easily generalize the formula for arbitrary dipoles. The
amplitude describing the emission of a soft gluon inside a
medium of size L is the sum of two terms that correspond to
the possibility of being radiated by dipole constituents. They
are given by

M1 ∼ g

ω

∫ L

0
dt ei

ω
2 (n2

1+�2
1)t (∂x + iωn1)

·ε∗
λ Gab(k, L; x, t)

∣∣∣
x=n1t

×[Vn1(L , t)tbVn1(t, 0)]i jUdc
n2

(L , 0)tcjkJk( �p0),

(A1)

M2 ∼ g

ω

∫ L

0
dt ei

ω
2 (n2

2+�2
2)t (∂x + iωn2)

·ε∗
λ Gab(k, L; x, t)

∣∣∣
x=n2t

×Vn1(L , 0)i j [Un2(L , 0)TbUn2(t, 0)]dctcjkJk( �p0),

(A2)

4 The notation �p = (E, p) involves the light-cone energy variable
E ≡ (p0 + p3)/2 and transverse momentum p = (p1, p2). Similarly,
all time coordinates (and lengths) refer to the light-cone variable t ≡
(x0 + x3)/2

up to factors that cancel in the cross section and where the
fundamental color matrix tcjk accounts for the color con-
servation of the system (for completeness, we recall that
[Tb]ac ≡ i f abc). The color factor related to the dipole split-
ting will be factored in the final expression of the emission
spectrum. The dead-cone angles are denoted �i ≡ mi/Ei

and ni ≡ pi/Ei determine the trajectories of the dipole
constituents. Finally, Jk( �p0) represents the initial quark
current.

Medium interactions can be encapsulated into color rota-
tion matrices. To keep explicit track of the color we denote by
Vn(t, 0) = P exp[ig ∫ t0 ds t ·A(s, ns)] a (path-ordered) Wil-
son line in the fundamental representation that resums inter-
actions with the medium that is modeled by a background
field A(t, x). Similarly,Un(t, 0) denotes a Wilson line in the
adjoint representation, with the substitution tb → Tb. In Eqs.
(A1) and (A2) these objects describe the propagation of the
dipole constituents through the medium along fixed trajec-
tories. In contrast, a soft gluon emission in the medium can
experience momentum broadening due to transverse momen-
tum exchanges with medium constituents. These interactions
are encapsulated in the dressed propagator Gab, that is given
by

Gab(x1, t1; x0, t0) =
∫ r(t1)=x1

r(t0)=x0

Dr exp

×
[
i
E

2

∫ t1

t0
dt ṙ2(t)

]
Uab

r(t)(t1, t0),

(A3)

where the trajectory of the gluon r is explicitly time-
dependent.

We proceed now with the calculation of the interference
spectrum. It was first computed for a color-charged dipole
involving a massive quark in [32] but an explicit expression
is not available in the literature. It is therefore meaningful
to rederive the spectrum in more generality here. The spec-
trum involves in total four terms, corresponding to the dif-
ferent time orderings of emission (absorption) in the ampli-
tude and the complex-conjugate amplitude. We depict the two
main possibilities in Fig. 4. The process in Fig. 4a depicts an
emission from the heavy-quark (in the amplitude) and later
absorption by a gluon (in the complex conjugate), while the
second diagram, Fig. 4b, describes an emission from gluon
and subsequent absorption by the heavy-quark. The remain-
ing contributions can be found by adding the complex con-
jugate of these terms to the final answer, and will be auto-
matically included in the expressions below.

