
Why Blood Pressure and Body Mass Should be 

Controlled for in Resting-State Functional 

Magnetic Resonance Imaging Studies 

 

Guro Stensby Sjuls 

 

MAPSYK360,  

Masters Program in Psychology: 

Behavioral Neuroscience  

at 

UNIVERSITY OF BERGEN 

FACULTY OF PSYCHOLOGY  

SPRING 2020  



VARIABILITY IN RESTING-STATE FUNCTIONAL MAGNETIC RESONANCE IMAGING  2  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Word Count: 18 636 

 

Main supervisor: Karsten Specht,  

Department of Biological and Medical Psychology, University of Bergen 



VARIABILITY IN RESTING-STATE FUNCTIONAL MAGNETIC RESONANCE IMAGING  3  

Abstract 

Replicability has become an increasing focus within the scientific communities with the 

ongoing “replication crisis” in psychological and medical research. One area that appears to 

struggle with highly unreliable results is resting-state functional magnetic resonance imaging 

(rs-fMRI). Therefore, the current study aimed to improve the knowledge of possible 

contributing factors to this tendency. Arterial blood pressure, body mass, hematocrit, and 

glycated hemoglobin were investigated as potential sources of between-subject variability in 

rs-fMRI, in healthy individuals, as previous research has indicated that these variables could 

affect the results of these studies. Whether changes in resting state-networks (rs-networks) 

could be attributed to variability in the BOLD-signal, changes in neuronal activity, or both, was 

of special interest. Within-subject parameters were estimated utilizing Dynamic Causal 

Modelling as it allows hemodynamic and neuronal parameters to be modeled separately. The 

hemodynamic parameters were modelled to describe aspects of the BOLD-signal, and the 

neuronal activity was modelled as effective connectivity, namely the causal interference one 

region has over other regions within the networks. The results of the analyses imply that blood 

pressure and body mass can cause between-subject and between-group variability in the BOLD-

signal and that all the included factors can affect the underlying connectivity. Given the results 

of the current and previous studies, the rs-networks, in particular the Default Mode Network, 

appear to be susceptible to a range of factors, which is likely to contribute to the low degree of 

replicability of these studies.  

 

 

 

Keywords: Resting-state functional magnetic resonance imaging, resting-state network, 

dynamic causal modelling, blood pressure, body mass, hematocrit, glycated hemoglobin 
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Sammendrag  

 Replikasjonskrisen innen psykologisk og medisinsk forskning har gitt de vitenskapelige 

miljøene et økt fokus på replikasjon av forskningsresultater. Et område der mange av resultatene 

virker å ha lav reliabilitet, som gjør funnene utfordrende å replikere, er innen funksjonell 

magnetresonans-avbildning hos hvilende individer (hvile-fMRI). Derfor var målet med denne 

studien å øke kunnskapen om hvilke faktorer som potensielt bidrar til denne tendensen. Arterielt 

blodtrykk, kroppsmasse, hematokrit og glykert hemoglobin ble undersøkt som mulige kilder til 

mellom-subjekt variabilitet i hvile-fMRI, hos friske individer, ettersom tidligere studier har 

indikert at disse faktorene kan påvirke resultatene fra denne typen studier. Om endringer i hvile-

nettverk kan attribueres til variabilitet i BOLD-signalet, endringer i nevral aktivitet, eller begge, 

var av spesiell interesse. Dynamic Causal Modelling ble benyttet for å estimere innen-subjekt 

parametere, ettersom teknikken muliggjør separat modellering av hemodynamiske og nevrale 

parametere. De hemodynamiske parameterene modelleres som beskrivelser av ulike aspekter 

ved BOLD-signalet, og de nevrale parameterene modelleres som effektiv konnektivitet, altså 

den kausale påvirkningen et hjerneområde har over et annet område. Resultatene av analysene 

indikerer at blodtrykk og kroppsmasse kan føre til mellom-subjekt variabilitet i BOLD-signalet, 

og alle de inkluderte faktorene kan påvirke den underliggende konnektiviteten i hvile-

nettverkene. Gitt resultatene av denne og tidligere studier, virker det som at hvile-nettverk, 

spesielt Default Mode Network, er mottakelige for å bli påvirket av en rekke faktorer. Dette 

bidrar trolig til den lave graden av reliabilitet i disse studiene, som kan føre til at resultatene er 

vanskelige å replikere.  

 

 

Nøkkelord: Funksjonell magnetresonanstomografi, hvilenettverk, dynamic causal modelling, 

blodtrykk, kroppsmasse, hematokrit, glykert hemoglobin 
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Abbreviations  

rs-fMRI: Resting State Functional Magnetic Resonance Imaging 

rs-Network: Resting State-Network 

BP: Arterial Blood Pressure 

Dia BP: Diastolic Blood Pressure 

Sys BP: Systolic Blood Pressure 

BMI: Body Mass Index 

HCT: Hematocrit Levels 

HbA1c: Glycated Hemoglobin 

oHb: Oxygenated Hemoglobin 

dHb: Deoxygenated Hemoglobin 

CBF: Cerebral Blood Flow 

rCBF: Relative Cerebral Blood Flow  

CBV: Cerebral Blood Volume 

BOLD-signal: Blood Oxygen Level Dependent Signal  

ROI: Region Of Interest  

ICA: Independent Component Analysis  

DCM: Dynamic Causal Modelling 

csd: Cross-Spectral Density  

DMN: Default Mode Network 

CEN: Central Executive Network 

SN: Salience Network  

PCC: Posterior Cingulate Cortex 

mPFC: Medial Prefrontal Cortex 

LIPC: Left Inferior Parietal Cortex 

RIPC: Inferior Parietal Cortex 

DLPFC: Dorsolateral Prefrontal Cortex 

PPC: Posterior Parietal Cortex 

AI: Fronto-Insular Cortex/Anterior Insula 

ACC: Anterior Cingulate Cortex 

HCP: Human Connectome Project  
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The background for this study is the ongoing replication crisis in the field of 

psychological research (Maxwell, Lau & Howard, 2015). It has been proposed that as few as 

39% of published psychological research can be replicated (Collaboration, 2015). Multiple 

factors are believed to contribute to this tendency, as a pressure to report significant results 

prevents non-significant results from being published, causing researchers to search for 

significant results in their datasets rather than testing hypotheses (Sætrevik & Peterson, 2017). 

In addition, countless studies in neuroimaging have low statistical power due to small sample 

and effect sizes, which contributes to low replicability (Button et al., 2013; Turner, Paul, Miller 

& Barbey, 2018). This tendency is also evident in resting-state functional magnetic resonance 

imaging (rs-fMRI), where the brain functions of resting individuals are being studied. Even so, 

the interest in rs-fMRI has increased, evidently through the impressive growth of the papers 

published during the last decades (Biswal, 2012).  

The growth of rs-fMRI studies can, in part, be explained by the identification of resting-

state networks (rs-networks). Namely, that the activation under the resting condition can be 

organized into consistent networks and that changes in these can occur following, or as a part 

of, several neurological diseases and states (Snyder & Raichle, 2012). Shorter scanning times 

are required, compared to traditional task-based fMRI, which cuts costs, and this economic 

incentive might also contribute to the popularity and growth of rs-fMRI as a neuroimaging 

technique (Murphy, Birn & Bandettini, 2013). 

Even as rs-fMRI is a popular technique, the results seem to show a high degree of 

between- and within-subject variability with a variety of endogenous and exogenous factors. 

Mapping these factors and their effect on the results could improve the reliability, which is 

especially important when investigating whether rs-fMRI could be applied as a clinical tool 

(Specht, 2019). 
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The aim of this study was therefore to investigate the effect that some endogenous 

factors have on the hemodynamics and neuronal activity of three large-scale rs-networks. The 

endogenous factors were arterial blood pressure (BP), body mass (BMI), hematocrit levels 

(HCT), and glycated hemoglobin levels (HbA1c). These are chosen as they might affect the 

blood supply to the brain, which could affect the BOLD-signal that is measured with fMRI, in 

addition to having been shown to affect the neuronal activity of the rs-networks. This study 

aimed to clarify whether these factors could explain between-subject and between-group 

variability in rs-fMRI results, and whether this variability could be attributed to cerebral 

hemodynamics, neuronal activity, or both. 

 

Variability in Resting-State Functional Magnetic Resonance Imaging  

To introduce how endogenous factors related to the circulatory system potentially can 

cause variability in rs-fMRI results, a brief overview of the circulatory system and the blood 

transportation to the brain will be given, in addition to how the properties of the blood vessels 

can affect the blood flow. Further, there will be given an account of how blood flow relates to 

neuronal activity, how the fMRI-technique can be used to measure this activity, and how the 

activity can be modeled, especially in terms of effective connectivity and hemodynamic 

response. Lastly, how the results from rs-fMRI are affected by BP, HCT, BMI, HbA1c, and 

why this is a problem related to the replication crisis, will be described.  

The Circulatory System  

 The cells of the body need oxygen (O2) to function, and the O2 is transported by means 

of erythrocytes (red blood cells), bound to the hemoglobin complex of the cell. The oxygenated 

blood (oHb) is transported in the circulatory system, to be utilized in cell metabolism 

throughout the body. After O2 is used, the circulatory system transports the deoxygenated blood 
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(dHb) away from the cells and back to the heart and the lungs for oxygenation (Snyder & 

Sheafor, 2015). The combined effort of the respiratory and circulatory systems enables the 

intracellular reactions where organic molecules, like glucose, are oxidized so that water and 

energy in the form of adenosine triphosphate (ATP) are created. Without O2, the cascade of 

chemical reactions that enables the utilization of glucose as an energy supply will cease, and as 

a result, the cells will die (Pittman, 2011). 

The blood vessels. The peripheral vascular system consists of the blood vessels outside 

of the heart, and constitute a closed system for blood transportation. The vessels are categorized 

into arteries, capillaries, and veins. The arteries can be further divided into (1) the aorta, which 

is the main artery that transports blood out of the heart, and (2) the arteries, which branch into 

(3) the arterioles. Collectively these vessels transport oHb to the tissue, after the blood has been 

oxygenated. The arterioles distribute oHb to the smallest blood vessels; the capillaries, where 

the gas exchange between the vessels and the tissue occurs (Tucker & Mahajan, 2018). 

The capillaries are narrow which increases the resistance and causes the blood to flow 

slower, enabling the exchange of gases and nutrients (Pittman, 2011). The capillaries of the 

nervous system mostly consist of continuous capillaries, which are covered in a continuous 

layer of endothelial cells. Intracellular clefts separates the endothelial cells, and it is mostly 

through these clefts that the exchange of O2, CO2, and nutrients can occur (Stephens & Stilwell, 

1969). 

When oHb is utilized, it is transported to the veins in a more deoxygenated form, and 

the veins bring dHb back to the heart and lungs. The smallest veins, called the venules, gather 

the blood from the capillaries and direct it to the bigger veins, which direct the blood back to 

the heart. In addition, the veins have a storage function; the venous compartments store oHb 

that is mobilized when nearby cells require it and is adjusted to the need of the body. The veins 
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store around 50-60 % of the total peripheral blood volume, and if the blood volume increases, 

more blood is stored here (Attinger, 1969).  

Transportation of Oxygen to the Human Brain 

As with blood supply to the peripheral tissue in general, the arteries, capillaries and 

veins cooperate to ensure blood flow. The neurons of the brain consume around 20% of the 

available oHb, to maintain normal functioning (Clark & Sokoloff, 1999). The cerebral blood 

flow (CBF) is the blood perfusion to the brain in a given period of time, and the cerebral blood 

volume (CBV), is the volume of blood in a given amount of brain tissue. Keeping these factors 

relatively stable is critical for survival, as they support the brains high metabolic demand 

(Cipolla, 2009).  

The cerebral vasculature that transports blood to and within the brain, is a complex 

system of blood vessels, connected in a manner that supports a constant and stable blood 

perfusion (Payne, 2016). Some large arteries are transporting oHb from the heart, to be 

distributed to different parts of the brain through arteries and arterioles, and there is also an 

intricate system of veins for transporting dHb from the brain to the heart (Stephens & Stilwell, 

1969).  

Arteries. The aorta branches into the vertebral artery, that in collaboration with the 

basilar artery ensures CBF to the brain stem and cerebellum. The basilar artery forms an artery 

circle, joint with two internal carotid arteries. This circulus arteriosus, often known as Willis 

Circle, is located around the optic chiasma, and forms the starting point for the arteries that 

supply the rest of the brain with oHb (Stephens & Stilwell, 1969).  

The posterior cerebral artery transports oHb to the posterior part of cerebrum, and to the 

occipital and parietal lobes. The medial cerebral artery runs along the temporal lobe, in the 

sylvian fissure, and supports the temporal lobes, as well as lateral parts of the frontal and parietal 
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lobes, with oHb. The anterior cerebral artery runs as two arteries to the frontal lobe, supporting 

blood flow to the frontal parts of the brain. Jointly, the posterior cerebral artery and the anterior 

cerebral artery supports blood flow to the medial parts of the brain (Sand, Sjaastad, Haug & 

Bjålie, 2018).  

Veins. To bring dHb away from the capillaries, the venules transports dHb to the bigger 

veins. The veins of the brain are wide, and without vein-valves. They can be divided into four 

groups; superior cerebral veins, inferior cerebral veins, middle cerebral veins, and the great 

cerebral vein. The blood is drained from the veins to vein sinuses in the dura mater of the 

meninges, along with cerebrospinal fluid (CSF) from the subarachnoid space (Schmidek, Auer 

& Kapp, 1985; Stephens & Stilwell, 1969) The veins, respectively, drain into the superior 

sagittal sinus, the transvers sinus, the cavernous sinus, and the straight sinus. The largest sinus 

vein, the superior sagittal sinus, lies between the two hemispheres, along falx cerebri (Stephens 

& Stilwell, 1969). Most of the dHb is transported back to the heart through the internal jugular 

vein (Schmidek et al., 1985). 

Regulation of cerebral blood flow. The mechanisms ensuring stable CBF are regulated 

by outer mechanisms, as well as the brain’s independent regulation. In both instances, the 

characteristics of the blood vessels play a central part. The arteries and veins of the brain, like 

most of the blood vessels of the body, consist of an inner, a middle, and an outer layer. The 

middle layer consists of smooth musculature, enabling the vessels to contract and expand, 

depending on the thickness of the layer. The thickness varies between the vessels, and thereby 

affects the vessels vascular reactivity and ability to influence CBF (Siegel, 1996). 

The arteries have a relatively thin layer of smooth musculature, therefore their 

contractions only modestly changes the diameter of the vessel. In the arterioles, the smooth 

musculature is of greater importance, and the layer is therefore thicker. When the arterioles 

contract the segmental vascular resistance increase, which reduces the CBF (Faraci & Heistad, 
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1990; Furchgott, 1983; Siegel, 1996). The venules have a thin layer of smooth musculature, 

compared to the walls of the veins, that has a relatively thick layer of smooth musculature. This 

enables the veins to contract, to utilize the oHb of the CBV of the venous compartments, which 

increases the arterial blood volume (Tucker & Mahajan, 2018). As mentioned, the regulation 

of contraction and relaxation of the smooth musculature is under hormonal and sympathetic 

nervous control, as well as being controlled by cerebral autoregulation (Walsh, 1994). 

Cerebral autoregulation. As it is crucial for the brain to maintain a stable perfusion 

pressure at all times, cerebral autoregulation enables the brain to adjust the diameter of the 

arterioles and veins independent of nerves and hormones from the outside. As with regulation 

of CBF in general, the elasticity and smooth musculature of the blood vessels enables vascular 

reactivity; contractions increases the segmental vascular resistance which decreases CBF, and 

the dilation decreases the segmental vascular resistance which increases CBF (Strandgaard & 

Paulson, 1984). Several mechanisms account for the cerebral autoregulation, including 

myogenic regulation and cerebral metabolic regulation.  

Myogenic regulation enables stable perfusion pressure when the arterial blood pressure 

(BP) is moderately changed, e.g. when moving from a lying to a standing position. This 

mechanism is beneficial as the range of factors that can change the BP, like physical activity, 

does not change CBF to a large degree. It also enables the mobilization of oHb from CBV in 

the venous compartments, for example if an individual is losing large amounts of blood (Tan, 

Hamner & Taylor, 2013).  

Cerebral metabolic regulation, however, ensures increased perfusion pressure to brain 

regions that are relatively more active, ensuring relative CBF (rCBF). This is linked to the 

neural activity, as the regions involved in a specific brain function requires increased amounts 

of oHb (Lassen, 1959). Nitric oxide has been proposed as a possible communicator between 

the neurons and the endothelial cells of the blood vessels; acting as a vasodilator (Bredt, Hwang 
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& Snyder, 1990). However, the exact neurovascular mechanism that enables the vessels to 

dilate to meet the energy demand of a given neuron is poorly understood (Gauthier & Fan, 

2019). Still, this metabolic autoregulatory mechanism, and its subsequent increase in CBV, is 

what is utilized when the fMRI-technique is used to study the localization of brain functions 

(Ogawa, Lee, Kay & Tank, 1990). 

Functional Magnetic Resonance Imaging 

From its development around the 1980s, the non-invasive functional magnetic 

resonance imaging (fMRI) technique has become a widely used tool for acquiring insight into 

functionally specialized brain areas. By utilizing hemodynamic changes related to blood 

metabolism, neuronal activity is measured (Heeger & Ress, 2002).  

The fMRI technique is based on the stable and strong magnetic field created by the large 

magnet of a magnetic resonance (MR) scanner, and utilizes the differences in magnetic 

susceptibility of oHb and dHb. By using a MRI sequence that is sensitive to these small 

magnetic differences, it is possible to measure changes in blood oxygenation. Accordingly, the 

contrast between oHb and dHb is called the blood-oxygen-level-dependent (BOLD)-

signal/contrast (Gauthier & Fan, 2019).  

The MRI technique. When entering a MRI scanner, the participant is exposed to the 

main magnetic field of the scanner. The strength of the magnet makes the magnetic moments 

of the protons of the body’s hydrogen atoms align with the magnetic field, as the protons are 

positively charged. To disrupt this equilibrium state, and create a signal that can be detected, a 

rotating magnetic field, consisting of gradient coils, is applied along the axis of the main 

magnetic field. This exerts the hydrogen protons and shifts the net magnetization from the 

longitudinal plane, which the protons are primarily aligned along, to the transverse plane. The 

transverse component of the system is normally zero when the net magnetization is aligned with 
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the longitudinal component, but it is only the transverse component that is measured with MRI 

technology (Ogawa et al., 1990; Zeidman, Jafarian, Corbin, et al., 2019).  

When the rotating magnetic field is turned off, the transverse component proceeds to 

precess around the main magnetic field. This process, where the transverse component of the 

net magnetization is reduced, is characterized by an exponential decay with a time constant T2*. 

The process is often called effective transverse relaxation, and any spatial variation in the 

amplitude of the magnetic field within one voxel will lead to differences in the frequency of the 

precession of the protons. This induces an accumulative decay of the protons, relative to each 

other, and this relative difference will increase over time (Ogawa et al., 1990; Zeidman, 

Jafarian, Corbin, et al., 2019).  

The BOLD-signal. Oxygenated hemoglobin (oHb) is diamagnetic, which means that it 

exhibits a weak response to a magnetic field, whereas deoxygenated hemoglobin (dHb) is 

paramagnetic, exhibiting a stronger response. When a task is performed, cerebral metabolic 

autoregulation ensures a higher rCBF to the regions that are functionally involved in the given 

task. As the oHb is utilized, the activity will cause a temporary and local increase in dHb. 

Nearby arterioles dilate, increasing the rCBF, to meet the need for additional oxygen in the 

given area and compensate for the high concentration of dHb. The concentration of dHb is 

weakened, resulting in a more stable magnetic environment and slower dephasing of the 

transversal magnetization (T2*) than in the initial dip in signal intensity due to the relatively 

high concentration of dHb (Gauthier & Fan, 2019; Ogawa et al., 1990). The weakened T2*-

weighted signal from dHb is essential to the BOLD-signal, as it affects the proton signaling 

from the hydrogen atoms in tissue close to the blood vessels (Ogawa et al., 1990; Zeidman, 

Jafarian, Corbin, et al., 2019). 

The BOLD-signal is then analyzed; contrasting a condition with a baseline condition. 

The differences between brain regions are interpreted as relative differences in neuronal activity 
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and are used to give indications on regions functionally involved in the performed task (Ogawa 

et al., 1990).  

Dynamic models of the BOLD-signal. Given that the BOLD-signal is an indirect 

measure of neuronal activity, that is based on the assumption that a region with higher neuronal 

activity is in need of increased rCBF, it is likely that endogenous factors related to the 

respiratory and circulatory system might affect the hemodynamic response of the BOLD-signal 

in some way (Gauthier & Fan, 2019). So, even though the signal is related to neuronal activity, 

it arises from a combination of changes in CBF, CBV, and oxidative metabolism to meet the 

energy demands of the active brain (Gauthier & Fan, 2019). Therefore, other factors that can 

contribute to changes in CBF and CBV, e.g. arterial blood pressure, body mass and fat, and the 

velocity of the blood, might impact the BOLD-signal, and in turn the fMRI-results (Buxton, 

Wong & Frank, 1998).  

 Some mathematical models of the hemodynamic response have been proposed to better 

understand and make predictions about the relationship between neuronal and hemodynamic 

responses. Among these are the non-linear Balloon model (Buxton et al., 1998), which 

describes the dynamics of CBV and dHb. It treats the venous compartments as a balloon, that 

inflates due to increased CBF. The CBV therefore increases, and as a consequence dHb is 

released at a faster rate. In turn, this affects the BOLD-signal, essentially prolonging it (Buxton, 

Uludağ, Dubowitz & Liu, 2004). Factor that can affect CBV and CBF, like BMI and BP, are 

put forward in the model as affecting the BOLD-signal (Buxton, 2012).  

