

Abstract

Dynamical modeling of ecological systems has been an interesting tool to understand the
interactions between species in nature. In this thesis, we construct a dynamical model for
interactions between pathogenic bacteria and two potential predator microorganisms, namely
Daphnia and Protozoa in drinking water resources. Here we have multistage predation as
both predators prey on bacteria, but one of the predators (Daphnia) additionally preys on the
other predator (protozoa). There is also a direct inflow of bacteria into the system by fecal
contamination. Linear functional response (Lotka-Volterra type) is considered for simplicity.

Furthermore, we studied the boundedness of the solution of the system, existence, local
stability of biologically feasible equilibrium points, and global stability of the coexistence
point. We also performed sensitivity analysis of parameters of the system, observability,
and possible existence of chaos in the system. Bacteria data from Bergen municipality are
analyzed along with numerical simulations to verify our analytical results.

The key findings of this study are that one of the predators may go to extinction or all species
will coexist at stable concentration, periodically or chaotically. We also find out that the ratio
between the food conversion efficiency of the two predators is the most sensitive parameter
in the system. A comparison between our numerical simulation and bacteria data analysis
showed that the model managed to demonstrate the general trend in the data, especially for
the parameter set that gave chaotic behavior.

Keywords— Dynamical model, functional response, boundedness, nondimensionalization, stability,

sensitivity, chaos, observability

Acknowledgments

This work would not have been possible without help from good people. First, I must thank
my mother for her commitment and insistence that I should attend and continue school,
without her, I would have been out of school, maybe after the sixth grade. Second, I want to
thank my adviser Guttorm Alendal for nice and valuable discussions and more importantly
his patience and support to the topic of my choice.

Special thanks to my friend Abdul Majid Murad for his general advice, support, and for
reading the draft and providing valuable feedback and of course for our tea\lunch meetings.
Additionally, I want to thank my friend Sunniva for being beside me in difficult situations and
listening to my frustrations. Finally, I want to thank Takuya Iwanaga one of the sensitivity
analysis library contributors for helping with sensitivity analysis and improve the performance
of my code for that and others from the open-source community.

This work obtained a grant from Hordaland county (now Vestland county) for writing about
a topic concerning the environment, so I am grateful to that.

Contents

1 Introduction 5

1.1 Problem outline . 7
1.2 Biological theory about the species considered in this work 7

1.2.1 Coliform bacteria . 7
1.2.2 Campylobacter jejuni (C.jejuni) . 8
1.2.3 Clostridium perfringens (C.perfringens) 9
1.2.4 Intestinal enterococci . 9
1.2.5 Protozoa . 10
1.2.6 Daphnia . 10

1.3 Types of functional response (FR) in ecological models 11
1.3.1 Prey dependent functional response 11
1.3.2 Predator dependent functional response 14
1.3.3 Ratio dependent functional response 15

1.4 Logistic equation . 17
1.5 Examples of ecological models . 19

1.5.1 Two competing species . 19
1.5.2 Predator-Prey Equation by Lotka-Volterra [60] 20
1.5.3 Two prey one-predator model . 20
1.5.4 Dynamical behavior of three species predator-prey system with mutual

support between non refuge prey . 21
1.5.5 Dynamics of species in a two preys-one predator model system with help 23
1.5.6 Persistence of Two Prey-One Predator System with Ratio-dependent

Predator Influence . 24
1.5.7 Persistence and stability of a two prey one predator system 25

1

1.5.8 Dynamics of a two prey and one predator system with time interruption
and random fluctuations . 26

1.5.9 Analysis of Dynamics in Two-prey, one-predator model: Effect of the
Remained carcass . 27

1.5.10 Two Predators Competing for Two Prey Species: An Analysis of MacArthur’s
Model . 28

2 The mathematical model 30

2.1 Assumptions . 31
2.2 The model . 32

2.2.1 Units of the parameters and variables in the system 33

3 Theoretical background 35

3.1 Stability analysis of a dynamical system . 35
3.1.1 Stability of one dimensional ODE . 36
3.1.2 Stability of linear systems . 37
3.1.3 Stability of a nonlinear system of ODE 38
3.1.4 Routh-Hurwitz criterion for stability 41

3.2 Global stability and Lyapunov direct method 42
3.2.1 Global stability for generalized Lotka–Volterra Systems 43
3.2.2 Positive definite matrices . 45

3.3 Chaos theory . 45
3.3.1 Some definitions . 45
3.3.2 Lyapunov exponent . 46

3.4 Global sensitivity analysis . 48
3.4.1 Sobol method . 49
3.4.2 Morris method . 51
3.4.3 Random Balance Designs - Fourier Amplitude Sensitivity Test(RBD-

FAST) . 54
3.4.4 Delta Moment-Independent Measure (DMIM) 55

3.5 Observability in dynamical systems . 57

4 Analysis of the model 60

4.1 Nondimensionalization . 61
4.2 Domain, positivity, and boundedness of the solution 62
4.3 Equilibrium points and condition for their biological feasibility 67

2

4.3.1 Equilibrium points . 67
4.3.2 Existence conditions for positive equilibrium points 68
4.3.3 Case 1 : δ1 > 1

a
and δ2 > b

a
. 68

4.3.4 Case 2 : δ1 = 1
a
and δ2 = b

a
. 68

4.3.5 Case 3 : δ1 < 1
a
and δ2 < b

a
. 69

4.4 Local stability analysis . 72
4.5 Global stability analysis . 76

5 Global Sensitivity Analysis (GSA) 80

5.1 Methodology . 80
5.2 Sensitivity analysis results . 82

5.2.1 Maximum value of x, y1 and y2 respectively 83
5.2.2 Mean value of x, y1 and y2 respectively 84
5.2.3 Median value of x, y1 and y2 respectively 85
5.2.4 Eqm. value of x, y1 and y2 respectively 86

5.3 Summary and concluding remarks . 87

6 Observability 91

6.1 Observing bacteria x only . 91
6.2 Observing bacteria y1 only . 92
6.3 Observing bacteria y2 only . 92

7 Bacteria and microorganisms data 94

7.1 Bacteria data from the untreated water from all water resources in Bergen . 94
7.2 Daphnia . 99
7.3 Protozoa . 99

8 Numerical simulations 100

8.1 Effect of parameter b . 103
8.2 Effect of parameter δ1 . 103
8.3 Effect of parameter δ2 . 104
8.4 Effect of parameter ψ . 104
8.5 Effect of parameter φ . 105
8.6 Effect of parameter ω1 . 105
8.7 Effect of parameter ω2 . 106
8.8 More than one stable eqm. point in the system 106

3

8.9 Globally stable interior eqm. point EP5 . 107
8.10 Periodic behavior . 107
8.11 Chaotic behavior . 112
8.12 Effect of the parameter s on global stability of the coexistence equilibrium point.115

9 Summary, conclusion, and further work 148

9.1 Summary and conclusion . 148
9.2 Further work . 150

Bibliography 153

Appendices 158

A Derivation of the model,nondimensionalization, and GSA for the dimen-

sional model 159

A.1 Derivation of the model . 159
A.2 Nondimensionalization . 163
A.3 Sensitivity analysis of the dimensional model 164

A.3.1 Maximum value of x, y1 and y2 respectively 165
A.3.2 Mean value of x, y1 and y2 respectively 167
A.3.3 Median value of x, y1 and y2 respectively 169
A.3.4 Eqm. value of x y1 and y2 respectively 171
A.3.5 Summary . 173

B Python codes used in the thesis 174

B.1 Analysis of the model . 174
B.2 Sensitivity analysis . 185
B.3 Numerical simulation . 211

4

Chapter 1

Introduction

Mathematical modeling of ecological systems, especially predator-prey systems, has been an
important tool to understand the relationship between different species that live together in
nature. This is important for example in controlling harmful species that invade a region or
extinction of rare species due to unbalance in the food chain caused by natural or human-made
factors. This field has been in continuous development since the first model by Lotka-Volterra
(1928) [60]. Now there is a special direction in mathematics to study biological phenomena
called mathematical biology, along with a special field of informatics called Bioinformatics.

There are two ways to study the interactions between biological species, the first one is the
experimental method which is used by biologists and the second one is theoretical used by
mathematicians. To better analyze and understand a biological system, we need to consider
both methods together. The question which arises here is, can we make a dynamical model
for the whole food chain in nature? Theoretically, it should be possible. But the system will
be huge and very complicated and maybe impossible to analyze. This can be attributed to
the different types of interactions among species such as predation, competition, mutualism,
symbiosis, and parasitism, etc. The involvement of many species makes the system even
more complex. Therefore, it will be more beneficial to study small systems or divide large
ones into several subsystems to simplify the analysis.

Recently I have been interested in freshwater ecology because freshwater bodies are used
to supply communities with drinking water in many countries, especially in Norway as the
drinking water is mainly from surface water resources such as lakes. In these bodies of
water, there exist many pathogenic bacteria that live naturally or due to fecal contamination,
alongside with other microorganisms. That is why it is of interest to know whether the water

in the different surface water resources is completely safe to drink.

In Norway, each municipality has a mechanism to remove bacteria, viruses, and other harmful
species from the water before sending it to distribution networks. They also take samples from
these water resources regularly to study the development of these pathogenic bacteria. In
2019, Askøy municipality in Norway, hundreds of people became sick because the water in one
of the storing mediums became contaminated with pathogenic bacteria from the feces of some
animals. In the aftermath of that, I became interested in making a dynamical model for the
bacteria living in surface water using available data from Bergen and Askøy municipality. The
goal was to investigate the dynamics of interaction between these species and the opportunity
to clean the water from pathogenic bacteria biologically and find possible solutions to make
the water resources safe to drink from even without any traditional treatment.

6

1.1 Problem outline

In this master thesis, we are trying to make a dynamical model of interactions between
pathogenic bacteria, Daphnia, and protozoa in surface drinking water bodies such as lakes,
rivers, and other resources. The goal is to study the interaction between them, the time
evolution of the system, longtime predictability, and investigate the possible total extinction
of bacteria or other microorganisms being studied.

1.2 Biological theory about the species considered in this

work

In this section, we will briefly present some biological background regarding bacteria and
microorganism species that are included in the study. The pathogenic bacteria included are
E. coli, Campylobacter, Clostridium perfringens, and Intestinal enterococci. The microor-
ganisms are Daphnia and protozoa.

1.2.1 Coliform bacteria

They are non-spore-forming bacteria and considered as indicator organisms. They are divided
into total coliform, fecal coliform, and E. coli. E. coli is a subgroup of fecal coliform, which in
its turn is a subgroup of total coliform. Factors that affect the survival of E. coli in water are
temperature, pH value, Salinity, Predation, Stream-bed resuspension and sunlight intensity.
Even though the predation reduce the amount of viable E. coli, the temperature remain the
most important factor as it affect the inactivation rate of E. coli. The Q10 equation can be
used to model the dependency of the inactivation rate of E.coli on the temperature in various
sources of water. Mathematically, it is given by,

k

k∗
= Q

(Tc−Tc,∗)
10

10

where
Q10: is a measure of the rate of change in the inactivation rate as a consequence of increases
in temperature by 10 °C 10 increments. Tc,∗ :is the reference temperature.
k∗: is the inactivation rate at the reference temperature.
k: is the inactivation rate at Celsius temperature Tc. Note that k and k∗ have the same units,
which are day−1.

7

The Q10 equation is more accurate when water from the same source is tested at different
temperatures. It is known that E. coli can survive at 4 °C as well as at higher temperatures.
For further reading see [5, 29]

1.2.2 Campylobacter jejuni (C.jejuni)

These are non-spore-forming bacteria that can cause disease in humans. They inhabit most
of the freshwater systems. The factors that affect the survival of C.jejuni in water are:

• Temperature
Optimal survival of Campylobacter has regularly been identified at low temperatures
with a maximal survival of greater than 4 months at densities exceeding 1.104CFU ml−1

reported for sterile stream-water held at 4 °C.
The temperature threshold at which survival becomes significantly affected has been
identified to be in the region of 16− 22 °C.

• Light.
Light affects changes in the uptake of nutrients and progressively inhibit the active
transport and biosynthetic processes of exposed E. coli populations.

• Oxygen.
The survival of C.jejuni increases at lower oxygen concentrations.

• Nutrients.
When bacteria are translocated from their intestinal niche into the aquatic environ-
ment,they confront a host of potential stressors such as suboptimal temperatures, nu-
trient deprivation, biological interactions, U.V. irradiation, and disinfectants. Conse-
quently, they may undergo a temporal physiological and morphological transition into
a viable but non-culturable (VNC) stage, retaining basal metabolic activity yet failing
to grow or multiply in bacteriological culture.

• Biotic interaction.
Such as antagonism, competition, and predation. The predatory and competitive ac-
tivities by autochthonous aquatic microflora especially protozoa reduce the survival
times of C. jejuni in water. In addition to the antagonistic role, Protozoa act also
as endosymbionts of coliforms and bacterial pathogens including C.jejuni, providing
protection from survival antagonists including chlorine.

8

For further reading see [58]

1.2.3 Clostridium perfringens (C.perfringens)

C.perfringens are anaerobic, gram-positive, spore-forming rod-shaped bacteria. They are
found in soil, sewage, intestinal tracts of animals and humans, drinking water, and food that
is contaminated with the bacteria. They can live at a temperature of 50 °C and are able to
make spores and resist heating, chlorination, and other stress factors. Thus, if the food is
contaminated by spores, they will germinate after the food is cooked.