We now have for the diagram Fig. 4a where gluon is
emitted at time t and absorbed at a later time t̄ , i.e. t̄ > t ,
by a heavy quark. Then, the double-differential spectrum
reads
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Fig. 4 Two contributions to the
interference spectrum of a
heavy-quark–gluon dipole,
where the (dressed) propagators
of the hard quark (gluon) are
represented by a double-line
(spiral) while the soft,
medium-induced gluon emission
is represented by a wavy line.
We draw the diagrams for t̄ > t

∞t t̄ 00

(a)

∞t t̄ 00

(b)

dIint

d�k

∣∣∣∣
a

= 1

NcCF

g2

ω2 2Re
∫ L

0
dt
∫ L

t

× dt̄ e−i ω
2 (n2

2+�2
2)t̄+i ω

2 (n2
1+�2

1)t (∂ x̄ − iωn2)

· (∂x + iωn1)

× Tr�
∫
u, y1, y2

e−ik·( y2− y1)
1

N 2
c − 1

× 〈Tr G†(x̄, t̄; y1, L)G( y2, L; u, t̄)〉
× 1

N 2
c − 1

〈TrU †
n2

(t, t̄)G(u, t̄; x, t)〉 1

N 2
c − 1

× 〈TrU †
n2

(0, t)Un1(t, 0)〉∣∣x=n1t
x̄=n2 t̄

, (A4)

where d�k = dωd2k/[(2π)32ω] is the Lorentz-invariant
phase-space element, Tr� ≡ i f abctr(tatbtc) = −Nc(N 2

c −
1)/4 and 2Re accounts for the two possible time orderings
of this process, and we have used the short-hand notation∫
u ≡ ∫ d2u. The normalization factor (NcCF )−1 takes care

of the averaging over the colors of the initial quark and divides
out the color structure related to the dipole splitting. The in-
medium two-point correlators appearing in (A4) are known
from the literature and, after some simplifications, we rewrite
(A4) as

dIint

d�k

∣∣∣∣
a

= − Nc

2

g2

ω2 2Re
∫ L

0
dt
∫ L

t
dt̄
∫
u

× e−ik·u− Ncn
2 (L−t̄)σ (u)e−i ω

2 (n2
2+�2

2)t̄+i ω
2 (n2

1+�2
1)t S2(t)

× (∂ x̄ − iωn2) · (∂x + iωn1)K(x̄, x)

× e−i ω
2 n

2
2(t̄−t)+iωn2·(x̄−x)

∣∣
x=n1t,x̄=u+n2 t̄

, (A5)

where

S2(t) = exp

[
−Ncn

2

∫ t̄

t
ds σ(n12s)

]
(A6)

and

K(x̄, x) =
∫ r(t̄)=x̄

r(t)=x
Dr exp

[
iω

2

∫ t̄

t
ds ṙ2 − Ncn

2

∫ t̄

t
ds σ(r)

]
,

(A7)

where we have assumed that the medium is described by a
static density n. The overall color factor in (A5), −Nc/2, cor-
responds to the correct (negative) interference charge. After
performing the derivatives and shifting the coordinates, we
finally obtain

dIint

d�k

∣∣∣∣
a

= −Nc

2

g2

ω2 2Re
∫ L

0
dt
∫ L

t
dt̄ e−ik·u− Ncn

2 (L−t̄)σ (u)

× ei
ω
2 n

2
12tei

ω
2 (�2

1t−�2
2 t̄) S2(t)

× (∂x + iωn12) · ∂ x̄ K(x̄, x)
∣∣
x̄=u,x=n12t

. (A8)

The calculation of the second diagram in Fig. 4b is com-
pletely analogous. From symmetry, it turns out that dI/dω|b
= dI/dω|a(�1 ↔ �2). Hence, summing up all four contri-
butions, our final result for the emission spectrum therefore
reads,

dIint

d�k
= −Nc

2

g2

ω2 2Re
∫ ∞

0
dt
∫ ∞

t
dt̄

×
∫

d2u e−ik·u− Ncn
2 (L−t̄)σ (u)

× ei
ω
2 n

2
i j t [ei ω

2 (�2
i t−�2

j t̄) + ei
ω
2 (�2

j t−�2
i t̄)]S2(t)

× (∂x + iωni j ) · ∂ x̄ K(x̄, x)
∣∣
x̄=u,x=ni j t

. (A9)

We have checked that this formula reproduces the double-
differential interference spectrum in vacuum. It was first dis-
cussed in Ref. [32]. Note, however, that our formula differ
from the related Eqs. (4.1) and (4.2) in Ref. [32] by the second
term in the square brackets.

