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Chapter 1

Introduction

1.1 Resource Usage

In many situations a programmer must be concerned with resources which are
not accounted and controlled completely by the programming language. These
could be external physical resources, like a printer or a screen, it could be more
abstract physical resources, like computing time, memory usage, or writing some
file to disk or it could be other software components or programs. The resources
can be used directly by the program, or indirectly, through the use of libraries
or other software. An important property of these resources is their externally,
often physically, enforced limits, which are independent of program execution.

Finding maximum and minimum number of active or used instances of these
resources at some point during execution can be difficult and demand time
from both programmer and computer. But this can also be important for safe
execution. As a silly example, a program which every minute allocates, but fails
to deallocate, 1 byte of memory, will at some point fail, while runtime testing
might not reveal this before it is run for a week. Many of the new mobile
and low-cost devices (e.g. the hundred dollar laptop http://laptop.org ) would
probably also benefit from provable upper limits on the usage of some resources,
like writing to the disk or memory.

Developing static systems for finding some of these limits, is the goal in which
this thesis hopes to take part. With “static” I mean systems which analyse the
source code, not the execution of the compiled program.

Example. Runtime checking is always an alternative to static analysis. For an
example of the difficulties that could be involved in this, I will refer the reader
to Dave Jones’ text “Why Userspace Sucks - (Or, 101 Really Dumb Things
Your App Shouldn’t Do)” held at Ottawa Linux Symposium 2006 [6]. As users
of the GNU/Linux operating system will be aware, the time from switching
on a system until it is fully operational is longer than for many other operating
systems. One of the reasons for this seems to be that many of the startup scripts
and programs use more resources than necessary - the same XML file can be
parsed hundred or thousands of times - unnecessary hardware is probed etc.
For his analysis Jones had to patch the kernel and connect a serial console to
the computer. This is time-consuming and requires a high level of competence.

http://laptop.org
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There seems to be no good tools to analyse this situation statically, which would
be possible as the source code of all the programs is readily available.

Existing tools. For languages like C, the static tools that exist mostly look
after misuse of functions or interfaces. An error-checking compiler like gcc
[4] (with warnings turned on) and splint [8] are some of the very few tools
freely available. There is also done research on statically detecting string buffer
overruns in C [14].

The alternative to a static checking is of course running the program, or,
for some properties, using a “dynamic” tool, which checks for some properties
during running. Widely used examples are “Valgrind” [10] and “D.U.M.A” [3].

Resource dependencies. Allocation of one resource can depend on alloca-
tion of other resources. Every time an instance of the depending resource is
allocated there will also be allocated the necessary instances of the resources it
depends on. As an example, starting a printer service requires, among other
resources, opening and reading some global configuration files, and for each
printer, opening and reading the postscript printer driver. If opening and read-
ing one file is seen as a resource, then the “cups” resource would depend on
several instances of this “open file” resource.

The model. The systems in this thesis are concerned with “components”
which can be allocated, created or instantiated in some manner, and also be
removed, deleted or deinstantiated. These two operations are called new and
del. There is a set of component names, and components of the same name are
identified. There can be different limits to the maximum number of concurrently
existing instances of each component. It is an error trying to deallocate or
delete a component when there are no instances of this component left, or
trying to instantiate a component, when the maximum limit is reached. There
is no exception- or error-handling. The dependency on other components is
modelled by letting the declarations of all components be the first part of any
program, and every call to new will execute the expression in the declaration
of the component. Limited resources would in many cases be modelled as a
“primitive component”, that is, a component with an empty declaration, while
more complex resource usage or libraries (like cups in the example above) will
often have non-empty declarations.

The different limits on the number of instantiated components will be in-
ferred as a type of the expression, therefore the name “Typed Resource Usage”.

Previous work. Marc Bezem and Hoang Truong have described similar sys-
tems in several texts: [2], [11], [12] and [13]. Haakon Nilsen has implemented
the type inference with the program “comp” [7].

1.2 New and old

The second chapter, the main part of this thesis, is based on a modification of
a system in Hoang Truongs thesis “Type Systems for Guaranteeing Resource
Bounds of Component Software” [13]. Many of the lemmas and theorems have
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formulations and proofs which are similar, while others are new. I will in this
section try to indicate what is new and what is more similar to Hoangs chapter.
This section is probably only interesting to those evaluating the work behind
this thesis. All proofs are written from scratch, but especially in the case of the
typing properties, the proofs are quite similar, although with some subtle, but
important differences.

Apart from the changes discussed in the introduction (removal of choice and
scope), the language is similar, but the general formulation and the treatment
of the empty string is somewhat different. The formulation of the operational
semantics is also new, as there is only one global store, and not local stores
in each node and leaf. The formal definition of a run (definition 2.2.1) is new.
The type system is changed in that σ is moved into the type as Xn. Also, the
parallel rule is changed as according to the new semantics.

Valid typing judgement (lemma 2.4.2) is changed to fit a system without
choice. Strengthening (lemma 2.4.6) has one added clause, which is new here.
Uniqueness of types is somewhat stronger, as the bases do not need to be equal.
This is usefule for type inference. The whole section on configuration properties
is new. The invariance lemma (lemma 2.4.15) is different, and the sharpness
lemma (2.4.20) is new.

As mentioned, there are many similarities in the proofs of typing properties,
but especially the proofs of the generation lemma (2.5.3) and of uniqueness of
types (2.5.6) is new. The proof of strengthening 2 (2.5.5) and all the proofs of
configuration properties are of course new. Most of the soundness properties
have also new proofs, as the invariant lemma (2.4.15) is different, although the
last three, especially soundness (2.7.5) are similar. The proof of termination
(2.9.1) is new.

The last chapters contain new proofs of new lemmas concerning sharpness in
some chapters of Truongs thesis. In addition, lemmas 3.1.8, 4.3.2, 5.3.1 and 6.3.1
are new, and in some way an extension of soundness. Except for the repetition
of some of the properties of the system, these chapters are new.
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Chapter 2

Global Resources

2.1 Introduction

The system described in this text is a modified version of the one found in
chapter 4 “Explicit Deallocation and Parallel Composition” in Hoang Truongs
thesis [13]. The language does not contain choice (+) and scope ({}), which
are present in Truongs chapter. Although I am aiming to make this text self-
contained, it is recommended to read at least chapter two of Hoangs thesis
before reading this text, as it describes a simpler system. If you have not read
it, please skip this section (“Introduction”), as it mainly concerns the differences
between the two texts.

The main change from [13] is an altered semantics of parallel composition.
The goal is to let components be shared between the threads of parallel execu-
tion. This does create some new problems. For instance, (newx · ||delx·)· should
not be run on empty store, even though one of the possible runs would actually
be okay. This is because I want to allow a parallel composition where we cannot
know or control which of the two operations will run first. This problem is also
known as scheduling.

On the other hand, the expression newx · newx · (delx · ||delx·)· can be run
from an empty store in this system, while it would create an error if it was run
in [13], as there each thread has its own store, which starts out being empty.

The model is somewhat closer to the situation seen in shared memory pro-
gramming. But note that the general problem including controlling the contents
and the access to the contents of the memory will not be handled. This is vital
for shared memory programming in general, but in this text I am only concerned
with the total amount claimed of the given component (e.g. memory), and not
that it is accessed properly. Accordingly, there is in this language no way to
actually use the components, only to claim and release them.

As mentioned above, scope (push and pop) is not treated. The changes to
the semantics of parallel are to give components a more ”global” nature, which
the scope operator would remove again. The environment has one global store
for instances of components. If expression E has type X = 〈Xn, Xp, Xa〉, then
Xn is the highest possible negative change to the store during execution of E,
Xp is the highest possible positive change to the store during execution and Xa

is the net change to the store measured after E is executed. (While Xn replaces
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the store (σ), Xp replaces Xi and Xa replaces Xo and X l).
While the maximum negative and positive change during a run depend on

the exact scheduling, this is not true of the net change after the run, which in
this system is the same for any run and independent of the scheduling.

2.2 Language

The language is defined by a context-free grammar, as defined in “Introduction
to automata theory, languages and computation” [5]. The language is param-
eterised over some non-empty set of component names. In the grammar below
“x” will indicate some element from this set.

Prog → Decls;Expr
Decls → x ≺ Expr

| x ≺ Expr,Decls
Expr → Oper · Expr

| ε
Oper → new x

| del x
| (Expr ||Expr)

(2.1)

A program in L(Prog) is a list of declarations from L(Decls) followed by
a single expression from L(Expr). This last expression is the expression which
starts the execution, while the declarations are called upon when instantiating
a component with new during the run. ε is here the empty string, not a blank.
The “·” is an expression separator somewhat akin to the semicolon in C.

The grammar rule for Expr is split in two - one for sequencing and a second
rule for each Oper in the expression. This makes the grammar Expr unam-
biguous. But it is no longer as obvious as in [13] that L(Expr) is closed under
concatenation.

2.2.1 Prog is unambiguous

From the first rule in the grammar we see that there is only one possible combi-
nation of a word from L(Expr) and L(Decls) creating a word in L(Prog). That
Expr is unambiguous will be proved by induction on the derivation of a word
E ∈ L(Expr). The inductive hypothesis is: for any shorter word E it is the case
that there is only one leftmost derivation of E. The base case is E = ε, which
has only one derivation Expr ⇒ ε. The inductive case is E = O ·E′ for some E′

and O ∈ L(Oper). There are three possibilities for O: newx, delx or (E1||E2)
for some E1 and E2. The next step in a leftmost derivation is accordingly one
of:

• Oper · Expr ⇒ newx · Expr. (If O = newx).

• Oper · Expr ⇒ delx · Expr. (If O = delx).

• Oper · Expr ⇒ (Expr||Expr) · Expr. (If O = (E1||E2)).
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In all cases there is no other possible step at this stage. In the first and second
cases, the unique leftmost derivation of E′ follows. In the third case, first comes
the steps from the derivation of E1, then from E2 and last from E′. All three
have unique leftmost derivations by the inductive hypothesis, so the rest of the
derivation is also unique.

Finally, it should not be difficult to see that L(Decls) is unambiguous: Do
an induction on the length of the list of declarations: The base case is the single
declaration x ≺ E which has a unique leftmost derivation by the unambiguity of
Expr. The inductive case is a word which is not a single declaration. The first
rule used must then be an application of Decls → x ≺ E,Decls and the steps
after this are given by the argument given for the base case and the inductive
hypothesis on Decls. �

2.2.2 L(Expr) is closed under concatenation

Let w1, w2 ∈ L(Expr). I must show that w = w1w2 ∈ L(Expr). If w1 = ε, we
have w = w2 and this word is in L(Expr) by the assumption. I will therefore
assume w1 6= ε. Assume the leftmost derivations of w1 and w2 look like this
(where n ≥ 1):

E ⇒ Oper · Expr ⇒ f1 · Expr ⇒∗ f1 · . . . · fn · Expr ⇒ f1 · . . . fn· = w1 (2.2)
Expr ⇒∗ w2 (2.3)

If we remove the last step in the derivation of w1 (2.2) and instead use the Expr
to derive w2 as in 2.3 we get a derivation of w:

Expr ⇒ Oper · Expr
⇒ f1 · Expr
⇒∗ f1 · . . . · fm · Expr
⇒∗ f1 · . . . · fm · w2 = w1w2 = w

Since we can derive w from Expr we must have w ∈ L(Expr). �

I will from now on use Prog meaning some word in L(Prog), capital Roman
letters from the beginning of the alphabet (A,B,C, . . .) meaning some word in
L(Expr) and Decls some word in L(Decls). I will also use extensively E· for a
word in L(Expr)− {ε}. The intuition is that an expression ending in · cannot
be the empty word.

2.2.3 Operational semantics

Configurations. Before embarking on the configurations and transition rules,
I will introduce the hybrid set, a generalisation of multisets. The name is taken
from “Mathematics of Multisets”, Apostolos Syropolous [9]. A hybrid set is
a mapping from some universe, in this context, the component names, to the
integers, Z. If A and B are hybrid sets over the set of component names, call
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this set Σ, we have some of the properties below:

A ⊆ B ⇔ ∀x ∈ Σ : A(x) ≤ B(x)
A = B ⇔ A ⊆ B ∧B ⊆ A

(A + B)(x) = A(x) + B(x)
(A−B)(x) = A(x)−B(x)

(A ∪B)(x) = max(A(x), B(x))
(A ∩B)(x) = min(A(x), B(x))

A(x) = 0 ⇔ x 6∈ A

In words, an element is said to be in a hybrid set if it is not mapped to 0. A
union of two hybrid sets maps the elements to the maximum of what the two
sets map them to. A sum of two hybrid sets maps the elements to the sum of
what they were mapped to in the two hybrid sets. In the other texts, there has
been a differentiation between signed and unsigned multisets. I will in this text
use hybrid sets for both cases, but argue for or require that the set only maps
to a subset of Z in certain cases. This is meant to simplify the arguments.

I will use a different notation than in [9]. I will write [x1 7→ c1, · · · , xn 7→ cn]
for a hybrid set where for all i, where 1 ≤ i ≤ n, we have xi is mapped to integer
ci, and all other components are mapped to 0. I will also use two abbreviations:
if x is some component name, then the name itself “x” is short for “x 7→ 1”
and for [x 7→ 1], such that x = [x] = [x 7→ 1] and “−x” is short for “x 7→ −1”,
such that [−x] = [x 7→ −1]. It will be clear from the context when “x” is a
component name, and when it is a hybrid set.

The operational semantics is defined by small-step transitions between “con-
figurations”. A configuration is a pair (M, T), where M is a hybrid set of com-
ponent names and T is a tree of expressions as defined below. Since the only
rule that deletes components osDel, has as prerequisite that M contains an
instance of the component, we have that M only maps components to non-
negative numbers. A configuration models a state of the system.

T → tree
Lf(Expr) Leaf

| Nd(Expr, T) Node with one branch
| Nd(Expr, T, T) Node with two branches

• We use T, T′, . . . and R, R′, . . . as variables for trees.

• A location in the tree is described by a sequence of c, l, r with • for the
root. c is used in the case of a node with a single child, while l and r are
used for the left and the right child, respectively, in the case of a node
with two children.

• By T(α) I mean the expression in the node or leaf at location α.

• T[T′]α means a tree T with a hole in the position α replaced by T′. For
example, in the rules (osNew) and (osDel) below, this means that the rule
can be applied to any leaf.

• By Tα I mean the subtree rooted in α, such that T[Tα]α = T.
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Transition rules. The allowed transitions in the operational semantics are
given in two lines each. The first line consists of the name in parenthesis and
then any conditions. The second line has the start of the transition on the left,
an arrow and then the end point of the transition:

(osNew) if x ≺ A ∈ Decls and M(x) < R(x)
(M, T[Lf(new x · E)]α) −→ (M + x, T[Lf(AE)]α)

(osDel) x ∈ M
(M, T[Lf(del x · E)]α) −→ (M − x, T[Lf(E)]α)

(osParIntr)
(M, T[Lf((A ||B) · E)]α) −→ (M, T[Nd(E, Lf(A), Lf(B))]α)

(osParElimL)
(M, T[Nd(E, Lf(ε), R))]α) −→ (M, T[Nd(E, R)]α)

(osParElimR)
(M, T[Nd(E, R, Lf(ε))]α) −→ (M, T[Nd(E, R)]α)

(osParElim)
(M, T[Nd(E, Lf(ε))]α) −→ (M, T[Lf(E)]α)

Explanation of the rules. The osNew rule is used when instantiating a com-
ponent. It first adds the component to the store, and then runs the expression
in the declaration. Note that since A and E are in L(Expr) by assumption,
then the concatenation AE is also in L(Expr). In the case where A = ε, x is
called a primitive component, and we then have AE = E. R is as in chapter
5 in [13] a restriction on the maximal number of a given component - a map-
ping from component names to (N − {0}) ∪∞. osDel deletes one instance of a
component, and does not use the declaration. The remaining four rules control
parallel execution. Note that the parallel execution is only parallel between
the two newly started threads. The expression remaining in the parent node
remains unchanged until the expressions in both leafs are terminated.

I will now give a definition of the “run” of an expression. This is mainly
used for the sharpness lemma, 2.4.20, but is included here to give an impression
of what a run is. You may skip this now, and return to it when getting to the
sharpness lemma.

Definition 2.2.1 (Run of an expression). A run of an expression E on
position α in context T, is a sequence of configurations, where

• E is the first part of the expression in a leaf in the tree in the first con-
figuration in the sequence. That is, the first configuration is of the form
(M, T[Lf(EE′)]α), where M is some store, E′ some expression, T is the
context and α the position.
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• In any pair of two consecutive configurations the last is formed from the
first using one of the rules in the operational semantics. Also, only tran-
sitions on positions of the form αβ are allowed, that is, α or any positions
below it. This means they have the following form:

(M i, Ti) = (M i, Ti[Ri]αβ) → (M i+1, Ti[Ri+1]αβ) = (M i+1, Ti+1)

where Ri and Ri+1 are leaves or nodes depending on which rule is used.

• The length of the run is the number of configurations minus one, that is,
the number of applications of the rules from the operational semantics.

• The last configuration is of the form (M ′, T[Lf(E′)]α).

�
I will often omit the context or the position, writing only “a run of E”. This

will then express a run in any context and any position within that context.

2.2.4 Example expression

As an example program I will use x ≺ ε , y ≺ new x·; (newx·delx·||newy·)·newx·.
If we run the “main” expression starting from an empty store, the first transition
in a run of it will be an instance of osParIntr:

([], Lf((newx · delx · ||newy·) · newx·)
→ ([],Nd(newx·, Lf(newx · delx·), Lf(newy·))

For the next step I can choose to take the left or the right leaf first. I show now
one possibility for the rest of the run. The names of the transitions are on the
left.

([],Nd(newx·, Lf(newx · delx·), Lf(newy·))
(osNew) → ([x],Nd(newx·, Lf(delx·), Lf(newy·))
(osNew) → ([x, y],Nd(newx·, Lf(delx·), Lf(newx·))
(osNew) → ([x 7→ 2, y],Nd(newx·, Lf(delx·), Lf(ε))

(osParElimR) → ([x 7→ 2, y],Nd(newx·, Lf(delx·))
(osDel) → ([x, y],Nd(newx·, Lf(ε))

(osParElim) → ([x, y], Lf(newx·)
(osNew) → ([x 7→ 2, y], Lf(ε)

I end up with a net increase in x with two and in y with one, and this is also
the maximum any of them reach in this run.

Now, if I change the expression by moving the last new x into the right
branch of the parallel, I get the following program:

x ≺ ε , y ≺ new x· ; (newx · delx · ||newy · newx·)·

It looks almost the same, but this program has a run reaching a maximum of
three numbers of the component x in the store. The size of the store after the
run is the same for any run of the two programs.
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2.3 Type system

A requirementR is used as in chapter 5 in [13] — a hybrid set with the restriction
that only positive values can be mapped to, that is, R ⊃ []. But because of the
global nature of the store, the requirement is not a part of the typing judgement,
but of a well-formed configuration.

Types are tuples X = 〈Xn, Xp, Xa〉 of hybrid sets. Xa represents the net
change in the number of instances from before to after execution of the expres-
sion. Xn represents the largest negative change to the store. So Xn(x) is the
number of components that must be in the store before execution to prevent
it to get stuck. Xp represents the largest positive possible change to the store
during execution. The number of instances of component x in the store added
to Xp(x) must not exceed R(x) for any component x to prevent the execution
from getting stuck because of too many copies of the component being used. In
valid typing judgement, lemma 2.4.2 I will show that Xp ⊇ [] and Xn ⊇ [], that
is, these hybrid sets only map to non-negative numbers. A typing judgement is
of the form Γ ` E : X, where Γ is a basis, as defined later in definition 2.3.1.

As mentioned after the “language” section, I will use “A·” to mean some
non-empty expression, and the intuition is that an expression ending in “·”
cannot be empty.

2.3.1 Typing rules

(Del)
Γ ` A : X x ≺ A ∈ Γ
Γ ` del x· : 〈[x], [], [−x]〉

(WeakenB)
Γ ` A : X Γ ` B : Y x 6∈ dom(Γ)

Γ, x ≺ B ` A : X

(New)
Γ ` A : X x 6∈ dom(Γ)

Γ, x ≺ A ` new x· : 〈Xn, Xp + x, Xa + x〉

(Parallel)
Γ ` A : X Γ ` B : Y

Γ ` (A ||B)· : X + Y

(Axiom)

� ` ε : 〈[], [], []〉

(Seq)
Γ ` A· : X Γ ` B· : Y

Γ ` A ·B· : 〈Xn ∪ (Y n −Xa), Xp ∪ (Xa + Y p), Xa + Y a〉
An important part of a typing judgement is the “basis”. The basis is a

reordering of a subset of the declarations in Decls.

Definition 2.3.1 (Basis). Let Γ = x1 ≺ A1, ..., xn ≺ An be a basis

• Γ is called legal if Γ ` A : X for some expression A and type X.

• A declaration x ≺ A is in Γ, notation x ≺ A ∈ Γ, if x = xi and A = Ai

for some i

• ∆ is an initial segment of Γ, if ∆ = x1 ≺ A1, ..., xj ≺ Aj for some
1 ≤ j ≤ n.

• The domain of Γ, notation dom(Γ), is the set {x1, . . . , xn}.

A typing judgement is in itself not a guarantee that the expression can run
without errors. Since expressions are local in each node, while the store is
global, there must be a global comparison between all types and the store. An
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expression E with type 〈Zn, Zp, Za〉 is safe to execute (starting from an empty
store) if

� ⊆ −Zn ⊆ Zp ⊆ R

Since Zn ⊇ [], the leftmost inclusion means that Zn must be empty (Zn = []).
It is written in this way for elegance.

The typing system is modelled after the system in [13]. The differences are,
as mentioned before, that there is only one global store, that Parallel does
not require that the subexpressions can be typed with Xn = [] and finally that
what is called the store, σ in the typing rules in [13], is here moved into the
proper type and called Xn.

2.3.2 Example

To return to the example, x ≺ ε, y ≺ new x·; (newx · delx · ||newy·) · newx·. I will
first type newx · delx·. Since we have � ` ε : 〈[], [], []〉 from the axiom, we get

(New)
� ` ε : 〈[], [], []〉 x 6∈ dom(�)
x ≺ ε ` new x· : 〈[], [x], [x]〉

(2.4)

From WeakenB applied to the axiom I now get

(WeakenB)
� ` ε : 〈[], [], []〉 � ` ε : 〈[], [], []〉 x 6∈ dom(�)

x ≺ ε ` ε : 〈[], [], []〉

And further from Del

(Del)
x ≺ ε ` ε : 〈[], [], []〉 x ≺ ε ∈ {x ≺ ε}

x ≺ ε ` delx· : 〈[x], [], [−x]〉

So, I can now sequence them:

(Seq)
x ≺ ε ` new x· : 〈[], [x], [x]〉 x ≺ ε ` del x· : 〈[x], [], [−x]〉

x ≺ ε ` new x · del x· : 〈[], [x], []〉
(2.5)

I will now continue to type (new x · del x · ||new y·)·. First, I need a type for
new y·. To do that, I can use New on the conclusion (2.4) from above:

(New)
x ≺ ε ` new x· : 〈[], [x], [x]〉 y 6∈ dom(x ≺ ε)
x ≺ ε, y ≺ new x· ` new y· : 〈[], [x, y], [x, y]〉

To be able to use Parallel on the two expressions, I must first weaken the
base of the left expression (2.5) to get the same basis:

(WeakenB)
x ≺ ε ` new x · del x· : 〈[], [x], []〉 x ≺ ε ` new x· : 〈[], [x], [x]〉 y 6∈ dom(x ≺ ε)

x ≺ ε , y ≺ new x· ` new x · del x· : 〈[], [x], []〉
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(The second premise comes from (2.4)). An application of Parallel then gives

(Parallel)
x ≺ ε, y ≺ new x· ` new x · del x· : 〈[], [x], []〉 x ≺ ε, y ≺ new x· ` new y· : 〈[], [x, y], [x, y]〉

x ≺ ε, y ≺ new x· ` (new x · del x · ||new y·)· : 〈[], [[x 7→ 2], y], [x, y]〉

Now I want to sequence this with new x·, for which I have a type (2.4), but
first I need to weaken the basis.

(WeakenB)
x ≺ ε ` new x· : 〈[], [x], [x]〉 x ≺ ε ` new x· : 〈[], [x], [x]〉 y 6∈ dom(x ≺ ε)

x ≺ ε , y ≺ new x· ` new x· : 〈[], [x], [x]〉

And finally, from Seq

(Seq)
x ≺ ε, y ≺ new x· ` (new x · del x · ||new y·)· : 〈[], [x 7→ 2, y], [x, y]〉
x ≺ ε , y ≺ new x· ` new x· : 〈[], [x], [x]〉

x ≺ ε , y ≺ new x· ` (new x · del x · ||new y·) · new x· :
〈[] ∪ ([]− [x, y]), [x 7→ 2, y] ∪ ([x, y] + [x]), [x, y] + [x]〉
〈[] ∪ [−x,−y], [x 7→ 2, y] ∪ [x 7→ 2, y], [x 7→ 2, y]〉
〈[], [x 7→ 2, y], [x 7→ 2, y]〉

(2.6)

This means that the expression is safe to execute on an empty store (Xn = [])
if R(x) ≥ 2 and R(y) ≥ 1, since the maximum increase during the run will be
two of x and one of y. This also will be the amount left after the run of the
expression. This was also what we saw in the example run above. Note that it
is not generally the case that Xa and Xp coincide like this.

If we now look at the modified version of the example,

x ≺ ε , y ≺ new x·; (newx · delx · ||newy · newx·)·

First see that new y · new x· has type 〈[], [x 7→ 2, y], [x 7→ 2, y]〉. By applying
Parallel we then get that

x ≺ ε, y ≺ new x· ` (newx · delx · ||newy · newx·)· : 〈[], [x 7→ 3, y], [x 7→ 2, y]〉

This fits with our observation earlier, that there is a run which achieves three x
during the run, but the number of components in the store after the run is the
same as in the original example expression.

2.4 Properties

2.4.1 Typing properties

Before defining a valid typing judgement I have to define what dom(X∗) means
for any of the hybrid sets Xn, Xp or Xa in some type X. I have already used
the notation dom(Γ) for domain of a base, but while a base can be undefined for
the components it does not contain, this is not the case of the hybrid sets - they
map the remaining components to 0. To be of any use to us dom of a hybrid
set must usually be smaller than the domain of the mapping they represent.
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Definition 2.4.1 (dom(X∗)).

dom(X∗) = {x|X(x) 6= 0}

Note that a consequence of this is that we can in some situations have
dom(A + B) ⊂ dom(A) ∪ dom(B), as we could have A(x) = −B(x) for some
component x.

Lemma 2.4.2 (Valid Typing Judgement). For all typing derivations Γ `
A : X this holds:

1. var(A) ⊆ dom(Γ), dom(X∗) ⊆ dom(Γ).