These bacteria can lead to food poisoning which in terms leads to abdominal cramps, wa-
tery diarrhea, and nausea. They are therefore considered as an indicator in water quality
measurements and toxic substances as well.

1.2.4 Intestinal enterococci

These are spore-forming bacteria that can be found in most freshwater systems. Factors
that affect the survival of enterococci in secondary habitats as environmental water, aquatic
vegetation, or sediment are,

• Sunlight
Sunlight has been a suspected stressor of bacteria, i.e., the reduction in levels of entero-
cocci is enhanced at higher temperatures (i.e., during summer months and in warmer
climates).

• Salinity.
These bacteria can grow in the presence of salt (6.5% NaCl) more than fecal Col-
iforms and E.coli.

• Disinfection.

• Starvation.
Enterococci can enter the viable-but-non-culturable (VBNC) state. This phenomenon
describes a state in which bacteria that can normally be cultured under a defined set
of conditions lose that ability while retaining viability, as assessed by measurements
of membrane potential, infectivity, mRNA expression, the ability to reproduce, or cell
envelope integrity.

9

• Predation.
Such as grazing by protozoa.

It was shown that many bacterial pathogens resist digestion within protozoa and can replicate
inside them. This is the most important concern in terms of health risk management for
drinking water since the number of bacteria contained in a single organism can easily exceed
the infectious dose for humans. Another concern is that those bacterial pathogens can survive
within the resisting form of their host, i.e., the cysts, considering that cysts can resist various
extreme conditions and have a prolonged survival time in natural environments.

For further reading, see [4, 8]

1.2.5 Protozoa

Protozoa are one-celled animals that are found in nearly every habitat on earth and can
be very diverse in freshwaters. This group includes (i) autotrophs, i.e. they can produce
their own food, using materials from inorganic sources and (ii) heterotrophs, i.e. they cannot
synthesize their own food and rely on other organisms for nutrition. Many types survive by
ingesting particles or absorbing dissolved organic carbon. They are very important predators
of bacteria in the aquatic environment. Some bacterial pathogens have evolved to become
resistant to protozoa digestion. Many survive, and even multiply, within the intracellular
environment of certain protozoa. [49]. Protozoa can reduce the survival of C. jejuni in un-
sterilized lake waters and influences E. coli survival as well. [48] Some types of protozoa can
cause diseases in humans and symptoms can range from mild to life-threatening. [46]

1.2.6 Daphnia

Daphnia are planktonic crustaceans that belong to Phyllopoda and include over 100 known
species of freshwater plankton organisms. They inhabit most types of standing fresh except
for extreme habitats, such as hot springs waters. Adults range from 1 mm to 5 mm in size.
They feed on small, suspended particles in the water, which range in size from 1 µm up to
50 µm in diameter. The food is made up of planktonic algae or bacteria. In most habitats,
Daphnia have low density or completely disappear during part of the year, usually the cold or
the dry season. Growth is slowed down by density-dependent competition, usually because
of food shortage, predators, or parasites. The peak in Daphnia density usually follows a peak
in algae density and may be followed by the clear-water phase in which Daphnia effectively

10

remove most of the phytoplankton from the water. [14]

Daphnia carinata, which is a member of the Daphnia family, can graze Campylobacter jejuni
cells at a rate of 7 % individual−1 h−1 under simulated natural conditions in the presence
of an algal food source. Daphnia will also effectively graze Escherichia coli and predates on
protozoa as well. [31]

1.3 Types of functional response (FR) in ecological mod-

els

In this section, we will review the most used functional responses in ecological models.

Definition 1.3.1 (Functional response). The functional response represents the number
of prey consumed per predator per unit time and can be prey dependent, predator dependent,
or ratio-dependent.

1.3.1 Prey dependent functional response

In this functional response, the number of prey consumed per predator depends only on the
prey population without taking into account the predator population. The following are
some examples of this type of functional response (see Figure 1.1)

1. Lotka-Volterra or Holling type I

This type of functional response assumes a linear increase in the intake rate with food
density. Mathematically, it is given by

g(N) = aN

, where N is the population density of prey species at time t and a is the predation
rate.

2. Holling type II [12]

This functional response is given by the following equation,

g(N) =
aN

1 + ahN

11

where

a: is the searching efficiency or searching rate or attack rate.
h: is the handling time, the time spent by the predator handling each prey encountered,
and during which it stops searching.

Now let us take the limits at infinity and zero,

lim
N→∞

g(N) = lim
N→∞

aN

1 + ahN
= lim

N→∞

a

ah
=

1

h

lim
N→0

g(N) = lim
N→0

aN

1 + ahN
= 0

In this type of functional response, the predator spends much time in finding and
killing the prey species leading to maximum mortality rate, while at a high prey density
(N →∞) the mortality rate flattens out (and equals 1

h
) as the predator spend much of

its time in handling the prey rather than in searching.

Monod (1949) [34] used an equivalent function to describe the growth of bacteria cul-
tures,

R(C) = Rk
C

C1 + C
dividing the numerator and denominator by C1

R(C) =

Rk

C1
C

1 + 1
C1
C

this become equivalent to Holling type II

where

R: is the specific growth rate of a bacteria population.
C: is the concentration of the limiting nutrient.
Rk: the maximum specific growth rate of the culture.
C1: is the concentration of the nutrient at which the specific growth rate is half the
maximum.

Michaelis-Menten (1913) [23] used another equivalent functional response to study en-
zyme kinetics. It is given by the following equation,

g(N) =
mN

A+N

m: perdition coefficient or the maximum specific growth rate of the predator.
A: the half saturation constant when A = N → g(N) = 1

2
m. It is equivalent to Monod

and so to Holling type II

12

3. Holling type III [12]
The type III functional response is similar to type II, but the variable N is squared.
Mathematically, it is given by the following equation,

g(N) =
aN2

1 + ahN2

where a and h are the same as in Holling type II.

Now let us take the limit at infinity and at zero,

lim
N→∞

g(N) = lim
N→∞

aN2

1 + ahN2
= lim

N→∞

a

ah
=

1

h

lim
N→0

g(N) = lim
N→0

aN2

1 + ahN2
= 0

Note that both type II and type III of Holling functional response have the same asymptote
1
h
when prey density tends toward infinity.

13

(a) Lotka-Volterra. (b) Holling Type I

(c) Holling Type II. (d) Monod

Figure 1.1: Different types of Prey Dependent Functional Response (PDFR) for a chosen set
of parameters.

1.3.2 Predator dependent functional response

In this functional response, the number of prey consumed per predator depends on both
prey population and predator population, as both appear in the mathematical function that
represents it. The following are some examples of this type of functional response,

1. Hassell-Varley

g(N,P) =
αN

Pm

14

2. Beddington-DeAngelis

g(N,P) =
aN

1 + ahN + cP

3. Arditi-Akçakaya.

g(N,P) =
αNP−m

P + αhNP−m

m: the mutual interference between predators. m ∈ [0, 1]

1.3.3 Ratio dependent functional response

In this functional response, the number of prey consumed per predator depends on the ratio
of the prey population to the predator population. The following are some examples of this
type of functional response (see Figure 1.2),

1. Contois (1959)
Contois [10] built the following model for bacterial growth from the model suggested
by Monod [34],

R =
umS

BP + S
dividing the numerator and denominator by P

⇒ R(
S

P
) =

um
S
P

B + S
P

um =
Rm

1 + b

B =
bum
cRm

A = bS0

where

R: is the specific growth rate of the bacteria population
S: is the concentration of limiting nutrients (prey).
S0: the initial concentration of the limiting nutrients
P : the population density of the bacteria (predator)
um, B: are growth constants that are constant under a defined condition.
Rm: is the maximum specific growth rate of the culture (bacteria)
A: is the concentration of the nutrient at which the specific growth rate is half the
maximum 1

2
Rm

15

b: proportionality constant.
c: the yield coefficient

2. Arditi-Ginzburg I: [3]

g(
N

P
) = a

N

P

3. Arditi-Ginzburg II [3]

g(
N

P
) =

αN
P

1 + αhN
P

=
αN

P + αhN
dividing the numerator and denominator by αh

=
1
h
N

1
αh
P +N

this is equivalent to the Contois functional response

Where

N : the population density of prey species at time t.
P : the population density of prey species at time t.
h: Has the same unit as in Holling’s type II function (a time). Geometrically it is the
reciprocal of the upper asymptote.
α: is the rate at which the prey population is made available to the predator population.
Whatever the abundance of predators, the prey death rate due to predation cannot
exceed α . Geometrically it is the slope of g at the origin.
Now let us take the limit at infinity and at zero,

lim
N
P
→∞

g(
N

P
) = lim

N→∞
g(
N

P
) =

1

h

lim
N
P
→0
g(
N

P
) = lim

N→0
g(
N

P
) = lim

P→∞
g(
N

P
) = 0

Thus, the functional response tends to the same limit as Holling’s type II and III.

16

(a) Arditi-Ginzburg I. (b) Arditi-Ginzburg II.

(c) Contois.

Figure 1.2: Different types of Ratio Dependent Functional Response (RDFR) for a chosen
set of parameters.

1.4 Logistic equation

The logistic equation is developed by Belgian mathematician Verhulst 1838 and is given by
the following equation,

dN

dt
= rN − aN2 = rN

(
1− N

K

)

Here N represents the number of individuals at time t, r the intrinsic growth rate, a the
intraspecific competition between the individuals, and K = r

a
the carrying capacity of the

17

species N , which represents the maximum number of individuals that the environment can
support.

Solving the equation with initial condition N(0) = N0 we obtain,

N(t) =
K

1 +
(
K
N0
− 1
)

exp(−rt)
.

Let us take the limit at zero and infinity,

lim
t→∞

N = lim
t→∞

K

1 +
(
K
N0
− 1
)

exp(−rt)
=
K

1
= K,

lim
t→0

N(t) =
K

1 +
(
K
N0
− 1
) = N0.

Thus, the number of individuals tends to the carrying capacity when times tend to infinity
and to the initial population value at the beginning (t = 0) (see Figure 1.3).

Figure 1.3: Logistic equation for a chosen set of parameters.

18

1.5 Examples of ecological models

In this section, we will review some ecological models and how they are built from the
assumption given and finally build the model for the problem we are studying.

1.5.1 Two competing species

Assume that two species compete for limited nutrient resources in a closed environment and
do not prey on each other. Let x and y be the population density of the first and second
species, respectively. Assumptions of the model are as follows:

1. In the absence of the other species, the population of the two species grows according
to the logistic equation.

2. The two species compete for nutrients and this will reduce the density of the two pop-
ulations through the mixed term aijxixj

Based on the above assumption, the dynamics of the system are described by:

dx1(t)

dt
=r1x1 − a11x1x1 − a12x1x2 = r1x1(1−

a11
r1
x1)− a12x1x2

=r1x1(1−
x1
k1

)− a12x1x2, x1(0) > 0

dx2(t)

dt
=r2x2 − a22x2x2 − a21x1x2 = r2x2(1−

a22
r2
x2)− a21x1x2

=r2x2(1−
x2
k2

)− a21x1x2, x2(0) > 0

where

ri,i=1,2: is the intrinsic growth rate of prey species.

aij: Measure the degree at which the species j interferes with species i.

ki,i=1,2: is the environmental carrying capacity for ith species.

aii: are the intraspecific interference coefficient of the two species.
This model is constructed by Volterra in [60] and analyzed using linear stability theory in
litterateur, for example [7] and [36]

19

1.5.2 Predator-Prey Equation by Lotka-Volterra [60]

Assume that there are two species in a closed environment and one of them (the predator)
feeds on the other species (the prey) while the prey species get nutrients from other resources.
Let x and y be the population density of the first and second species, respectively.

Assumption

• In the absence of the predator, the prey population grows at a rate proportional to the
current population density. This is given by the term ax

• In the absence of the prey, the predator population dies out at a rate proportional to
the current population. This is given by the term −cy

• The interference between the predator and prey will increase the growth rate of the
predator by a term γxy and decrease the growth rate of the prey by a term −βxy.

Based on the above assumption, the dynamics of the system are described by:

dx(t)

dt
= ax− βxy,

dy(t)

dt
= − cy − γxy,

where

a: is the growth rate of the prey species.
c: is the death rate of the predator species
β, γ: is the effect of the interaction between the two species.

This model is constructed by Volterra in [60] and analyzed using linear stability theory in
many litterateurs, for example [7] and [36]

1.5.3 Two prey one-predator model

Elettreby [15] studied a two prey-one predator model in which the prey teams help each other.
The two teams of preys have densities x(t), y(t), respectively, interacting with one team of
predators with density z(t).

The assumptions of this model are as follows:

1. In the absence of any predation, each team of preys grows logistically; this is the terms
ax(1− x) and ay(1− y).

20

2. The effect of the predation is to reduce the prey growth rate by a term proportional to
the prey and predator populations; this is the −xz and −yz terms.

3. The teams of preys help each other against the predator, e.g. in foraging and in early
warning against predation that is a xyz term exist.

4. In the absence of any prey for sustenance, the predator’s death rate results in inverse
decay, that is, the term −cz2.

5. The prey’s contribution to the predator growth rate are dxz, eyz; that is proportional
to the available prey as well as the size of the predator population.