Task-based vs. resting-state fMRI. To make a contrast between a task and when the 

participant is resting in the scanner, as described above, is the traditional task-based approach 

to fMRI. Here, the resting condition is viewed as a baseline; a control condition to contrast the 

task condition against (Heeger & Ress, 2002). However, task activation increases the 

consumption of energy by only 0.5-1.0%, while the resting condition, or baseline, stands for 
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60-80% of the brain’s total energy consummation (Raichle & Mintun, 2006). The intrinsic 

activity that the energy consumption represents, is hypothesized to support communication 

among neurons in the absence of a specific task. The frequency of this energy consumption 

fluctuates in a range below 0.1Hz (Biswal, Zerrin Yetkin, Haughton & Hyde, 1995; Raichle & 

Mintun, 2006) 

In a protocol for resting-state fMRI (rs-fMRI) studies, where the amplitude of these low-

frequency fluctuations (LFF) is measured, the participants are told to have their eyes closed, 

open, or fixated on a grey cross on a dark screen, and rest in the MR scanner. Measuring the 

LFF of the BOLD-signal that occurs in this condition is the basis for rs-fMRI procedures, and 

it is assumed to reflect the intrinsic processes of the brain (Snyder & Raichle, 2012). In addition, 

the measured time-series of the fluctuations can be analyzed and organized into fairly consistent 

networks (Allen et al., 2011). 

Connectivity of the Resting Brain  

By investigating connectivity between and within regions of the brain, consistent 

resting-state networks (rs-networks) can be observed (Allen et al., 2011). The networks can be 

derived from the resting condition itself or be based on brain regions that are known to be 

functionally involved in specific tasks. In the case of the latter, the LFFs of the BOLD-signal 

in these regions are measured with the rs-fMRI paradigm. rs-networks have been extensively 

studied over the last two decades, and have been linked to many aspects of human functioning, 

including various types of neurological diseases, like Alzheimer’s disease and depression 

(Greicius, Krasnow, Reiss & Menon, 2003). Essentially, these studies have given insight into 

how the activity of the brain act in the absence of a task, and how this activity can change under 

various conditions (Buckner & DiNicola, 2019).  
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Analyzing resting state fMRI-data. There are different methods for analyzing data 

from rs-fMRI, which can be used to identify which regions are functionally or effectively 

connected. Functional connectivity within or between rs-networks refers to the correlation 

between regions with simultaneous activity at rest, indicating that these regions are cooperating 

in a network; being functionally linked. Effective connectivity does in addition indicate the 

relationship between the regions; it gives insight into the directionality of the communication 

within or between the regions of the rs-networks (Friston, Harrison & Penny, 2003). In addition, 

the structural connectivity of rs-networks can be studied, in an attempt to map the underlying 

“connectome” of the brain (Azevedo et al., 2009; Herculano-Houzel, 2009).  

When investigating the underlying functional or effective connectivity of the resting 

brain, different approaches can be used. These include seed-based analysis, independent 

component analysis (ICA), and dynamic causal modelling (DCM) (Beckmann, DeLuca, Devlin 

& Smith, 2005; Biswal et al., 1995; Friston, Kahan, Biswal & Razi, 2014). 

Functional connectivity. Seed-based analysis requires predefined Regions of Interest 

(ROI). The ROIs are then used to calculate correlations within the same time-series, for one or 

more brain regions. The seed-based ROI approach is therefore useful for testing hypotheses 

about the relationship among brain regions (Lee, Smyser & Shimony, 2013). ICA, on the other 

hand, is a data-driven approach that determines the most independent networks based on the 

BOLD-signal time-series. The number of networks that the analyses are going to determine is 

decided beforehand (Beckmann et al., 2005; Calhoun, Adali, Pearlson & Pekar, 2001).  

Both ROI and ICA can generate measures of functional connectivity, which is thought 

to reflect how different regions coactivate to maintain a brain function, measured as their 

synchronization the LLF of the BOLD-signal across regions. Friston et al. (2014) define 

functional connectivity as the statistical dependencies among observed neurophysiological 

responses. Using functional connectivity to investigate rs-networks has given great insight into 
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how the brain is organized. However, it is merely based upon correlations, and cannot be used 

to infer the causal relationship between neuronal systems, e.g. how activity in one region 

mediates activity in another region (Friston et al., 2014; Greicius et al., 2003). 

Effective connectivity. DCM can be used to estimate effective connectivity, which 

models the direct causal influence one region of the brain exerts over another (Friston et al., 

2003; Zeidman, Jafarian, Corbin, et al., 2019). DCM uses the BOLD-signal time-series from 

the regions defined with ROI analysis or ICA, and is a data-driven approach. One can argue 

that DCM provides a better model of actual neuronal activity in the brain compared to 

functional connectivity, as it is based on Bayesian statistics, which involves incorporating 

previously known information or theoretical assumptions into the modelling/analyses. In terms 

of DCM, the relationship between the connections that one wants to study can be incorporated 

into the modeling. In addition, given the modeling of directionality, DCM makes more causal 

predictions about the connectivity between regions (Friston et al., 2003; Stephan et al., 2010).  

When doing DCM on rs-fMRI data, the frequency domain of the observed functional 

connectivity can be fitted with the cross-spectral density (csd) of the fMRI time-series, for each 

predefined region. csd is the correlation of the frequency distribution of the BOLD-signal 

between brain regions; the signal changes in one region per second is modeled as a function of 

the csd, namely the activity, in another region. csd-DCM is used with rs-fMRI as the protocol 

of these studies are not expected to cause any major changes in the BOLD-signal, and it is 

therefore assumed that the connection strengths remain more or less stable throughout the data 

acquisition (Friston et al., 2014). Task-based fMRI data, however, is often modeled to the time 

domain, as a change in the BOLD-signal is assumed to occur following the task (Friston et al., 

2014; Zeidman, Jafarian, Corbin, et al., 2019).  

In addition to measures of effective connectivity within and between the regions of the 

rs-networks, csd-DCM extracts parameters of the hemodynamic response, incorporating the 
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Balloon model (Buxton et al., 2004; Friston et al., 2003; Friston et al., 2014). These parameters 

are essentially descriptions of the Balloon model; the transit time for each region, decay as the 

global parameter of the BOLD-signal, and epsilon as the neuronal efficacy (Friston, Mechelli, 

Turner & Price, 2000). csd-DCM also extracts spectral density values, expressed as a- and b-

values, that reflect the amplitudes and exponents of the csd of the neuronal fluctuations (Friston 

et al., 2014).  

Resting-State Networks 

Functional, effective and structural connectivity is readily used as a means to study rs-

networks (Honey et al., 2009; Park, Friston, Pae, Park & Razi, 2018; Van Den Heuvel & Pol, 

2010). Three frequently studied rs-networks are the default mode network (DMN), the central 

executive network (CEN), and the salience network (SN).  

The default mode network. The study of the brain’s resting state attracted the attention 

of the research community of neuroscience in the mid-90s (Biswal et al., 1995). The study of 

the resting brain led to the discovery of a consistent, functionally connected, pattern of 

distributed brain regions; as a persistent network of “deactivation”. When the participant 

initiated a goal-directed or attention-demanding behavior or task the activation in the network 

would cease (Raichle et al., 2001). DMN consists of regions within the association cortex, that 

are late to develop in humans, and that is thought to have been evolving and expanding with 

the human evolution (Buckner & Krienen, 2013). The three main hubs or regions of DMN 

include the precuneus/posterior cingulated cortex (PCC), medial prefrontal cortex (mPFC), and 

medial, lateral, and inferior parietal cortices (IPC) (Raichle et al., 2001). 

There is yet no unified view of the function of DMN, but it has been postulated to 

support a “default mode” of the brain when an individual is awake and alert, but not actively 

involved in a task (Raichle et al., 2001). Others have suggested that DMN is involved in a self-



VARIABILITY IN RESTING-STATE FUNCTIONAL MAGNETIC RESONANCE IMAGING  24  

referential and introspective state (Greicius et al., 2003). Studies supporting this theory show 

that the more the task-demand increases, the more the activity of DMN will decrease, essentially 

suppressing the network. This might indicate that the attention that in the resting-state can be 

directed inwards, in demanding tasks will be directed outwards to focus on the extrinsic task 

(Singh & Fawcett, 2008). There is also some evidence suggesting that DMN is involved in 

mediating the processes where one retrieves memories, plan for the future, or processing of 

one’s own impressions and feelings (Buckner, Andrews-Hanna & Schacter, 2008). In line with 

this research, malfunctioning of DMN has been associated with Alzheimer’s disease and 

depression (Greicius, Srivastava, Reiss & Menon, 2004; Hamilton, Farmer, Fogelman & Gotlib, 

2015; Mevel, Chételat, Eustache & Desgranges, 2011; Sheline et al., 2009).  

The central executive network. As DMN is “deactivated” when a participant is 

performing a cognitive task, the activation of another network is increasing. The anti-

correlation between these networks have been shown to increase with the degree of task 

difficulty (Fox et al., 2005). CEN is a task-related network, with the predominant regions being 

the dorsolateral prefrontal cortex (DLPFC), and the posterior parietal cortex (PPC) (Bressler & 

Menon, 2010; Toro, Fox & Paus, 2008). The neocerebellum also contributes to the function of 

CEN, as it is believed to contribute to working memory, with the integration of information 

through cortico-cerebellar loops (Habas et al., 2009). 

As mentioned, the nodes of CEN show a strong coactivation during cognitively 

challenging tasks. It is thought to be involved in the manipulation and maintenance of 

information in working memory, as well as being involved in decision-making in goal-directed 

behavior, attention, response inhibition and other executive functions, which qualitatively 

separates it from DMN  (Bressler & Menon, 2010; Koechlin & Summerfield, 2007). Changes 

in CEN connectivity have been shown to occur with diseases were these functions are altered, 
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like schizophrenia, borderline personality disorder and with alcohol abuse (Doll et al., 2013; 

Manoliu et al., 2014; Weiland et al., 2014; Woodward, Rogers & Heckers, 2011). 

The salience network. SN has been shown to play a mediating role in up- and 

downregulating of DMN and CEN (Sridharan, Levitin & Menon, 2008). Some researchers view 

SN as a part of an attention network, along with the regions of CEN, while others postulate that 

it plays a specific role regarding attention, that separates it from the rest of CEN (Seeley et al., 

2007). The predominant regions of SN are the ventrolateral prefrontal cortex (vlPFC), the 

anterior insula (AI), and the anterior cingulate cortex (ACC) (Menon & Uddin, 2010) 

SN and in particular the insula, is responsive to the degree of salience, and is involved 

in bottom-up detection of salience; directing attention and memory resources to salient events. 

It is situated close to regions essential in the cognitive, homeostatic, and affective systems of 

the brain, which makes it a possible link between stimulus-driven processing and other areas 

involved in monitoring the internal environment of the brain and body (Craig, 2009; Menon & 

Uddin, 2010).  

Menon and Uddin (2010) suggest that the insula, and more specifically the anterior 

insula (AI), can be viewed as a central component of SN. They argue that AI is involved in 

integrating and mediating information flow between different brain networks that are involved 

in attention processing and cognition, like CEN. According to a study by Sridharan et al. (2008), 

the fronto-insular cortex and the ACC form a separate network, that is involved in the switching 

between CEN and DMN, which was tested by investigating the switching between task and 

resting-state conditions by means of fMRI. ACC also plays a modulatory role in sensory 

processing and it connects the SN to the supplementary motor cortex. In this matter, ACC is 

involved in promoting both response selection and motor responses (Crottaz-Herbette & 

Menon, 2006; Paus, 2001; Rudebeck et al., 2008). 
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Endogenous Sources of Variability in rs-fMRI  

Following the theory of the BOLD-signal and rs-networks described above, the 

following section will describe how arterial blood pressure (BP), hematocrit levels (HCT), body 

mass (BMI) and glycated hemoglobin (HbA1c) are related to CBF/CBV. In addition, the results 

of studies that have found them to be related to changes the rs-fMRI BOLD-signal and/or in rs-

network connectivity, will be accounted for. See Appendix A for the description of the literature 

search. 

Arterial blood pressure. To maintain CBF when the resistance increases, for example 

in smaller vessels or when the blood has a higher viscosity, the pressure of the arteries must 

increase. The pressure can be measured as arterial blood pressure (BP); the pressure the blood 

exerts on the arteries (Alexis, 2009; Harper, 1966). Keeping BP within a normal range is 

especially important for the brain as the mechanisms involved in cerebral autoregulation only 

function optimally when BP is within a specific range. When BP is too low CBF decreases, 

potentially damaging the brain tissue, and when BP is too high it can increase the strain on the 

heart (Harper, 1966). See Table 1 for an overview over what is typically categorized as normal, 

high and elevated BP. 

BP is regulated with information from baroreceptors, which brings information to the 

cardiovascular center of medulla oblongata. If the center receives information indicating low 

BP it reflexively initiates a feedback loop, which activates the heart, increasing the strength of 

its contractions (Harper, 1966). BP is often measured and expressed as systolic and diastolic 

pressure, namely the pressure the blood exerts on the arteries when it the heart contracts, and 

the pressure exerted on the arteries while the heart is filling up with blood. Systolic and diastolic 

BP is commonly measured and expressed in mm/Hg (Alexis, 2009). 
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Table 1 
 
Blood Pressure Categories  
 

Category  Systolic BP  Diastolic BP 
Normal Less than 120 and Less than 80 
Elevated 120-129  Less than 80 

High: Stage I 130-139  80-89 
High: Stage II ³140  ³90 
High: Stage III >180  >120 

Note. Criteria for normal, elevated and high (stage I, II, III) blood pressure. The criteria for the given category 
assumes the combination of the systolic and diastolic arterial blood pressure, as indicated by the “and”. BP = 
blood pressure. Reproduced from Sand et al. (2018). 

 

Mean BP fluctuations are highly coupled with the fluctuations of the BOLD-signal, as 

it fluctuates around 0.08 Hz. Therefore, a significant component of the BOLD-signal in rs-fMRI 

seems to have a systemic origin, with around 2.2% of the variance in the BOLD-signal being 

explained by beat-to-beat mean BP (Whittaker, Driver, Venzi, Bright & Murphy, 2019). By 

using low-pass filtering, at 0.08 Hz, and applying brain global, white-matter, cerebrospinal fluid 

mean signal regressions, the spectral power of the BOLD-signal can be reduced by 55.6% to 

64.9% (Zhu, Tarumi, Khan & Zhang, 2015). The low frequency fluctuations of mean BP itself 

might be reflective of an autoregulatory process (Whittaker et al., 2019; Zhu et al., 2015).  

The only study, to the best of my knowledge, that has investigated the relationship 

between functional connectivity of rs-networks and individuals with normotensive BP, studied 

the relationship with rostroventral medulla. They found this region to exhibit a stronger 

connectivity to vlPFC, which can be considered a part of SN (Kobuch, Macefield & Henderson, 

2019).  

Hematocrit. The erythrocytes (red blood cells) transports the O2 to the brain, and it is 

the large number of these cells that ensure the velocity of the blood (Stadler et al., 2008). Every 

erythrocyte contains a large number of hemoglobin molecules (Hb); constituting about 34% of 

the cell mass. Hb binds O2 and CO2, and consists of a globular peptide chain with an ionized 

iron atom (Fe2+), called globin, and a heme group. Every Fe2+ can bind one O2 molecule, and 
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this binding is not particularly strong; O2 is easily bound to the Hb in the lungs, and easily 

detached from the Hb in the tissues of the body (Krueger & Nossal, 1988; Perutz et al., 1960). 

The shape and structure give the cells a large surface, to make the O2 binding more efficient 

(Smith, 1987). 

HCT is the percent wise measure of the blood volume that consists of erythrocytes. As 

the number of Hb is relatively stable in erythrocytes, HCT is also an indicator of the amount of 

Hb available and the blood’s capacity to transport O2. If HCT is low the blood will lose some 

of its ability to transport O2, and it will have a lower viscosity. However, if the number of 

erythrocytes is high, the blood is able to transport more O2 and have a higher viscosity 

(González‐Alonso, Mortensen, Dawson, Secher & Damsgaard, 2006). As mentioned, higher 

viscosity makes the blood more challenging to transport, and to compensate BP might increase 

(Jae et al., 2014) . On average, women have lower HCT (42%) than men (45%), due to the male 

sex hormone testosterone stimulating the production of erythrocytes (Murphy, 2014). 

Studies on the relationship between baseline HCT and the BOLD-signal have found it 

to be contributing to the degree of BOLD-activation. These studies implicate a positive 

relationship between the BOLD-signal activation and HCT levels, specifically in men. 

However, the studies used task-based fMRI to investigate the relationship. (Levin et al., 2001; 

Xu et al., 2018; Zhao, Clingman, Närväinen, Kauppinen & van Zijl, 2007). To the best of my 

knowledge, no study has yet specifically studied the effect of HCT on the BOLD-signal in rs-

fMRI. 

In addition, between-subject variations in HCT have been associated with regional 

differences in connectivity in parts of the DMN, CEN, and SN, namely in ACC, mPFC, 

intraparietal sulcus, insula, and opercular cortex, by Yang, Craddock, and Milham (2015). The 

authors point out that it is unclear whether these differences are due to neuronal or non-neuronal 

variation (Yang et al., 2015). 
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Body mass. The blood volume makes up around 7% of an average adult’s body weight, 

and it decreases in a non-linear matter with increased body weight (Lemmens, Bernstein & 

Brodsky, 2006). As a consequence of the amount of body fat rising with age, older individuals 

have on average a lower blood volume relative to body weight, compared to younger adults 

(Sand et al., 2018).  

Body mass is often calculated using the Body Mass Index (BMI). Based on the equation 

weight (kg.)/height (cm)2 one can estimate the mass of the body. Normal weight is considered 

to be a BMI score between 18.5 and 25. A score under 18.5 are considered underweight, and 

scores over 25 are considered overweight. Scores over 30 are considered obese and scores over 

40 are considered severely obese (Kuczmarski & Flegal, 2000). Higher BMI scores are 

associated with life-style diseases like diabetes mellitus type 2, as well as heart and cardiac 

diseases (Lam, Koh, Chen, Wong & Fallows, 2015). As BMI affects CBV, it is included in the 

beforementioned Balloon model, as a factor that might affect the BOLD-signal (Buxton et al., 

1998). 

Some studies have found decreased within-network connectivity of DMN, CEN and SN, 

as well as increased between-network connectivity, to be related to higher BMI. However, the 

results are somewhat varied, as different regions of the rs-networks show altered functional 

connectivity. According to one study, connectivity of regions within SN (insula/parietal 

operculum), regions involved in visual processing, and DMN are sensitive to differences in 

BMI-status. Specifically studying BMI-discordant monozygotic twins, a study found that twins 

with lower BMI had stronger functional connectivity between striatal/thalamic and prefrontal 

networks. The twins with a higher BMI, on the other hand, exhibited stronger functional 

connectivity between DMN and other networks, like a cerebellar network and SN, including 

the central operculum, and precentral gyrus (Sadler, Shearrer & Burger, 2018).  
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Similarly, higher BMI has been found to be related to increased functional connectivity 

between DMN, CEN, a sensorimotor and a visual network, as well as a reduction of DMNs and 

CENs internal cohesiveness. The authors consider SN a part of CEN, and it is specifically 

between the frontoparietal part of CEN and SN, and within SN, that they found reduced 

functional connectivity. However, this study did not find changes in functional connectivity in 

DMN and CEN when comparing BMI-discordant siblings (Doucet, Rasgon, McEwen, Micali 

& Frangou, 2017).  

Decreased within-network functional connectivity of DMN has also been found 

between PCC and precuneus in elderly with higher BMI (Beyer et al., 2017), and in the frontal 

gyrus of DMN in overweight young subjects (Chao et al., 2018). Further, Chao et al. (2018) 

found increased functional connectivity in ACC bilaterally (parts of the SN), in overweight 

subjects compared to controls. In contrast to these studies, overweight compared to normal-

weight monozygotic female twins did not show altered functional connectivity in DMN, SN, 

or an ACC-orbifrontal network. After eliminating genetic effects, altered functional 

connectivity was only seen in a basal ganglia network, specifically within the bilateral putamen 

(Doornweerd et al., 2017).  

The results from these studies on the effect of BMI on rs-networks vary, but several of 

the authors hypothesize that higher BMI is linked to changes in networks that balance sensory-

driven and internally-guided (CEN, DMN) states; this might lead to weight gain as a 

consequence of poorly regulated eating behavior (Doucet et al., 2017; Sadler et al., 2018).  

Glycated hemoglobin. Long-term blood sugar, or glycated hemoglobin, (HbA1c) is a 

measure related to an individual’s glycemic regulation over a period of the last twelve weeks. 

When blood glucose is regulated in a sufficient way, the HbA1c is normally <5.7% (Chandalia 

& Krishnaswamy, 2002). High concentrations of glucose in the blood, as a consequence of 

higher amounts of glucose being bound to the hemoglobin, can indicate a poorly regulated 
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blood sugar. Therefore, moderately high (5.7-6.5%) and high (>6.5%) scores are indicators of 

pre-diabetes and Diabetes Mellitus, respectively (Tankova, Chakarova, Dakovska & 

Atanassova, 2012). As indicated by Iso et al. (1991), HbA1c is a good indication of body fat, 

measured as hip-waist-ratio. Therefore, HbA1c might be related to blood volume in similar 

ways to BMI (Lalande, Hofman & Baldi, 2010). However, whether HbA1c levels will affect 

the BOLD-signal of rs-fMRI is uncertain, as no previous studies have been conducted. A study 

on the influence of HbA1c levels and BOLD-signaling for stroke patients did not find there to 

be a relationship between the degree of hemodynamic response with HbA1c, in task-based 

fMRI (An et al., 2015).  

Sadler, Shearrer, and Burger (2019) found no difference in DMN activity between 

subjects with prediabetes (HbA1c 5.7-6.4) and healthy subjects. They did however find there 

to be stronger functional connectivity between a ventral attention network, consisting of 

orbitofrontal cortex and middle temporal gyrus, and a cingulo-opercular network in healthy 

individuals. This network included insula (part of SN), and DLPFC (part of CEN). The 

prediabetic subjects did however show stronger functional connectivity between a ventral 

attention network, a visual and a somatosensory network. The authors discuss whether these 

differences between groups are associated with differences in self-control, as the functional 

connectivity of the healthy individuals can be viewed as related to self-control, whereas the 

functional connectivity of the prediabetic individuals are stronger between areas associated with 

processing sensory stimuli (Sadler et al., 2019), which resembles the conclusion several authors 

draw from the previously described BMI results (Chao et al., 2018; Sadler et al., 2018) 

Other studies that have investigated the relationship between changes in rs-networks of 

individuals with type 2 diabetes mellitus compared to healthy individuals, have found diabetic 

individuals to exhibited weaker functional connectivity in the right insula (part of SN), and 

from the right insula to the bilateral superior parietal lobule (Liu et al., 2017). The same is seen 
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in diabetic patients with cognitive impairment, especially in the right insula (Yang et al., 2016). 

