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Summary  

Glioblastoma (GBM) is the most common and most malignant primary brain tumor. 

The highly invasive nature of GBM limits the outcome of standard therapy. The 

resistance to conventional therapy, including safe surgical resection, followed by 

radiotherapy (RT) and chemotherapy, leads to a poor median survival of 14.6 months 

after diagnosis. The highly immunosuppressive microenvironment and tumor 

heterogeneity make it difficult to treat GBM. Thus, new and more innovative 

treatment strategies are urgently needed to improve the poor prognosis of GBM 

patients. In this regard, several molecular targeted therapies have been developed and 

tested over the last two decades. Gene therapy is one of the new promising strategies 

that may improve patient outcome.  

Herpes simplex virus thymidine kinase gene (HSV-TK)/Ganciclovir (GCV) suicide 

gene therapy (SGT) converts a nontoxic prodrug into a cytotoxic drug that kills 

dividing tumor cells. It has been shown in earlier studies that the metabolized 

cytotoxic drug spreads to neighboring cells through gap junctions to execute the so-

called bystander effect (BE). This phenomenon is highly important for SGT as the 

transduction of 100% tumor cells in a given tumor is impossible, even with highly 

efficient viral vectors. While gap junction-mediated BE is highly characterized in the 

HSV-TK/GCV system, it is not clear if soluble factors such as apoptotic bodies 

(ApoBDs), microvesicles (MVs) and exosomes (exo) play any role in this process. 

In this project we investigated the potential involvement of these soluble cellular 

factors in the process of HSV-TK/GCV-mediated BE. We hypothesized that GCV 

treatment of tumor cells would increase the secretion of extracellular vesicles (EVs) 

and thus contribute to an increased BE. Two alternative mechanisms could contribute 

to this BE, either by loading of EVs with the HSV-TK.GFP protein or with GCV. 

Here, we focused on investigating the presence of the protein in EVs.  

In this present study, we used the human U87 glioma cell line to investigate the 

increase of EV-secretion following HSV-TK/GCV gene therapy, which could in 

theory contribute to BE. Our study showed successful secretion and harvest of EVs in 

this model system. We were also able to show EV secretion in the patient-derived 

glioblastoma P3 cell line cultured in serum-free neurobasal medium, which is more 

relevant to the clinical scenario. Most importantly, we showed for the first time the 
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presence of the TK.GFP protein in ApoBDs, MVs and exosomes derived from TK-

containing cells.  

In conclusion, our study highlights that the TK protein can be loaded in EVs secreted 

from TK-expressing cells. Thus, the transfer of the TK protein through EVs  might be 

an important contributor to the BE in SGT. In the future it will be important to 

investigate if also TK mRNA is transferred through EVs and then translated into 

active protein in the recipient cells and/or if transfer of phosphorylated GCV can 

contribute to EV-mediated BE.  
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1. Introduction 
 

1.1 Cancer 

 

Cancer is referred to a group of diseases characterized by uncontrolled cell growth 

and proliferation [1].  In a seminal paper Hanahan and Weinberg proposed six key 

hallmarks of cancer namely: Evading growth supressors, activating invasion and 

metastasis, enabling replicative immortality, inducing angiogensis, resisting cell 

detah and sustaining prolifertaive signaling [2]. Self-sufficiency of growth signals 

and insensitivity to anti-growth signals leads to unregulated growth and 

accumulation of mutations. These acquired and inherited unfavorable 

abnormalities result in tumor formation. Metastasis, the process that refers to 

colonization of tumor cells  from the tissue of origin to a distant tissue, is the 

primary cause of cancer morbidity and mortality [3]. Although most tumors 

harbor genetic abnormalities in some common set of signalling pathways, 

tumorigenesis is very complex, and the underlying cellular and molecular 

pathways may vary within different cancer types [3]. Extensive research over the 

last decade has identified more biological processes associated with 

carcinogenesis. In line, Hanahan and Weinberg lately introduced two more 

enabling hallmarks; tumor promoting inflammation and genome instability [2].  

 

1.2 Brain cancer 

 

Tumors are classified into two main groups: benign or malignant tumors [4]. 

Neoplastic growth of cells in the brain or central nervous system (CNS) leads to 

tumor formation. When the origin of neoplastic growth is located inside the brain, 

the corresponding tumors are called primary brain tumors. When malignant 

tumors originate in other body parts and metastasize to the brain, the tumors are 

called secondary brain tumors. Most common sites of origin of secondary brain 

tumors are skin, colon, lungs or breast [5]. As the present work is based on 

primary brain tumors, this tumor class will be described in more detail. The most 

common form of primary brain tumors are collectively known as gliomas.  This 

assembly of tumors is based on the hypothesized cellular root of the individual 

entities- the glial cell [6]. The term glioma was coined by Dr. Rudolph Virchow in 

1860 [7] , who also discovered and named the glial cells (glue in Greek) in 1854.  
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Figure 1.1. Pie chart showing the distribution of different gliomas by histological 

subtypes in the USA. Astrocytoma including Glioblastoma acount for ~ 75% of all gliomas. 

This distribution is from 2008-2012, n= 97.910. Figure is adopted from [8] 

 

Astrocytomas, account for 75% of all “nondiffuse” gliomas, and they are the most 

frequent and malignant representative. These subgroups are assigned with malignancy 

grade (WHO grade I, II, III or IV) based on the appearance/nonappearance of mitotic 

activity, microvascular proliferation and necrosis[9]                                                   

 

Classification of Astrocytoma  

- Grade I astrocytoma (Pilocytic astrocytoma): Benign and non-infiltrating 

tumor. It is characterized by slow growth rate without any nuclear atypia [10]. 

- Grade II astrocytoma (Low-grade/diffuse astrocytoma): Shows no sign of 

malignancy and express moderate nuclear atypia [11].  

- Grade III astrocytoma (Anaplastic astrocytoma): Characterized by nuclear 

atypia, lacking necrosis and increased cellularity [12].  

- Grade IV astrocytoma (Glioblastoma): The most malignant astrocytoma with 

presence of microvascular proliferation and necrosis.  

Grade I astrocytoma (low-grade) is most seen in children and young adults. The tumors 

are less clinically aggressive and often removed by surgery alone. Grade II-IV poses a 

difficulty for treatment and normally requires combination therapy that involves 

surgical resection of the tumor followed by temozolomide (TMZ) chemotherapy and 

radiotherapy [13].  
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1.3 Glioblastoma (GBM)  

 

GBM is the most common type of glioma. GBM patients have a median survival 

time of about 15 months after diagnosis making it one of the most aggressive 

cancers in humans [13]. The incididence rate of GBM is 2-3 new cases per 

100 000 people among adults in Europe and North America and it is slightly 

higher in men compared to women (1.26:1) [14]. GBM cases in children and 

infants are less frequent and although no morphological differences are observed 

compared to adult GBMs, pediatric GBMs have a completely different mutational 

profile [14]. Although GBM is sporadic, underlying rare genetic disorders such as 

Turcot syndrome, multiple endocrine neoplasia type IIA, tuberous sclerosis, 

neurofibromatosis type-1 (NF1) and Li Fraumeni syndrome (LFS) are associated 

with GBM incidents [14, 15]. Some epidemiology studies also support the link 

between traumatic brain injury and subsequent GBM formation [16, 17]. Higher 

incidence of GBM in Caucasians and especially people living close to industrial 

areas have also been reported [18]. Certain viruses, such as human 

cytomegalovirus (HCMV) have also been reported to have an impact on GBM 

development [14]. Pesticides, polycyclic aromatic compounds and other solvents 

that are considered as dangerous chemicals can increase the likelihood for 

developing GBM, as well as ionizing radiation [14, 18]. Genetically and 

phenotypically GBM consist of heterogenous group of tumors which are 

histologically indistinguishable. Although no morphological differences have been 

observed, GBM is divided into two subgroups due to different genetic 

mechanisms and pathways of tumorigenesis: primary GBM and secondary GBM 

[19]. Primary GBM develop rapidly de novo in elderly people without any signs 

of a lower grade precursor lesion and it accounts for ~90% of all GBMs. In 

contrast, secondary GBM have a delayed development through progression from 

low-grade astrocytoma or anaplastic astrocytoma. Secondary GBM has a higher 

incidence in younger patients, but it accounts for the minority of total GBM cases 

[20].  
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Figure 1.2 Primary and Secondary GBMs. Primary GBM develop rapidly de novo and 

accounts for ~ 90% of all gliomas. Secondary GBM have a delayed development through 

progression from low-grade astrocytoma and accounts for the minority of all GBM cases. 

Figure is adapted from [20].  

 

Primary GBM is characterized by gain of chromosome 7 and by 

amplification/overexpression and mutations of Epidermal Growth Factor Receptor 

(EGFR). Deletion of tumor suppressor phosphatase and tension homolog on 

chromosome 10 (PTEN) and 16q [19, 20] are also frequently observed. PTEN 

functions as a cellular phosphatase and in case of inactivating mutation results in a 

constitutively activated Phosphatidylinositol 3.4.5 biphosphate kinase (PI3K/Akt) 

pathway. Isocitrate Dehydrogenase I (IDHI) is an enzyme that has an important role 

in energy metabolism and mutation in this component is related to the occurrence of 

glioma [21]. Although, IDH1 mutations are rarely seen in primary GBM (<5%), they 

are represented in a much higher degree in secondary GBM (>80%) and also low 

grade gliomas [22]. Loss of heterozygosity (LOH) on chromosome arm 10q is the 

most frequent genetic alteration seen in both primary and secondary GBMs.  

Based on gene expression and mRNA profiling GBM is subclassified into proneural 

(PN), mesenchymal (MES) and classical GBMs, each with different pattern of disease 

and survival outcomes [23] . The PN subtype is associated with IDH1 mutations, 

Platelet-Derived Growth factor receptor (PDGFR) amplification/mutation and Tumor 

protein 53 (TP53) [24], while EGFR amplification is characteristic for the classical 
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subtype. The mesenchymal subtype often harbours NF1 mutations and shows strong 

activation of the Nuclear factor-κB (NF- κB) pathway [23]. NF- κB consists of a 

family of transcription factors that is highly involved in inflammation, survival, 

differentiation, immunity and cell proliferation [25]. Thus, it is not surprising that 

mesenchymal GBM consist of an inflammatory tumor microenvironment which is 

dominated by immunosuppressive macrophages/microglia. The mesenchymal subtype 

is also associated with the poorest prognosis and the worst patient outcome [23].  

 

1.4 Histopathological features of GBM  

 

As the name “multiforme” suggest, the histopathological features of GBM are many 

and various in its appearance. As described previously (section 1.2), GBM is 

composed of a pleomorphic tumor cell population showing nuclear atypia and mitotic 

activity. In addition, microvascular proliferation and necrotic areas are specific for 

GBMs and are usually not observed in low grade gliomas. The formation of 

pseudopalisading necrotic regions is a result of cells escaping the hypoxic and 

necrotic areas which are characterized by oxygen and nutrition depletion [26, 27]. 

Pseudopalisading cells show increased expression of hypoxia-inducible factor (HIF) 

which leads to secretion of the HIF target gene vascular endothelial growth factor 

(VEGF) at high levels. Together with Interleukin-8 (IL-8), this reaction stimulates an 

excessive angiogenic response.  

 

Figure 1.3. Palisading of tumor cells and microvascular proliferation around necrosis. 