Based on the previous assumptions, he proposed the following model,

dx(t)

dt
=ax(1− x)− xz + xyz,

dy(t)

dt
=by(1− y)− yz + xyz,

dz(t)

dt
=− cz2 + dxz + eyz,

where the coefficients , b, c, d and e are positive constants and x(0), y(0), z(0) > 0.

It is worth noting that the interspecific competition between prey species is not considered
in this model, which is usually done in most biological models. The author assumed that the
two prey species are gazelles and zebras, which do compete on food in nature. Furthermore,
the author studied the local and global stability of the equilibrium points. In case the prey
species help each other, there are two locally stable interior eqm. points, while only one in
the case they don’t help each other. Finally, numerical simulation was done to verify the
analytical result.

1.5.4 Dynamical behavior of three species predator-prey system

with mutual support between non refuge prey

D.Pal et al. [39] studied the effect of refuge and harvesting in a three-species model of two
prey and one predator, where the two non refuge prey groups are helping each other and
shielding from the predator group.

Assumptions

21

1. In the absence of any predator, each team of preys grows logistically.

2. Due to the effect of predation, the prey growth rate is reduced by a quantity propor-
tional to the prey and predator population.

3. The non refuge teams of prey help each other against the predator.

4. Predator species is harvested with the harvesting effort E.

5. Prey’s contribution to predator growth rate is proportional to available prey and size
of predator population.

6. Some preys of each team are refuge, i.e., αx and βy .

7. When the team of 2nd prey helps first prey against the predator, then not only the
total populations of the second team involved in this interaction but also the non refuge
population of the first team involve in this interaction. The same situation occurs for
the first prey support to the second prey.

Using the above assumptions, the following predator-prey model is proposed:

dx(t)

dt
= ax(1− x)− (1− α)xz + (1− α)xyz,

dy(t)

dt
= by(1− y)− (1− β)yz + (1− β)xyz,

dz(t)

dt
= − cz2 + d(1− α)xz + e(1− β)yz − Ez,

where the coefficients a, b, c, d and e are positive constants. With initial densities x(0) >

0, y(0) > 0 and z(0) > 0.

In the proposed model, linear functional response is used, but competition between prey
species is not considered which could be important, especially if they feed on the same
limited resource. However, the intraspecific competition between the predators species is
considered the term−cz2. Furthermore, they studied the local stability of the equilibrium
points and global stability of the interior equilibrium. In this model there are two globally
stable nonnegative interior equilibrium points under some assumptions, which means that
the species can coexist. Finally, numerical simulation is carried out to verify the results in
case of interior equilibrium point and the effect of harvesting and refuge.

22

1.5.5 Dynamics of species in a two preys-one predator model system

with help

Ali et al. [2] studied a model consisting of two teams of prey interacting with one team of
predators. The assumptions used in the model’s construction are as follows.

Assumptions

1. Each species grows logistically in the absence of predation and other competing species.

2. Holling-type II or Michaelis-Menten functional response for predation is used.

3. The effect of intraspecific competition among predators is considered her as well. This
is expressed in the term −HX2

3 .

4. The two prey teams help each other in prevention of the predator’s attack so as to
increase the growth rate of prey species. This is shown by the terms σ1X1X2X3 and
σ2X1X2X3.

Based on the following assumptions, they proposed the following model:

dX1(T)

dT
= r1(1−

X1

K1

)− M1

A1 +X1

·X1X3 + σ1X1X2X3, X1(0) > 0,

dX2(T)

dT
= r2(1−

X2

K2

)− M2

A2 +X2

·X2X3 + σ2X1X2X3, X2(0) > 0,

dX3(T)

dT
= −HX2

3 −DX3 +
E1M1

A1 +X1

·X1X3 +
E2M2

A2 +X2

·X2X3, X3(0) > 0,

where
X1, X2: are the population densities of prey species.
X3: is the population density of predator species.
r1, r2 : biotic potential
K1, K2: environmental carrying capacities of two prey species.
σ1, σ2: are coefficients of the help between two prey teams.
M1,M2 are predation coefficients (the maximal growth rate of the species).
E1, E2: are conversion factors of captured prey species into new predators.
A1, A2: are half-saturation constants.

23

All constants are assumed to be positive. This model differs from the previous models in
using the Holling-type II functional response.

Further, they studied the local stability of nonnegative equilibrium points using linear theory
and the Routh-Hurwitz criterion. The global stability of the interior equilibrium was also
studied, and it was proved to be globally stable under some condition on the parameters
given by the Lyapunov function method.

1.5.6 Persistence of Two Prey-One Predator System with Ratio-

dependent Predator Influence

Kesh et al. [28] studied a mathematical model of two competing prey and one predator system.
They used similar assumptions as the previous models but used a ratio dependent functional
response for predation.

dx1(t)

dt
= r1x1(1−

x1
k1

)− a1
1 + x1 + α1y

x1y − a12x1x2, x1(0) > 0,

dx2(t)

dt
= r2x2(1−

x2
k2

)− a2
1 + x2 + α2y

x2y − a21x1x2, x2(0) > 0,

dy(t)

dt
= − εy +

βa1
1 + x1 + α1y

x1y +
βa2

1 + x2 + α2y
x2y, y(0) > 0,

where
xi(t)(i = 1, 2) : the population density of competing prey species which grow logistically.
y(t) : the population density of predator species at time t.
ri: the specific growth rate of the prey species xi.
ki: the carrying capacity of the prey species xi.
aij: the inter-specific competition coefficient
ai: the uptake rate.
αi: the interference coefficient of the predator.
β: the food conversion efficiency of the predator.
ε: the mortality rate of the predator
Here all the parameters are assumed to be positive.

The proposed model has six equilibrium points, but only one at which all species coexist.
Furthermore, they studied the local stability of the equilibrium points and global stability
as well using the Lyapunov function and Bendixson-Dulac criterion. They proved that the

24

dynamics do not change by changing the functional response from ratio-dependent to linear
in the Lotka-Volterra systems.

1.5.7 Persistence and stability of a two prey one predator system

T. K. Kara et al. [27] studied a model consisting of two competing prey x and y, and one
predator z with the presence of time delay due to the gestation.

The assumptions of the model are as follows:

1. In the absence of the predator the prey population density grows, according to the
logistic law of growth.

2. The two prey species compete for food resources.

3. One prey is much higher in abundance and more vulnerable compared to the other.

4. The handling time for one prey x is negligible and for that Holling type I functional
response is used, whereas the predator needs sufficient handling time for other prey y,
thus Holling type II functional response is used for that.

5. There is a reaction time for predator.

Based on the previous assumptions, the following model is proposed:

dx(t)

dt
= rx(1− x

K
)− a1xy − ω1xz,

dy(t)

dt
= sy(1− y

L
)− a2xy −

ω2

m+ y
yz,

dz(t)

dt
= − cz + b1ω1x(t− τ)z + b2,

ω2

m+ y
y(t− τ)z,

r, s: are the intrinsic growth rate of the two prey species
K and L: are the carrying capacities of the two prey species.
c: is the mortality rate coefficient of the predator.
a1, a2: are inter-specific interference coefficient of two prey species.
ω1, ω2: is the first and second type prey species searching the efficiency of the predator.
b1, b2: are the conversion factors denoting the number of newly born predators for each
captured of first and second prey respectively.
m: is the half-saturation co-efficient.
(τ > 0): A discrete-time delay to allow for reaction time for the predator.

25

Further, they studied the conditions for the existence of non-negative equilibrium points and
their local stability using linear stability theory. They also investigated the global stability
of the equilibrium points as well as the persistence of the system. Finally, numerical simu-
lation was carried out to verify the analytical results. The main finding from the numerical
simulation was that time delay influences the stability of the interior equilibrium point in the
view that there was a critical value for which it was stable.

1.5.8 Dynamics of a two prey and one predator system with time

interruption and random fluctuations

Reddy et al. [42] studied a model consisting of one predator feeding on two competing prey
with the presence of time delay and stochastic noise. The assumptions of the model as follows:

1. In the absence of the predator the prey population density grows, according to the
logistic law of growth.

2. The two prey species compete for food resources.

3. The death rate of the predator in the absence of the prey species is −dz.

4. The intraspecific reaction between predators is taken into account and the functional
response is taken as Holling type II.

5. There is a time delay τ in the system which appears in the predator equation only.

Based on the previous assumptions, they constructed the following model:

dx(t)

dt
= r1x(1− x

k1
)− α13xz,

dy(t)

dt
= r2y(1− y

k2
)− α23yz,

dz(t)

dt
= − dz +−α33z

2 + α31x(t− τ)z(t− τ) + α32y(t− τ)z(t− τ),

x(t), y(t), z(t): represent the population density of prey1, prey2 and predator species, respec-
tively.
r1, r2: represent the intrinsic growth rates of prey1 and prey2, respectively.
k1, k2: represent the carrying capacities of prey1 and prey2, respectively.
α13, α23: represent the decrease rates of prey1 and prey2, respectively, due to predation.
α31, α32: represent the gain rates of the predator due to the predation of prey1 and prey2,
respectively.

26

d: the mortality rate of the predator.
α33: denote the decreased rate of the predator due to intraspecific competition.
τ : represents the time delay parameter.
All the parameters are assumed to constants.

They studied the local and global stability of the interior equilibrium points using linear
theory along with the Routh-Hurwitz criterion and Lyapunov function. They also studied
the effects of time delay and random environmental fluctuations on the stability of the model
around the interior equilibrium point and finally numerical simulation to verify the analytical
results for a set of chosen parameter values.

1.5.9 Analysis of Dynamics in Two-prey, one-predator model: Effect

of the Remained carcass

Lee [30] has studied a model consisting of two prey and one predator in which one of the prey
species h1 is called existent prey and the other h2 is called invader prey. After the predator
p has consumed the existent prey, its carcass is considered as food for the invader prey. The
following functional response of the existent prey to the benefit of remained carcasses is used
:

Ψ(h1, h2, p) =
τ1h2p

τ2h1 + τ3h2

where τ1, τ2, τ3 are positive constants.

Assumption of the model are as follows:

1. The existent preys have two negative effects by the intraspecific competition of them-
selves and the obstruction of invader preys, to have the remained carcass.

2. The two negative effects are proportional to the density of the existent prey and invader
prey respectively, and to simplify the model, the real amount of remained carcasses
which the existent prey has is proportional to the total amount of remained carcasses
divided by the negative effects.

3. The existent prey and the predator have already approached to stable coexistence
density before the invader prey invades.

4. The gain of the existent prey given by the predator is less than loss when the existent
prey and the invader prey approach their carrying capacities, respectively.

27

Based on the previous assumption, he proposed the following model:

dh1(t)

dt
= ε1h1(1−

h1
k1

)− a1h1p+
τ1

τ2h1 + τ3h3
h1h2p,

dh2(t)

dt
= ε2h2(1−

h2
k2

)− a2h2p

dp(t)

dt
= − δp+ b1h1p+ b2h2p,

where

εi: the growth rate of preys in the absence of a predator.

ki: The carrying capacity of preys

ai: The consumption rate of preys by predator

bi: The rate of increase in the number of predators from ingesting the prey.

δ: The death rate of the predator.

Further, the linear stability analysis was performed and there was a unique interior equilib-
rium point under some condition on the parameter. Numerical simulation was done to study
the stability of the interior equilibrium point as well as the effect of the remained carcass
on the stability and persistence of the system. They showed that for the set of parameters
satisfying the persistence condition, the system had a chaotic attractor.

1.5.10 Two Predators Competing for Two Prey Species: An Analy-

sis of MacArthur’s Model

S.B.Hsu and S.P.Hubbell [20] studied the MacArthur model which describes two predators
feeding on two prey species.

28

The assumption of the model are as follows:

1. In the absence of predation, the growth rates of prey species are logistic and the linear
functional response for predation is used

2. The two predator species x1, x2 prey on either prey species ,R1, R2 .

3. The two predator species compete only by lowering the population of shared prey with
no interference between rivals.

4. Death rates are assumed to follow a “type III” survivorship in which the number dying
is proportional to the number currently alive.

5. No significant time lags in the system.

Based on the previous assumption, they proposed the following model:

dR1(t)

dt
= r1R1(1−

R1

K1

)− k11R1x1 − k21R1x2, R1 > 0,

dR2(t)

dt
= r2R2(1−

R2

K2

)− k12R2x1 − k22R2x2, R2 > 0,

dx1(t)

dt
= −D1x1 + b11x1R1 + b12x1R2, x1 > 0,

dx2(t)

dt
= −D2x2 + b21x2R1 + b22x2R2, x2 > 0

where Ri(t) the number of ith prey at time t, xi(t) the number of ith predator at time t,
ri the intrinsic rate of increase for ith prey, Ki the carrying capacity for ith prey, bij: the
birth rate per predator (predator species i) per unit prey (prey species j) consumed, kij: the
feeding rate per predator (predator species i) per unit prey (prey species j) consumed, and
Di the death rate of ith predator.

Further, they studied the conditions for global stability of non-negative equilibrium points,
especially the case in which the two-predator, two-prey system catastrophically collapses to
a one-predator, two-prey system, or even to a one-predator, one-prey system.