These findings indicate that the insula, in particular, might be affected by higher HbA1c values, 

or might be involved in the processes leading up to the heightened HbA1c values.  

The Replication Crisis in the Field of Resting-State fMRI 

As these studies indicate, there are several factors that possibly affect the connectivity 

and/or the hemodynamic response of the rs-networks. In effect, the rs-variability relates to the 

ongoing replication crisis in the field of psychological and medical research, as the rs-fMRI 

studies seem to produce highly varying and unreliable results. The replication crisis has 

received extended attention and is now acknowledged as an issue by the research community, 

as outlined in the introduction (Maxwell et al., 2015; Sætrevik & Peterson, 2017).  

When conducting rs-fMRI studies specifically, a major problem is that the BOLD-signal 

show a high degree of within- and between-subject variability, with a range of different factors. 

This tendency does also, to some degree, apply to task-based fMRI, but these studies have the 

advantage of a control condition (Specht, 2019). In addition, between- and within-subject 

variation has been found to correlate with an extensive list of endogenous and exogenous 

factors. These include the time of year and the time of day, circadian rhythm, sleep duration, 

prior events, mood, age and gender, to mention only a few (Agcaoglu, Miller, Mayer, Hugdahl 

& Calhoun, 2015; Choe et al., 2015; Curtis, Williams, Jones & Anderson, 2016; Goldstone et 

al., 2016; Harrison et al., 2008; Hodkinson et al., 2014; Waites, Stanislavsky, Abbott & Jackson, 

2005).  

Implications of low replicability. The points mentioned above can be viewed as 

problems relating to the replication crisis as rs-fMRI evidently is sensitive to varying 

conditions. As it is challenging to control for all of the factors, the results are in turn difficult 
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to replicate (Birn, 2012; Duncan & Northoff, 2013; Murphy et al., 2013). This is an issue in 

itself, which leads to a new set of problems when conclusions are drawn and build on the results.  

With the growing interest for rs-fMRI over the last two decades, the technique has been 

put forward as a potential clinical tool. When rs-fMRI started gaining more interest from the 

research community, it was partly because it provided an opportunity to investigate the 

connectivity of the brain in the absence of a task. This was beneficial when studying different 

clinical groups, as some of the potential issues related to receiving instructions on a task, as 

well as engage in it, is greatly reduced. As the procedure reviled that alterations of the rs-

networks could be observed in these clinical groups it gave rise to the idea of rs-fMRI as a 

potential diagnostic tool (Specht, 2019). For example, alterations were observed in the DMN 

of Alzheimer’s disease patients, and a substantial amount of research was carried out to 

investigate whether DMN alterations could be used for diagnosing Alzheimer’s disease 

(Greicius et al., 2004; Mevel et al., 2011). However, they were building on the assumption that 

the rs-networks are inherently stable across time and within and between subjects, which would 

make them sensitive to clinical deviations (Specht, 2019). Arguably, the findings indicating that 

the rs-networks vary with a range of factors gives rise to skepticism about their presumed 

stability. 

Going forward, measures should be taken to better ensure the replicability of these 

studies. Multi-institutional initiatives collecting big quantities of data, like the Human 

Connectome Project (HCP) or the UK Biobank, are put forward as potential solutions to the 

general issue of the replication crisis (Poldrack & Gorgolewski, 2014; U.K, 2014; Van Essen 

et al., 2013). As they provide large datasets, including rs-fMRI data, it enables researchers to 

include more subjects in their studies, which contributes to giving the studies higher statistical 

power (Poldrack & Gorgolewski, 2014). fMRI studies often have a low number of participants 

which makes the results less reliable (Button et al., 2013). In addition, the data collection of 
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these initiatives is transparent with available study protocols, which makes it easier for 

researchers to replicate other studies (Poldrack & Gorgolewski, 2014). Therefore, the data from 

these initiatives can be used to investigate the effect different factors have on rs-networks and 

the hemodynamic response in a large sample.  

 

Aims of the Current Study 

To further increase the knowledge on between-subject variability in the rs-networks of 

healthy individuals, the effect of BP, HCT, BMI and HbA1c was investigated. As the previously 

mentioned studies and theoretical framework indicate, these factors might cause variability in 

both hemodynamic and neuronal parameters. A research procedure that would allow for 

functionally separating the BOLD-signal variation that can be attributed to hemodynamics, and 

the BOLD-signal variation that can be attributed to neuronal activity, was considered as highly 

relevant: 

Firstly, as some of the variation ascribed to variance in neuronal connectivity might in 

fact be attributable to hemodynamic variance, in which case the conclusions drawn from 

functional connectivity studies might be flawed. Secondly, if the variables cause variability in 

both the hemodynamic and neuronal parameters of the BOLD-signal, it would imply that at 

least some of the variation in the hemodynamic parameters should be accounted for when 

drawing conclusions on connectivity. Thirdly, if all of the potentially observed variability can 

be ascribed to the neuronal parameters of the BOLD-signal, it could potentially confirm 

previous studies on rs-connectivity. And finally, a study that aims to ascribing the potential 

variability caused by some endogenous factors to either the hemodynamic response 

independently of neuronal activity, or the neuronal activity in rs-networks, have not previously 

been conducted. Independent of the direction of the results, if either the hemodynamic response, 
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the neuronal activity, or both, are affected by the variables included in the current study, it 

would speak for rs-networks as lacking some of the stability that they are assumed to possess. 

The current study therefore aimed at investigating the between-subject variability that 

BP, HCT, BMI and HbA1c, might cause in rs-fMRI results, as well as the between-group 

variability potentially caused by BMI, in a healthy population. The overarching implications of 

the current study mostly relate to the ongoing replication crisis and what measures can be taken 

to ensure more reliable results in the fast-growing field of rs-fMRI; essentially facilitating more 

reliable results for future studies.  

Research Question and Hypotheses   

The following research question was asked: Can between-subject variability in BP, 

HCT, BMI and HbA1c affect the hemodynamic response and neuronal activity of large-scale 

rs-networks? The hypotheses under “Hemodynamic response” and “Neuronal activity” were 

postulated as primary hypotheses, to answer the research question at hand. Notably, large effect 

sizes were not expected, as previous studies have found a range of other factors to cause 

variability in rs-fMRI. Therefore, relatively small effect sizes were expected, so that the 

combination of these and other variables are collectively causing variability in the results of rs-

fMRI.  

Hemodynamic response. In line with the studies and theoretical framework outlined in 

the introduction, the following hypotheses were postulated for the effect of the endogenous 

factors on the dynamics of the rs-fMRI BOLD-signal:  

Hypothesis 1 (H1): Increased BP will weaken the dynamics of the BOLD-signal, as it 

might represent increased segmental vascular resistance.  

Hypothesis 2 (H2): Increased HCT will strengthen the dynamics of the BOLD-signal, in 

line with the previously conducted research described above.  
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Hypothesis 3 (H3): Increased BMI will weaken the dynamics of the BOLD-signal, as 

CBV decreases with increased body weight.  

Hypothesis 4 (H4): Increased HbA1c will decrease the dynamics of the BOLD-signal, 

based on the same principal as with BMI.  

Put shortly: Increased BP, BMI and HbA1c was hypothesized to weaken the BOLD-

signal, whereas increased HCT it hypothesized to strengthen the BOLD-signal.  

Neuronal activity. In line with the studies outlined in the introduction, the following 

hypotheses are postulated for the effect of the endogenous factors on the connectivity within 

the rs-networks:  

Hypothesis 5 (H5): Increased HCT will weaken the internal connectivity of DMN, CEN 

and SN. 

Hypothesis 6 (H6): Increased BMI will weaken the internal connectivity of DMN and 

SN, and increase the between-network connectivity. 

Hypothesis 7 (H7): Increased HbA1c values will weaken the internal connectivity of 

CEN and SN, and increase the between-network connectivity. 

The relationship between the endogenous factors. In addition, some secondary 

hypotheses were postulated on the relationship between the study’s independent variables: 

Hypothesis 8 (H8): Diastolic and systolic BP are positively correlated. 

Hypothesis 9 (H9): BP and HCT are positively correlated.  

Hypothesis 10 (H10): BP and BMI are positively correlated.  

Hypothesis 11 (H11): BP and HbA1c are positively correlated.  

Hypothesis 12 (H12): HCT and HbA1c are not correlated.  

Hypothesis 13 (H13): HCT and BMI are positively correlated. 

Hypothesis 14 (H14): BMI and HbA1c are positively correlated. 
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Methods  

Research Design  

To test the hypotheses, a between-subject and between-group design was chosen. 

Firstly, a csd-DCM analysis resulting in within-subject parameters of the hemodynamic 

response, effective connectivity, cross-spectral density (csd) and Free Energy (model evidence), 

was conducted. Secondly, how much of the between-subject variance in the hemodynamic and 

effective connectivity parameters that could be predicted by BP, HCT, BMI and HbA1c was 

examined. As gender has been shown to affect rs-networks, an analysis that allowed to control 

for the effect of gender was utilized. Thirdly, the endogenous factor BMI was split into groups 

for comparison on the hemodynamic and effective connectivity parameters. Lastly, the effect 

of the independent variables on the csd-DCM parameter Free Energy (model evidence), was 

examined. This was done to investigate whether including the independent variables in the 

model increases the model evidence, which could support the idea that the contribution of the 

variables collectively is contributing to variability in the results.  

The study therefore had a hierarchical design, as the first step, namely within-subject 

estimation of parameters had to be performed prior to the between-subject and between-group 

analyses. Healthy subjects were studied, to give indications of variability within a normal 

population. A large sample was aimed for, to ensure statistical power.  

After ethical and practical considerations, previously collected data from the Human 

Connectome Project (HCP) was considered sufficient to answer the research question as they 

provide data on a large sample of the healthy population, including rs-fMRI data, biological 

data, and a range of data points from various questionnaires. In addition, the large sample 

ensures statistical power, which in turn makes the results more replicable; in line with the 

overarching goal of the study. Thus, no additional data was collected. A smaller subsample was 
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chosen from the available HCP sample, for reasons related to DCM analyzing time. However, 

the number of subjects in the study sample were still considerably higher than in conventional 

rs-fMRI studies, which was aimed for. Information on the subjects and the data collecting 

protocols are available online, allowing transparency and insight into potential advantages and 

disadvantages of the data used (HumanConnectomeProject, 2017). 

Ethical Considerations 

 The data was from HCP, which is a partially open-access database. However, access to 

data of a more sensitive nature is not open to the public. This was specifically applied for and 

approved by HCP for the current study. This study was approved by the regional ethics comity 

for medical research, “Regional Etisk Komité for Medisinsk Forskning (REK)”, as a part of the 

project “When Default is not Default” at the institute of Biological and Medical Psychology, 

University of Bergen. (see Appendix B). 

Using already existing data, and thereby not recruiting new participants, is beneficial 

from an ethical standpoint, as no additional subjects were put through the potential stress of the 

research procedure (Poldrack & Gorgolewski, 2014). The HCP subjects signed an informed 

consent document, before doing any further procedures, and all data was anonymized with 

subject codes, without personal information. The participants consented to their anonymous 

data being shared; the data containing less sensitive data being shared openly (e.g. fMRI-

images), and the data containing more sensitive data (e.g. family history and psychiatric history) 

being shared with the researchers granted access (Van Essen et al., 2013). 

 The subsequent guidelines were followed while working with the HCP data in the course 

of the current study: As the data is from a specific population from a restricted geographical 

area, it is important to take steps in order to keep the subjects anonymous (Poldrack & 

Gorgolewski, 2014; Van Essen et al., 2012). Some of the data is of a sensitive matter, for 
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example regarding the use of alcohol and drugs, as well as psychiatric history. According to the 

HCP guidelines for restricted data, it should not be shared. This includes storing the data in a 

safe way, as well as not discussing sensitive data over e.g. email. Researchers that wish to use 

the restricted data are required to apply for it personally, and therefore the data was only 

discussed between members of the research group that had been granted access. If the results 

are to be published, the sensitive data should not be combined in such a way that it could identify 

the subjects (HumanConnectomeProject, 2013, 2016).  

Data Acquisition  

Subjects. The section of data that was used in this study stems from a branch of the 

HCP studying young healthy individuals, the “HCP S1200 release”, which was collected over 

a period of approximately three years (Van Essen et al., 2013).  

Recruitment. The subjects were drawn from a population of healthy young adults, born 

in Missouri. The subjects were recruited on the basis of age and whether they came from a 

family that included twins, based on the Missouri Department of Health and Senior Services 

Bureau of Vital Records. The recruited subjects were monozygotic and heterozygotic twins and 

their non-twin siblings, ranging from 22 to 35 years of age (Van Essen et al., 2013). 

Inclusion and exclusion criteria. HCP aimed at recruiting subjects that represent the 

broad U.S. population, in terms of ethnic, racial, and socioeconomic representation, to reflect 

the variability that can be found within a population. The same principle was applied to health 

status, as the study included individuals that were smokers, overweight, or had a history of 

heavy drinking or recreational drug abuse (Van Essen et al., 2013). 

Individuals with severe neurodevelopmental disorders, e.g. schizophrenia, or 

neurological disorders, e.g. Parkinson’s disease, were excluded along with their siblings. Twins 

born earlier than week 34, and non-twin siblings born earlier than week 37, were excluded. 
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Interestingly, in the case of this study, individuals with diabetes, and high BP were excluded; 

“as these might negatively impact neuroimaging data quality”. However, subjects with 

undiagnosed high BP and diabetes kept under control by means of diet were included in the 

study (Van Essen et al., 2013). See Appendix C for a full overview of inclusion and exclusion 

criteria.  

Phone interviews were used to inquire if the participants met the inclusion and exclusion 

criteria. If a minimum of three family members, including one twin pair, met the criteria and 

were willing to participate, they were given a longer phone interview; the Semi-Structured 

Assessment for the Genetics of Alcoholism (SSAG) (Bucholz et al., 1994). This assessment 

was used to make sure that the subjects did not have any significant psychiatric illnesses (Van 

Essen et al., 2013).  

Study sample. The total number of subjects in the HCP Healthy Young Subjects “S1200 

release” is 1206, which of a subsample was used in the current study (N=594) (Van Essen et 

al., 2012) A smaller sample was chosen as it cuts analyzing time, as the DCM analysis can be 

fairly time-consuming. To obtain the within-subject parameters with this smaller study sample, 

the DCM analysis was running for around 3 weeks. The sample was semi-randomly chosen, on 

the basis of an equal distribution of gender and age, as a part of another study.  

Behavioral and biological testing. After completing the phone interview, the subjects 

spent two days at the research facility (Washington University, St. Louis, Missouri, U.S.), and 

a set of behavioral assessment tests were performed (see Appendix D for the full list of 

behavioral and biological tests) (Van Essen et al., 2013). 

Blood samples for HCT and HbA1c to assess the percentage of red blood cells and 

glycemic regulation over time. The blood samples for these tests were drawn at some point 

during the two days (HumanConnectomeProject, 2018). For HCT, blood samples were drawn 

two times. The data from the first draw was used in this study.  
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 Weight and height were self-reported by the subjects, and a BMI score was calculated 

using the equation height/weight2 (kg./m2). As mentioned, CBV is decreased with increased 

weight. However, as BMI takes the height of the subject into account, it was considered a more 

convenient measure. In addition, Buxton’s Balloon model explicitly mentions BMI as a factor 

that might affect the dynamics of the BOLD-signal (Buxton, 2012; Van Essen et al., 2013). 

BP was obtained for each subject. Conventionally, the BP consist of two variables; 

systolic and diastolic BP (HumanConnectomeProject, 2018; Van Essen et al., 2013). HCP does 

not report exactly how BP was measured. Assuming a conventional manual BP apparatus was 

used, the BP was measured using a cuff around the upper arm, at the same height as the heart. 

The cuff is filled with air, which stops the blood flow to the arm. When the blood flow is 

completely restricted, the pressure caused by the cuff is slowly released. While listening to the 

blood flow with a statoscope, the systolic BP is measured when the blood is flowing back to 

the arm, making a turbulent sound. The diastolic BP is measured when the blood flows freely; 

when the turbulent sound ceases. If an automatic BP apparatus was used, the same principle 

applies, but the measures are taken automatically (Sand et al., 2018). 

Scanning protocol. The subjects were scanned with a customized Siemens 3T 

“Connectome Skyra” at Washington University. The scanner included a 32-channel head coil, 

custom gradient coils and gradient power amplifiers that increase the gradient strength from 40 

mT/m to 100 mT/m. Using the customized gradient set also resulted in a smaller diameter of 

the inner bore of the scanner than on a standard Siemens 3 T Skyra. Prior to the first scan, 

subjects underwent a practice scan in a mock scanner, to be accustomed to the scanning 

environment and to get feedback on head motion (Uğurbil et al., 2013; Van Essen et al., 2013; 

Van Essen et al., 2012). 

Based on piloting, a protocol was established to acquire the rs-fMRI data, which used a 

gradient-echo multiband EPI imaging sequence. The rs-scans, which over the time of the two-
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day visit lasted for a total of 1 hour (2 x 15 min per day), were acquired with opposite encoding 

directions; from left to right (L/R) and from right to left (R/L). The participants were instructed 

to leave their eyes open, fixating on a cross-hair during the scans. To address the potential 

problem of head motion, information on dynamic head motion and position was gathered, using 

an optical motion tracking camera system (Moire Phase Tracker, Kineticor). A computer 

displayed the head motion in real-time, and the information generated was stored in a data file, 

linked to the scan it was associated with (Van Essen et al., 2013). 

Image Acquisition. To obtain high resolution T1-weighted structural MR images, the 

following settings were applied: Repetition Time (TR) 2400ms, echo time (TE) 2.14ms, 

inversion time (TI) 1000ms, flip angle of 8°, field of view (FOV) 224 x 224mm (readout x 

phase encoding), 0.7mm isotropic voxels, and a multiband factor of 8  (Uğurbil et al., 2013).  

The settings for the rs-fMRI were: TR of 720 ms, TE of 33.1 ms, 52° flip angle, FOV 

208mm x 180mm, slice thickness 2.0mm; 72 slices; 2.0 mm isotropic voxels and a multiband 

factor of 8  (Uğurbil et al., 2013).  

Image Processing. Unprocessed fMRI images are normally preprocessed before they 

are analyzed as they contain a range of spatial distortions, are not in a standard anatomical 

space, and are misaligned across modalities. In addition, noise, artifacts and biases need to be 

corrected for, before the statistical analysis can be conducted. For rs-fMRI this includes de-

noising, and removal of motion confounds, as well as brain parcellation, and network analysis 

(Glasser et al., 2013). 

HCP optimized the preprocessing to compensate for the spatial distortions, at the same 

time as minimizing the loss of data, in the “HCP Minimal Pre-processing Pipeline”. Using the 

“Connectome Skyra” scanner, with a smaller bore (56cm) than a conventional scanner, resulted 

in the participants heads not being centered along the gradient isocenter, which needed to be 

corrected for as all the scans had gradient distortions greater than a conventional scanner, e.g. 
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a Siemens 3 T Skyra. In the minimally pre-processed data, which was used in this study, these 

distortions were already corrected (Glasser et al., 2013; HumanConnectomeProject, 2018).  

The additional preprocessing of the data included smoothing with a 6mm Gaussian 

kernel. To regress out non-grey matter sources of noise in the data, from white matter and 

cerebrospinal fluid, a region of interest (ROI) was specified for each. To control for subject 

movement in the course of the scanning session, twelve movement parameters were included 

in the analysis.  

 

Statistical Analyses 

To study the effect of BP, HCT, BMI and HbA1c on the hemodynamics and effective 

connectivity in rs-networks, the rs-fMRI time-series from eight regions of interest (ROIs) where 

extracted, using the HCP “S1200 release” data that was already preprocessed with the “HCP 

Minimal Pre-Processing Pipeline” (HumanConnectomeProject, 2017). Cross-spectral density 

DCM (csd-DCM) was used to extract the cross spectral density (csd) from the time-series of 

each ROI; estimating within-subject parameters. The hypotheses were then tested on the DCM 

parameters with the data for each subject on BP, HCT, BMI and HbA1c, which was available 

from the HCP database. The ROI extraction and time-series extraction was performed in 

MATLAB and in the MATLAB extension SPM12 (version 2018a). Hierarchical linear 

regression analyses and a test of between-group variance were performed for the hypothesis 

testing, in IBM SPSS Statistics (Version 25). 

Within-Subject Estimates 

ROIs for each rs-network for each subject was specified from the preprocessed HCP 

“S1200 release” data, for the study sample (N=594). Eight ROIs were extracted, including four 
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regions from DMN, two regions from CEN and two regions from SN. See Table 2 for the 

coordinates for each region and which network they are a part of.  

 

Table 2 
 
Coordinates for Regions of Interest 
 

Resting State Network Regions R/L MNI Coordinates 

 
 
 

 
 

Default Mode Network 

Posterior Cingulate 
Cortex 

 

R/L 0  -52  26 

Medial Prefrontal Cortex 
 

R/L 3  54  -2 

Left Inferior  
Parietal Cortex 

 

L -50  -63  32 

Right Inferior Parietal 
Cortex 

R 48  -69  35 

 
 

Central Executive Network 

Dorsolateral Prefrontal 
Cortex 

R 45  16  45 
 
 

Posterior Parietal Cortex R 54  -50  50 

 
 
Salience Network 

Fronto-Insular Cortex R 37  25  -4 
 
 

Anterior Cingulate 
Cortex 

R/L -32  24  -6 

Note. The coordinates for each ROI, and which rs-network the given regions is considered a part of. MNI = 

Montreal Neurological Institute; R = right scanning direction; L=left scanning direction.   
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Dynamic causal modelling. With csd-DCM, the time series of each ROI is extracted 

and converted to csd, based on the observed BOLD-signal. The csd is expressed in hertz (Hz), 

and refers to the correlation in the frequency distribution of the BOLD-signal between brain 

regions, which is a representation of effective connectivity. As csd is modelled as a function of 

the frequency distribution (representing the activity) in another region, the effective 

connectivity parameters indicate the causal interference a region makes on another region 

(Friston et al., 2014; Zeidman, Jafarian, Corbin, et al., 2019). 

