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Abstract We study the Shared Multicast Tree (SMT) problem in wireless
networks. To support a multicast session between a set of network nodes,
SMT aims to establish a wireless connection between them, such that the total
energy consumption is minimized. All destinations of the multicast message
must be connected, while non-destinations are optional nodes that can be
used to relay messages. The objective function reflecting power consumption
distinguishes SMT clearly from the traditional minimum Steiner tree problem.

We develop two integer programming formulations for SMT. Both models
are subsequently extended and strengthened. Theorems on relations between
the LP bounds corresponding to the models are stated and proved. As the
number of variables in the strongest formulations is a polynomial of degree
four in the number of network nodes, the models are impractical for computing
lower bounds in instances beyond a fairly small size, and therefore a constraint
generation scheme is developed. Results from computational experiments with
the models demonstrate good promise of the approaches taken.

Keywords Wireless communication, multicast tree, Steiner tree, LP bound,
valid inequalities

1 Introduction

Wireless ad hoc networks (WANETs) are suitable in various practical applica-
tions in both civil and military sector, where a communication infrastructure

M. Ivanova
Department of Informatics, University of Bergen, Norway
Tel.: +47 94277070
E-mail: Marika.Ivanova@uib.no

D. Haugland
Department of Informatics, University of Bergen, Norway
Tel.: +47 55584033
E-mail: Dag.Haugland@uib.no



2 Marika Ivanova, Dag Haugland

is either absent or cannot be relied on. Owing to their quick deployment and
simple configuration, WANETs are useful in emergency operations such as nat-
ural disaster relief and military command and control. Recently, the WANET
concept has been introduced in ad hoc smart lighting in homes and in offices,
as well as ad hoc street light networks, where the control includes adjusting
dimmable lights.

The purpose of a multicast communication session in a WANET is to route
information from a sending device to a set of receiving devices. Connection
links are established by assigning sufficient power to the sending devices. Since
the devices typically use batteries as power supply, they are heavily energy-
constrained. Therefore, power efficiency is an important measure in designing
WANETs. Individual devices work as transceivers, which means that they have
the ability to both transmit and receive a signal. Moreover, the power level
of a device can be dynamically adjusted during a multicast session. Monte-
manni and Leggieri (2011) name several applications of wireless sensor net-
works where power saving is essential.

Unlike wired networks, where signal passing takes place along predefined
links, nodes in WANETs use omnidirectional antennas, and hence a message
reaches all nodes within the communication range of its sender. This range is
determined by the power assigned to the sender, which is the maximum rather
than the sum of the power levels necessary to reach all intended receivers. This
feature is often referred to as the wireless advantage (Wieselthier et al. 2000).

1.1 Related problems

A well-known and extensively studied problem in the network design literature
is the Minimum Energy Broadcast (MEB) problem. Given a set of wireless
devices with one designated source node, the goal is to assign power to indi-
vidual nodes. The power assignments determine the communication ranges,
and induce a broadcast tree such that a signal initiated by the source reaches,
directly or via other nodes, all the remaining nodes. In the MEB problem,
the task is to find power assignments enabling such a signal broadcast while
minimizing the total energy consumption. A natural and frequently addressed
extension of MEB, is the Minimum Energy Multicast (MEM) problem.
Analogous to the difference between the Minimum Spanning Tree and the
Minimum Steiner Tree problems, MEM is distinguished from MEB in that
not all nodes in the network are destinations of the multicast message. Hence,
the more general problem amounts to finding a Steiner tree spanning the
destination nodes such that the sum of the power assignments is minimized.
Non-destination nodes are allowed in the Steiner tree, and will be included to
the extent that they contribute to reduced power consumption.

In certain practical settings, MEB fails to reflect reality adequately. Con-
sider an application where more than one node can act as a source. The opti-
mal broadcast trees corresponding to two different sources are not necessarily
identical, and the optimal broadcast trees must be calculated separately for
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every possible source node. In order to relay a received signal correctly, the
nodes must be able to recognize which node initiated the received signal, and
therefore also determine which broadcast tree to use. Further, which power
level to be set must be assessed by the relaying node. Such overhead calcula-
tions require additional energy, and enforcing the communication devices to
accomplish them may even be impractical.

The idea behind the Minimum Shared Broadcast Tree (SBT) problem
is to maintain a single, shared broadcast tree, to be applied regardless of
which node is the signal source. Such a tree is not necessarily optimal for any
of the individual sources, but routing at each node is considerably simplified.
Provided that a shared broadcast tree is used, the nodes are no longer required
to identify the source of the message in order to set a correct power level.
Instead, only the immediate neighbour from which the signal was received
must be recognized. The objective function in SBT captures not only the
power levels of the nodes, but depends also on how frequently a node actually
transmits with a certain power level.

The SBT and SMT problems resemble the more frequently studied Range
Assignment Problem (RAP) in the sense that they all ask for an undi-
rected source-independent tree of minimum power. However, RAP concerns
cases where a connected topology must be established by means of bidirec-
tional links, with the feature that power must be assigned to both the sending
and the receiving device in each link. This scenario induces a spanning tree
problem, where costs are incurred only for edges that are the most expensive
ones incident to any of their end nodes.

1.2 Contributions

Contributions from the present work include two sets of Integer Programming
(IP) models for SMT, presented in order of increasing lower bounding capa-
bilities. By rigorous analysis of the models, we prove relations between the
bounds offered by the corresponding continuous relaxations. Intended for in-
stances beyond the size that can be solved to optimality, we also develop a
constraint generation procedure by which strong bounds can be computed.

When proven optimality is out of reach, effective methods for computing
near-optimal solutions are crucial. A heuristic method tailored for SMT is an-
other contribution from the current text, which thus demonstrates how recent
progress on the Minimum Steiner Tree problem can be transferred to the
problem under study.

1.3 Scope and structure of the paper

For the same reasons that MEB has been generalized to MEM, it is natural and
desirable to extend SBT to its multicast equivalent. The Minimum Shared
Multicast Tree (SMT) problem is thus at the forefront of this paper, and
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neither MEB, MEM, nor RAP will be given much attention. Focus is hence-
forth on instances in which some of the nodes neither initiate new messages
nor need to receive messages from others. Utilizing such non-destination nodes
to forward messages can in many cases contribute to substantial reductions in
the total power consumption. Non-destination nodes thus have the potential
to play the role of Steiner nodes in the multicast tree. All devices that can
initiate a transmission, referred to as destination nodes, also have to receive
every message.

The remainder of this paper is organized as follows: Section 2 summarizes
relevant literature and previous works. Section 3 introduces the notation, ex-
plains the network model, and gives a formal definition of the problem. Integer
linear programming formulations, valid inequalities and their analysis are pre-
sented in Section 4, followed by Section 5, where the models under study are
compared with respect to their strength. In Section 6, the models are further
extended by variables in higher dimensional spaces, and a constraint gener-
ation procedure is developed. A fast method for computing good, but not
necessarily optimal solutions is given in Section 7. Computational results are
reported in Section 8, and suggestions to future work are summarized in Sec-
tion 9.

2 Literature Overview

The combinatorial optimization literature is already rich on IP approaches
to power minimization in wireless networks. Since the work of Wieselthier
et al. (2000), in particular the MEB and MEM problems have been studied
extensively. Noteworthy contributions to this research include the IP models
studied by Das et al. (2003), Altinkemer et al. (2005), Yuan (2005), Yuan et al.
(2008), Bauer et al. (2008), Montemanni and Leggieri (2011) and Leggieri et
al. (2008). The latter paper proposes an IP formulation of MEM based on a set
covering model, together with a preprocessing procedure reducing the number
of constraints. Čagalj et al. (2002) prove that MEB, and thereby MEM, is
NP-hard. Numerous contributions to fast, but possibly inexact methods for
MEM have thus appeared, and the interested reader is referred to (Hsiao et
al. 2013) for an overview. Another study concerning MEM is the work by Guo
and Yang (2004), who investigate energy conservation while using adaptive
antennas. Unlike omnidirectional antennas, adaptive antennas can concentrate
their transmission power in a smaller angle.

Bein and Zheng (2010) study energy efficiency in wireless networks where
all nodes can initiate a message, and the communication takes place in a single
all-to-all broadcast tree. A heuristic algorithm generating all-to-all broadcast
trees is proposed by Bhukya and Singh (2014), along with an experimental
evaluation confirming its merit.

The SBT problem has also received some attention in the scientific litera-
ture. It was first introduced by Papadimitriou and Georgiadis (2006), who also
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proved that the problem is NP-hard. In the same article, an approximation
algorithm for SBT is developed and analyzed experimentally. Building on this
work, Yuan and Haugland (2012) present an integer programming model for
SBT, along with an associated decomposition approach.