The in-medium energy spectrum is found by integrating
out the transverse momentum, in which case we obtain
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dIint

dω
= −Nc

2

αs

ω3 2Re
∫ ∞

0
dt
∫ ∞

t
dt̄ ei

ω
2 n

2
12t

× [ei ω
2 (�2

1t−�2
2 t̄) + ei

ω
2 (�2

2t−�2
1 t̄)]S2(t)

× (∂x + iωn12) · ∂ x̄ K(x̄, x)
∣∣
x̄=0,x=n12t

, (A10)

which is the main formula for analyzing the direct and inter-
ference rates in this work.

Appendix B: Direct and interference radiation rates in
the multiple-soft scattering approximation

The formulas in Eqs. (A9) and (A10) can easily be general-
ized to any splitting process involving a gluon emission (for
the time being let us disregard photon splitting into quark-
antiquark). The general formula for the energy spectrum, cf.
Eq. (A10), reads,

dIi j
dω

= αs

ω3 Qi j 2Re
∫ t L

0
dt
∫ t L

t
dt̄ ei

ω
2 n

2
i j t

× [ei ω
2 (�2

i t−�2
j t̄) + ei

ω
2 (�2

j t−�2
i t̄)]S2(t)

× (∂ y + iωni j ) · ∂x K(x, y)
∣∣
x=0, y=ni j t

, (B1)

where Qi j ≡ Qi · Q j = (Q2
0 − Q2

1 − Q2
2)/2 and Qi cor-

responds to the color charge-vector of the emitter (e.g. for
a quark Q2

q = CF and for a gluon Q2
g = Nc). The parti-

cle i is associated to the dead-cone angle �i and direction
ni = pi/Ei (and similarly for particle j). The two terms
describe two possible emission processes, namely one that is
initiated by particle i and one initiated by particle j . The case
under study, the Q → Q + g splitting that contributes to the
fragmentation of a heavy-quark jet, corresponds to � j = 0
and Qi j = −Nc/2, as derived explicitly in (A9).

In (B1), S2(t) is a two-point function describing the deco-
herence of the antenna before the splitting occurs and is often
referred to as the decoherence parameter [29,30,40,41]. It
depends explicitly on the opening angle of the pair, in partic-
ular S2(t) = 1 for n2

12 = 0. The formula in (B1) generalizes
the result previously obtained in [32]. It is worth pointing
out that, due to the Galilean symmetry of the problem, the
spectrum does not depend on the directions of the emitters
apart from the dipole opening angle n12.

Working in the multiple-soft scattering limit of medium
interactions, the n-point functions can be found exactly. It
corresponds to the following approximation on the interac-
tion term, Ncnσ(r) ≈ q̂ r2/2, where q̂ is the jet quenching
parameter. For the decoherence parameter, we immediately
obtain S2(t) = exp[−q̂n2

12t
3/12], and for the three-point

function describing interactions during the formation of the
soft gluon, we find

K(x, y) = ω�

2π i sinh �τ
exp

{
iω�

4

[
tanh

�τ

2
(x + y)2

+ coth
�τ

2
(x − y)2

]}
, (B2)

where τ ≡ t̄ − t and � ≡ (1 + i)
√
q̂/ω/2. The propagator

in (B2) constraints the extent of the time difference between
gluon emission and absorption τ �

√
q̂/ω ≡ tbr. Hence,

in the limit tbr � L which holds for soft gluon emissions
ω � q̂ L2 that are most important for energy loss at not too
high energies [26], we can approximate the time integration
over the time-difference of the emissions in the amplitude
and in the complex-conjugate as
∫ L

t
dt̄ =

∫ L−t

0
dτ ≈

∫ ∞

0
dτ, (B3)

see, e.g., [42]. Formally, this allows to treat multiple radiation
as independent with a constant rate.