29

Chapter 2

The mathematical model

The model consist of four competing prey species which are

1. Coliform Bacteria (E. coli)

2. Campylobacter

3. Clostridium perfringens

4. Intestinal enterococci,

nutrients and two competing predators

1. protozoa

2. Daphnia

The bacteria feed on nutrients. Daphnia and protozoa both feed on bacteria, but Daphnia in
addition can feed on Protozoa, thus we have multistage predation in the system. Furthermore,
we denote the prey species as xi,i=1,2,3,4, the predators as yj,j=1,2 and nutrients as N
The following diagram demonstrate the system and the interactions between the species:

30

Figure 2.1: Flow diagram of the system 2.1. The continuous arrows represent the input
to the system or output from the system (flux of bacteria or nutrients, predation, death
rate of predators). The dashed and dotted arrows refer to the interspecific and intraspecific
competition between species, respectively. Finally, the looped arrows represent the growth
rate of bacteria.

2.1 Assumptions

1. There is an inflow of nutrients into the system which may be constant or time-dependent.
The amount of nutrients reduces only due to consumption by bacteria.

2. In the absence of predators and interspecific competition, the bacteria will grow accord-
ing to the logistic equation.

3. the four prey species compete for nutrients and this is incorporated into the equation
by the mixed terms.

4. One predator, Daphnia prey on the other one (Protozoa), and they compete for other
prey species.

5. For simplicity, linear preys dependent functional response will be considered here.

6. The predators have no preference when choosing their prey.

31

7. The concentration of pathogenic bacteria (E.coli, Intestinal enterococci, Campylobacter,
Clostridium perfringens) in surface water at any time depends on the fecal contaminant
input, thus we add a source term si.

Based on the previous assumption, we propose the following model:

2.2 The model

dN(t)

dt
=R(t)− c1x1 − c2x2 − c3x3 − c4x4

dx1(t)

dt
=r1x1 − σ11x1x1 − σ12x1x2 − σ13x1x3 − σ14x1x4 − f11x1y1 − f12x1y2 + s1(t),

dx2(t)

dt
=r2x2 − σ22x2x2 − σ21x2x1 − σ23x2x3 − σ24x2x4 − f21x2y1 − f22x2y2 + s2(t),

dx3(t)

dt
=r3x3 − σ33x3x3 − σ31x3x1 − σ32x3x2 − σ34x3x4 − f31x3y1 − f32x3y2 + s3(t),

dx4(t)

dt
=r4x4 − σ44x4x4 − σ41x4x1 − σ42x4x2 − σ43x4x3 − f41x4y1 − f42x4y2 + s4(t),

dy1(t)

dt
=− ε1y1 − ω11y

2
1 − (g12 + ω12)y1y2 + β11f11y1x1 + β21f21y1x2 + β31f31y1x3 + β41f41y1x4,

dy2(t)

dt
=− ε2y2 − ω22y

2
2 + (γ12g12 − ω21)y1y2 + β12f12y2x1 + β22f22y2x2 + β32f32y2x3 + β42f42y2x4,

with initial conditions N(0) > 0, x1..4(0) > 0, y1(0) > 0, y2(0) > 0.

After some manipulation we obtain:

dN(t)

dt
= R(t)− c1x1 − c2x2 − c3x3 − c4x4, N(0) > 0

dx1(t)

dt
= x1

[
r1

(
1− η11x1 + η12x2 + η13x3 + η14x4

N

)
− f11y1 − f12y2

]
+ s1(t), x1(0) > 0,

dx2(t)

dt
= x2

[
r2

(
1− η21x1 + η22x2 + η23x3 + η24x4

N

)
− f21y1 − f22y2

]
+ s2(t), x2(0) > 0,

dx3(t)

dt
= x3

[
r3

(
1− η31x1 + η32x2 + η33x3 + η34x4

N

)
− f31y1 − f32y2

]
+ s3(t), x3(0) > 0

dx4(t)

dt
= x4

[
r4

(
1− η41x1 + η42x2 + η43x3η44x4

N

)
− f41y1 − f42y2

]
+ s4(t), x4(0) > 0,

dy1(t)

dt
= y1 [−ε1 − ω11y1 − ψ12y2 + β11f11x1 + β21f21x2 + β31f31x3 + β41f41x4] , y1(0) > 0,

dy2(t)

dt
= y2 [−ε2 + φ12y1 − ω22y2 + β12f12x1 + β22f22x2 + β32f32x3 + β42f42x4] , y2(0) > 0.

(2.1)

32

Where

i, k =1, 2, 3, 4 , j, l = 1, 2, Ki =
ri
σii
, φ12 = g12 + ω12,

ψ12 =γ12g12 − ω21, K = ηiiKi, K = mN, ηik =
σik
σii
ηii,

N : represent the concentration of the nutrients in the surface water.
xi : represent the population density of E.coli, Intestinal enterococci, Campylobacter, and
Clostridium perfringens respectively.
yj : represent population density of protozoa and Daphnia at time t respectively
R(t): the net flow of nutrients into the water resource.
ci : The decreased rate of nutrients du to consumption by bacteria species xi ri: is the
intrinsic growth rate for prey species.
si : the amount of bacteria species i can be added to the system through fecal contamination.
Ki : the environmental carrying capacity for ith prey species.
σik: are inter-specific competition coefficient between the prey species i and k.
ωjl,j 6=l : are interspecific competition coefficient of the two predator species i.e. the decreased
rate of the predator species j due interspecific competition with the predator species l
ωjj : denote the decreased rate of the predator due to intraspecific competition.
βij, γ12 : are the conversion factors denoting the birth rate per predator (predator species j)
per unit prey (prey species i) consumed.
εj : is the death rate of the predator j in the absence of prey species.
fij : represent the decreased rate of prey species i due to predation by predator species j.
g12:represent the decreased rate of predator species 1 due to predation by predator species 2.

2.2.1 Units of the parameters and variables in the system

The units of variables and parameters in the system are given in the following table:

33

N xi yj R(t)
[mass N]

[vol]
[num xi]

[vol]
[num yi]

[vol]
[mass N]
[vol][time]

ci ri σik ηik
[mass N]

[num xi][time]
1

[time]
[vol]

[num xk][time]
[mass N]
[num xk]

Ki K fij g12
[num xi]

[vol]
[mass N]

[vol]
[volume]

[num yj][time]
[vol]

[num y2][time]

si εj ωjl,j 6=l ωjj
[num xi]
[vol][time]

1
[time]

[vol]
[num yl][time]

[vol]
[num yj][time]

γ12 βij
dN(t)
dt

dxi(t)
dt

[num y2]
[num y1]

[num yj]

[num xi]
[mass N]
[vol][time]

[num xi]
[vol][time]

dyj(t)

dt
mass vol time

[num yj]

[vol][time]
mg

100 ml
100 ml day

Table 2.1: Units of the parameters and variables in the system 2.1.

34

Chapter 3

Theoretical background

In this chapter, we will give some theoretical background to understand this work, which
includes stability analysis, linear algebra, sensitivity analysis, observability and chaos in
dynamical systems.

3.1 Stability analysis of a dynamical system

Definition 3.1.1 (dynamical system). A dynamical system is a system that describes
the evolution of a physical system over time and can be given by an ordinary differential
equation of the form: dx

dt
= f(x, t). If the time does not appear explicitly on the right-hand

side, then the system is said to be autonomous.

Definition 3.1.2 (Equilibrium point). An equilibrium point of the system dx
dt

= F (x, t)

is a point for which F (x, t) = 0, i.e. the system is in a steady state at that point. Thus, if
the system starts at it will stay there as times goes to infinity.

Definition 3.1.3 (Lyapunov stability). An equilibrium point xe is called Lyapunov stable
if for every ε > 0, there exists a δ > 0 such that , for all x0 with ‖x0 − xe‖ < δ we have
‖x(t)− xe‖ < ε for all t ≥ 0. This mean that all solutions that start close enough to the
equilibrium point will remain near it for t ≥ 0. An equilibrium point is called unstable if it
is not Lyapunov stable.

Definition 3.1.4 (Asymptotic stability). An equilibrium point xe is called asymptot-
ically stable if there exists a δ > 0 such that , for all x0 with ‖x0 − xe‖ < δ we have
limt→∞ ‖x(t)− xe‖ = 0. This mean that all solutions that start close enough to the equilib-

35

rium point will converge to it as time tends to infinity.

Definition 3.1.5 (Invariant set). A set A ⊆ Rn is called invariant with respect to a
dynamical system dx

dt
= f(x, t) if for every trajectory x we have ∀x0 ∈ A ⇒ x(t) ∈ A for

all t ∈ R. If we restrict t to nonnegative values, then it will be called positive invariant set.
Consequently, if a trajectory enters or starts in A, it will stay in A for all times. Equilibrium
points and limit cycles are examples of invariant sets.

Definition 3.1.6 (Basin of attraction). The basin of attraction of an equilibrium point
B(xe) is the set of points in the domain of the solution that converge to it as times tend to
infinity.

Definition 3.1.7 (Global stability). An equilibrium point is called globally stable if all
solutions of the system converge to it as the time tend to infinity.

3.1.1 Stability of one dimensional ODE

Let us assume that we have an ODE in the following general form dx
dt

= f(x). We linearize
it as follows: Set ε = x− x∗ where ε is a small perturbation then

x = x∗ + ε⇒ d (x∗ + ε)

dt
= f (x∗ + ε)

dx∗

dt
+
dε

dt
= f (x∗) + εf ′(x∗) +O(ε2)

dx∗

dt
= 0 since x∗ is constant

f(x∗) = 0 since x∗ is an equilibrium point

⇒
dε

dt
= εf ′(x∗)⇒ ε = ε0e

f ′(x∗)t

Thus x∗ will be stable if f ′(x∗) < 0 since ε → 0 as t → ∞ which implies that x(t) → x∗as
t → ∞ and unstable if f ′(x∗) > 0 since ε → ∞ as t → ∞ which implies that x(t) will not
converge to x∗ as t→∞.

Usually, we study the sign of eigenvalues when we investigate stability. For one dimensional
ODE, the eigenvalues will be the derivative of the right-hand side at equilibrium points, and
we get the same conclusion about stability, i.e. if the eigenvalues for a given equilibrium
point are negative then the equilibrium point will be stable, and if they are positive it will
be unstable.

The dynamical systems can be divided into two types, linear and nonlinear:

36

3.1.2 Stability of linear systems

Here we will just discuss the stability of linear homogeneous autonomous systems. Consider
the following linear autonomous system with constant coefficients:

ẋ(t) = Ax

where A is a n×n matrix of coefficients and x(t) ∈ Rn is the vector containing the solutions
of the system.

3.1.2.1 Stability of a 2D linear system

A two-dimensional linear autonomous system of ODE is given by:

ẋ(t) = ax+ b

ẏ(t) = cx+ d

The system can be written in matrix form as:
ẋ(t)

ẏ(t)

 =


a b

c d



x

y

⇔ ẋ(t) = Ax

where A =


a b

c d

 and ẋ =


x

y


If the matrix A is invertible, then the system will have only one equilibrium point which is
x = 0. Furthermore, if the matrix A has two eigenvectors λ1 and λ2, then the classification
of the zero equilibrium point will be as follows:

1. λ1 > λ2 > 0 implies that the equilibrium point is unstable and is called an unstable
node.

2. λ1 = λ2 >0 then the equilibrium point will be unstable. Furthermore, it will be called
a proper node (star node) if there are two distinct eigenvectors or an improper node
(degenerate node) if there is only one independent eigenvector.

3. λ1 < λ2 < 0 implies that the equilibrium point is asymptotically stable and called a
stable node.

37

4. λ1 = λ2 < 0 implies that the equilibrium point is asymptotically stable and called a
node. Furthermore, it will be called a proper node (star node) if there are two distinct
eigenvectors or an improper node (degenerate node) if there is only one independent
eigenvector.

5. If one of the eigenvalues is positive, and the other is negative, then the equilibrium
point will be unstable and is called a saddle point.

6. λ1, λ2 are complex with a positive real part, then the equilibrium point will unstable
and it is called a spiral point.

7. λ1, λ2 are complex with a negative real part, then the equilibrium point will be asymp-
totically stable and it is called a spiral point.

8. λ1, λ2 are complex with zero real part then the equilibrium point will be stable and it
is called a center.

3.1.2.2 Stability of an n-dimensional linear autonomous system

Let us assume that we have the following n-dimensional linear autonomous system in vector
form:

ẋ(t) = Ax

where A is n×n matrix of coefficients and x(t) ∈ Rn is the vector containing the solutions of
the system. Then the classification of equilibrium points will be as follows:

1. If the matrix A has negative real eigenvalues or complex eigenvalues with negative real
parts, then the equilibrium point will be asymptotically stable.

2. If the matrix A has at least one positive real eigenvalue or one complex eigenvalue with
a positive real part, then the equilibrium point will be unstable.

3.1.3 Stability of a nonlinear system of ODE

3.1.3.1 Stability of a 2-dimensional nonlinear system

Let us assume that we have a nonlinear system of ODE of the form:

ẋ(t) = f(x, y)

ẏ(t) = g(x, y)
(3.1)

and suppose that EP (x∗, y∗) is an equilibrium point, i.e. f(x∗, y∗) = 0 and g(x∗, y∗) = 0

38

The first step is to linearize the system around the equilibrium point as follows:

Let ε = x− x∗, η = y − y∗ be a disturbance from the equilibrium point. Following a similar
procedure, as in the one-dimensional case, we get the differential equations for the disturbance
as follows:

ε̇ = ε
∂f

∂x
+ η

∂f

∂y

η̇ = ε
∂g

∂x
+ η

∂g

∂y

which can be written as 
ε̇

η̇

 =


∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y



ε

η


The matrix 

∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y


EP

is the Jacobian matrix which is an analog of f(x∗) in case of the one dimensional ODE. Since
we have neglected the quadratic terms in the derivation, we obtain a linearized system and
classifying equilibrium points will be similar as for the linear system except for the case where
we have complex eigenvalues with zero real part in which the stability is undetermined.