Simple instances (Yuan and Haugland 2012) show that because of the
difference in objective functions, the optimal solutions to RAP and SBT can
differ substantially. Kirousis et al. (1997) and Clementi et al. (1999) conduct
hardness results for instances of RAP embedded in three- and two-dimensional
Euclidean space, respectively. Later, IP models have been developed by e.g.
Althaus et al. (2003), Montemanni and Gambardella (2004), Das et al. (2005),
and Haugland and Yuan (2011).

Some preliminary work on SMT has recently been published. Ivanova
(2016) introduces the problem, and develops an IP model. Moreover, she stud-
ies inexact construction and improvement methods, for which computational
results are reported.

3 The Minimum Shared Multicast Tree Problem

Like in studies of other problems in combinatorial optimization, a theoretical
investigation of SMT requires abstraction and simplification of the real-world
communication network.

3.1 Assumptions and notation

A WANET is modeled by a complete graph G = (V,E), where the set V of
nodes represents the set of wireless devices, and the set of edges E = {{i, j} :
i, j ∈ V, i 6= j} corresponds to the potential links between them. The set
A = {(i, j) : i, j ∈ V, {i, j} ∈ E} consists of all arcs that can be derived by
directing the edges in E. Nodes in the set D ⊆ V are the destination nodes,
also referred to as source nodes. For an arbitrary i ∈ V , sets V \{i} and D\{i}
are denoted Vi and Di, respectively.

Sending a message directly from (to) node i to (from) node j requires a
positive transmission power pij = pji. Whenever appropriate, pij is referred to
as the cost of {i, j}, and edges with higher cost than others are said to be more
expensive. When the nodes are embedded in the plane, pij is often assumed
(Papadimitriou and Georgiadis 2006; Yuan and Haugland 2012; Halgamuge et
al. 2009) to be proportional to the Euclidean distance between i and j raised
to a power between 2 and 4. For simplicity, we assume for all i ∈ V that
pij 6= pik when j 6= k, and define Wij = {k ∈ Vi : pik ≥ pij} as the set of nodes
requiring no less power at i than j does. The notation G′ ⊆ G means that
G′ = (VG′ , EG′) is a subgraph of G, i.e., EG′ ⊆ E consists uniquely of edges
in E with both end nodes in VG′ ⊆ V .

Let y ∈ {0, 1}E and X ∈ {0, 1}A×D be binary vectors with components
corresponding to edges, and pairs of arcs and destination nodes, respectively.
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The vector Xs then consists of all components of X corresponding to a pair
of which s is the destination. The subgraph of G induced by y is defined as
Gy = (V,Ey), where Ey = {{i, j} ∈ E : yij = 1}. Directed graphs induced by
binary vectors over A are defined analogously.

Several integer programming models, all of which exclusively have binary
variables, will be considered in this text. When M is such a model, LP(M)
denotes the corresponding continuous relaxation where the domain of each
variable is replaced by the interval [0, 1]. Further, z (M) and z (LP(M)) denote
the optimal objective function values of the respective models.

3.2 Network model

To illustrate the problem under study, consider the tree depicted in Fig. 1.
Seven destination nodes (D = {i1, i2, a, b, c, d, e}) are spanned by use of two
Steiner nodes (V \ D = {i, i3}). Consider node i and its three neighbour
nodes i1, i2 and i3, ordered by decreasing power requirement at i. That is,
pii1 > pii2 > pii3 . If the transmitting node is outside the shaded area (i2,
c, d, or e), then node i relays the signal to two of its neighbors, including
i1. Exploiting the wireless advantage, the signal from node i reaches both
neighbors if it is assigned power level pii1 . Otherwise, if the signal source is
either i1, a, or b, node i passes the signal on to neighbors i2 and i3. This is
accomplished by setting the power level of i to pii2 .

a

b
c

di1

i2

i3
i e

Fig. 1: A multicast tree illustrating the cost contribution from node i to the
objective function. Destination nodes and Steiner nodes are denoted by filled
and empty circles, respectively.

In more general terms, let T ⊆ G be a multicast tree, and let i ∈ VT be a
node with at least two neighbors in T . For multicasting a message, the power
to be assigned to node i is either pii1 or pii2 , where i1 and i2 are neighbors of
i such that pii1 > pii2 > pij for all other neighbors j 6= i1, i2 of i in VT . If the
path from the message source to i intersects i1, then power pii2 is sufficient.
Otherwise, the power pii1 is required. At a leaf i with neighbor i1 in T , the
power assignment is pii1 if i also is the message source, and zero otherwise.

All nodes in D are assumed to be equally likely to initiate a message. The
frequency at which power levels pii1 and pii2 (let pii2 = 0 if i is a leaf) are
required, is thus proportional to the number of sources in D that utilize the
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respective arc for message forwarding. In the example in Fig. 1, the expected
power consumption at node i is thus proportional to 4pii1 + 3pii2 . Summing
over all nodes yields the total cost of the tree.

The cost model outlined above aims for minimization of the transmission
energy. As pointed out by Halgamuge et al. (2009), transmission constitutes a
substantial part of the total energy consumption in wireless sensor networks.
The energy consumed by other operations, such as sensing, logging, process-
ing, actuation, and cluster formation is less sensitive to the topology of the
multicast tree, and is neglected in the current work. This is in line with the
approach taken in the wide range of literature on optimization models for
wireless networks mentioned in Section 2. For a detailed energy model for
wireless sensor networks, the reader is referred to the article by Halgamuge et
al. (2009).

3.3 Problem definition

To express the cost of the multicast tree more rigorously, let T s = (VT , A
s)

denote the directed tree (arborescence) obtained by directing all edges in T
such that they point away from the root at s. For each arc (i, j) ∈ A, we
let nij(T ) denote the number of destinations s such that (i, j) is the most
expensive arc leaving node i in T s. That is,

nij(T ) =

∣∣∣∣{s ∈ D : pij = max
k∈Vi:(i,k)∈As

pik

}∣∣∣∣ ,
and the total cost of tree T becomes:

c(T ) =
∑
i∈VT

∑
j∈VT :{i,j}∈ET

pijnij(T ).

The problem under study is thus defined in network optimization terms:

Problem 1 Minimum Shared Multicast Tree: Find a tree T ⊆ G span-
ning D such that c(T ) is minimized.

While the feasible domains of the Minimum Steiner Tree problem and
SMT are identical, the cost functions differ. In the former problem, all edges
present in the tree contribute to the objective function by a cost that is given
by the input data. The input cost factor pij is, in the case of SMT, scaled by
a topology dependent factor nij(T ). Only edges that are the most or second-
most expensive edge incident to either of their end nodes get a positive scaling
factor. Some edges in T can thus be scaled down to zero cost, while the most
expensive ones are scaled up.

Problem 1 also has close resemblance with the SBT problem, which is the
special case of SMT where D = V . Like many other network design prob-
lems, SMT is NP-hard. This follows directly from the NP-hardness of SBT
(Papadimitriou and Georgiadis 2006).
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In the forthcoming sections, we develop and analyze IP models for SMT.
All formulations under study are extensions of models previously developed
for the related problems mentioned above.

4 IP Formulations

Fundamental in every IP formulation for SMT is a set of constraints mod-
elling a Steiner tree. We investigate two such constraint sets formulated in
terms of variables with up to three node indices, and make necessary exten-
sions required by the objective function of SMT. The resulting models are
subsequently strengthened by valid inequalities.

4.1 Formulation based on broadcast trees

The first model extends the SBT formulation introduced by Yuan and Haug-
land (2012) by non-destination nodes, in order to formulate the multicast
version of the problem (Ivanova 2016).

4.1.1 Underlying Steiner tree formulation

Feasible solutions to SMT are characterized by a Steiner tree T covering D.
Define for each edge {i, j} ∈ E and each destination node s ∈ D, the binary
variables yij and Xs

ij , where yij = 1 iff {i, j} ∈ ET , and Xs
ij = 1 iff (i, j) ∈ As.

To induce a graph with an acyclic connected component spanning D, the
following constraints are imposed:∑

j∈Vi

Xs
ji = 1, i, s ∈ D, i 6= s, (1a)

∑
j∈Vi

Xs
ji ≤ 1, i ∈ V \D, s ∈ D, (1b)

Xs
ij ≤

∑
k∈Vi\{j}

Xs
ki, i ∈ V \D, (i, j) ∈ A, s ∈ D, (1c)

Xs
ij +Xs

ji = yij , {i, j} ∈ E, s ∈ D, (1d)

Xs
is = 0, s ∈ D, (i, s) ∈ A, (1e)

y ∈ {0, 1}E , X ∈ {0, 1}A×D. (1f)

Constraints (1a) ensure that all destination nodes but s have a unique
entering arc in T s. Inequalities (1b)–(1c) say that non-destination nodes do
not have more than one entering arc, and that they do have one if they have
leaving arcs. Constraints (1d) state that the arc set of T s consists of directed
versions of the edge set of T , and constraints (1e) ensure that s is the root of
T s. More formally, the effect of the constraints can be stated as follows:
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Lemma 1 If (X, y) satisfies (1a)–(1f), then Gy has a tree spanning D as one
of its connected components. Conversely, for any tree T ⊆ G spanning D, there
exists a pair (X, y) satisfying (1a)–(1f) such that T is a connected component
of Gy.