Left figure adapted from [28]. Right figure adapted from [29] 
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1.5 Current treatments for GBM  

 

As described earlier, GBM is a primary brain tumor with a remarkably poor 

prognosis. 1/3 of the patients dies of the disease within a year after diagnosis. The 

standard therapy for GBM treatment is maximal neurosurgical resection followed by 

radiotherapy and adjuvant concomitant chemotherapy with temozolomide (TMZ) 

[14]. Complete resection of the tumor is not feasible due to its extreme invasive nature 

and capability to infiltrate surrounding healthy brain tissue. Surgery is therefore 

followed by radiotherapy (RT) to eliminate the remaining tumor cells. As a result of 

radiation, the DNA damage response pathway is induced in the proliferative tumor 

cells [30, 31].  Until 2005 the standard treatment of care for GBM was resection of the 

tumor followed by only RT. However, Stupp et al. showed that the combination of RT 

with concurrent TMZ chemotherapy was more effective than RT alone. Patients 

receiving both RT and TMZ had an increased median survival of 14.6 months 

compared to 12.1 months with RT only [30]. TMZ is an orally-given alkylating anti-

cancer agent that functions by breaking DNA-double strands, subsequently causing 

cell cycle arrest and ultimately cell death [32].  The success of TMZ treatment is 

affected by the methylation of O6-Methylguanine DNA methyltransferase (MGMT), 

which is a DNA repair enzyme.  A methylated MGMT enhances DNA damage in 

tumor cells upon TMZ treatment that results in apoptosis and cytotoxicity and thus 

improves patient outcome [32, 33]. Despite the improvement of standard treatment, 

most GBM patients experience recurrences within 6 months following TMZ 

discontinuation [34]. Additionally, tumor cells can become resistant to the effect of 

TMZ.  

Thus, new and more innovative treatment strategies are urgently needed to improve 

the poor prognosis of GBM patients. To improve the treatment modality further, over 

the last two decades several molecular targeted therapies have been developed and 

tested. Figure 1.4 shows the overview of the therapies that fell short of expectation in 

terms of therapeutic efficacy [35].  Gene therapy is one of the new promising 

strategies that can overcome these obstacles and will be introduced in the next section. 
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       Figure 1.4 Traditional targeted therapy vs. Novel therapeutic strategies. Traditional 

therapy hindered by BBB and the heterogenic nature of tumor cells. Novel therapeutic 

approaches are promising for the future. Figure is adapted from  [36] 

 

1.6 Gene therapy  

 

Scientist have been working for decades on multiple ways to manipulate the human 

genome since the recognition of the gene as the basic unit of heredity. Gene therapy is 

defined as strategies involving modification of genes or replacement of abnormal or 

altered genes with healthy ones to prevent, treat or cure a disease or a medical 

condition [37]. Initially, gene therapy was conceived to treat genetic diseases by 

substituting one single mutated gene through delivery of a functional version of the 

gene. This idea was further developed to include the delivery of engineered genetic 

material to target cancer cells by killing or enhance the immune response against them 

[38]. Applying gene therapy for cancer has been challenging as tumors develop 

through multiple known and unknown genetic abnormalities and it requires 

replacement of several genes. Strategies for cancer, gliomas in particular, has been in 

development for several decades, and major approaches have been employed for gene 

therapy of GBM. This includes delivery of suicide genes, cytokine genes, tumor-

suppressor genes [38, 39]. Different carriers of the genetic material have been 

developed. Viruses are evolved as effective vehicles for horizontal gene transfer as 

they efficiently target mammalian cells. Thus, viruses are the preferred type of vector 

for gene therapy approaches.  Other agents such as stem cells, nanoparticles and 
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liposomes have also been developed. Cellular carriers such as neural, mesenchymal or 

embryonic stem cells can additionally be used due to their competence to spread 

within the tumor tissue and migrate to distant tumor areas [40].  

Different approaches for gene therapy have been developed for GBM treatment.  

Major approaches used for gene therapy against GBM include suicide gene therapy, 

oncolytic gene therapy, cytokine mediated gene therapy, and tumor suppressor gene 

therapy [40, 41].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 Different Gene therapy approaches of GBM. A) Suicide genes: Prodrug is 

converted into a cytotxic drug upon delivery of the suicide gene and kills recipeient cells and 

surrounding tumor cells. B) Immune activation: Immune cells attracted to tumor cells upon 

delivery of cytokine genes. C) Oncolysis: Conditionally-replicating oncolytic viruses lyse the 

tumor cellsupon infection and replication. D) Reprogramming: Tumor cells are 

reprogrammed by delivery of a functional copy of a tumor supressor gene that induce celle 

cycle arrest or apoptosis. Figure adapted from [38].  
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1.6.1 Suicide gene therapy and HSV-TK/GCV system 

 

SGT is a therapeutic strategy that is based on the conversion of a prodrug into a toxic 

drug by transgenes [42]. A prodrug is an inactive compound that after administration 

is metabolized into a pharmacologically active drug [43]. This system involves the 

transduction of cancer cells with a recombinant genetic segment (known as the suicide 

gene) encoding an enzyme. That particular enzyme is  responsible for catalyzing the 

non-toxic prodrug into a cytotoxic drug [44].  

Various suicide gene therapy systems have been developed and the two major systems 

currently being pursued are the herpes simplex virus thymidine kinase gene (HSV-

TK) with ganciclovir (GCV) as prodrug and cytosine deaminase (CD) of Escherichia 

coli with  non-toxic 5-fluorcytosine (5-FC) as prodrug [43]. The HSV-TK gene 

metabolizes GCV to ganciclovir monophosphate (GCV-MP). GCV-MP is further 

phosphorylated into the cytotoxic ganciclovir-trisphosphate (GCV-TP) by the action 

of different cellular kinases [45]. Cellular enzymes are presented in all cells, but 

suicide enzymes are selectively transduced/activated in the tumor cells via gene 

therapy. GCV-TP acts as a nucleoside analog and gets incorporated into the DNA of 

dividing cells. This results in DNA damage, subsequent cell cycle arrest followed by 

apoptosis. Normal dividing cells are not affected by the toxicity as the analogs are not 

efficiently recognized by the wild type enzymes [46].  

Several tumor models revealed powerful killing by the HSV-TK/GCV system. 

However, the killing efficacy is increased with the recombinant version of HSV-TK, 

termed TK.007, when compared to wild type HSV-TK [47, 48]. In order to obtain 

positive therapeutic outcome, the selection of the viral vector for gene delivery is 

essential. Lentiviral vectors are competent of integrating into the genome of both 

dividing and non-dividing cells, which makes them appealing in brain tumor gene 

therapy  

 

1.7 Bystander effect  

 

The efficiency of SGT largely depends on a phenomenon called bystander effect (BE) 

whereby the transduced cancer cells transfer the already-metabolized drug to the 

untransduced cells. As a result, the untransduced cancer cells also undergo cell death 

[49]. Thus, a potent bystander effect is crucial to induce therapeutic efficacy, because 
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gene transfer remains to be a limiting factor for suicide gene therapy even with highly 

optimized vector systems [50]. Thus, in principle, only a fraction of tumor cells need 

to express HSV-TK to obtain a large killing effect after GCV administration [51]. 

GCV-TP, the final toxic metabolite is not able to diffuse through cellular membrane 

to neighboring cells to execute the BE. Initially, it was suggested that the BE was 

promoted through a mechanism involving cell-to-cell contact. Later, it was indicated 

that phosphorylated GCV was actively transported through gap junctional intracellular 

communication from TK positive cells to negative cells [49].  

 

 

Figure 1.6: Suicide Gene Therapy. Bystander effect is executed on neighboring tumor cells 

when the non-toxic prodrug is metabolized into toxic drug upon suicide gene delivery into the 

tumor. Figure is adapted from [52].   

 

Gap junctions are a cluster of channels composed of membrane proteins that allows 

for intracellular communication between adjacent cells via diffusion of ions and small 

molecules [53, 54]. Six connexin proteins together oligomerize into a connexon at the 

cell surface. Connected connexons of two adjacent cells ensure for gap junction-

mediated intracellular communication [55]. The primary mechanism of the BE in 

vitro has been attributed to connexin 43-mediated gap junction communication, 

however the expression of connexins in vivo is more heterogenous which might affect 

the efficiency of HSV-TK/GCV therapy.  

While gap junction-mediated BE is highly characterized in the HSV-TK/GCV system, 

it is not properly clear if vesicles secreted from the tumor cells such as apoptotic 

bodies (ApoBDs), microvesicles (MVs)  and exosomes (Exo) play any role in this 
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process. ApoBD-mediated BE was reported in murine sarcoma cells [56] however the 

authors did not investigate if it was due to transfer of the TK mRNA, TK-protein or 

the toxic drug. It is also not known if GBM cells are also amenable to such 

mechanism. In this context, the mechanism of CD/5FC-associated BE has been 

studied in detail which has shown that the EVs play important role in CD/5FC BE. 

Altaenrova et al. reported that exosomes produced by CD-expressing mesenchymal 

stem cells (MSCs) contain the mRNA transcript of the suicide gene that can exert 

cytotoxicity in recipient cells [57]. It is not known if the mRNA or protein of TK can 

similarly be loaded into EVs. There is also a possibility that the toxic drug could be 

loaded into EVs and thereby mediate the BE in recipient cells, however the issue has 

not been investigated so far. 

 

1.8 Extracellular vesicles and their role on intracellular signaling  

 

In the last decades, the scientific interest describing the function of extracellular 

vesicles (EVs) and how they can be used in therapeutic applications hasexpanded 

substantially. Exosomes (Exos), microvesicles (MVs), apoptotic bodies (ApoBDs), 

microparticles, oncosomes and ectosomes are all different types of membrane 

structures released by cells that are commonly termed EVs [58]. These membrane-

contained vesicles are released by both prokaryotes and eukaryotes. EVs are 

mediators of intercellular communication between cells due to their ability to carry 

several biomolecules and transfer proteins, lipids, nucleic acids and different types of 

RNA (mRNA, miRNA and other non-coding RNA), in an endocrine, paracrine and 

autocrine fashion [59]. Thus, EVs influence different physiological and pathological 

functions of both recipient and parental cells. Consequently, EVs are involved in 

many processes/diseases such as neuronal function, immune responses, 

neurogenerative diseases and cancer [60]. The content of the EVs and their biological 

functions depends on the cell of origin [61].  

In 2014, The International Society for Extracellular Vesicles (ISEV) composed of 

researchers worldwide proposed guidelines with Minimal Information for Studies of 

Extracellular Vesicles (MISEV2014), which was again updated in 2018 

(MISEV2018) [62].  
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1.8.1 Exosomes, Microvesicles and Apoptotic bodies  

 

EVs, the general term for all secreted vesicles such as exosomes, microvesicles and 

apoptotic bodies, are found in body fluids such as urine and blood which makes them 

ideal carriers of biomarkers. Previously, they were considered as cellular trash due to 

their invisibility, small size, and lack of entity [59]. Exosomes are released upon 

fusion of multi-vesicular bodies (MVBs) with the plasma membrane, and are formed 

in the endosomal network in an inward budding process [58]. Exosomes are the 

smallest subtype among the EVs with a size ranging from 30-100 nm and cup-shaped 

in apperance under the electron microscope (EM) [60].  In contrast, microvesicles are 

formed in a process of outward budding and fission of the plasma membrane. MVs 

tend to be bigger in size ranging from 50 nm-1μm and are primarily distinguished 

from exosomes by its mode of biogenesis [63]. When cells undergo programmed cell 

death, apoptosis, the cytoskeleton breaks up and causes the membrane to bulge 

outward. Blebs of cells containing dying parts are released as apoptotic bodies in a 

multistep process in the extracellular space. This is a major mechanism among normal 

and cancerous cells. ApoBDs are generally larger in size compared to other EVs, 

ranging from 500-2000 nm [64]. After release, ApoBDs are removed via phagocytosis 

by macrophages in vivo. This is mediated by an interaction between the macrophages 

and surface proteins on the apoptotic membrane [63, 65].  