3.1.3.2 Limit cycles in 2-dimensional nonlinear system

Definition 3.1.8. A limit cycle is an isolated closed trajectory, i.e. the neighboring trajec-
tories are not closed; they spiral either toward or away from the limit cycle. The limit cycle
is called stable or attracting if all the neighboring trajectories approach it, unstable if the
neighboring trajectories approach it from the interior of the limit cycle and spiral out from
it from the exterior of it. The limit cycle may be also semi-stable if the nearby trajectories
approach it from the interior and spiral out from it from the exterior or the opposite. [55]

There are several methods to prove the nonexistence of a limit cycle, and here we will state
some of them:

39

1. If we can write our system as a gradient system which is of the form ẋ = −∇V (x)

where V is a continuously differentiable scalar function, then there can’t be a limit
cycle.

2. If we can find a Lyapunov function for the system, i.e. the equilibrium point is globally
stable, then the system has no closed orbits. More about Lyapunov function in the
global stability section.

3. Bendixson–Dulac theorem which can be stated as follows: Let D be a simply connected
region (i.e. no holes) in R2 on winch, the system 3.1 is defined and if there exists a
continuously differentiable V (x) such that ∂(V f)

∂x
+ ∂(V g)

∂y
has the same sign throughout

D, then there is no limit cycle that can lie entirely in D.

4. Critical point criteria: A closed trajectory has a critical point in its interior. Thus if
a region D is simply connected (i.e. no holes) in R2 and has no critical (equilibrium)
points, then it cannot contain any limit cycles.

3.1.3.3 Stability of an n-dimensional nonlinear system

Consider the following n-dimensional nonlinear system of ODE in vector form:

ẋ(t) = F (x)

To study the local stability of the previous system we linearize it around an equilibrium point
and obtain the following linearized system :

ε̇ = Jx∗ ε

where Jx∗ is the Jacobian matrix evaluated at the equilibrium point. Then the classification
of the equilibrium points will be as follows:

1. If the Jacobian matrix evaluated at the equilibrium point has negative real eigenvalues
or complex eigenvalues with a negative real part, then the equilibrium point will be
asymptotically stable.

2. If the Jacobian matrix evaluated at the equilibrium point has at least one positive real
eigenvalue or one complex eigenvalue with a positive real part, then the equilibrium
point will be unstable.

3. If at least one eigenvalue of the Jacobian matrix evaluated at the equilibrium point has
zero real part and others have a negative real part, then it is not possible to determine
the stability by this method.

40

3.1.4 Routh-Hurwitz criterion for stability

Sometimes it is difficult to calculate the roots of the characteristic polynomial of a linear
system or linearized system. Routh-Hurwitz provides a criterion for the stability of a linear
system without calculation of the roots explicitly. In this section, we provide the Routh-
Hurwitz criterion for a two-dimensional and three-dimensional dynamical system.

Let us assume we have the following characteristic equation for an n-dimensional linear
system:

P (λ) = anλ
n + an−1λ

n−1 + an−2λ
n−2 + . . .+ a1λ+ a0 = 0

We first construct a Routh array as follows:

λn an an−2 an−4 ...

λn−1 an−1 an−3 an−5 ...

λn−2 bn−1 bn−3 bn−5 ...

λn−3 cn−1 cn−3 cn−5 ...
...

...
...

... ...

λ0 hn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
where

bn−1 =− 1

an−1

∣∣∣∣∣ an an−2

an−1 an−3

∣∣∣∣∣ , bn−3 = − 1

an−1

∣∣∣∣∣ an an−4

an−1 an−5

∣∣∣∣∣ , . . .
cn−1 =− 1

bn−1

∣∣∣∣∣an−1 an−3

bn−1 bn−3

∣∣∣∣∣ , cn−3 = − 1

bn−1

∣∣∣∣∣an−1 an−5

bn−1 bn−5

∣∣∣∣∣ , . . .

The Routh-Hurwitz criterion states that the number of roots with a positive real part is equal
to the number of the sign changes in the first column of the Routh array. Thus the system
will be stable if all the coefficients in the first column of the Routh array are of the same
sign.

3.1.4.1 Two dimensional linear system

The characteristic equation for a two-dimensional linear system is given by:

a2λ
2 + a1λ+ a0 = 0

41

The Routh array becomes:

λ2 a2 a0

λ1 a1 0

λ0 b1 0

∣∣∣∣∣∣∣∣
where

b1 =− 1

a1

∣∣∣∣∣a2 a0

a1 0

∣∣∣∣∣ = a0

Thus, the condition for stability of a 2D system is that all the coefficients should have the
same sign.

3.1.4.2 Three dimensional linear system

The characteristic equation for a two-dimensional linear system is given by:

a3λ
3 + a2λ

2 + a1λ+ a0 = 0

The Routh array becomes:

λ3 a3 a1

λ2 a2 a0

λ1 b1 0

λ0 c1 0

∣∣∣∣∣∣∣∣∣∣
where

b1 =− 1

a2

∣∣∣∣∣a3 a1

a2 a0

∣∣∣∣∣ =
a1a2 − a0a0

a3
, c1 = − 1

b1

∣∣∣∣∣a2 a0

b1 0

∣∣∣∣∣ = a0

Thus, the condition for stability of a 3D system is that all the coefficients should be positive
and a1a2 > a0a3. For special cases and more details, see [13] and [43]

3.2 Global stability and Lyapunov direct method

In this section, we will go through some method and theorems for global stability of dynamical
systems

Definition 3.2.1 (Positive definite functions). Let W be a region of the phase space
containing the equilibrium point x∗ and let V (x) : W ⊆ Rn → R be a continuous and
differentiable function. The function V is called positive definite [positive semi-definite] if
the following conditions are satisfied:

42

1. V (x∗) = 0

2. V (x) > 0 [V (x) ≥ 0] ∀x ∈ W \ {x∗}

Theorem 3.2.1 (Lyapunov direct method for stability). Let us consider the following
autonomous nonlinear system of ODE:

ẋ(t) = F (x(t))

and let x∗ be an equilibrium point of the system. Suppose that there exist a real-valued positive
definite function V (x) : W ⊆ Rn → R then:

1. if V̇ (x) ≤ 0 ∀x ∈ W \ {x∗} then x∗ is Lyapunov stable.

2. if V̇ (x) < 0 ∀x ∈ W \ {x∗} then x∗ is asymptotically stable.

3. if V̇ (x) ≥ 0 ∀x ∈ W \ {x∗} then x∗ is unstable.

Theorem 3.2.2 (Barbashin-Krasovskii-theorem). Let us consider the following autonomous
nonlinear system of ODE:

ẋ(t) = F (x(t))

and let x∗ be an equilibrium point of the system. Suppose that there exists a continu-
ously differentiable real-valued positive definite function V (x) : W ⊆ Rn → R. Let S ={
x ∈ W : ˙V (x) = 0

}
and suppose that no other solution except the trivial solution x(t) = 0

can stay in S, then x∗ is asymptotically stable. If in addition V (x) is radially unbounded i.e
‖x‖ → ∞⇒ V (x) = 0 then x∗ is globally stable.

3.2.1 Global stability for generalized Lotka–Volterra Systems

Let us consider the following generalized Lotka–Volterra competitive-predator-prey system:

ẋ(t) = F (x, p) = xT (r − Ax) (3.2)

where p represent all the parameter in the system, F = [F1, F2, F3, . . . , Fn]T is the right-hand
side of the system, x = [x1, x2, x3, . . . xn]T is n dimensional state vector, r = [r1, r2, r3, . . . rn]T

is the n-dimensional real vector that contain growth rates and death rates of the species
involved in the interaction(The component that represent growth rates will be positive and
the ones that represent death rates will be negative), and A = (aij) is the n× n interaction
matrix that contain competition and predation coefficients which may be represented by
using the concept of carrying capacity.

43

Theorem 3.2.3. Suppose that the Lotka-Volterra system 3.2 has a unique interior equilibrium
point x∗ = A−1r, then this equilibrium point will be globally stable on positive Rn if there
exist a positive definite matrix D such that the symmetric matrix M = DA+ATD is positive
definite.

Proof. Let V : Rn
≥0 → R≥0 → be defined as:

V (x) =
n∑
i=1

pi

(
xi − x∗i − x∗i log

(
xi
x∗i

))
where pi ∈ R are positive constants to be found.

The derivative of the function is given by:

V̇ (x) = ∇V (x)F =

[
∂V

∂x1
,
∂V

∂x2
,
∂V

∂x3
, . . .

∂V

∂xn
,

]
.[F1, F2, F3, . . . , Fn]T

which can be written as

V̇ (x) =− (x− x∗)T
(
ATD

)
(x− x∗) = −XT

(
1

2

(
ATD +DA

)
+

1

2

(
ATD −DA

))
X

=− 1

2
XT

(
DA+ ATD

)
X − 1

2
XT

(
DA− ATD

)
X︸ ︷︷ ︸

=0

= −1

2
XTMX

where

X = [x1 − x∗1, x2 − x∗2, x3 − x∗3,
..., xn − x∗n]T , D = diag(p1, p2, p3, . . . , pn)

Here we used the idea that we can write ATD as a sum of a symmetric and skew-symmetric
matrices i.e.

ATD =
ATD +

[
ATD

]T
2

+
ATD −

[
ATD

]T
2

=
1

2

(
ATD +DA

)
+

1

2

(
ATD −DA

)
The function V (x) satisfies the following:

1. V (x∗) = 0

2. V (x) > 0 ∀x ∈ Rn
≥0 \ {x∗}

thus by Lyapunov function stability theorem the interior equilibrium point x∗ will be globally
stable if M is positive definite.

44

3.2.2 Positive definite matrices

Definition 3.2.2 (Positive definite matrix). A real n× n symmetric matrix A is called
positive (negative) definite if xTAx > 0

(
xTAx < 0

)
for all nonzero vector x ∈ Rn. If the

inequality is not strict then it will be positive (negative) semi-definite .

To prove that the matrix is positive definite we can use the following theorems.

Theorem 3.2.4 (Eigenvalues). A symmetric matrix A is positive definite if all its eigen-
values are positive. The eigenvalues λ’s can be found by solving the algebraic equation
det(A− λI) = 0

Theorem 3.2.5 (Sylvester’s criterion). A symmetric matrix A is positive definite if all
its leading principal minors are positive. The leading principals minors are all the upper left
determinants of the matrix.

Theorem 3.2.6 (Cholesky decomposition). Every real symmetric positive definite matrix
A has a unique Cholesky decomposition. A Cholesky decomposition of the matrix A is defined
as A = LLT where L is a lower triangular matrix with real and positive entries.

For further reading we refer to [32] and [54]

3.3 Chaos theory

In this section, we briefly present chaos theory and the essential property of a chaotic dy-
namical system.

3.3.1 Some definitions

Definition 3.3.1 (Chaos). Here we adopt a slightly modified version of the definition
mentioned in the book by Strogatz [55] which is given as follows,

Chaos is aperiodic long-term behavior in a deterministic nonlinear bounded system that
exhibits sensitive dependence on the initial conditions.

1. aperiodic long-term behavior means that there are trajectories that do not converge
to equilibrium points, periodic orbits, or quasi-periodic orbits as time tends towards
infinity. Consequently, the system does not have any stable equilibrium points.

2. nonlinear, i.e. the system cannot be written in the form ẋ = Ax for any matrix A.

45

3. bounded, i.e the trajectories do not tend to infinity, but bounded in a defined domain.
Hence, the trajectory converges to an attractor which is called a strange attractor.

4. deterministic system means that it is not stochastic, i.e. the system has no random or
noisy inputs or parameters. The irregular behavior arises from the non-linearity of the
system rather than from noisy driving forces.

5. sensitive dependence on initial conditions means that two infinitesimally close trajecto-
ries separate exponentially fast, i.e. the system has a positive Lyapunov exponent.

Definition 3.3.2 (Attractor). In general terms, an attractor can be defined as a set to
which all nearby trajectories converge and therefore the stable eqm. points and stable limit
cycle considered as attractors. More precisely, it is defined as follows, An attractor is a closed
set A that have the following properties,

1. A is invariant set: any trajectory x (t) that starts in or inter A stays in A for all time.

2. A attracts an open set of initial conditions: there is an open set U containing A such
that if x0 ∈ U , then the distance from x (t) to A tend to zero as t→∞. This means
that A attracts all trajectories that start sufficiently close to it. The largest such U is
called the basin of attraction.

3. A is minimal: there is no proper subset of A that satisfy conditions 1 and 2

Definition 3.3.3 (strange attractor). The strange attractor is defined to be an attractor
that exhibits sensitive dependence to initial conditions.

3.3.2 Lyapunov exponent

The Lyapunov exponent is a quantity that characterizes the rate of separation of two in-
finitesimally close trajectories on an attractor. Mathematically, it is defined as follows,

Given two trajectories a and b in the phase space with initial separation δ0. Suppose that
x (t) is a point on the attractor at time t, and consider a nearby point x (t) + δ0, where δ0
is a tiny separation vector of initial length ‖δ0‖ = 1× 10−8, 1× 10−15. The growth of the
initial separation is exponential and is given by

‖δ (t)‖ = ‖δ0‖eλ(t)

The quantity λ is called the Lyapunov exponent. The positive value of λ indicates that the
system is sensitive to initial conditions, i.e. chaotic given that other properties are satisfied.