Proof By (1e) and (1a)–(1b), the in-degree of s ∈ D is 0 in GXs , whereas it is
at most one at all other nodes. Hence, the connected components of GXs are
directed cycles, arborescences, and isolated nodes, and one of the components
is an arborescence rooted at s. Constraints (1d) imply that Gy consists of
undirected versions of the same components, showing that no cycle in Gy
contains destination nodes. Let t ∈ D, and let P be the maximal path in GXs

that terminates in t. Existence and uniqueness of this path is assured since
t belongs to an acyclic connected component. According to (1c), each non-
destination in P has an entering arc in P , while constraints (1a) ensure that
the same is true for every destination node, except s. It follows that the first
node of P is s. Thus, destinations s and t belong to a joint, acyclic connected
component of Gy.

The second claim of the lemma is obvious. ut

4.1.2 SMT model [X1]

To reflect that only expensive edges in T contribute to the objective function
of Problem 1, we introduce the variables:

πsij =

{
1 if (i, j) is the most expensive arc leaving node i in T s,

0 otherwise,

leading to the following formulation X1 of SMT:

min
∑

(i,j)∈A

pij
∑
s∈D

πsij , (1g)

s.t.

(1a)− (1f),

Xs
ij ≤

∑
k∈Wij

πsik, s ∈ D, (i, j) ∈ A, (1h)

π ∈ {0, 1}A×D. (1i)

Constraints (1h) say that if (i, j) ∈ AT s , then the cost of the most expensive
arc in T s leaving i is at least pij . Since

∑
s∈D π

s
ij = nij(T ) is the number of

arborescences in which (i, j) is the most expensive arc leaving i, (1g) thus
agrees with the objective of Problem 1.

Proposition 1 If (X, y, π) is an optimal solution to X1, then Gy consists of
isolated non-destination nodes and a tree that solves Problem 1.
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Proof Follows directly from p > 0 and Lemma 1. ut

Model X1 is a slightly modified version of the SMT model introduced by
Ivanova (2016), which contains a set of constraints disallowing non-destination
leaves, and a weaker version of constraints (1c). Formulation (1g)–(1i) is min-
imal, in the sense that each set of constraints is necessary in order to give
a valid formulation in all instances. In the next section, we strengthen the
formulation by adding redundant valid inequalities.

4.1.3 Valid inequalities [X2]

Adding the following valid inequalities to X1 gives another SMT-model, de-
noted X2: ∑

j∈Vi

Xs
ji ≤

∑
j∈Vi

Xs
ij , i ∈ V \D, s ∈ D, (1j)

∑
j∈Vs

πssj = 1, s ∈ D, (1k)

∑
j∈Vi\{s}

πsij =
∑
j∈Vi

Xs
ji, i ∈ V \D, s ∈ D. (1l)

Constraints (1j) ensure that the number of arcs leaving a non-destination in
T s is no less than the number of entering arcs. Their effect is to disallow
non-destination leaves. Equations (1k) say that in arborescence T s, exactly
one arc (s, j) leaving the root s is declared to be the largest. Validity of the
constraints follows immediately, because the root has at least one leaving arc.
As constraints (1l) state, if an arc enters non-destination node i in T s, then i
also has at least one leaving arc, exactly one of which is the most expensive.
The root s is excluded from the summation set on the left of (1l) since no arcs
in T s enter s.

Remark 1 The sets (1j)–(1l) of valid inequalities are independent in the follow-
ing sense: There exist instances where the removal of either set implies that
z(LP(X2)) takes a smaller value. This includes the instance where |V | = 9,
|D| = 5, all power requirements (arc costs) pij equal the square of the Eu-
clidean distance between nodes i and j, and the nodes are located in the plane
with respective coordinates (destinations mentioned first) (47, 65), (8, 65),
(26, 12), (78, 27), (8, 8), (73, 66), (13, 55), (91, 44), and (76, 74).

4.2 Formulation based on network flows

There are many formulations for the Minimum Steiner Tree problem (Goe-
mans and Myung 1993) that can serve as a basis for modelling SMT. We
consider the multi-commodity network flow model developed by Polzin and
Daneshmand (2001) (denoted PF in their work). A given destination s0 ∈ D
plays a particular role in the models. For the sake of simplified notation, s0 as
subscript (superscript) is henceforth replaced by subscript (superscript) 0.
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4.2.1 Underlying Steiner tree formulation

To identify a Steiner arborescence T 0 = (V 0, A0) rooted at s0, we define
variables g ∈ {0, 1}A and F ∈ {0, 1}A×D0 , where gij = 1 iff (i, j) ∈ A0, and
F sij = 1 iff the path in T 0 from s0 to destination s contains arc (i, j). Variables
gij and F sij are traditionally referred to as the design variable of arc (i, j)
and the flow of commodity s along (i, j), respectively. The constraints of the
multi-commodity flow formulation of the Minimum Steiner Tree problem
are:

F sij ≤ gij , s ∈ D0, (i, j) ∈ A, (2a)∑
j∈Vi

F sji −
∑
j∈Vi

F sij =

{
1, i = s,

0, i ∈ V \ {s0, s},
s ∈ D0, (2b)

∑
j∈Vi

gji ≤ 1, i ∈ V \D, (2c)

F ssi = 0, s ∈ D0, i ∈ Vs, (2d)

F sis = gis, s ∈ D0, i ∈ Vs, (2e)

gi0 = 0, i ∈ V0, (2f)

g ∈ {0, 1}A, F ∈ {0, 1}A×D0 . (2g)

The flow conservation constraints (2b) ensure that T 0 is connected, and
the capacity constraints (2a) state that flow of any commodity is allowed only
if (i, j) ∈ A0. Multi-commodity flow formulations appear abundantly in the
network design literature, and proof of the following claim is therefore omitted:

Lemma 2 Assume (F, g) satisfies (2a)–(2g). Then, some connected compo-
nent T 0 ⊆ Gg is an s0-rooted arborescence spanning D, and some connected
component of GF s ⊆ T 0 is a path from s0 to s ∈ D0. Conversely, for any s0-
rooted arborescence T 0 spanning D, there exists a pair (F, g) satisfying (2a)–
(2g) such that T 0 is a connected component of Gg.

To model the objective function of SMT, the following result is useful:

Proposition 2 Assume (F, g) satisfies (2a)–(2g), and let T s = (V s, As) be
the arborescence obtained by redirecting the arcs in T 0 such that they point
away from s ∈ D0. Then,

gij − F sij + F sji =

{
1, if (i, j) ∈ As,
0, otherwise.

Proof Because T 0 is acyclic, gij + gji ≤ 1, and it follows from the capacity
constraints (2a) that gij+F sji ≤ 1. The same constraints also imply gij−F sij ≥
0. Hence, gij − F sij + F sji ∈ {0, 1}.

Arborescence T s contains arc (i, j) iff (i, j) is in A0 but not on a path to
s, or its reverse arc (j, i) is on such a path. By Lemma 2, this disjunction is
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equivalent to gij − F sij = 1 or F sji = 1. The result then follows since the two
conditions are mutually exclusive. ut

4.2.2 SMT model [F1]

Recall from Section 4.1.2 that πsij determines whether (i, j) is the most expen-
sive arc leaving node i in arborescence T s. Taking advantage of Prop. 2, we
can thus formulate Problem 1 in terms of variables F , g, and π, resulting in
model F1:

min
∑

(i,j)∈A

pij
∑
s∈D

πsij ,

s.t.

(2a)− (2g),

gij − F sij + F sji ≤
∑
k∈Wij

πsik, s ∈ D0, (i, j) ∈ A, (2h)

gij ≤
∑
k∈Wij

π0
ik, (i, j) ∈ A, (2i)

π ∈ {0, 1}A×D. (2j)

Like (1h), constraints (2h) ensure that if (i, j) ∈ As, then πsik = 1 for some
arc (i, k) at least as expensive as (i, j). As gij determines whether (i, j) ∈ A0,
the corresponding constraint for destination s0 is simplified to (2i). Validity of
F1 is thus stated as a corollary to Prop. 2:

Corollary 1 If (F, g, π) is an optimal solution to F1, then Gg consists of
isolated non-destination nodes and an arborescence T 0. The tree obtained by
disregarding arc directions in T 0 is an optimal solution to Problem 1.