2. Every variable in dom(Γ) is declared only once in Γ.

3. Xp ⊇ Xa ⊇ −Xn.

4. Xp ⊇ [] and Xn ⊇ [].

Lemma 2.4.3 (Associativity). Assume Γ ` Ai· : Xi for i ∈ {1, 2, 3}, and let
Γ ` A1 ·A2· : X12 and Γ ` A2 ·A3· : X23 be inferred by Seq. The two different
ways to apply Seq to infer a type for A1 ·A2 ·A3·, namely,

(Seq)
Γ ` A1 ·A2· : X12 Γ ` A3· : X3

Γ ` A1 ·A2 ·A3· : X

and
(Seq)
Γ ` A1· : X1 Γ ` A2 ·A3· : X23

Γ ` A1 ·A2 ·A3· : Y

lead to equal types, that is, X = Y in the above inferences.

Proof on page 22

Lemma 2.4.4 (Generation lemma). For all typing derivations Γ ` E : X

1. If E = ε, then X = 〈[], [], []〉.

2. If E = new x·, then there exist ∆,∆′, A and Y such that

Γ = ∆, x ≺ A,∆′

∆ ` A : Y
X = 〈Y n, Y p + x, Y a + x〉

3. If E = del x·, then
x ∈ dom(Γ)
X = 〈[x], [], [−x]〉

4. If E = (A ||B)· for some A,B, then there exist Y and Z such that

Γ ` A : Y
Γ ` B : Z
X = Y + Z
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5. If E = A · B· for some expressions A· and B· , then there exist Y and Z
such that

Γ ` A· : Y
Γ ` B· : Z
X = 〈Y n ∪ (Zn − Y a), Y p ∪ (Y a + Zp), Y a + Za〉

Proof on page 23.

Lemma 2.4.5 (Weakening). 1. If Γ = ∆, x ≺ E,∆′ is legal, then ∆ ` E :
X for some X.

2. If Γ ` E : X and Γ is an initial segment of a legal basis Γ′, then Γ′ ` E : X.

Proof on page 26.

Lemma 2.4.6 (Strengthening). 1. If Γ, x ≺ A ` B : Y and x 6∈ var(B),
then Γ ` B : Y .

2. If Γ = x1 ≺ A1, . . . , xn ≺ An is a legal basis and x 6∈ dom(Γ), then for all
i, where 1 ≤ i ≤ n, we have that x 6∈ var(Ai).

Proofs on page 27. Before expressing the next lemma, uniqueness, I will
define a “valid” set of declarations as those with only one declaration of each
component.

Definition 2.4.7 (Valid set of declarations). A set of declarations {x1 ≺
A1, . . . , xn ≺ An} will be called “valid” iff we have that for all i, j where 1 ≤
i, j ≤ n and i 6= j also xi 6= xj.

Note that valid typing judgement (lemma 2.4.2), clause 2, guarantees this
property for any basis in a valid typing judgement.

Lemma 2.4.8 (Uniqueness of type). Let Γ and Γ′ be reorderings of subsets
of the same valid set of declarations. If Γ ` A : X and Γ′ ` A : Y , then X = Y .

Proof on page 29.

2.4.2 Configuration properties

To be able to get more type information from a tree, I need a notion of “the
expression of a tree”. Since all two parallel branches can be expressed by parallel
composition in the language, this is not difficult.

Definition 2.4.9 (Expression of a tree). The expression of a tree, expr(T) is
defined inductively by writing parallel branches as parallel and sequencing parent
nodes after their children.

expr(Lf(E)) = E
expr(Nd(E, T)) = (ε||expr(T)) · E
expr(Nd(E, T, T′)) = (expr(T)||expr(T′)) · E
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As an example, I will use this tree

T = Nd(A,Nd(B, Lf(D)),Nd(C, Lf(E), Lf(F ))),

where A,B,C, D, E and F are some expressions. If we only include the expres-
sions at each node, the tree could be visualised like this

A

�
B

D

@
C

� A
E F

And the expression of the tree is:

expr(T) = ((ε||D) ·B||(E||F ) · C) ·A.

The following lemma expresses a property we get using this definition of the
expression of a tree.

Lemma 2.4.10 (Property of expr(T)). If E = expr(T), then there is a run
of E in context ([], E) where after only applying rules osParIntr and osParElim∗
we get a configuration of the form ([], T).

Proof on page 31.

Definition 2.4.11 (Type of a tree). If Γ is such that for every α in the tree
T there is an X such that Γ ` T(α) : X, then there exist Y such that

Γ ` expr(T) : Y

This Y is unique and we define τ(T) = Y , and say that T is well-typed with
respect to Γ.

I will sometimes drop the Γ and just write that T is well-typed, meaning
with respect to some unspecified Γ.

Note that the previous paragraph (2.4.11), in addition to defining τ(T), also
states the existence of this type given a type for the expression in every node and
leaf under the same basis. This property must be proved. To clearly separate
the definition from the existence property I will state this separately in the next
lemma.

Lemma 2.4.12 (Typability of a tree). If the expression at every node and
leaf in a tree has a type under the same basis, then the expression of the whole
tree also has a type under the same basis. In other words:

∀Γ : ((∀α ∈ T : ∃X : (Γ ` T(α) : X)) ⇒ ∃τ(T) : (Γ ` expr(T) : τ(T)))

In addition, since for all positions α in T, we have that for some τ(T(α)),
Γ ` T(α) : τ(T(α)) we get:

τ(T)a =
∑
α∈T

τ(T(α)) (2.7)
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Proof on page 31. τ(T(α)) will here and later express the type of the ex-
pression at position α in the tree T.

It should also be easy to see that any subtree of a well-typed tree also is
well-typed, as follows. That the expression at each position has a type follows
from it being a subtree of a well-typed tree, and then I can again use Lemma
2.4.12 to get the existence of a type for the expression of the subtree.

Definition 2.4.13 (Well-formed configuration). Configuration (M, T) is
well-formed with respect to a basis Γ and a restriction R, notation Γ |=R (M, T),
iff T is well-typed with respect to Γ and we have:

[] ⊆ M − τ(T)n ⊆ M + τ(T)p ⊆ R

I will omit the subscript R when no confusion can arise.
We see from this that the conditions stated in section 2.3.1 for an expression

being safe to execute on an empty store:

[] ⊆ −Zn ⊆ Zp ⊆ R,

gives a well-formed configuration. Remember that if Γ ` E : Z for some reorder-
ing Γ and type Z, then τ(Lf(E)) = Z, so we get that if ([], Lf(E)) is well-formed
then

[] ⊆ []− Zn ⊆ [] + Zp ⊆ R,

that is, [] ⊆ −Zn ⊆ Zp ⊆ R.

Definition 2.4.14 (Terminal configurations). A configuration T is terminal
if it has the form (M, Lf(ε)), where M is any store.

2.4.3 Soundness properties

Lemma 2.4.15 (Invariance of M − τ(T)n and M + τ(T)p). If Γ |= (M, T)
and (M, T) −→ (M ′, T′), then

1. expr(T′) has a type under the same basis - there exists τ(T′) such that
Γ ` expr(T′) : τ(T′).

2.
M − τ(T)n ⊆ M ′ − τ(T′)n

M + τ(T)p ⊇ M ′ + τ(T′)p

M + τ(T)a = M ′ + τ(T′)a

Proof on page 37. The invariance lemma is important for understanding the
system, and both preservation (2.4.16) and soundness (2.4.19) make extensive
use of it.

Lemma 2.4.16 (Preservation). If Γ |= (M, T) and (M, T) −→ (M ′, T′) then
Γ |= (M ′, T′)

Proof on page 43.

Lemma 2.4.17 (Progress). If Γ |= (M, T) then either (M, T) is terminal or
there exists a configuration (M ′, T′) such that (M, T) −→ (M ′, T′)

Proof on page 44.
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Definition 2.4.18 (Stuck states). A configuration (M, T) is stuck if no tran-
sition rule applies and (M, T) is not terminal.

This means in practice that no side condition of any applicable rule from
the operational semantics holds for (M, T).

Lemma 2.4.19 (Soundness). Let Prog = Decls;E be such that Γ |=R ([], E)
for some reordering Γ of Decls and restriction R. Then for any (M, T) such
that ([], Lf(E)) −→∗ (M, T) we have that (M, T) is not stuck and M ⊆ Xp.

Proof on page 45.

Lemma 2.4.20 (Sharpness). If Γ ` E : X then, for every component x,
for every restriction R and every well-formed configuration (M, T[Lf(E)]α) =
(M0, T0) with respect to the given R, there exists a run

(M0, T0) → · · · → (Mn, Tn) = (Mn, T[Lf(ε)]α)

of E where there is a k, 0 ≤ k ≤ n, such that Mk(x) = M0(x) + Xp(x), and
there exists a run

(M0, T0) → · · · → (Mm, Tm) = (Mm, T[Lf(ε)]α)

of E where there is a j, 0 ≤ j ≤ m, such that Mj(x) = M0(x)−Xn(x), and for
all runs

(M0, T0) → · · · → (Mq, Tq) = (Mq, T[Lf(ε)]α)

of E we have Mq(x) = M0(x) + Xa(x).

The next corollary is a special case of the previous lemma (2.4.20), only
using M0 = [] and α = •.
Corollary 2.4.21 (Sharpness of programs). For any program Prog =
Decls;E such that for some reordering Γ of Decls we have Γ ` E : X and
Γ |=R ([], Lf(E)), for some restriction R, then, for every component x, there is
a run

([], Lf(E)) = ([], T0) → · · · → (Mn, Tn) = (Mn, Lf(ε))

where there is a k, 0 ≤ k ≤ n such that Mk(x) = M0(x) + Xp(x), and there
exists a run

([], T0) → · · · → (Mm, Tm) = (Mm, Lf(ε))

of E where there is a j, 0 ≤ j ≤ m such that Mj(x) = M0(x)−Xn(x), and for
all runs

([], T0) → · · · → (Mq, Tq) = (Mq, Lf(ε))

of E we have Mq(x) = Xa(x) + M0(x).

Proofs on pages 46 to 54.

Example. We have that

expr(Nd(newx, Lf( new x delx), Lf(newy))) = ( new xdel x||new y)new x

In the previous section (2.6) we saw that

x ≺ ε, y ≺ new x ` (new x del x||new y)new x : 〈[], [x 7→ 2, y], [x 7→ 2, y]〉

This implies that

τ(Nd(newx, Lf( new x delx), Lf(newy))) = 〈[], [x 7→ 2, y], [x 7→ 2, y]〉
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2.4.4 Termination

As a last theorem, we have termination:

Theorem 2.4.22 (Termination). If Γ ` E : X for some Γ, E and X, then
for any T, R, α and M such that Γ |=R (M, T[Lf(E)]α) we have that any run
of E in context T, on position α and starting with store M has finite length.

Prof on page 54.

2.5 Proofs of typing properties

Truth. Truth is all I want. And a little dignity.

Charles Chaplin.

2.5.1 Valid typing judgement (Lemma 2.4.2)

The lemma states that: For all typing derivations Γ ` A : X this holds:

1. var(A) ⊆ dom(Γ), dom(X∗) ⊆ dom(Γ).

2. Every variable in dom(Γ) is declared only once in Γ.

3. Xp ⊇ Xa ⊇ −Xn.

4. Xp ⊇ [] and Xn ⊇ [].

Proof By induction on the length of typing derivations of Γ ` A : X. The
base case is Axiom

Base case Let Γ ` A : X be inferred by Axiom:

� ` ε : 〈[], [], []〉

We now have A = ε and Γ = � and X = 〈[], [], []〉. Then var(ε) = dom(X∗) =
dom(�) and [] ⊇ [] ⊇ −[] and all the clauses hold.

Inductive Cases The inductive cases concern the other typing deriva-
tions:

• Let Γ ` A : X be inferred by WeakenB:

Γ′ ` A : X Γ′ ` B : Y x 6∈ dom(Γ′)
Γ′, x ≺ B ` A : X

We have Γ = Γ′, x ≺ B and A and X the same as in the hypothesis.

1. By the inductive hypothesis var(A) ⊆ dom(Γ′) and dom(X∗) ⊆ dom(Γ′)
so the clause follows by dom(Γ′) ⊂ dom(Γ′, x ≺ B) = dom(Γ).

2. By the inductive hypothesis on the shorter typing derivation Γ′ ` A :
X all variables in Γ′ are declared only once. By the side condition
this does not include x, so the new declaration of x is unique in
Γ = Γ′, x ≺ B.
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3. I need to know that Xp ⊇ Xa ⊇ −Xn. But we have this already by
the inductive hypothesis on Γ′ ` A : X, which has a shorter typing
derivation.

4. I need to know that Xp ⊇ [] and Xn ⊇ []. But we have this already
by the inductive hypothesis on Γ′ ` A : X, which has a shorter typing
derivation.

• Let Γ ` A : X be inferred by New:

Γ′ ` B : Y x 6∈ dom(Γ)
Γ′, x ≺ B ` new x· : 〈Y n, Y p + x, Y a + x〉

We have A = new x·, X = 〈Y n, Y p + x, Y a + x〉 and Γ = Γ′, x ≺ B.

1. For the first condition: var(new x·) = {x} ⊆ dom(Γ′, x ≺ B). For the
second condition: by the inductive hypothesis dom(Y ∗) ⊆ dom(Γ′).
Adding x on both sides (because of the side condition) keeps the
subset relation.

2. By the inductive hypothesis on the shorter typing derivation Γ′ ` B :
Y all variables in Γ′ are declared only once. By the side condition
this does not include x, so the new declaration of x is unique in
Γ = Γ′, x ≺ B.

3. By the induction hypothesis I have Y p ⊇ Y a ⊇ −Y n. This implies
Y p + x ⊇ Y a + x ⊇ −Y n, which is all we need.

4. By the induction hypothesis I have Y p ⊇ [] and Y n ⊇ []. This implies
Y p + x = Xp ⊇ [] and Y n = Xn ⊇ [], which is all we need.

• Let Γ ` A : X be inferred by Del:

Γ ` B : Y x ≺ B ∈ Γ
Γ ` del x· : 〈[x], [], [−x]〉

Then A = delx·, X = 〈[x], [], [−x]〉 and Γ the same as in the premise.

1. Holds by side condition: dom(Xn) = dom(Xa) = {x} = var(del x·) =
{x} ⊆ dom(Γ) and dom(Xp) = [].

2. By the induction hypothesis all variables in dom(Γ) are declared ex-
actly once in Γ, and this is all we need.

3. Holds by [] ⊇ [−x] ⊇ −[x].

4. Holds by [x] ⊇ [] and [] ⊇ [].

• Let Γ ` A : X be inferred by Parallel:

Γ ` B : Y Γ ` C : Z

Γ ` (B ||C)· : 〈Y n + Zn, Y p + Zp, Y a + Za〉

We then have A = (B ||C)·, X = 〈Y n + Zn, Y p + Zp, Y a + Za〉 and Γ as
in the hypothesis. By the inductive hypothesis we have var(B) ⊆ dom(Γ),
dom(Y ∗) ⊆ dom(Γ), var(C) ⊆ dom(Γ) and dom(Z∗) ⊆ dom(Γ)
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1.

var(A) = var((B ||C)·) = var(B) ∪ var(C) ⊆ dom(Γ)
dom(X∗) = dom(Y ∗ + Z∗) ⊆ dom(Y ∗) ∪ dom(Z∗) ⊆ dom(Γ)

2. Since Γ is the same in the premises and the conclusion, this holds by
the inductive hypothesis.

3. I have Y p ⊇ Y a ⊇ −Y n and Zp ⊇ Za ⊇ −Zn. This implies

Y p + Zp ⊇ Y a + Za ⊇ −(Y n + Zn),

which is all we need.

4. I have Y p ⊇ [] and Y n ⊇ [] and Zp ⊇ [] and Zn ⊇ []. This implies
Y p + Zp ⊇ [] and Y n + Zn ⊇ [] which is all we need.

• Let Γ ` A : X be inferred by (Seq):

Γ ` B· : Y Γ ` C· : Z

Γ ` B · C· : 〈Y n ∪ (Zn − Y a), Y p ∪ (Y a + Zp), Y a + Za〉

Then A = B ·C·, X = 〈Y n ∪ (Zn − Y a), Y p ∪ (Y a + Zp), Y a + Za〉 and Γ
the same as in the hypothesis.

1. holds by the inductive hypothesis and var(B ·C·) = var(B·)∪ var(C·)
and

dom(Xp) = dom(Y p ∪ (Y a + Zp)) ⊆ dom(Y p) ∪ dom(Y a) ∪ dom(Zp) ⊆ dom(Γ)
dom(Xn) = dom(Y n ∪ (Zn − Y a)) ⊆ dom(Y n) ∪ dom(Y a) ∪ dom(Zn) ⊆ dom(Γ)

dom(Xa) = dom(Y a + Za) ⊆ dom(Y a) ∪ dom(Za) ⊆ dom(Γ)

2. Since Γ is the same in the premises, which have a shorter typing
derivation, and the conclusion, this holds by the inductive hypothesis.

3. I do this in the parts; first I show that Xp ⊇ Xa. Remember I have
Zp ⊇ Za from inductive hypothesis on the shorter typing derivation
Γ ` C· : Z, and this implies Y a + Zp ⊇ Y a + Za.

Xp = Y p ∪ (Y a + Zp)
⊇ (Y a + Zp)
⊇ Y a + Za

= Xa

Secondly I must prove that Xa ⊇ −Xn. I use that from the inductive
hypothesis Za ⊇ −Zn and Y a ⊇ −Y n.

Xa = Y a + Za

⊇ Y a − Zn Za ⊇ −Zn

= ((−Y n) ∪ Y a)− Zn Y a ⊇ −Y n

= (−Y n − Zn) ∪ (Y a − Zn) distributivity of − over ∪
⊇ (−Y n) ∪ (Y a − Zn) Zn ⊇ []
= −(Y n ∪ (Zn − Y a)) distributivity of − over ∪
= −Xn
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4. From the inductive hypothesis I have Y n ⊇ [] and Y p ⊇ []. By the
properties of union of hybrid sets, this implies that Y n∪(Zn−Y a) ⊇ []
and Y p ∪ (Y a + Zp) ⊇ [], which is what I need to prove.

�

2.5.2 Associativity (Lemma 2.4.3)

Assume Γ ` Ai· : Xi for i ∈ {1, 2, 3}, and let Γ ` A1 · A2· : X12 and Γ `
A2 ·A3· : X23 be inferred by Seq. The two different ways to apply Seq to infer
a type for A1 ·A2 ·A3·, namely,

(Seq)
Γ ` A1 ·A2· : X12 Γ ` A3· : X3

Γ ` A1 ·A2 ·A3· : X

and
(Seq)
Γ ` A1· : X1 Γ ` A2 ·A3· : X23

Γ ` A1 ·A2 ·A3· : Y

lead to equal types, that is, X = Y in the above inferences.

Proof I have Γ ` Ai· : Xi for i ∈ {1, 2, 3}. First I will find the types X12 and
X23.

Apply first Seq to A1· and A2·:

(Seq)
Γ ` A1· : X1 Γ ` A2· : X2

Γ ` A1 ·A2· : 〈Xn
1 ∪ (Xn

2 −Xa
1 ), Xp

1 ∪ (Xa
1 + Xp

2 ), Xa
1 + Xa

2 〉

Using the same kind of application, I also get Γ ` A2 · A3· : 〈Xn
2 ∪ (Xn

3 −
Xa

2 ), Xp
2 ∪ (Xa

2 + Xp
3 ), Xa

2 + Xa
3 〉. Now, sequence A1 ·A2· with A3·:

(Seq)
Γ ` A1 ·A2· : 〈Xn

1 ∪ (Xn
2 −Xa

1 ), Xp
1 ∪ (Xa

1 + Xp
2 ), Xa

1 + Xa
2 〉

Γ ` A3· : X3

Γ ` A1 ·A2 ·A3· : 〈(Xn
1 ∪ (Xn

2 −Xa
1 )) ∪ (Xn

3 −Xa
1 −Xa

2 ),
(Xp

1 ∪ (Xa
1 + Xp

2 )) ∪ (Xa
1 + Xa

2 + Xp
3 ),

Xa
1 + Xa

2 + Xa
3 〉

and to A1· with A2 ·A3·:

(Seq)
Γ ` A1· : X1

Γ ` A2 ·A3· : 〈Xn
2 ∪ (Xn

3 −Xa
2 ), Xp

2 ∪ (Xa
2 + Xp

3 ), Xa
2 + Xa

3 〉
Γ ` A1 ·A2 ·A3· : 〈Xn

1 ∪ (Xn
2 ∪ (Xn

3 −Xa
2 )−Xa

1 ),
Xp

1 ∪ (Xa
1 + Xp

2 ∪ (Xa
2 + Xp

3 )),
Xa

1 + Xa
2 + Xa

3 〉

To show they are equal, note first that the last part Xa is the same. For Xn:

Xn
1 ∪ (Xn

2 ∪ (Xn
3 −Xa

2 )−Xa
1 ) =

Xn
1 ∪ ((Xn

2 −Xa
1 ) ∪ (Xn

3 −Xa
2 −Xa

1 )) =
(Xn

1 ∪ (Xn
2 −Xa

1 )) ∪ (Xn
3 −Xa

2 −Xa
1 )
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And finally, Xp:

Xp
1 ∪ (Xa

1 + Xp
2 ∪ (Xa

2 + Xp
3 )) =

Xp
1 ∪ ((Xa

1 + Xp
2 ) ∪ (Xa

1 + Xa
2 + Xp

3 )) =
(Xp

1 ∪ (Xa
1 + Xp

2 )) ∪ (Xa
1 + Xa

2 + Xp
3 ) =

�

2.5.3 Generation (Lemma 2.4.4)

The proof is by structural induction on the typing derivations. The inductive
hypothesis is: For any shorter type derivation with conclusion Γ ` E : X: if
E = ε, then X = 〈[], [], []〉, if E = new x·, then there exist ∆,∆′, A and Y such
that Γ = ∆, x ≺ A,∆′ and ∆ ` A : Y and X = 〈Y n, Y p + x, Y a + x〉, if
E = del x·, then x ∈ dom(Γ) and X = 〈[x], [], [−x]〉, if E = (A ||B)· for some
A,B, then there exist Y and Z such that Γ ` A : Y , Γ ` B : Z and X = Y + Z,
and finally, if E = A · B· , then there exist Y and Z such that Γ ` A· : Y ,
Γ ` B· : Z and X = 〈Y n ∪ (Zn − Y a), Y p ∪ (Y a + Zp), Y a + Za〉.

The base case is the derivation of shortest length: � ` ε : 〈[], [], []〉, which
can only be derived by Axiom. This only fits the pattern E = ε, and we have
the result X = 〈[], [], []〉 directly from the type rule.

The inductive cases are the following:

• New. Using any shorter type derivation ∆ ` A : Y where x 6∈ dom(∆),
we can apply New, and the application will follow this pattern:

(New)
∆ ` A : Y x 6∈ dom(∆)

∆, x ≺ A ` new x· : 〈Y n, Y p + x, Y a + x〉

The conclusion is of a form where E = new x·. This means that I must
show that there exist ∆,∆′, A and Y such that Γ = ∆, x ≺ A,∆′ and
∆ ` A : Y and X = 〈Y n, Y p + x, Y a + x〉. Now, let ∆ be the same as in
the rule application, let ∆′ = � and the properties should hold.

• Del. Using any shorter type derivation Γ ` A : X where x ≺ A ∈ Γ, I
can get a longer one with this application:

(Del)
Γ ` A : X x ≺ A ∈ Γ
Γ ` del x· : 〈[x], [], [−x]〉

This fits the pattern where E = del x·, and we must have x ∈ dom(Γ) and
X = 〈[x], [], [−x]〉. Both hold immediately from the rule application.

• Seq. Take any two type derivations Γ ` A1· : Y1 and Γ ` B1· : Z1. I can
get a longer derivation with the following application:

(Seq)
Γ ` A1· : Y1 Γ ` B1· : Z1

Γ ` A1 ·B1· : 〈Y n
1 ∪ (Zn

1 − Y a
1 ), Y p

1 ∪ (Y a
1 + Zp

1 ), Y a
1 + Za

1 〉

We see that we are in the case where E = A ·B· and X is the type in the
last inference, so we need to prove that there exist Y and Z, such that
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Γ ` A· : Y , Γ ` B· : Z and X = 〈Y n∪(Zn−Y a), Y p∪(Zp+Y a), Y a+Za〉.
But even though A · B· = A1 · B1·, it is not necessarily the case that
A· = A1· and B· = B1·. There are actually three different possibilities:

We can have (1) : A· = A1· and B· = B1·, or, if A· 6= A1· and B· 6= B1·
we can have: (2) A· = A1 ·A2· and B1· = A2 ·B· or finally (3) we can have
B· = A2 ·B1· and A1· = A ·A2·. I treat each of the three cases separately
below:

1. A· = A1· and B· = B1·: This one is not difficult, as the wanted
properties follows from the application of Seq above, just removing
the subscripts and you have the wanted types Y and Z:

(Seq)
Γ ` A· : Y Γ ` B· : Z

Γ ` A ·B· : 〈Y n ∪ (Zn − Y a), Y p ∪ (Y a + Zp), Y a + Za〉

2. A· = A1 · A2· and B1· = A2 · B·. Note that Γ ` B1· : Z1 is derived
by a shorter type derivation, so by the inductive hypothesis used on
B1· = A2 ·B· there are Y2 and Z, such that Γ ` A2· : Y2, Γ ` B· : Z
and Z1 = 〈Y n

2 ∪ (Zn − Y a
2 ), Y p

2 ∪ (Y a
2 + Zp), Y a

2 + Za〉. Now apply
Seq to A· = A1 ·A2·:

(Seq)
Γ ` A1· : Y1 Γ ` A2· : Y2

Γ ` A1 ·A2· : 〈Y n
1 ∪ (Y n

2 − Y a
1 ), Y p

1 ∪ (Y a
1 + Y p

2 ), Y a
1 + Y a

2 〉

Since A1 ·A2· = A·, we now have Γ ` A· : Y , where Y = 〈Y n
1 ∪ (Y n

2 −
Y a

1 ), Y p
1 ∪ (Y a

1 + Y p
2 ), Y a

1 + Y a
2 〉. Now again apply Seq, this time to

A· and B·:

(Seq)
Γ ` A· : Y Γ ` B· : Z

Γ ` A ·B· : 〈Y n ∪ (Zn − Y a), Y p ∪ (Y a + Zp), Y a + Za〉

Since A · B· = A1 · A2 · B· and A1 · B1· = A1 · A2 · B·, we now have
equality of X and the type of A ·B· by associativity (2.4.3).