Surface markers, method of isolation, size and the source of origin are the criteria that 

must be met to subclassify EVs into defined vesicles.  However, circulating vesicles 

in fluids are prone to contain both exosomes and MVs, and unfortunately with 

purification methods available per today, it is still difficult to fully discriminate 

between them [66].  
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Figure 1.7 Exosomes, Microvesicles and Apoptotic bodies. Exosomes are released upon 

fusion of multi-vesicular bodies (MVBs) with the plasma membrane, while microvesicles are 

formed in a process of outward budding and fission of the plasma membrane. When cells 

apoptosis, the cytoskeleton breaks up and blebs of cells containing dying parts are released as 

apoptotic bodies. Figure adapted from [65] 

 

1.8.2 Involvement of EVs in GBM  

 

In the recent years research has clearly shown that GBM cells secrete EVs which are 

competent of escaping the tumor microenvironment and delivering genetic information 

to recipient cells that inflect their behavior[61] . GBM-secreted EVs have self-

promoting features such as stimulating proliferation and angiogenesis in a pro-

tumorigenic way. EVs secreted from tumor-cells can also engineer their surroundings 

in a benficial manner to tolerate tumor growth and invasion [67]. Skog et al., showed 

that GBM-secreted EVs from U87 glioma cells can stimulate proliferation of recipient 

cells. As demonstrated in additional studies, tumor-derived EVs support several 

hallmarks of cancer and better understanding of them will acknowledge novel 

diagnostic and therapeutic targets [61].  

 

1.8.3 Methods for isolation of EVs  

 

According to ISEV, a complete purification of EVs is not possible. There is no 

standardized single separation method and thus the choice of approach depends on the 

experimental question and final use of EVs [62]. Primary EV separation technique is 

ultracentrifugation-based, but alternative methods such as density gradients, 

immunoprecipitation, filtration and size exclusion chromatography and 

immunoisolation are also used [58]. Ultracentrifugation is the gold standard for 
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isolation today involving repeated centrifugation steps which results in larger and 

more dense particles sedimenting out first [30, 62].  

 

1.8.4 EVs marker proteins  

 

Isolated EVs are typically characterized by immunoblot analysis to demonstrate the 

presence of markers proteins or by transmission electron microscopy (TEM) to reveal 

a cup-shaped morphology [68].  Enrichment of these proteins in both exosomes and 

MVs is known to be highly dependent on the parental cell type [69]. Exosomes are 

enriched with endosome-associated proteins such as Annexins and flotilin due to their 

endocytic route. Other proteins such as Alix, TSG101, heat shock proteins, major 

histocompatibility complex (MHC) class I and MHC class II complexes and the 

tetraspanins  CD9, CD81 and CD63 are often termed “exosomal markers” [70]. The 

abundance of tetrapanins and other proteins associated with the plasma membrane are 

commonly found in exosomes, and more enriched in these vesicles compared to cell 

lysates [70, 71]. Tetraspanins were suggested as specific markers for exosomes until 

studies revealed that these proteins could also be identified in MVs [72, 73]. MVs 

mainly contain cytosolic and plasma membrane associated proteins, such as 

tetraspanins. Proteins involved in post translational modifications, integrins, selectins 

and CD40 are all identified in MVs, however, the three latter are the main MV protein 

markers [66]. Nonetheless, specific markers that distinguish between MVs and 

exosomes have not yet been identified [70, 74]. In contrast to exosomes and MVs, 

ApoBDs contains small amounts of glycosylated proteins, chromatin and intact 

organelles. Annexin V, histones, and C3B and are used as molecular markers in larger 

EVs such as ApoBDs in some cell types [63, 75]. As suggested by ISEV, a set of 

marker proteins should be analyzed and either be enriched or absent from different 

EV populations [62].  
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2. Aims 
 

The present thesis aims to explore the potential ability of extracellular vesicles such as 

exosomes, microvesicles and apoptotic bodies to increase the bystander effect of 

glioblastoma suicide gene therapy. .  As explained in the introduction, the efficiency 

of SGT largely depends on the phenomenon called bystander effect (BE) whereby 

transduced cells transfer the already-metabolized toxic drug to the un-transduced 

tumor cells. As a result, the un-treated cells also undergo apoptosis. While gap 

junction-mediated BE is highly characterized in HSV-TK/GCV system, it is not 

properly clear if soluble factors such as apoptotic bodies, microvesicles and exosomes 

play any role in this process. In this project we are investigating the potential 

involvement of these soluble cellular factors in the process of HSV-TK/GCV-

mediated BE. Our objectives are as follows:  

- to analyze the HSV-TK/GCV-mediated cytotoxici effect on the secretion of 

extracellular vesicles  

- to analyze the possible loading of HSV-TK.GFP protein in the extracellular 

vesicles and  

potential transfer thereof to other cells 

- to analyze the cytotoxic effect following potential transfer of extracellular 

vesicles from TK-positive glioma cells  
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3. Materials and Methods 
 

3.1 Cell culture 

3.1.1 Media preparation  

 

Dulbecco’s Modified Eagle’s Medium (DMEM): DMEM (Sigma-Aldrich Inc., St. 

Louis, MO, USA) was supplemented with 10% heat inactivated Fetal bovine serum 

(FBS) (Thermo Fischer Scientific, Waltham, MA, USA), 0.02% Plasmocin 

(Invitrogen, Toulouse, France),  2% (v/v) Penicillin-Streptomycin (BioWhittaker, 

Verviers, Belgium), 2% (v/v) L-glutamine (BioWhittaker), 3.2% non-essential amino 

acids (NEAA) (13-114E, Lonza, Walkersville MD USA). DMEM with all the 

supplements mentioned in this section is stated as complete DMEM throughout the 

thesis.  

Exosome Depleted Fetal Bovine Serum (FBS) Medium: 

Exosome depleted FBS was obtained by centrifuging (Beckman Coulter Optima LE- 

80 K ultracentrifuge)  regular FBS in Quick-Seal Polypropylene centrifuge tubes 

(Beckman Coulter, Inc. 250 S, Kraemer Blvd. Brea, CA 92821, USA) for 18 hours at 

40 000 rpm (179200 gmax) and 4°C using a Ti70 rotor (Type 70 Ti Fixed-Angle 

Titanium Rotor, Beckman Coulter, USA). Only the supernatant was retained and 

used. Further, the centrifuged exosome depleted FBS was filtered with 0.2 µm filter  

(Life Sciences, Acrodisc® Syringe filter) before 10 % was added to DMEM. The medium was 

alliquoted in 50 mL Falcon tubes and kept at – 20 °C.  

Exosome Depleted Fetal Bovine Serum (FBS) DMEM medium: DMEM was 

supplemented with 10% exosome depleted FBS, 0.02% Plasmocin, 2% (v/v) 

Penicillin-Streptomycin, 2% (v/v) L-glutamine, and 3.2% NEAA. DMEM with all the 

supplements mentioned in this section is stated as exosome depleted DMEM 

throughout the thesis.  

Dulbecco’s Modified Eagle’s Medium (DMEM) with Ganciclovir (GCV): 

Complete DMEM supplemented with GCV (G2536, Sigma-Aldrich) to a final 

concentration of 25 µM.  

Exosome Depleted Fetal Bovine Serum (FBS) DMEM medium with GCV: 

Exosome depleted DMEM supplemented with GCV to a final concentration of 25 

µM.  
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Neurobasal Medium (NBM): NBM was supplemented with 1% (v/v) Penicilin-

Streptomycin, 1% (v/v) L-Glutamine, 2% (v/v) B27 Supplement (50X) ( 

GibcoTM,Thermo Fisher Scientific, Waltham,MA,USA), , 0.1% Heparin LEO 5000 

IE/ml (Vitusapotek), 20ng/ml Fibroblast Growth Factor-basic (bFGF) (100-18B, 

PeproTech®,Germany). It is stated as complete NBM throughout this thesis.  

Cell freezing media: Complete DMEM was supplemented with 10% v/v Dimethyl 

sulfoxide (DMSO) (Sigma-Aldrich, Steinheim, Germany) and 10% v/v FBS.  

 

3.1.2 Drug preparation  

Ganciclovir (GCV):  

Table 3.1: Information about GCV, modified from the Sigma Aldrich webpage [76]   

Synonym: 9-(1,3-Dihydroxy-2-propoxymethyl) guanine;2¢-Nor-2¢-

deoxyguanosine; 2¢-NDG; BIOLF-62; DHPG; BW-759U 

Application: GCV, a nucleoside analog that causes inhibition of viral DNA 

polymerase  

CAS Number: 82410-32-0 

Molecular weight: 255.23 (Da) 

Molecular formula: C9H13N5O4 

Appearance: Powder  

Physical state: Solid  

Solubility: Soluble at 10 mg/mL in 0.1. N HCl  

Storage:  2-8 °C 

Table 3.1 – displays important information about the prodrug used in this thesis, GCV 

(G2536, Sigma-Aldrich). The drug was received as powder and dissolved in complete 

DMEM to a final concentration of 3mM, aliquoted in 2.0 mL Eppendorf tubes 

(Eppendorf AG, Hamburg, Germany) and stored at -20 °C. New aliquot was used for 

each experiment, and stock solutions were thawed at room temperature (25 °C), and 

diluted in DMEM or exosome depleted DMEM to the required concentration.  
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3.1.3 Cell Lines  

U87: U87, formally known as U-87 MG (Uppsala 87 Malignant Glioma) is a patient-

derived primary GBM cell line, which was originally established at Uppsala 

University . This is a high grade glioma cell line that is commonly used in 

glioblastoma research. The cells are adherent and grows in monolayer. They exhibit 

epithelial morphology and were maintained in either complete or exosomes depleted 

DMEM until they reach the desired confluency.  

P3: P3 is a patient-derived primary GBM cell line, which was established at 

Haukeland University Hospital, Bergen, Norway, generated from surgical resections. 

The cells are adherent and grows in monolayer, and they were maintained in complete 

NBM medium until they reached the desired confluency.  

U87.TK.GFP and P3.TK.GFP: U87 cells were previously transduced with HSV-

TK. 007 construct in the lab of Prof. Hrvoje Miletic.  The lentiviral construct has 

previously been described in section 1.6.1 [77]. HSV.TK.007 transduced U87 and P3 

cells were stated as U87.TK and P3.TK, respectively, throughout this thesis.  

 

3.1.4 Sub-culturing and Passaging  

Cell lines were kept in T175 culture flask (Nunc, Roskilde, Denmark) and maintained 

in a humidified incubator (Thermo Forma, Steri Cycle CO2 Incubator, 301210-634, 

Ohio, USA) at 37 °C and 5% CO2. Cell lines were subcultured at 75-80% confluency. 