Remark 2 Like X1, also F1 is a minimal formulation. Constraints (2c) prevent
non-destinations from having multiple entering arcs. In a Minimum Steiner
Tree formulation, where a linear function of g is minimized subject to con-
straints (2a)–(2b) and (2d)–(2g), constraints (2c) are implied by optimality.
The necessity of (2c) in formulation F1 of SMT is demonstrated by the optimal
solution to F1 after removal of (2c) in the following instance: V = {s0, a, . . . , i}
with coordinates (3, 61), (79, 80), (32, 54), (93, 21), (12, 70), (93, 60), (72, 78),
(76, 80), (39, 84), and (82, 80), respectively, edge costs equal to the square of
the Euclidean distance between end points, and D = {s0, a, . . . , f}. Figure 2
depicts the optimal solution to SMT, and the solution to F1 after removal of
(2c).

Remark 3 The obviously valid inequalities (2d)–(2e) are not necessary in the
Minimum Steiner Tree formulation, but have to be included in the formu-
lation F1 of SMT in order to disallow nodes in D0 to have multiple entering
arcs. Removal of (2d) or (2e) implies that the optimal solution to the instance
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where V = {s0, a, . . . , k} with coordinates (43, 15), (89, 88), (56, 12), (44, 66),
(60, 42), (91, 48), (64, 8), (64, 34), (68, 9), (41, 53), (85, 67), and (93, 49),
respectively, edge costs defined as in Remark 2, and D = {s0, a, . . . , h}, is not
a feasible solution to SMT.

s0

a

b

f

g

h

i

c

d
e

162

925

949

1125

20

9

9
521 1521

(a) Optimal SMT-solution with total cost
25156.

s0

a

b

f

g

h

i

c

d
e

162

925

949

1125

20

53

765

36

521 1521

(b) Optimal solution Gg to F1 after omis-
sion of constraints (2c). Its total cost is
25148, but the cycle shows that it is infeasi-
ble in SMT.

Fig. 2: Instance demonstrating necessity of constraints (2c) in F1. Edge labels
denote costs. For better legibility, some edges are contracted in the illustration.

4.2.3 Valid inequalities [F2]

Valid inequalities analogous to those leading to model X2 in Section 4.1.3
are added to F1, resulting in a model denoted F2. Analogously to (1j), to
enforce non-destination nodes included in the spanning arborescence to have
at least one child node, the following constraints are introduced (Polzin and
Daneshmand 2001):∑

j∈Vi

gji −
∑
j∈Vi

gij ≤ 0, i ∈ V \D. (2k)

According to Prop. 2, if i ∈ V \ D and gji − F sji + F sij = 1 for some
j ∈ Vi and s ∈ D0, then i is a Steiner node used to establish connection
between s and some other destination. Since i also has a leaving arc in T s,
we have πsik = 1 for some k 6= i, s. This proves validity of the constraint
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j∈Vi

(
gji − F sji + F sij

)
=
∑
j∈Vi\{s} π

s
ij . Application of flow conservation (2b)

yields the valid constraints∑
j∈Vi\{s}

πsij =
∑
j∈Vi

gji, i ∈ V \D, s ∈ D. (2l)

Finally, constraints (1k) are valid, completing formulation F2 as model F1

extended by (2k)–(2l) and (1k).

Remark 4 With s0 equal to the destination node in position (47, 65), the
instance given in Remark 1 also proves independence of the three sets (1k),
(2k)–(2l) of valid inequalities.

5 Relations Between the Models

Optimal solutions to the continuous relaxations of the models formulated in
Section 4 provide lower bounds on the cost of a minimum shared multicast
tree. In this section, the bounds are analyzed and compared. For any integer
programming models M and M′ of SMT, we say that LP(M) is at least as
strong as LP(M′) if z (LP(M)) ≥ z (LP(M′)) for all SMT-instances, and that
it is stronger if there also exists an instance in which the inequality is strict.

5.1 Comparing X1 and F1

For all (i, j) ∈ A, define F ∗ij = maxs∈D0
F sij . To prove that LP(F1) is at least

as strong as LP(X1), the following claim is instrumental.

Lemma 3 All feasible solutions (F, g, π) to LP(F1) satisfy
∑
j∈Vi

gji = 1
(i ∈ D0) and

∑
j∈Vi

gji ≤ 1 (i ∈ V \D).

Proof Let i ∈ D0. Utilizing first (2e), next flow conservation (2b) at i = s, and
finally (2d), we get

∑
j∈Vi

gji =
∑
j∈Vi

F iji = 1+
∑
j∈Vi

F iij = 1. For i ∈ V \D,
the claim is identical to (2c). ut

Lemma 4 In all SMT-instances, there exists an optimal solution (F, g, π) to
LP(F1) satisfying

min{F sij , F sji} = 0, {i, j} ∈ E, s ∈ D0, and (3a)

gij = F ∗ij , (i, j) ∈ A. (3b)

Proof Obviously, an optimal solution to LP(F1) exists, so let (F̄ , ḡ, π) denote
one such solution. For all (i, j) ∈ A and s ∈ D0, let F sij = F̄ sij −min{F̄ sij , F̄ sji},
and let g be chosen according to (3b). Consequently, (3a)–(3b) are satisfied,
and the objective function values of (F, g, π) and (F̄ , ḡ, π) are equal.

To prove optimality of (F, g, π), it suffices to prove feasibility. The capacity
constraints (2a) follow directly from (3b). Because F̄ satisfies the flow conser-
vation constraints (2b), also F does, since F sji − F sij = F̄ sji − F̄ sij . Further,
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gij = F ∗ij ≤ F̄ ∗ij ≤ ḡij , proving that also (2c) and (2h)–(2i) are satisfied. Fi-

nally, (2d)–(2e) follow directly from F̄ ssi = 0 and F̄ sis = ḡis, and equations (2f)
follow from gi0 ≤ ḡi0 = 0. Thus, (F, g, π) is feasible in LP(F1). ut

Lemma 5 If (F, g, π) is feasible in LP(F1) with (3a)–(3b) satisfied, then

gij + gji ≤ 1 for all {i, j} ∈ E. (4)

Proof Assume gij + gji > 1 for some {i, j} ∈ E. Because gi0 = 0, this implies
i 6= s0 6= j. By (3b), there exist s, t ∈ D0 such that F sij + F tji > 1. According
to (3a), F sij > 1 − F tji ≥ 0 shows that F sji = 0. Flow conservation at node
i thus implies 1 < F sij + F tji ≤

∑
k∈Vi\{j} F

s
ki + F tji ≤

∑
k∈Vi\{j} gki + gji,

contradicting Lemma 3. ut

Proposition 3 LP(F1) is at least as strong as LP(X1).

Proof Consider an optimal solution (F, g, π) to LP(F1) satisfying the condi-
tions of Lemma 4. We prove that there exist corresponding X ∈ [0, 1]A×D and
y ∈ [0, 1]E such that (X, y, π) is a feasible solution to LP(X1). Let

X0
ij = gij , (i, j) ∈ A, (5a)

Xs
ij = gij + F sji − F sij , (i, j) ∈ A, s ∈ D0, (5b)

yij = gij + gji, {i, j} ∈ E. (5c)

For distinct destinations i, s ∈ D0, Lemma 3 yields∑
j∈Vi

Xs
ji =

∑
j∈Vi

(
gji + F sij − F sji

)
=
∑
j∈Vi

gji = 1,

proving that (1a) is satisfied for i 6= s0 6= s. By applying (2f), we get for i =
s0 6= s, that

∑
j∈Vi

Xs
ji =

∑
j∈V0

(
gj0 + F s0j − F sj0

)
=
∑
j∈V0

F s0j = 1, where
the latter identity is obtained by summing all flow conservation constraints
(2b), in which variables are superscripted by destination s. Likewise, for i 6=
s0 = s, we get

∑
j∈Vi

Xs
ji =

∑
j∈Vi

gji = 1. Hence, X satisfies (1a).
Also for i ∈ V \D, we have

∑
j∈Vi

Xs
ji =

∑
j∈Vi

gji, and constraints (1b)
follow from (2c). Constraints (1d) follow directly from the choice of values of
X and y, and (1e) follows from (2d)–(2e). Further, yij ∈ [0, 1] holds according
to Lemma 5, and Xs

ij ∈ [0, 1] follows from the capacity constraints (2a).
It remains to prove (1c). First, flow conservation at node i is used to show

Xs
ij−

∑
k∈Vi\{j}

Xs
ki = gij+F

s
ji−F sij−

∑
k∈Vi\{j}

(gki + F sik − F ski) = gij−
∑

k∈Vi\{j}

gki.