3. B· = A2 · B1· and A1· = A · A2·. I will proceed as in the previous
case, just renaming as necessary: note that Γ ` A1· : Y1 is derived
by a shorter type derivation, so by the inductive hypothesis used on
A1· = A · A2· there are Y and Y2, such that Γ ` A· : Y , Γ ` A2· : Y2

and Y1 = 〈Y n ∪ (Y n
2 − Y a), Y p ∪ (Y a + Y p

2 ), Y a + Y a
2 〉. Now apply

Seq to B· = A2 ·B1·:

(Seq)
Γ ` A2· : Y2 Γ ` B1· : Z1

Γ ` A1 ·A2· : 〈Y n
2 ∪ (Zn

1 − Y a
2 ), Y p

2 ∪ (Y a
2 + Zp

1 ), Y a
2 + Za

1 〉

Since A2 ·B1· = B·, we now have Γ ` B· : Z, where Z = 〈Y n
2 ∪ (Zn

1 −
Y a

2 ), Y p
2 ∪ (Y a

2 + Zp
1 ), Y a

2 + Za
1 〉. Now again apply Seq, this time to

A· and B·:

(Seq)
Γ ` A· : Y Γ ` B· : Z

Γ ` A ·B· : 〈Y n ∪ (Zn − Y a), Y p ∪ (Y a + Zp), Y a + Za〉
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Since A · B· = A · A2 · B1· and A1 · B1· = A · A2 · B1·, we now have
equality of X and the type of A ·B· by associativity (2.4.3).

• Parallel.

(Parallel)
Γ ` A : Y Γ ` B : Z

Γ ` (A ||B)· : 〈Y n + Zn, Y p + Zp, Y a + Za〉

We have E = (A ||B)· and have to show that there are Y and Z such that
Γ ` A : Y and Γ ` B : Z and X = Y +Z. All three properties follow from
the rule application as shown above.

• WeakenB.

(WeakenB)
Γ′ ` E : X Γ′ ` C : V y 6∈ dom(Γ′)

Γ′, y ≺ C ` E : X

I have Γ = Γ′, y ≺ C. I must now do a case distinction on E, according
to the case distinction in the inductive hypothesis:

– E = ε:
(WeakenB)
Γ′ ` ε : X Γ′ ` C : V y 6∈ dom(Γ′)

Γ′, y ≺ C ` ε : X

In this case, E = ε and I must prove that X = 〈[], [], []〉. This follows
from the inductive hypothesis applied to Γ′ ` ε : X.

– E = new x·
The application of WeakenB would then follow this pattern:

(WeakenB)
Γ′ ` new x· : X Γ′ ` C : V y 6∈ dom(Γ′)

Γ′, y ≺ C ` new x· : X

Since Γ′ ` new x· : X must have been derived by a shorter deriva-
tion, I can apply the inductive hypothesis and get the existence of
∆1,∆2, A and Y , such that ∆1 ` A : Y and Γ′ = ∆1, x ≺ A,∆2 and
X = 〈Y n, Y p + x, Y a + x〉. If we let ∆ = ∆1 and ∆′ = ∆2, y ≺ C,
we have all the needed properties.

– E = del x· The type was then derived by an application of WeakenB
of this form:

(WeakenB)
Γ′ ` del x· : X Γ′ ` C : V y 6∈ dom(Γ′)

Γ′, y ≺ C ` del x· : X

Since the premise of this rule has a shorter derivation, I can use
the inductive hypothesis, and get that X = 〈[x], [], [−x]〉 and x ∈
dom(Γ′). Since the latter also implies x ∈ dom(Γ′, y ≺ B) = dom(Γ),
I am done.
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– E = A ·B·.
It was then derived with WeakenB like this:

(WeakenB)
Γ′ ` A ·B· : X Γ′ ` C : V y 6∈ dom(Γ′)

Γ′, y ≺ C ` A ·B· : X

Since it is the conclusion of a shorter type derivation, I can apply
the inductive hypothesis on Γ′ ` A · B· : X and get the existence
of Y and Z, such that Γ′ ` A· : Y and Γ′ ` B· : Z and X =
〈Y n∪(Zn−Y a), Y p∪(Zp+Y a), Y a+Za〉. Now I can apply WeakenB
to the type judgements for A· and B·:

(WeakenB)
Γ′ ` A· : Y Γ′ ` C : V y 6∈ dom(Γ′)

Γ′, y ≺ C ` A· : Y

(WeakenB)
Γ′ ` B· : Z Γ′ ` C : V y 6∈ dom(Γ′)

Γ′, y ≺ C ` B· : Z

and I get Γ ` A· : Y and Γ ` B· : Z as needed.

– E = (A||B)·. Assume Γ ` (A ||B)· : X is inferred by:

(WeakenB)
Γ′ ` (A ||B)· : X Γ′ ` C : V y 6∈ dom(Γ′)

Γ′, y ≺ C ` (A ||B)· : X

We can apply the induction hypothesis to Γ′ ` (A ||B)· : X and get

Γ′ ` A : Y
Γ′ ` B : Z

X = 〈Y n + Zn, Y p + Zp, Y a + Za〉

Now I apply WeakenB to the premises, first for A:

(WeakenB)
Γ′ ` A : Y Γ′ ` C : V y 6∈ dom(Γ′)

Γ′, y ≺ C ` A : Y

and then for B:

(WeakenB)
Γ′ ` B : Z Γ′ ` C : V y 6∈ dom(Γ′)

Γ′, y ≺ C ` B : Z

�

2.5.4 Weakening (Lemma 2.4.5)

1 If Γ = ∆, x ≺ E,∆′ is legal, then ∆ ` E : X for some X.
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Proof. Since Γ = ∆, x ≺ E,∆′ is legal, then by the definition of bases (2.3.1)
there exist B and Y such that Γ ` B : Y . In the typing derivation tree for B, the
only way to extend ∆ to ∆, x ≺ E is by applying the rule New or WeakenB

(New)
∆ ` E : Z x 6∈ dom(∆)

∆, x ≺ E ` new x· : 〈Zn, Zp + x,Za + x〉

(WeakenB)
∆ ` A : X ∆ ` E : Z x 6∈ dom(∆)

∆, x ≺ E ` A : X

Each of these rules have ∆ ` E : Z as a premise. �

2 If Γ ` E : X and Γ is an initial segment of a legal basis Γ′, then Γ′ ` E : X.

Proof Since Γ is an initial sequence of Γ′, assume Γ′ = Γ, x1 ≺ A1, . . . , xn ≺
An. From the previous item, we have that for every k, 1 ≤ k ≤ n, there is Xk

such that:
Γ, x1 ≺ A1, . . . , xk−1 ≺ Ak−1 ` Ak : Xk

So we can apply WeakenB repeatedly, for k = 1, etc. up to k = n:

Γ, x1 ≺ A1, . . . , xk−1 ≺ Ak−1 ` E : Z
Γ, x1 ≺ A1, . . . , xk−1 ≺ Ak−1 ` Ak : Xk

xk 6∈ dom(Γ, x1 ≺ A1, . . . , xk−1 ≺ Ak−1)
Γ, x1 ≺ A1, . . . , xk ≺ Ak ` E : Z

�

2.5.5 Strengthening (Lemma 2.4.6)

1 The lemma is: if Γ, x ≺ A ` B : Y and x 6∈ var(B), then Γ ` B : Y .
The proof is by induction on typing derivations. The inductive hypothesis

is: for any shorter type derivation Γ ` B : Y , if Γ = Γ′, x ≺ A for some Γ′, x
and A, and where x 6∈ var(B), then also Γ′ ` B : Y .

Base case. The base case is the rule axiom. Since here Γ = �, it does not fit
the condition Γ = Γ′, x ≺ A, and accordingly the lemma holds vacuously.

Inductive cases

• New.

If Γ′, x ≺ A ` B : Y is inferred by an application New, then we would
have B = new x· for some x, and also Γ = Γ′, x ≺ A for some Γ′ and A,
and the same x. This does not fit the conditions in the lemma, so the
lemma holds.

• Del.

Assume the last step in the derivation of Γ′, x ≺ A ` B : Y is
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(Del)
Γ′, x ≺ A ` C : Z y ≺ C ∈ Γ′, x ≺ A

Γ′, x ≺ A ` del y· : 〈[y], [], [−y]〉
This means we would have B = del y· for some y. y 6= x follows from the
condition that x 6∈ var(B). Since x 6= y, we must have that Γ′ = ∆, y ≺
C,∆′ for some ∆ and ∆′. From weakening (lemma 2.4.5), clause 1, we
then get ∆ ` C : W for some type W . From valid typing (lemma 2.4.2)
we then further get that x 6∈ var(C). This means we can use the inductive
hypothesis to get Γ′ ` C : Z. Now use this in a new application of Del:

(Del)
Γ′ ` C : Z y ≺ C ∈ Γ′

Γ′ ` del y· : 〈[y], [], [−y]〉

• WeakenB.

Assume the last step in the derivation of Γ′, x ≺ A ` B : Y is

(WeakenB)
Γ′ ` B : Y Γ′ ` A : X x 6∈ dom(Γ′)

Γ′, x ≺ A ` B : Y

with x 6∈ var(B). In this case, Γ′ ` B : Y is a premise, so the lemma holds
directly by the inductive hypothesis.

• Parallel.

Assume the last step in the derivation of Γ′, x ≺ A ` B : Y is:

(Parallel)
Γ′, x ≺ A ` C : V Γ′, x ≺ A ` D : W

Γ′, x ≺ A ` (C ||D)· : V + W

Since x 6∈ var((C||D)·) implies x 6∈ var(C) and x 6∈ var(D), I can by
induction hypothesis on the premises assume that Γ′ ` C : V and Γ′ ` D :
W . Apply Parallel to this:

(Parallel)
Γ′ ` C : V Γ′ ` D : W

Γ′ ` (C ||D)· : V + W

• Seq.

Assume the last step in the derivation of Γ ` B : Y is:

(Seq)
Γ′, x ≺ A ` C· : V Γ′, x ≺ A ` D· : W

Γ′, x ≺ A ` C ·D· : 〈V n ∪ (Wn − V a), V p ∪ (V a + W p), V a + W a〉

Here, Γ′, x and A are the same as in the induction hypothesis and X =
〈V n ∪ (Wn − V a), V p ∪ (V a + W p), V a + W a〉. Since the premises have
shorter typing derivations and cannot contain more variables than the
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conclusion, I can apply the induction hypothesis and get that Γ′ ` C· : V
and Γ′ ` D· : W . Apply Seq to this to get:

(Seq)
Γ′ ` C· : V Γ′ ` D· : W

Γ′ ` C ·D· : 〈V n ∪ (Wn − V a), V p ∪ (V a + W p), V a + W a〉

�

2 The lemma is: if Γ = x1 ≺ A1, . . . , xn ≺ An is a legal basis and x 6∈ dom(Γ),
then for all i, where 1 ≤ i ≤ n, we have that x 6∈ var(Ai).

Proof. For any i, where 1 ≤ i ≤ n, we have that Γ = ∆, xi ≺ Ai,∆′ for some
possibly empty sequences of declarations ∆ and ∆′. From Γ a legal basis we
know that for some expression E and type X we have ∆, xi ≺ Ai,∆′ ` E : X.
From this we can use weakening, lemma 2.4.5, clause 1, to get that ∆ ` Ai : Xi

for some Xi. Since ∆ is an initial sequence of Γ, we must have dom(∆) ⊆ dom(Γ)
and therefore x 6∈ dom(∆). From valid typing, lemma 2.4.2, and ∆ ` Ai : Xi

we have that var(Ai) ⊆ dom(∆), which implies x 6∈ var(Ai). �

2.5.6 Uniqueness (Lemma 2.4.8)

Let Γ and Γ′ be reorderings of subsets of the same valid set of declarations. If
Γ ` A : X and Γ′ ` A : Y , then X = Y .

Proof. Note that a valid set of declarations (defined on page 15) implies there
is at most one declaration for each component. Let S be a valid set of declara-
tions containing all declarations in Γ and Γ′. The proof is by induction on the
typing derivation of Γ ` A : X.

The inductive hypothesis is: for any shorter typing derivations Γ ` A : X,
if for some Γ′ ` A : Y , where Γ and Γ′ are reorderings of subsets of S, then we
have that X = Y .

• The base case is Axiom: � ` ε : 〈[], [], []〉. This means that Γ = � and
A = ε. Now, this means the other derivation is Γ′ ` ε : Y , and then we
have by generation lemma (2.4.4) for ε that Y = 〈[], [], []〉 = X.

The inductive cases are the following:

• Assume Γ ` A : X is inferred by:

(New)
∆ ` B : Z x 6∈ dom(∆)

∆, x ≺ B ` new x· : 〈Zn, Zp + x,Za + x〉

Now, this means the other derivation is Γ′ ` new x· : Y . From the gener-
ation lemma (2.4.4) for new I have the existence of ∆1,∆2, C and V such
that Γ′ = ∆1, x ≺ C,∆2 and ∆1 ` C : V and Y = 〈V n, V p + x, V a + x〉.
Now, since Γ and Γ′ are reorderings of subsets of S and there cannot be
more than one declaration of x in a valid set of declarations, we must have
C = B, and we must also have that ∆ and ∆1 are reorderings of subsets
of S. This implies by the inductive hypothesis applied to ∆ ` B : Z that
Z = V , so I get Y = 〈Zn, Zp + x, Za + x〉 = X.
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• Assume Γ ` A : X is inferred by:

(Del)
Γ ` B : Z x ≺ B ∈ Γ
Γ ` del x· : 〈[x], [], [−x]〉

This means the other derivation is Γ′ ` del x· : Y . We then have from the
generation lemma (2.4.4) for del that Y = 〈[x], [], [−x]〉 = X.

• Assume Γ ` A : X is inferred by:

(Parallel)
Γ ` B : Z Γ ` C : V

Γ ` (B ||C)· : Z + V

Now, the other typing judgement is Γ′ ` (B ||C)· : Y . I have from the
generation lemma (2.4.4) for parallel that there are Z ′ and V ′ such that
Γ′ ` B : Z ′, Γ′ ` C : V ′ and Y = Z ′ + V ′. I can use the inductive
hypothesis on Γ ` B : Z to get Z ′ = Z and on Γ ` C : V to get V ′ = V .
This means Y = Z ′ + V ′ = Z + V = X.

• Assume Γ ` A : X is inferred by:

(Seq)
Γ ` B· : Z Γ ` C· : V

Γ ` B · C· : 〈Zn ∪ (V n − Za), Zp ∪ (V p + Za), Za + V a〉

Now the other typing judgement is Γ′ ` B · C· : Y . I have from the
generation lemma (2.4.4) for sequencing that there are Z ′ and V ′ such
that Γ′ ` B· : Z ′, Γ′ ` C· : V ′ and Y = 〈Z ′n ∪ (V

′n − Z
′a), Z

′p ∪ (V
′p +

Z
′a), Z

′a + V
′a〉. I can use the inductive hypothesis on Γ ` B· : Z to get

Z ′ = Z and on Γ ` C· : V to get V ′ = V . This means 〈Z ′n ∪ (V
′n −

Z
′a), Z

′p∪(V
′p +Z

′a), Z
′a +V

′a〉 = 〈Zn∪(V n−Za), Zp∪(V p +Za), Za +
V a〉 which implies Y = X.

• Assume Γ ` A : X is inferred by:

(WeakenB)
∆ ` A : X ∆ ` B : Z x 6∈ dom(∆)

∆, x ≺ B ` A : X

Now the other typing judgement is Γ′ ` A : Y for Γ′ some other reorder-
ing of some subset of S. We have X = Y directly from the inductive
hypothesis.

�

2.6 Proofs of configuration properties

2.6.1 Proof of property of expr(T) (Lemma 2.4.10)

The lemma is: if E = expr(T), then there is a run of E in context ([], E) where
after only applying rules osParIntr and osParElim∗ we get a configuration of the
form ([], T).
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Proof. By induction on the tree T. The inductive hypothesis is somewhat
stronger. To get the lemma from the hypothesis, use α = •. The induction
hypothesis is: for any smaller tree T, is is the case that if E = expr(T), R
some tree and α some position in it, then there is a run of E in context R,
position α and starting with store M where after only applying rules osParIntr
and osParElim∗ we get a configuration of the form (M, R[T]α).

• Base case. This is the case when T = Lf(E′). Then we have E =
expr(Lf(E′)) = E′. This means that this first configuration in any run
of E has the properties needed.

• T = Nd(E′, T′). Then we have E = expr(T) = (ε||expr(T′))E′. The first
two transitions in a run of E could be

(M, R[Lf((ε||expr(T′))E′)]α) → (M, R[Nd(E′, Lf(ε), Lf(expr(T′)))]α)
→ (M, R[Nd(E′, Lf(expr(T′)))]α) (2.8)

Since T′ is smaller than T, we have from inductive hypothesis that there
is a run of expr(T′) in context (M, R[Nd(E′, Lf(expr(T′)))]α) and position
αc where after only using the allowed transitions we get a configuration:

· · · → (M, R[Nd(E′, T′)]α) = (M, R[T]α)

By appending these with the two transitions from (2.8) above we get the
needed transitions and configuration.

• T = Nd(E′, T′, T′′). Then we have E = expr(T) = (expr(T′)||expr(T′′))E′.
The first transition in a run of E could be

(M, R[Lf((expr(T′)||expr(T′′))E′)]α)
→ (M, R[Nd(E′, Lf(expr(T′)), Lf(expr(T′′)))]α)

Since both T′ and T′′ are smaller than T, we have from inductive hypoth-
esis that there is a run of expr(T′) in the context above and position αl
where we reach configuration

(M, R[Nd(E′, T′, Lf(expr(T′′)))]α) (2.9)

after only using the allowed transitions. And we have that there is a run
of expr(T′′) in this new context (2.9) and position αr where we reach a
configuration

(M, R[Nd(E′, T′, T′′)]α) = (M, R[T]α)

By appending these two sequences of configurations and the first osParIntr
above, we get the needed transitions and configuration.

�

2.6.2 Typability of trees (Lemma 2.4.12)

I have a Γ, such that for every position α in the tree T, there exists a type
τ(T(α)) such that Γ ` T(α) : τ(T(α)). I want to show that

1. There exist τ(T), such that Γ ` expr(T) : τ(T).
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2.
τ(T)a =

∑
α∈T

τ(T(α))a

I will use induction on the structure of a tree.

• The base case is only one leaf: T = Lf(E). In this case it is easy, as the
expression of this tree is exactly the expression in the root: expr(T) = E,
which we know from the assumptions has a type. Secondly, the only
possible value for α is the root •, and we have τ(T) = τ(T(•)).

• The first inductive case is where there are two branches from the root:
T = Nd(E•, Tl, Tr).

1. From the inductive hypothesis I know that Γ ` expr(Tl) : τ(Tl) and
Γ ` expr(Tr) : τ(Tr). We have expr(T) = (expr(Tl)||expr(Tr)) · E•.
Then from an application of Parallel I get:

Γ ` expr(Tl) : τ(Tl) Γ ` expr(Tr) : τ(Tr)
Γ ` (expr(Tl)||expr(Tr))· : τ(Tl) + τ(Tr)

Further I have from assumptions that Γ ` E• : X• and by applying
Seq I will get:

Γ ` (expr(Tl)||expr(Tr)) · E• : 〈(τ(Tl)n + τ(Tr)n) ∪ (Xn
• − τ(Tl)a − τ(Tr)a),

(τ(Tl)p + τ(Tr)p) ∪ (τ(Tl)a + τ(Tr)a + Xp
• ),

τ(Tl)a + τ(Tr)a + Xa
• 〉

2. From the inductive hypothesis I know that∑
α∈Tl

τ(Tl(α))a = τ(Tl)a

∑
α∈Tr

τ(Tr(α))a = τ(Tr)a

Further I have from item 1 that τ(T)a = τ(Tl)a + τ(Tr)a + Xa
• for

X• = τ(T(•)) and from the structure of the tree that∑
α∈T

τ(T(α))a = Xa
• +

∑
α∈Tl

τ(Tl(α))a +
∑

α∈Tr

τ(Tr(α))a

All in all this gives me

∑
α∈T

τ(T(α))a =

Xa
• +

∑
α∈Tl

τ(Tl(α))a +
∑

α∈Tr

τ(Tr(α))a =

Xa
• + τ(Tl)a + τ(Tr)a =

τ(T)a
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• The other inductive case is where there is one branch from the root: T =
Nd(E•, Tc).

1. From the inductive hypothesis I know that Γ ` expr(Tc) : τ(Tc). We
have expr(T) = (expr(Tc)||ε)·E•. Then from an application of Parallel
I get:

Γ ` expr(Tc) : τ(Tc) Γ ` ε : 〈[], [], []〉
Γ ` (expr(Tc)||ε)· : τ(Tc)

Further I have from assumptions that Γ ` E• : X• and by applying
Seq I will get:

Γ ` (expr(Tc)||ε) · E• : 〈(τ(Tc)n ∪ (Xn − τ(Tc)a),
τ(Tc)p ∪ (τ(Tc)a + Xp

• ),
τ(Tc)a + Xa

• 〉

2. From the inductive hypothesis I know that
∑

α∈Tc
τ(Tc(α))a = τ(Tc)a.

Further I have from item 1 that τ(T)a = τ(Tc)a + Xa
• for X• =

τ(T(•)) and from the structure of the tree that
∑

α∈T τ(T(α))a =
Xa
• +

∑
α∈Tc

τ(Tc(α))a.
All in all this gives me

∑
α∈T

τ(T(α))a =

Xa
• +

∑
α∈Tc

τ(Tc(α))a =

Xa
• + τ(Tc)a =

τ(T)a

�

2.7 Proofs of soundness properties

Before I can prove the invariance theorem (2.4.15), I need an auxiliary lemma.
In a way, this is a generalisation of the two first cases (osNew and osDel) in the
proof of the invariance lemma below.

Lemma 2.7.1 (Change in leaf equals change in tree). Let there be two
well-typed trees T = R[Lf(E)]β and T′ = R[Lf(E′)]β, which are equal except
for the expression in the leaf β. Remember we can assume from well-typed
(Definition 2.4.11) that there are Γ, X,Γ′ and X ′ such that Γ ` E : X and
Γ′ ` E′ : X ′ and that there is τ(T) and τ(T′) such that Γ ` expr(T) : τ(T) and
Γ′ ` expr(T) : τ(T). The following holds ([x 7→ c] stands for the hybrid set in
which x has multiplicity c.)

1. If for some integer c it is the case that Xn = X
′n+[x 7→ c] and Xa = X

′a−
[x 7→ c] then also τ(T)n = τ(T′)n + [x 7→ c] and τ(T)a = τ(T′)a − [x 7→ c].

2. If for some integer d it is the case that Xn = X
′n and Xa = X

′a+[x 7→ d],
then τ(T)n ⊇ τ(T′)n − [x 7→ d] and τ(T)a = τ(T′)a + [x 7→ d].
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3. If for some integer e it is the case that Xp = X
′p−[x 7→ e] and Xa = X

′a−
[x 7→ e] then also τ(T)p = τ(T′)p − [x 7→ e] and τ(T)a = τ(T′)a − [x 7→ e].

4. If for some integer f it is the case that Xp = X
′p and Xa = X

′a−[x 7→ f ],
then τ(T)p ⊇ τ(T′)p − [x 7→ f ] and τ(T)a = τ(T′)a − [x 7→ f ].

Although I will prove the general case, where c, d, e and f can be any integers,
we will only use the cases where they have value 1, 0 or −1. Note that in
X = X ′+[x 7→ c] only the number of x counts and that the number of instances
of all other components are unchanged between X and X ′, both in the premise
and in the conclusion.

2.7.1 Proof of lemma 2.7.1

The proof will be by structural induction on the size of the tree R. The inductive
hypothesis is:

Let there be a smaller well-typed tree R and any two well-typed
trees T = R[Lf(E)]β and T′ = R[Lf(E′)]β . The two trees are equal
except for the expression in position β. I can assume Γ ` E : X and
Γ′ ` E′ : X ′ and Γ ` expr(T) : τ(T) and Γ′ ` expr(T′) : τ(T′). Then
it holds that:

1. If for some integer c it is the case that Xn = X
′n +[x 7→ c] and

Xa = X
′a − [x 7→ c] then also τ(T)n = τ(T′)n + [x 7→ c] and

τ(T)a = τ(T′)a − [x 7→ c].

2. If for some integer d it is the case that Xn = X
′n and Xa =

X
′a + [x 7→ d], then τ(T)n ⊇ τ(T′)n − [x 7→ d] and τ(T)a =

τ(T′)a + [x 7→ d].

3. If for some integer e it is the case that Xp = X
′p− [x 7→ e] and

Xa = X
′a − [x 7→ e] then also τ(T)p = τ(T′)p − [x 7→ e] and

τ(T)a = τ(T′)a − [x 7→ e].

4. If for some integer f it is the case that Xp = X
′p and Xa =

X
′a − [x 7→ f ], then τ(T)p ⊇ τ(T′)p − [x 7→ f ] and τ(T)a =

τ(T′)a − [x 7→ f ].

• The base case T = Lf(E), the smallest tree consisting of a single leaf, is
easy, as τ(T) = X and τ(T′) = X ′.

• There are two inductive cases. The first, and most complex, is a tree with
two branches.

T = Nd(E•, Tl, Tr)

Since the change is limited to one leaf, this means that β must be a leaf
in one of the two subtrees. Remember the root is •. β will now be a leaf
in one of the two smaller subtrees rooted in l and r:
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•
A
A
A

�
�

�
l r

β

Nd(E•, . . .)
A
A
A

�
�

�
Tl Tr

Lf(E)

As seen above, I will treat the case where β = l . . ., namely in the left
subtree. The other case is symmetric and can be treated by swapping l
and r in the text. The expression in the root, E•, and the whole right
subtree, Tr, is equal in both trees, so we could have used that the change
was between a leaf of Tl = Rl[Lf(E)]β′ and T′

l = Rl[Lf(E′)]β′ , where
β = lβ′. I then get:

T′ = Nd(E•, T′
l, Tr)

Directly from T and T′ well-typed (Definition 2.4.11) we get the existence
of an X• such that Γ ` E• : X•.

I now want to be able to use the inductive hypothesis on the smaller
subtree Tl. That Tl and T′

l are well-typed follows from T and T′ well-
typed, respectively. This means I can use the inductive hypothesis on Tl

and T′
l. From T and T′ well-typed and tree typing (Lemma 2.4.12) I get

the existence of τ(Tr), τ(Tl) and τ(T′
l) such that Γ ` expr(Tr) : τ(Tr),

Γ ` expr(Tl) : τ(Tl) and Γ′ ` expr(T′
l) : τ(T′

l). We then have

expr(T) = (expr(Tl)||expr(Tr)) · E•

expr(T′) = (expr(T′
l)||expr(Tr)) · E•

I will now try to type these two expressions and see what their difference
is. An application of Parallel gives:

Γ ` (expr(Tl)||expr(Tr))· : τ(Tl) + τ(Tr) =
〈τ(Tl)n + τ(Tr)n, τ(Tl)p + τ(Tr)p, τ(Tl)a, τ(Tr)a〉

and further from Seq:

Γ ` (expr(Tl)||expr(Tr)) · E• : 〈(τ(Tl)n + τ(Tr)n) ∪ (Xn
• − τ(Tl)a − τ(Tr)a),

(τ(Tl)p + τ(Tr)p) ∪ (Xp
• + τ(Tl)a + τ(Tr)a),

τ(Tl)a + τ(Tr)a + Xa
• 〉

= τ(T)

In the same way I can find τ(T′):

Γ ` (expr(T′
l)||expr(Tr))E• : 〈(τ(T′

l)
n + τ(Tr)n) ∪ (Xn

• − τ(T′
l)

a − τ(Tr)a),
(τ(T′

l)
p + τ(Tr)p) ∪ (Xp

• + τ(T′
l)

a + τ(Tr)a),
τ(T′

l)
a + τ(Tr)a + Xa

• 〉
= τ(T′)

In the last step I have to consider the different cases in the lemma sepa-
rately:
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1. I have Xn = X
′n+[x 7→ c] and Xa = X

′a−[x 7→ c] for some constant
c. From the inductive hypothesis I have τ(Tl)n = τ(T′

l)
n + [x 7→ c]

and τ(Tl)a = τ(T′
l)

a−[x 7→ c]. I have to prove that τ(T)n = τ(T′)n+
[x 7→ c] and τ(T)a = τ(T′)a − [x 7→ c].