Focussing again on a q → q + g splitting, we there-
fore obtain the formulas for the direct and interference rates.
In order to separate the dynamics of the dipole before and
during the emission-time of medium-induced gluon, we will
explicitly define the emission rate �i j (ω, t) as

dIi j
dω dt

= S2(t) × �̃i j (ω, t), (B4)

where the decoherence parameter is responsible for the long-
distance color decoherence processes that are happening
prior to the emission. Setting the dipole opening angle to
zero, n2

12 → 0, we find the independent heavy-quark and
gluon spectra.

�̃q(ω, t) = αsCF

ω3 2Re
∫ ∞

0
dτ e−i ω

2 �2
0τ ∂x · ∂ y K(x, y)

∣∣∣
x= y=0

,

(B5)

�̃g(ω, t) = αs Nc

ω3 2Re
∫ ∞

0
dτ ∂x · ∂ y K(x, y)

∣∣∣
x= y=0

, (B6)

where we have restored the correct mass and color factors,
and introduced the definition of the dead-cone angle �0 ≡
θq used throughout. The interference spectrum contains two
terms, given by

�̃12(ω, t) = −αs Nc

2ω3 2Re ei
ω
2 (n2

12+�2
0)t
∫ ∞

0

dτ (∂ y + iωn12) · ∂x K(x, y)
∣∣
x=0, y=x12

, (B7)

�̃21(ω, t) = −αs Nc

2ω3 2Re ei
ω
2 (n2

12−�2
0)t
∫ ∞

0

dτ e−i ω
2 �2

0τ (∂ y + iωn12) · ∂x K(x, y)
∣∣
x=0, y=x12

.

(B8)

Furthermore, we can altogether neglect the phases involving
the terms �2

0t since, in the double-logarithmic approximation
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the hard gluon splitting takes place at angles much larger than
the dead-cone angle.

Note that this expression, at finite n12 = 0, diverges
both in the limit of small t and τ . However, this contri-
bution is completely independent of medium parameters,
∼ ω2/[π tτ ], and can therefore be regularized by subtracting
the vacuum contribution. This is in contrast to the regulariza-
tion of the direct terms, which only exhibit a divergence at
small τ , ∼ ω2/[πτ ], but is cured in the same way. It follows
that all medium-induced contributions vanish in the q̂ → 0
limit. Hence the rates that are used to compute energy loss
processes are therefore regularized as

�i j (ω, t) ≡ �̃i j (ω, t) − �̃i j (ω, t)
∣∣
q̂→0. (B9)

After applying this regularization, we immediately find the
rate of direct emissions by a massless gluon,

�g(ω, t) = αs Nc

π

√
q̂

ω3 , (B10)

recovering the well-known LPM rate valid for soft-gluon
emission. For the corresponding rate off a massive quark,
we find

�q(ω, t) = αsCF

π
�2

⎡
⎣−Im ψ0

⎛
⎝−1 + i

4

√
�4ω3

q̂

⎞
⎠

−
√

q̂

�4ω3 − 3

4
π

⎤
⎦ , (B11)

where ψ0(x) is the digamma function.
Let us continue with the interference spectra. Considering

first (B7), we define α′ = ωt
(
�2

0 + n2
12

)
/2 ≈ ωtn2

12/2 and

α = α′+ωx2
12/(4tf), where tf ≡ √ω/q̂ , the first interference

term reads simply

�12(ω, t) = − αs Nc

2πω t
e
− ω

4tf
x2

12

[
2e

ω
4tf

x2
12 cos α′ − 2 cos α

+ t

tf
(cos α − sin α)

]
. (B12)

Here, putting �0 → 0 in the α and α′ factors, we recover
immediately interference spectrum for a massless antenna.