The connectivity strength between regions must have a set prior value. These priors are 

not affecting the effective connectivity in any major way, other than preventing extreme values 

in the output (posteriors) (Friston et al., 2014; Zeidman, Jafarian, Corbin, et al., 2019). In this 

study, the priors were turned on for connections between all the included regions within DMN, 

CEN and SN. The csd-DCMs were specified for each rs-fMRI acquisition; as each subject 

underwent two rs-fMRI acquisitions, a total of 1188 acquisitions were included in the analysis. 

The result of the csd-DCM are parameters of effective connectivity between and within each 

region (A-matrix) and hemodynamic parameters (transit time for each region, epsilon and 

deacy). In addition, csd-values (a- and b-values) and Free Energy parameters are extracted 

(Friston et al., 2014; Zeidman, Jafarian, Corbin, et al., 2019). 

The hemodynamic parameters are essentially descriptions of the Balloon Model; the 

transit time for each predefined region, decay as the global parameter of the BOLD-signal, and 

epsilon as the neuronal efficacy (Friston et al., 2000). DCM calculates transit time by dividing 

the resting venous CBV by the resting CBF, providing a measure of the dynamics of the BOLD-

signal. With an increase in mean transit time, the BOLD-signal dynamics would be prolonged, 

but the amplitude would remain the same. Epsilon describes the relationship between CBF and 

neuronal activity; it reflects an increase in rCBF, which is expressed as a number of transients 

per second (Friston et al., 2000; Zeidman, Jafarian, Corbin, et al., 2019). Decay represents the 
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reduction of the BOLD-signal, which can suppress the post-stimulus undershoot if elevated 

sufficiently. Decay, or specifically the rate of decay, is related to the relaxation of smooth 

musculature of the arterioles.  

In addition to hemodynamic and effective connectivity parameters, the spectral density 

values are extracted when using csd-DCM. These are expressed as a- and b-values, and reflect 

the amplitudes and exponents of the spectral density of the neuronal fluctuations, respectively. 

Further, model evidence, expressed as “Free Energy” is calculated. If the model evidence 

increases by including variables in the model, it is indicating that more of the model is explained 

when the given variables are included (Friston et al., 2014). 

Between-Subject Variance 

To test the hypotheses of between-subject variation in the parameters produced by the 

DCM, a hierarchical linear regression and a non-parametric test of between group variance 

(Kruskal-Wallis H Test) was conducted. The hierarchical linear regression was chosen as most 

of the independent variables were within a normal range, and therefore it was not viewed as 

beneficial to split the variables into groups. The BMI variable was however viewed as beneficial 

to split into groups. The groups were compared with Kruskal-Wallis H test. The continuous 

BMI variable was also included in the regression analysis.  

Descriptive analyses. To make sure that the study sample represented the total HCP 

sample, in terms of BP, HCT, BMI and HbA1c, the distribution of these variables was 

examined. A two-tailed Pearson correlation analysis was conducted on the independent 

variables to investigate the relationship between them. In addition, the general descriptive 

statistics for the independent and dependent variables were examined. 

Hierarchical linear regression analysis. Before the regression analysis was carried 

out, preliminary analysis in the form of a two-tailed Pearson correlation analysis was conducted 
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on the independent and dependent variables, to investigate the relationship between them. In 

addition, the assumptions of linear regression, namely the assumptions of a relatively large 

sample size, few extreme outliers, normality, linearity, multicollinearity and homoscedasticity 

was checked: Extreme outliers, defined as >3.0 interquartile from the mean, and outliers over 

the critical value as indicated by Mahalanobis’ Distance, were removed. The data did not show 

multicollinearity (see Appendix E for the full correlation matrix for the independent variables). 

There were no major deviations from normality or linearity; indicating that these assumptions 

were met for most of the regression models. The effective connectivity parameters LIPC to 

ACC, PPC to mPFC and RIPC did not meet the assumptions and were therefore not included 

in the final regression analysis.  

A hierarchical linear regression analysis was conducted on the independent variables 

(BP, HCT, BMI and HbA1c) and the dependent variables (DCM parameters) that showed a 

significant correlation (Two-tailed p < .05). If more than one independent variable correlated 

significantly with the same dependent variable, both were added to the same regression model. 

The effect of gender was controlled for, as it has been found to affect the activity in rs-networks, 

and as the normal range of HCT is known for being higher in men than in females.  

It was examined whether the variance in the dependent variables could be significantly 

better predicted by the independent variables than gender alone. For the full models (including 

the independent variable(s) and gender) it was examined which of the variables that made a 

significant unique contribution to explaining the variance in the dependent variable, and 

whether the full model significantly predicted the dependent variable. To investigate the relative 

contribution of each factor independently, the standardized coefficient Standardized Beta of the 

coefficients t-test were examined, as well as R2 Change for the F-test of the full models. The 

alpha value was set to 0.05, and the confidence interval was set to 95%. 
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 Between group analysis of variance. The BMI variable was split into three groups for 

comparison. BMI is not normally distributed, therefore a non-parametric alternative for analysis 

of group variance, the Kruskal-Wallis H Test, was used to determine whether there were 

significant differences between the BMI groups on the DCM parameters. The test was carried 

out after the assumptions of the test was checked. The χ2-distribution was defined by the degrees 

of freedom (K-1); in this case 2, as 3 groups were being compared. 

 In the cases of significant group differences, a pairwise comparison with Bonferroni 

corrections was used to investigate which groups significantly differed (p < .05). The Mean 

Rank Value was used to determine which of the groups showed a higher rank order, and effect 

sizes were calculated (r = z/Ön+n).  

 

Results  

Within-Subject Estimates 

Dynamic Causal Modelling. After the times series for each ROI were extracted, the 

csd-DCM provided the within-subject estimate of the effective connectivity between and within 

the regions of DMN, CEN and SN (A-matrix), the hemodynamic response parameters (transit 

time, epsilon and decay), the csd parameters of the neural fluctuations (a- and b-values), in 

addition to Free Energy (model evidence). The following analysis included these parameters as 

dependent variables. 

Descriptive Statistics  

The study sample was similar to the total HCP sample in terms of BP, HCT, BMI and 

HbA1c, in addition to similar distribution of gender and age; full sample (N = 1206; female = 
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656, male = 550, mean age = 28,8; SD = 3.6), study sample (N = 594, female = 310, male = 

284, mean age = 28.8; SD = 3.6). See Table 3 for the distribution. 

 

Table 3 
 
Study Sample Compared to Full HCP Sample 
 

Variable Total HCP Sample (N = 1206) Study Sample (N = 594) 
 

 
 

Mean 
 

SD 
 

Mean 
 

SD 
BP     

Systolic 124 14.9 124.1 13.8 
Diastolic 77 11.0 76.9 10.5 

HCT 43 4.7 44 4.9 
Female 41 4.2 41 4.7 
Male 46 3.9 46 3.6 
BMI 27 5.9 26 5.1 
Female 27 6.5 26 5.8 
Male 27 5.0 27 4.2 

HbA1c 5 0.4 5 0.4 
Note. The mean distribution of the biological variables in the total HCP sample, compared to the study sample, 

with SD; mean for each gender for HCT and BMI. SD = standard deviation; HCP = Human Connectome Project; 

BP = blood pressure; HCT = hematocrit; BMI = Body Mass Index; HbA1c = glycated hemoglobin.  
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Table 4 
 
Descriptive Statistics for the Independent Variables 
 

 
 

 
 

 
 

 
 

 
Mean 

  
Skewness 

 
Kurtosis 

 
Variable 

 
N 

 
Min. 

 
Max. 

 
Statistic 

Std. 
Error 

 
SD 

 
Statistic 

Std. 
Error 

 
Statistic 

Std. 
Error 

Sys BP 590 88 176 124.1 .569 13.8 .317 .101 .156 .201 
 

Dia BP 590 
 

40 113 76.9 .431 10.4 .199 .101 .321 .201 
 

HCT 547 18 59 43.6 .210 4.9 -.916 .104 3.6 .209 
 

BMI 593 16 45 26.2 .209 5.0 .978 .100 .844 .200 
 

HbA1c 417 1.3 6.3 5.2 .018 .3 -3.2 .120 30.6 .238 
 

Note: Descriptive statistics for the independent variables. Sys BP = systolic blood pressure; Dia BP = diastolic 

blood pressure; HCT = hematocrit; BMI = Body Mass Index; HbA1c = glycated hemoglobin; N = number of 

subjects; Min. =  minimum score; Max. = maximum score; std. Error = standard error; SD = standard deviation.  

 

The general descriptive statistics of the independent and dependent variables were 

examined, see Table 4. It revealed that there were missing scores on all of the independent 

variables, with HbA1c missing the most values (missing values = 177). For the BP variables 

there were subjects in the dataset with a systolic BP above 140mm Hg, which is categorized as 

hypertensive stage 2 if combined with a diastolic BP above 90mm Hg, which someone in the 

sample also had (see Table 1). The mean for the subjects were slightly elevated for systolic BP 

(above 120 mm Hg). The mean diastolic BP was within a normal range (less than 80mm Hg).  

For the mean HCT score for each gender, see Table 3. These scores are categorized as 

being within the normal range for the population for each gender. The mean of the BMI variable 

was above 25, indicating that the mean of the study sample is categorized as overweight. For 

HbA1c there were some subjects with a below normal, and some with an above normal, score. 

However, with a high kurtosis, and low standard deviation, most of the scores are likely to be 

close to the mean; see Table 4. For the descriptive statistics of the dependent variables (DCM 

parameters), see Appendix E.  
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Correlations between the independent variables. The Pearson correlation analysis 

including the independent variables (confidence interval = 95%) revealed a significant 

relationship (p < .05) between systolic BP and HCT (r = .105, p = .015) and systolic BP and 

BMI (r = .335, p = .000). There was also a significant relationship between diastolic BP and 

HCT (r = .085, p = .048) and diastolic BP and BMI (r = .291, p = .000). Systolic and diastolic 

BP had the strongest significant covariation (r = .680, p = .000). The results confirmed some of 

the hypotheses on the relationship between the independent variables; H8, H9, H10, and H12. 

However, H11, H13 and H14 were not confirmed. See Appendix F for the full correlation matrix.  

Hierarchical Linear Regression 

The Pearson correlation analyses between the independent and dependent variables 

conducted prior to the regression analyses (confidence interval = 95%) showed that there was 

a significant relationship between some of the variables (p < .05). The variables that did not 

show a significant correlation were not included in the regression models, as they were 

considered as not having a relationship between them that it would be useful to investigate 

further. 

See Table 5 for the significant correlations between the independent variables and the 

hemodynamic parameters and Table 6 for the significant correlations for the effective 

connectivity parameters. For the csd parameters, the a-value was significantly correlated with 

diastolic BP (r = .100, p = .015), and the b-value was significantly correlated with diastolic BP 

(r = -.087, p = .035) and BMI (r = -.091, p = .027). Free Energy was significantly correlated 

with all the independent variables; diastolic BP (r = .136, p = .001), systolic BP (r = .108, p = 

.009), HCT (r = -.155, p = .000), BMI (r = .150, p = .000) and HbA1c (r = .150, p = .002). As 

can be seen from the correlation coefficients, and the ones in table 5 and 6, all of the significant 
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correlations are quite small; around r = .10 (Cohen, 1988, pp. 79-88). The rest of the 

independent and dependent variables were not significantly correlated.  

 

Table 5 
 
Significant Correlations Between the Independent Variables and the Hemodynamic 
Parameters 
 

Independent Variable(s) Hemodynamic Parameter Pearson’s r Sig. 
Sys BP RIPC transit time 

Epsilon 
-.086 
.096 

.011* 

.020* 
 

Dia BP mPFC transit time 
LIPC transit time 

AI transit time 
DLPFC transit time 

PPC transit time 
Decay 
Epsilon 

 

-.080 
-.090 
-.103 
.082 
.099 
.086 
.132 

.050* 

.029* 

.012* 

.048* 

.016* 

.036* 
.001** 

BMI mPFC transit time 
PCC transit time 

.120 
-.081 

.003** 
.049* 

 
Note. The table shows only the significant correlations between the independent variables and the hemodynamic 

parameters. Confidence interval = 95%. mPFC = medial prefrontal cortex; PCC = posterior cingulate cortex; 

LIPC/RIPC = left/right inferior cingulate cortex; AI = anterior insula; DLPFC = dorsolateral prefrontal cortex; 

PPC = posterior parietal cortex; Sys BP = systolic blood pressure; dia BP = diastolic BP; BMI = Body Mass Index.  

*p < .05, ** p < .01. 
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Table 6 
 
Significant Correlations Between the Independent Variables and the Effective Connectivity 
Parameters 
 

Independent Variable(s) Effective Connectivity  Pearson’s r Sig. 
Sys BP PCC to mPFC .091 .027* 

PCC to AI -.081 .048* 
LIPC to PCC -.100 .016* 

RIPC .099 .017* 
RIPC to mPFC -.118 .004** 
RIPC to ACC -.113 .006** 

AI to ACC -.082 .046* 
AI to DLPFC -.114 .006** 

AI to PPC -.125 .002** 
ACC to RIPC .104 .011* 

 
Dia BP 

 
PCC to AI -.105 .049* 

mPFC .111 .007** 
LIPC to PCC .086 .036* 
RIPC to ACC -.087 .035* 
RIPC to PPC -.094 .023* 
AI to ACC -.113 .006** 

AI to DLPFC -.094 .023* 
AI to PPC -.156 .000** 

DLPFC to AI .096 .019* 
 

HCT LIPC to RIPC 
LIPC to ACC 
PPC to mPFC 

-.105 
-.103 
-.089 

.014** 

.016** 
.037* 

   
BMI mPFC to to PCC .085 .039* 

mPFC to RIPC .085 .038* 
mPFC to AI .085 .038* 

mPFC to ACC 
AI to PCC 

ACC to PPC 
PCC to AI  

.085 
-.096 
.084 
-.101 

.039* 

.019* 

.040* 

.049* 
 

HbA1c  PCC to PPC 
AI to PPC 

ACC to PPC 

.124 
-.121 
.110 

.011* 

.014* 

.024* 
 

Note. The table shows only the significant correlations between the independent variables and the effective 

connectivity parameters. Confidence interval = 95%. mPFC = medial prefrontal cortex; PCC = posterior cingulate 

cortex; LIPC/RIPC = left/right inferior cingulate cortex; AI = anterior insula; DLPFC = dorsolateral prefrontal 

cortex; PPC = posterior parietal cortex; ACC = anterior cingulate cortex; Sys BP = systolic blood pressure; dia BP 

= diastolic BP; BMI = Body Mass Index.  

*p < .05, ** p < .01. 
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Hemodynamic parameters. For the result of the regression analysis with the 

hemodynamic parameters as outcome variables, see table 7. Gender alone significantly 

predicted RIPC transit time. Systolic BP made a significant contribution to this model, even 

though neither gender nor systolic BP made significant unique contributions. The full model 

did however significantly explain 1.3% of the variance. 

Adding diastolic BP to the model did not explain significantly more of the variance in 

PPC transit time than gender alone, and the variable did not make a significant unique 

contribution, even though the full model was significant. Neither gender alone or the full models 

significantly predicted the variance in LIPC transit time and DLPFC transit time.  

For PCC transit time, BMI made a significant contribution to the model, but the full 

model was not significant. For mPFC transit time, adding BMI and diastolic BP explained 

significantly more of the variance, both variables made significant unique contributions to the 

model, and the full model was significant; diastolic BP and BMI together explained 2.8% of 

the variance. For AI transit time, adding diastolic BP to the model made a significant 

contribution to explaining the variance, the variable made a significant unique contribution, and 

the full model was significant; diastolic explained 1.3% of the variance. 
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Table 7 
 
Regression Table for Transit Time 
 
 Modell Summary Coefficients 

 
Transit 
Time 

 
 

Model 

 
 

R2 

 
R2 

Change 

 
(df reg, 

df res) = F 

 
 

Sig.  

 
Sig. F 

Change 

 
 

beta 

 
 

Sig.  
 

PCC 
 

Gender  
 

Gender 
BMI 

 
.001 

 
.010 

 
 
 

.009 

 
(1, 579) = .479 

 
(2, 578) = 2.936 

 
.489 

 
.054 

 
 
 

.021 

 
 
 

.035 
-.096 

 
 
 

.396 
.021* 

 
mPFC 

 
Gender  

 
Gender 

 Dia 
BP 

BMI 

 
.000 

 
.028 

 
 
 

.028 

 
(1, 575) = .198 

 
(3, 573) = 5.567 

 
.657 

 
.001
** 

 
 
 

.000 

 
 
 

.028 
-.130 
.157 

 
 
 

.497 
.003** 
.000** 

 
LIPC 

 
Gender  

 
Gender  
Dia BP 

 
.000 

 
.006 

 
 
 

.006 

 
(1, 576) = .062 

 
(2, 575) = 1.803 

 
.804 

 
.166 

 
 
 

.060 

 
 
 

.002 
-.079 

 
 
 

.961 

.060 
 

RIPC 
 

Gender  
 

Gender 
Sys BP 

 
.008 

 
.013 

 
 
 

.005 

 
(1, 576) = 4.509 

 
(2, 575) = 3.707 

 
.034 

 
.025 

 
 
 

.034 

 
 
 

-.065 
-.074 

 
 
 

.133 

.090 
 

AI 
 

Gender 
 

Gender 
Dia BP 

 
.000 

 
.013 

 
 
 

.013 

 
(1, 576) = .479 

 
(2, 575) = 2.936 

 
.669 

 
.020

* 

 
 
 

.006 

 
 
 

.036 
-.116 

 
 
 

.391 
.006** 

 
DLPFC 

 
Gender 

 
Gender  
Dia BP 

 
.002 

 
.006 

 
 
 

.005 

 
(1, 576) = 2.366 

 
(2, 575) = 2.679 

 
.125 

 
.069 

 
 
 

.085 

 
 
 

.053 

.073 

 
 
 

.211 

.085 
 

PPC 
 

Gender 
 

Gender 
Dia BP 

 
.004 

 
.010 

 
 
 

.006 

 
(1, 576) = 2.432  

 
(2, 575) = 3.013 

 
.119 
 
.050 

 
 
 

.059 

 
 
 

.052 

.080 

 
 
 

.213 

.059 
Note. The results of the hierarchical linear regression analyses for the hemodynamic parameter transit time, for 

each region. The regression analysis with gender as predictor alone can be seen in the first row of each parameter, 

the full model including the independent variables can be seen in the second row. Confidence interval = 95%. 

mPFC = medial prefrontal cortex; PCC = posterior cingulate cortex; LIPC/RIPC = left/right inferior cingulate 

cortex; AI = anterior insula; DLPFC = dorsolateral prefrontal cortex; PPC = posterior parietal cortex; Sys BP = 

systolic blood pressure; Dia BP = diastolic BP; BMI = Body Mass Index; df reg = degrees of freedom regression; 

df res = degrees of freedom residual; beta= standardized coefficient beta. *p < .05, ** p < .01. 
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For the remaining hemodynamic parameters, namely decay and epsilon, gender did not 

significantly predict the variance alone. Diastolic BP made a significant unique contribution to 

explaining the variance in decay, but the full model was not significant. Diastolic BP and 

systolic BP made a significant contribution to the model, where diastolic BP made a significant 

unique contribution to explaining the variance in epsilon. The full model was significant; 

explaining 1.7% of the variance. See Table 8 for the regression table for these parameters. 

 

Table 8 
 
Regression Table for Decay and Epsilon 
 
 Modell Summary  Coefficients 

 
 

 
 

Model 

 
 

R2 

 
 

R2 Change 

 
(df reg, 

df res) = F 

 
 

Sig. 

 
Sig. F 

Change 

 
 

beta  

 
 

Sig. 
 

Decay 
 

Gender  
 

Gender 
Dia BP 

 
.001 

 
.009 

 
 
 

.008 

 
(1, 576) = .532 

 
(2, 575) = 2.683 

 
.446 

 
.069 

 
 
 

.028 

 
 
 

-.045 
.092 

 
 
 

.286 
.028* 

 
Epsilon  

 
Gender  

 
Gender 
Dia BP  
Sys BP 

 
.000 

 
.017 

 
 
 

.017 

 
(1, 576) = .053 

 
(2, 575) = 3.400 

 
.813 

 
.018* 

 
 
 

.007 

 
 
 

-.014 
.123 
.015 

 
 
 

.749 
.034* 
.804 

Note. The results of the hierarchical linear regression analyses for the hemodynamic parameters decay and epsilon. 

The regression analysis with gender as predictor alone can be seen in the first row of each parameter, the full model 

including the independent variables can be seen in the second row. Confidence interval = 95%. Sys BP = systolic 

blood pressure; Dia BP = diastolic BP; df reg = degrees of freedom regression; df res = degrees of freedom residual; 

beta= standardized coefficient beta.  

*p < .05, ** p < .01. 
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Effective connectivity parameters. The regressions with effective connectivity 

parameters as outcome variables revealed that some of the independent variables contributed 

significantly to explaining more of the variance in the given parameter than gender, and that 

one or more of the independent variables contributed significantly to this tendency, with the 

full model (including gender) being significant (p = < .05). See Table 9 for these cases. The 

regressions were this was not the case are described below, and the full regression tables can 

be found in Appendix G; with p for the models including only gender, as well as for the full 

models and which variables are included in the given regression, Sig. F Change for each full 

model, and the Standardized Coefficient beta and p for the unique contribution of each 

independent variable. 

Gender alone significantly explained variance in PCC to AI, mPFC to AI and LIPC to 

PCC, but the independent variables in the full models did not make a significant contribution 

to explaining the variance of the connections. Gender alone also significantly explained 

variance in RIPC to ACC, were systolic and diastolic BP made a significant contribution to the 

full model. Even though none of the variables made a unique significant contribution, the full 

model was significant. See Appendix G.1 for the full regression table.  