τ(T)n = (τ(Tl)n + τ(Tr)n) ∪ (Xn
• − τ(Tl)a − τ(Tr)a)

= (τ(T′
l)

n + [x 7→ c] + τ(Tr)n) ∪ (Xn
• − (τ(T′

l)
a − [x 7→ c])− τ(Tr)a)

= (τ(T′
l)

n + [x 7→ c] + τ(Tr)n) ∪ (Xn
• − τ(T′

l)
a + [x 7→ c]− τ(Tr)a)

= (τ(T′
l)

n + τ(Tr)n) ∪ (Xn
• − τ(T′

l)
a − τ(Tr)a) + [x 7→ c]

= τ(T′)n + [x 7→ c]

τ(T)a = τ(Tl)a + τ(Tr)a + Xa
•

= τ(T′
l)

a +−[x 7→ c] + τ(Tr)a + Xa
•

= τ(T′)a − [x 7→ c]

2. I have Xn = X
′n and Xa = X

′a + [x 7→ d] for some constant d.
From the inductive hypothesis I have τ(Tl)n ⊇ τ(T′

l)
n − [x 7→ d] and

τ(Tl)a = τ(T′
l)

a+[x 7→ d]. I have to prove that τ(T)n ⊇ τ(T′)n−[x 7→
d] and τ(T)a = τ(T′)a + [x 7→ d].

τ(T)n = (τ(Tl)n + τ(Tr)n) ∪ (Xn
• − τ(Tl)a − τ(Tr)a)

= (τ(Tl)n + τ(Tr)n) ∪ (Xn
• − τ(T′

l)
a − [x 7→ d]− τ(Tr)a)

⊇ (τ(T′
l)

n − [x 7→ d] + τ(Tr)n) ∪ (Xn
• − τ(T′

l)
a − [x 7→ d]− τ(Tr)a)

= (τ(T′
l)

n + τ(Tr)n) ∪ (Xn
• − τ(T′

l)
a − τ(Tr)a)− [x 7→ d]

= τ(T′)n − [x 7→ d]

τ(T)a = τ(Tl)a + τ(Tr)a + Xa
•

= τ(T′
l)

a + [x 7→ d] + τ(Tr)a + Xa
•

= τ(T′)a + [x 7→ d]

3. I have Xp = X
′p− [x 7→ c] and Xa = X

′a− [x 7→ c] for some constant
c. From the inductive hypothesis I have τ(Tl)p = τ(T′

l)
p−[x 7→ c] and

τ(Tl)a = τ(T′
l)

a−[x 7→ c]. I have to prove that τ(T)p = τ(T′)p−[x 7→
c] and τ(T)a = τ(T′)a − [x 7→ c].

τ(T)p = (τ(Tl)p + τ(Tr)p) ∪ (Xp
• + τ(Tl)a + τ(Tr)a)

= (τ(T′
l)

p − [x 7→ c] + τ(Tr)p) ∪ (Xp
• + τ(T′

l)
a − [x 7→ c] + τ(Tr)a)

= (τ(T′
l)

p + τ(Tr)p) ∪ (Xp
• + τ(T′

l)
a + τ(Tr)a)− [x 7→ c]

= τ(T′)p − [x 7→ c]

τ(T)a = τ(Tl)a + τ(Tr)a + Xa
•

= τ(T′
l)

a − [x 7→ c] + τ(Tr)a + Xa
•

= τ(T′)a − [x 7→ c]

4. I have Xp = X
′p and Xa = X

′a − [x 7→ f ] for some integer f .
From the inductive hypothesis I have τ(Tl)p ⊇ τ(T′

l)
p − [x 7→ f ] and

τ(Tl)a = τ(T′
l)

a−[x 7→ f ]. I have to prove that τ(T)p ⊇ τ(T′)p−[x 7→
f ] and τ(T)a = τ(T′)a − [x 7→ f ].
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τ(T)p = (τ(Tl)p + τ(Tr)p) ∪ (Xp
• + τ(Tl)a + τ(Tr)a)

= (τ(Tl)p + τ(Tr)p) ∪ (Xp
• + τ(T′

l)
a − [x 7→ f ] + τ(Tr)a)

⊇ (τ(T′
l)

p − [x 7→ f ] + τ(Tr)p) ∪ (Xp
• + τ(T′

l)
a − [x 7→ f ] + τ(Tr)a)

= (τ(T′
l)

p + τ(Tr)p) ∪ (Xp
• + τ(T′

l)
a + τ(Tr)a)− [x 7→ f ]

= τ(T′)p − [x 7→ f ]

τ(T)a = τ(Tl)a + τ(Tr)a + Xa
•

= τ(T′
l)

a − [x 7→ f ] + τ(Tr)a + Xa
•

= τ(T′)a − [x 7→ f ]

• The other inductive case, is a node with one child, c:

•

c

In this case, expr(T) = (ε||expr(Tc))E• = expr(Nd(E•, Lf(ε), Tc)). In other
words: the expression of the tree is the same as if it was a node with two
children, one which was a leaf with an empty expression. The type is also
the same. This configuration is covered by the previous case. �

2.7.2 Invariance of M − τ(T)n, M + τ(T)p and M + τ(T)a

(Lemma 2.4.15)

If Γ |= (M, T) and (M, T) −→ (M ′, T′), then

1. expr(T′) has a type under the same basis — there exists τ(T′) such that
Γ ` expr(T′) : τ(T′).

2.
M − τ(T)n ⊆ M ′ − τ(T′)n

M + τ(T)p ⊇ M ′ + τ(T′)p

M + τ(T)a = M ′ + τ(T′)a

The proof is by analysis of the reduction relation. Suppose reduction occurs
at position β. Since T is well-typed, there exist X = 〈Xn, Xp, Xa〉, M and Γ
such that Γ ` T(β) : X and M ⊇ Tn. For item 1, I will only prove that the
changed expression at node β and possibly the new leaves βl and βr have a type
derived from the same basis. This will by typability of trees (2.4.12) imply that
the whole tree has a type.

In item 2, I will use the types found in the first item. I will also use that
we at this point will know that T is well-typed, often without mentioning it
explicitly.

• Case osNew

(osNew) if x ≺ A ∈ Decls
(M, T) = (M, R[Lf(new x · E)]β) −→ (M + x, R[Lf(AE)]β) = (M + x, T′)
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1. Since T′(β) = AE, we must prove that Γ ` AE : Z for some Z. We
have Γ ` new x ·E : 〈Xn, Xp, Xa〉. I must now do a case distinction
on whether E = ε.

– E 6= ε By the generation lemma (2.4.4) for Seq, we get Γ `
new x· : X1 and Γ ` E : X2 with

X = 〈Xn
1 ∪ (Xn

2 −Xa
1 ), Xp

1 ∪ (Xp
2 + Xa

1 ), Xa
1 + Xa

2 〉

for some X1 and X2. By the generation lemma for New ap-
plied to Γ ` new x· : X1 we have Y,∆ and ∆′ s.t. ∆ ` A :
〈Xn

1 , Y p, Y a〉, Xp
1 = Y p +x,Xa

1 = Y a +x and Γ = ∆, x ≺ A,∆′.
Since ∆ is an initial sequence of Γ, by weakening (Lemma 2.4.5)
we have Γ ` A : 〈Xn

1 , Y p, Y a〉. I must now do a new case dis-
tinction on whether A = ε.
∗ If A 6= ε I can sequence A with E after the typing rule for

Seq :

(Seq)
Γ ` A : 〈Xn

1 , Y p, Y a〉 Γ ` E : X2

Γ ` AE : 〈Xn
1 ∪ (Xn

2 − Y a), Y p ∪ (Y a + Xp
2 ), Y a + Xa

2 〉

Since Xa
1 = Y a + x this means that Γ ` AE : Z with

Z = 〈Xn
1 ∪ (Xn

2 −Xa
1 +x), Xp

1 ∪ (Xa
1 +Xp

2 )−x,Xa
1 −x+Xa

2 〉

∗ If A = ε, I get that AE = E and from this follows Z = X2.
Further, we then have from the generation lemma for ε that
Y = 〈[], [], []〉 (that is, Γ ` A : 〈[], [], []〉) which implies X1 =
〈[], [x], [x]〉 and X = 〈[] ∪ (Zn − x), Zp + x,Za + x〉.

– E = ε. Then we have new x · E = new x·. By the generation
lemma for New applied to Γ ` new x· : X we have Y,∆ and
∆′ s.t. ∆ ` A : 〈Xn, Y p, Y a〉, Xp = Y p + x,Xa = Y a + x
and Γ = ∆, x ≺ A,∆′. Since ∆ is an initial sequence of Γ, by
weakening (Lemma 2.4.5) we have Γ ` A : 〈Xn, Y p, Y a〉. Since
we have AE = A I get Z = 〈Xn, Y p, Y a〉 = 〈Xn, Xp−x, Xa−x〉.
From the generation lemma for ε I also have Γ ` E : X2 where
X2 = 〈[], [], []〉.

An argument about the relation between the different parts of Z and
X follows. If you feel confident of this relation, skip the paragraph
and go on to case 2.

– If A,E 6= ε, we have Zn(x) = max(Xn
1 (x), (Xn

2 − Xa
1 + x)(x))

and since Xa
1 (x) = 1, we get Zn(x) = max(Xn

1 (x), Xn
2 (x)) and

further, since Xn
1 (x) = 0 and Xn

2 is unsigned, that Zn(x) =
Xn

2 (x). Using the same information we get Xn(x) = Xn
1 ∪(Xn

2 −
Xa

1 )(x) = max(0, Xn
2 (x)− 1).

On the other hand, note that x 6∈ var(A). This implies that
the most negative change during AE must come during E. This
means that we should have Zn(x) = Xn

2 (x), which we also saw in
the previous paragraph. Also, if there is a negative change in E,
then in the total expression newx · E, the total negative change
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in x would be one less, assuming there is a negative change, that
is:

Xn(x) =
{

0 if Xn
2 (x) = 0

Xn
2 (x)− 1 if Xn

2 (x) > 0 (2.10)

This implies:

Xn =
{

Zn if Xn
2 (x) = 0

Zn − x if Xn
2 (x) > 0 (2.11)

If A = ε, we have Zn(x) = Xn
2 (x) and Xn(x) = max(0, Xn

2 (x)−
1) directly, and get the same discussion and result as above.
If E = ε, we have Zn = Xn, but I also have Xn

2 (x) = 0, and
from the discussion above I must also have Xn(x) = Zn(x) = 0,
so this fits with the formulas (2.10) and (2.11).
For y 6= x, it should be easy to see that Zn(y) = Xn(y). Re-
member that Xn ⊇ [], so ([] ∪ (Xn − x))(y) = Xn(y).

– For Xp, we have, if A,E 6= ε that

Xa
1 = Y a + x

Xp
1 = Y p + x

And further that: Xp = Xp
1 ∪ (Xa

1 +Xp
2 ) = (Y p +x)∪ (Y a +x+

Xp
2 ) = Y p ∪ (Y a + Xp

2 ) + x = Zp + x.
If A = ε or E = ε, we have Xp = Zp + x directly from the type
given earlier.

– For Xa I have Xa = Za + x. If A,E 6= ε this follows from that
Xa = Xa

1 + Xa
2 = Y a + x + X2

a = Za + x, otherwise it comes
directly from the types above.

2. I now have to prove the following:

M − τ(T)n ⊆ M ′ − τ(T′)n

M + τ(T)p ⊇ M ′ + τ(T′)p

M + τ(T)a = M ′ + τ(T′)a

To summarise, the changes in the configuration are on the one hand
an increase in the store, that is: M ′ = M + x and on the other hand
that while T(β) = newx ·E, T′(β) = A E. I also have Γ ` AE : Z and
Γ ` newx · E : X. Note that we also have the following equivalence:

M − τ(T)n ⊆ M ′ − τ(T′)n

⇔
−τ(T)n ⊆ x− τ(T′)n

⇔
τ(T)n ⊇ τ(T′)n − x

I now have to do a case distinction on the value of Xn
2 (x), where

X2 is the type of E. As seen above, the relation between Zn(x) and
Xn(x) depends on this.
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– The first case is when Xn
2 (x) > 0. Then we have after the argu-

ment in the previous item that Xn = Zn − x.
If I could show that

τ(T′) = 〈τ(T)n + x, τ(T)p − x, τ(T)a − x〉 (2.12)

I would be finished, as I then would get

M ′ − τ(T′)n = M + x− (τ(T)n + x) = M − τ(T)n

M ′ + τ(T′)p = M + x + (τ(T)p − x) = M + τ(T)p

M ′ + τ(T′)a = M + x + (τ(T)a − x) = M + τ(T)a

But I can use Lemma 2.7.1, clauses 1 with c = −1 and 3 with
e = −1 to show the equation (2.12). This means the following:
(a) If it is the case that Xn = Zn − x and Xa = Za + x then

also τ(T)n = τ(T′)n − x and τ(T)a = τ(T′)a + x.
(b) If it is the case that Xp = Zp + x and Xa = Za + x then

also τ(T)p = τ(T′)p + x and τ(T)a = τ(T′)a + x.
For the premises I have that Zn = Xn +x from the case assump-
tion, and from item 1 I have Za = Xa − x and Zp = Xp − x.
That T and T′ are well-typed follows from assumptions and 1.
I then get τ(T) = 〈τ(T′)n − x, τ(T′)p + x, τ(T′)a + x〉 which is
exactly what I needed.

– The only other possibility (as Xn is unsigned) is Xn
2 (x) = 0. In

this case, also Xn(x) = Zn(x) = 0. I will in this case prove the
following:

τ(T)n ⊇ τ(T′)n − x
τ(T)p = x + τ(T′)p

τ(T)a = x + τ(T′)a

I will use lemma 2.7.1, clauses 2 with d = 1 and 3 with e = −1.
Following are the two clauses where d and e are instantiated:
(a) If it is the case that Xn = Zn and Xa = Za + x, then

τ(T)n ⊇ τ(T′)n − x and τ(T)a = τ(T′)a + x.
(b) If it is the case that Xp = Zp + x and Xa = Za + x then

also τ(T)p = τ(T′)p + x and τ(T)a = τ(T′)a + x.
It should be possible to see that all the premises are fulfilled by
the argument in item 1 and that we are treating the special case
where Xn = Zn. The conclusions in the clauses above are all we
need, so we are finished.

• Case osDel

(osDel) x ∈ M
(M, R[Lf(del x · E)]β) −→ (M − x, R[Lf(E)]β)

1. First, we prove that Γ ` E : 〈Xn − x, Zp, Xa + x〉 for some Zp. We
have Γ ` del x · E : 〈Xn, Xp, Xa〉.
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– E 6= ε. I have by the generation lemma (2.4.4) for Seq that
Γ ` del x· : X1 and Γ ` E : Z for some X1 and Z where

X = 〈Xn
1 ∪ (Zn −Xa

1 ), Xp
1 ∪ (Xa

1 + Zp), Xa
1 + Za〉

By the generation lemma for Del applied to Γ ` del x· : X1 we
have X1 = 〈[x], [], [−x]〉. So we get

X = 〈Zn + [x], [] ∪ (Zp − [x]), Za − [x]〉

This means that Γ ` E : 〈Xn − x,Zp, Xa + x〉 so:

Xp =
{

Zp ifZp(x) = 0
Zp − x ifZp(x) > 0 (2.13)

– E = ε. I get del x · E = del x·. By the generation lemma for ε,
we have that Γ ` E : X2, where X2 = 〈[], [], []〉 = Z. By the
generation lemma for Del applied to Γ ` del x· : X we have

X = 〈[x], [], [−x]〉

This means that Zp = Xp, and since Zp(x) = 0, this fits with
the case distinction (2.13) above.

2. To summarise, the changes made to the configuration are that M ′ =
M − x and that the expression in β changes from delx · E to E.
Note the following equalities

M + τ(T)p ⊇ M ′ + τ(T′)p

m
τ(T)p ⊇ τ(T′)p − x

and
M − τ(T)n = M ′ − τ(T′)n

m
−τ(T)n = −x− τ(T′)n

m
τ(T)n = x + τ(T′)n

I will now have to do a case distinction on the value of Zp(x), as the
relation between Zp and Xp depends on whether Zp(x) = 0. This is
similar to the procedure used in the previous case for osNew.

– The first case is when Zp(x) > 0, then we have Xp = Zp − x.
Now, if I could prove that

τ(T) = 〈τ(T′)n + x, τ(T′)p − x, τ(T′)a − x〉 (2.14)

I would be finished, as then I would have

M − τ(T)n = M ′ + x− τ(T′)n − x = M ′ − τ(T′)n

M + τ(T)p = M ′ + x + τ(T′)p − x = M ′ + τ(T′)p

M + τ(T)a = M ′ + x + τ(T′)a − x = M ′ + τ(T′)a

which is even stronger than needed for the lemma.
I will proceed as in the case for osNew and use Lemma 2.7.1
clauses 1 with c = 1 and 3 with e = 1 to prove this. Instantiating
the variables in the lemma, I get the following:
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(a) If it is the case that Xn = Zn + x and Xa = Za − x then
also τ(T)n = τ(T′)n + x and τ(T)a = τ(T′)a − x.

(b) If it is the case that Xp = Zp − x and Xa = Za − x then
also τ(T)p = τ(T′)p − x and τ(T)a = τ(T′)a − x.

Observe from point 1 that X = 〈Zn + [x], Zp − [x], Za − [x]〉.
That T and T′ are well-typed and have no other changes follows
from 1 and the property of osDel. I then get τ(T) = 〈τ(T′)n +
x, τ(T′)p − x, τ(T′)a − x〉, which is what I need.

– The only other possibility (as Zp is unsigned) is Zp(x) = 0. In
this case, also Xp(x) = Zp(x) = 0. I will in this case prove the
following:

τ(T)n = τ(T′)n + x
τ(T)p ⊇ τ(T′)p − x
τ(T)a = τ(T′)a − x

I will use lemma 2.7.1, clauses 1 with c = 1 and 4 with f = 1.
Following are the two clauses where d and e are instantiated:
(a) If for some integer c it is the case that Xn = Zn + x and

Xa = Za − x then also τ(T)n = τ(T′)n + x and τ(T)a =
τ(T′)a − x.

(b) If if the case that Xp = Zp and Xa = Za − x, then τ(T)p ⊇
τ(T′)p − x and τ(T)a = τ(T′)a − x.

It should be easy to see that all the premises are fulfilled by the
argument in item 1 and that we are treating the special case
where Xp = Zp. The conclusions in the clauses above are all we
need, so we are finished.

• Case osParIntr

(osParIntr)
(M, R[Lf((A ||B) · E)]β) −→ (M, R[Nd(E, Lf(A), Lf(B))]β)

1. First, we prove that Γ ` A : Y1 and Γ ` B : Y2 and Γ ` E : Z for
some Y1, Y2 and Z. We have that T(β) = (A ||B) ·E and T′(β) = E

We have Γ ` (A ||B) · E : 〈Xn, Xp, Xa〉.

– E 6= ε. By the generation lemma for Seq, we get Γ ` (A ||B)· :
X1 and Γ ` E : Z with

X = 〈Xn
1 ∪ (Zn −Xa

1 ), Xp
1 ∪ (Xa

1 + Zp), Xa
1 + Za〉

By the generation lemma for Parallel applied to Γ ` (A ||B)· :
X1 we have Γ ` A : Y1 and Γ ` B : Y2 such that X1 = Y1 + Y2.

– E = ε. Then we have (A ||B)·E = (A ||B)· and by the generation
lemma for Parallel applied to Γ ` (A ||B)· : X we have Γ `
A : Y1 and Γ ` B : Y2 such that X = Y1 + Y2. Further by the
generation lemma for ε we get Z = 〈[], [], []〉.
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2. We have M = M ′. In addition expr(T) = expr(T′) could be proved
by structural induction on the size of the tree by seeing that

expr(Lf((A||B) · E)) = (A||B) · E = expr(Nd(E, Lf(A), Lf(B))

Since we know from 1 above that τ(T) and τ(T′) exist we also know
they must be the same, as an expression has only one type from
Uniqueness of type.

• Case osParElimL

(osParElimL)
(M, R[Nd(E, Lf(ε), R′)]β) −→ (M, R[Nd(E, R′)]β)

1. Since E = T(β) = T′(β) and M = M ′ it follows from (M, T) well-
formed that Γ ` E : 〈Xn, Xp, Xa〉.

2. M = M ′ and as in the previous case (osParIntr) we can prove

expr(T) = expr(T′)

by structural induction and seeing that:

expr(Nd(E, Lf(ε), R′)) = (ε||expr(R′)) · E = expr(Nd(E, R′))

Then the properties follow from same arguments as in the case osPar-
Intr.

• Case osParElimR

(osParElimR)
(M, R[Nd(E, R′, Lf(ε))]β) −→ (M, R[Nd(E, R′)]β)

This proof goes like (osParElimL), just substituting the positions in the
transition.

• Case osParElim

(osParElim)
(M, R[Nd(E, Lf(ε))]β) −→ (M, R[Lf(E)]β)

1. Since E = T(β) = T′(β) and M = M ′ it follows from (M, T) well-
formed that Γ ` E : 〈Xn, Xp, Xa〉.

2. M = M ′. We have expr(Nd(E, Lf(ε))) = (ε||ε) · E and expr(Lf(E)) =
E. We have from assumptions that Γ ` E : X. From Axiom,
Parallel and WeakenB I get Γ ` (ε||ε)· : 〈[], [], []〉 and from Seq
Γ ` (ε||ε) ·E : 〈[]∪ (Xn− []), []∪ (Xp +[]), []+Xa〉 = X. It should the
be possible to see that τ(T) = τ(T′), using c = 0 with lemma (2.7.1).

�

2.7.3 Preservation (Lemma 2.4.16)

The lemma is: if Γ |= (M, T) and (M, T) −→ (M ′, T′) then Γ |= (M ′, T′).
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Proof. If Γ |= (M, T) and (M, T) −→ (M ′, T′), I must show that Γ |= (M ′, T′).
By definition of well-formed configuration we need to prove that ∀α ∈ T′, where
E = T′(α) there exists an X = 〈Xn, Xp, Xa〉 such that Γ ` E : 〈Xn, Xp, Xa〉
and that M ′ ⊇ τ(T′)n and M ′ + τ(T′)p ⊆ R. In clause 1 of the proof of
invariance, we treated the existence of the types. By clause 2, M − τ(T)n ⊆
M ′− τ(T′)n. Since M ⊇ τ(T)n we must then also have M ′ ⊇ τ(T′)n. By clause
2, M + τ(T)p ⊇ M ′ + τ(T′)p. Since M + τ(T)n ⊆ R we must then also have
M ′ + τ(T′)p ⊆ R, which is all we need. �

2.7.4 Progress (Lemma 2.4.17)

The lemma is: if Γ |= (M, T) then either (M, T) is terminal or there exists a
configuration (M ′, T′) such that (M, T) −→ (M ′, T′).

Proof. Since Γ |= (M, T) I know from the definition of well-typed tree (2.4.11)
that for any position α in T where E = T(α) there exists X = 〈Xn, Xp, Xa〉
such that Γ ` E : X. Now I have to show that the execution cannot be stuck,
i.e. it must be possible to apply a rule from the operational semantics. There
are three ways execution can get stuck.

1. The execution is stuck if E has the form new x ·E′ and x 6∈ dom(Γ). This
will not happen by valid typing judgment (2.4.2).

2. The execution is stuck if E has the form del x · E′ and x 6∈ M . If E′ 6= ε,
I get from the generaton lemma (2.4.4) for sequencing the existence of Y
and Z such that Γ ` del x· : Y and Γ ` E′ : Z and X = 〈Y n ∪ (Zn −
Y a), Y p∪(Zp+Y a), Y a+Za〉. Further, from the generation lemma (2.4.4)
for del I get Y = 〈[x], [], [−x]〉, such that Xn = [x] ∪ (Zn + [x]) ⊇ [x]. If
E′ = ε, I get directly from the generation lemma for del that Xn = [x].
In both cases we have Xn ⊇ [x].

Now I need to “expand” this to get that τ(T)n ⊇ [x]. I will do this
by induction on the structure of T. The inductive hypothsis is: for any
smaller tree where there is an expression in a leaf which has a type X s.t.
Xn ⊇ [x], then also τ(T) ⊇ [x].

• The base case is the single leaf, in which case the result follows from
τ(T) = X.

• The first inductive case is a node with two subtrees, one of which
contains the leaf with the expression concerned. Let the tree be
T = Nd(E•, Tl, Tr) for some expression E• and smaller trees Tl and
Tr. Assume Γ ` E• : X•. Also assume, without loss of generality,
that the expression is in the left subtree, such that from the inductive
hypothesis τ(Tl)n ⊇ [x]. I will now use the same arguments as on
page 35 in the proof of lemma 2.7.1. First I have that expr(T) =
(expr(Tl)||expr(Tr)) ·E•. By using an application of Parallel and Seq
I get from this that τ(T)n = (τ(Tl)n + τ(Tr)n) ∪ (Xn

• − (τ(Tl)a +
τ(Tr)a)). Then I get from the properties of union and addition of
hybrid sets that:
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τ(T)n = (τ(Tl)n + τ(Tr)n) ∪ (Xn
• − τ(Tl)a − τ(Tr)a)

⊇ τ(Tl)n + τ(Tr)n

⊇ τ(Tl)n

⊇ [x]

(2.15)

• The other inductive case is the node with one child. This is just a
special case of the situation with two leaves.

Further from (M, T) well-formed I get that M ⊇ τ(T)n. In sum I get
M ⊇ τ(T)n ⊇ [x] and so there is at least one instance of x in the store,
and the execution cannot be stuck.

3. E has the form new x · A, but M(x) ≥ R(x). Again I must do a case
distinction on whether A = ε. If A 6= ε, the generation lemma (2.4.4) for
sequencing gives me Y and Z such that Γ ` new x· : Y and Γ ` E : Z and
X = 〈Y n ∪ (Zn − Y a), Y p ∪ (Zp + Y a), Y a + Za〉. If A = ε, let X = Y .
In both cases, we have Xp ⊇ Y p. The generation lemma for new now
gives me ∆,∆′, A and V such that ∆, x ≺ B,∆′ = Γ and ∆ ` B : V
and Y = 〈V n, V p + x, V a + x〉. This means that Y p ⊇ [x], and therefore
Xp ⊇ [x].