46

If λ = 0 the system exhibit periodicity and finally λ is negative, the system will converge to
a stable equilibrium point. There are as many Lyapunov exponents as the number of state
variables and conventionally λ1 ≥ λ2 ≥ . . . λn where n the number of state variables. For a
continuous 3D dynamical system, we have the flowing configurations [51],

λ1 λ2 λ3 Type of attractor dimension Dynamic

negative negative negative Equilibrium point 0 static
0 negative negative Limit cycle 1 periodic
0 0 negative Attracting 2-torus 2 Quasiperiodic
0 0 0 Invariant torus 1 or 2 (Quasi)periodic
+ 0 - Strange 2 or 3 Chaotic

Table 3.1: Characteristics of the 3D bounded dynamical system

From the above table, we see that for chaos the largest Lyapunov exponent is positive, the
second is zero, and the third is negative and the largest one is only positive in a chaotic
system. Therefore to determine chaos it is usually enough to calculate the largest Lyapunov
exponent which is defined as,

λ1 = lim
t→∞

lim
δ0→0

1

t
ln

(
‖δ (t)‖
‖δ0‖

)
and its positivity can assure that the system is chaotic.

Remark. The sum of Lyapunov exponents for a 3D equals the trace of the Jacobian matrix
averaged over a long time, thus one can calculate the third Lyapunov exponent as follows

3∑
i=0

λi =< tr (j) >→ λ1 + 0 + λ3 → λ3 =
3∑
i=0

λi − λ1

In a chaotic system, it is no longer possible to predict the long future of the system and one
can define a time horizon thorizon for which the evolution of the system is not predictable(see
Figure 3.1). It is defined as follows [55],

Assume again that there are two initial conditions which are almost indistinguishable (with
initial separation of order δ0 = 1× 10−13). After some time t, the separation became
‖δ (t)‖ = ‖δ0‖eλ(t). Let a be a measure of our tolerance, i.e if a prediction is within a

of the true initial state, we consider it acceptable. Then our prediction becomes intolerable
when ‖δ (t)‖ ≥ a; this occurs after a time

47

thorizon ∼ O

(
1

λ
ln

(
a

‖δ0‖

))

As we can see the thorizon depends logarithmically on the initial separation ‖δ0‖, and that’s
why making a long-term prediction in chaotic systems is impossible.

For further reading the reader is referred to [53,55]

Figure 3.1: Sensitivity to initial condition and time horizon

3.4 Global sensitivity analysis

In this section, we will define sensitivity analysis and explain shortly some methods used in
constructing the global sensitivity analysis of mathematical models.

Definition 3.4.1 (Sensitivity analysis). Mathematical models usually depend on a set
of input factors which could be parameters or independent variables. These input factors
are usually uncertain and vary in some intervals. The sensitivity analysis is the study of
how much the change of each input factor contributes to the change of the model output. It
is therefore used to determine which parameters have the most effect on the model output
and which have a negligible effect. This is very useful in model improvements such as model
reduction and parameter estimation. If, for example, a parameter has only a small effect on

48

the model output, then we can safely set it to a value in its interval of variation and conduct
parameter estimation only for the sensitive parameters.

Sensitivity analysis is divided into a local approach and a global approach. The local approach
is a derivative based at some reference point, for example, an eqm. point of an ODE system.
The global approach however is statistics-based, in the sense that all the input factors are
varied simultaneously and the sensitivity is computed over the entire range of each input
factor.

There are several methods to perform global sensitivity analysis (GSA) and here we present
the most used ones,.

3.4.1 Sobol method

The Sobol method is a variance-based method for global sensitivity analysis. Let us assume
that we have a mathematical model Y = f(X) whereX is a vector of k uncertain model input
factors {X1, X2,, Xk}. To use this method the output of the model must be scalar, but
we can study the sensitivity of a model with multiple outputs by doing separate sensitivity
analysis for each output. We assume that the scalar function Y is square-integrable and
defined over Ω, the k-dimensional unit hypercube,

Ω = (X|0 ≤ xi ≤ 1; i = 1, 2,, k)

We further suppose that the input factors are uniformly distributed in the unit hypercube,
i.e. xi ∈ [0, 1]. The steps for the variance based method is as follows:

• The function f can be decomposed as follows:

f = f0 +
∑
i

fi +
∑
i

∑
j>i

fij + ...+ f12...k

where fi = fi(Xi), fij = fij(Xi, Xj) and so on for a total of 2k terms, including f0. Each
term is square integrable over Ω. The condition for this decomposition is:∫ 1

0

fi1,i2,...,is (Xi1 , Xi2 , ..., Xis) dXiw

where 1 ≤ i1 < i2 < ... < is < k and iw ∈ {i1, i2, ..., is}. The functions fi1,i2,...,is are

49

obtained from:

f0 =E(Y),

fi =Ex∼i (Y |Xi)− E(Y),

fij =Ex∼ij (Y |Xi, Xj)− fi − fj − E(Y),

and similarly, for higher orders. Not that E is the expected value and the notation
x ∼ i means the set of all variables except xi.

• Relation between functions fi1,i2,...,is and partial variance is as follows:

Vi =V (fi (Xi)) = VXi
[Ex∼i(Y |Xi)]

Vij =V (fij (Xi, Xj)) = VXiXj
[Ex∼ij(Y |Xi, Xj)]− VXi

[Ex∼i(Y |Xi)]− VXj
[Ex∼j(Y |Xj)]

and so on for higher terms. All terms are linked by:

V (Y) =
∑
i

Vi +
∑
i

∑
j>i

Vij + ...+ V12...k

Dividing both sides of equation by V (Y), we obtain:∑
i

Si +
∑
i

∑
j>i

Sij + ...+ S12...k = 1

• Sensitivity indices are:

1. First order sensitivity index is given by:

Si =
Vi

V (Y)

and it measures the first order or additive effect of Xi on the model output. Note
that 0 ≤

∑k
i=1 Si ≤ 1 and it will equal unity only if all interaction terms are zero.

2. Second-order sensitivity index is given by:

Sij =
Vij
V (Y)

and it measures the second-order effect or the effect of interaction of Xi, Xj on the
model output. Higher-order sensitivity indices can be computed equivalently.

50

3. Total sensitivity index is given by:

STi =
EX∼i [VXi

(Y |Xi)]

V (Y)
= 1− VX∼i [EXi

(Y |X ∼ i)]

V (Y)

where

EX∼i [VXi
(Y |Xi)]: is the expected variance that would be left if all factors except

Xi could be fixed.

VX∼i [EXi
(Y |X ∼ i)]: is the expected reduction in variance that would be obtained

if all factors but Xi could be fixed.

STi measures the total effect, i.e. first and higher order effects (interaction) of input
factor Xi. One way to visualize this is by considering that VX∼i [EXi

(Y |X ∼ i)]

is the first order effect of X ∼ i, so that V (Y) − VX∼i [EXi
(Y |X ∼ i)] must give

the contribution of all terms in the variance decomposition which do not include
Xi. Note that

∑k
i=1 STi ≥ 1 and it will be equal unity only if all interaction terms

are zero.

3.4.1.1 Computational cost

The method uses the Saltelli sampling approach and the number of samples is N then
the number of model runs is N(k+ 1) if the second-order indices are not computed and
N(2k + 1) if the second-order indices are computed.

For more reading, see [17,44,45,50]

3.4.2 Morris method

Morris’s method [35] is OAT(One-factor-At-a-Time) method which is used to determine which
input factor has effects which are (a) negligible, (b)linear and additive, or (c) nonlinear or
involved in the interaction with other factors. Each input factor may assume a discrete
number of values, called levels, which are chosen within the factor range of variation. For
each input factor, two sensitivity indices are computed:

µ: the mean of the distribution Fi of the elementary effects of each input which measures
the overall influence of the factor on the output.

σ : the standard deviation of the distribution Fi the elementary effects of each input which
estimates the ensemble of the second -and higher-order effects in which the factor is involved,
including curvatures and interaction effects.

51

3.4.2.1 Outline of the method

Let us assume that we have a mathematical model y = f(X) where X is a vector of k
uncertain model input factors {X1, X2,, Xk}. Assume that the k-dimensional vector X
of the model input has components Xi each of which can assume integer values in the set{

0, 1
p−1 ,

2
p−1 ,

3
p−1 , ..,

p−1
p−1 = 1

}
. The region of experimentation Ω will be a k-dimensional p-

level grid. Further, the factors are assumed to be uniformly distributed in [0, 1] and then
transformed from the unit hypercube to their actual distributions. The elementary effect for
the ith input is defined as follows:

Let ∆ be a predetermined multiple of 1
p−1 . For a given value x of X, the elementary effect

of the ith input factor is defined as

di(x) =
[y(x1, ..., xi−1, xi + ∆, xi+1, ..., xk)− y(x)]

∆

where x = (x1, x2, ..., xk) is any selected value in Ω such that the transformed point (x+ei∆),
where ei is a vector of zeros but with a unit as its ith component, is still in Ω for each index
i = 1, 2, ..., k. The finite distribution of elementary effects associated with the ith input factor
is obtained by randomly sampling different x from Ω, and is denoted by Fi.

Original Morris design works as follows:

1. Start by randomly selecting a base value x∗ for the vector X. Each component xi is
sampled from the set

{
0, 1

p−1 ,
2
p−1 ,

3
p−1 , .., 1

}
. The vector x∗ is used to generate other

sampling points but it is not one of them. The model is never evaluated at x∗.

2. The first sampling point x(1) is obtained be increasing one or more components of x∗

by quantity ∆ while keeping other values at the base value.

3. The second sampling point x(2) is generated from x∗ with the property that it differs
from x(1) in its ith component that has either been increased or decreased by ∆ i.e.
x(2) = x

(1)
1 , ..., x

(1)
i−1, x

(1)
i ± ∆, x

(1)
i+1, ..., x

(1)
k = (x(1) ± ei∆). The index i is randomly

selected in the set {1, 2, ..., k}

4. The third sampling point x(3) is generated from x∗ with the property that it differ from
x(2) in only one component j 6= i that has either been increased or decreased by ∆ i.e.
x
(3)
j = (x

(2)
j ± ej∆).

5. The design proceeds by producing a (k + 1) sampling points x(1),x(2), ...,x(k+1) with
the property that two consecutive points differ in only one component. Furthermore,

52

any component of the base vector x∗ is selected at least once to be increased by ∆ to
calculate the elementary effect for each factor.

6. The succession of sampling points x(1),x(2), ...,x(k+1) define a trajectory in the input
space. It also defines a design matrix B?, with dimensions (k + 1)×k, whose rows are
the vectors x(l),x(l) . . .x(l+1), and is called orientation matrix. Once a trajectory has
been constructed and the model evaluated at its points, an elementary effect for each
factor i, i = 1, 2, .., k can be computed. If x(l) and x(l+1) ,where l ∈ {1, 2, ..., k}, are
two sampling points differing in their ith component, the elementary effect associated
with the factor i is

di(x
l) =

[
y(xl+1)± y(xl)

]
∆

7. The procedure is repeated r times with different base vector value each time which
result in r (k + 1) runs, where k is the number of parameters or input variables. r is
usually chosen in the interval [10, 50].

Campanologo et al. [9] suggested an enhancement of the sampling strategy to better scan
the input domain without increasing the number of model evaluations. The idea is to select
the r trajectories in such a way to maximize their dispersion in the input space. We start
by generating a high number of Morris trajectories M = 500− 1000, and then we choose for
examples, r = 10 with the highest spread. He also proposed a third sensitivity measure µ∗

which is the estimate of the mean of the distribution of the absolute values of the elementary
effects Gi i.e. |di(x)| ∼ Gi. The use of µ∗ solves the problem of the effects of opposite signs
which occur when the model is non-monotonic. The drawback is the loss of information on
the sign of the effect. Nevertheless, this information can be recovered by the simultaneous
examination of µ and µ∗, as an estimate of µ comes at no extra computational cost.

If µ and µ∗ are both high, the sign of the effect is always the same, i.e. the output function
is monotonic with respect to that factor. If, in contrast, µ is low while µ∗ is high, the factor
carries the effects of different signs, depending on the values assumed by the other factors. µ∗

also provides an answer to the screening problem by identifying the subset of non-influential
factors in the sense that they can be fixed to any value within their ranges of uncertainty
without significantly affecting the model outcomes. However, to examine the effects due
to interactions, we still use the µ measure proposed by Morris and consider the standard
deviation of the distribution Fi.

53

The formula for computing µ and σ is given by the following expressions:

µi =
1

r

r∑
j=1

di,j

σi =

√√√√ 1

r − 1

r∑
j=1

(di,j − µi)2

µ?i =
1

r

r∑
j=1

|di,j|

3.4.2.2 Interpretations of the sensitivity results

To properly rank factors, one must consider the values of both µ and σ at the same time,
since a factor with elementary effects of different signs (i.e. which cancel each other out)
would have a low value of µ but a considerable value of σ . The higher value of µ, the
greater the influence of the corresponding parameters on the model output. A higher value
of σ indicates an input with a non-linear effect on the model output, or an input involved in
interactions with other factors. To rank factors in order of importance, it is advisable to use
µ∗, as it provides an estimate of the overall factor importance and can be compared to the
total sensitive index ST from the Sobol method.