It follows from condition (3b) in Lemma 4 that for some t ∈ D0,

Xs
ij −

∑
k∈Vi\{j}

Xs
ki = F tij −

∑
k∈Vi\{j}

gki ≤ F tij −
∑

k∈Vi\{j}

F tki.
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If F tij = 0, the right hand side of the inequality is obviously non-positive. To
prove the same when F tij > 0, observe that (3a) implies F tji = 0, which yields

F tij −
∑

k∈Vi\{j}

F tki = F tij −
∑
k∈Vi

F tki ≤
∑
k∈Vi

F tik −
∑
k∈Vi

F tki = 0.

Since the objective function values of (F, g, π) and (X, y, π) are identical
in their respective relaxations, the proof is complete. ut

Remark 5 Section 8.1 reports instances proving that LP(F1) is stronger than
LP(X1).

5.2 Comparing X2 and F2

For all (i, j) ∈ A where i, j ∈ V \D, let

σij(F, g) = min

{
gij − F ∗ij ,

∑
k∈Vi

(gik − gki)

}
.

That is, σij(F, g) is the smallest among slacks in constraints (2a) at arc (i, j)
and constraint (2k) at node i.

Lemma 6 In all SMT-instances, there exists an optimal solution (F, g, π) to
LP(F2) satisfying (3a),

min
{
gij − F ∗ij , gji − F ∗ji

}
= 0, {i, j} ∈ E, (6a)

gij = F ∗ij , (i, j) ∈ A : {i, j} ∩D 6= ∅, and (6b)

σij(F, g) = 0, (i, j) ∈ A : {i, j} ⊆ V \D. (6c)

Proof By following the initial step of the proof of Lemma 4, it is shown that
LP(F2) has an optimal solution (F, ḡ, π) satisfying (3a). For all (i, j) ∈ A, let
δij = min

{
ḡij − F ∗ij , ḡji − F ∗ji

}
, and let gij = ḡij − δij . Hence, (F, g) satisfies

(6a). By exploiting g ≤ ḡ, gij − gji = ḡij − ḡji, and feasibility of (F, ḡ, π), it is
seen straightforwardly that also (F, g, π) is feasible.

For j ∈ D0 (for j = s0), (6b) follows directly from (2e) (from (2f)). Consider
an i ∈ D and a j ∈ Vi \ D such that gij > F ∗ij . Reducing gij to F ∗ij , while
keeping all other variables unchanged, preserves feasibility and the objective
function value. Thus, (F, g) is henceforth assumed to satisfy (6b).

To prove that also (6c) can be satisfied, consider the slack-induced di-
graph H[F, g] = (V \ D,A[F, g]) of non-destination nodes, where A[F, g] ={

(i, j) ∈ A : i, j ∈ V \D,F ∗ij < gij
}

. Assume C = (i0, . . . , ic−1, ic) is a cycle of

length c in H (ic = i0), and let ε = min
{
gilil+1

− F ∗ilil+1
: l = 0, . . . , c− 1

}
>

0. Define g′ilil+1
= gilil+1

− ε (l = 0, . . . , c − 1), and g′ij = gij for arcs (i, j)

not in C. Because
∑
j∈Vi

g′ji −
∑
j∈Vi

g′ij =
∑
j∈Vi

gji −
∑
j∈Vi

gij , g
′ satisfies

(2k). Since g′ ≤ g, it follows that (F, g′, π) is feasible in LP(F2), with the
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same objective function value as (F, g, π). Then, A[F, g′] ⊂ A[F, g], and for
some l = 0, . . . , c − 1, (il, il+1) ∈ A[F, g] \ A[F, g′]. An induction argument
hence proves the existence of an optimal solution to LP(F2) for which the
corresponding slack-induced digraph is acyclic. It is henceforth assumed that
(F, g, π) is such a solution.

Assume arc (j0, j1) violates (6c). We show that the capacity can be reduced
to g̃ ≤ g such that

• (F, g̃, π) is feasible in LP(F2),
• σij(F, g̃) > 0 only for arcs (i, j) where σij(F, g) > 0, and
• either σj0j1(F, g̃) = 0 or A[F, g̃] ( A[F, g].

Finitely many reductions, and replacements of g by g̃, are then sufficient to
achieve σj0j1(F, g) = 0, which completes the proof.

Let (j1, . . . , jp) be a path with p ≥ 1 nodes in H[F, g], such that jp has
no out-neighbors in H[F, g]. Node jp exists since the digraph is acyclic. Define
the maximum capacity reduction as

σ∗ = min
{
σj0j1(F, g),min

{
gjl,jl+1

− F ∗jl,jl+1
: l = 1, . . . , p− 1

}}
> 0.

Let g̃jljl+1
= gjljl+1

− σ∗ for l = 0, 1, . . . , p − 1, and let g̃ij = gij for all other
arcs (i, j) ∈ A. Then, (F, g̃, π) is feasible since, in comparison to (F, g, π),
the left hand side of inequality (2k) is increased by no more than the current
slack at node i = j0, reduced at node i = jp, and unchanged at all other
nodes i ∈ V \D. For all arcs (i, j) between non-destination nodes, σij(F, g̃) ≤
σij(F, g), except from arcs for which i = jp. But since (jp, j) 6∈ A[F, g], we
have that σjpj(F, g̃) ≤ g̃jpj − F ∗jpj = gjpj − F ∗jpj = 0. It is finally observed

that σj0j1(F, g̃) = 0 if σ∗ = σj0j1(F, g), and that (jl, jl+1) ∈ A[F, g] \A[F, g̃] if
σ∗ = gjl,jl+1

− F ∗jl,jl+1
for some l = 1, . . . , p− 1. ut

Lemma 7 If (F, g, π) is a feasible solution to LP(F2) satisfying the conditions
in Lemma 6, then (4) is satisfied. Moreover,

gij ≤
∑

k∈Vi\{j}

gki (i, j) ∈ A. (7)

Proof To prove (7), we only consider arcs (i, j) where gij > 0, as the inequality
to be proved obviously holds otherwise.

Assume first that gij = F ∗ij . Then, there exists a destination node t ∈
D0 \ {i} such that F tij = gij . Because (3a) gives F tji = 0, flow conservation
(2b) at node i implies gij = F tij ≤

∑
k∈Vi\{j} F

t
ki ≤

∑
k∈Vi\{j} gki.

Assume next that gij > F ∗ij . Conditions (6a) and (6b) of Lemma 6 imply,
respectively, gji = F ∗ji and i, j ∈ V \ D. Because gij > F ∗ij , condition (6c) of
Lemma 6 gives 0 = σij(F, g) =

∑
k∈Vi

(gik − gki). Thus,

gij = gji +
∑

k∈Vi\{j}

(gki − gik) . (8)
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If gji = 0, (7) follows directly from (8). Otherwise, there exists a t ∈ D0 such
that gji = F tji and F tij = 0. Flow conservation at i then shows gji = F tji ≤∑
k∈Vi\{j} F

t
ik ≤

∑
k∈Vi\{j} gik. Adding this inequality to (8) proves (7).

To prove (4), assume gij + gji > 1 for some {i, j} ∈ E. By (7), this implies
1 < gij + gji ≤

∑
k∈Vi

gki, contradicting Lemma 3. ut

Proposition 4 LP(F2) is at least as strong as LP(X2).

Proof Consider an optimal solution (F, g, π) to LP(F2) satisfying the condi-
tions of Lemma 6. We prove that (X, y, π) as defined by (5a)–(5c) is a feasible
solution to LP(X2).

The proof that (X, y, π) satisfies constraints (1a)–(1b), (1d)–(1e), and (1h),
follows the proof of Prop. 3. To prove (1c), let i ∈ V \ D, j ∈ Vi, and
s ∈ D. Then, transformations (5a)–(5b) yield Xs

ij −
∑
k∈Vi\{j}X

s
ki = gij −∑

k∈Vi\{j} gki, and (1c) follows from (7) in Lemma 7. Because Lemma 7 also

states that gij + gji ≤ 1, we further have that Xs
ij ∈ [0, 1] and yij ∈ [0, 1].

Constraints (1j) hold because
∑
j∈Vi

(
Xs
ji −Xs

ij

)
=
∑
j∈Vi

(gji − gij) ≤ 0
according to constraints (2k). Finally, (2l) implies

∑
j∈Vi

Xs
ji−
∑
j∈Vi\{s} π

s
ij =∑

j∈Vi
gji −

∑
j∈Vi\{s} π

s
ij = 0, which proves that (X,π) satisfies (1l). ut

Remark 6 Section 8.1 reports instances proving that LP(F2) is stronger than
LP(X2).

6 Stronger Formulations

Aiming for stronger LP bounds than those provided by the relaxations of the
models introduced in Section 4, this section is devoted to extensions of X2 and
F2. Variables with four node indices are added to both models. Constraints
connecting new and original variables then contribute to the improved bounds.