I need now to get that τ(T)p ⊇ [x]. It should be possible to see that we
can use almost the same proof by induction on the structure of the tree T
as in the previous item, only replacing n with p. The only other difference
is that τ(Tl)a + τ(Tr)a is added rather that subtracted in the first line of
(2.15). But this does not concern us, as the only information we need is a
minimum guarantee, which we get from the other part of the union.

Further from well-formed configuration we have M +τ(T)p ⊆ R. In all we
can conclude that M+x ⊆ M+τ(T)p ⊆ R, so we must have M(x) < R(x).

�

2.7.5 Soundness (Lemma 2.4.19)

The lemma is: let Prog = Decls;E be such that Γ |=R ([], E) for some reordering
Γ of Decls and restriction R. Then for any (M, T) such that ([], Lf(E)) −→∗

(M, T) we have that (M, T) is not stuck and M ⊆ Xp.

Proof ([], Lf(E)) is well-formed from the definition (2.4.13). From preserva-
tion (2.4.16) and progress (2.4.17) we know that (M, T) is not stuck. For the
second conclusion, M ⊆ Xp, we have from invariance of M + τ(T)p (Lemma
2.4.15), transitivity of ⊆ and from valid typing lemma (2.4.2) which guarantees
Xp ⊇ [] that:

M ⊆ M + τ(T)p ⊆ [] + Xp = Xp

�
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2.8 Proof of sharpness (Lemma 2.4.20)

2.8.1 Auxiliary definitions and propositions.

First I must show that the change in the store through a sequence of configu-
rations is independent of the size of the store — given of course that it starts
from a well-formed configuration. As an overview, we can say that the only
transition that depends on the store is Del, which will fail if the component is
not present — but we are guaranteed from soundness that this will not happen
starting from a well-formed configuration. I will prove this by showing that
two sequences of configurations using the exact same transitions will produce
the same change in the store, independent of the size of the store in the initial
configuration.

Lemma 2.8.1 (Effect of transitions invariance). Consider two sequences
of configurations of the same length j

(M0, T0) −→ · · · −→ (Mj , Tj) (2.16)

and

(M ′
0, T′

0) −→ · · · −→ (M ′
j , T′

j) (2.17)

If for all i, where 0 ≤ i < j, the rule used from the operational semantics
to transform (Mi, Ti) −→ (Mi+1, Ti+1) is the same and the subexpression to
which the rule is applied is identical to the one used for the transformation
(M ′

i , T′
i) −→ (M ′

i+1, T′
i+1), then we have that

Mj −M0 = M ′
j −M ′

0

Note that I am comparing two already existing sequences. This means I do
not have to show that they exist, since this is assumed. I will prove the lemma
by induction on the length of the sequences of configurations. The inductive
hypothesis is:

For any k ≤ j: for any two sequences of configurations of length k:

(M0, T0) −→ · · · −→ (Mk, Tk)

and
(M ′

0, T′
0) −→ · · · −→ (M ′

k, T′
k)

If for all i, where 0 ≤ i < k, the rule used from the operational semantics
to transform (Mi, Ti) −→ (Mi+1, Ti+1) is the same and the subexpression to
which the rule is applied is identical to the one used for the transformation
(M ′

i , T′
i) −→ (M ′

i+1, T′
i+1), then we have that Mk −M0 = M ′

k −M ′
0.

• Base Case. The base case will be any run of length 0, in which case
M0 = Mk and M ′

0 = M ′
j .

• Inductive cases. We have the lemma for sequences of configurations

(M0, T0) −→ · · · −→ (Mk, Tk)

where k ≤ j. Now I need to assure the lemma for all sequences which
are one transition longer. This is done by adding the same transition at
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the right hand end of two equal sequences of length j. Since all sequences
shorter than j + 1 are covered by the inductive hypothesis, we only need
to create the sequences of exactly length j + 1:

(M0, T0) −→ · · · −→ (Mj , Tj) −→ (Mj+1, Tj+1)

To accomplish this, I will use a case distinction on the possible transitions
from the operational semantics.

– osNew

(osNew) if x ≺ A ∈ Decls
(Mj , T[Lf(new x · Er)]α) −→ (Mj + x, T[Lf(AEr)]α)

We have Mj+1−M0 = Mj +x−M0. From the assumptions the same
transition is done on (M ′

j , T′
j) and we get M ′

j+1−M ′
0 = M ′

j +x−M ′
0.

Combining this with the inductive hypothesis I now get:

Mj+1 −M0 = Mj + x−M0 = M ′
j + x−M ′

0 = M ′
j+1 −M ′

0

which is exactly what I needed.

– osDel

(osDel) x ∈ M
(M, T[T′

j [Lf(del x · E)]′α]α) −→ (M − x, T[T′
j [Lf(E)]′α]α)

I have Mj+1 −M0 = Mj − x−M0. From the assumptions, the same
transition is added in the other sequence, and I get M ′

j+1 − M ′
0 =

M ′
j − x −M ′

0. Combining this with the inductive hypothesis I then
get

Mj+1 −M0 = Mj − x−M0 = M ′
j − x−M ′

0 = M ′
j+1 −M ′

0

– osPar* None of these transitions change the store, so Mj+1 = Mj

and M ′
j+1 = M ′

j . Assuming I have Mj −M0 = M ′
j −M ′

0, I then get
Mj+1 −M0 = M ′

j+1 −M ′
0.

�

2.8.2 Example

Generally, the runs attaining the maxima will be different for different compo-
nents, and different for the two first types of maximum.

As an example, take a look at the possible runs of this expression (where
newx3 means three repetitions of newx) :

x ≺ ε; (new x3||del x2) (2.18)

The type of the expression is 〈[x, x], [x, x, x], [x]〉. To achieve the different max-
ima, we must use two different runs. First we will consider the run which gives
the maximum number of x when k = 4, with

([], Lf((new x3||del x2))) →4 ([x, x, x],Nd(ε, Lf(ε), Lf(del x2)))
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(M, Lf(newx3||delx2)) = (M0, T0)
→ (M,Nd(ε, Lf(newx3), Lf(del x2))) = (M1, T1)
→ (M + [x],Nd(ε, Lf(newx2), Lf(del x2))) = (M2, T2)
→ (M + [x 7→ 2],Nd(ε, Lf(newx), Lf(del x2))) = (M3, T3)
→ (M + [x 7→ 3],Nd(ε, Lf(ε), Lf(del x2))) = (M4, T4)
→ (M + [x 7→ 2],Nd(ε, Lf(ε), Lf(del x))) = (M5, T5)
→ (M + [x],Nd(ε, Lf(ε), Lf(ε))) = (M6, T6)
→ (M + [x],Nd(ε, Lf(ε))) = (M7, T7)
→ (M + [x], Lf(ε)) = (M8, T8)

This run does not reach the minimum possible number of x during the run.
The number of x during the run can also be visualised, letting the vertical axis
represent number of x :

M0
- M1

���
M2

���
M3

���
M4

@
@R

M5

@@R
M6

- M7
- M8

Then I will consider the run which gives the minimum number of x when
k = 3, with

(M, Lf((new x3||del x2))) →3 (M − [x 7→ 2],Nd(ε, Lf(ε), Lf(new x3)))

(M, Lf(newx3||delx2)) = (M0, T0)
→ (M,Nd(ε, Lf(newx3), Lf(del x2))) = (M1, T1)
→ (M − [x],Nd(ε, Lf(newx3), Lf(del x))) = (M2, T2)
→ (M − [x 7→ 2],Nd(ε, Lf(newx3), Lf(ε))) = (M3, T3)
→ (M − [x 7→ 2],Nd(ε, Lf(newx3))) = (M4, T4)
→ (M − [x],Nd(ε, Lf(newx2))) = (M5, T5)
→ (M,Nd(ε, Lf(new x))) = (M6, T6)
→ (M + [x],Nd(ε, Lf(ε))) = (M7, T7)
→ (M + [x], Lf(ε)) = (M8, T8)

This run does not reach the maximum possible number of x during the run.
The number of x during the run can also be visualised, letting vertical axis
represent number of x :



2.8 Proof of sharpness (Lemma 2.4.20) 49

M0
- M1

@
@R

M2

@
@RM3

- M4

���

M5

�
��

M6

�
��

M7
- M8

This example shows that it can be (and often is) the case that different runs,
often also of different length, must be used to achieve the value for Xn and Xp

for the same component.

2.8.3 Proof of sharpness.

The lemma is: if Γ ` E : X then, for every component x, for every restriction
R and every well-formed configuration (M, T[Lf(E)]α) = (M0, T0) with respect
to the given R, there exists a run

(M0, T0) → · · · → (Mn, Tn) = (Mn, T[Lf(ε)]α)

of E where there is a k, 0 ≤ k ≤ n, such that Mk(x) = M0(x) + Xp(x), and
there exists a run

(M0, T0) → · · · → (Mm, Tm) = (Mm, T[Lf(ε)]α)

of E where there is a j, 0 ≤ j ≤ m, such that Mj(x) = M0(x)−Xn(x), and for
all runs

(M0, T0) → · · · → (Mq, Tq) = (Mq, T[Lf(ε)]α)
of E we have Mq(x) = M0(x) + Xa(x).

The lemma will be proved in two parts, first Xa separately, and then Xn

and Xp together.

Xa: First, I will show sharpness for Xa — that is: for any configuration
(M, T[Lf(E)]α) = (M0, T0) which is well-formed with respect to some restriction
R and some base Γ, we have that for all runs (M0, T0) → · · · → (Mj , Tj) =
(Mj , T[Lf(ε)]α) of E we have Mj = Xa + M0.

In order to prove this, by invariance lemma (2.4.15) and transitivity of equal-
ity we have that M0 + τ(T0)a = Mn + τ(Tj)a. I rewrite to get

Mn = M0 + τ(T0)a − τ(Tj)a (2.19)

I have from assumptions that (M0, T0) well-formed with respect to Γ and know
therefore that Γ ` E : Z for some Z. From typability lemma (2.4.12) I know
that

τ(T0)a =
∑
β∈T0

τ(T0(β))a (2.20)

τ(Tj)a =
∑
β∈Tj

τ(Tj(β))a (2.21)
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Note that from the generation lemma for ε I have that τ(Tj(α))a = []. I can now
decompose these sums into a sum using separate sums on T[] and the expression
at the single leaf:∑

β∈T0 τ(T0(β))a =
∑

β∈T[]α
τ(T[]α(β))a + τ(T0(α))a

=
∑

β∈T[]α
τ(T[]α(β))a + Za∑

β∈Tj τ(Tj(β))a =
∑

β∈T[]α
τ(T[]α(β))a + τ(Tj(α))a

=
∑

β∈T[]α
τ(T[]α(β))a

I now see that τ(T0)a − τ(Tj)a = Za. Combined with equation (2.19) above, I
get

Mn = M0 + τ(T0)a − τ(Tj)a

= M0 + Za

= M0 + Za

which shows sharpness of Xa as wanted.

Xn and Xp. The two other properties, Xn and Xp of the sharpness lemma
(2.4.20) will be shown by induction on typing derivations. The inductive hy-
pothesis must be strengthened a bit from the lemma: I must include runs of E
ending in not only a leaf containing ε, but also with any expression E′. This is
to make the case Seq easier.

Let Γ |=R (M, T) for some basis Γ, configuration (M, T) and restriction
R. The inductive hypothesis is: for all shorter typing derivations Γ′ ` E : X,
where Γ′ is a sub-basis of Γ, it is the case that for every component x and
every configuration (M, T[Lf(EE′)]α) = (M0, T0) such that Γ |=R (M0, T0),
there exists a run (M0, T0) → · · · → (Mn, Tn) = (Mn, T[Lf(E′)]α) of E where
there is a k, 0 ≤ k ≤ n such that Mk(x) = Xp(x) + M0(x), and there exists a
run (M0, T0) → · · · → (Mm, Tm) = (Mm, T[Lf(E′)]α) of E where there is a j,
0 ≤ j ≤ m such that Mj(x) = M0(x)−Xn(x).

Base case

Axiom

� ` ε : 〈[], [], []〉
We have only one “run” of length 0:

(M0, T0) = (M, T[Lf(E)]α) = (M, T[Lf(ε)]α)

I choose the “run” of length 0, where no components are created nor deleted.
Let k = 0. Since Xn(x) = Xp(x) = 0 this is enough.

Inductive cases

WeakenB Γ = Γ′, x ≺ B

Γ′ ` E : X Γ′ ` B : Y x 6∈ dom(Γ′)
Γ′, x ≺ B ` E : X

Since E and X are the same in the conclusion and the premise, this proof is
easy — we know already by the inductive hypothesis on the premise Γ′ ` E : X
that there exist runs of E with the properties needed for sharpness of X.
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New E = new y·, Γ = Γ′, y ≺ A.

Γ′ ` A : Y y 6∈ dom(Γ′)
Γ′, y ≺ A ` new y· : X = 〈Y n, Y p + y, Y a + y〉

From the inductive hypothesis we have existence of runs of A of the form

(M0, T[Lf(AE′)]α) → · · · → (Mn, T[Lf(E′)]α) (2.22)

What we want is to add one transition in front of such a run to get a run of
new y·:

(N0, T[Lf(new y · E′)]α) → (N1, T[Lf(AE′)]α) → · · · → (Nn+1, T[Lf(E′)]α) (2.23)
N1 = N0 + y (2.24)

Nn+1 = N1 + Mn −M0 = N0 + y + Mn −M0 (2.25)

This is a run of new y·. The last equation (2.25) follows from (2.8.1) since all
but the first transition are equal to the transitions in a run of A (2.22). The
first step is the rule osNew from the operational semantics, and is possible by
progress (2.4.17) since we assume it is well-formed. The rest of the run exists
by the inductive hypothesis, the only difference is the addition of one y. All
steps, including the first, will be possible to carry out because of progress and
preservation. We can also see directly from the generation lemma for new that
we have ∆ ` A : Y where X = 〈Y n, Y p + y, Y a + y〉.

• For y 6= x we can use the runs of A which exist by the inductive hypothesis
for the properties of Y and that Y ∗(x) = X∗(x).

• For y = x we have by valid typing that y 6∈ dom(Γ′) and by lemma 2.4.2
(Valid typing judgement) that Y ∗ ⊆ dom(Γ′), so we must have Y ∗(y) = 0
and there is no y created in the run of A. The extra y is added to the
store in the first step of the run, and this will be the only y added during
the run of new y·. I choose k = 1, and N1(y) = N0(y) + 1 while Xp(y) =
Y p(y) + 1 = 1. To get sharpness of Xn(y) = 0 I choose j = 0, and get
N0(y) = N0(y) − 0 = N0(y) −Xn(y). So in this case all properties hold
for any run of new y·.

Del E = del y·.
Γ ` A : Y y ≺ A ∈ Γ
Γ ` del y· : 〈[y], [], [−y]〉

Starting from a well-formed configuration (N0, T[Lf(del y · E′)]α), there is
only one run of del y·:

(N0, T0) = (N0, T[Lf(del y · E′)]α) −→ (N0 − y, T[Lf(E′)]α)

This run is actually independent of the type and runs of A, so we do not
need the inductive hypothesis in this case.

• For y 6= x: there is no change to N0(x) and for the type we have X∗(x) = 0.

• For y = x: for sharpness of Xp(x) let k = 0, and observe that N0(x) =
N0(x) + 0 = N0(x) + Xi(x). For Xn(x) = 1 choose j = 1 and get
N1(x) = N0(x)− 1 = N0(x)−Xn(x).
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Seq

Γ ` A· : Y Γ ` B· : Z

Γ ` A ·B· : X = 〈Y n ∪ (Zn − Y a), Y p ∪ (Y a + Zp), Y a + Za〉

From soundness (2.4.19) and the assumption of starting from a well-formed
configuration, we know that all the transformations in the combined run are
possible.

So for such a pair of a run of A· and a run of B·, where the store in the last
step of the run of A· is equal to the store in the first step of the run of B·, there
is a run of A ·B·, using the same transitions. If the run of A· is of length j and
the run of B· is of length k, the run of A ·B· will be of length j + k.

We can now go on to the three properties of sharpness:

• Xp(x). Now I have to find a run of A ·B·:

(M0, T0) → · · · → (Mn, Tn) → · · · → (Mn+m, Tn+m)

where there is k, such that 1 ≤ k ≤ n + m and

Mk(x) = M0(x) + Xp(x)
= M0(x) + (Y n ∪ (Zp + Y a))(x)
= M0(x) + max(Y p(x), Zp(x) + Y a(x))

Either the k with the maximum store is found during execution of A· (e.g..
k ≤ n) or k is during the execution of B· (e.g. k > n).

To prove that there will always be such a run and k, we must make a case
distinction on the value of Xp(x) = max(Y p(x), Y a(x) + Zp(x)):

– If Y p(x) = max(Y p(x), Y a(x) + Zp(x)) we can use the run of A·
which by the inductive hypothesis has a configuration (MkA

, TkA
)

such that MkA
(x) = M0(x)+Y p(x) = M0(x)+Xp(x), so we can use

kA as k.

– In the other case, Y a(x) + Zp(x) = max(Y p(x), Y a(x) + Zp(x)), we
use any run of A and we have (Mn, Tn) = (Mn, T[Lf(BE′)]α) where
Mn(x) = M0(x) + Y a(x). We can then choose the run of B· where
there is a kB such that

Mn+kB
(x) = Mn(x)+Zp(x) = M0(x)+Y a(x)+Zp(x) = M0(x)+Xp(x)

and use n + kB as k.

• Xn(x). Finding a run of A ·B·:

(M0, T0) → · · · → (Mn, Tn) → · · · → (Mn+m, Tn+m)

where there is k, such that 1 ≤ k ≤ n + m and

Mk(x) = M0(x)−Xn(x)
= M0(x)− (Y n ∪ (Zn − Y a))(x)
= M0(x)−max(Y n(x), Zn(x)− Y a(x))
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will proceed as in the previous case for Xp(x). Either the k with the
minimum store is found during execution of A· (e.g. k ≤ n) or k is during
the execution of B· (e.g. k > n).

To prove that there will always be such a run and k, we must make a case
distinction on the value of Xn(x) = max(Y n(x), Zn(x)− Y a(x)):

– If Y n(x) = max(Y n(x), Zn(x) − Y a(x)) we can use the run of A·
which by the inductive hypothesis has a configuration (MkA

, TkA
)

such that MkA
(x) = M0(x)−Y n(x) = M0(x)−Xn(x), so we can use

kA as k.

– In the other case, Zn(x)− Y a(x) = max(Y n(x), Zn(x)− Y a(x)), we
use any run of A· and we have (Mn, Tn) = (Mn, T[Lf(BE′)]α) where
Mn(x) = M0(x) + Y a(x). We can then choose the run of B· where
there is a kB such that

Mn+kB
(x) = Mn(x)− Zn(x) =

M0(x) + Y a(x)− Zn(x) = M0(x)− (Zn(x)− Y a(x)) =
M0(x)−Xn(x)

and use n + kB as k.

Parallel. Assume the type of E = (A||B)· is derived by an application
of this form:

(Parallel)
Γ ` A : Y Γ ` B : Z

Γ ` (A ||B)· : Y + Z

From assumptions I have Γ |=R (M0, T[Lf((A||B) ·E′)]α) for some M0 and
E′. From the inductive hypothesis I have knowledge of runs of A and B
of these forms:

(M0, T[Lf(A)]αl) → · · · → (Mj , T[Lf(ε)]αl) (2.26)
(M ′

0, T[Lf(B)]αr) → · · · → (M ′
h, T[Lf(ε)]αr) (2.27)

For any of these runs, there exist runs of the following forms:

(M0, T[Nd(E′, Lf(A), R)]α) → · · · → (Mj , T[Nd(E′, Lf(ε), R)]α) (2.28)
(M ′

0, T[Nd(E′, R, Lf(B))]α) → · · · → (M ′
h, T[Nd(E′, R, Lf(ε))]α) (2.29)

If the run of A is of length j and the run of B is of length h, then the
length of a run of (A||B) is of length j +h+3, since all transitions in both
runs must be done, in addition there will be one osParIntr at the start
of the run, one of either osParElimL or osParElimR some time during
the run, and finally, at the end an instance of osParElim - in sum, three
extra transitions. If the run was first exclusively transitions on A and then
B, it could look like this:

(M0, T[Lf((A||B) · E′)]α) → (M0, T[Nd(E′, Lf(A), Lf(B))]α) →
· · · → (Mj , T[Nd(E′, Lf(ε), Lf(B))]α)
→ (Mj , T[Nd(E′, Lf(B))]α) →
· · · → (Mj + M ′

h −M ′
0, T[Nd(E′, Lf(ε))]α) → (Mj + M ′

h −M ′
0, T[Lf(E′)]α)
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This need not be the case - the transitions from the run of A could come
in between transitions from the run of B.

I will now treat the three sharpness properties separately:

– Xn(x). I must now create a run of (A||B) of some length n, where
there is a k such that 0 ≤ k ≤ n and Mk(x) = M0(x) − Xn(x) =
M0(x)− Y n(x)− Zn(x). First, choose the run of A where there is a
kA such that MkA

(x) = M0(x)−Y n(x). Stop the run at exactly this
state:

(M0, T[Nd(E′, Lf(A), Lf(B))]α) → · · · → (MkA
, T[Nd(E′, Rk, Lf(B))]α)

Now, equivalently, choose the run of B starting at this state (which I
can do because of soundness), where there is a kB such that MkA+kB

(x) =
MkA

(x)− Zn(x). Stop the run at exactly this state:

(MkA
, T[Nd(E′, Rk, Lf(B))]α) → · · · → (MkA+kB

, T[Nd(E′, RkA
, R′

kB
)]α)

Let k = kA + kB , and we get Mk(x) = MkA
(x) − Zn(x) = M0(x) −

Y n(x) − Zn(x) = M0(x) − Xn(x). For the rest of the run do the
remaining transitions in the runs of A and B, which by soundness
are all possible.

– Xp(x). I must now create a run of (A||B) of some length n, where
there is a k such that 0 ≤ k ≤ n and Mk(x) = M0(x) + Xp(x) =
M0(x) + Y p(x) + Zp(x). First, choose the run of A where there is a
kA such that MkA

(x) = M0(x) + Y p(x). Stop the run at exactly this
state:

(M0, T[Nd(E′, Lf(A), Lf(B))]α) → · · · → (MkA
, T[Nd(E′, Rk, Lf(B))]α)

Now, equivalently, choose the run of B starting at this state (which I
can do because of soundness), where there is a kB such that MkA+kB

(x) =
MkA

(x) + Zp(x). Stop the run at exactly this state:

(MkA
, T[Nd(E′, Rk, Lf(B))]α) → · · · → (MkA+kB

, T[Nd(E′, RkA
, R′

kB
)]α)

Let k = kA + kB , and we get Mk(x) = MkA
(x) + Zp(x) = M0(x) +

Y n(x) + Zn(x) = M0(x) + Xp(x). For the rest of the run do the
remaining transitions in the runs of A and B, which by soundness
are all possible.

�

2.9 Termination

2.9.1 Proof of lemma 2.4.22

The lemma is: if Γ ` E : X for some Γ, E and X, then for any T, R, α and
M such that Γ |=R (M, T[Lf(E)]α) we have that any run of E in context T, on
position α and starting with store M has finite length.

I will prove this by induction on the typing derivation of Γ ` E : X. The
inductive hypothesis is: for any shorter derivation Γ′ ` E : X such that Γ′ is a
sub-basis of Γ, it is the case that any run of E has finite length.
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Axiom

� ` ε : 〈[], [], []〉
We have only one degenerate “run” of length 0.

Inductive cases

WeakenB Γ = Γ′, x ≺ B

Γ′ ` E : X Γ′ ` B : Y x 6∈ dom(Γ′)
Γ′, x ≺ B ` E : X

Since E is the same in the conclusion and the premise, this proof is easy — we
know already by the inductive hypothesis on the premise Γ′ ` E : X that any
run of E has finite length.

New E = new y·, Γ = Γ′, y ≺ A.

Γ′ ` A : Y y 6∈ dom(Γ′)
Γ′, y ≺ A ` new y· : X = 〈Y n, Y p + y, Y a + y〉

By the inductive hypothesis any run of A has finite length. Since any run of E
is an instance of osNew followed by some run of A, the run of E must also have
finite length, namely one more step than the run of A.

Del E = del y·.
Γ ` A : Y y ≺ A ∈ Γ
Γ ` del y· : 〈[y], [], [−y]〉

Starting from a well-formed configuration there is only one run of del y·. This
run is actually independent of the type and runs of A, so we do not need the
inductive hypothesis in this case. The length is 1.

Seq

Γ ` A· : Y Γ ` B· : Z

Γ ` A ·B· : X = 〈Y n ∪ (Zn − Y a), Y p ∪ (Y a + Zp), Y a + Za〉

A run of E consists of all transitions from some run of A followed by a run of B.
Since both runs have finite lengths, say nA and nB by the inductive hypothesis,
any run of E must also have finite length nA + nB .

Parallel. Assume the type of E = (A||B)· is inferred by an application of this
form:

(Parallel)
Γ ` A : Y Γ ` B : Z

Γ ` (A ||B)· : Y + Z

We have from the inductive hypothesis that any runs of A and B have finite
lengths nA and nB . A run of E starts with an instance of osParIntr.

Then follows all transitions from some runs of A and B. Every transition
in the run of (A||B) must now be the following transition in some run of A or
of B. Since both these runs are finite by the inductive hypothesis, we will after
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a finite number of steps get only ε in one of the leaves. After this we run the
rest of the other branch and one instance of osParElimL or osParElimR in some
order. It should be easy to see that the number of these transitions will be
nA + nB + 1. Any transition must either be some transition from this run of A,
some transition in a run of B or the single osParElimR or osParElimL. Since the
runs of A and B are finite, this means the run of (A||B) must be finite.

The last transition in the run is an instance of osParElim. There can be
no more transitions in the run than this, so the run of E must also have finite
length, namely nA + nB + 3. �



Chapter 3

Sharpness of the basic
system with only choice and
scope from chapter 2 of [13]

This chapter is a proof of the “sharpness” of the system defined in Chapter 2
in [13]. Some important definitions of this system follow. The main differences
between this system and the one described in the main chapter of this thesis
(“Global Resources”) is that there is no parallel composition (“||”) or explicit
deallocation (“del”), but there is a choice operator (“+”) and scope (“{” and
“}”).

3.1 Definitions

Definition 3.1.1 (Language).

Prog → Decls;E
Decls → x ≺ E;

E →
ε

| newx
| EE
| (E + E)
| {E}

A configuration in this system is a stack of pairs (M,E) where M is a store,
that is, an unsigned multiset of resources, and E is an expression, that is, a
word in the language of the grammar rule E above.