3.4.2.3 Computational cost

This method uses the Morris sampling approach and the number of model runs is N(k + 1)

where N is the number of samples and k is the number of input factors. For further reading
we recommend [9], [35], and [45, p. 94-108]

3.4.3 Random Balance Designs - Fourier Amplitude Sensitivity Test(RBD-

FAST)

This procedure combines Satterthwaite’s random balance designs (RBD) with the Fourier
Amplitude Sensitivity Test(FAST) to calculate the main effect S1 for the input factors.

The computational cost (i.e. number of model runs)for this method is equal to the sample
size N while computing S1 using Sobol method have computational cost N(k+ 2), thus it is
much cheaper and should be considered if one just interested in the main effect.

For further reading see [57], [40] and [59]

54

3.4.4 Delta Moment-Independent Measure (DMIM)

This method is introduced by Borgonovo [6] and Plischke [41] and the proposed GSA indicator
is called δ that consider the entire distribution both of the input and the output in a moment
dependent fashion. This method holds when the input factors are correlated while the Sobol
method holds under the assumption that the input factors are independent. In this method,
there is a possibility to study the importance of a group of parameters and interactions.

Sobol method and DMIM method agree in identifying the less relevant parameters with
respect to the output uncertainty, but the ranking of the most relevant parameters could be
different due to the different scope of the indicators.

3.4.4.1 Outline of the method

Let

1.
X = (X1, X2, Xn,) ∈ Rn

be the set of uncertain parameters;

2.
g (X) , g (X) : E ⊆ Rn → R

be the functional relationship between output Y and input X.

3. x = (x1, x2, ..., xn) is the realization of X.

4. FX (x) ,fX (x) are the cumulative distribution and corresponding joint density of X
respectively.

5. fXi
(xi) is the marginal density of xi and is related to the joint density by

fXi
(xi) =

∫
...

∫
fX (x)

∏
s 6=0

dxs

6. FY (y) , fY (y) are the cumulative distribution and corresponding joint density of the
model output Y respectively.

7. fY |Xi (y) is the conditional density of Y given that one of the parameters, Xi, assumes
a fixed value.

In this method, we can define the following sensitivity measures:

55

Definition 3.4.2. The quantity δi is defined as follows

δi =
1

2
EXi

[s (Xi)]

where

s (Xi) =

∫
|fY (y)− fY |Xi (y)|dy

is the shift between unconditional density distribution of Y obtained when all parameters
free to vary in their range and the one when Xi is fixed at x?i . It depends on Xi, thus it is a
function of a random variable.

EXi
[s (Xi)] =

∫
fXi

(xi)

[∫
|fY (y)− fY |Xi (y)|dy

]
dxi

is the expected shift of s (Xi). The quantity δi is called the expected distance between the
density of Y and the conditional density of Y given Xi and assumes values between 0 and 1

i.e. 0 ≤ δi ≤ 1. It will equal 0 if Y is independent of Xi .

Definition 3.4.3. Let R = (Xi1 , Xi1 , ..., Xir) be any group of parameters. Then

δi1,i2,...,ir =
1

2
ER [s (R)]

=

∫
fXi1

,Xi2
,...,Xir

(xi1 , xi2 , ..., xir)

[∫
|fY (y)− fY |Xi1 , Xi2 , ..., Xir (y)|dy

]
dxi1 , xi2 , ..., xir

where
fXi1

,Xi2
,...,Xir

(xi1 , xi2 , ..., xir) =

∫
...

∫
fX (x)

∏
k 6=i1,i2,...,ir

dxk

From the above definition it has been proven that δi1,i2,...,ir i.e. the importance of all param-
eters equal unity. Note that this doesn’t mean that

∑r
i=1 δi = 1.

Definition 3.4.4. Let us consider the group of two parameters R = (Xi, Xj), then the delta
of Xi and Xj is given by

δij =
1

2
EXi,Xj

[s (Xi, Xj)]

where
s (Xi, Xj) =

∫
|fY (y)− fY |Xi, Xj (y)|dy

is the shift obtained fixing Xi at xi and Xj at xj or the expected distance between the density
of Y and the conditional density of Y given Xi and Xj . If Y is independent of Xj i.e. no

56

contribution to the model uncertainty comes from Xj then δij = δi. However, if there exists
contribution from Xj to the model uncertainty δij will be greater than δi.

Now let’s define a residual delta δj|i which represent the expected distance between the
conditional density of Y given Xi and the conditional density of Y given Xi and Xj

δj|i =
1

2
EXiXj

[∫ ∣∣fY |Xi
(y)− fY |Xi, Xj (y)

∣∣dy]
Note that δj|i ≥ 0 with δj|i = 0 only if Y is independent of Xj, thus δi ≤ δij ≤ δi+ δj|i. Again
if Y is independent of Xj we get that δij = δi + δj|i.

The previous results can be summarized in the following table

No. Property Meaning

1 0 ≤ δi ≤ 1 Bounds the possible values δi can assume.
2 δi = 0 If Y is independent of Xi then δi = 0

3 δ1,2,...,n = 1 The importance of all parameters equals unity.
4 δij = δi If Y is dependent of Xi but independent of then Xj then

δij = δi

5 δi ≤ δij ≤ δi + δj|i Bounds the possible values δij can assume.
6 δij = δi + δj|i If Y is independent of Xj

7
∑n

i=1 δi«1 Imply that the output uncertainty is mainly due to individual
parameter contributions and not interactions.

8
∑n

i=1 δi ≈ δ1,2,...,n =

1

Imply that the interactions play a minor role in the output
uncertainty.

Table 3.2: Properties of the uncertainty importance measure δ

Note that one can calculate the main effect index S1 of parameters alongside δi based on
PDF and not variance as it is involved in computing δi and SALib package in python has
implemented this. see [19] for further details.

3.5 Observability in dynamical systems

Definition 3.5.1 (Observability). A system is said to be observable at time t0 if, with
the system in state x (t0), it is possible to determine this state from the observation of the

57

output over a finite time interval.

Mathematically it is defined as follows: Let f : Rn → Rn and h : Rn → Rm be two
continuously differentiable functions and for some x? we have that f (x?) = 0 and h (x?) = 0.
We consider the following observation system,

ẋ =f (x (t) ,u (t) ,p)

y (t) =h (x (t) ,p)

x? =x (t?,p)

(3.3)

where p ∈ Rq is a real-valued vector of parameters, u (t) ∈ Rr is the input vector, x (t) is
the state variable vector, and y (t) ∈ Rm is called the measurable output or the observable
vector.

The observation system 3.3 is called observable near the equilibrium point x? over a given
time interval [0, T], if there exists a neighborhood N of x? such that every other state x1 is
distinguishable from x?. Tow states x? 6= x1 are said to be distinguishable if there exist some
input u (t) such that y (t,x?,u (t)) 6= y (t,x1,u (t)), where y (t,xi,u (t)) denote the output
function of the system for the input u (t) and initial state xi(i = 0, 1).

Theorem 3.5.1 (observability of linear system). Consider the linear system defined by

ẋ =Ax

y =Cx
(3.4)

where x: state vector (n dimensional)
A: n×n matrix
C: m×n matrix

Now the above system is called completely observable if the n× nm matrix,[
C |CA |CA2 | ...|CAn−1

]T (3.5)

has rank n.The previous matrix is usually called observability matrix and is denoted by O.

Theorem 3.5.2 (Observability of nonlinear system). In case of a nonlinear system we
study the local observability by linearizing the observation system 3.3 and defining

A =:
∂f

∂x
(x?) , C =

∂h

∂x
(x?)

58

Now the system 3.3 is locally observable if the observability matrix

O =
[
C |CA |CA2 | ...|CAn−1

]T (3.6)

is of rank n.

59

Chapter 4

Analysis of the model

For simplicity, let us consider the bacteria as one quantity, i.e. x =
∑4

i=1 xi, and nutrition as
constant, then the system reduces to:

dx(t)

dt
= x

[
r
(

1− x

k

)
− f1y1 − f2y2

]
+ s(t), x(0) > 0,

dy1(t)

dt
= y1 [−ε1 − ω11y1 − ψ12y2 + β1f1x1] , y1(0) > 0,

dy2(t)

dt
= y2 [−ε2 + φ12y1 − ω22y2 + β2f2x1] , y2(0) > 0,

(4.1)

where

j, l =1, 2, k =
r

σ
, ψ12 = g12 + ω12, φ12 = γ12g12 − ω21,

and

x : represent the population density of bacteria E.coli, Intestinal enterococci, Campylobacter
and Clostridium perfringens .
yj: represent population density of protozoa and Daphnia at time t respectively
r: is the intrinsic growth rate for prey species.
s: the amount of bacteria species that can be added to the system through fecal contamina-
tion.
k : the environmental carrying capacity for ith prey species.
σ: are inter-specific competition coefficient of the prey species.
ωjl,j 6=l: are interspecific competition coefficient of the two predator species, i.e. decreased

60

rate of predator species j due to interspecific competition with predator species l
ωjj: denote the decreased rate of the predator due to intraspecific competition.
βj, γ12 : are the conversion factors denoting the birth rate per predator (predator species j)
per unit prey consumed.
εj: is the death rate of the predator j in the absence of prey species.
fj: represent the decreased rate of prey species due to predation by predator species j.
g12: represent the decreased rate of predator species y1 due to predation by predator species
y2.

The following table summarize the units of the parameters and variables in the system,

x yj,j=1,2 k r fj
[num x]
[vol]

[num yj]

[vol]
[num x]
[vol]

1
[time]

[vol]
[num yj][time]

βj εj φ12 ψ12 ωjj
[num yj]

[num x]
1

[time]
[vol]

[num y1][time]
[vol]

[num y2][time]
[vol]

[num yj][time]

s dx(t)
dt

dyj(t)

dt
vol time

[num x]
[vol][time]

[num x]
[vol][time]

[num yj]

[vol][time]
100 ml day

Table 4.1: Units of the parameters and variables in the system

4.1 Nondimensionalization

For simplicity we nondimensionalize the subsystem by using the following scaling:

t =T t̄ =
1

r
t̄, x = Xx̄ =

r

β1f1
x̄, y1 = Y1ȳ1 =

r

f1
ȳ1, y2 = Y1ȳ2 =

β2

β1

r

f2
ȳ1,

s =Ss̄ =
β1f1
r2

,

(4.2)

Then the system becomes:

dx̄

dt̄
= x̄ [1− ax̄− ȳ1 − bȳ2] + s̄(t̄) = F1, x̄(0) > 0

dȳ1
dt̄

= ȳ1 [−δ1 − ω1ȳ1 − ψbȳ2 + x̄] = F2, ȳ1(0) > 0

dȳ2
dt̄

= ȳ2 [−δ2 + φȳ1 − ω2by2 + bx̄] = F3, ȳ2(0) > 0

(4.3)

61

where

a =
r

β1f1k
, b =

β2f2
β1f1

, ω1 =
ω11

f1
, ω2 =

ω22

f2
,

δ1 =
ε1
r
, δ2 =

ε2
r
, ψ =

ψ12

f2
=
g12 + ω12

f2
, φ =

φ12

f1
=
γ12g12 − ω21

f1

In matrix form the system can be written as,

d

dt̄



x̄(t̄)

ȳ1(t̄)

ȳ2(t̄)


=



x̄ 0 0

0 ȳ1 0

0 0 ȳ2







1

−δ1

−δ2


−



a 1 b

−1 ω1 ψb

−b −φ ω2b





x̄

ȳ1

ȳ2




+



s̄

0

0


or more compactly as

dx̄

dt̄
= X̄T

(
r̄ − AX̄

)
+ s̄ = F (x̄,p)

which is generalized Lotka-Volterra system if we consider s = 0.

where

x̄ = [x̄, ȳ1, ȳ2]T , r̄ = [1,−δ1,−δ2]T , F = [F1, F2, F3]T ,

s̄ = [s̄, 0, 0]T , p = [a, b, δ1, δ2, ψ, φ, ω1, ω2 s̄] ,

X̄ =



x̄ 0 0

0 ȳ1 0

0 0 ȳ2


, A =



a 1 b

−1 ω1 ψb

−b −φ ω2b


,

dx̄

dt̄
=

[
dx̄(t̄)

dt̄
,
dȳ1(t̄)

dt̄
,
dȳ2(t̄)

dt̄

]T
,

We continue by dropping the bar notation and considering s̄ = 0

4.2 Domain, positivity, and boundedness of the solution

In this section, we state some basic results of the system 4.3. The domain of the solution
is the positive R3

+ = {(x, y1, y2) : (x, y1, y2) ≥ 0} and all the results are valid in this domain
unless something else is mentioned explicitly.