Systolic BP made a significant contribution to explaining the variance in PCC to mPFC, 

but the full model did not reach statistical significance. BMI made a significantly unique 

contribution to explaining the variance in mPFC to RIPC and mPFC to ACC, but the full models 

did not reach statistical significance: mPFC to RIPC. Diastolic BP made a significant 

contribution to explaining the variance in RIPC to PPC and DLPFC to AI, but the full models 

did not reach statistical significance. BMI and HbA1c did not significantly contribute to 

explaining the variance in ACC to PPC, and the full model was not significant. See Appendix 

G.2 for the full regression table.  
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Systolic and diastolic BP made a significant contribution to explaining the variance in 

AI to ACC, but neither variable made a unique significant contribution. Still, the full model 

was significant. Diastolic and Systolic BP made a significant contribution to explaining the 

variance in AI to DLPFC, but neither variable made a unique significant contribution. Still, the 

full model was significant. Gender made a unique significant contribution to the full model, in 

explaining the variance in AI to PPC. Even though diastolic BP, systolic BP, BMI and HbA1c 

did not make significant unique contributions to the model, they jointly contribute significantly 

to explaining more of the variance in AI to PPC than gender alone. The full model was 

significant. See Appendix G.3 for the full regression table. 

For the following regressions the independent variables made significant contributions 

to the models, and the full models were significant, with one or more of the variables making a 

unique significant contribution to the model. For more information, see Table 9. HbA1c made 

a significant contribution to explaining the variance in PCC to PPC, explaining 1.0% of the 

variance. Diastolic BP significantly contributed to explain the variance in mPFC, and 

significantly explaining 1.6% of the variance. BMI made a significant contribution to 

explaining the variance in mPFC to PCC, explaining 1.1% of the variance. HCT made a 

significant contribution to explaining the variance in LIPC to RIPC, explaining 1.2% of the 

variance. Systolic BP made a significant contribution to explaining the variance in ACC to 

RIPC, explaining 1.2% of the variance. Systolic BP made a significant contribution to 

explaining the variance in RIPC to mPFC, and the full model was significant and systolic BP 

accounted for 1.1% of the explained variance.  
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Table 9 
 
Regression Table for Effective Connectivity Parameters  
 
 Modell Summary Coefficients 

 
 

Connections 

 
 

Model 

 
 

R2 

 
R2 

Change 

 
(df reg, 

df res) = F 

 
 

Sig. 

 
Sig. F 

Change 

 
 

beta  

 
 

Sig. 
 

PCC to PPC 
 

Gender 
 

Gender 
HbA1c 

 
.007 

 
.016 

 
 
 

.010 

 
(1,410) = 2.790 

 
(2,409) = 3.393 

 
.096 

 
.035* 

 
 
 

.047 

 
 
 

-.077 
.098 

 
 
 

119 
.047* 

 
mPFC 

 
Gender 

 
Gender 
Dia BP 

 
.001 

 
.017 

 
 
 

.016 

 
(1,575) = .343 

 
(2,572) = 4.989 

 
.558 

 
.007** 

 
 
 

.002 

 
 
 

-.045 
.130 

 
 
 

.285 
.002** 

 
mPFC to 

PCC 

 
Gender 

 
Gender 

BMI 

. 
000 

 
.011 

 
 
 

.011 

 
(1,579) = .027 

 
(2,578) = 3.150 

 
.870 

 
.044* 

 
 
 

.013 

 
 
 

-.014 
.104 

 
 
 

.739 
.013* 

 
LIPC to 
RIPC 

 
Gender 

 
Gender 
HCT  

 
.001 

 
.013 

 
 
 

.012 

 
(1,534) = .776 

 
(2,533) = 3.514 

 
.379 

 
.030* 

 
 
 

.013 

 
 
 

.031 
-.128 

 
 
 

547 
.013* 

 
ACC to 
RIPC 

 
Gender 

 
Gender 
Sys BP 

 
.001 

 
.013 

 
 
 

.012 

 
(1,576) = .645 

 
(2,575) = 3.745 

 
.422 

 
.024* 

 
 
 

.009 

 
 
 

-.001 
.114 

 
 
 

.974 
.009** 

 
RIPC to 
mPFC 

 
Gender 

 
Gender 
Sys BP 

 
.008 

 
.019 

 
 
 

.011 

 
(1,576) = 4.802 

 
(2,575) = 5.648 

 
.029 

 
.004** 

 
 
 

.004 

 
 
 

-.057 
-.110 

 
 
 

.188 
.011* 

Note. The results of the hierarchical linear regression analyses for the effective connectivity parameters were the 

full models contributed significantly to predicting the outcome variable, with the independent variables making a 

unique significant contribution to explaining the variance. The regression analysis with gender as predictor alone 

can be seen in the first row of each parameter, the full model including the independent variables can be seen in 

the second row. Confidence interval = 95%. mPFC = medial prefrontal cortex; PCC = posterior cingulate cortex; 

LIPC/RIPC = left/right inferior cingulate cortex; PPC = posterior parietal cortex; Sys BP = systolic blood pressure; 

Dia BP = diastolic BP; HCT = hematocrit; BMI = Body Mass Index; HbA1c = glycated hemoglobin; df reg = 

degrees of freedom regression; df res = degrees of freedom residual; beta= standardized coefficient beta.  

*p < .05, ** p < .01. 
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Cross spectral density parameters. For the a- and b-values, gender alone did not 

significantly explain the variance of the dependent variables. Diastolic BP made a significant 

contribution to explaining the variance in the a-value, explaining 1.1% of the variance. 

Diastolic BP made a unique significant contribution to explaining the variance in the b-value, 

and the full model significantly better predicted the parameter than gender alone. However, the 

full model, including diastolic BP and BMI did not reach statistical significance. See Table 10 

for more information.  

 
Table 10  
 
Regression Table for csd-Values 
 

 
 

csd-
Parameter 

Modell Summary Coefficients 
 
 

Model 

 
 

R2 

 
R2 

Change 

 
(df reg, 

df res) = F 

 
 

Sig. 

 
Sig. F 

Change 

 
 

beta  

 
 

Sig. 
 

Alpha (a) 
 

Gender   
 

Gender  
Dia BP 

 
.002 

 
.013 

 
 
 

.011 

 
(1, 576) = 1.205 

 
(2,575) = 3.759 

 
.273 

 
.024* 

 
 
 

.012 

 
 
 

-.062 
.105 

 
 
 

.139 
.012* 

 
Beta (b) 

 
Gender  

 
Gender   

a Dia BP 

BMI 

 
.002 

 
.013 

 
 
 

.011 

 
(1, 575) = 1.203 

 
(3, 573) = 2.498 

 
.273 

 
.059 

 
 
 

.044 

 
 
 

-.062 
.105 
.002 

 
 
 

.139 
.019* 
.963 

Note. The results of the hierarchical linear regression analyses for the csd values. The regression analysis with 

gender as predictor alone can be seen in the first row of each parameter, the full model including the independent 

variables can be seen in the second  row. Confidence Interval = 95%. Dia BP = diastolic BP; BMI = Body Mass 

Index; df reg = degrees of freedom regression; df res = degrees of freedom residual; beta = standardized coefficient 

beta.  

*p < .05, ** p < .01. 

a Diastolic BP made a significant unique contribution to the model, and the full model was close to statistically 

significant.  
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Free energy. For the free energy parameter, the full model explained significantly more 

than gender alone. However, gender made the only significantly unique contribution to the full 

model. The full model explains around 7.9% of the variance in Free Energy, and BP, HCT, 

BMI and HbA1c accounted for 5.0% of the explained variance (see Table 10).  

 

Table 10 
 
Regression Table for Free Energy  
 

 Modell Summary  Coefficients 
 
 

 

 
 

Model 

 
 

R2 

 
R2 

Change 

 
(df reg, 

df res) = F 

 
 

Sig. 

 
Sig. F 

Change 

 
 

beta 

 
 

Sig. 
 

Free 
Energy 

 
Gender 

 
Gender 
Dia BP 
Sys BP 

BMI 
HCT 

HbA1c 

 
.029 

 
.079 

 
 
 

.050 

 
(1,405) = 12.063 

 
(6,400) = 5.750 

 
.001 

 
.001** 

 
 
 

.001 

 
 
 

-.162 
.104 
.053 
.096 
-.081 
.060 

 
 
 

.007** 
.124 
.457 
.068 
.157 
.217 

Note. The results of the hierarchical linear regression analyses for the free energy parameter. The regression 

analysis with gender as predictor alone can be seen in the first row, the full model including the independent 

variables can be seen in the second row. Confidence interval = 95%. Sys BP = systolic blood pressure; Dia BP = 

diastolic BP; HCT = hematocrit; BMI = Body Mass Index; HbA1c = glycated hemoglobin; df reg = degrees of 

freedom regression; df res = degrees of freedom residual; beta = standardized coefficient beta.  

*p < .05, ** p < .01. 
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Put together, the results of the hierarchical linear regressions imply that the variance in 

the hemodynamic parameters mPFC transit time, AI transit time and epsilon can be predicted 

by diastolic BP for all the variables, and by BMI for mPFC transit time. These predictors 

significantly contributed to explaining more of the variance than gender alone, each made a 

significantly unique contribution to explaining the variance, and the full model was significant. 

In addition, diastolic BP made significant contribution to explaining the variance in the csd 

parameter a-value, indicating a positive relationship between diastolic BP and the a-value. The 

direction of the relationship between these hemodynamic parameters and diastolic BP and BMI 

indicates a weakening of the BOLD-signal; confirming H1 and H3. H2 and H4 was not confirmed, 

as the correlation analysis indicated little covariance between HCT and HbA1c with the 

hemodynamic parameters, and therefore no hierarchical linear regression analysis was 

conducted with these parameters as the outcome variables.  

The independent variables that significantly predicted variance in the effective 

connectivity parameters were diastolic BP for mPFC, systolic BP for RIPC to mPFC and ACC 

to RIPC, HCT for LIPC to RIPC, BMI for mPFC to PCC and HbA1c for PCC to PPC; giving 

support to hypothesis H5, H6, and H7.  

The results indicate that gender seems to have a very small effect on the hemodynamic 

parameters, except for significantly explaining 0.8% of the variance in RIPC transit time. 

Gender significantly predicted variance in the effective connectivity parameters PCC to AI, 

mPFC to AI, LIPC to PCC, RIPC to mPFC and RIPC to ACC.  

Analysis of Between Group Differences 

The BMI variable was split into three groups; normal weight (19-24 kg., n = 262), 

overweight (25-29 kg., n = 202) and obese (>30 kg., n = 117), for comparison. See Appendix 

H for the frequency distribution of the groups across the BMI scores.  
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The assumptions of the Kruskal-Wallis H test were checked and met. For this dataset 

the dependent variables did not show a similar shape across groups and was therefore 

considered more useful to report mean rank values for comparison between groups, instead of 

medians. 

Hemodynamic parameters. The only hemodynamic parameter that differed between 

groups was PCC transit time (normal weight n = 262, overweight n = 202, obese n = 117), χ2 

(df = 2, n = 581) = 8.718, p = .013. After the pairwise comparison with Bonferroni corrections, 

the significant difference between the groups were found to be between the overweight and the 

obese group, with the overweight group having a higher mean rank value (mean rank = 314.00)  

than the obese group (mean rank = 258), p = .009, r = 0.166.  See Appendix I for all the Kruskal-

Wallis H tests with the hemodynamic parameters.  

Effective connectivity parameters. The Kruskal-Wallis H Test revealed some 

significant BMI group differences, which can be seen in Table 11, and Figure 1. After the 

pairwise comparison with Bonferroni corrections, the overweight group and the obese group 

significantly differed in the effective connectivity from PCC to mPFC, from PCC to RIPC, and 

within RIPC, with the overweight group having the highest mean rank value. The normal weight 

group and the overweight group significantly differed on effective connectivity from LIPC to 

PCC, from LIPC to mPFC, from LIPC to RIPC, from AI to mPFC and within RIPC. The normal 

weight group had the highest mean rank value for all the connections except for from AI to 

mPFC, where the overweight group had the highest mean rank value. The normal weight and 

the obese group significantly differed in effective connectivity from PCC to DLPFC and from 

mPFC to RIPC. For PCC to DLPFC the normal weight group had the highest mean rank value, 

indicating stronger effective connectivity, whereas the obese group had a higher mean rank 

value from mPFC to RIPC. As can be seen from Table 11, the effect sizes are low for all the 
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significant different groups (Cohen, 1988). For the results of the non-significant Kruskal-Wallis 

H test for effective connectivity, see Appendix J. 

Cross spectral density parameters. The Kruskal-Wallis H test revealed no significant 

group differences on the csd parameters a-value (normal weight n = 262, overweight n = 202, 

obese n = 117),  χ2 (df = 2, n = 581) = .439, p = .803, and ß-value (normal weight n = 262, 

overweight n = 202, obese n = 117),  χ2 (df = 2, n = 581) = 2.644, p = .267. 

Free Energy. The Kruskal-Wallis H Test revealed a significant group differences 

between the BMI groups (normal weight n = 262, overweight n = 202, obese n = 117), χ2 (df = 

2, n = 581) = 18.725, p = .000. The pairwise comparison found the groups that significantly 

differed to be the normal weight group (mean rank = 262.14) and the obese group (mean rank 

= 341.28), with the obese group having the highest mean rank, (std.stat = 4.293) r = -.220, p = 

.000.  

Put together, group differences between BMI groups were significant for the 

hemodynamic parameter PCC transit time, giving support to H3. In addition, multiple 

connections, mostly within DMN and between DMN and the other networks, showed 

significant BMI group differences, which gives support to H6.  
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Table 11 
 
Sig. Kruskal-Wallis H Tests with Effective Connectivity Parameters, with sig. Group 
Differences  
 

 
 

 
Connections 

Kruskal – Wallis  Pairwise Comparisons 
 
 

Sig. 

 
 

Chi 2 

 
Pairwise 

Comparison 

 
 

Std. Stat. 

 
 

Adj.Sig 

 
 
r 

 
 

Mean Rank 
PCC to  
mPFC 

.011* 8.938 NW – OB 
OW – OB 
NW – OW 

 

1.598 
2.966 
-1.648 

.330 
.009** 
.298 

 
.166 

NW: 289.84 
OW: 316.00 
OB: 260.39 

 
PCC to  
RIPC 

.003** 11.594 NW – OB 
OW – OB 
NW – OW 

 

2.164 
3.405 
-1.509 

.091 
.002** 
.394 

 
.190 

NW: 292.99 
OW: 316.92 
OB: 253.09 

 
RIPC .002** 12.476 NW – OB 

OW – OB 
NW – OW 

 

1.067 
3.277 
-2.632 

.857 
.003** 
.025* 

 
.183 
-.122 

NW: 281.88 
OW: 323.64 
OB: 262.21 

 
PCC to  
DLPFC 

.030* 7.042 NW – OB 
OW – OB 
NW – OW  

2.566 
2.155 
.435 

.031* 
.094 
1.000 

.131 NW: 306.07 
OW: 299.17 
OB: 258.78 

 
mPFC to  

RIPC 
.032* 6.899 NW – OB 

OW – OB 
NW – OW 

 

-2.610 
-1.431 
-1.341 

.027* 
.457 
.539 

.134 
 
 

 

NW: 274.42 
OW: 295.70 
OB: 322.52 

 
LIPC to  

PCC 
.013* 8.637 NW – OB  

OW – OB 
NW – OW  

1.601 
-.883 
2.904 

.328 
1.000 
.004** 

 
 

.134 

NW: 316.65 
OW: 270.58 
OB: 287.13 

 
LIPC to  
mPFC 

.010** 9.290 NW – OB  
OW – OB  
NW – OW   

.769 
-1.787 
3.005 

1.000 
.222 

.008** 

 
 

.139 

NW: 313.84 
OW: 266.16 
OB: 299.65 

 
LIPC .040* 6.435 . . .  . 

 
LIPC to  
RIPC 

.041* 6.409 NW – OB  
OW – OB  
NW – OW  

1.556 
-.551 
2.460 

.359 
1.000 
.042* 

 
 

.114 

NW: 313.85 
OW: 274.83 
OB: 285.16 

 
AI to  
mPFC 

.009** 9.368 NW – OB  
OW – OB  
NW – OW  

-1.596 
1.000 
-3.037 

.331 

.952 
.007** 

 
 

-.140 

NW: 268.59 
OW: 316.76 
OB: 298.02 

 
Note. Showing the significant Kruskal-Wallis H Test for between BMI group differences in the effective 

connectivity parameters, and the pairwise comparison statistics. Total N = 585, normal weight n = 262, overweight 

n = 202, obese n = 117. Degrees of Freedom = 2. Std. Stat. =Standardized test statistic. Adj.Sig = Adjusted alpha-

value after Bonferroni Corrections r = effect size. Dash indicates no data obtained, as the pairwise comparison was 

not run. PCC = posterior cingulate cortex; mPFC = medial prefrontal cortex; LIPC/ RIPC = left / right inferior 

parietal cortex; AI = anterior insula; DLPFC = dorsolateral prefrontal cortex. *p = .05, ** p = .01.  
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Figure 1 
 
Significant Differences between BMI-groups in Effective Connectivity Parameters 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. The results of the significant group-differences of the Kruskal-Wallis H Test for the effective connectivity 

parameters. The arrows indicates which groups are being compared, and the directionality of the connection. Based 

on the mean rank value of the given groups in the comparison, it was determined whether the connection was 

strengthened (green arrow) or weakened (orange arrow) with increased BMI. The color of the circle indicates the 

network the given region is a part of; blue being DMN, yellow being CEN and grey being SN. As can be seen 

from the figure, all of the affected connections are within DMN, or between DMN and CEN or SN. mPFC = medial 

prefrontal cortex; LIPC/RIPC = left/right inferior parietal cortex; PCC = posterior cingulate cortex; DLPFC = 

dorsolateral prefronal cortex; PPC = posterior parietal cortex, AI = anterior insula; ACC = anterior cingulate cortex.  
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Discussion  

Several of the primary hypotheses, regarding variability in hemodynamic and effective 

connectivity parameters, were supported. The results of the regression analyses imply that 

between-subject variance in the hemodynamic parameters of rs-fMRI is predicted by diastolic 

BP and BMI (confirming H1) , and that variance in the effective connectivity within and 

between rs-networks is predicted by diastolic and systolic BP, HCT, BMI and HbA1c 

(confirming H5, H6 and H7). The between-group comparison for BMI gives insight into 

hemodynamic and effective connectivity differences between BMI groups (confirming H3 and 

H6). As expected, the effect sizes were quite small, but as can be seen form the regression 

analysis with Free Energy, including the independent variables increases the explained model 

evidence; collectively explaining around 5 % of the variance. In addition, some of the secondary 

hypotheses, regarding the relationship among the independent variables were confirmed, 

namely H8, H9, H10, and H12. 

Hemodynamic Parameters 

Diastolic BP and BMI explained some of the variance in hemodynamic parameters, but 

the parameters did not seem to vary with HCT and HbA1c. 

Blood pressure and body mass. Diastolic BP made a unique contribution to explaining 

the variance in the hemodynamic parameters epsilon, mPFC transit time and AI transit time, in 

addition to the csd a-value. Epsilon describes the relationship between CBF and neuronal 

activity, essentially reflecting an increase in rCBF; the number of evoked transients per second 

when the BOLD-signal is elicited. As diastolic BP showed a positive relationship with epsilon, 

higher diastolic BP is likely to increase the amplitude of the BOLD-signal response and 

undershoot; implying an increase in rCBF. As epsilon is a global measure, the relationship 
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between increased diastolic BP and increased BOLD-signal amplitude applies to all the brain 

regions included in this study.  

Increased diastolic BP also had a negative effect on the transit time in mPFC and AI. 

Transit time predicts BOLD-signal dynamics by dividing CBV by CBF. A decrease in transit 

time indicates that the dynamics of the BOLD-signal is shortened, while the overall 

shape/amplitude of the BOLD-signal remains the same. As epsilon was positively related to 

diastolic BP in the current study, a change in the shape/amplitude of the BOLD-signal can be 

assumed as well. Taken together, an increase in diastolic BP increases the amplitude of the 

BOLD-signal globally, in addition to shortening it in the regions of mPFC and AI.  

In addition, diastolic BP affected the csd-parameter a-value, exhibiting a positive 

relationship. The a-value reflects the amplitude of the spectral density of the neuronal 

fluctuations, which increase with increased diastolic BP. The relationship between increased 

BOLD-signal amplitude (epsilon) and increased a-value might reflect the same underlying 

mechanism of a more “intense” BOLD-signal. The variance in ß-value was also uniquely 

predicted by diastolic BP, explaining more of the variance than gender alone together with BMI,  

but the full model was only close to significant. This tendency might be a result of including 

both BMI and diastolic BP in the full model, and excluding BMI might have led the full model 

to being significant.  

It was postulated in H1 that increased BP would weaken the BOLD-signal, as the 

heightened pressure might represent increased segmental vascular resistance. The shortened 

transit time confirm this hypothesis for mPFC and AI, and the hemodynamic signal appear to 

be altered in all the regions of interest. The results indicate that diastolic BP affect the rate at 

which oHb is being utilized in the capillaries and dHb is transported to the veins; essentially 

weakening the response from the venous compartments in terms of the Balloon model proposed 

by Buxton et al. (1998). One explanation of this tendency might be related to stiffer venules 
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and veins, which could increase diastolic BP, and prevent the Balloon effect (Buxton, 2012; 

Buxton et al., 1998). The explanation of the observed variance is however probably 

multifaceted, as the dynamics of the BOLD-signal is complicated and generally poorly 

understood (Arthurs & Boniface, 2002; Ekstrom, 2010; Handwerker, Gonzalez-Castillo, 

D'esposito & Bandettini, 2012; Logothetis & Wandell, 2004). Exactly why diastolic BP was 

found to significantly predict variance in the hemodynamic parameters, and the same 

relationship was not found for systolic BP should be further explored in future studies.  