Dulbecco’s Phosphate buffer saline (PBS) (10X) (D1408, Sigma Aldrich, St Louis, 

Missouri, USA) diluted in autoclaved Milli-Q water (QGARD00R1, Millipore, 

France) to 1X working concentration was used as washing buffer. Nikon Eclipse 

TS100 (Nikon Corporation, Tokyo, Japan) inverted microscope was used to daily 

monitor the cells. All cell culture work was carried out in sterile condition under 

laminar flow bench (SANYO Electric Co, Osaka, Japan). The hood and equipment 

going in was sterilized with 70% ethanol before and after use.  

U87, U87.TK.GFP, P3, P3.TK.GFP: Cell culture media was aspired, and the cell 

flasks were washed twice with 1x PBS. U87 cells were detached using Trypsin-EDTA 

(BioWhittaker) and incubated at 37 °C for 5 min. Trypsin process was neutralized 

with either complete DMEM or exosome depleted DMEM. P3 cells were deatched 
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from the buttom by scraping the surface with a cell scraper (VWR®, Pennsylvania, 

USA) and transferred to 15 ml tubes (Sarsted, Nümbrecht, Germany). The old media 

was removed by centrifugation at 300 g for 5 min, follwed by washing with 1x PBS. 

Both cell lines were resuspended in their respective media until single cell suspension 

was obtained. Resuspended cells were added to fresh flasks or counting. All cells 

were used for 15 passages post-thawing, one passage being considered as one 

trypsinization.  

 

3.1.5 Cell counting  

The cells were counted before in vitro experiments were performed. 100 µl of cell 

suspension was diluted in 400 µl Trypan blue dye (Life Technologies, OR, US) which 

is useful to differentiate dead and live cells based on the cell’s ability to take up or 

exclude the dye. Live cells do not take up Trypan blue dye. 10 µl of diluted single 

cell/Trypan blue dye suspension was loaded to each chamber of hemocytometer 

(8100203, Neubauer, Hirschmann Laborgeräte GmbH & Co, Eberstadt, Germany) and 

covered with cover glass (Menzel-Gläser, Thermo Scientific). Hemocytometer 

consists of two identical chambers and each one has nine big squares of 1 mm2 that 

are subdivided in three parallel lines with depth of 0.1 mm. Eight of the big squares 

have 16 squares whereas 1 big square in the center has 25 small squares. From each 

compartment, cells were counted from 4 big squares and the average was calculated. 

Cell concentration was calculated by following formula: 

 

Number of cells/ml= 
𝐓𝐨𝐭𝐚𝐥 𝐜𝐞𝐥𝐥 𝐜𝐨𝐮𝐧𝐭 𝐱 (𝐃𝐢𝐥𝐮𝐭𝐢𝐨𝐧 𝐅𝐚𝐜𝐭𝐨𝐫 𝐱 𝟏𝟎𝟒)

𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐬𝐪𝐮𝐚𝐫𝐞𝐬 𝐜𝐨𝐮𝐧𝐭𝐞𝐝
∗ 𝟓 𝐭𝐫𝐲𝐩𝐚𝐧 𝐛𝐥𝐮𝐞 𝐝𝐢𝐥𝐥𝐮𝐭𝐢𝐨𝐧 𝐟𝐚𝐜𝐭𝐨𝐫 

 

Figure 3.1 Hematocytometer. Left: Hematocytomter looked from the top. Right: Chamber 

of hematocytometer with 4 big squares. Cells presented on the dot lines were not counted. 

Figure adapted from [78].   
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3.1.6 Thawing and cryopreservation of cells  

Cells were thawed by hand and immediately pipetted into a T75 cm2 flask containing 

15 mL of pre-warmed required media and resuspended gently prior to incubation at 37 

°C, 5 % CO2 and 100 % humidity. In order to remove remnants from freezing media, 

the cell culture media was replaced with fresh media after overnight incubation.  

The cells were frozen down when a T175 cm2 flask was 70-80 % confluent and after 

10-20 passages in cryopreservation. After single cell suspension was obtain as 

described in section 3.1.3, cells were transferred to a 15 mL Falcon tube (Thermo 

Scientific, NY, USA). The cell solution was centrifuged at 300 g for 5 minutes, the 

supernatant was removed, and the cell pellet was resuspended in cold freezing 

medium. 1.0 mL aliquots of cells were frozen in cryotubes (Nunc, Roskilde, 

Denmark) at -80°C in a Mr. Frosty™ Freezing Container (C1562, Sigma-Aldrich, 

Steinheim, Germany) overnight to provide a gradual temperature decrease. The next 

day, the cryotubes were transferred to liquid nitrogen tank for long time storage.  

 

3.2 Isolation of EVs by ultracentrifugation  

Prior to isolation of the EVs, the cell lines U87 and U87.TK.GFP were seeded in 

T175 cm2 at a concentration of 15.0x106 cells/35 mL in each flask. The cells were 

allowed to adhere for 24 hrs. before treating with condition media in the presence or 

absence of 25 µ M GCV. The day of isolation, the condition media was transferred 

directly from the flasks to 50 mL Falcon tubes. As negative controls, medium without 

drug for each cell line was used.  

The ultracentrifugation is a multi-step process, where the falcon tubes containing 

media were initially placed in a low speed spin centrifuge (Eppendorf Centrifuge 

5810 R (Sigma-Aldrich, Steinheim, Germany). In the first step, dead cells and other 

remnants were eliminated by centrifuging at 300 x g for 5 minutes. In order to collect 

apoptotic bodies, the supernatant from each falcon tube were transferred to clean 

tubes and spin down at 2000 x g for 20 minutes and 4 °C. Supernatant was transferred 

to quick seal centrifuge tubes through a syringe (50 mL, BD Luer-Lok syringe, Spain) 

to further harvest microvesicles, while pellet containing apoptotic bodies were put on 

ice. The centrifuge tubes were properly sealed using a sealing kit (Beckman Coulterm 

Cordless Tube Topper, Model: 7700, USA),  placed in a fixed angle centrifuge rotor 

(Type 70 Ti Fixed-Angle Titanium Rotor, Beckman Coulter, USA) and further 
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installed in the  Beckman Coulter ultracentrifuge. The samples were centrifuged for 

22 minutes at 15 000 rpm (25200 gmax)  and 4 °C. Supernatant was removed from the 

tubes using a syringe and transferred to clean centrifuge tubes in order to collect 

exosomes from the cell condition media. The pellet containing microvesicles were put 

on ice. A final high-speed spin was performed at 40 000 rpm (179200 gmax ) for 3 hrs. 

and 4 °C. The supernatant was discarded, and pellet containing exosomes saved on 

ice.  

The different EVs pellet were resuspended in filtered 1X PBS, transferred to Eppendorf 

tubes, and stored at -80 °C for further characterization and analysis.  

 

3.3 Western Immunoblotting  

Table 3.2- Reagents used for lysing the cells and EVs  

Reagents Name Composition     

1X PBS 10 Phospho-buffered saline in MilliQ  H2O 

RIPA Buffer  Radradioimmunoassay precipitation buffer  

Protease+Phophatase Inhibitors  

 

1 tablet protease inhibitors + 1 tablet phosphatase inhibitors in 

1mL RIPA Buffer 

 

Table 3.3- Reagents used for gel casting for SDS-PAGE.  

Reagent         Composition (mL) 

 

 

Resolving, 

12%  Stacking Supplier  

dH2O 1.6 1.4  
30% acrylamide and bis-

acrylamide solution 2.0 0.33 A3699, Sigma-Aldrich, UK 

1.5M Tris pH 8.8 1.3 

 

-  

1.0M Tris pH 6.8 - 

 

0.25  
10% Sodium Dodecyl 

Polyacrylamide (SDS) 0.05 0.02  

10% Ammonium Persulfate (APS) 0.05 0.02 

A3678, Sigma-Aldrich, St Louis, 

Missouri, USA 

TEMED 0.002 0.002 T9281, Sigma-Aldrich, UK 
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Table 3.4- Reagents used for running, transfer and blotting of SDS-PAGE.  

Reagents Name Composition              

 

Supplier  

1X SDS Tris-glycine BioRad 10X TGS buffer in dH2O 

1610732, 10X 

Tris/Glycine/SDS Buffer, 

BioRad, USA 

1X Tris-Glycine transfer 

buffer 

BioRad 10X TG buffer + 20% 

methanol in dH2O 

 

Ponceau stain 0.1% Ponceau S in 5% Acetic Acid 
P3504, Sigma-Aldrich, St. 

Louis, Missouri USA 

5% blocking buffer 
5% Skim milk powder in TBS-Tween 

Buffer 

 

TBS-Tween Buffer 
0.02 M Tris-HCl (pH 7.5), 0.15 M 

NaCl and 0.1% Tween 20 

 

1X TBS 
Tris-Buffered Saline (0.2 M Tris-HCl 

(pH 7.5), 1.5 M NaCl) in dH2O 

 

 

To characterize and confirm successful harvest, the EVs from U87 and U87.TK 

+GCV/control were subjected to western immunoblotting. Cell lysates s were also 

included. After condition media was removed in order to collect the EVs, the adherent 

cells were washed with cold PBS, trypsiniezed, and counted in order to indicate % 

dead cells at the time of harvest. Following, transferred to 15 mL tubes and 

centrifuged at 3000 rpm for 5 minutes at 4°C.  

 

3.3.1 Protein concentration determination  

The cell pellet and isolated EVs were lysed by using Radioimmunoassay precipitation 

buffer, RIPA, supplemented with 10% protease (04693124001, Roche, Manheim, 

Germany) and phosphatase (04906845001, Roche, Indianapolis, USA) inhibitors. The 

protein concentration in each EV and lysate was determined using Pierce™ BCA 

Protein Assay Kit (Pierce Biotechnology, Rockford, lL, USA). With the relative 

absorbance measured with Direct Detect® Spectrometer (DDHW00010-WW, Merck 

Millipore, USA), we could make a calibration curve to determine the concentration of 

each sample.  

 

3.3.2 Gel Casting, Sample Preparation, SDS-PAGE, antibody incubation and 

protein detection  

12% Tris-Glycine Sodium Dodecyl Sulfate (SDS)-polyacrylamide gels were freshly 

casted before each western blot accordance to table __ in use of Mini-PROTEAN® 

Tetra Hand Cast System (Bio-Rad, Hercules, California, USA).  Samples were thawed 
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on ice with 25 µg total protein of each sample mixed with 5x Loading buffer (along 

with reducing agent and beta mercaptoethanol) and Milli-Q water was added until the 

desired volume was reached. The cell lysate mixture and the EVs mixture were then 

heated for 10 minutes at 70°C and 5 minutes at 95 °C respectively and spin down 

before loading on the gel. Precision Plus Protein Western C Standards (L001652A, 

USA) was used as protein marker size and loaded onto the first well of the gel. Equal 

amount of each samples were added to the remaining wells. Gels were run at 80 V 

(Bio-Rad Electrophoresis Power Supplier) for 30 min for protein stacking, and then at 

100 V for protein separation, in an electrophoresis chamber (BioRad, USA) filled 

with premade Tris-glycine running buffer. SDS-PAGE is a technique that allows 

separation of proteins based on their molecular weight. SDS is an anionic detergent 

used to denature proteins and it provides with an overall negative charge. In 

application of electric field, the smallest proteins migrate faster than the larger ones 

towards positive pole.  