6.1 Extension of X2 by destination-to-destination variables [X3]

Let A(D) = A ∩ (D × D) be the set of ordered pairs of distinct destination
nodes. For a tree T solving Problem 1, define the variables x ∈ {0, 1}A×A(D),
where xstij = 1 iff (i, j) ∈ A is an arc on the path from s to t in arborescence
T s. Model X2 is strengthened by constraints on x, which yields model X3:
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min
∑

(i,j)∈A

pij
∑
s∈D

πsij ,

s.t.

(1a)− (1f) and (1h)− (1l),∑
j∈Vi

xstij −
∑
j∈Vi

xstji = 0, (s, t) ∈ A(D), i ∈ V \ {s, t}, (6d)

∑
j∈Vt

xstjt = 1, (s, t) ∈ A(D), (6e)

xstij ≤ Xs
ij , (i, j) ∈ A, (s, t) ∈ A(D), (6f)

xstij = xtsji, (i, j) ∈ A, (s, t) ∈ A(D), (6g)∑
k∈Wij

xstik ≤
∑
k∈Wij

πsik, (i, j) ∈ A, (s, t) ∈ A(D), (6h)

x ∈ {0, 1}A×A(D). (6i)

Variable xstij is also interpreted as the flow of commodity (s, t) along arc
(i, j). Correspondingly, (6d)–(6e) can be viewed as flow conservation con-
straints, stating that there exists a path from s to t in T s. Next, constraints
(6f) express the obvious relation between X and x, that (i, j) is an arc on the
path from s to t only if it exists in T s. The flow symmetry equations (6g)
state that the path from s to t contains (i, j) iff the reverse path contains the
reverse arc (j, i). Finally, constraints (6h) reflect the fact that if the path from
s to t intersects (i, j), then the most expensive arc leaving i in T s has cost pij
or more.

6.2 Extension of F2 by variables of joint flow [F3]

Similarly to the extension X3 of X2 by x-variables, the model F2 is extended by
variables with four node indices. Analogously to A(D), let E(D0) = E∩ (D0×
D0) be the set of unordered pairs of destination nodes other than s0. Define
variables f ∈ {0, 1}A×E(D0), where fstij = f tsji takes the value 1 iff the path in T 0

from s0 to s intersects the path from s0 to t at arc (i, j). Variables fstij can also
be regarded as the joint flow from s0 to s and t (Polzin and Daneshmand 2001).
In the cited work, they are successfully used to strengthen formulations for the
Minimum Steiner Tree problem. The new variables enable formulation of
an extended model denoted F3:



20 Marika Ivanova, Dag Haugland

min
∑

(i,j)∈A

pij
∑
s∈D

πsij ,

s.t.

(2b)− (2l) and (1k),∑
j∈Vi

(
fstij − fstji

)
≤

{
1, i = s0,

0, i ∈ V0,
{s, t} ∈ E(D0), (6j)

fstij ≤ F sij , (i, j) ∈ A, {s, t} ∈ E(D0), (6k)

fstij ≤ F tij , (i, j) ∈ A, {s, t} ∈ E(D0), (6l)

F sij + F tij − fstij ≤ gij , (i, j) ∈ A, {s, t} ∈ E(D0), (6m)∑
k∈Wij

(
F tik + F ski − fstik − fstki

)
≤
∑
k∈Wij

πsik, (i, j) ∈ A, {s, t} ∈ E(D0), (6n)

∑
k∈Wij

F tik ≤
∑
k∈Wij

π0
ik, (i, j) ∈ A, t ∈ D0, (6o)

f ∈ {0, 1}A×E(D0). (6p)

By (6j), it is ensured that the joint flow is non-increasing by increasing
distance from the root s0. While constraints (6k)–(6l) ensure fstij = 0 if F sij = 0
or F tij = 0, inequalities (6m) impose fstij = 1 if F sij = F tij = 1. By virtue of
(6l), constraints (6m) replace the weaker capacity constraints (2a). Finally,
(6n)–(6o) are valid inequalities justified by:

Proposition 5 Assume (F, f, g, π) satisfies (2b)–(2l), (1k), (6j)–(6m), and
(6p). Let T 0 ⊆ Gg be the corresponding arborescence spanning D (see Lemma
2), and let T s be the arborescence obtained by redirecting the arcs in T 0 such
that they point away from s ∈ D. Then, for all nodes i and j (i 6= j) spanned
by T 0,

F tij +F sji− fstij − fstji =

{
1, if (i, j) is an arc on the path from s to t in T s,

0, otherwise.

Proof Because gij + gji ≤ 1, we have F tij +F sji ≤ 1. Constraints (6k)–(6l) thus
yield fstij +fstji ≤ 1, and F tij +F sji−fstij −fstji ∈ {0, 1} follows. Inequalities (6m)
in combination with (6k)–(6l) also imply fstij = F tijF

s
ji.

The path from s to t in T s contains (i, j) iff F tij = 1 − F sij = 1 or F sji =
1−F tji = 1, which holds iff F tij(1−F sij)+F sji(1−F tji) = F tij−fstij +F sji−fstji = 1.

ut

Constraints (6n) reflect the observation that if (i, j) is on the path from s
to t in T s, then the cost of the most expensive arc leaving i in T s is at least
pij . Validity of (6o) is explained analogously, as F tij = 1 iff (i, j) is on the path

from s0 to t in T 0.
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6.3 Constraint Generation Scheme

Owing to the large number of constraints in the stronger models, LP(X3)
and LP(F3) are impractical for computing lower bounds, even in fairly small
instances. To enable computation of strong lower bounds, we first solve a
reduced version of the LP, where some of the constraints are omitted. Some of
the relaxed constraints that are violated in the solution are next added, and
the process is repeated until no violations exist. This approach is known as a
constraint generation (CG) scheme.

6.3.1 Implementation

Preliminary computational experiments indicate that solving LP(Fk) (k =
1, 2) in order to compute a stronger bound than the one output from LP(Xk)
is also more time-consuming. The disproportion in running time is even more
considerable in a comparison between LP(F3) and LP(X3) (see Section 8.2).
For these practical reasons, we apply the CG idea to LP(X3).

Consider an optimal solution (X, y, π) to LP(X2), and let X and π be fixed.

Whether there exists an x ∈ [0, 1]
A×A(D)

satisfying (6d)-(6f) can be checked
by solving a maximum flow problem for each (s, t) ∈ A(D). The constraints
state that it should be feasible to send one unit of flow from source s ∈ D
to destination t ∈ Ds, such that the flow on arc (i, j) is no more than Xs

ij .
Further, the symmetry constraints (6g) implicitly impose the upper bound
Xt
ji on the same flow. Finally, the side constraints (6h) impose upper bounds

on the total flow on subsets of arcs leaving a given node. By applying the
symmetry xstij = xtsji also to (6h), the extended maximum flow model, denoted
MF , is completed as (the x-variables do not have the superscripts s and t as
{s, t} is fixed within each model instance):

max
∑
i∈Vs

xsi, (9a)

s.t.∑
j∈Vi

(xij − xji) = 0, i ∈ V \ {s, t}, (9b)

xij ≤ min{Xs
ij , X

t
ji}, (i, j) ∈ A, (9c)∑

k∈Wij

xik ≤
∑
k∈Wij

πsik, (i, j) ∈ A, (9d)

∑
k∈Wij

xki ≤
∑
k∈Wij

πtik, (i, j) ∈ A, (9e)

x ∈ [0, 1]
A
. (9f)
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For Q ⊆ E(D) = {{s, t} ∈ E : s, t ∈ D}, let X2 +Q denote the extension of
X2 by constraints (6d)–(6h) for all {s, t} ∈ Q. In the CG procedure described
in Algorithm 1, we first solve LP(X2) to obtain solution vectors X and π. For
each {s, t} ∈ E(D), we then check whether the relaxed constraints (6d)–(6h)
can be satisfied, given the values of X and π. This question is answered by
solving MF since the objective function in MF takes optimal value 1 iff the
constraints are satisfiable. In each iteration, relaxed constraints corresponding
to a selection of pairs {s, t} for which the maximum flow is below 1, are added
to the original model. How to make this selection is discussed next.

Q← ∅
do

(X, y, π)← optimal solution to LP(X2 +Q)
for {s, t} ∈ E(D) \Q do

vst ← optimal objective function value in MF
end
Q′ ← {{s, t} ∈ E(D) \Q : vst < 1}
Select some ∆Q ⊆ Q′ such that ∆Q 6= ∅ if Q′ 6= ∅
Q← Q ∪∆Q

while ∆Q 6= ∅;
Algorithm 1: Constraint generation

6.3.2 Constraint selection

Preliminary experiments have demonstrated that in many instances, the opti-
mal values of X and π in LP(X2) are too restrictive to allow for unit maximum
flow. For most {s, t} ∈ E(D), the objective function of MF takes a value be-
low 1 in optimum. Adding the constraints corresponding to all {s, t} for which
this occurs thus involves computations almost as extensive as solving LP(X3)
directly.