I extend the syntax for stacks to allow for empty stacks:

S ::= γ |S ◦ (M,E)

such that γ indicates the bottom or an empty stack. Also, if S = γ ◦ (M1, E1) ◦
· · · ◦ (Mk, Ek), where k = hi(S), let [S] be the multiset defined by [S](x) =
Σk

i=1Mi(x)
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Definition 3.1.2 (Operational Semantics).

(osNew) x ≺ A ∈ Decls
S ◦ (M, newxE) −→ S ◦ (M + x,AE)

(osChoice) i ∈ {1, 2}
S ◦ (M, (A1 + A2)E) −→ S ◦ (M,AiE)

(osPush)
S ◦ (M, {A}E) −→ S ◦ (M,E) ◦ ([], A)

(osPop)
S ◦ (M,E) ◦ (M ′, ε) −→ S ◦ (M,E)

Types are pairs X = 〈Xi, Xo〉, where Xi and Xo are multisets. Xi rep-
resents the maximum positive increase in the number of simultaneously active
instances during the run of the expression, while Xo is the upper bound for the
number of instances active after execution. These properties are formalised in
the sharpness lemma below.

A typing judgement is of the form Γ ` E : X. Γ is a basis, E an expression
and X a type. Xo corresponds to the type Xa in “Global resources”.

(Axiom)

� ` ε : 〈[], []〉

(WeakenB)
Γ ` A : X Γ ` B : Y x 6∈ dom(Γ)

Γ, x ≺ B ` A : X

(Scope)
Γ ` A : X

Γ ` {A} : 〈Xi, []〉

(New)
Γ ` A : X x 6∈ dom(Γ)

Γ, x ≺ A ` new x : 〈Xi + x,Xo + x〉

(Choice)
Γ ` A : X Γ ` B : Y

Γ ` (A + B) : 〈Xi ∪ Y i, Xo ∪ Y o〉

(Seq)
Γ ` A : X Γ ` B : Y A,B 6= ε

Γ ` AB : 〈Xi ∪ (Xo + Y i), Xo + Y o〉

Definition 3.1.3 (Well-typed programs). Program Prog = Decls;E is
well-typed if there exist a reordering Γ of declarations in Decls and a type X
such that Γ ` E : X.

Definition 3.1.4 (Well-typed configurations). Configuration S is well-typed
with respect to a basis Γ, notation Γ |= S, if for all 1 ≤ k ≤ hi(S) such that
S(k) = (M,E), there exists X such that

Γ ` E : X

The lemmas of progress, preservation and soundness give a kind of minimal
guarantee for a well-typed program: it will not get stuck. But the type of a
program is given in an “interval” because of the possibilities of choice, so we lack
an exact type. What we would like is to know that the bounds are reachable
— that there exist possible runs of a well-typed program exploiting the upper
bounds of the type. This is the sharpness of the typing system.
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Definition 3.1.5 (Run of an expression). A run of an expression E is a
sequence of configurations, where

• E is the expression at the top of the stack in the first configuration in the
sequence.

• In any pair of two consecutive configurations the second is formed from
the first using one of the rules in the operational semantics.

• The last configuration only differs from the start configuration in the top
of the stack, and the expression at the top of the stack is empty (ε).

• The length of the run is the number of configurations minus one.

I will enumerate the configurations in a run from 0 to length: S0 → · · · →
Slength

Lemma 3.1.6 (Sharpness). If Γ ` E : X then, for every component x, for
every well-typed configuration S0 = S ◦ (M,E) we have the following properties:

1. There exists a run S0 → · · · → Sn = S ◦ (M ′, ε) of E where there is a k,
0 ≤ k ≤ n such that [Sk](x) = Xi(x) + [S0](x).

2. There exists a (generally different) run S0 → · · · → Sm of E where
[Sm](x) = Xo(x) + [S0](x).

Generally, the runs attaining the different maxima will be different for dif-
ferent components, and different for the two types of maximum, because of the
Choice rule.

As an example, take a look at the possible runs of this expression (where
newx3 means three repetitions of newx) :

({new x3}+ newx)newx (3.1)

The type of this expression is 〈[x 7→ 3], [x 7→ 2]〉. To achieve the different
maxima, we must use two different runs. First we will consider the run which
gives the maximum number of x when k = 5, with

[S5](x) = [S](x) + M(x) + 3 = [S0](x) + Xi(x)

S ◦ (M, ({newx3}+ newx)newx) = S0

→ S ◦ (M, {newx3}newx) = S1

→ S ◦ (M, newx) ◦ ([], newx3) = S2

→3 S ◦ (M, newx) ◦ ([x 7→ 3], ε) = S5

→ S ◦ (M, newx) = S6

→ S ◦ (M + [x], ε) = S7

This run does not leave the maximum number of x after the run, as

[S7](x) = [S](x) + M(x) + 1 = [S0](x) + 1 < [S0](x) + 2 = [S0](x) + Xo(x)

The number of x during the run can also be visualised, letting vertical axis
represent number of x :
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S0
- S1

- S2

���
S3

���
S4

���
S5
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S6

���
S7

To get the maximum number of x after the run, we must use another, shorter
run:

S ◦ (M, ({newx3}+ newx)newx) = S0

→ S ◦ (M, newx newx) = S1

→ S ◦ (M + [x], newx) = S2

→ S ◦ (M + [x 7→ 2], ε) = S3

The last run could also be visualised like this:

S0
- S1

���
S2

���
S3

This run does leave the maximum number of x after the run, as the length
of the run is 3 and

[S3](x) = [S](x) + M(x) + 2 = [S0](x) + 2 = [S0](x) + Xo(x)

but the maximum number of x during the run is lower than the maximum
which we got using the previous run. These are the only two possible runs of
the expression, as there is only one “+” in the expression, so there is no other
run which achieves both maxima. This example shows that it can be (and often
is) the case that different runs, often also of different length, must be used to
achieve the different maxima for the same resource.

Going back to the formulation of the lemma, we see that there must be a
run of length m where [Sm](x) = Xo(x) + [S0](x). Now, since Sm = S ◦ (M ′, ε)
and S0 = S ◦ (M,E), we also get M ′(x) = M(x) + Xo(x).

Corollary 3.1.7 (Sharpness of program). For any program Prog = Decls;E
such that Γ |= ([], E) where Γ some reordering of Decls, for every component x,
there is a run ([], P rog) = S0 → · · · → Sn = (M, ε), where there is a k, 0 ≤ k ≤
n such that [Sk](x) = Xi(x) and there exists a run ([], P rog) → · · · → (M, ε)
where M(x) = Xo(x).

Together with proving sharpness, I will also prove another property of the
runs, which looks quite similar to soundness, but is not the same. In the later
chapters I will need this property during the proof of sharpness. In this case, I
have added the lemma only because it is an interesting property by itself.

Lemma 3.1.8 (Runs change store respecting limits). If Γ ` E : X for
some E, X and Γ, it is the case that for all S and M such that Γ |= S0 =
S ◦ (M,E) and for all runs of the form S0 → · · · → Sn of E, it is the case that
[Sn]− [S0] ⊆ Xo.
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3.2 Proof

The proof is by induction on typing derivations. The inductive hypothesis is: for
all shorter typing derivations Γ ` E : X, it is the case that for every component
x and well-typed configuration S0 = S◦(M,E) we have the following properties:

1. There exists a run S0 → · · · → Sn = S ◦ (M ′, ε) of E where there is a k,
1 ≤ k ≤ n such that [Sk](x) = Xi(x) + [S0](x).

2. There exists a (generally different) run S0 → · · · → Sm = S ◦ (M ′, ε) of E
where [Sm](x) = Xo(x) + [S0](x).

3. For all runs S0 → · · · → Sn = S ◦ (M ′, ε) of E we have that [Sn](x) −
[S0](x) ≤ Xo(x).

The important step in each part of the proof below is the relation between the
type and the operational semantics: we must show that runs giving the values
in the types are possible given the operational semantics. Each part of the proof
considers one typing rule. First I give an instance of the rule, how it could have
been used to deduce Γ ` E : X. Then I try to establish what kinds of runs we
can get using E and what their correspondence is with runs of expressions in
the premises. Finally I must show the existence of the runs with the wanted
properties, often using runs of the expressions in the premises, which we have
by the inductive hypothesis.

Since the proof only deals with well-typed configurations, preservation is
given by the preservation lemma: if Γ |= S and S → S′, then also Γ |= S′.

Definition 3.2.1 (Γ− {x ≺ A}). By Γ− {x ≺ A} I mean the basis containing
all declarations in Γ except the last one, in the case that this last one is equal to
{x ≺ A}. The expression is only valid if {x ≺ A} is actually the last declaration
in Γ, and it is not possible to remove other declarations than the last.

Base case

Axiom

� ` ε : 〈[], []〉

S0 = S ◦ (M,E) = S ◦ (M, ε)

There is only one “run” of length 0, where no resources are created. Let k = 0.
Since Xi(x) = Xo(x) = 0 this suffices.

Inductive cases

WeakenB

Γ− {x ≺ B} ` E : X Γ− {x ≺ B} ` B : Y x 6∈ dom(Γ− {x ≺ B})
Γ ` E : X

This proof is easy — we know by the inductive hypothesis that there exist runs
of E with the properties needed for sharpness of X, and this is what we need
to prove.
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New Let E = new y and Γ− {y ≺ A} ` A : Y .

Γ− {y ≺ A} ` A : Y y 6∈ dom(Γ− {y ≺ A})
Γ ` new y : 〈Y i + y, Y o + y〉

For any run S◦ (M +y, A) → · · · → S◦ (M ′+y, ε) of A, there is a corresponding
run

S0 = S ◦ (M, new y) → S ◦ (M + y, A) → · · · → S ◦ (M ′ + y, ε) = Sn

of new y.

• For y 6= x we can use the runs of A which exist by the inductive hypothesis
for the properties of Y and that Y ∗(x) = X∗(x).

• For y = x we have y 6∈ dom(Γ − {y ≺ A}) and by Lemma 2.3.9 (Valid
typing judgement), Y ∗ ⊆ dom(Γ − {y ≺ A}), so Y ∗(y) = 0 and there is
no y created in the run of A. The extra y is added to the store in the
first step of the run, and this will be the only y during the run of A. I
choose k = 1, and [S1](y) = [S0](y) + 1 while Xi(y) = Y i(y) + 1 = 1. We
also have Xo(y) = Y o(y) + 1 = 1 and [Sn](y) = [S0](y) + 1. So all three
properties hold for any run of new y.

Seq
Γ ` A : Y Γ ` B : Z A, B 6= ε

Γ ` AB : 〈Y i ∪ (Y o + Zi), Y o + Zo〉
A run of A B consists of a run of A followed by a run of B. From inductive
hypothesis we have knowledge of runs of A ending in ε. Adding B to this gives
a sequence of configurations from S ◦ (M,AB) to S ◦ (M ′, B) using the same
transitions. In other words, for any run of length n

S ◦ (M,A) → · · · → S ◦ (M ′, ε)

there is a sequence of n + 1 configurations

S ◦ (M,AB) → · · · → S ◦ (M ′, B)

with the same transitions. For the runs of B I need no such transformation,
and can directly use the runs existing by the inductive hypothesis. So for any
pair of a run of A and a run of B, there is a run

S0 = S ◦ (M,AB) → · · · → S ◦ (M ′, B) = Sn → · · · → S ◦ (M ′′, ε) = Sn+m (3.2)

of A B, using the same transitions. If the run of A is of length n and the run of
B is of length m, the run of A B will be of length n + m.

I will start with finding a run resulting in [Sn+m](x) = [S0](x) + Xo(x) =
[S0](x) + Y o(x) + Zo(x). First I choose the run of A resulting in [Sn](x) =
[S0](x) + Y o(x) and then the run of B finally resulting in :

[Sn+m](x) = [Sn](x) + Zo(x) = [S0](x) + Y o(x) + Zo(x) = [S0](x) + Xo(x)

and we are done with this first part.
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Finding a run of A B: S0 → · · · → S ◦ (M ′, B) = Sn′ → · · · → Sn′+m′ , where
there is k, such that 1 ≤ k ≤ n′ + m′ and

[Sk](x) = [S0](x) + Xi(x)
= [S0](x) + (Y i ∪ (Y o + Zi))(x)
= [S0](x) + max(Y i(x), Y o(x) + Zi(x))

is not that easy. Either the k with the maximum store is found during execution
of A (i.e. k ≤ n′) or during the execution of B (i.e. k > n′).

As an example, compare the expression

({new x3}+ newx)newx

which we also looked at earlier (3.1) and which has type 〈[x 7→ 3], [x 7→ 2]〉 with
this expression:

({new x}+ newx)newx (3.3)

(3.3) has type 〈[x 7→ 2], [x 7→ 2]〉. In (3.1) we saw that the run reaching the
maximal number of x used the left choice {new x3}. To get the maximal amount
of x in (3.3) we must use the right hand choice to get the following run:

S ◦ (M, ({newx}+ newx)newx) = S0

→ S ◦ (M, newx newx) = S1

→ S ◦ (M + [x], newx) = S2

→ S ◦ (M + [x 7→ 2], ε) = S3

To prove that there will always be such a run and k, we must do a case distinction
on the value of Xi(x) = max(Y i(x), Y o(x) + Zi(x)):

• If Y i(x) = max(Y i(x), Y o(x) + Zi(x)) we can use the run of A which
by the inductive hypothesis has a configuration SkA

such that [SkA
](x) =

[S0](x) + Y i(x) = [S0](x) + Xi(x), so we can use kA as k.

• In the other case, Y o(x)+Zi(x) = max(Y i(x), Y o(x)+Zi(x)), we use the
run of A which ends in Sn = S ◦ (M ′, B) where [Sn](x) = [S0](x) + Y o(x)
and then the run of B where there is a kB such that

[SkB
](x) = [Sn](x) + Zi(x) = [S0](x) + Y o(x) + Zi(x) = [S0](x) + Xi(x)

and use n + kB as k.

All I have left is now showing that for any run of AB we have [Sn+m](x) −
[S0](x) ≤ Xo(x), where n is the length of the run of A and m is the length of the
run of B as in (3.2). From the inductive hypothesis I have [Sn]−[S0](x) ≤ Y o(x)
and [Sn+m]−[Sn](x) ≤ Zo(x). Adding these inequalities I get [Sn+m]−[S0](x) ≤
Y o(x) + Zo(x) = Xo(x).

Choice Let E = (A + B), Γ ` A : Y and Γ ` B : Z.

Γ ` A : Y Γ ` B : Z

Γ ` (A + B) : 〈Y i ∪ Zi, Y o ∪ Zo〉

For this rule, I must use two inductive hypotheses, one for each of the premises
in the typing rule (A : Y and B : Z). This means the whole proof is an instance



64 Sharpness of the basic system

of simultaneous induction. To run (A+B), we must choose a run of A or a run
of B. For any run of A or B, that is, S ◦ (M,A) → · · · → S ◦ (M ′, ε), there is a
corresponding run of (A + B), with the same transitions, only one instance of
osChoice added in front, e.g..:

S ◦ (M, (A + B)) → S ◦ (M,A) → · · · → S ◦ (M ′, ε)

By the inductive hypothesis there is a run of A and a state kA in the run such
that [SkA

](x) = [S0](x) + Y i(x), and correspondingly for B there is a run and a
kB . For a run of (A + B) with a state k achieving [Sk](x) = [S0](x) + Xi(x) =
[S0](x) + (Y i ∪ Zi)(x) = [S0](x) + max(Y i(x), Zi(x)), choose the run of A and
k = kA if Y i(x) > Zi(x), otherwise choose the run of B and k = kB . We will
then have

[Sk](x) = [S0](x) + max(Y i(x), Zi(x)) = [S0](x) + Xi(x)

The same argument can be used for [S0](x) + Xo(x).
Now I must show that for any S and M such that Γ |= S0 = S◦ (M, (A+B))

and any run of the form S0 → S1 → · · · → Sn+1 = S ◦ (M ′, ε) of (A + B)
we have [Sn+1](x) − [S0](x) ≤ Xo(x). From the inductive hypothesis I have
[Sn+1](x)− [S1](x) ≤ Y o(x) if we chose to run A and [Sn+1](x)− [S1](x) ≤ Zo(x)
if we chose to run B. Since we have from the typing rule that Y o(x) ≤ Xo(x)
and Zo(x) ≤ Xo(x) and we have that [S1] = [S0], we are done.

Scope E = {A}.

Γ ` A : Y

Γ ` {A} : 〈Y i, []〉
In the operational semantics, a new pair ([], A) is created on top of the stack

through the transition rule osPush, A is run, and then osPop removes the pair
again. So, for any run

S ◦ ([], A) → · · · → S ◦ (M ′, ε)

of A there is a run

S ◦ (M, {A}) S0

→ S ◦ (M, ε) ◦ ([], A) S1

→ · · · → S ◦ (M, ε) ◦ (M ′, ε) Sn−1

→ S ◦ (M, ε) Sn

of {A} using the same transitions but in addition having osPush and osPop
at the start and the end. I can assume existence of wanted runs of A, since
Γ ` A : Y must hold by the typing rule. For Xo any run of A is okay, since no
resources are returned ([Sn](x) = [S0](x)) and Xo = []. For the other property,
choose the run and kA such that

[SkA
](x) = [S](x) + M(x) + Y i(x) = [S0](x) + Y i(x) = Xi(x) + [S0](x)

which exist by the inductive hypothesis. So we can let k = kA.



Chapter 4

Sharpness of the system
with choice, scope and del
(“Explicit deallocation”) in
chapter 3 of [13]

This chapter is a proof of the “sharpness” of the system defined in Chapter 3
in [13]. Some important definitions of this system follow. The main differences
between this system and the one described in the main chapter of this thesis
(“Global Resources”) is that there is no parallel composition (“||”), but there is
a choice operator (“+”) and scope (“{” and “}”).

4.1 Definitions

Definition 4.1.1 (Language).

Prog → Decls;E
Decls → x ≺ E;

E →
ε

| newx
| delx
| EE
| (E + E)
| {E}

A configuration in this system is a stack of pairs as in the previous chapter.
(See page 57.)
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Definition 4.1.2 (Operational Semantics).

(osNew) x ≺ A ∈ Decls
S ◦ (M, newxE) −→ S ◦ (M + x,AE)

(osDel) x ∈ M
S ◦ (M, delxE) −→ S ◦ (M − x, E)

(osChoice) i ∈ {1, 2}
S ◦ (M, (A1 + A2)E) −→ S ◦ (M,AiE)

(osPush)
S ◦ (M, {A}E) −→ S ◦ (M,E) ◦ ([], A)

(osPop)
S ◦ (M,E) ◦ (M ′, ε) −→ S ◦ (M,E)

Types are triples X = 〈Xi, Xo, X l〉, where Xi is an unsigned multiset and
the two others are signed multisets. Xi represents the maximum positive in-
crease in the number of simultaneously active instances during the run of the
expression, while Xo and X l are the upper and lower bounds for the num-
ber of instances active after execution. These properties are formalised in the
sharpness lemma below.

A typing judgement is of the form σ,Γ ` E : X. Γ is a basis, E an expression
and X a type. σ corresponds to the part Xn of the type in “global resources”
(Section 2.3, page 11). X l and Xo corresponds to the type Xa in “Global
resources”. The reason why there are two types here is the presence of the
choice operator.

(Del)
σ,Γ ` A : X x ∈ dom(Γ)
[x],Γ ` del x : 〈[], [−x], [−x]〉

(WeakenB)
σ1,Γ ` A : X σ2,Γ ` B : Y x 6∈ dom(Γ)

σ1,Γ, x ≺ B ` A : X

(WeakenS)
σ,Γ ` A : X σ ⊆ σ1

σ1,Γ ` A : X

(Choice)
σ1,Γ ` A : X σ2,Γ ` B : Y

σ1 ∪ σ2,Γ ` (A + B) : 〈Xi ∪ Y i, Xo ∪ Y o, X l ∩ Y l〉
(New)

σ,Γ ` A : X x 6∈ dom(Γ)
σ,Γ, x ≺ A ` new x : 〈Xi + x, Xo + x, X l + x〉

(Scope)
[],Γ ` A : X

[],Γ ` {A} : 〈Xi, [], []〉

(Axiom)

[],� ` ε : 〈[], [], []〉

(Seq)
σ1,Γ ` A : X σ2,Γ ` B : Y A,B 6= ε

σ1 ∪ (σ2 −X l),Γ ` AB : 〈Xi ∪ (Xo + Y i), Xo + Y o, X l + Y l〉

Definition 4.1.3 (Well-typed configurations). Configuration S is well-typed
with respect to a basis Γ, notation Γ |= S, if for all 1 ≤ k ≤ hi(S) such that
S(k) = (M,E), there exists X such that

M,Γ ` E : X
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Note now that in this system, the size of the store in a well-typed configuration
must be equal to M in the type. This forces the inclusion of the rule WeakenS
which destroys sharpness of M . Contrast this with the previous system “global
resources”, where I could prove sharpness for Xn. For a counterexample of
sharpness of M ,

[x 7→ c],� ` ε : 〈[], [], []〉 c ∈ N

is a valid typing judgement, but the “run” of ε does not change the store.

4.2 Sharpness

Lemma 4.2.1 (Sharpness). If M,Γ ` E : X then, for every component x,
for every well-typed configuration S0 = S ◦ (M,E) there exist three generally
different runs of E with lengths n1, n2 and n3:

S0 → · · · → Sni = S ◦ (M i
ni

, ε) (i ∈ {1, 2, 3})

which fulfill one each of the following properties:

1. There is a k, 0 ≤ k ≤ n1 such that [Sk](x) = Xi(x) + [S0](x).

2. [Sn2 ](x) = Xo(x) + [S0](x).

3. [Sn3 ](x) = X l(x) + [S0](x).

Corollary 4.2.2 (Sharpness of programs). For any program Prog = Decls;E
s.t. [],Γ ` E : X for some reordering Γ of Decls, for every component x, there
exist three generally different runs with lengths n1, n2 and n3:

([], P rog) = S0 → · · · → Sni
= (M i

ni
, ε) (i ∈ {1, 2, 3})

which fulfill one each of the following properties:

1. there is a k, 0 ≤ k ≤ n1 such that [Sk](x) = Xi(x).

2. M2
n2

(x) = Xo(x).

3. M3
n3

(x) = X l(x).

4.3 Introduction

The proof must be changed somewhat from the simpler case. I still do structural
induction on typing derivations, but the inductive hypothesis must be strength-
ened to include cases with a larger than necessary store. The reason for this is
that in the proof-cases for Choice and Seq I need to have from the inductive
hypothesis that there exist runs starting with a larger store. To do this, I will
in each case of the proof give an argument that there exist runs starting from
a store of the given size M or larger. I will express this by adding another un-
signed multiset N . This is the same as saying that there can be any application
of WeakenS after the application of the given rule.

M,Γ ` E : X M ⊆ M + N

M + N,Γ ` E : X
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I also use the fact that any number of consecutive applications of WeakenS
can be replaced by one single application. This follows from the properties of
⊆.

A run is defined as in definition 3.1.5 on page 59 in the previous chapter.
I must also make sure that if Γ |= S0 = S◦ (M,E), that is, S0 is a well-typed

configuration, then S◦(M +N,E) is also a well-typed configuration. Otherwise,
we could not use the progress lemma to guarantee the existence of the first step
of the run.

Since the only change between the two stacks is changing the store from M
to M + N at the top of the stack, and we have from WeakenS that the type
is still X, the new stack is also well-typed.

In most of the cases of the proofs, we also need to use that the change to
the store during a sequence of configurations is independent of the size of this
store, as long as it is large enough for any application of del.

Proposition 4.3.1 (Change of store independent of size of store). For
any two sequences of configurations of the same length j

S0 = S ◦ (M0, E0) −→ · · · −→ Sj = S ◦ (Mj , Ej)

and
S′0 = S′ ◦ (N0, E

′
0) −→ · · · −→ S′j = S′ ◦ (Nj , E

′
j)

where for all i, 0 ≤ i < j the rule used for the transformation Si −→ Si+1 and
the subexpression to which the rule is applied is identical to the one used for the
transformation S′i −→ S′i+1, we have that

Mj −M0 = Nj −N0

Note that I am comparing two already existing sequences. This means I do not
have to show that they exist, since this is assumed. I will prove the lemma
by induction on the length of the sequences of configurations. The inductive
hypothesis is:

For any k ≤ j: for any two sequences of configurations of length k:

S0 = S ◦ (M0, E0) −→ · · · −→ Sj = S ◦ (Mk, Ek)

and
S′0 = S′ ◦ (N0, E

′
0) −→ · · · −→ S′j = S′ ◦ (Nk, E′

k)

If for all i, where 0 ≤ i < k, the rule used from the operational semantics
to transform Si −→ Si+1 and the subexpression to which the rule is applied is
identical to the one used for the transformation S′i −→ S′i+1, then we have that
Mk −M0 = Nk −N0.

• Base Case. The base case is the sequence of length 0. This means j = 0
and the wanted property follows immediately since Mj = M0 and Nj =
N0.

• Inductive cases. We have the lemma for sequences of configurations

S0 −→ · · · −→ Sk
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where k ≤ j. Now I need to assure the lemma for all sequences which
are one transition longer. This is done by adding the same transition at
the right hand end of two equal sequences of length j. Since all sequences
shorter than j + 1 are covered by the inductive hypothesis, we only need
to create the sequences of exactly length j + 1:

S0 −→ · · · −→ Sj −→ Sj+1

To accomplish this, I will use a case distinction on the possible transitions
from the operational semantics. First, I will treat separately the cases
when the stack is higher than it was in the starting configuration, that is,
transitions of this form:

S ◦ (Mj , Ej) ◦ · · · ◦ (M,E) → S ◦ (Mj , Ej) ◦ · · · ◦ (M ′, E′)

As we can see, in these cases the store we are analysing does not change,
that is Mj+1 = Mj and Nj+1 = Nj , so we only need to look at the
transitions where the store we are looking at is at the top of the stack.

– osNew
S ◦ (Mj , new xE′) → S ◦ (Mj + x,AE′)

We have Mj+1 −Mj = x. Since I assume the exact same transition
is added to the other sequence I also have Nj+1−Nj = x. Combined
with the inductive hypothesis this gives Mj+1 −M0 = Nj+1 −N0 as
wanted.

– osDel
S ◦ (Mj , del xE′) → S ◦ (Mj − x,E′)

This goes like the previous case. We have Mj+1 = Mj − x and
by assuming the same transition in the other sequence we also get
Nj+1 = Nj − x. Combining this with the inductive hypothesis gives
the result.

– osChoice This transition makes no change to the store, so Nj+1 = Nj

and Mj+1 = Mj and the wanted result follows from the inductive
hypothesis.

– osPush There are two possibilities:

S ◦ (Mj , {A}E) → S ◦ (Mj , E) ◦ ([], A)

or

S ◦ (Mj , Ej) ◦ · · · ◦ (M, {A}E) → S ◦ (Mj , Ej) ◦ · · · ◦ (M,E) ◦ ([], A)

In both cases Mj+1 = Mj , and since I assume the same transition
takes place in the other sequence, Nj+1 = Nj .