Proteins separated on gel were transferred onto 0.2 µM pore nitrocellulose membranes 

(Bio-Rad laboratories AB, Oslo, Norway) by using the BioRad Mini Trans-Blot® 

transfer system. Blotting sponges, filter papers and the membrane were soaked in 

chilled Tris-Glycine transfer buffer and assembled (Figure 3.2) a small rolling pin was 

used to remove the air bubbles between the layers. Chamber filled with transfer buffer 

was placed on ice and the electrophoresis was run at 45 V for 90 min in use of 

Invitrogen PowerEase 300W.  

 

 

 

 

 

Figure 3.2 Immunoblot sandwich. Correct way to asseble the sandwich, where the gel is 

allowed to be attached with the nitrocellulose membrane in order to have successful transfer 

of the proteins. Figure is adapted from NuPAGE® Technical Guide [79].  
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The membrane was stained with Ponceau S for 2 mins to visualize total proteins band 

and to confirm successful transfer. Following, the membrane was cut according to the 

molecular weight of the proteins of interest and subjected to blocking in 5% skim 

milk buffer for 1 hour at room temperature. This step is important to prevent 

unspecific binding of antibodies to other bindings sites on the membrane. Primary 

incubation of membranes were performed overnight at 4°C on a shaker with 

corresponding primary antibodies diluted in 5% skim milk TBS-T (Table 3.5). 

Membranes were washed 3 x 10 mins in TBS-Tween washing Buffer before adding 

Horseradish Peroxidase (HRP) conjugated secondary antibody of the host species of 

primary antibody for 1 hour at room temperature on a shaker. All the secondary 

antibodies (Table 3.5) were diluted in blocking buffer.  

 

Table 3.5 Primary and Secondary Antibodies used for immunoblotting  

 

Prior to detection of proteins, the membranes were washed 3 x 10 mins to get rid of 

unbound secondary antibodies. The visualizing was performed using Image Reader 

LAS-3000 (Fujifilm Medical System Inc., Connecticut, USA) and chemiluminescent 

detection kit, either SuperSignalTM West Pico PLUS Chemiluminescent Substrate 

or/and SuperSignalTM West Femto Maximum Sensitivity Substrate (34080, 34096, 

Thermo Fisher Scientific, Waltham, USA. the membranes were developed in 

increment mode at intervals of 10 seconds. Images were analyzed using a combination 

of Multi Gauge software and Image J (USA).  

 

Primary  Supplier Catalogue  MW Dilution Host Buffer 

Antibody   Number (kDa)       
 

Calnexin  

 

Santa Cruz Biotech. 46669 ~ 90  

 

1:1000 

 

Mouse 

 

5% skim milk TBS-T 

 

CD81  

 

Santa Cruz Biotech. 166028 ~ 22-26  

 

1:200 

 

Mouse  

 

5% skim milk TBS-T 

 

GFP  

 

EMD Millipore  AB3080 ~ 70  

 

1:6000 

 

Rabbit  

 

5% skim milk TBS-T 

Secondary   Supplier Catalogue  Dilution Buffer 

Antibody    Number       

Goat anti-Mouse IgG (H+L), Invitrogen 31430 1:10000 5% skim milk TBS-T 

HRP  USA        

Goat anti-Rabbit IgG (H+L), Invitrogen 31462 1:10000 5% skim milk TBS-T 

HRP  USA        
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3.4 Statistical Analysis  

 

All statistical analyses were performed using GraphPad Prism8.2.1 The realtive band 

intensity significance from immunublotting was analysed by one sample t test and 

Wilcoxon test. P-values less than 0.05 were considered as significant.  

One sample t-test and Wilcoxon test: nsP>0.05, *P<0.05, 

 

3.5 Transmission electron microscopy (TEM)  

TEM was performed to confirm the presence of different EVs and to analyze the 

morphology and size. This technique allows to characterize very small 

objects/particles with 1μm to 1 nm in size. TEM consists of an electron emission 

source, electromagnetic lenses and an electron detector. It is based on a beam of 

highly energetic electrons released by an electron gun that pass through a sample 

within a high vacuum. When the beam passes through, the electrons are absorbed 

differently by different areas of a sample. The sample modifies the beam and imprint 

its conventional image. The electrons are captured from below the sample onto a 

phosphorescent screen or through a camera[80]  

 

 

 

 

 

 

 

Figure 3.3 Transmission Electron Microscopy (TEM) overview. Left: Electron beam 

pasing through a sample and scattered by the sample. Figure adapted from [80]  Right: 

Crabon coated copper grid used to mount samples on. Figure adapted from [81] 

 

10 μg of EVs protein of the intact EVs resuspended in PBS was dropwise placed on a 

parafilm. With forceps, a formvar carbon coated copper grid with 200 mesh was 

positioned with the coating side facing the drop containing EVs of interest for 15 

mins. 3 drops of PBS was placed on the parafilm, and the grid was washed 
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sequentially on top of each droplets. Absorbing paper was used between every 

washing step. Following, 2,5% glutaraldehyde (25% glutaraldehyde stock solution 

diluted in 0.1 M sodium cacodylate) was placed on the parafilm to post-fix the 

samples. Following 10 mins incubation, the grid was subjected to 5 droplets of 

deionized water for washing. The sample was contrasted by adding the grid on a 

droplet of 2% uranyl acetate and incubating for 10 mins.  Excess liquid was removed 

and grid with the coated side facing up was dried for 5 mins. The prepared grid was 

either examined by TEM or stored in a grid box for later examination.  

The grid was examined with Jeol Jem-1230 transmission electron microscope at 80 

kV, and images captured with MultiScan Camera (Gatan) model 791.  

 

3.6 Mass spectrometry (MS)  

We performed mass spectrometry to check the protein composition in the EVs, 

commonly EV- associated proteins and to show if the abundance/expression of these 

proteins is different in treated vs. untreated vesicles. The principle behind MS and 

how the data is interpreted in the MaxQuant proteomic software is to be found in 

Appendix I.  

 

3.7 Vesicle Transfer Assay  

3.7.1 Labeling of exosomes with PKH67  

 

The PKH67 Green Fluorescent Cell Linker Kit (Sigma-Aldrich, USA) consisting of 

diluent C and PKH67 dye was prepared in such a way ending up with 4 x 10-6 M 

PKH67 dye. The samples were prepared by taking out 25 µL (equivalent to 25 µg) of 

exosomes resuspended in PBS and 25 µl PBS which act as control without exosomes. 

Diluent C was added to exosomes and control to a total volume of 1 mL. Following, 

the exosomes/diluent C mixture was added to dye/diluent C mixture and incubated for 

5 minutes with periodically intermittent pipetting. 1% BSA was added to the samples 

and control in order to prevent unwanted binding of the dye. Later, the PKH67 stained 

exosomes and ctrl were transferred to PBS pre-wet 300kDa filter (Vivaspin filters). 

Filters containing the samples were centrifuged at 4000 x g in short periods to make 

sure a small part of the sample was remaining on the top. Samples were then washed 
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twice with PBS at 4000 x g and transferred to new pre-wet 300 kDa filters. Exo dep. 

DMEM was added and a last centrifugation step was performed to complete the 

staining of the exosomes.  

24 hrs. prior to exosome staining, 5.0 x 10 4 cells were seeded in a 6-well plate. A 

coverslip was placed in every well, and the cell suspension was carefully added so the 

cells were allowed to adhere on the surface of the coverslip for 24 hrs. The stained 

exosomes and control was added to respective wells and incubated at 37 ° C for 24 

and 48 hrs. 

3.7.2 Cell fixation with Paraformaldehyde (PFA) 

 

Before visualizing the uptake kinetics with microscope, the cells were fixed 24 and 48 

hrs. post exosome incubation. The old media from the 6-well plate was aspirated and 

washed with PBS twice. Following, the cells were incubated with 4 % PFA for 15 

mins at room temperature to allow fixation. Then washed with PBS and subsequent 

with water to rinse of PBS in order to avoid formation of crystals. The coverslips were 

gently placed on a slide containing a droplet of Vetashiled mounting medium. The 

slides were allowed to dry overnight at RT.  

 

3.7.3 Confocal microscopy  

The uptake of the exosomes into the GBM cells was visualized by Leica TCS SP8 

STED (stimulation emission depleted) 3X confocal microcopy. In principal, confocal 

microscope uses fluorescence optics, where the laser light focused onto a define spot 

resulting in emission of fluorescent light only from that particular area. A light 

detector will only sense fluorescence signal from the illuminated spot, while a pinhole 

blocks any other scattered light emitting from the sample. Raster scanning pattern of a 

specimen creates images with one single optical plane [82].  

Leica TCS SP8 STED provides with super-resolution that allows to visualize structure 

smaller than ~ 200 nm. It matches the wavelength of any fluorophore and allows for 

up to eight excitation lines usage simultaneously with its white light laser source. But, 

the peak excitation wavelength and the emission wavelength of two different proteins 

must be separated by 50-60 nm in order to be sensed by two distinct fluorescent 

channels. The emitted fluorescence light is sensed by a Hybrid-gated detector [83].  
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3.8 WST-1 Cytotoxicity Assay  

We wanted to investigate if TK. mRNA or protein and GCVp, GCVpp or GCVppp 

could induce any potential cytotoxicity onto naïve U87 by traveling through EVs. We 

approach this by performing WST-1 assay which is a technique used to measure cell 

proliferation and viability.  Water soluble tetrazolium (WST) salts are produced by 

adding positive or negative charges and hydroxy groups to phenyl ring of the 

tetrazolium salt. WST-1 (Cell Proliferation Reagent WST-1, 11644807001, Roche, 

Mannheim, Germany) is not able to pass through the cell membrane due to its 

negative charge. Mitochondrial dehydrogenase acts as an intermediate electron 

acceptor and transfer electrons from the plasma membrane to cytoplasm for the 

reduction of tetrazolium into a soluble formazan dye. Only the viable cells are able to 

reduce tetrazolium to formazan, so the amount of formazan produced correlates with 

the metabolically active cells.  

 

 

 

 

 

 

 

 

Figure 3.6 Tetrazolium salt WST-1 cleaved to formazan. Cellular enzymes cleave the 

tetrazolium salt into formazan, and the amount of formazan dye produced correlates with the 

number of viable cells in the culture. Figure is adapted from Cell proliferation Reagent WST-

1 datasheet [84].  
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U87 cells were washed, trypsinized and seeded in 96-well plates in a density of 1.5 x 

104 cells/100 µL exo dep. DMEM in 5 replicates. The set up for potential cytotoxicity 

by TK. mRNA or the protein is shown in table3.6. 8 hrs. post-seeding, a final GCV 

concentration of 25 µM was added to the specific wells. After 96 hrs., an el-pipette 

was used to achieve precise addition of 7µL WST in each well and incubated for 1 hr., 

before scanning the plate by spectrophotometer.   