In addition, increased BMI was found to positively affect mPFC transit time, in the 

regression analysis; essentially prolonging the BOLD-signal in this region, while the 

shape/amplitude remain the same. However, transit time in PCC was higher for the overweight 

group compared to the obese group, in the group comparison analysis; essentially reflecting a 

shortening of the BOLD-signal with increased BMI. Higher BMI is associated with decreased 

CBV, which is thought to alter the Balloon effect in terms of making the BOLD-signal shorter 

(Buxton et al., 1998; Lemmens et al., 2006). Therefore, the results from the group comparison 

analysis is more in line with the expected relationship between BMI and the BOLD-signal, in 

this case in the region of PCC. The results are somewhat unclear, as the group comparison gives 

support to H3, while the regression analysis does not. It might however be the case that the 

hemodynamic response in brain regions are affected differently by increased BMI.  

Global and regional coupling of cardiovascular and BOLD-signal fluctuations. The 

effect BMI and BP have on transit time is not evident in all the regions within the rs-networks, 

but are limited to mPFC and AI for diastolic BP, and mPFC and PCC for BMI. mPFC and AI 

are situated close to two of the big arteries of the brain, namely arteria cerebri anterior and 

media, which might be one explanation of why these regions appear to be sensitive to 

differences in hemodynamics. These results are highly intriguing as mPFC and AI are the main 

hubs of DMN and SN.  
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As mentioned, the low frequency fluctuations (LFFs) of the rs-fMRI BOLD-signal and 

the frequency of cardiovascular fluctuations are within the same range; below 0.10 Hz for the 

BOLD-signal and around 0.08 Hz for the cardiovascular LFFs (Zhu et al., 2015). The results of 

the current study are in line with previous results, finding the BOLD-signal to be highly coupled 

with cardiovascular fluctuations and CBF globally, and with regions within DMN showing the 

strongest significant coupling (Kobuch et al., 2019; Tak, Wang, Polimeni, Yan & Chen, 2014). 

The variability in diastolic BP and BMI might therefore have affected the BOLD-signal of 

previously conducted functional connectivity studies, which can have been interpreted as 

changes in connectivity, while actually being attributable to hemodynamic variability 

(Rangaprakash, Wu, Marinazzo, Hu & Deshpande, 2018).  

In the current study, the variance that diastolic BP and BMI explain collectively is 2.8% 

in mPFC transit time, diastolic BP explain 1.3% of the variance in AI transit time and 1.7% for 

epsilon. When considering all of the endogenous and exogenous factors that have been found 

to affect connectivity of rs-networks and the BOLD-signal, these components might be 

contributing factors to the overall low replicability and variability in rs-fMRI studies, even as 

the amount of explained variance by diastolic BP and BMI is fairly low. The results for diastolic 

BP is also in line with previous research, as it is indicated that around 2.2 % of the variance in 

the BOLD-signal is explained by mean beat-to-beat BP (Whittaker et al., 2019). 

Hematocrit and glycated hemoglobin. HCT and HbA1c did not significantly correlate 

with the hemodynamic parameters and were therefore not included in any of the regression 

analyses. As there was no relationship between HCT and the hemodynamic parameters, H2 was 

not supported. The lack of correlation might be related to effective cerebral autoregulation; with 

increased HCT the arterioles of the brain contract, increasing the pressure, so the blood 

perfusion remains stable. The correlation between HCT and diastolic and systolic BP was 

significant, but fairly low in this study, which might be a result of fairly homogenous scores 
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within the normal range for HCT, in the current sample. However, the lack of correlation 

between HCT and the hemodynamic parameters is not in line with previous research from task-

based fMRI, which have found HCT to affect BOLD-signal dynamics by increasing the BOLD-

signal activation (Levin et al., 2001; Xu et al., 2018). The result of this study indicates that the 

relationship between BOLD-signal activation and HCT might be different in rs-fMRI.  

HbA1c was included in this study as it has been found to be related to body fat (Iso et 

al., 1991), and therefore a similar relationship was hypothesized between the hemodynamic 

response and HbA1c as between hemodynamic response and BMI. Interestingly, in the current 

study HbA1c was not significantly correlated with BMI, nor any of the other endogenous 

factors. Similar to the HCT results, this might be related to relatively homogenous scores, with 

few subject having above normal scores. HbA1c was also not significantly correlated with the 

hemodynamic parameters and was therefore not included in the regression analyses. The lack 

of relationship goes against the postulated H4, but larger variability on the scores might have 

affected the results. However, as the aim was to study healthy individuals, including a sample 

with more deviant scores was beyond the scope of the current study.  

Effective Connectivity  

Blood pressure. As no previous studies to my knowledge have indicated a relationship 

between normotensive BP and changes in connectivity, and as BP was assumed to mostly affect 

the hemodynamic parameters, no hypothesis was made on the relationship between BP and 

effective connectivity. Diastolic BP did however predict some of the variance in within-mPFC 

connectivity, displaying a positive relationship. The effective connectivity parameters produced 

by csd-DCM for one region alone, is referred to as the “self-inhibitory connection of” mPFC 

(Zeidman, Jafarian, Corbin, et al., 2019). The positive relationship with diastolic BP therefore 

indicates that mPFC is more inhibited with increased diastolic BP. Systolic BP predicted some 
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of the variance in effective connectivity from RIPC to mPFC, displaying a negative 

relationship, and a positive relationship from ACC to RIPC. The findings indicating a positive 

relationship between BP and connectivity might be related to previous research indicating 

altered connectivity with hypertension, which have been found to be related to cognitive 

impairment (Bu et al., 2018).  

Body mass. In the regression analysis, increased BMI predicted a strengthening of the 

effective connectivity from mPFC to PCC, within DMN, which is not in line with H6. The 

between-group analysis did however to a large extent confirm this hypothesis:  

The overweight group had stronger effective connectivity in the connections PCC to 

mPFC, PCC to RIPC, and within RIPC (self-inhibitory connection), compared to the obese 

group which might indicate a weakening of the internal cohesiveness of DMN with increased 

BMI. The normal weight group had stronger effective connectivity in LIPC to PCC, LIPC to 

mPFC, LIPC to RIPC and within RIPC (self-inhibitory connection), compared to the 

overweight group. However, the overweight group had stronger connectivity from AI to mPFC, 

compared to the normal weight group. The results indicate an internal weakening of the 

connectivity within DMN with increased BMI, as well as stronger connectivity from SN to 

DMN. The normal weight group also had stronger effective connectivity in PCC to DLPFC, 

compared to the obese group, which indicates stronger effective connectivity from DMN to 

CEN with normal weight. The obese group showed stronger effective connectivity in mPFC to 

RIPC, compared to the normal weight group, which was the only connection within the DMN 

that was stronger with increased BMI, which does not support H6. 

These results are in line with the previously described research on changes in 

connectivity with increased BMI, and mostly support H6. As suggested in those studies, the 

result might be reflecting poorly regulated eating behavior, as networks involved in balancing 

sensory-driven and internally guided behavior are affected (Doucet et al., 2017; Sadler et al., 
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2018). The current study contribute to a deeper understanding of the interactions between these 

networks, as effective connectivity not functional connectivity is investigated. It is for example 

interesting to notice that the strengthened connection between AI and mPFC with increased 

BMI, namely between SN and DMN, is in fact a from SN to DMN. In addition, connections 

from LIPC to several regions with DMN appear to be weaker with increased BMI, which might 

indicate that LIPC mediates the weakened connectivity in the other regions; PCC, mPFC and 

RIPC. This speaks for the importance of implementing effective connectivity analyses in rs-

fMRI studies to a larger degree, as the shortcomings of functional connectivity analyses might 

lead to false conclusions being drawn.  

It should be mentioned that when merely examining the significant group differences, 

the relationship between BMI and effective connectivity, H6 is to a large degree being supported 

and the results are fairly in line with previous studies. However, when taking the mean rank of 

all of the groups into consideration, a non-linear relationship appear between the groups for 

some of the effective connectivity parameters. This might be why the results differ somewhat 

from the regression analysis, as it assumes a linear relationship. It might also be why previous 

research has indicated a linear relationship between higher BMI and changes in rs-connectivity, 

as most of the studies compare only two groups (see Section “Endogenous Sources of BOLD-

Signal and rs-Connectivity Variability”). This relationship could be further investigated in 

future studies.  

Hematocrit. HCT displayed a negative relationship with the effective connectivity from 

LIPC to RIPC, essentially weakening the internal connectivity of DMN, which in part confirms 

H5. However, previously mentioned studies have indicated that HCT account for a weakening 

of the internal cohesiveness of all of the rs-networks included in this study (Yang et al., 2015). 

As HCT was mostly not correlated with the effective connectivity parameters, or otherwise not 

met the assumptions of regression analysis, it was only possible to perform one regression 
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analysis, namely from LIPC to RIPC, with HCT as predictor. However, one might consider the 

correlation analysis as a result in itself, indicating that there is a minimal relationship between 

HCT and effective connectivity of rs-networks.  

Glycated hemoglobin. HbA1c exhibited a positive relationship with the effective 

connectivity from PCC to PPC (from DMN to SN) which partly confirms H7. A weakening of 

the internal connectivity in CEN and SN was however not observed. Especially, the results are 

not in line with previous research indicating altered connectivity in AI and its connections. Due 

to the lack of correlation between HbA1c and most of the effective connectivity parameters, the 

only regression analysis including HbA1c as predictor and a connection with AI as a region 

was AI to ACC, were HbA1c did not contribute to explaining the variance. Compared to similar 

studies on HbA1c and rs-network alterations, which often specifically focuses on subjects with 

pre-diabetes or diabetes, the current study included mostly normal scores, which might have 

contributed to the result (Liu et al., 2017; Sadler et al., 2019; Yang et al., 2016). 

Seen together, the results indicate that all the included factors included in this study can 

affect the underlying connectivity of the resting human brain, and that diastolic BP and BMI 

specifically can affect the measured BOLD-signal. As the effect sizes and the percent of 

explained variance are low, these factors are likely to not cause a large degree of variability in 

the results independently. However, as implied by Free Energy, they might collectively 

contribute to unreliable results.  

Limitations of the Current Study 

Testing for between-subject effects. When it comes to the regression analysis 

conducted in this study, it should be noted that the correlation analyses preformed prior to the 

regression analyses implied that even for the significant correlations, the relationship between 

the variables were quite low (around .10), meaning they were not above .30, which is often 
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recommended for regression analysis. The results of these analyses might therefore be 

somewhat uncertain. The reason for the low correlations between the independent and 

dependent variables might be due to an actual absence of covariance, or it might be due to fairly 

homogenous scores on the independent variables.  

In addition, the use of regression analysis might be criticized in general. Especially in 

terms of effective connectivity, as it is uncertain whether it is useful to discuss explained 

variance by the independent variables in the effective connectivity parameter; partly as the 

amount of variance they explain are fairly low, and as it is uncertain whether the variance would 

actually have an effect on the connectivity of the resting brain. However, using regression to 

examine percentage of explained variance in the hemodynamic parameters is probably more 

informative, as the results are in line with previous studies using different analyzing techniques  

(Whittaker et al., 2019). 

However, the planned analysis for the hypotheses testing in this study was Parametric 

Empirical Bayes (PEB). These analyses were stopped due to occurring errors, that we were 

unable to solve partly as a consequence of the outbreak of the Covid-19 epidemic. There are 

some advantages of using PEB with DCM as compared to other GLMs, and it can therefore be 

considered a limitation of this study that a more traditional GLM was utilized for the analyses 

of between-subject effects on the DCM parameters. Specifically, many of the analyses were not 

performed with HCT and HbA1c, as the assumptions of the regression analysis prevented it. 

Using PEB instead would allow for all the scores on all the independent variables to be analyzed 

with the DCM parameters, to examine their effect.  

Parametric Empirical Bayes. PEB is based on the principles of Bayesian statistics, and 

makes inferences about between-subject effects based on the csd-DCM. A hierarchical model 

would convey the estimated csd of the rs-fMRI timeseries and their uncertainty (covariance) 

from subject to group level. It enables hypotheses about similarities and differences across 
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subjects to be tested. First, within-subject effects design matrix specification would define 

which DCM connectivity parameters that could receive between-subject effects. Secondly, the 

PEB model can be inverted, which estimates the between-subject parameters (Zeidman, 

Jafarian, Seghier, et al., 2019). The model evidence for the models can then be used for 

hypothesis testing, by comparing the model evidence for reduced models with the full model; 

Bayesian model comparison. This involves comparing models with certain priors 

(combinations of parameters “switched” on or off) with the full model (all priors “switched” 

on). Comparing full and reduced models in this manner resembles performing a F-test in e.g. 

linear regression (Zeidman, Jafarian, Seghier, et al., 2019).  

The PEB approach offer several benefits compared to the traditional statistical analyses 

used in this thesis. Firstly, PEB takes both the uncertainty of the estimated parameters from the 

first-level DCM, as well as the expected values, into consideration at group level. Other GLMs 

in contrast, bring merely the expected values to group level, leaving out the covariance. 

Therefore, PEB will in practice let more precise parameter estimates have greater influence on 

the between-subject results, as it down-weights the results from subjects with noisy or uncertain 

parameter estimates. Secondly, PEB is a hierarchical model with random effects on parameters 

rather than models. It makes the assumption that the difference between subjects lies in the 

strength of the connections within or between a network, while assuming e.g. the same 

underlying architecture for all subjects. As mentioned, this would have allowed the use of all 

the continuous variables, as well as group comparisons of BMI groups, while still controlling 

for factors like gender (Zeidman, Jafarian, Seghier, et al., 2019).  

The variables provided by HCP. Using already existing data is arguably favorable in 

research. As this thesis is related to the replication crisis, and open access data bases are put 

forward in an attempt to combat some of the problems regarding the replication crisis, it seemed 

beneficial to use HCP data for this study. It is also justifiable from an ethical standpoint; if 
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existing data is available it should be used to minimize the potential stress experienced by the 

subjects that would otherwise take part in the study. There are however some limitations to the 

HCP data when it comes to answering the research question at hand. For example, the 

information provided by HCP on their research procedure has some shortcomings, especially 

related to the lack of information on how and when the data was collected. In addition, as the 

data is collected for anyone to use, it is not tailored to a specific study design, as it would be if 

the data was collected for a particular study. 

How the data was collected. HCP does not provide information on what BP apparatus 

that was used; the variables available speaks for BP as measured with a conventional BP 

apparatus, which gives a score on the systolic and diastolic BP, measured in mm/Hg. It could 

however have been beneficial to use a beat-to-beat measurement of BP, as it provides more 

information of the subject’s BP while lying in the MR-scanner. In addition, the beat-to-beat 

measure of BP can be compared to the LFFs of the BOLD-signal (Kobuch et al., 2019; 

Whittaker et al., 2019).  

When the data was collected. In the current study it would be beneficial with precise 

information on exactly when the biological measures were collected, as some of the variables, 

like BP, are known to vary across the day. As rs-fMRI results have been shown to vary with 

time of day, following a circadian rhythm, it would be advantageous if information on when 

BP was measured was available, as the relationship between rs-fMRI variability, time of day 

and BP could be further explored (Hodkinson et al., 2014). However, HCP only provides a 

general outline of the data collection, and they state that the order might vary slightly, which 

contributes to potential confounders specific to this study. Further, some variables, like BP, are 

not listed in the full overview of the data collection, which can be seen in Appendix D (Van 

Essen et al., 2013). 
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General limitations. In addition to the limitations related to how and when the variables 

were collected, some of them also have some general issues related to them. For example BMI, 

which is a well-known and often used measure of body mass, has been criticized for not being 

sensitive enough to differences in built, which might lead to subjects with higher muscle mass 

being categorizes as overweight (Deurenberg, Yap, Wang, Lin & Schmidt, 1999). HCP also 

provides information on the weight of the subjects, but as BMI takes the height of the individual 

into consideration, it was viewed as more useful in the current study. 

It should however also be mentioned that some of the participants were severely obese, 

and as the current study aimed at studying a sample from a healthy population, these subjects 

might be considered as not falling into that category. The same applies to the subjects with high 

scores on BP.  

Further, the subjects in the current study are related to each other, namely being 

monozygotic and heterozygotic twins, in addition to their non-twin siblings. As monozygotic 

twins have the same DNA and often share the same environment, they might have fairly similar 

scores on all the independent variables as well as having similar underlying neuronal structure 

(Van Essen et al., 2012). It can be viewed as a potential limitation of this study if both twins 

from the same monozygotic twin pair are included as subjects in this study. It is arguably similar 

to having the data from one subject put into the analysis twice (Smith & Nichols, 2018). The 

distribution of sibling status (see Appendix K) show that, in the current study 178 (30%) of the 

subject were monozygotic twins. Therefore, half of these (15%) might have scores that 

confounds the dataset, if their respective monozygotic twin is also included in the sample, and 

if they in fact are identical to their monozygotic twin, in terms of their score on the endogenous 

factors and rs-connectivity. However, the csd-DCM analysis was performed with these subjects 

as the same sample was to be used in another study, and considering DCM analyzing time and 
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that a high number of subjects was aimed for, this sample was considered sufficient for this 

study as well. Future research should aim to control for this possible interfering factor. 

Future Studies and Implications 

The current study adds to the growing body of research on rs-fMRI variability. As the 

results indicated that some of the hemodynamic, effective connectivity and csd-parameters can 

be affected by BP, HCT, BMI and HbA1c, it might be advantageous for future studies to take 

these variables into account when studying rs-networks, to increase the studies reproducibility; 

in line with the overarching goal of the current study.  

In addition, some of the benefits of using DCM are highlighted with the current study. 

To a larger degree utilizing the DCM technique would enable future studies to assess if their 

results arise from actual neuronal changes, or if the changes merely represent variation in 

cerebral hemodynamics. As mentioned, using PEB instead of traditional GLMs for between-

subject analysis was planned for the current study, and a future follow-up study should be 

conducted with PEB to investigate whether the results remain the same.  

To include subjects that have a wider range of scores on the independent variables could 

also be beneficial. However, the results of the current study support the notion that variability 

in the BOLD-signal and connectivity of rs-networks is to be found within a fairly healthy 

population. Repeated measures would give valuable insight into how much of the observed 

between-subject variation that can be attributed to within-subject variation. This was not within 

the scope of the current study, but could be implemented in future studies.  

As the results of this study indicate that the included endogenous factors are associated 

with changes in the underlying connectivity and hemodynamic variability of rs-networks, it 

adds to the number of studies that undermine the notion of rs-networks as being stable between 

subjects in terms of connectivity, as well as being susceptible to hemodynamic variation caused 
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by BP and BMI. Interestingly, DMN seems to be the most inherently unstable of the rs-

networks, as it is susceptive to vary with the endogenous factors in both hemodynamic and 

effective connectivity parameters. Seen together with results from other studies, the wide range 

of potential sources of variability might be one of the reasons why it has been proven a challenge 

to come to a unified view on the function of DMN. In addition, the results implicate that DMN 

might not inhabit the between-subject stability which it is ascribed when studying clinical 

deviations (Greicius et al., 2004; Mevel et al., 2011).  

 

Conclusion 

The low cost, short scanning times and absence of task, which initially made rs-fMRI 

an intriguing, useful and popular tool for neuroimaging, comes with a price. Evidently, the rs-

networks are susceptible to a variety of exogenous and endogenous factors, which makes the 

results of the studies unreliable and as a consequence challenging to replicate. This tendency 

adds to the difficulty of studying and understanding the function of rs-networks like DMN and 

using alterations in rs-networks as a clinical marker of disease. Seen together with previous 

studies and results, the current study is an indicator of the nature of DMN as inheritably 

unstable, in which case it is unsurprising that its function seems to “slip through the fingers” of 

the researcher. If rs-networks are to be truly understood, studies should at least take the effect 

of blood pressure and BMI into account, to ensure more reliable results for the future. By doing 

so, researcher would also take a step in the right direction in terms of the ongoing replication 

crisis. 
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Appendix A 

Literature Search 

Search Engines  

 The search engines Pub Med (2019), Psych Info (2019), and Web of Science (2019) 

were considered as adequate, as they cover a range of literature from the fields of psychology, 

neuroscience and medicine.  

 

Strategy 

 Search word combinations of each term related to the independent variables (Table 1) 

in combination with at least one term related to the dependent variables (Table 2), using the 

search engine function “AND”.  

 

Selection of Relevant Papers  

The selections of scientific papers was made with regards to its relevance to this thesis. 

Articles that were highly related to diseases were therefore not included. For example, paper 

including “blood pressure”, but with a focus on stroke or thrombosis were not included; papers 

including “erythrocytes” or “hematocrit”, but with a focus on kidney failure or sickle cell 

anemia were not included. An exception was made for searches including “long-term blood 

sugar/glycated hemoglobin”, that was related to diabetes. The remaining search hits were 

examined and included in this thesis based on their relevance. The literature search was 

conducted from 20th September to 30th October, 2019.  
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Table A.1  
 
Search Words Related to the Independent Variables  
 

Independent Variable Synonyms Related Terms Abbreviation 
 

Blood Pressure 
 

 
Arterial Blood Pressure 

 
Hypertensive; 
Normotensive 

 

 
BP 

Hematocrit Red Blood Cells;  
Red Blood Cell Count;  

Red Cells;  
Erythrocytes 

 

 HCT 

Body Mass Body Mass Index 
 

Weight BMI 

Long-term Blood Sugar Glycated Hemoglobin; 
Glycohemoglobin 

 

Diabetes HbA1c 

Note. Terms related to the independent variables, their synonyms, related terms or 

abbreviations. 