– osPop There are two possibilities:

S ◦ (Mj , E) ◦ (M, ε) → S ◦ (Mj , E)

or

S ◦ (Mj , Ej) ◦ · · · ◦ (M,E) ◦ (M ′, ε) → S ◦ (Mj , Ej) ◦ · · · ◦ (M,E)

In both cases Mj+1 = Mj , and since I assume the same transition
takes place in the other sequence, Nj+1 = Nj .
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As in the previous chapter, I will prove also a new property of the runs,
which looks quite similar to soundness, but is not the same. As before, I will
prove it together with sharpness, as a separate case. During this proof though,
it will also turn out that we need this property for the “strictly” sharpness
properties in the case of Seq.

Lemma 4.3.2 (Runs change store respecting limits). If Γ ` E : X for
some E, X and Γ, it is the case that for all S and M such that Γ |= S0 =
S ◦ (M,E) for all runs of the form S0 → · · · → Sn of E, it is the case that
X l ⊆ [Sn]− [S0] ⊆ Xo.

4.4 Proof of Lemma 4.2.1 and 4.3.2.

Let Γ |= S for some basis Γ and configuration S. The inductive hypothesis is:
For all shorter typing derivations M,Γ′ ` E : X, where Γ′ is a sub-basis of

Γ, for every component x, any unsigned multiset N of resources and for every
configuration S0 = S ◦ (M + N,E) where Γ |= S0, there exist three generally
different runs of E with lengths n1, n2 and n3:

S0 → · · · → Sni = S ◦ (M i
ni

+ N, ε) (i ∈ {1, 2, 3})

which fulfill one each of the following properties.

1. There is a k, 0 ≤ k ≤ n1 such that [Sk](x) = Xi(x) + [S0](x).

2. [Sn2 ](x) = Xo(x) + [S0](x).

3. [Sn3 ](x) = X l(x) + [S0](x).

And for all runs S0 → · · · → Sn of E, it is the case that X l ⊆ [Sn]− [S0] ⊆
Xo.

Base cases

Axiom

[],� ` ε : 〈[], [], []〉
We have M + N = N .

S0 = S ◦ (N,E) = S ◦ (N, ε)

There is only one degenerate run of ε of length 0, where no resources are created
or deleted. Let k = 0. Since Xi(x) = Xo(x) = X l(x) = 0 this is enough.

Inductive cases

Del Assume M,Γ ` E : X is inferred by an application of Del:

M ′,Γ ` A : Y y ∈ dom(Γ)
[y],Γ ` del y : 〈[], [−y], [−y]〉

We then have E = del y and M + N = [y] + N . Starting from a store [y] + N ,
there is only one run of del y:
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S0 = S ◦ ([y] + N, del y) → S ◦ (N, ε) = S1

This run is actually independent of the type and runs of A, so I will not need
the inductive hypothesis in this case.

• For y 6= x we have ([y]+N)(x) = N(x) and for the type we have X∗(x) = 0
and we can use k = 0 or k = 1 to attain the maximum for x.

• For y = x we have that for sharpness of Xi(y) = 0, obviously (N+[y])(y) =
(N +[y])(y)+Xi(y), so take k = 0. For sharpness of X l(y) = Xo(y) = −1,
we have (N)(y) = (N + [y])(y)− 1.

WeakenB Assume M,Γ ` E : X is inferred by an application of WeakenB:

M,Γ′ ` E : X M ′,Γ′ ` B : Y x 6∈ dom(Γ′)
M,Γ′, x ≺ B ` E : X

This case is easy — we know already by the inductive hypothesis on the premise
M,Γ′ ` E : X that there exist runs of E with the properties needed for sharpness
of X.

WeakenS Assume M,Γ ` E : X is inferred by an application of WeakenS

M ′,Γ ` E : X M ′ ⊆ M

M,Γ ` E : X

By the inductive hypothesis we have that for any unsigned multiset N ′ there
are runs with the wanted properties of this form:

S ◦ (M ′ + N ′, E) −→ · · · −→ S ◦ (M ′′ + N ′, ε)

Let M δ = M −M ′, which is an unsigned multiset, since M ⊇ M ′. What I want
for the conclusion is runs for any unsigned multiset N of this form

S ◦ (M + N,E) −→ · · · −→ S ◦ (M ′′′ + N, ε)

But we can get this by letting N ′ = M + N −M ′ = N + M δ. By proposition
4.3.1 the desired property carries over from the run with (M ′ + N ′, E) on top
to the run with (M + N,E) on top.

New Assume M,Γ ` E : X is inferred by an application of New:

M,Γ′ ` A : Y y 6∈ dom(Γ′)
M,Γ′, y ≺ A ` new y : X = 〈Y i + y, Y o + y, Y l + y〉

We have E = new y and Γ = Γ′, y ≺ A. By the inductive hypothesis we have
for any unsigned multiset N ′ existence of runs of the form S ◦ (M + N ′, A) →
· · · → S ◦ (M ′ + N ′, ε) of A. What we want are the corresponding runs for any
unsigned multiset N :

S0 = S ◦ (M +N, new y) → S ◦ (M +N + y, A) → · · · → S ◦ (M ′ +N + y, ε) = Sn
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of new y. The first step is the rule osNew from the operational semantics. The
rest of the run exists by inductive hypothesis, the only difference is the addition
of one y, but since N ′ from the inductive hypothesis is any unsigned multiset,
it must be okay to also let N ′ = N + y, for fixed N . So I know I can use the
runs of A, but now I must show they actually fulfill sharpness.

• For y 6= x we can use the runs of A which exist by the inductive hypothesis
for the properties of Y and that Y ∗(x) = X∗(x).

• For y = x: by valid typing y 6∈ dom(Γ − {y ≺ A}) and by lemma 2.3.9,
valid typing judgement, in [13] Y ∗ ⊆ dom(Γ−{y ≺ A}), so Y ∗(y) = 0 and
there is no y created in the run of A. The extra y is added to the store
in the first step of the run, and this will be the only y during the run of
A. I choose k = 1, and [S1](y) = [S0](y) + 1 while Xi(y) = Y i(y) + 1 = 1.
We also have Xo(y) = Y o(y) + 1 = 1 and [Sn](y) = [S0](y) + 1 and the
corresponding holds for X l(x). So all properties hold for any run of new y.

Finally I must prove that for any run S0 → · · · → Sn of newx we have X l ⊆
[Sn]− [S0] ⊆ Xo. From the inductive hypothesis we have Y l ⊆ [Sn]− [S1] ⊆ Y o.
Add one [y] to every part of the inequality to get

Y l + [y] ⊆ [Sn]− [S1] + [y] ⊆ Y o(x) + [y]
Y l + [y] ⊆ [Sn]− [S1] + [S1]− [S0] ⊆ Y o + [y]

X l ⊆ [Sn]− [S0] ⊆ Xo

Seq Assume M,Γ ` E : X is inferred by an application of Seq:

M1,Γ ` A : Y M2,Γ ` B : Z A, B 6= ε

M1 ∪ (M2 − Y l),Γ ` AB : X = 〈Y i ∪ (Y o + Zi), Y o + Zo, Y l + Zl〉

A run of A B consists of a run of A followed by a run of B. By the inductive
hypothesis we have knowledge of runs of A starting with store M1 + N1 :

S ◦ (M1 + N1, A) → · · · → S ◦ (M ′
1 + N1, ε)

What I want is runs for any N starting with M +N . We have M = M1∪ (M2−
Y l), so we have M + N ⊇ M ⊇ M1. I can therefore get the wanted runs of A
starting with M + N by letting N1 = M + N −M1. The subtraction M −M1

still creates an unsigned multiset since M1 ⊆ M by assumption. So I get runs
of this form:

S ◦ (M + N,A) → · · · → S ◦ (M ′ + N, ε)

where we from (4.3.1) have M ′ = M + M ′
1 − M1. So I get M ′

1 + N1 = M ′
1 +

M + N −M1 = M ′ + N , as needed.
Adding B to the expression gives a sequence of configurations from S◦ (M +

N,AB) to S ◦ (M ′ + N,B) using the same transitions. In other words, for any
run of length n

S ◦ (M + N,A) → · · · → S ◦ (M ′ + N, ε)

there is a sequence of n + 1 configurations

S ◦ (M + N,AB) → · · · → S ◦ (M ′ + N,B)
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with the same transitions. Now we go on to the runs of B. First I will look at
the store M ′ + N at the end of a run of A.

(M ′ + N)(x) ≥ (M + N)(x) + Y l(x)
≥ (M1 ∪ (M2 − Y l))(x) + Y l(x)
= max(M1(x), (M2 − Y l)(x)) + Yl(x)
≥ (M2 − Y l)(x) + Yl(x)
= M2(x)

(4.1)

The first line follows from the last clause of the induction hypothesis (M ′−M ⊇
X l). The second line follows from the typing derivation (M = M1∪ (M2−Y l)).
So we have M ′ + N ⊇ M2 for any such sequence of configurations. By the
inductive hypothesis we have runs starting with a store M2 + N2. Letting
N2 = M ′ + N −M2 we then get runs starting with M ′ + N = M2 + N2:

S ◦ (M ′ + N,B) → · · · → S ◦ (M ′′ + N, ε)

Where M ′′ −M = M ′
2 −M2. For correctness of the last store, remember from

(4.3.1) that M ′′ −M ′ = M ′
2 −M2 so I get:

M ′
2 + N2 = M ′

2 + (M ′ + N −M2) = (M ′ + M ′
2 −M2) + N = M ′′ + N

For the runs of B I need no transformation as in the case of A, and can directly
use the runs existing by the inductive hypothesis. So for any pair of a run of A
and a run of B, there is a run

S0 = S◦(M+N,AB) → · · · → S◦(M ′+N,B) = Sn → · · · → S◦(M ′′+N, ε) = Sn+m

of A B, using the same transitions. If the run of A is of length n and the run of
B is of length m, the run of A B will be of length n + m.

I will now start with finding a run resulting in [Sn+m](x) = [S0](x)+Xo(x) =
[S0](x) + Y o(x) + Zo(x). First I choose the run of A resulting in [Sn](x) =
[S0](x) + Y o(x). I can then choose the run of B finally resulting in:

[Sn+m](x) = [Sn](x) + Zo(x) = [S0](x) + Y o(x) + Zo(x) = [S0](x) + Xo(x)

and we are done with this first part. For X l(x), we can use the same argument,
just replacing o with l.

Finding a run of A B: S0 → · · · → S ◦ (M ′ + N,B) → · · · → Sn′+m′ , where
there is k, such that 1 ≤ k ≤ n′ + m′ and

[Sk](x) = [S0](x) + Xi(x)
= [S0](x) + (Y i ∪ (Y o + Zi))(x)
= [S0](x) + max(Y i(x), Y o(x) + Zi(x))

is not that easy. The k with the maximum store could be found both during
execution of A (e.g. k ≤ n′) or k during execution of B (e.g. k > m′).

To prove that there will always be such a run and k, I must make a case
distinction on the value of Xi(x) = max(Y i(x), Y o(x) + Zi(x)):

• If Y i(x) = max(Y i(x), Y o(x) + Zi(x)) we can use the run of A which
by the inductive hypothesis has a configuration SkA

such that [SkA
](x) =

[S0](x) + Y i(x) = [S0](x) + Xi(x), so I can use kA as k.
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• In the other case, Y o(x)+Zi(x) = max(Y i(x), Y o(x)+Zi(x)), we use the
run of A which ends in Sn = S ◦ (M ′ + N,B) where [Sn](x) = [S0](x) +
Y o(x). By equation 4.1 above we have M ′ + N ⊇ M2. I can then choose
the run of B where there is a kB such that

[SkB
](x) = [Sn](x) + Zi(x) = [S0](x) + Y o(x) + Zi(x) = [S0](x) + Xi(x)

and use n′ + kB as k.

For the last property, given any run

S0 = S ◦ (M,AB) → · · · → Sn = S ◦ (M ′, B) → · · · → Sn+m = S ◦ (M ′′, ε)

of AB, we have

Y l ⊆ [Sn]− [S0] ⊆ Y o

Zl ⊆ [Sn+m]− [Sn] ⊆ Zo

by the inductive hypothesis. Adding these two inequalities we get:

Y l + Zl ⊆ [Sn]− [S0] + [Sn+m]− [Sn] ⊆ Y o + Zo

which implies X l ⊆ [Sn+m]− [S0] ⊆ Xo.

Choice Assume M,Γ ` E : X is inferred by an application of Choice:

M1,Γ ` A : Y M2,Γ ` B : Z

M1 ∪M2,Γ ` (A + B) : X = 〈Y i ∪ Zi, Y o ∪ Zo, Y l ∩ Zl〉

We then have E = (A+B) and M = M1∪M2. To run (A+B), we must choose
a run of A or a run of B. For any run of A or B, e.g. S ◦ (M1 + N1, A) →
· · · → S ◦ (M ′

1 + N1, ε), there is a corresponding run of (A + B), with the same
transitions, only with one instance of osChoice added in front, e.g.:

S ◦ (M + N, (A + B)) → S ◦ (M + N,A) → · · · → S ◦ (M ′ + N, ε)

This run exists because we can let N1 = M +N−M1. This is a valid subtraction
since M ⊇ M1. Since M ′ −M = M ′

1 −M1 from (4.3.1), for the last store I get

M ′
1 + N1 = M ′

1 + (M + N −M1) = (M + M ′
1 −M1) + N = M ′ + N

By the inductive hypothesis there is then a run of A and a state kA in the
run such that [SkA

](x) = [S0](x) + Y i(x), and correspondingly for B there is
a run and a kB . For a run of (A + B) with a state k achieving [Sk](x) =
[S0](x) + Xi(x) = [S0](x) + (Y i ∪ Zi)(x) = [S0](x) + max(Y i(x), Zi(x)), choose
the run of A and k = kA if Y i(x) > Zi(x), otherwise choose the run of B and
k = kB . We will then have

[Sk](x) = [S0](x) + max(Y i(x), Zi(x)) = [S0](x) + Xi(x)

Correspondingly, almost equal arguments can be used for [S0](x) + Xo(x) and
[S0](x) + X l(x).
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For the last property, given any run

S0 = S ◦ (M, (A + B)) → · · · → Sn = S ◦ (M ′, ε)

of AB, we have

Y l ∩ Zl ⊆ [Sn]− [S1] ⊆ Y o ∪ Zo

⇓
X l ⊆ [Sm]− [S0] ⊆ Xo

by the inductive hypothesis, the properties of intersection and union and that
the first transition does not change the store.

Scope Assume M,Γ ` E : X is inferred by an application of Scope:

[],Γ ` A : Y

[],Γ ` {A} : 〈Y i, [], []〉

We have E = {A} and M+N = []+N = N . In the operational semantics, a new
pair ([], A) is created on top of the stack through the transition rule osPush,
A is run, and then osPop removes the pair again. So, for any run

S ◦ ([], A) → · · · → S ◦ (M ′, ε)

of A there is a run

S ◦ (N, {A}) S0

→ S ◦ (N, ε) ◦ ([], A) S1

→ · · · → S ◦ (N, ε) ◦ (M ′, ε) Sn−1

→ S ◦ (N, ε) Sn

of {A} using the same transitions but in addition having osPush and osPop at
the start and the end. In all but the first and last transitions, we are guaranteed
that N is not used or changed by the properties of scope. In the first and last
rules, this follows from the operational semantics. I can assume existence of the
wanted runs of A, since [],Γ ` A : Y must hold by the typing rule. For Xo and
X l any run of A is okay, since no resources are returned ([Sn](x) = [S0](x)) and
Xo = X l = []. For the other property, choose the run and kA such that

[SkA
](x) = ([S]+M)(x)+Y i(x) = [S](x)+M(x)+Y i(x) = [S0](x)+Y i(x) = Xi+[S0](x)

which exist by the inductive hypothesis. So we can let k = kA.
The last property is easy, as for all runs X l = Xo = [] and the store is not

changed.
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Chapter 5

Sharpness of the system
with choice, scope, del and
parallel composition
(“Explicit deallocation and
Parallel Composition”) in
chapter 4 of [13]

This chapter is a proof of the “sharpness” of the system defined in Chapter 4
in [13]. Some important definitions of this system follow:

5.1 Definitions

Definition 5.1.1 (Language).

Prog → Decls;E
Decls → x ≺ E;

E →
ε

| newx
| delx
| EE
| (E + E)
| (E||E)
| {E}

A configuration in this system is a tree of stacks, where the stacks are as in
the previous chapter.



78 Sharpness with scope, choice del and parallel

A configuration is

T, R Configurations
→ Lf(S) Leaf
| Nd(S, T) Node with one branch
| Nd(S, T, T) Node with two branches

Definition 5.1.2 (Operational Semantics).

(osNew) x ≺ A ∈ Decls
Lf(S ◦ (M, newxE)) −→ Lf(S ◦ (M + x, AE))

(osDel) x ∈ M
Lf(S ◦ (M, delxE)) −→ Lf(S ◦ (M − x, E))

(osChoice) i ∈ {1, 2}
Lf(S ◦ (M, (A1 + A2)E)) −→ Lf(S ◦ (M,AiE))

(osPush)
Lf(S ◦ (M, {A}E)) −→ Lf(S ◦ (M,E) ◦ ([], A))

(osPop)
Lf(S ◦ (M,E) ◦ (M ′, ε)) −→ Lf(S ◦ (M,E))

(osParIntr)
Lf(S ◦ (M, (A ||B)E)) −→ Nd(S ◦ (M,E), Lf([], A), Lf([], B))

(osParElimL)
Nd(S ◦ (M,E), Lf(M ′, ε), R) −→ Nd(S ◦ (M + M ′, E), R)

(osParElimR)
Nd(S ◦ (M,E), R, Lf(M ′, ε)) −→ Nd(S ◦ (M + M ′, E), R)

(osParElim)
Nd(S ◦ (M,E), Lf(M ′, ε)) −→ Lf(S ◦ (M + M ′, E))

Types are triples X = 〈Xi, Xo, X l〉, where Xi is an unsigned multiset and
the two others are signed multisets. Xi represents the maximum positive in-
crease in the number of simultaneously active instances during the run of the
expression, while Xo and X l are the upper and lower bounds for the num-
ber of instances active after execution. These properties are formalised in the
sharpness lemma below.

A typing judgement is of the form M,Γ ` E : X. Γ is a basis, E an expression
and X a type. M corresponds to the part Xn of the type in “global resources”
(Section 2.3, page 11).

(Del)
σ,Γ ` A : X x ∈ dom(Γ)
[x],Γ ` del x : 〈[], [−x], [−x]〉

(WeakenB)
σ1,Γ ` A : X σ2,Γ ` B : Y x 6∈ dom(Γ)

σ1,Γ, x ≺ B ` A : X
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(WeakenS)
σ,Γ ` A : X σ ⊆ σ1

σ1,Γ ` A : X

(New)
σ,Γ ` A : X x 6∈ dom(Γ)

σ,Γ, x ≺ A ` new x : 〈Xi + x,Xo + x,X l + x〉
(Scope)

[],Γ ` A : X

[],Γ ` {A} : 〈Xi, [], []〉

(Parallel)
[],Γ ` A : X [],Γ ` B : Y

[],Γ ` (A ||B) : 〈Xi + Y i, Xo + Y o, X l + Y l〉

(Axiom)

[],� ` ε : 〈[], [], []〉

(Choice)
σ1,Γ ` A : X σ2,Γ ` B : Y

σ1 ∪ σ2,Γ ` (A + B) : 〈Xi ∪ Y i, Xo ∪ Y o, X l ∩ Y l〉
(Seq)

σ1,Γ ` A : X σ2,Γ ` B : Y A,B 6= ε

σ1 ∪ (σ2 −X l),Γ ` AB : 〈Xi ∪ (Xo + Y i), Xo + Y o, X l + Y l〉
Definition 5.1.3.

retlT(α.k) =
{

[], if k < hi(T(α)) or α ∈ leaves(T)⊎
β∈{αl,αr}(M + X l + retlT(β.1)), otherwise

Definition 5.1.4 (Well-typed configurations). Configuration T is well-
typed with respect to a basis Γ, notation Γ |= T, if for each pair (M,E) at
position α.k ∈ T there exists X such that

M + retlT(α.k),Γ ` E : X

In this system, as in the previous, we have the rule WeakenS which destroys
sharpness of M .

5.2 Sharpness

Lemma 5.2.1 (Sharpness). If M,Γ ` E : X then, for every component x, for
every well-typed configuration T0 = T[Lf(S◦(M,E))]α there exist three generally
different runs of E with lengths n1, n2 and n3:

T0 → · · · → Ti
ni

= T[Lf(S ◦ (M i
ni

, ε))]α (i ∈ {1, 2, 3})

which fulfill one each of the following properties:

1. There is a k, 0 ≤ k ≤ n1 such that [Tk](x) = Xi(x) + [T0](x).

2. [T2
n2

](x) = Xo(x) + [T0](x).

3. [T3
n3

](x) = X l(x) + [T0](x).

Corollary 5.2.2 (Sharpness of programs). For any program Prog = Decls;E
s.t. [],Γ ` E : X for some reordering Γ of Decls, for every component x, there
exist three generally different runs with lengths n1, n2 and n3:

Lf([], P rog) = T0 → · · · → Ti
ni

= Lf(M i
ni

, ε) (i ∈ {1, 2, 3})

which fulfill one each of the following properties:

1. there is a k, 0 ≤ k ≤ n1 such that [Tk](x) = Xi(x).

2. M2
n2

(x) = Xo(x).

3. M3
n3

(x) = X l(x).
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5.3 Run of an expression

Definition 5.3.1 (Run of an expression). A run of an expression E on
position α in context T is a sequence of configurations, where

• E is the expression in the top of the stack at one of the leaves in the first
configuration in the sequence, that is,

T0 = T[Lf(S ◦ (M,E))]α

for some S and M . We also have Γ |= T0 for some Γ.

• In any pair of two consecutive configurations the second is formed from
the first using one of the rules in the operational semantics.

• Only transitions of the forms

T[Lf(S ◦ · · · ◦ (M ′′, E′′))]α → T[Lf(S′′)]α
and

T[Lf(S′ ◦ (M ′′, E′′))]αβ → T[R′]αβ

are allowed, that is, only transitions on α or any positions below it, or on
the same or higher position in the stack at α.

• The last configuration is of the form:

T[Lf(S ◦ (M ′, ε))]α

that is, position α is a leaf, the stack in this leaf T(α) is the same as in
the start configuration, and the expression at the top of the stack is empty
(ε).

• The length of the run is the number of configurations minus one.

I will enumerate the configurations in a run from 0 to length: T0 → · · · →
Tlength.

Proposition 5.3.2 (Change of store independent of size of store). For
any two sequences of configurations of the same length j

T0 = T[Lf(S ◦ (M0, E0))]α −→ · · · −→ Tj = T[Lf(S ◦ (Mj , Ej))]α

and

T′
0 = T′[Lf(S′ ◦ (N0, E

′
0))]α −→ · · · −→ T′

j = T′[Lf(S ◦ (Nj , E
′
j))]α

where for all i, 0 ≤ i < j the rule used for the transformation Ti −→ Ti+1 and
the subexpression to which the rule is applied are identical to the one used for
the transformation T′

i −→ T′
i+1, we have that

Mj −M0 = Nj −N0

I will not write out the proof of this lemma. It is easy to change the proof of
lemma 4.3.1 into a proof of this lemma.

At last, the following property will also here be proved together with sharp-
ness.

Lemma 5.3.1 (Runs change store respecting limits). If Γ ` E : X for
some E, X and Γ, it is the case that for all T, S and M such that Γ |= T0 =
T[Lf(S ◦ (M,E))]α for all runs of the form T0 → · · · → Tn of E, it is the case
that X l ⊆ [Tn]− [T0] ⊆ Xo.
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5.4 Proof of sharpness (Lemma 5.2.1).

Let Γ |= T for some basis Γ and configuration T. The inductive hypothesis is:
for all shorter typing derivations M,Γ′ ` E : X, where Γ′ is a sub-basis of Γ,
for every component x, every unsigned multiset N and every configuration of
the form T0 = T[Lf(S ◦ (M + N,E))]α where Γ |= T0, there exist three generally
different runs of E with lengths n1, n2 and n3:

T0 → · · · → Ti
ni

= T[Lf(S ◦ (M i
ni

+ N, ε))]α (i ∈ {1, 2, 3})

which fulfill one each of the following properties:

1. there is a k, 0 ≤ k ≤ n, such that [Tk](x) = Xi(x) + [T0](x).

2. [T2
n2

](x) = Xo(x) + [T0](x).

3. [T3
n3

](x) = X l(x) + [T0](x).

And for all runs T0 → · · · → Tn of E, it is the case that X l ⊆ [Tn]− [T0] ⊆ Xo.

All cases from the proof of sharpness in the previous chapter (page 70) can
be used with small modifications in this proof, so I will not repeat them here.

But I must show the case for Parallel:

Parallel. Assume M,Γ ` E : X is inferred by an application of Parallel:

[],Γ ` A : Y [],Γ ` B : Z

[],Γ ` (A||B) : Y + Z

Then we have E = (A||B), X = Y + Z and M + N = N . From assumptions I
have Γ |=R T[Lf(N, (A||B) ·E′)]α for some E′. From the inductive hypothesis I
have knowledge of runs of A and B of these forms:

T[Lf([], A)]α′ → · · · → T[Lf(Mj , ε)]α′ (5.1)
T[Lf([], B)]α′′ → · · · → T[Lf(M ′

h, ε)]α′′ (5.2)

for some α′ and α′′. Note that we can have α′ = • or α′′ = •. For any of these
runs, there exist runs of the following forms:

T[Nd(N,E′, Lf([], A), R)]α → · · · → T[Nd(N,E′, Lf(Mj , ε), R)]α (5.3)
T[Nd(N ′, E′, R, Lf([], B))]α → · · · → T[Nd(N ′, E′, R, Lf(M ′

h, ε))]α) (5.4)

If the run of A is of length j and the run of B is of length h, then the length of
a run of (A||B) is of length j + h + 3, since all transitions in both runs must be
done, in addition there will be one osParIntr at the start of the run, one of
either osParElimL or osParElimR some time during the run, and finally, at
the end an instance of osParElim - in sum, three extra transitions. If the run
was first exclusively transitions from the run of A and then from the run of B,
it could look like this:

T[Lf(N, (A||B) · E′)]α → T[Nd(N,E′, Lf([], A), Lf([], B))]α →
· · · → T[Nd(N,E′, Lf(Mj , ε), Lf(B))]α
→ T[Nd(N + Mj , E

′, Lf([], B))]α →
· · · → T[Nd(N + Mj , E

′, Lf(M ′
h, ε))]α → T[Lf(N + Mj + M ′

h, E′)]α)

(5.5)
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This need not be the case - the transitions from the run of A could come in
between transitions from the run of B.