The second interference term in Eq. (B8) is complicated
due to the additional phase factor related to the finite quark
mass. We define the following integral,

I1 ≡
∫ ∞

0

dτ

sinh2 �τ
ea coth �τ+bτ

= 2

�
ea�

(
1 − b

2�

)
U

(
1 − b

2�
, 2,−2a

)
, (B13)

which will become useful later. We have made sure that
Re b/(2�) > −1, which allowed us to deform the integra-

tion contour to lie along the real axis. We will also need the
following integral

∫ ∞

0

dτ

sinh2 �τ
coth �τ ea coth �τ+bτ = ∂

∂a
I1 = I1 + I2,

(B14)

where

I2 ≡ 4

�
ea
(

1 − b

2�

)
�

(
1− b

2�

)
U

(
2 − b

2�
, 3,−2a

)
.

(B15)

The second interference term can then be written as

�21(ω, t) = αs Nc

2ω3 2Re ei
ω
2 (n2

12−�2
0)t

(ω�)2

2π

× [(2 − in2
12tω)I1 + in2

12t
2ω� (I1 + I2)]

− �̃21(ω, t)
∣∣
q̂→0, (B16)

with parameters a = iω�n2
12t

2/2 and b = −iωθ2
q /2, and

where the vacuum subtraction term is simply

�̃21(ω, t)
∣∣
q̂→0 = αs Nc

2ω3 2Re ei
ω
2 (n2

12−�2
0)t ω

2

π t
. (B17)

We have explicitly checked that taking the massless limit,
�0 → 0, inside of the square brackets of Eq. (B16) repro-
duces the first term of the interference contribution given by
Eq. (B12).

Although the formulas derived above can be evaluated
numerically, we aim at understanding the problem through
the fundamental scales appearing in these expressions. As
a final step, let us therefore spend some time on discussing
the different time-scales appearing, starting with the inter-
ferences. Neglecting the dead-cone angle compared to the
dipole opening angle, we find that one of the exponentials in
Eqs. (B12) and (B16) start oscillating at times

t ∼ t1 = 1

n2
12ω

. (B18)

This scale is related to quantum coherence [30,41], impos-
ing that the wavelength of emitted quanta resolve the dipole
x⊥(t) > λ⊥(t), where λ2⊥ ∼ ω/t . In the vacuum t ∼ tf,
which leads immediately to the angular ordering condition.
The second time-scale appearing in the exponentials is

t2 = (q̂n4
12ω)−1/4. (B19)

This scale is not an independent scale since we can rewrite
it as t2 = (t3

d t1)
1/4, where td is the color decoherence scale

introduced above. This only allows for two possible order-
ings, td < t2 < t1 and t1 < t2 < td, and in neither of the cases
does t2 constitute the shortest, and therefore most relevant,
time-scale.
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It is also possible to show that t1/t2 ∼ θbr(ω)/θ12, where
θ12 ≡ |n12| and θbr(ω) = (q̂/ω3)1/4 is the typical emission
angle for medium-induced gluons. Hence, since we mainly
are interested in large-angle gluon emissions that contribute
to energy-loss, θbr(ω) > R > θ12, t1 > t2 and the first
ordering is actually realized. This means that the decoherence
time, which resides in the function S2(t) sets the shortest
time-scale where the interferences will be suppressed. For
our purposes, it is therefore possible to show that we can
altogether neglect the phases involving these time-scales in
the interference terms, leaving us with

�12(ω, t) � −�g(ω, t)�(ω − ω12), (B20)

�21(ω, t) � −�q(ω, t)�(ω − ω12), (B21)

where ω12 ≡ (q̂/θ4
12)

1/3. In Laplace space this becomes,

γ12(ν, t) � −2ᾱ

√
q̂

ω12

[
1 − e−νω12 − √

πνω12 erf(
√

νω12)
]
,

(B22)

γ21(ω, t) � −2ᾱ

√
q̂

ωmin

[
1 − e−νωmin

−√
πνωmin erf(

√
νωmin)

]
, (B23)

where ωmin ≡ min(ω DC, ω12) which is simply ωmin = ω12 in
the leading-logarithmic approximation (θ12 > �0). Hence,
γ12 � γ21 ≈ −2ᾱ

√
q̂(

√
πν − √

ω12).
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