 

Table- 3.6. Overview of sample preparation for cytotoxicity assay  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample nr.  Sample  EV from  

 

GCV Potential 

cytotoxcity  

1 U87 -  -  -  

2 U87 -  25  µM -  

3 U87 U87.TK -  -  

4 U87 U87.TK 25  µM Yes/No 

https://en.wiktionary.org/w/index.php?title=%C2%B5L&action=edit&redlink=1
https://en.wiktionary.org/w/index.php?title=%C2%B5L&action=edit&redlink=1
https://en.wiktionary.org/w/index.php?title=%C2%B5L&action=edit&redlink=1
https://en.wiktionary.org/w/index.php?title=%C2%B5L&action=edit&redlink=1
https://en.wiktionary.org/w/index.php?title=%C2%B5L&action=edit&redlink=1
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4. Results 
 

4.1 Analysis of EV secretion in glioma cells 

U87, a widely used human glioma cell line [85] is known to secrete EVs [67] . First, 

we needed to confirm EV secretion in our model system where we used U87 cells that 

previously have been modified by lentiviral vectors in our laboratory to express TK-

GFP (hereafter designated as U87.TK). To investigate the secretion and confirm 

successful harvest of EVs, U87 and U87.TK cells were grown as adherent monolayers 

cultured in exosome depleted culture medium as described in the methods section. 

Isolated EVs were subjected to immunoblotting by using antibodies against the 

tetrapanins CD9, CD63 and CD81 which serve as markers for both exosomes and 

MVs.  Enrichment of these proteins in both exosomes and MVs is known to be highly 

dependent on the parental cell type [69]. CD81 showed the most consistent 

enrichment in exosomes and MVs and was therefore selected to be further used for 

the detection of exosomes and MVs in this project (figure 4.1). Calnexin, an integral 

protein derived from the endoplasmatic reticulum (ER), was used as a negative 

control for MVs and exosomes, but was found to be present in the ApoBDs. ApoBDs 

are known to be larger vesicles than the two other EVs subtypes based on size and 

more likely to incorporate a larger amount of RNA/protein or organelles. The absence 

of calnexin in other lanes indicate that MVs and exosomes did not contain ER 

contaminants.  

 

To further confirm the enrichment of CD81 in the exosomes and MVs we used P3 cells 

which are human stem-like glioma cells cultured in serum-free neurobasal medium. We 

observed enrichment of CD81 in exosomes and MVs harvested from P3 and TK-

modified P3 cells (designated as P3.TK) (Figure 4.2). Thus, the secretion and successful 

harvest of the exosomes and MVs was confirmed in two different glioma cell lines.  

 Figure 4.1 Characterization of EVs from U87/U87.TK and P3/P3.TK cells by immunoblotting. The 

presence of EVs in two different glioma cell lines, U87/U87.TK and P3/P3.TK were confirmed by 

immunoblotting. CD81, an exosomal enrichment marker was found to be present in exosomes and MVs 

confirming successful secretion of these EVs. The blot is representation of 3 individual experiments. ApoBDs – 

Apoptotic Bodies,  MVs – Microvesicles, Exo –Exosomes.  
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While immunoblotting confirmed successful secretion of EVs in our model system, we 

further performed microscopic analyses using Transmission electron microscopy 

(TEM) to validate these observations.  Figure 4.2 A, B and C shows the images obtained 

from EVs secreted from U87 and U87.TK. The EVs were abundant and appeared to be 

of typical cup-shaped structure. ApoBDs are known to have size that ranges between 

500 nm to 5000 nm [86]. In our experimental setting, we observed larger vesicles in 

GCV treated U87.TK cells corresponding to ApoBDs, however, we found smaller 

vesicles of size similar to exosomes and MVs in U87 WT and U87 TK ApoBDs 

fractions. This suggests that the pelleting of ApoBDs at 2000 x g centrifugal speed is 

also pelleting exosomes-like vesicles along with ApoBDs, indicating exosomal 

contaminants in ApoBDs fractions. In all isolates from the three different cell types, 

MVs and exosomes showed cup-shaped lipid bilayer membrane structures and sizes 

similar to the ones previously reported by other research groups [87] [86]. This 

demonstrates that the presence of EVs in the culture media of U87 and U87.TK cells 

and their successful harvest were confirmed by both immunoblotting and TEM. 

 

 

 

 

 

 

 

 

 

 

 

4.2. Analysis of EVs from GBM cells by Transmission electron microscopy. Micrographs of vesicles, 

negatively stained, released from three different cell lines; U87 WT, U87.TK and U87.TK+GCV are 

shown. A-panel shows exosomes vesicles that are cup shaped and have diameter between 40-120nm. B-

panel displayed MVs that have sizes between 100nm to 250nm and were diverse in shape and density. 

C-panel displayed fractions of ApoBDs that were pelleted at 2000 x g showed exosomes like vesicles 

that were pelleted with ApoBDs with a size ranges between 80-400nm in our experiments. Scale bar:  

Exosomes – 100nm, MVs – 200nm and ApoBDs – 300nm. (n=3) ApoBDs – Apoptotic Bodies, MVs – 

Microvesicles, Exo –Exosomes.  
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4.2. The Effect of GCV-mediated cell death on the secretion of exosomes and MVs 

in GBM cells  

To unravel the involvement of ApoBDs, MVs and exosomes in the bystander effect 

during TK/GCV therapy in GBM cells, it is important to identify the effect of GCV-

mediated cell death on the secretion of EVs. First, we performed mass spectrometry 

with extensive analysis of the proteome where we identified more than 1500 different 

proteins in all samples (Table 4.1). Based on a heat map with supervised clustering 

(see Appendix II, figure 4.10) we identified two large separate clusters, with cell 

lysates in one group, whereas EVs clustered together in a separate group. We also 

identified a modest increase of proteins in samples treated with GCV (see Appendix 

II, Figure 4.11).  

Table 4.1- Total identified proteins 

Sample Type Total identified proteins  

TK Exosomes   1662 

TK Exosomes + GCV  1925 

TK MVs  1528 

TK MVs + GCV  1713 

TK ApoBDs 2248 

TK ApoBDs + GCV  2544 

TK Cell lysate  1963 

TK Cell lysate + GCV  2326 

 

Next, we wanted to identify if there were any differences in enrichment of proteins 

that are normally presented in EVs such as CD9, CD81 and TSG101. In the heatmap 

(Figure 4.3), the different types of EVs clustered together which was independent of 

the treatment. However, we also identified differences in the expression of specific 

proteins following GCV treatment. We observed upregulation of CD9 and CD81 in 

GCV-treated exosomes and MVs, while a downregulation of the same proteins was 

found in GCV-treated ApoBDs (Figure 4.4). Determination of relative intensity 

further demonstrated that CD9 and CD81 are more abundant in GCV-treated 

exosomes and MVs, but not in cell lysates indicating that GCV-mediated cell death 

increases secretion of exosomes and MVs. 
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Figure 4.3 Upregulation of key marker proteins of exosomes and MVs:. Mass spectrometry 

analysis revealed that CD81 and CD9 is upregulated in treated exosomes and MVs, while it is 

downregulated in treated ApoBDs  

Figure 4.4 Increased CD81 and CD9 in EVs following GCV treatment. Increase of CD9 and 

CD81 in treated exosomes is clearly observed. The difference in MVs and ApoBDs is modest. 

Included are imputed values from mass spectrometry  
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Originally, we planned to further analyze the harvested vesicles by using a particle 

counter (Zeta View Nanoparticle Tracking Analysis, NTA) to assess and quantify the 

amount of secreted EVs with our collaborator at the University of Gothenburg. 

Unfortunately, due to the unexpected events created by the coronavirus outbreak we 

were not able to perform this experiment. Instead, we decided to use semi-quantitative 

immunoblotting with anti-CD81 antibodies on lysates from exosomes and MVs from 

TK. GFP + GCV cells and TK.GFP cells from three independent experiments. (Figure 

4.5 A). CD81 was also detected in ApoBDs fractions, however mostly at a lower level 

compared to other EV subtypes. Interestingly, we observed a trend of increased 

expression of CD81 in EVs from cells treated with GCV versus untreated (UT) cells, 

however the difference was not significant for exosomes and ApoBDs, but for MVs. 

Importantly, this trend was not found in the cell lysates.  

 

  

 

Figure 4.5 Analysis of extent of EVs secretion by using immunoblotting . A. One representative (out of 3) 

experiment. Increased CD81 is detected in the EVs following GCV-treatment. Calnexin is included as a negative 

control for exosomes and MVs . Cell lysates are included as control samples. B. Statistical analysis was performed 

by using One sample t test and Wilcoxon test. The significant increase of CD81 was only confirmed between 

untreated MVs and GCV-treated MVs. P<0.05. ApoBDs – Apoptotic Bodies, MVs – Microvesicles, Exo –

Exosomes.  
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4.3 TK.GFP protein is loaded in the EVs of GBM cells  

As we have shown in the previous sections that EVs are secreted during suicide gene 

therapy, we aimed to investigate whether the secreted EVs contained the TK.GFP 

protein which could potentially contribute to the BE during HSV-TK/GCV therapy. 

GFP is a fusion protein that is not expressed independently from TK. We used both 

immunoblotting and mass spectrometry to detect the presence of TK. 

EVs harvested from U87.TK cells (with or without GCV treatment) and U87.WT 

cells were analyzed by immunoblotting with anti-GFP and anti-CD81 antibodies. The 

molecular weight of HSV.TK is around 40 kDa, but as it is fused to GFP with 

approximately 27 kDa, we anticipated bands at around 70 kDa. GFP is a fusion 

protein that is not expressed independently of TK. As expected, (Figure 4.6), bands 

were observed in the cellular fraction of U87.TK cells but not in U87. CD81 

expression confirmed the presence of exosome and MVs in these fractions. Our result 

indicates that the TK.GFP fusion protein is loaded in the EVs. To further confirm this 

result, we performed mass spectrometry analysis.  

  

 

 

 

 

 

Figure 4.6 Confirmation of TK.GFP in the vesicles by immunoblotting. The presence of 

exosomes, MVs, ApoBDs and cell lysate in U87, U87. TK and U87.TK +GCV is confimed with 

CD81 and Calnexin. Our result indicates that the TK-GFP fusion protein is loaded in the EVs, 

but the expression in U87.TK exosomes are low.  
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Our mass spectrometry data revealed that the HSV-TK and GFP protein is present in 

all fractions secreted from U87.TK cells (Figure 4.7). There was no clear expression 

of the TK.GFP in wild-type U87 cells and their EV subtypes as expected. 

Interestingly, the enrichment of GFP and HSV.TK increases in MVs and ApoBDs 

from GCV treated TK cells, compared to the untreated TK cells. There were no 

significant changes observed between exosomes from both the cell types. The GCV-

treated ApoBDs showed the highest expression of TK. Thus, we demonstrated that the 

TK-protein is loaded into the EVs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Confirmation of HSV.TK and GFP protein in the vesicles by mass spectrometry 

The presence of exosomes, MVs, ApoBDs and cell lysate in U87, U87. TK and U87.TK +GCV 

is confirmed with CD81 and Calnexin. Our results indicate that the TK-GFP fusion protein is 

loaded into the EVs.   
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4.4 Transfer of EVs to other cells  

After confirming that EVs contain the TK-GFP protein as cargo it would be important 

to analyze whether the EVs are capable of transferring the suicide gene product into 

recipient cells.  To study this transfer, we planned to exploit PKH26 dyes that would 

stain the EVs and would discriminate from the cells stained with blue nuclear dye and 

green cytoplasm due to the GFP-tagged TK protein. However, to optimize the 

protocol, we first performed a pilot experiment to analyze if the exosomes are being 

transferred at all. In this pilot experiment, we labelled exosomes with PKH67 green 

dye (ex: 490 nm and em: 502 nm) and the nucleus of the cells with DAPI staining. 