Selection of pairs {s, t} to be included in ∆Q in Algorithm 1 is based on
the following intuitive considerations:

Adjacency matters: Extending Q by {s, t} is more likely to imply vuw = 1
in the following iteration if {s, t} ∩ {u,w} 6= ∅ ({u,w} ∈ E(D) \Q).

Extent of violation matters: The growth of z (LP(X2 +Q)) increases by
decreasing value of vst.

Balancing the needs for rapid growth in z (LP(X2 +Q)) and small value
of |Q|, we pursue the CG scheme as follows: In the graph (D,Q′), where
Q′ = {{s, t} ∈ E(D) : vst < 1}, let the edge weights be 1 − vst. Let ∆Q be
a matching of maximum weight in (D,Q′). Thus, for each {u,w} ∈ E(D) \Q
where constraints (6d)–(6h) are not satisfiable given the current values of X
and π, Q is extended by an adjacent edge.
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7 Computing near-optimal solutions

Instances of size that prohibits computation of the optimal solution should be
approached by some fast, but possibly inexact method. Imposing a time bound
on an IP-solver, and applying it to any of the models introduced in Section
4, readily gives such a method. Alternatively, a heuristic method dedicated to
SMT can be developed.

To the best of our knowledge, the scientific literature offers few heuristic
methods for SMT besides those studied by Ivanova (2016). However, recent
progress by Pajor et al. (2018) on heuristic methods for the related minimum
Steiner tree problem can smoothly be exploited in order to generate analo-
gous methods for SMT. The main algorithmic components in the most basic
heuristic are a construction algorithm, a local improvement algorithm, and an
algorithm for merging two Steiner trees.

A set T =
(
T1, . . . , T|T |

)
of at most γ distinct Steiner trees, ordered by non-

decreasing costs, is maintained throughout the heuristic (Pajor et al. 2018).
Construction and local improvement are applied in order to generate a new
tree T of presumably low cost. Diversity in T is achieved by perturbing the
edge costs randomly before construction and local improvement are applied.
If |T | < γ, T is included in T . If |T | = γ, and the cost of T is below the cost of
Tγ , Tγ is replaced by T in T . Another Steiner tree, T̃ , is generated by merging

T with a randomly chosen Tr ∈ T (r = 1, . . . , γ), and T̃ replaces Tγ in T if its
cost is smaller.

while the time assigned to the heuristic is not expired do
for {i, j} ∈ E do p̂ij ← random number uniformly distributed on

[
1
2
pij ,

3
2
pij

]
T ← SMTHeur(G,D, p̂)
if |T | < γ then T ← T ∪ {T}
else

if c(T ) < c(Tγ) then T ← T \ {Tγ}, T ← T ∪ {T}
r ← random number uniformly distributed on {1, . . . , γ}
for {i, j} ∈ ET ∩ ETr do p̃ij ← pij
for {i, j} ∈ (ET ∪ ETr ) \ (ET ∩ ETr ) do

ν ← random number uniformly distributed on {100, . . . , 500}
p̃ij ← νpij

end
for {i, j} ∈ E \ ET \ ETr do p̃ij ← 1000pij
T̃ ← SMTHeur(G,D, p̃)
if c(T̃ ) < c(Tγ) then T ← T \ {Tγ}, T ← T ∪ {T̃}

end

end
return T1

Algorithm 2: Outline of the heuristic method

Taking advantage of the recently published construction and local improve-
ment algorithms for SMT (Ivanova 2016), Alg. 2 shows how the method by Pa-
jor et al. (2018) is adapted to our problem. The procedure SMTHeur(G,D, p)
produces a multicast tree T by first applying the construction algorithm to the
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input (G,D, p), and next applying local improvement to the constructed tree.
Following Pajor et al. (2018), the perturbed cost p̂ij of edge {i, j} is put equal
to a random number with expected value pij . Further, in the merge process,
adjusted weights p̃ij are determined in order to promote edges that appear in
both T and the randomly selected tree Tr ∈ T . Costs of edges appearing in
exactly one of the trees are thus magnified. For the purpose of diversification,
the factor by which the cost is multiplied is chosen randomly. To discourage
the appearance of edges outside both T and Tr in the merge T̃ , their cost is
magnified by a factor dominating the factors drawn for edges that occur in
one of the trees.

A few minor simplification over the approach taken by Pajor et al. (2018)
are made in Alg. 2: Rather than selecting the tree to leave T randomly, we
consistently remove Tγ when a new tree is added. Also, for each new tree T
constructed, Alg. 2 makes only one attempt to merge it with some Tr ∈ T .
This contrasts the method in the cited work, where T̃ is chosen as the best
tree found in a sequence of merges.

8 Experimental Evaluation

The practical part of this work focuses on comparison of models presented
in Sections 4 and 6. Instances of given number of nodes and destinations are
generated with random coordinates uniformly distributed on the square with
corners at [0, 0] and [100, 100]. All edge costs equal the square of the distance
between the end nodes. A time limit of 20 CPU-minutes is imposed on each
run, unless otherwise is stated. All experiments are run on an Intel Core 2
Quad CPU at 2.83 GHz and 8 GB RAM. The models are implemented in
Java with Concert technology and solved using the optimizer Cplex 12.5.1

8.1 Comparing the computational burden and the lower bound of the LP
relaxations

The first experiments give an overview of the LP relaxations of the models
with respect to their strength and computational time. Table 1 summarizes
optimal objective function values of all LP relaxations. Each table entry is the
value of z(LP(M))/z∗ for the modelM corresponding to the column, averaged
over 25 instances of the size corresponding to the row. Here, z∗ denotes the
minimum power. Entries labeled by an asterisk correspond to runs that, in
at least one of the 25 instances, are interrupted because the time bound is
reached. The dual simplex method is used to solve the LPs, such that a lower
bound on z(LP(M)) is available upon interruption. The rows are clustered by
the ratio |V |/|D|.

Confirming Props. 3 and 4, model LP(Fk), (k = 1, 2) yields a consistently
tighter lower bound than does LP(Xk). The difference is more prominent for
k = 1, where the bound obtained by LP(F1) is 13% tighter in average, while
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LP(F2) gives a 5% tighter bound in average. A comparison between LP(X3)
and LP(F3) shows that z (LP(X3)) = z (LP(F3)) in all instances that are
solved to LP-optimality within the time limit by both models. With LP(F3),
LP-optimality is achieved in all instances. In the instances in question, the
bounds provided by the stronger models are significantly tighter than those of
LP(F2), and close to or equal to the integer optimum.

|V | |D| LP(X1) LP(F1) LP(X2) LP(F2) LP(X3) LP(F3)

12 8 78.37 82.69 85.40 86.95 99.92 99.92∗

15 10 78.19 82.35 85.04 86.89 99.88 99.88∗

18 12 74.05 79.78 80.65 83.47 94.39 55.27∗

14 7 74.83 80.65 83.13 84.86 99.92 99.92∗

16 8 72.25 80.39 82.20 85.97 99.78 99.78∗

18 9 65.68 77.17 74.48 79.84 99.70 74.17∗

15 5 65.99 78.08 80.87 86.11 100.00 100.00∗

18 6 66.08 77.13 79.71 84.23 99.94 99.94∗

21 7 62.26 76.05 75.89 83.33 99.96 99.27∗

Table 1: Average LP bounds as percentages of integer optimum

Average running times are reported in Tab. 2. The 20 CPU-minutes time
restriction manifests itself when applying the strongest LP relaxations to some
instances. Solving LP(Fk), (k = 1, 2, 3) is consistently more time-consuming
than solving LP(Xk), which demonstrates a trade-off between strength and
running time. Moreover, the running times of LP(X3) and LP(F3) are, in
instances of the actual size, considerably longer than the time it takes to solve
F1 to optimality (see the last column) using branch-and-bound (B&B). This
implies that both LP(X3) and LP(F3) are impractical in their basic form.
Bounds corresponding to the other models are computed in a few seconds.

8.2 Computing optimal solutions

Small instances are often solved to optimality relatively quickly with B&B.
We investigate the maximum size of instances that can be solved to optimality
within 20 CPU-minutes using models X1 and F1. The experiments compare
sets of instances with different values of |V |/|D|. For instances of the size
given in columns 1–2, Tab. 3 shows the average running time in CPU-seconds
(columns 3–4), the number of instances solved to optimality (columns 5–6),
and the average ratio between the upper and lower bounds on the minimum
cost (columns 7–8) upon interruption of the solver. Each table value is obtained
after solving 25 instances of given size.