 
 
Table A.2 
 
Search Words Related to the Dependent Variables  
 

Dependent Variable Synonyms Related Terms Abbreviation 
Resting State Functional 

Magnetic Resonance 
Imaging 

 

Resting State;  
Resting State fMRI 

Resting State Network RS-fMRI; 
Resting fMRI; 

Rest fMRI, 

Default Mode Network 
 

  DMN 

Central Executive 
Network 

 

 Extrinsic Network CEN 

Salience Network 
 

  SN 

Blood Oxygen Level 
Dependent Signal 

 BOLD alteration*s;  
BOLD variation*s; 

Hemodynamic Response 
 

BOLD 

Dynamic Causal 
Modelling 

 

 Effective Connectivity DCM 

Functional Connectivity 
 

  FC 

Note. Terms related to the dependent variables, their synonyms, related terms or abbreviations. 
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Forskningsansvarlig: Universitetet i Bergen
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Søkers beskrivelse av formål:

As recently recognised, the entire field of psychology suffers from the “replication crisis”.
The general perception of this problem is that studies in psychology and neuroimaging
suffer substantially from a lack of statistical power, meaning that the sample sizes are
typically too small, and effect sizes are too low. However, one may ask the question
whether this is really the case or whether one should try to convert the critically seen
variability into the signal of interest by asking the question: What is the origin of this
variability?
The primary purpose of this project is to identify possible (bio-)markers that may cause
either variability in neuronal activity or in the vascular system since both have an
indistinguishable influence on the fMRI signal. 
With the help of open-access databases and the collection of fMRI data and blood- and
saliva samples, possible candidates for causes of variability should be identified, and
guidelines for future fMRI studies will be developed.

 

REKs vurdering 

Vi viser til søknad om forhåndsgodkjenning av ovennevnte forskningsprosjekt. Søknaden
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Alle skriftlige henvendelser om saken må sendes via REK-portalen
Du finner informasjon om REK på våre hjemmesider  rekportalen.no

ettersom REK-portalen frem til nå har manglet informasjon om krav til norsk språk. Vi ber
imidlertid om at evt. neste søknad til REK fylles ut på norsk dersom studien foregår i
Norge.

Studiepopulasjon
60 friske forskningsdeltakere vil bli inkluderte i studien.

Metode
I følge søknaden er formålet i studien er å forbedre påliteligheten til metodene som brukes
i hjerneavbildningsstudier. I studien vil man skanne deltakerne i maskinen flere ganger
med ulike fremgangsmåter. I skanneren vil deltaker få ulike oppmerksomhetsoppgaver og
språklige oppgaver. I tillegg vil man ta spytt- og blodprøver underveis i studien. Totalt vil
deltaker skannes fire ganger med ulike mellomrom fra noen dager til flere uker. Validerte
spørreskjema vil bli benyttet (Edinburgh Handendess- Myers-Briggs Type Indicator-
Pittsburgh Sleep Quality Index Logbook on sleeping quality and eating behaviour).

Studien vil i tillegg benyttes tidligere registrerte opplysninger fra fire internasjonale
databaser (Human Connectom Project, UK Biobank, Alzheimer’s Disease Neuroimaging
Initiative, The Autism Brain Imaging Data Exchange). Man ønsker å foreta en
sammenstilling av opplysninger fra de ulike registre ved å benytte maskinlæring.
Hensikten er å korrelere nevroavbildningsdata med visse biomarkører (hematokrit, BMI,
kjønn, kjønnshormoner). REK vest oppfatter søknaden det slik at det kun er snakk om å
bruke reelt anonyme data fra disse fire databasene, der det ikke er mulig å identifisere
enkeltpersoner direkte eller indirekte.

Forsvarlighetsvurdering
Deltakerne vil være utstyrt med en nødknapp mens de er inne i MR-maskinen. Det vil bli
tatt tre blodprøver per MR-økt. MR-data vil bli undersøkt av radiolog. Bergen
fMRI-gruppe har etablert prosedyrer for tilfeldige funn: Først vil radiologen kontakte den
ansvarlige forskeren for å diskutere de videre prosedyrene, og deretter blir deltakeren bedt
om å kontakte radiologen. Avhengig av hvilken type funn, vil oppfølging videre gis enten
direkte av sykehuset, eller deltakerne vil bli henvist til fastlegen. Komiteen har ingen
merknader til dette.

Rekruttering 
Studien vil rekruttere deltakere gjennom annonser ved Haukeland
universitetssjukehus/Universitetet i Bergen og via sosiale medier. Deltakelse i studien vil
bli kompensert med gavekort på 200 NOK for hver MR-undersøkelse. Komiteen diskuterte
om beløpet er en tilstrekkelig kompensasjon for tidsbruken i studien. REK vest ber
prosjektgruppen vurdere om det kan gis mer betaling til deltakerne. Vi ber om
tilbakemelding om dette.

Informasjonsskriv
Komiteen har følgende merknader til informasjonsskrivet:
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Deltakelsen innebærer omfattende testing, og dette underkommuniseres noe i
skrivet. Dette må kommuniseres tydeligere som en mulig ulempe.
Tittel på informasjonsskrivet «Å løse replikasjonskrisen» er noe vidløftig og bør
endres/neddempes.
Følgende setning må omformuleres: «Mine anonymiserte og avidentifiserte dataen
kan deles» til «Mine anonyme data kan deles.»
Noen tunge formuleringer i skrivet bør forenkles. Teksten bør språkvaskes, f.eks.: …
en navneliste som kun eksitere på papir …, (…) Vi er dermed ute etter å se vi både
på hjernens anatomiske struktur.

Biobank 
Prøver som skal analyseres i studien er spyttprøver, serum, plasma, DNA ekstrahert og
RNA ekstrahert. Prøvene vil lagres i en spesifikk forskningsbiobank knyttet til prosjektet.
Oppgitt ansvarshavende for biobanken er Karsten Specht.

Ifølge helseforskningsloven § 26 må ansvarshavende være en person med medisinsk eller
biologisk utdanning av høyere grad. REK vest forutsetter at angitt ansvarshavende har slik
kompetanse.

Genetiske undersøkelser
Det vil bli gjennomført genetiske undersøkelser i studien. Studien er eksplorerende, og
søker mener at det ikke er sannsynlig at prosjektet vil generere tilsiktet eller utilsiktet
prediktiv geninformasjon som vil kunne gi helsegevinst til enkeltdeltakere.

Dataoppbevaring
Data/prøver vil være indirekte identifiserbare og det opprettes en koblingsnøkkel. Alle data
vil bli lagret på forskningsserveren SAFE.

Prosjektslutt
Prosjektslutt: 31.12.2024. Søker bekrefter at etter prosjektslutt vil koblingsnøkkel
oppbevares i inntil fem år for kontrollhensyn. Deretter skal en eventuell kodenøkkel slettes
og materialet slettes eller anonymiseres. 

Søker bekrefter at ved prosjektslutt vil biologisk materiale benyttet i studien bli destruert.
REK vest har ingen merknader til dette.

Datadeling
Ifølge søknaden vil ingen rådata bli gjort tilgjengelig for andre. Søker peker på at
datadeling kan være nødvendig. REK vest forutsette at det kun er snakk om deling av reelt
anonyme data, der det ikke er mulig å bakveisidentifisere enkeltpersoner, verken direkte
eller indirekte.

Vedtak

Godkjent med vilkår
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Vilkår

Revidert informasjonsskriv må sendes til REK vest.
REK vest ber prosjektgruppen vurdere om det kan gis mer betaling til deltakerne og
gi tilbakemelding om dette.

Svar sendes via REK-portalen (se oppgaver).

 

REK vest har gjort en helhetlig forskningsetisk vurdering av alle prosjektets sider.
Prosjektet godkjennes med hjemmel i helseforskningsloven § 10 på betingelse av
ovennevnte vilkår.

 

Sluttmelding
Søker skal sende sluttmelding til REK vest på eget skjema senest seks måneder etter
godkjenningsperioden er utløpt, jf. hfl. § 12.

Søknad om å foreta vesentlige endringer
Dersom man ønsker å foreta vesentlige endringer i forhold til formål, metode, tidsløp eller
organisering, skal søknad sendes til den regionale komiteen for medisinsk og helsefaglig
forskningsetikk som har gitt forhåndsgodkjenning. Søknaden skal beskrive hvilke
endringer som ønskes foretatt og begrunnelsen for disse, jf. hfl. § 11.

Klageadgang
Du kan klage på komiteens vedtak, jf. forvaltningsloven § 28 flg. Klagen sendes til REK
vest. Klagefristen er tre uker fra du mottar dette brevet. Dersom vedtaket opprettholdes av
REK vest, sendes klagen videre til Den nasjonale forskningsetiske komité for medisin og
helsefag (NEM) for endelig vurdering.
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Appendix C 

Inclusion and Exclusion Criteria 

Table B.1  

Inclusion and Exclusion Criteria 

  
HCP Inclusion Criteria 
  

 
1. Age 22 to 35 at the time of telephone diagnostic interview (SSAGA) 
 
2. Ability to give valid informed consent  

HCP Exclusion Criteria  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

1. Significant history of psychiatric disorder, substance abuse, neurological, or 
cardiovascular disease: 
 
a. Participant report of diagnosis by treating physician; or 
b. Hospitalization for the condition for two days or longer; or 
c. Pharmacological or behavioral treatment by cardiologist, psychiatrist, 
neurologist, or endocrinologist for a period of 12 months or longer, other than 
treatment for childhood-only ADHD 

2. Two or more seizures after age 5 or a diagnosis of epilepsy  

3.  Any genetic disorder, such as cystic fibrosis or sickle cell disease 

4.  Multiple sclerosis, cerebral palsy, brain tumor or stroke 

5.  Any of the following head injuries: 
 
a. Loss of consciousness for >30 minutes; or 
b. Amnesia for >24 hours; or 
c. Change in mental status for >24 hours; or 
d. CT findings consistent with traumatic brain injury; or 
e. Three or more concussive (mild) incidences of head injury  

6.  Premature birth (for twins, before 34 weeks; for non-twin siblings, before 37 
weeks. If weeks unknown, less than 5 Ibs. at birth for non-twins)  

7.  Currently on chemotherapy or immunomodulatory agents, or history of radiation 
or chemotherapy that could affect the brain 
8.  Thyroid hormone treatment in the past 

9.  Treatment for diabetes in the past month (other than gestational or diet-
controlled diabetes) 
10.  Use of daily prescription medication for migraines in the past month 
11.  A score of 25 or below on the Folstein Mini Mental State Exam (Folstein, 
Folstein, & McHugh, 1975) on visit Day 1 
12.  Moderate or severe claustrophobia  

13.  Pregnancy  
14.  Unsafe metal in the body 

Note. Meeting any single exclusion criterion is sufficient for the participant to be excluded from the study, although 

prospective participants who are pregnant may be re-contacted after their due dates. Reproduced from  Van Essen 

et al. (2013). 
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Appendix D 

Human Connectome Project, Data Collection 

 

Table D.1 

HCP Data Collection: SSAGA Telephone Diagnostic Interview Categories 

Collected Data Specificities 
 

Demographics. 
 

Education, employment and income. 
 

Physical and mental health history. 
 

Present and past use of tobacco, alcohol, marijuana 
and other drugs. 

 

 

Symptoms/ history of: Eating disorders. 
 

Depression. 
 

Suicidality. 
 

Psychosis. 
 

Anti-social personality. 
 

Obsessive-compulsive disorder. 
 

Post-traumatic stress. 
 

Social phobia. 
 

Panic attacks. 
 

Note. The categories covered in the telephone interview, which was used to access if the subjects met the inclusion/ 

exclusion criteria. SSAGA = Semi-Structured Assessment for the Genetics of Alcoholism. Reproduced from (Van 

Essen et al., 2013) 
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Table D.2 

HCP Data Collection: Procedures during subject visits Day 1 

Procedure Involving  Specificities  
Intake procedure: 

 
Review/sign Informed Consent. 

 
Folstein Mini Mental State Exam. 

 
Pittsburgh Sleep Quality Index. 

 
Parental psychiatric and 

neurologic history. 
 

Handedness assessment. 
 

Menstrual cycle and other 
endocrine information in females. 

 
Urine drug screen. 

 
Breathalyzer test. 

 
MRI safety screening. 

 

 

 Blood drawn for: Thyroid stimulating hormone. 
 

Hemoglobin A1c. 
 

Genotyping. 
 

Hematocrit. 
Mock scanner practice. 

 
Structural MRI. 

 
NIH Toolbox behavioral tests. 

 

  

Functional MRI session 1: 
 

30 minutes resting-state MRI. 
 

30 minutes task-activated MRI. 
 

 

Recognition task (outside of  
scanner) 

 

  

Note. Order of procedures conducted at day 1 at the research facility. The order may have varied in some cases 

due to quality or scheduling issues. Reproduced from Van Essen et al. (2013). 

  



VARIABILITY IN RESTING-STATE FUNCTIONAL MAGNETIC RESONANCE IMAGING  107  

Table D.3 

HCP Data Collection: Procedures during subject visits Day 2 

Procedure Involving  
Diffusion MRI. 

 
Non-toolbox behavioral tests. 

 

 

Functional MR session 2: 
 

30 minutes resting-state MRI. 
 

30 minutes task-activated MRI. 
 

Exit procedure: 7-day retrospective smoking and alcohol 
questionnaire. 

 
Urine drug screen. 

 
Breathalyzer test. 

 
Participant satisfaction survey. 

 
Note. Order of procedures conducted at day 2 at the research facility. The order may have varied in some cases 

due to quality or scheduling issues. Reproduced from Van Essen et al. (2013). 
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Appendix E 

Descriptive Statistics for the Dependent Variables / DCM Parameters 

 

Table E.1 
 
Descriptive Statistics for the Hemodynamic Parameter Transit Time 
 

   Mean    

 
Transit Time 

 
Min. 

 
Max. 

 
Statistic 

Std. 
Error 

 
SD 

 
Skewness 

 
Kurtosis 

PCC -.6811 .4676 -.2174 .008 .212 .544 -.036 
mPFC -.6961 .6822 -.1350 .010 .244 .383 .046 
LIPC -.5861 .6992 -.0628 .008 .205 .469 .555 
RIPC -.5753 .6762 -.0394 .008 .200 .469 .519 

AI -.5116 .8459 .1023 .008 .205 .113 .132 
ACC -.7864 .6854 -.1620 .010 .253 .266 -.161 

DLPFC -.5983 .6650 -.0181 -.018 .198 .492 .694 
PPC -.7495 .6161 -.1019 -.007 .186 .367 .762 

 
Note. The descriptive statistics for the dependent variables transit time. N = 594. Kurtosis std. error: .200, 

Skewness std. error: .100. Min. = minimum score; Max. = maximum score; Std. Error = standard error; SD = 

standard deviation. PCC = posterior cingulate cortex; mPFC = medial prefrontal cortex; LIPC/RIPC = left/right 

inferior parietal cortex; AI = anterior insula; ACC = anterior cingulate cortex; DLPFC = dorsolateral prefrontal 

cortex; PPC = posterior parietal cortex.  

 

    Mean    

 
 

 
 

 
Min. 

 
Max. 

 
Statistic 

Std. 
Error 

 
SD 

 
Skewness 

 
Kurtosis 

Note. The descriptive statistics for the dependent variables epsilon and decay. N = 594. Kurtosis std. error: .200, 

Skewness std. error: .100. Min. = minimum score; Max. = maximum score; Std. Error = standard error; SD = 

standard deviation. 

  

Table E.2 
 
Descriptive Statistics for the Hemodynamic Parameters Epsilon and Decay 
 

Epsilon  
 

-.8932 .0409 -.4228 .007 .176 -.214 -.071 

Decay  -1.0603 -.0548 -.4152 .006 .155 -.845 1.108 
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Table E.3  
 
Descriptive Statistics for the Effective Connectivity Parameters: Connections from PCC 
 

   Mean    

 
 

 
Min. 

 
Max. 

 
Statistic 

Std. 
Error 

 
SD 

 
Skewness 

 
Kurtosis 

PCC -1.1707 .6829 -.1358 .012 .315 -.247 .040 

PCC to mPFC 
 

-1.0639 .7800 .0625 .011 .270 -.257 .762 

PCC to LIPC 
 

-.8266 .5291 .0219 .007 .190 -.570 1.515 

PCC to RIPC 
 

-.8747 .5272 .0091 .006 .162 -.641 2.424 

PCC to AI -.7895 .6140 -.0122 .007 .177 -.324 1.683 
 

PCC to ACC 
 

-.9475 .7251 -.0263 .007 .191 -.151 1.453 

PCC to DLPFC 
 

-.4752 
 

.5229 .0002 .005 .131 .139 1.571 

PPC to PPC -.4930 .4554 -.0148 .005 .127 .160 1.263 
 

Note. The descriptive statistics for the dependent variable effective connectivity, showing connections from PCC. 

N = 594. Kurtosis std. error: .200, Skewness std. error: .100. Min. = minimum score; Max. = maximum score; Std. 

Error = standard error; SD = standard deviation. PCC = posterior cingulate cortex; mPFC = medial prefrontal 

cortex; LIPC/RIPC = left/right inferior parietal cortex; AI = anterior insula; ACC = anterior cingulate cortex; 

DLPFC = dorsolateral prefrontal cortex; PPC = posterior parietal cortex.  
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Table E.4  
 
Descriptive Statistics for the Effective Connectivity Parameters: Connections from mPFC 
 

   Mean    

 
 

 
Min. 

 
Max. 

 
Statistic 

Std. 
Error 

 
SD 

 
Skewness 

 
Kurtosis 

mPFC -1.4819 .5672 -.3372 .013 .335 -.296 .208 

mPFC to PCC 
 

-.9166 .7917 .1062 .008 .215 -.206 .887 

mPFC to LIPC 
 

-.5863 .6232 .0327 .006 .153 .066 1.648 

mPFC to RIPC 
 

-.4538 .5507 .0501 .005 .139 .232 .821 

mPFC to AI 
 

-.7582 .6072 .0848 .007 .178 -.172 1.320 

mPFC to ACC 
 

-.5437 1.0057 .1483 .009 .222 .334 .631 

mPFC to DLPFC 
 

-.6354 
 

.6273 .0283 .005 .141 .221 2.239 

mPFC to PPC -.4388 .4818 .0069 .005 .124 .284 .885 
 

Note. The descriptive statistics for the dependent variable effective connectivity, showing connections from mPFC. 

N = 594. Kurtosis std. error: .200, Skewness std. error: .100. Min. = minimum score; Max. = maximum score; Std. 

Error = standard error; SD = standard deviation. PCC = posterior cingulate cortex; mPFC = medial prefrontal 

cortex; LIPC/RIPC = left/right inferior parietal cortex; AI = anterior insula; ACC = anterior cingulate cortex; 

DLPFC = dorsolateral prefrontal cortex; PPC = posterior parietal cortex.  

.  
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Table E.5  
 
Descriptive Statistics for the Effective Connectivity Parameters: Connections from LIPC 
 

   Mean    

 
 

 
Min. 

 
Max. 

 
Statistic 

Std. 
Error 

 
SD 

 
Skewness 

 
Kurtosis 

LIPC -.8843 1.1050 .0645 .013 .320 -.249 .136 

LIPC to PCC 
 

-.8454 .9961 .1445 .011 .278 -.125 .230 

LIPC to mPFC 
 

-.9001 .8693 .0296 .011 .278 -.256 .658 

LIPC to RIPC 
 

-.7183 .6025 .0513 .007 .191 -.297 .554 

LIPC to AI 
 

-.6936 .7769 -.0717 .008 .200 .417 1.463 

LIPC to ACC 
 

-.8154 .7658 -.0996 .009 .222 -.273 .632 

LIPC to DLPFC 
 

-.7766 
 

.5195 -.0155 .007 .179 -.330 1.114 

LIPC to PPC -.6302 .4318 -.0236 .006 .162 -.072 .462 
 

Note. The descriptive statistics for the dependent variable effective connectivity, showing connections from LIPC. 

N = 594.  Kurtosis std. error: .200, Skewness std. error: .100. Min. = minimum score; Max. = maximum score; 

Std. Error = standard error; SD = standard deviation. PCC = posterior cingulate cortex; mPFC = medial prefrontal 

cortex; LIPC/RIPC = left/right inferior parietal cortex; AI = anterior insula; ACC = anterior cingulate cortex; 

DLPFC = dorsolateral prefrontal cortex; PPC = posterior parietal cortex.  
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Table E.6  
 
Descriptive Statistics for the Effective Connectivity Parameters: Connections from RIPC 
 

   Mean    

 
 

 
Min. 

 
Max. 

 
Statistic 

Std. 
Error 

 
SD 

 
Skewness 

 
Kurtosis 

RIPC -1.0866 1.1307 .1509 .012 .308 -.507 1.038 

RIPC to PCC 
 

-.7393 .9318 .1257 .010 .248 -.273 .552 

RIPC to mPFC 
 

-.7690 .8497 .0606 .010 .252 -.017 .564 

RIPC to LIPC 
 

-.5956 .6360 .0875 .008 .201 -.249 .000 

RIPC to AI 
 

-.6694 .5639 -.0678 .007 .185 .033 .709 

RIPC to ACC 
 

-1.1458 .4397 -.1021 .008 .218 -.345 .842 

RIPC to DLPFC 
 

-.7277 
 

.5916 .0426 .007 .192 -.333 .939 

RIPC to PPC -.6445 .7737 .0840 .007 .183 -.102 .963 
 

Note. The descriptive statistics for the dependent variable effective connectivity, showing connections from RIPC. 

N = 594. Kurtosis std. error: .200, Skewness std. error: .100. Min. = minimum score; Max. = maximum score; Std. 

Error = standard error; SD = standard deviation. PCC = posterior cingulate cortex; mPFC = medial prefrontal 

cortex; LIPC/RIPC = left/right inferior parietal cortex; AI = anterior insula; ACC = anterior cingulate cortex; 

DLPFC = dorsolateral prefrontal cortex; PPC = posterior parietal cortex.  
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Table E.7  
 
Descriptive Statistics for the Effective Connectivity Parameters: Connections from AI 
 

   Mean    

 
 

 
Min. 

 
Max. 

 
Statistic 

Std. 
Error 

 
SD 

 
Skewness 

 
Kurtosis 

AI -1.2199 .6252 -.2797 .013 .332 -.109 -.088 

AI to PCC 
 

-.9809 .6630 -.1654 .010 .257 -.075 .248 

AI to mPFC 
 

-1.0665 .8207 -.0525 .012 .297 -.095 .128 

AI to LIPC 
 

-.9157 .4327 -.1055 .008 .209 -.465 .707 

AI to RIPC 
 

-1.0439 .5689 -.0767 .007 .188 -.564 1.964 

AI to ACC 
 

-.6283 1.2406 .2982 .011 .278 -.153 .609 

AI to DLPFC 
 

-.6372 
 

.9710 .0767 .007 .177 -.306 1.658 

AI to PPC -.8426 .5807 .0725 .007 .173 -.501 1.705 
 

Note. The descriptive statistics for the dependent variable effective connectivity, showing connections from AI. N 

= 594. Kurtosis std. error: .200, Skewness std. error: .100. Min. = minimum score; Max. = maximum score; Std. 