When imaging with confocal microscopy we observed that the blue nucleus of the 

U87 recipient cells were surrounded by small green dots (Figure 4.8). The negative 

control is a PBS/medium control that was included to show the unbound form of dye 

without vesicles that was washed out during filtration. Our results suggest that the 

exosomes are likely transferred to recipient cells, however, we could not verify if the 

exosomes are inside the recipient cells or just attached to the outer cell membrane.   

 

 

 

 

 

 

Figure 4.8 Exosome transfer assay visualized with confocal microscopy. Panel A & B: Dapi stained 

nucleus surrounded by exosomes stained in green, Panel C: Negative control, shows only cells.  



50 
 

4.5 Cytotoxic effect of ApoBDs from TK-positive glioma cells 

As our results indicated that TK could be transferred through secreted vesicles from 

donor to recipient TK-negative cells, we wanted to investigate if the transferred 

protein could induce a potential cytotoxicity on naïve U87 by traveling through EVs. 

The mass spectrometry results (section 4.3) revealed that the abundance of TK protein 

was highest in ApoBDs and therefore we chose to first proceed with this vesicle 

subtype.  

96 hrs post incubation of U87.TK-derived ApoBDs with U87 naïve cells revealed the 

presence of the ApoBDs in the culture medium and the fluorescence emitted green 

light confirmed the presence of TK-GFP protein in the ApoBDs (Figure 4.9).    

 

 

 

 

 

 

 

 

 

After verifying the presence of TK.GFP in the ApoBDs we performed a cytotoxicity 

assay to analyze potential contribution of ApoBDs to the BE through uptake into 

naïve cells. However, we could not identify any significant differences in cell 

cytotoxicity between control or cells treated with ApoBDs and/or GCV (Figure 4.9).   

 

 

 

A B 

C D 

Figure 4.9 Cytotoxicity assay with ApoBDs. Left: A. Only U87 naïve cells. B) U87 naïve cells treated 

with GCV after 8 hrs. C) U87 naïve cells treated with ApoBDs loaded with TK protein. D) U87 naïve cells 

treated with ApoBDs containing TK protein and GCV. Right: Ratio of cell viability. Do not observe 

increased suicide activity in U87 cells treated with ApoBDs and GCV. Represent only one experiment.  
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5.Discussion 
 

The highly aggressive and invasive nature of GBM limits the outcome of standard 

therapy which involves safe surgical resection, followed by radiotherapy (RT) and 

concomitant chemotherapy with TMZ  [30]. This resistance to conventional 

treatments, which in addition is caused by tumor heterogeneity and a highly 

immunosuppressive microenvironment results in poor survival outcome and high 

mortality rate [31].  

Suicide gene therapy is a promising treatment alternative which converts a nontoxic 

prodrug into a cytotoxic drug that kills dividing tumor cells. It has been shown in 

earlier studies that the metabolized cytotoxic drug spreads to neighboring cells 

through gap junctions to execute BE [53, 54]. While gap junction-mediated BE is 

highly characterized in the HSV-TK/GCV system, it is not properly clear if soluble 

factors such as ApoBDs, MVs and exosomes play any role in this process. In addition 

to the BE mediated by the toxic drug, it is, in theory possible, that mRNA or protein 

of the suicide gene could be transferred from the TK-transduced cells via EVs during 

HSV-TK/GCV suicide gene therapy. In this regard, the involvement of EVs in the 

mechanism of BE has been studied in CD/5FC mediated SGT, which is another 

widely used SGT system.  It has been reported that exosomes produced by CD-

expressing MSCs contain the mRNA transcript of the suicide gene which can cause 

cytotoxicity in neighboring cells [57]. In the TK/GCV system, the involvement of 

ApoBD-mediated BE has been suggested, but not conclusively determined [56]. 

Furthermore, it was not investigated if the ApoBD-mediated BE was caused by the 

transfer of TK mRNA, TK-protein, or the toxic drug [56] . In addition, the 

involvement of exosomes and MVs has not been investigated in the context of 

TK/GCV-mediated SGT. The objective of this thesis was to analyze the potential 

involvement (and mechanism) of EVs in BE of HSV-TK/GCV therapy. 

Hypothetically, an EV-mediated BE can be executed through 3 major routes: 1) 

transfer of TK mRNA that can be translated into active protein in the recipient cells, 

2) transfer of TK protein and 3) transfer of phosphorylated GCV. In this project, our 

major focus was on the potential transfer of the TK protein. We analyzed the presence 

of the TK protein in EVs by using mass spectrometry and immunoblotting and 

demonstrated that the TK protein can  be loaded in EVs secreted from TK-containing 

cells.  
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We confirmed secretion and successful harvest of EVs in our model system according 

to the MISEV2018 requirements set by ISEV which demand investigation of specific 

proteins to evaluate the purity of the exosome isolate and other EVs [62]. Primary 

antibodies against calnexin, CD81, CD63, flotillin-1, TSG-101 and CD9 have already 

been used previously to demonstrate the presence (or absence in case of 

calnexin/calreticulin) of the EV-associated proteins to confirm the existence of EVs. 

However, the enrichment of marker proteins depends on the parental cell type and 

some EV markers are not always present in all EVs [88]. Our results showed that 

CD81 was abundant in the EVs of U87 and its derivative cells in a consistent manner 

and therefore we selected CD81 as a reliable EV marker protein in this study. We also 

showed that CD81 was enriched in P3/P3.TK, a GBM cell line cultured in serum-free 

medium.  

Even though immunoblotting is a sensitive analysis method, we confirmed the 

presence of EVs with a second method. TEM analysis revealed bilayered-membrane 

vesicles that were cup-shaped and heterogenous in size, which is characteristic for 

EVs. The exosomes and MVs  were found to have a size that correlates with the 

predicted size of the EVs in the literature [58, 63]. Electron microscopy in general 

(TEM or Scanning electron microscope (SEM)), is a standard method for 

characterizing the morphology of particles smaller than 300 nm [89]. Even though the 

method provides us with morphological information such as shape and size, it does 

not allow to fully discriminate between the vesicle subtypes but confirm the presence 

of the EVs. ApoBDs and MVs samples can still be contaminated with exosomes. 

Indeed, our TEM analysis shows that the ApoBDs may have been contaminated with 

other EVs. This issue could have been resolved by using specific markers found to be 

enriched in ApoBDs of some cell types. Example of such marker proteins are 

Annexin V, Thrombospondin and C3b [63] [75].  ApoBDs and MVs samples can still 

be contaminated with exosomes which can explain the size discrepancy observed in 

the images of ApoBDs. However, for precise determination, investigation with 

Nanoparticle Tracking Analysis (NTA) would be necessary.   

Further, to investigate the effects of GCV-treatment on the EVs, we subjected the 

different EV fractions and cell lysates to mass spectrometric analysis. First, we 

identified at least 1300 different proteins with modest increase of proteins in EVs and 

cell lysates treated with GCV. The separate clustering of EVs and cell lysates also 



53 
 

confirms the diverse nature of the proteins presented in the EVs and cell lysates. We 

also observed that the exosomes were separately clustered in one group and the rest of 

the EV subtypes in another group.  

Detailed analysis of the mass spectrometry data reveled an upregulation of CD81 and 

CD9 in these EV subtypes upon GCV treatment, suggesting that the extent of 

secretion of exosomes and MVs was increased following TK/GCV treatment. 

Immunoblot analysis showed a trend of similar increase. In line, mass spectrometry 

data showed that more TK and GFP protein is loaded in EVs following GCV 

treatment, which may also indicate the increased extent of EV secretion. In this 

context, it is noteworthy that immunoblot is in general not fully quantitative and thus 

not the best method to investigate extent of secretion of EVs. Furthermore, in our 

experiments, we did not use any loading controls which could be used as a 

normalizing factor. Recent evidence shows the presence of house keeping genes 

including Actin and GAPDH, but they differ in band intensity between the vesicles 

type [90] . Therefore, there is no specific loading control that could define as a house 

keeping gene for EVs. Thus, although our data indicate that TK/GCV therapy 

increases the secretion of exosomes and MVs, further confirmation by using 

quantitative nanoparticle analysis would be absolutely necessary. 

 

After having confirmed that the HSV-TK protein is loaded as a cargo in all vesicle 

fractions, we wanted to determine if the TK protein has enzymatic activity following 

transfer into the recipient cells. As our proteomic results revealed that the ApoBDs 

had the highest amount of TK protein, we proceeded with this EV-subtype to analyze 

the suicide effect on recipient cells. We performed a cell viability assay (WST-1 

assay), where we expected that the recipient naïve cells incubated with TK containing 

ApoBDs would have increased cell death upon treatment with GCV.  However, our 

results did not show any suicide activity. Unfortunately, due to the crisis related to 

COVID-19 and consequent time restrictions, we performed this experiment only once. 

Thus, no major conclusion can be drawn yet. In future more experiments will be 

necessary to verify this observation. It would be also important to optimize the 

experimental protocol. For instance, in our set-up we did not centrifuge the ApoBDs 

after applying them onto naïve cells. Subsequent centrifuge may improve the uptake. 

Thus, in the future the potential uptake may be facilitated by centrifuging the plates 

after addition of ApoBDs in order to make sure that the ApoBDs get incorporated into 
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the recipient cells, and not float in the media without contact to the recipient cells. 

One should also include ApoBDs from U87 wild-type cells as control to get more 

reliable results. It would be important to analyze if the transfer is successful with 

ApoBDs and MVs as well.  

Since exosomes and MVs from the TK positive cells also contain the TK protein it 

will be important to investigate the potential transfer and cytotoxicity of these 

fractions by using WST assay in a similar manner as for ApoBDs in future. In this 

regard, we have observed that the exosomes surround the nuclei of recipient cells, 

suggesting that the U87 cells may be susceptible for uptake of exosomes. More 

advanced microscopy will be needed to confirm if the vesicles are on top or inside the 

recipient cells.    

In the future it will be important to verify all results in an additional cell line and most 

preferably in the P3/P3 TK cell line. The P3 cell line is a patient-derived GBM cell 

line cultured in serum-free media which is more relevant to the clinical scenario [91]  

In the future, it will also be important to analyze if the TK mRNA can be loaded into 

the EVs and if so, one should investigate if this mRNA eventually can be transferred 

into the recipient cells and translated into protein. One possible way to analyze if the 

mRNA is loaded in the EVs is to perform quantitative reverse transcriptase PCR 

(qPCR) by using primers against the TK.GFP transgene. Furthermore, it should be 

investigated whether the metabolized toxic GCV-DP/TP could contribute to BE by 

traveling through EVs. This could be approached by mass spectrometry to reveal the 

abundance of GCV-DP/TP in EVs. Thereby, the abundance of GCV-DP/TP in the 

different EV subtypes could be determined as well and we could identify specific EV 

subtypes with a potentially high BE. Indeed, we planned to carry out this experiment. 

However, the proteomics facility at the University of Bergen has not the equipment 

and expertise for such analysis. We contacted the proteomics facility at the Norges 

teknisk-naturvitenskapelige universitet (NTNU) who could perform this analysis, but 

since they do not prioritize external projects, it was not possible to receive results in 

time.  