Unlike the observations made for the LP relaxations, the running time
needed to solve F1 by B&B is shorter than the time needed to solve X1. This
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|V | |D| LP(X1) LP(F1) LP(X2) LP(F2) LP(X3) LP(F3) F1

12 8 0 0 0 0 8 26∗ 2

15 10 1 1 1 1 146 566∗ 16

18 12 3 4 3 5 1161 1171∗ 115

14 7 0 0 0 0 5 46∗ 5

16 8 1 1 1 1 72 304∗ 18

18 9 1 2 2 2 326 1140∗ 65

15 5 0 0 0 0 1 8∗ 3

18 6 0 0 0 0 9 109∗ 12

21 7 1 2 2 3 107 884∗ 67

Table 2: Comparison of average running time in CPU-seconds

is observed for all instance sizes. As a consequence, the number of instances
solved to optimality within the given time limit is smaller for X1 than for F1.
By submitting F1 to the optimizer, optimum is found in all instances with
no more than 20 nodes, and in those where |V | = 21 and |D| = 7. When
the weaker model X1 is used, more time is needed in some of these instances.
Furthermore, in instances that are not solved to optimality, F1 leaves a tighter
optimality gap than does X1. Note that the lower the value of |V |/|D|, the
more difficult are the instances to solve. This applies to both F1 and X1.

average time [s] # solved

average

remaining gap[%]

|V | |D| X1 F1 X1 F1 X1 F1

18 12 139 84 24 25 0.52 0.00

21 14 1006 789 10 18 9.64 5.08

24 16 1161 1137 3 4 21.04 20.52

20 10 387 190 21 25 3.00 0.00

22 11 880 637 14 22 7.16 0.64

24 12 1169 997 3 10 16.44 10.44

21 7 282 113 21 25 2.56 0.00

24 8 650 442 16 21 8.64 2.72

27 9 1146 1013 4 8 22.80 14.64

Table 3: Results obtained from B&B applied to X1 and F1

8.3 Comparison with alternative methods

We now investigate the ability of IP models X1 and F1 to produce good feasible
solutions when a time limit is imposed. We compare the quality of obtained
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5 min 10 min 20 min

|V | |D| X1 F1 Alg. 2 X1 F1 Alg. 2 X1 F1 Alg. 2

18 12 100.1 100.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0

21 14 107.9 108.8 100.0 102.7 103.2 100.0 101.2 100.7 100.0

24 16 153.4 115.6 100.0 126.2 114.2 100.0 104.3 112.7 100.0

20 10 100.6 100.1 100.0 100.1 100.0 100.0 100.1 100.0 100.0

22 11 102.8 103.9 100.0 101.3 100.7 100.1 100.7 100.2 100.1

24 12 108.2 113.4 100.0 105.0 105.5 100.0 103.1 106.2 100.0

21 7 100.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

24 8 102.8 101.9 100.0 102.1 100.7 100.0 101.1 100.1 100.0

27 9 133.2 118.7 100.0 111.3 109.1 100.0 108.2 104.1 100.0

Table 4: Comparison between the metaheuristic algorithm (Alg. 2) and inter-
rupted B&B applied to IP models X1 and F1

solutions with those calculated by Alg. 2. The results for time restrictions 5, 10
and 20 CPU-minutes, respectively, are reported in Tab. 4. These experiments
are carried out on the instance sets that are investigated in the experiments
reported in Section 8.2.

For a given instance, we define the relative performance of a method as
the objective function value obtained by the method relative to the best per-
forming method in that instance. For each time bound imposed, and for each
instance set, we report the relative performances of X1, F1, and Alg. 2, aver-
aged over all instances in the set. For example, if all methods find an optimal
solution in every instance, the three corresponding values are all 100.0%. Thus,
the lowest value in a given instance set indicates the best performing method.

Table 4 reveals that Alg. 2 gives the best average results for all combina-
tions of time limit and instance set. Column 6 of Tab. 3 shows that, when
B&B is applied to F1, the optimal solution is computed in 20 minutes in all
instances where |V | = 18 and |D| = 12, |V | = 20 and |D| = 10, or |V | = 21
and |D| = 7. The last column of Tab. 4 shows that Alg. 2 produces no worse
solutions, demonstrating that the heuristic is able to identify an optimal solu-
tion in all these instances. Although Alg. 2 fails to prove optimality in general,
it appears to be a better procedure than B&B for computing near-optimal so-
lutions within a given time bound.

8.4 Experiments on strong lower bounds

As the instance size increases, exact solution of the SMT problem becomes
unrealistic. To assess the quality of fast and possible inexact methods, such
as Alg. 2, or the construction methods by Ivanova (2016), access to tightest
possible lower bounds is crucial. In the next set of experiments, we compare
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two different methods for computing the bounds. Section 8.1 indicates that
z (LP(X3)) is a strong bound, but solving LP(X3) requires excessive computa-
tions. At this point, the CG scheme (Alg. 1) comes into play. Because LP(F1) is
solved quickly, lower bounds can alternatively be computed by applying B&B
to F1 for a restricted amount of time. While the initial bound z (LP(F1))
might be weak, fast solution of LP(F1) enables rapid growth in the B&B-tree,
and, possibly, also in the corresponding lower bound.

We compare the progress of the lower bounds obtained by the CG method
with the one obtained by B&B applied to F1 as a function of running time.
Instances with |V | = 2|D| ∈ {24, 26, . . . , 34} are investigated, with 5 instances
for each value of |V |. The results are illustrated in Fig. 3. Each curve represents
the progress of the lower bound within each instance set. The horizontal axes
represent running times ranging from 0 to 20 CPU-minutes. The vertical axes
correspond to the lower bounds as a percentage of z (LP(F1)), averaged over
all instances in the set. The tightness of the bounds increases with time, and it
can be observed from the graphs that the CG bound becomes tighter at some
point. We express the lower bounds relative to z (LP(F1)), as indicated by the
vertical axes. The lower bound obtained from B&B grows sharply while the
dual simplex method is solving the root problem of the B&B tree, which goes
on until the curve reaches 100%. After that point, the bound grows rather
slowly. In contrast, CG produces a bound that grows faster, even after it has
reached the value z (LP(X1)).

Reflecting the progress of the dual simplex method applied to LP(X2) and
LP(F1), respectively, both CG and B&B increase the lower bound sharply at
the beginning. While solution of LP(F1) is still in progress, the growth of the
lower bound is faster than what is observed for CG (solution of LP(F1)). This
is particularly apparent for instances of size 28 and beyond (Figs. 3c–3f). Once
LP(F1) is solved, the increase slows down substantially, and remains modest
until the time limit is reached. An analogous, but more moderate, gradual slow-
down is also observed for CG. In each instance set, the two curves intersect at
some point in time. From this moment on, CG provides a tighter lower bound.
Experiments reported in Fig. 3 thus indicate that CG is the more suitable
method for obtaining tight lower bounds within a given time.

9 Conclusion and Future Work

We have presented and analyzed two approaches of modelling the SMT prob-
lem as an integer linear program. The first formulation, X1, is based on a
formulation of the broadcast version of the problem, while the second one,
F1, is an extension of a network flow formulation of the minimum Steiner
tree problem. Both formulations are improved by valid inequalities resulting
in models X2 and F2, respectively. Further strengthening is achieved by intro-
ducing variables of higher dimension and associated constraints, which leads
to models X3 and F3. A theoretical analysis of the formulations shows that
F1 and F2 are at least as strong as X1 and X2, respectively. It is conjectured
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(a) |V | = 24, |D| = 12
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(b) |V | = 26, |D| = 13
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(c) |V | = 28, |D| = 14
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(d) |V | = 30, |D| = 15
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(e) |V | = 32, |D| = 16
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(f) |V | = 34, |D| = 17

Fig. 3: Comparison of lower bounds obtained by CG and B&B on model F1.
Each figure depicts the progress of lower bounds for instances with varying
number of destination and non-destination nodes. The lower bounds are ob-
tained by applying the CG scheme to model F1 (black curves), and by running
the B&B algorithm (grey curves), respectively.

that an analogous relation holds between F3 and X3. Experimental evaluation
reveals that instances with up to approximately 20 nodes are practically solv-
able to optimality. Subsequent investigation suggests that the LP relaxations
of F3 and X3 are fairly strong, but the running time prohibits direct solution.
Nevertheless, experiments also show that a constraint generation procedure
applied to X3, developed in the current work, provides tight lower bounds.
The procedure also demonstrates that when the number of nodes is no more
than 30, many instances of the LP relaxation of X3 have an integer optimum.
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Follow-up research should uncover whether the conjecture on the relation
between the LP relaxations of F3 and X3 holds. A search for facet-defining
valid inequalities, or even convex hull formulations, is an interesting and ambi-
tious direction of future work. Owing to the limited size of solvable instances,
there is a potential in studying inexact methods, such as approximation algo-
rithms and problem specific heuristics. In particular, experiments on a simple
metaheuristic documented in the current work, suggest that fast and inexact
methods have a potential to compute solutions close to optimality in large
instances. Instance preprocessing combined with variable fixing can possibly
increase the size of instances solvable to optimality with the current models.
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