Error = standard error; SD = standard deviation. PCC = posterior cingulate cortex; mPFC = medial prefrontal 

cortex; LIPC/RIPC = left/right inferior parietal cortex; AI = anterior insula; ACC = anterior cingulate cortex; 

DLPFC = dorsolateral prefrontal cortex; PPC = posterior parietal cortex.  
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Table E.8  
 
Descriptive Statistics for the Effective Connectivity Parameters: Connections from ACC 
 

   Mean    

 
 

 
Min. 

 
Max. 

 
Statistic 

Std. 
Error 

 
SD 

 
Skewness 

 
Kurtosis 

ACC -1.1251 .5098 -.1990 .011 .275 -.263 -.180 

ACC to PCC 
 

-.9539 .9123 .0368 .008 .209 -.182 2.668 

ACC to mPFC 
 

-.7632 1.0503 .0900 .010 .244 .314 .886 

ACC to LIPC 
 

-1.0034 .6134 .0286 .006 .157 -.583 4.668 

ACC to RIPC 
 

-.6324 .5985 .0262 .005 .138 -.305 2.143 

ACC to AI 
 

-.5506 .8813 .0098 .008 .218 .333 .153 

ACC to DLPFC 
 

-.5961 
 

.5868 .0382 .006 .155 .014 1.257 

ACC to PPC -.5154 .7082 .0659 .006 .146 .214 1.298 
 

Note. The descriptive statistics for the dependent variable effective connectivity, showing connections from ACC. 

N = 594. Kurtosis std. error: .200, Skewness std. error: .100. Min. = minimum score; Max. = maximum score; Std. 

Error = standard error; SD = standard deviation. PCC = posterior cingulate cortex; mPFC = medial prefrontal 

cortex; LIPC/RIPC = left/right inferior parietal cortex; AI = anterior insula; ACC = anterior cingulate cortex; 

DLPFC = dorsolateral prefrontal cortex; PPC = posterior parietal cortex.  
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Table E.9  
 
Descriptive Statistics for the Effective Connectivity Parameters: Connections from DLPFC 
 

   Mean    

 
 

 
Min. 

 
Max. 

 
Statistic 

Std. 
Error 

 
SD 

 
Skewness 

 
Kurtosis 

DLPFC -.8548 1.1005 .1257 .012 .312 -.303 -.097 

DLPFC to PCC 
 

-1.0218 .9809 -.0074 .009 .230 .072 1.480 

DLPFC to mPFC 
 

-1.0460 .8583 -.0470 .010 .253 .234 1.104 

DLPFC to LIPC 
 

-.5734 .6808 .1032 .008 .199 -.121 .051 

DLPFC to RIPC 
 

-.4337 .6383 .1140 .007 .185 -.240 .077 

DLPFC to AI 
 

-.5909 .8097 .0287 .008 .206 .097 .623 

DLPFC to ACC 
 

-.5918 
 

.6822 -.0309 .008 .209 -.008 .262 

DLPFC to PPC -.4706 .7428 .1877 .009 .222 -.312 .022 
 

Note. The descriptive statistics for the dependent variable effective connectivity, showing connections from 

DLPFC. N = 594. Kurtosis std. error: .200, Skewness std. error: .100. Min. = minimum score; Max. = maximum 

score; Std. Error = standard error; SD = standard deviation. PCC = posterior cingulate cortex; mPFC = medial 

prefrontal cortex; LIPC/RIPC = left/right inferior parietal cortex; AI = anterior insula; ACC = anterior cingulate 

cortex; DLPFC = dorsolateral prefrontal cortex; PPC = posterior parietal cortex.  
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Table E.10  
 
Descriptive Statistics for the Effective Connectivity Parameters: Connections from PPC 
 

   Mean    

 
 

 
Min. 

 
Max. 

 
Statistic 

Std. 
Error 

 
SD 

 
Skewness 

 
Kurtosis 

PPC -.9775 .9725 .2047 .011 .276 -.352 .296 

PPC to PCC 
 

-.8858 .5725 -.1357 .008 .208 -.245 .769 

PPC to mPFC 
 

-1.0837 .4252 -.1965 .010 .248 -.573 .380 

PPC to LIPC 
 

-.6648 .6261 -.0168 .007 .187 -.283 .522 

PPC to RIPC 
 

-.7820 .5797 .0325 .007 .185 -.349 .922 

PPC to AI 
 

-.9241 .6630 -.0554 .008 .209 -.112 1.087 

PPC to ACC 
 

-1.1046 
 

.6763 -.1151 .009 .238 .065 .657 

PPC to DLPFC -.6515 .7184 -.0666 .008 .213 -.145 .125 
 

Note. The descriptive statistics for the dependent variable effective connectivity, showing connections from PPC. 

Kurtosis std. error: .200, Skewness std. error: .100. Min. = minimum score; Max. = maximum score; Std. Error = 

standard error; SD = standard deviation. PCC = posterior cingulate cortex; mPFC = medial prefrontal cortex; 

LIPC/RIPC = left/right inferior parietal cortex; AI = anterior insula; ACC = anterior cingulate cortex; DLPFC = 

dorsolateral prefrontal cortex; PPC = posterior parietal cortex.  
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Table E.11  
 
Descriptive Statistics for the csd Parameters: a- and b-values 
 

   Mean    

 
 

 
Min. 

 
Max. 

 
Statistic 

Std. 
Error 

 
SD 

 
Skewness 

 
Kurtosis 

a    -2.7100 .4115 -.8147 .021 .515 -.999 1.132 

b -1.3568 -.1.2213 -.3952 .019 .472 .700 .565 
 

Note. The descriptive statistics for the dependent variables csd parameters. N = 594. Kurtosis std. error: .200, 

Skewness std. error: .100. Min. = minimum score; Max. = maximum score; Std. Error = standard error; SD = 

standard deviation; a = a-value; b = b-value.  

 
 
Table E.12  
 
Descriptive Statistics for the Free Energy Parameter 
 

   Mean    

 
 

 
Min. 

 
Max. 

 
Statistic 

Std. 
Error 

 
SD 

 
Skewness 

 
Kurtosis 

Free Energy -6051.02 5238.63 1165.83 63.70 1552.72 -.729 1.275 

Note. The descriptive statistics for the dependent variable Free Energy. N = 594. Kurtosis std. error: .200, 

Skewness std. error: .100. Min. = minimum score; Max. = maximum score; Std. Error = standard error; SD = 

standard deviation. 
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Appendix F 

Correlation Matrix for the Independent Variables 

 

Table F.1 
 
Correlation Matrix for the Correlation between the Independent Variables 
 

   
BMI 

 
HbA1c 

 
HCT 

 
Sys BP 

 
Dia BP 

BMI Pearson Correlation 1 
 

593 

.050 

.312 
417 

.030 

.491 
547 

.335 
.000** 

589 

.291 
.000** 

589 
 

Sig. 
N 

HbA1c Pearson Correlation .050 
.312 
417 

1 
 

417 

-.045 
.363 
412 

.063 

.203 
414 

.062 
211 
414 

 

Sig. 
N 

HCT Pearson Correlation .030 
.491 
547 

-.045 
.363 
412 

1 
 

547 

.105* 
.015 
543 

.085 
.048* 
543 

 

Sig. 
N 

Sys BP Pearson Correlation .335 
.000** 

589 

.063 

.203 
414 

.105 
.015* 
543 

1 
 

590 

.680 
.000** 

590 
 

Sig. 
N 

Dia BP Pearson Correlation .291 
.000** 

589 

.062 

.211 
414 

.085 
.048* 
543 

.680 
.000** 

590 

1 
 

590 
 

Sig. 
N 

Note. Correlations between the independent variables BMI, HbA1c, HCT, systolic and diastolic BP. BMI = 

Body Mass Index, HbA1c = glycated hemoglobin; HCT = hematocrit; Sys BP = systolic blood pressure; Dia BP 

= diastolic blood pressure.  

*Sig. two-tailed p < .05, **Sig. two-tailed p < .01. 
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Appendix G 

Regression Tables for Effective Connectivity Parameters 

 

Regression Tables for effective connectivity parameters were the outcome variables 

were the not significantly predicted by BP, HCT, BMI or HbA1c (G.1); where the independent 

variables did not contribute significantly to explaining the variance in the outcome variable 

(G.2); or were the full models were not significant (G.3).  

 

Table G.1  
 
Effective Connectivity Parameters sig. Predicted by Gender Alone 
 
 
 
 
 

Modell Summary Coefficients 
 
 

Model 

 
 

R2 

 
R2 

Change 

 
(df reg, 

df res) = F 

 
 

Sig. 

 
 

Sig. F Change 

 
 

beta 

 
 

Sig. 
 

PCC to AI 
 

Gender  
 
Gender 
Dia BP 
Sys BP 

BMI 

 
.011 

 
.021 

 
 
 

.010 

 
(1,575) = 

6.615 
 

(4,572) = 
3.088 

 
.010** 

 
.016* 

 
 
 

.128 

 
 
 

-.097 
-.057 
.014 
-.074 

 
 
 

.027* 
.324 
.815 
.100 

 
mPFC to AI 

 
Gender 

 
Gender 

BMI 
 

 
.008 

 
.013 

 
 
 

.005 

 
(1,579) = 

4.578 
 

(2,578) = 
3.714 

 
.033* 

 
.025* 

 
 
 

.093 

 
 
 

.084 

.070 

 
 
 

.043* 
.093 

 
LIPC to PCC 

 
Gender 

 
Gender 
Dia BP 
Sys BP 

 
.009 
 
.015 

 
 
 

.006 

 
(1,576) = 

5.143 
 

(3,574) = 
2.800 

 
.024* 

 
.036* 

 
 
 

.180 

 
 
 

-.071 
-.023 
-.063 

 
 
 

.103 

.696 

.298 
 

RIPC to 
ACC 

 
Gender 

 
Gender 
Dia BP 
Sys BP 

 
.008 

 
.020 

 
 
 

.012 

 
(1,576) = 

4.517 
 

(3,574) = 
3.829 

 
.034* 

 
.010** 

 
 
 

.032* 

 
 
 

-.054 
-.012 
-.106 

 
 
 

.215 

.840 

.079 
 

Note. Effective connectivity parameters that were significantly predicted by gender alone. As can be seen from 

Sig. F Change, the independent variables did not make a significant contribution to explaining the variance in the 

outcome variables, except for in RIPC to ACC, but for this regression none of the independent variables made a 
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unique significant contribution. Dia BP = diastolic blood pressure; Sys BP = systolic blood pressure; BMI = Body 

Mass Index; PCC = posterior cingulate cortex; AI = anterior insula; mPFC = medial prefrontal cortex; LIPC/RIPC 

= left/right inferior parietal cortex; ACC = anterior cingulate cortex; df reg = degrees of freedom regression; df res 

= degrees of freedom residual; beta = standardized coefficient beta. 

*p < .05, **p < .01. 
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Table G.2  
 
Effective Connectivity Parameters not sig. Predicted by the Full Model 
 

 
 
 
 

Modell Summary Coefficients 
 
 

Model 

 
 

R2 

 
 

R2 Change 

 
(df reg, 

df res) = F 

 
 

Sig. 

 
 

Sig. F Change 

 
 

beta 

 
 

Sig. 
 

PCC to mPFC 
 

Gender 
 

Gender 
Sys BP 

 
.000 

 
.008 

 
 
 

.008 

 
(1,576) = 

.095 
 

(2,575) = 
2.417 

 
.758 

 
.090 

 
 
 

.030* 

 
 
 

-.016 
.095 

 
 
 

.710 
.030* 

 
mPFC to RIPC 

 
Gender 

 
Gender 

BMI 

 
.000 

 
.010 

 
 
 

.010 

 
(1,579) = 

.002 
 

(2,578) = 
2.800 

 
.962 

 
.062 

 
 
 

.018* 

 
 
 

-.005 
.098 

 
 
 

.910 
.018* 

 
mPFC to ACC 

 
Gender 

 
Gender 

BMI 

 
.001 

 
.009 

 
 
 

.007 

 
(1,579) = 

.734 
 

(2,578) = 
2.543 

 
.392 

 
.080 

 
 
 

.038* 

 
 
 

.030 

.087 

 
 
 

.474 
.038* 

 
RIPC to PPC 

 
Gender 

 
Gender 
Dia BP 

 
.001 

 
.010 

 
 
 

.009 

 
(1,576) = 

.434 
 

(2,575) = 
2.887 

 
.510 

 
.057 

 
 
 

.021* 

 
 
 

-.012 
-.097 

 
 
 

.771 
.021* 

 
DLPFC to AI 

 
Gender  

 
Gender 
Dia BP 

 
.000 

 
.008 

 
 
 

.008 

 
(1,576) = 

.003 
 

(2,575) = 
2.191 

 
.957 

 
.113 

 
 
 

.037* 

 
 
 

-.012 
.088 

 
 
 

.784 
.037* 

 
ACC to PPC 

 
Gender 

 
Gender 

BMI 
HbA1c 

 
.000 

 
.009 

 
 
 

.009 

 
(1,410) = 

.056 
 

(3,408) = 
1.294 

 
.813 

 
.276 

 
 
 

.149 

 
 
 

-.014 
.073 
.054 

 
 
 

.783 

.141 

.280 
 

Note. Effective connectivity parameters were the full models were not significantly explaining the variance of the 

outcome variables. For all the regressions except for ACC to PPC the independent variables contributed to 

explaining more of the variance than gender alone. Dia BP = diastolic blood pressure; Sys BP = systolic blood 

pressure; BMI = Body Mass Index; HbA1c = glycated hemoglobin; PCC = posterior cingulate cortex; AI = anterior 

insula; mPFC = medial prefrontal cortex; RIPC = right inferior parietal cortex; ACC = anterior cingulate cortex; 

DLPFC = dorsolateral prefrontal cortex; PPC = posterior parietal cortex; df reg = degrees of freedom regression; 

df res = degrees of freedom residual; beta = standardized coefficient beta. *p < .05, **p < .01. 
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Table G.3  
 
Effective Connectivity Parameters sig. Predicted by the Full Model, without any of the 
Independent Variables Making a Unique Contribution to Explaining the Variance  
 

 
 

 
 

Modell Summary Coefficients 

 
 

Model 

 
 

R2 

 
 

R2 Change 

 
(df reg, 

df res) = F 

 
 

Sig. 

 
Sig. F 

Change 

 
 

beta  

 
 

Sig. 
 

AI to ACC 
 

Gender 
 

Gender 
Dia BP 
Sys BP 

 
.000 

 
.014 

 
 
 

.014 

 
(1,569) = 

.005 
 

(3,574) = 
2.666 

 
.945 

 
.047* 

 
 
 

.019* 

 
 
 

.027 
-.098 
-.028 

 
 
 

.537 

.092 

.638 
 

AI to 
DLPFC 

 
Gender  

 
Gender 
Dia BP 
Sys BP 

 
.001 

 
.016 

 
 
 

.015 

 
(1,576) = 

.492 
 

(3,574) = 
3.138 

 
.483 

 
.025* 

 
 

.012* 

 
 
 

.067 
-.022 
-.113 

 
 
 

.124 

.705 

.061 
 

AI to PPC 
 

Gender 
 

Gender 
Dia BP 
Sys BP 

BMI 
HbA1c 

 
.006 

 
.040 

 
 
 

.034 

 
(1,407) = 

2.639 
 

(5,403) = 
3.381 

 
.105 

 
.005** 

 
 
 

.007** 

 
 
 

.119 
-.109 
-.071 
-.034 
-.041 

 
 
 

.022 

.114 

.330 

.527 

.410 
 

Note. Effective connectivity parameters were the full models were significantly explaining the variance of the 

outcome variables, and the independent variables explained significantly more than gender alone, but none of the 

independent variables made a unique significant contribution. Dia BP = diastolic blood pressure; Sys BP = systolic 

blood pressure; BMI = Body Mass Index; HbA1c = glycated hemoglobin; AI = anterior insula; ACC = anterior 

cingulate cortex; DLPFC = dorsolateral prefrontal cortex; PPC = posterior parietal cortex; df reg = degrees of 

freedom regression; df res = degrees of freedom residual; beta = standardized coefficient beta. 

*p < .05, **p < .01. 
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Appendix H 

Frequency Distribution of BMI Groups 

 

Figure H.1 

Frequency Distribution for BMI Groups 

 

  

Note. Exhibits the non-normal distribution of BMI, and that the shape of the distribution is not similar across the 

groups. Normal weight (19-24 kg., N=262), Overweight (25-29 kg., N=202) and Obese (>30 kg., N=117). 
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Appendix I 

Results of the Kruskal-Wallis H Test for Hemodynamic Parameters 

 

Table I.1 
 
Kruskal-Wallis H Tests with the Hemodynamic Parameters 
 
 

 
 

Kruskal – Wallis H Test 
  

Pairwise Comparisons 
 
 

Parameter 

 
 

Sig.  

 
 

Chi 2 

 
Pairwise 

Comparison 

 
Std. 
Stat. 

 
 

Adj.Sig 
 

 
 
r 

 
 

Mean Rank 
 

PCC 
transit time 

 
.013* 

 
8.718 

NW – OB  
OW – OB 
NW – OW  

 

1.841 
2.952 

-
1.349 

.197 
.009** 
.009 

 
.165 

NW: 292.61 
OW: 314.00 
OB: 258.66 

 
mPFC 

transit time 
 

.056a 
 

5.750 
.  .  . 

 

LIPC 
transit time 

 
.208 

 
3.138 

.  .  . 
 

RIPC  
transit time 

 
.856 

 
.310 

.  .  . 

AI  
transit time 

 
.646 

 
.875 

.  .  . 

ACC  
transit time 

 
.230 

 
2.938 

.  .  . 

DLPFC 
transit time 

 
.466 

 
1.527 

.  .  . 

PPC 
transit time 

 
.458 

 
1.560 

.  .  . 
 

Decay  .904 .201 .  .  . 
 

Epsilon  .267 2.875 .  .  . 
Note. Kruskal Wallis H Test for between BMI group differences in the hemodynamic parameters. Normal Weight 

(19-24 kg., N = 262), overweight (25-29 kg., N = 202) and obese (>30 kg., N = 117), Total N = 585, Degrees of 

Freedom = 2. Std. Stat. = Standardized test statistic. Adj.Sig is the significance level after adjusting the alpha-

value for multiple comparisons, with Bonferroni Corrections. r = effect size. Dash indicates no data obtained, as 

the pairwise comparison was not run. PCC = posterior cingulate cortex; mPFC = medial prefrontal cortex; LIPC/ 

RIPC = left / right inferior parietal cortex; AI = anterior insula; ACC = anterior cingulate cortex; DLPFC = 

dorsolateral prefrontal cortex; PPC = posterior parietal cortex; NW = normal weight; OW = overweight; OB = 

obese.  

*p = .05, ** p = .01. a Close to significant group differences for mPFC transit time. 



VARIABILITY IN RESTING-STATE FUNCTIONAL MAGNETIC RESONANCE IMAGING  125  

Appendix J 

Non-significant Kruskal-Wallis H Tests for Effective Connectivity Parameters 

 

Table J.1 
 
Non-significant Between BMI Group Differences for Effective Connectivity Parameters 
 
 

Connections 
 

Sig.  
 

Chi 2 

PCC .398 1.846 
PCC to LIPC .284 2.519 

PCC to AI .314 2.319 
PCC to ACC .127 4.125 
PCC to PPC .691 .744 

mPFC  .818 .401 
mPFC to PCC .461 1.550 
mPFC to LIPC .199 3.225 

mPFC to AI .446 1.616 
mPFC to ACC .257 2.716 

mPFC to DLPFC .157 3.697 
mPFC to PPC .214 3.084 

LIPC to AI .792 .467 
LIPC to ACC .993 .014 

LIPC to DLPFC .586 1.069 
LIPC to PPC .328 2.231 
RIPC to PCC .717 .666 
RIPC mPFC .824 .386 

RIPC to LIPC .944 .115 
RIPC to AI .507 1.358 

RIPC to ACC .065 5.478 
RIPC to DLPFC .648 .868 

RIPC to PPC .671 .797 
AI .709 .688 

AI to PCC .567 1.136 
AI to LIPC .917 .173 
AI to RIPC .627 .934 
AI to ACC .861 .300 

AI to DLPFC .957 .088 
AI to PPC .096 4.683 

ACC .368 2.001 
ACC to PCC .474 1.494 

ACC to mPFC .138 3.965 
ACC to LIPC .871 .275 
ACC to RIPC .288 2.491 

ACC to AI .446 1.614 
ACC to DLPFC .775 .509 

ACC to PPC .196 3.255 
DLPFC .648 .867 

DLPFC to PCC .233 2.916 
DLPFC to mPFC .199 3.230 
DLPFC to LIPC .080 5.043 
DLPFC to RIPC .198 3.243 

DLPFC to AI  .570 1.125 
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DLPFC to ACC .127 4.132 
DLPFC to PPC .694 .730 

PPC .124 4.174 
PPC to PCC .092 4.779 

PPC to mPFC .720 .656 
PPC to LIPC .315 2.308 
PPC to RIPC .834 .363 

PPC to AI .059 5.674 
PPC to ACC .900 .210 

PPC to DLPFC .661 .829 
Note.  Normal Weight (19-24 kg., N = 262), overweight (25-29 kg., N = 202) and obese (>30 kg., N = 117), Total 

N= 585, degrees of freedom = 2. PCC = posterior cingulate cortex; mPFC = medial prefrontal cortex; LIPC/ RIPC 

= left / right inferior parietal cortex; AI = anterior insula; ACC = anterior cingulate cortex; DLPFC = dorsolateral 

prefrontal cortex; PPC = posterior parietal cortex.  
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Appendix K 

Frequency Distribution of Sibling Status 

 
 

Table K.1 
 
Frequency Distribution of Sibling Status  
 
 Frequency 

Monozygotic twin 178 
Heterozygotic twin 123 

Not twin 291 
Note. Distribution of the forms of relation between the subjects in the study sample (N = 594).  
 

 

 