 

It is noteworthy to mention that several important experiments of this thesis could not 

be pursued due to the Covid19-related crisis. The first major experiment or analysis 

that was hindered and finally cancelled by this crisis was Nanoparticle Tracking 

https://www.ntnu.no/
https://www.ntnu.no/
https://www.ntnu.no/
https://www.ntnu.no/
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Analysis (NTA). This method allows for determination of both size distribution and 

relative concentration of EVs in a sample and is the most reliable method for 

quantification of EVs [92]. The NTA was supposed to be performed with the help of 

our collaborator at the University of Gothenburg. This method would have been a key 

method to reliably quantify all EV fractions in most of the experiments of this thesis.  

Thus, many of our quantitative results, specially from the immunoblots, in this thesis 

need to be interpreted with caution.   

Practically, we lost more than 1,5 months due to the crisis. The limited time did not 

allow us to perform cytotoxicity assays with exosomes and MVs, and also hindered us 

from pursuing further cytotoxicity experiments with ApoBDs with a modified 

protocol. Because of the unexpected results with the ApoBDs it was highly important 

for us to check transfer of ApoBDs into recipient cells. In the future this could be 

analyzed with two independent methods such as high-resolution microscopy and flow 

cytometry.  

In the future it will be interesting to perform an inhibition experiment of exosomes 

and MVs. By inhibiting secretion of exosomes by GW4869 drug and MVs production 

by ROCK inhibitor it could be possible to confirm the involvement of EVs in the 

contribution of HSV-TK/GCV-mediated BE.  

 

Conclusion  

Our major finding and main observation from this thesis is the presence of the 

TK.GFP protein in ApoBDs, MVs and exosomes derived from TK-containing tumor 

cells cells. We show that the TK protein can be loaded into the EVs of U87 cells that 

express TK. Our data also suggest that there is an increase in EV-secretion following 

HSV-TK/GCV gene therapy which could, in theory, contribute to BE. However, we 

could not yet confirm such contribution when studying transfer with ApoBDs.  
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Appendix I  
 

 

 

Heat Denaturation Digestion Protocol  

Heat digestion: 

Add 10 – 20 µl buffer and incubate at RT in Eppendorf mixer for 5 min (slow 

agitation).  

Reduction 

Add 2 -4 µl 100 mM DTT to achieve a 10 mM DTT solution.  

Heat 

Heat sample for 6 min at 95C˚ in and Eppendorf mixer. Let sample cool down to 

room temperature. 

Alkylation  

Add 3 – 6 µl 200 mM IAA for cystein alkylation, and incubate for 1h at RT in the 

dark  

(Note: Iodoacetamide is unstable and light-sensitive. Prepare solutions immediately 

before use and perform alkylation in the dark. If iodoacetamide is present in limiting 

quantities and at a slightly alkaline pH, cysteine modification will be the exclusive 

reaction. Excess iodoacetamide or non-buffered iodoacetamide reagent can also 

alkylate amines (lysine, N-termini), thioethers (methionine), imidazoles (histidine) and 

carboxylates (aspartate, glutamate)). 

To avoid unwanted protease alkylation, add 0.9 – 1.8 µl 100 mM DTT, and incubate 

10 min. at room temperature. 

Buffer: 50 mM Tris/1mM CaCl2: Add 0.61g Tris (art. no. 252859, Sigma-Aldrich) and 

15mg CaCl2 x 2H2O (art. no. 21097, Sigma-Aldrich, stabilize trypsin) to about 90ml 

dH2O. Correct the pH to 7.8-8 with HCl and adjust the volume to 100ml. Store the 

solution at 4 ◦C. 

100 mM DTT in MillQ water: Add 15.4 mg DTT (DiThioThreitol, art. no. D-9163, 

Sigma-Aldrich) to 1ml dH2O. (1M solution (154 mg/ml) may be aliquoted, and kept in 

freezer).  

200 mM IAA in MilliQ water: Add 18.5 mg IAA (Iodoacetamide, art. no. I-6125, 

Sigma Aldrich) to 0.5ml MilliQ water (must be freshly made and kept in the dark). 
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Oasis protocol (C18 cleanup) 

General notes: Method to de-salt and clean up sample after protein digestion from 

various digestion methods i.e filter aided sample preparation (FASP), in gel and in 

solution digestion. Some sample fractionation methods does not require C18 cleanup. 

Equipment needed:  

- Oasis 96 well cartridge plate 

- 96 well waste plate 

- 96 well elution plate 

- Used Oasis 96 well cartridge and elution plate for balance when centrifuging. 

- Appropriate centrifuge for plates 

- Acetonitrile, Foric acid, Trifluoroacetic acid, MQ water. 

- Pipettes 

NB!  Your sample should not be added before step 5.  Make sure that the solutions 

you add to the cartridge flows through. If not, the cartridge could be damaged, change 

cartridge. If you want to measure protein concentration on Nanodrop after Oasis, 

make sure step 9 and 10 is done with FA and not TFA. 

 

1. Place Oasis 96 well cartridge plate into waste plate.  

 

2. Activate cartridges by adding 500 μL 80% ACN, 0.1% FA. 200 x g - 1 min.  

Discard flow trough 

 

3. Wash cartridges by adding 500 μL 0.1% TFA. 200 x g – 1 min. Discard flow 

trough 

 

4.  Repeat step 3 by adding 500 μL 0.1% TFA. 200 x g – 1 min. Discard flow 

trough  

 

5.  Addition of 300 μL sample. 150 x g – 3 min. Discard flow trough  

 

6.  Wash by adding 500 μL 0.1% TFA. 200 x g – 1 min. Discard flow trough  

 

7.  Wash by adding 500 μL 0.1% TFA. 200 x g – 1 min. Discard flow trough  

 

8.  Wash by adding 500 μL 0.1% TFA. 200 x g – 1 min. Discard flow trough  

 

9.  Elute sample in 96 well elution plate. 100 μL 80% ACN, 0.1% FA. 200 x g – 

1 min. KEEP FLOW THROUGH!  

 

10. Elute sample in 96 well elution plate. 100 μL 80% ACN, 0.1% FA. 200 x g – 1 

min KEEP FLOW THROUGH! 

 

11. Dry the samples in SpeedVac. To speed up the process put samples in - 80˚C 

for 15 minutes. 

 

12. When the samples are dried add 1% FA, 2% ACN  
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NanoLC-ESI- QExcative HF mass spectrometry at PROBE 

About 0.5ug protein as tryptic peptides dissolved in 2% acetonitrile (ACN), 0.5% 

formic acid (FA), were injected into an Ultimate 3000 RSLC system (Thermo 

Scientific, Sunnyvale, California, USA) connected online to a Q-Excative HF mass 

spectrometer (Thermo Scientific, Bremen, Germany) equipped with EASY-spray 

nano-electrospray ion source source (Thermo Scientific). 

Trapping and desalting 

The sample was loaded and desalted on a pre-column (Acclaim PepMap 100, 2cm x 

75µm ID nanoViper column, packed with 3µm C18 beads) at a flow rate of 5µl/min 

for 5 min with 0.1% TFA. 

LC RUN (195 min) 

Peptides were separated during a biphasic ACN gradient from two nanoflow UPLC 

pumps (flow rate of 250 nl/min) on a 25 cm analytical column (PepMap RSLC, 50cm 

x 75 µm ID  EASY-spray column, packed with 2µm C18 beads). Solvent A and B 

were 0.1% FA (vol/vol) in water and 100% ACN respectively. The gradient 

composition was 5%B during trapping (5min) followed by 5-7%B over 0.5min, 7–

22%B for the next 61.0min, 24-35%B over 23 min, and 35–90%B over 5min. Elution 

of very hydrophobic peptides and conditioning of the column were performed during 

3 minutes isocratic elution with 90%B and 15 minutes isocratic conditioning with 

5%B. 

(a simplified elution gradient annotation – “Ret.time(%B)”: 0(5) – 5(5) – 5.5(7) – 

65(22) – 87(35) – 92(80) – 102(80) – 105(5) – 120(5) 

 

DDA, Q-Excative HF 

The eluting peptides from the LC-column were ionized in the electrospray and 

analyzed by the Q-Excative HF. The mass spectrometer was operated in the DDA-

mode (data-dependent-acquisition) to automatically switch between full scan MS and 

MS/MS acquisition. Instrument control was through Q Excative HF Tune 2.8 and 

Xcalibur 3.1 

Survey full scan MS spectra (from m/z 375-1500) were acquired in the Orbitrap with 

resolution R = 120 000 at m/z 200, automatic gain control (AGC) target of 3e6 and a 
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maximum injection time (IT) of 100ms. The 12 most intense eluting peptides above 

an intensity threshold of 50 000 counts, and charge states 2 to 6, were sequentially 

isolated to a target value (AGC) of 1e5 and a maximum IT of 110ms in the C-trap, 

and isolation width maintained at 1.6 m/z (offset of 0.3 m/z), before fragmentation in 

the HCD (Higher-Energy Collision Dissociation) cell. Fragmentation was performed 

with a normalized collision energy (NCE) of 28 %, and fragments were detected in 

the Orbitrap at a resolution of 15 000 at m/z 200, with first mass fixed at m/z 100.  

One MS/MS spectrum of a precursor mass was allowed before dynamic exclusion for 

20s with “exclude isotopes” on. Lock-mass internal calibration (m/z 445.12003) was 

enabled. 

Ionsource parameter 

The spray and ion-source parameters were as follows. Ion spray voltage = 1800V, no 

sheath and auxiliary gas flow, and capillary temperature = 275 °C. 

 

Digestion 

Sample dilution 

Add 55 – 110 µl buffer (the urea concentration is now reduced to 1M). 

Trypsinaddition for proteolysis 

Add trypsin in amount about 50 times lower than the amount of protein in the sample. 

If the sample contains approx. Ex 100 µg protein, add 2µg of protease a 0.5 µg/µl . 

Check pH with a litmus paper. pH needs to be neutral/around 7 to 8. Incubate samples 

at 37 ˚C overnight (16h) on a thermo-shaker or in a heat cabinet. 

Stock of trypsin a 0.5 µg/µl  (Promega, art. no. V 5111);  

Dissolve one ampoule (20 µg trypsin porcine powder) in 40 µl Promega resuspension 

buffer (50 mM HAc).  

To make aliquots of Trypsin Porcine a 1µg per 10µl (Promega, art. no. V 5111) 

Dissolve one ampoule (20 µg trypsin porcine powder) in 200 µl 50 mM acetic acid 

(resuspension buffer supplied from Promega). The trypsin concentration in this stock 

solution is then 0.1 µg/µl.  

Aliquot a 10µl may be frozen at -20 ˚C for 1-2 months in aliquots. Trypsin stock 

solution may be diluted in buffer before use. 

Acidification  

In this final step, acidify with 10% TFA (trifluoroacetic acid) to a 0.5-1% final 

concentration of TFA (check with a litmus paper). Add 150-200 µl 0.1% TFA to 

dilute the sample to approx. 300µl. Proceed with desalting on OASIS C18, and dry in 

freezevac. 
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Appendix II 
 

 

Figure 4.10 Heatmap representing supervised clustering. Blue represents downregulated proteins, while 

red represents upregulated proteins. Data represent one experiment. The samples cluster in two main groups, 

cell lysates and EVs.  



 

 

  

 

 

 

 

 

Figure 4.11 Upregulation of proteins due to GCV-treatment. The four venn diagrams represents the 

proteins found in exosomes, MVs, ApoBDS and cell lysates. We observed upregulation of proteins in GCV 

treated sample. This is only a trend as it represents results from only one experiment  
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