I will now treat the three sharpness properties separately:

• Xi(x). I must now create a run of (A||B) of some length n, where there
is a k such that 0 ≤ k ≤ n and [Tk](x) = [T0](x) + Xi(x) = [T0](x) +
Y i(x) + Zi(x). First, choose the run of A where there is a kA such that
[TkA

](x) = [T0](x) + Y i(x). Stop the run at exactly this state:

T[Nd(N,E′, Lf([], A), Lf([], B))]α → · · · → T[Nd(N,E′, Rk, Lf([], B))]α)

where [Rk](x) = Y i(x). This I can assume, because all the transitions are
from the run of A on Lf([], A). Now, equivalently, choose the run of B
starting at this state (which I can do because of soundness), where there
is a kB such that [TkA+kB

](x) = [TkA
](x)+Zp(x). Stop the run at exactly

this state:

T[Nd(N,E′, Rk, Lf(B))]α → · · · → T[Nd(E′, RkA
, R′

kB
)]α)

where [R′
kB

](x) = Zi(x) since all the transitions are from a run of B
starting in Lf([], B). Let k = kA + kB , and we get [Tk](x) = [TkA

](x) +
Zp(x) = [T0](x) + Y n(x) + Zn(x) = [T0](x) + Xp(x). For the rest of
the run do the remaining transitions in the runs of A and B, which by
soundness are all possible.

• X l(x) and Xo(x). I will try to convince you that sharpness of X l(x) and
Xo(x) consists only of using the runs of A and B with the same properties
using the following argument. Let ∗ ∈ {l, o}: In the illustration of the run
(5.5) assume Mj(x) = X∗(x) and M ′

h(x) = Y ∗(x), both which we can
assume from the inductive hypothesis. Now we have that the total store
at the end is:

[Tn](x) = [T0](x) + Y ∗(x) + Z∗(x) = [T0](x) + X∗(x)

• X l ⊆ [Tn]− [T0] ⊆ Xo. Looking again at the illustration of a run in (5.5)
I have from the inductive hypothesis that

Y l ⊆ Mj ⊆ Y o

Zl ⊆ M ′
h ⊆ Zo

This implies by the properties of addition of multisets that:

X l = Y l + Zl ⊆ Mj + M ′
h ⊆ Y o + Zo = Xo

�



Chapter 6

Sharpness of the system
with choice, scope and reu
(“Reuse instantiation”) in
chapter 5 of [13]

This chapter is a proof of the “sharpness” of the system defined in Chapter 5
in [13]. Some important definitions of this system follows:

6.1 Definitions

Definition 6.1.1 (Language).

Prog → Decls;E
Decls → x ≺ E;

E →
ε

| newx
| reux
| EE
| (E + E)
| {E}

A configuration in this system is a stack of pairs like in the simple system
in chapter 3.

Definition 6.1.2 (Operational Semantics).

(osNew) x ≺ A ∈ Decls
S ◦ (M, newxE) −→ S ◦ (M + x, AE)

(osReu1) x ≺ A ∈ Decls x 6∈ [S] + M
S ◦ (M, reuxE) −→ S ◦ (M + x,AE)

(osReu2) x ≺ A ∈ Decls x ∈ [S] + M
S ◦ (M, reuxE) −→ S ◦ (M,AE)
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(osChoice) i ∈ {1, 2}
S ◦ (M, (A1 + A2)E) −→ S ◦ (M,AiE)

(osPush)
S ◦ (M, {A}E) −→ S ◦ (M,E) ◦ ([], A)

(osPop)
S ◦ (M,E) ◦ (M ′, ε) −→ S ◦ (M,E)

A typing judgement is of the form Γ `R E : X where R is a restriction. Types
are tuples X = 〈Xi, Xo, Xj , Xp〉, of unsigned multisets. Xi and Xo are the
same as in chapter 3. Xj and Xp represent the same bounds as Xi and Xo

respectively, but with respect to executing the expression in a state where every
component already has at least one reusable instance. These properties are
formalised in the sharpness lemma below.

(Reu)
Γ ` A : X x 6∈ dom(Γ)

Γ, x ≺ A ` reux : 〈Xi + x,Xo + x,Xj , Xp〉

(WeakenB)
Γ ` A : X Γ ` B : Y x 6∈ dom(Γ)

Γ, x ≺ B ` A : X

(Axiom)

� ` ε : 〈[], [], [], []〉

(Scope)
Γ ` A : X

Γ ` {A} : 〈Xi, [], Xj , []〉

(New)
Γ ` A : X x 6∈ dom(Γ)

Γ, x ≺ A ` new x : 〈Xi + x, Xo + x,Xj + x, Xp + x〉

(Choice)
Γ ` A : X Γ ` B : Y

Γ ` (A + B) : 〈Xi ∪ Y i, Xo ∪ Y o, Xj ∪ Y j , Xp ∪ Y p〉

(Seq)
Γ ` A : X Γ ` B : Y Xo + Y j ⊆ R A,B 6= ε

Γ ` AB : 〈Xi ∪ (Xo + Y j) ∪ Y i, (Xo + Y p) ∪ Y o, Xj ∪ (Xp + Y j), Xp + Y p〉

Lemma 6.1.3 (Valid typing judgement). If Γ `R A : X, then

1. var(A) ⊆ dom(Γ), dom(X∗) ⊆ dom(Γ),

2. Γ ` ε : 〈[], [], [], []〉

3. every variable in dom(Γ) is declared only once in Γ,

4. Xo ⊆ Xi ⊆ R and Xp ⊆ Xj ⊆ R,

5. 0 ≤ Xi(z)−Xj(z) ≤ 1 and 0 ≤ Xo(z)−Xp(z) ≤ 1
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Definition 6.1.4 (Well-typed configurations). Configuration S = (M1, E1)◦
· · ·◦(Mn, En) is well-typed with respect to a basis Γ and a restriction R, notation
Γ |=R S, if for all 1 ≤ k ≤ n, we have Γ `R Ek : Xk and

[S|k] + Xj
k ⊆ R

Definition 6.1.5 (Well-typed programs). Program Prog = Decls;E is
well-typed with respect to a requirement R if there exists a reordering Γ of dec-
larations in Decls and a type X such that Γ `R E : X.

6.2 Sharpness

Lemma 6.2.1 (Sharpness). If Γ ` E : X then, for every component x, for
every well-typed configuration S0 = S◦(M,E) there exist four generally different
runs of E with lengths n1, n2, n3 and n4:

S0 → · · · → Sni = S ◦ (M i
ni

, ε) (i ∈ {1, 2, 3, 4})

which fulfill one each of the following properties.

1. If x 6∈ [S0] there is a k, 0 ≤ k ≤ n1 such that [Sk](x) = Xi(x)

2. If x ∈ [S0] there is a k, 0 ≤ k ≤ n2 such that [Sk](x) = Xj(x) + [S0](x)

3. If x 6∈ [S0], then [Sn3 ](x) = Xo(x).

4. if x ∈ [S0], then [Sn4 ](x) = Xp(x) + [S0](x).

Corollary 6.2.2 (Sharpness of program). For any program Prog = Decls;E
s.t. Γ `R E : X for some reordering Γ of Decls and restriction R, for every
component x, there exist two generally different runs with lengths n1 and n2:

([], P rog) = S0 → · · · → Sni = (M i
ni

, ε) (i ∈ {1, 2})

which fulfill one each of the following properties:

1. there is a k, 0 ≤ k ≤ n1 such that [Sk](x) = Xi(x)

2. M2
n2

(x) = Xo(x)

6.3 Introduction

A run is defined as in chapter 3, see page 59. I will also in this chapter prove
another property of the runs. I will prove it together with sharpness, as a
separate case.

Lemma 6.3.1 (Runs change store respecting limits). If Γ `R E : X for
some E, R, X and Γ, it is the case that for all S and M such that Γ |=R S0 =
S ◦ (M,E) then for all runs S0 → · · · → Sn of E, it is the case that if x ∈ [S0],
then [Sn](x)− [So] ≤ Xp(x), and otherwise [Sn](x) ≤ Xo(x).



86 Sharpness with scope, choice and reu

6.4 Proof of Sharpness (Lemma 6.2.1)

Let Γ |=R S for some basis Γ, restriction R and configuration S. The inductive
hypothesis is: for all shorter typing derivations Γ′ `R E : X, where Γ′ is a sub-
basis of Γ, for every component x, for every configuration S0 = S◦(M,E) where
Γ |=R S0, there exist four generally different runs of E with lengths n1, n2, n3

and n4:
S0 → · · · → Sni

= S ◦ (M i
ni

, ε) (i ∈ {1, 2, 3, 4})
which fulfill one each of the following properties:

1. If x 6∈ [S0] there is a k, 0 ≤ k ≤ n1 such that [Sk](x) = Xi(x).

2. If x ∈ [S0] there is a k, 0 ≤ k ≤ n2 such that [Sk](x) = Xj(x) + [S0](x).

3. If x 6∈ [S0] then [Sn3 ](x) = Xo(x).

4. If x ∈ [S0] then [Sn4 ](x) = Xp(x) + [S0](x).

And for all runs : if x ∈ [S0] we have [Sn](x)− [S0](x) ≤ Xp(x) and if x 6∈ [S0]
we have [Sn](x) ≤ Xo(x).

Base cases

Axiom

� ` ε : 〈[], [], [], []〉

S0 = S ◦ (M,E) = S ◦ (M, ε)

There is only one degenerate run of ε of length 0, where no resources are created.
Let k = 0. Since Xi(x) = Xj(x) = Xo(x) = Xp(x) = 0 this is enough.

Inductive cases

WeakenB Assume Γ ` E : X is inferred by an application of WeakenB:

Γ′ ` E : X Γ′ ` B : Y x 6∈ dom(Γ′)
Γ′, x ≺ B ` E : X

This case is easy — we know already by the inductive hypothesis on the premise
Γ′ ` E : X that there exist runs of E with the properties needed for sharpness
of X.

New Assume Γ ` E : X is inferred by an application of New:

Γ′ ` A : Y y 6∈ dom(Γ′)
Γ′, y ≺ A ` new y : X = 〈Y i + y, Y o + y, Y j + y, Y p + y〉

We have E = new y and Γ = Γ′, y ≺ A. From the inductive hypothesis we have
existence of runs of the form S ◦ (M + y, A) → · · · → S ◦ (M ′ + y, ε) of A. What
we want are the corresponding runs:

S0 = S ◦ (M, new y) → S ◦ (M + y, A) → · · · → S ◦ (M ′ + y, ε) = Sn

of new y. The first step is the rule osNew from the operational semantics. The
rest of the run exists by the inductive hypothesis. So I know I can use the runs,
but now I must show they actually fulfill sharpness:
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• For y 6= x we can use the runs of A which exist by the inductive hypothesis
for the properties of Y and that Y ∗(x) = X∗(x) and [S ◦ (M + y, A)](x) =
[S ◦ (M,A)](x).

• For y = x we have that by valid typing y 6∈ dom(Γ − {y ≺ A}) and
by lemma 6.1.3 (Valid typing judgement), Y ∗ ⊆ dom(Γ − {y ≺ A}), so
Y ∗(y) = 0 and there is no y created in the run of A. The extra y is added
to the store in the first step of the run, and this will be the only y during
the run of A.

– Xi and Xj . I choose k = 1, and [S1](y) = [S0](y) + 1 while X∗(y) =
Y ∗(y) + 1 = 1.

– Xo and Xp. We have X∗(y) = Y ∗(y)+1 = 1 and [Sn](y) = [S0](y)+1.

– That [Sn](x) − [S0](x) ≤ Xo(x) if x 6∈ [S0] and [Sn](x) − [S0](x) ≤
Xp(x) otherwise follows from the argument in the previous item.

Reu Assume Γ ` E : X is inferred by an application of Reu:

Γ′ ` A : Y y 6∈ dom(Γ′)
Γ′, y ≺ A ` reu y : X = 〈Y i + y, Y o + y, Y j , Y p〉

We have E = reu y and Γ = Γ′, y ≺ A. From the inductive hypothesis we have
existence of runs of the form S◦(M,A) → · · · → S◦(M ′, ε) and S◦(M +y, A) →
· · · → S ◦ (M ′ + y, ε) of A. What we want are the corresponding runs:

S0 = S ◦ (M, reu y) → S ◦ (M + y, A) → · · · → S ◦ (M ′ + y, ε) = Sn

S0 = S ◦ (M, reu y) → S ◦ (M,A) → · · · → S ◦ (M ′, ε) = Sn

of reu y. The first step is the rule osReu1 or osReu2 from the operational seman-
tics. The rest of the run exists by the inductive hypothesis. So I know I can use
the runs, but now I must show they actually fulfill sharpness:

• For y 6= x we can use the runs of A which exist by the inductive hypothesis
for the properties of Y and that Y ∗(x) = X∗(x) and [S ◦ (M + y, A)](x) =
[S ◦ (M,A)](x).

• For y = x we have that by valid typing y 6∈ dom(Γ − {y ≺ A}) and
by lemma 6.1.3 (Valid typing judgement), Y ∗ ⊆ dom(Γ − {y ≺ A}), so
Y ∗(y) = 0 and there is no y created in the run of A. The possible extra y
is added to the store in the first step of the run, and this will be the only
y during the run of A.

– Xi Since x 6∈ [S0], the first transition in the run must be osReu1.
I can choose k ∈ {1, . . . , n1}, and [Sk](y) = [S0](y) + 1 = 1 while
Xi(y) = Y i(y) + 1 = 1.

– Xj Since x ∈ [S0], the first transition in the run must be osReu2. I
can choose k ∈ {0, 1, . . . , n2}, and we have [Sk](y) = [S0](y) while
Xj(y) = Y j(y) = 0.

– Xo Since x 6∈ [S0], the first transition in the run must be osReu1. We
also have Xo(y) = Y o(y) + 1 = 1 and [Sn3 ](y) = [S0](y) + 1 = 1.
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– Xp Since x ∈ [S0], the first transition in the run must be osReu2. We
also have Xp(y) = Y p(y) = 0 and [Sn4 ](y) = [S0](y).

– That [Sn](x) − [S0](x) ≤ Xo(x) if x 6∈ [S0] and [Sn](x) − [S0](x) ≤
Xp(x) otherwise follows from the argument in the two previous items.

Seq Assume Γ ` E : X is inferred by an application of Seq:

Γ ` A : Y Γ ` B : Z A, B 6= ε

Γ ` AB : X = 〈Y i ∪ (Y o + Zj) ∪ Y i, (Y o + Zp) ∪ Zo, Y j ∪ (Y p + Zj), Y p + Zp〉

A run of A B consists of a run of A followed by a run of B. From the inductive
hypothesis we have knowledge of runs of A and B:

S ◦ (M1, A) → · · · → S ◦ (M ′
1, ε)

and
S ◦ (M2, B) → · · · → S ◦ (M ′

2, ε)

Adding B to the expression in the first configuration of the run of A gives a
sequence of configurations from S ◦ (M1, AB) to S ◦ (M ′

1, B) using the same
transitions. In other words, for any run of length n

S ◦ (M1, A) → · · · → S ◦ (M ′
1, ε)

there is a sequence of n + 1 configurations

S ◦ (M1, AB) → · · · → S ◦ (M ′
1, B)

with the same transitions. Now we go on to the runs of B. I choose M2 = M ′
1

and can then use the run directly.

S ◦ (M ′
1, B) → · · · → S ◦ (M ′

2, ε)

For the runs of B I need no transformation as in the case of A, and can directly
use the runs existing by the inductive hypothesis. So for any pair of a run of A
and a run of B, there is a run

S0 = S ◦ (M1, AB) → · · · → S ◦ (M ′
1, B) = Sn → · · · → S ◦ (M ′

2, ε) = Sn+m

of A B, using the same transitions. If the run of A is of length n and the run of
B is of length m, the run of A B will be of length n + m.

• Xo(x). I have x 6∈ [S0] and must find a run resulting in

[Sn+m](x) = Xo(x) = max(Zo(x), Y o(x) + Zp(x))

I choose the run of A resulting in [Sn](x) = Y o(x). If x 6∈ Y o, we get that
also x 6∈ [Sn] and that Xo(x) = Zo(x). I can then choose the run of B
finally resulting in :

[Sn+m](x) = [Sn](x) + Zo(x) = max(Zo(x), Y o(x) + Zp(x)) = Xo(x)

The second equality holds because Y o(x) = 0 and since we have from valid
typing judgement, lemma 6.1.3, that Zp(x) ≤ Zo(x).
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If, on the other hand, x ∈ Y o, we get [Sn](x) > 0. By the inductive
hypothesis there is now a run of B resulting in:

[Sn+m](x) = [Sn](x) + Zp(x) =
= [S0](x) + Y o(x) + Zp(x) = max(Zo(x), Y o(x) + Zp(x)) = Xo(x)

The third equality holds since we have Y o(x) > 0 and from valid typing
judgement, lemma 6.1.3 that Zo(x)− Zp(x) ≤ 1.

• Xp(x). I have x ∈ [S0] and must find a run resulting in:

[Sn+m](x) = [S0](x) + Xp(x) = [S0](x) + Y p(x) + Zp(x)

From the inductive hypothesis there is a run of A resulting in [Sn](x) =
[S0](x) + Y p(x). Since we must have also x ∈ [Sn], I can then use the run
of B finally resulting in:

[Sn+m](x) = [Sn](x)+Zp(x) = [S0](x)+Y p(x)+Zp(x) = [S0](x)+Xp(x)

• Xi(x). I have x 6∈ [S0] and must find a run of A B: S0 → · · · → Sn →
· · · → Sn+m, where there is k, such that 1 ≤ k ≤ n + m and

[Sk](x) = [S0](x) + Xi(x) = Xi(x)
= (Y i ∪ (Y o + Zj) ∪ Zi)(x)
= max(Y i(x), Y o(x) + Zj(x), Zi(x))

The k with the maximum store can be found both during execution of A
(i.e. k ≤ n) or during execution of B (i.e. k > n).

To prove that there will always be such a run and k, I must do a case
distinction on the value of Xi(x) = max(Y i(x), Y o(x) + Zj(x), Zi(x)):

– If Y i(x) = max(Y i(x), Y o(x)+Zj(x), Zi(x)) we can use the run of A
which by the inductive hypothesis has a configuration SkA

such that
[SkA

](x) = Y i(x) = Xi(x), so I can use kA as k.

– Otherwise, if Y o(x)+Zj(x) = max(Y i(x), Y o(x)+Zj(x), Zi(x)), we
use the run of A which ends in Sn = S ◦ (M ′, B) where [Sn](x) =
Y o(x). If x 6∈ Y o, I can then choose the run of B where there is a kB

such that

[SkB
](x) = [Sn](x) + Zi(x) = Zi(x) = max(Y o(x) + Zj(x), Zi(x)) =

= max(Y i(x), Y o(x) + Zj(x), Zi(x)) = Xi(x)

and use n + kB as k. The third equality holds by x 6∈ Y o and
0 ≤ Zi(x) − Zj(x) ≤ 1 from valid typing judgement, lemma 6.1.3,
clause 5. The fourth equality holds from the assumptions in this case
(Y o(x)+Zj(x) = max(Y i(x), Y o(x)+Zj(x), Zi(x))). If, on the other
hand, x ∈ Y o, I must choose the run of B and the kB such that

[SkB
](x) = [Sn](x) + Zj(x) = Y o(x) + Zj(x) =

= max(Y i(x), Y o(x) + Zj(x), Zi(x)) = Xi(x)

Here, the third equality holds from the assumptions on this case,
namely Y o(x) + Zj(x) = max(Y i(x), Y o(x) + Zj(x), Zi(x)).
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– If neither of the other hold, we have Zi(x) = max(Y i(x), Y o(x) +
Zj(x), Zi(x)). Since we already treated the other cases, we must
have

Zi(x) > (Zj(x) + Y o(x) (6.1)

From valid typing judgement we get

Zi(x) ≤ Zj(x) + Y o(x) (6.2)

By combining (6.1) and (6.1), we get that Y o(x) = 0. From the
inductive hypothesis I can then use any run of A and it will end in
Sn = S ◦ (M ′, B) where [Sn](x) = 0. I can then choose the run of B
where there is a kB such that

[SkB
](x) = [Sn](x) + Zi(x) = Zi(x) =

= max(Y i(x), Y o(x) + Zj(x), Zi(x)) = Xi(x)

and use n + kB as k.

• Xj(x). I have x ∈ [S0] and must find a run of A B: S0 → · · · → Sn =
S ◦ (M,B) → · · · → Sn+m, where there is k, such that 1 ≤ k ≤ n + m and

[Sk](x) = [S0](x) + Xj(x)
= [S0](x) + (Y j ∪ (Y p + Zj))(x)
= [S0](x) + max(Y j(x), Y p(x) + Zj(x))

The k with the maximum store can be found both during execution of A
(i.e. k ≤ n) or during execution of B (i.e. k > n).

To prove that there will always be such a run and k, I must do a case
distinction on the value of Xj(x) = max(Y j(x), Y p(x) + Zj(x)):

– If Y j(x) = max(Y j(x), Y p(x) + Zj(x)) we can use the run of A
which by the inductive hypothesis has a configuration SkA

such that
[SkA

](x) = [S0](x) + Y j(x) = [S0](x) + Xj(x), so I can use kA as k.

– Otherwise, we must have Y p(x) + Zj(x) > Y j(x), and I use the run
of A which ends in Sn = S◦ (M ′, B) where [Sn](x) = [S0](x)+Y p(x).
I can now choose the run of B and the kB such that

[SkB
](x) = [Sn](x) + Zj(x) = [S0](x) + Y p(x) + Zj(x) =

= [S0](x) + max(Y j(x), Y p(x) + Zj(x)) = [S0](x) + Xj(x)

Here, the third equality holds from the assumptions on this case,
(Y p(x) + Zj(x) = max(Y j(x), Y p(x) + Zj(x))).

• I must also show that

[Sn+m](x) ≤ Xo(x) = max(Y o(x) + Zp(x), Zo(x))

for any run where x 6∈ [S0]. I have from the inductive hypothesis that for
any run of A starting from such a configuration, that [Sn](x) ≤ Y o(x).
If the run does not produce any instances of x, such that we get also
x 6∈ [Sn], I then have from the inductive hypothesis that for any run of B
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starting from this configuration, we get [Sn+m](x) ≤ Zo(x), and adding
these inequalities I get [Sn+m](x) ≤ Zo(x) ≤ Xo(x). If on the other hand,
the run of A does produce some instance of x, we get x ∈ [Sn](x). I
then have from the inductive hypothesis that for any run of B, we have
[Sn+m](x) − [Sn](x) ≤ Zp(x). Since [Sn](x) ≤ Y o(x) this implies further
that

[Sn+m](x) ≤ Zp(x) + Y o(x) ≤ Xo(x)

• Finally I must show that [Sn+m](x) − [S0](x) ≤ Xp(x) = Y p(x) + Zp(x)
for any run where x ∈ [S0]. I have from the inductive hypothesis that for
any run of A, [Sn](x) − [S0](x) ≤ Y p(x). I now have from the inductive
hypothesis that for any run of B, we have [Sn+m](x) − [Sn](x) ≤ Zp(x).
Adding these three inequalities I get [Sn+m](x)−[S0](x) ≤ Y p(x)+Zp(x) =
Xp(x).

Choice Let E = (A + B), Γ ` A : Y and Γ ` B : Z.

Γ ` A : Y Γ ` B : Z

Γ ` (A + B) : 〈Y i ∪ Zi, Y o ∪ Zo, Y j ∪ Zj , Y p ∪ Zp〉

For this rule, I must use two inductive hypotheses, one for each of the premises
in the typing rule (A : Y and B : Z). This means the whole proof is an instance
of simultaneous induction. To run (A+B), we must choose a run of A or a run
of B. For any run of A or B, that is, S ◦ (M,A) → · · · → S ◦ (M ′, ε), there is a
corresponding run of (A + B), with the same transitions, only one instance of
osChoice added in front, e.g..:

S ◦ (M, (A + B)) → S ◦ (M,A) → · · · → S ◦ (M ′, ε) = Sn

• Xi(x). By the inductive hypothesis, if x 6∈ [S0], there is a run of A and a
state kA in the run such that [SkA

](x) = Y i(x), and correspondingly for
B there is a run and a kB . For a run of (A + B) with a state k achieving
[Sk](x) = Xi(x) = (Y i ∪Zi)(x) = max(Y i(x), Zi(x)), choose the run of A
and k = kA if Y i(x) > Zi(x), otherwise choose the run of B and k = kB .
We will then have

[Sk](x) = max(Y i(x), Zi(x)) = Xi(x)

• Xj(x). We can use almost the same argument as in the previous item.
Replace i with j and add [S0](x) to the equations where necessary.

• Xo(x) By the inductive hypothesis, if x 6∈ [S0], there is a run of A of length
nA such that [SnA

](x) = Y o(x), and correspondingly for B. For a run of
(A + B) achieving [Sn](x) = Xo(x) = (Y o ∪Zo)(x) = max(Y o(x), Zo(x)),
choose the run of A if Y o(x) > Zo(x), otherwise choose the run of B. We
will then have

[Sn](x) = max(Y o(x), Zo(x)) = Xo(x)

• Xp(x). This can be proven by modifying the argument in the previous
item: replace o with p and add [S0](x) to the equations where necessary.
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• I must also show that [Sn](x) ≤ Xo(x) for any run where x 6∈ [S0]. I have
from the inductive hypothesis that for any run of A starting from such a
configuration, that if nA is the length, then [SnA

](x) ≤ Y o(x), and that for
any run of B starting from such a configuration, that if nB is the length,
then [SnB

](x) ≤ Zo(x). Since the run of A + B is only a run of A or B
with one transition in front which does not alter any store, we get that
the maximum size of the store after the run of A + B, is the maximum it
could be after any run of A or of B, that is:

[Sn](x) ≤ max(Y o(x), Zo(x)) = Xo(x)

• Finally I must show that [Sn+m](x)− [S0](x) ≤ Xp(x) for any run where
x ∈ [S0]. Use the argument from the previous item, only replace o with p

and add [S0](x) to the equations where necessary.

Scope Let E = {A} and Γ ` A : Y .

Γ ` A : Y

Γ ` {A} : 〈Y i, [], Y j , []〉
In the operational semantics, a new pair ([], A) is created on top of the stack

through the transition rule osPush, A is run, and then osPop removes the pair
again. So, for any run

S ◦ ([], A) → · · · → S ◦ (M ′, ε)

of A there is a run

S ◦ (M, {A}) S0

→ S ◦ (M, ε) ◦ ([], A) S1

→ · · · → S ◦ (M, ε) ◦ (M ′, ε) Sn−1

→ S ◦ (M, ε) Sn

of {A} using the same transitions but in addition having osPush and osPop
at the start and the end. I can assume existence of wanted runs of A, since
Γ ` A : Y must hold by the typing rule. For Xo and Xp any run of A is okay,
since no resources are returned ([Sn](x) = [S0](x)) and Xo = Xp = []. For the
last two properties concerning Xi(x) and Xj(x), choose the run and kA such
that

[SkA
](x) = [S0](x) + Y i(x) = Xi(x)

or correspondingly for Xj , the run and kA, such that

[SkA
](x) = [S0](x) + Y j(x)Xj(x) + [S0](x)

which exist by the inductive hypothesis. So we can let k = kA.
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