62

Lemma 4.2.1 (Positivity of the solution). Every solution of the system 4.3 with initial
conditions x(0) > 0, y1(0) > 0 and y2(0) > 0 is positive i.e. exist in the interval [0,∞] for all
t̄ ≥ 0

Proof. We follow the same procedure as described in [39]. Since the right-hand side of the
system 4.3 and its derivatives are continuous, then there exists a unique solution for the
system in some interval 0 ≤ ξ < ∞ according to existence and uniqueness theorem for
nonlinear ODEs. see [7, p. 51-52]

From the system 4.3 with the given initial conditions we have:

x (t) = x (0) exp

(∫ t

0

F1(t)dθ

)
y1(t) = y1(0)exp

(∫ t

0

F2(t)dθ

)
y2(t) = y2(0)exp

(∫ t

0

F3(t)dθ

)

where F1, F2 and F3 are right-hand side of the equations. Clearly we can see that x(t), y1(t)

and y2(t) are positive if the initial conditions and time are positive . Another way of seeing
this is if we set x = 0, y1 = 0, y2 = 0 in the system 4.3 we obtain that dx

dt
= 0, dy1

dt
= 0, dy2

dt
= 0

i.e. we stay in the positive octant R3
+.

Lemma 4.2.2 (Boundedness of the solution). All solution of the system that initiate in
R3

+ are uniformly bounded within a region B ⊆ R3
+ defined by:

B =
{

(x, y1, y2) : (x, y1, y2) ∈ R3
+ : 0 ≤ x ≤ xm, 0 ≤ y1 ≤ y1m, 0 ≤ y2 ≤ y2m

}
where

xm =max

{
x0,

1

a

}
, y1m = max

{
y10,

B1

ω1

}
, y2m = max

{
y20,

B2

ω2

}
,

B1 =xm − δ1, B2 = b xm + φ y1m − δ2

Proof. In the first equation, we have
dx

dt
=x (−ax− by2 − y1 + 1) ≤ x (−ax+ 1)

⇓
du

dt
=u(1− au)

63

solving it we obtain

u (t) =
x0e

t

ax0et − ax0 + 1
=

x0
ax0 − (x0 − 1) e−t

⇓

x (t) ≤ x0
ax0 − (x0 − 1)

Taking the limit at 0 and ∞,

lim
t→0

u (t) =x0

lim
t→∞

u (t) =
1

a

We obtain that x (t) ≤ max
(
x0,

1
a

)
= xmax

For the second equation we have,

dy1
dt

=y1 (−bψy2 − δ1 − ω1y1 + x) ≤ y1 (−bψy2 − δ1 − ω1y1 + xmax)

≤y1 (B1 − ω1y1)

⇓
du

dt
=u (B1 − ω1u)

solving the last equation we obtain,

u (t) =
B1y10e

B1t

B1 + ω1y10eB1t − ω1y10
=

B1y10
ω1y10 + (B1 − ω1y10) e−B1t

⇓

y1 (t) ≤ B1y10
ω1y10 + (B1 − ω1y10) e−B1t

64

Taking the limit at 0 and ∞,

lim
t→0

u (t) =y10

lim
t→∞

u (t) =0 if B1 < 0

lim
t→∞

u (t) =
B1

ω1

if B1 > 0

we obtain that y1 (t) ≤ max
{
y10,

B1

ω1

}
= y1m

For the third equation, we have,

dy2
dt

=y2 (−bω2y2 + bx(t)− δ2 + φ y1 (t)) ≤ y2 (bxm + φy1m − δ2 − ω2y2)

≤y2 (B2 − ω2y2)

⇓
du

dt
=u (B2 − ω2u)

solving the last equation we obtain,

u (t) =
B2y20e

B2t

B2 + bω2y20eB2t − bω2y20
=

B2y20
bω2y20 + (B2 − bω2y20) e−B2t

⇓

y2 (t) ≤ B2y20
bω2y20 + (B2 − bω2y20) e−B2t

Taking the limit at 0 and ∞,

lim
t→0

u (t) =y20

lim
t→∞

u (t) =0 if B2 < 0

lim
t→∞

u (t) =
B2

bω2

if B2 > 0

we obtain that y2 (t) ≤ max
{
y20,

B2

bω2

}
= y2m.

65

Now we have

u̇ >f (x, u)

v̇ <f (x, v)

ẇ =f (x, w)

and

u (t0) =v (t0) = w (t0)

for each equation. Thus, by applying the Chaplygin inequality, we have,

u (t) > w (t) > v (t)

i.e. the solution of the system is bounded.

Another way of proving boundedness is by following ideas from [28] and [24][p 22-25].

The derivative of W along the trajectory of the system 4.3 is given by:

dW (t)

dt
=
dx (t)

dt
+

1

B1

dy1(t)

dt
+

1

B2

dy2 (t)

dt
= x (1− ax) +

1

B1

y1 (−B1 − ω1y1) +
1

B2

y2 (−B2 − ω2y2)

=x+ y1 + y2 −
(
ax2 +

ω1

B1

y1
2 +

ω2

B2

y2
2

)
≤x+ y1 + y2 − µ

(
x2 + y1

2 + y2
2
)

≤x+ y1 + y2 + η (x+ y1 + y2)
2

≤W − ηW 2

Solving the obtained differential equation with initial condition W (0) = W0 we obtain

W (t) ≤ W0

W0η − (W0η − 1) e−t

Taking the limit at 0 and ∞,

lim
t→0

W (t) ≤W0

lim
t→∞

W (t) ≤1

η

where

η = min

{
1

a
,
ω1

B1

,
ω2

B2

}
,

we find that W ≤ max
{
W0,

1
η

}
i.e. the solution of the system is uniformly bounded.

66

4.3 Equilibrium points and condition for their biological

feasibility

Let us assume the following assumption on the dimensional parameters:

1. The intraspecific competition is stronger than the interspecific competition if the species
have the same size i.e. consume the resources equally. [1]

2. If one species is larger in size than the other species, then the interspecific competition is
stronger on the smaller species because larger species normally consume more resources
than smaller ones.

3. The intraspecific competition of the first predator species is equal to the one for the
second predator.

4. The food conversion efficiency coefficient is less than the uptake rate coefficient, which
represents the number of prey killed per predator.

Mathematically and in terms of dimensional parameters, this can be expressed as:

ω12 >> ω21 , ω12 > ω11 , ω12 > ω22 ,

ω22 = ω11 , ω21 < ω11 , ω21 < ω22 ,

γ12 < g12 , β1 < f1 , β2 < f2 , β1 > β2 , f1 = f2 , ε1 < ε2

In terms of non-dimensional parameters become:

ω1 = ω2, ψ > φ, δ1 >> a, δ2 >> a, δ1 < δ2, ψ > ω1, ψ > ω2, a < b (4.4)

4.3.1 Equilibrium points

We obtain the equilibrium points of the system by solving the system of algebraic equations
obtained by setting the right-hand side of the system 4.3 to zero. Here we use the SymPy
(Python library for symbolic mathematics) to solve the system, and we obtain the following
five equilibrium points:

1. EP1 = (0, 0, 0), i.e. none of the species exist.

2. EP2 =
(
1
a
, 0, 0

)
, i.e. only bacteria x is present in the system.

67

3. EP3

(
δ1+ω1

aω1+1
, −aδ1+1

aω1+1
, 0

)
, i.e. only bacteria x and Protozoa y1 are present and the

second predator y2 is extinct.

4. EP4 =
(
δ2+ω2

aω2+b
, 0, −aδ2+b

b(aω2+b)

)
, this point represent the situation when only bacteria x

and the second predator y1 are present while the first predator is extinct.

5. EP5 =
(
E0

U0
, E1

U0
, E2

U0b

)
, this point represent the situation where all species exist together.

Therefore, it is called the coexistence point or the interior equilibrium point.

where:

U0 =aω1ω2 + aφψ + bω1 − bψ + ω2 + φ = φ (1 + aψ) + b (ω1 − ψ) + ω2 (1 + aω1)

E0 =δ1 (ω2 + φ) + δ2 (ω1 − ψ) + ω1ω2 + φψ,

E1 =− bψ − δ1 (aω2 + b) + δ2 (aψ + 1) + ω2

E2 =bω1 − δ1 (aφ− b)− δ2 (aω1 + 1) + φ,

4.3.2 Existence conditions for positive equilibrium points

Let us divide the existence analysis into three cases:

4.3.3 Case 1 : δ1 > 1
a and δ2 >

b
a

The condition δ1 >
1
a
in terms of dimensional variables is δ1 > kβ1f1 i.e. the death rate

for the first predator is greater than a critical value represented by the food conversion
efficiency of the first predator. Similarly, the condition δ2 > b

a
in terms of dimensional

variables is δ2 > kβ2f2 i.e. the death rate for the first predator is greater than a critical value
represented by the food conversion efficiency of the second predator. In this case, there are
only two ecologically feasible equilibrium points which are EP1 and EP2. Both points exist
as the first doesn’t depend on any parameters and the second depend on a which is always
positive.

4.3.4 Case 2 : δ1 = 1
a and δ2 = b

a

In this case we have the following:

EP3 = EP4 = EP5 = EP2 = (1, 0, 0)

68

Proof. It is easy to check that EP3 = EP4 = EP2

For EP5 we have

U0 =aE0

E1 =− bψ − δ1 (aω2 + b) + δ2 (aψ + 1) + ω2

=− bψ − 1

a
(aω2 + b) +

b

a
(aψ + 1) + ω2

=− bψ − ω2 −
b

a
+ bψ +

b

a
+ ω2 = 0

E2 =0 similarly


← EP5 = EP2

Thus there are only two ecologically feasible equilibrium points which are EP1 and EP2 and
we have the same conclusion about existence as in Case 1.

4.3.5 Case 3 : δ1 < 1
a and δ2 <

b
a

The condition δ1 < 1
a
in terms of dimensional variables is ε1 < kβ1f1 i.e. the death rate for

the first predator is less than a critical value represented by the food conversion efficiency.
Similarly, condition δ1 < 1

a
in terms of dimensional variables is ε2 > kβ2f2 i.e. the death rate

for the first predator is less than a critical value represented by the food conversion efficiency.
In this case all the equilibrium points may exist and this will be the focus during this study.

4.3.5.1 Existence of EP1

This point always exists since it doesn’t depend on any parameter.

4.3.5.2 Existence of EP2

This point always exists since it depends on the parameter a only and we have a > 0.

4.3.5.3 Existence of EP3

EP3 exists if δ1 < 1
a
which in terms of dimensional variables is ε1 < kβ1f1 i.e. the death rate

for the first predator should be less than a critical value represented by the food conversion
efficiency.

69

4.3.5.4 Existence of EP4

EP4 exist if δ2 < b
a
which in terms of dimensional variables is ε2 < kβ2f2 i.e. the death rate

for the second predator should be less than a critical value represented by the food conversion
efficiency.

4.3.5.5 Existence of EP5

There are two cases

1. Case 1: E0, E1, E2, U0 > 0 then

U0 > 0⇔aω1ω2 + aφψ + bω1 − bψ + ω2 + φ > 0

⇔φ > b (ψ − ω1)− ω2 (1 + aω1)

1 + ψ
satisfied if ψ < ω1

E0 > 0⇔δ1 (ω2 + φ) + δ2 (ω1 − ψ) + ω1ω2 + φψ > 0

⇔δ1 >
δ2 (ψ − ω1)− ω1ω2 − ψφ

1 + ψ
satisfied if ψ < ω1

E1 > 0⇔ −bψ − δ1 (aω2 + b) + δ2 (aψ + 1) + ω2 > 0

⇔ δ1 >
δ2 (aψ + 1) + ω2 − bψ

aω2 + b

E2 > 0⇔ bω1 − δ1 (aφ− b)− δ2 (aω1 + 1) + φ > 0

⇔ δ1 >
δ2 (1− aω1) + bω1 + φ

aφ− b
By assumptions 4.4 we have ψ > ω1 i.e. EP5 may not exist in this case.

2. Case 2: E0, E1, E2, U0 < 0

U0 < 0⇔aω1ω2 + aφψ + bω1 − bψ + ω2 + φ < 0

⇔φ < b (ψ − ω1)− ω2 (1 + aω1)

1 + ψ

E0 < 0⇔δ1 (ω2 + φ) + δ2 (ω1 − ψ) + ω1ω2 + φψ < 0

⇔δ1 <
δ2 (ψ − ω1)− ω1ω2 − ψφ

1 + ψ
.

70

E1 < 0⇔ −bψ − δ1 (aω2 + b) + δ2 (aψ + 1) + ω2 < 0

⇔ δ1 <
δ2 (aψ + 1) + ω2 − bψ

aω2 + b

E2 < 0⇔ bω1 − δ1 (aφ− b)− δ2 (aω1 + 1) + φ < 0

⇔ δ1 <
δ2 (1− aω1) + bω1 + φ

aφ− b

Under assumptions 4.4 we can prove that U0, E0, E1, E2 < 0 i.e. existence for EP5 is
guaranteed.

We can prove or observe that the following is in case δ1 < 1
a

and δ2 <
b
a

and assumption
4.4:

E0, E1, E2 < U0 ⇒ x5, y15, y25 < 1

x3, y13, x4, y14 < 1

x3 < x5 < x4 < x2

y15 < y13 y25 < y24

Proof.

x3 =
δ1 + ω1

aω1 + 1
=

δ1 + ω1

a
(
1
a

+ ω1

) < 1 since δ1 <
1

a

x4 =
δ2 + ω2

aω2 + b
=

δ2 + ω2

a
(
b
a

+ ω2
) < 1 since δ2 <

b

a

→ x3 < x4 if
δ2
δ1
> b

x3 < x4: this conclusion is in agreement with ecology since protozoa feed only on bacteria,
resulting in minimum bacteria concentration while Daphnia can feed on both bacteria and
protozoa resulting in higher bacteria population.
x5 < x4: since both predators are present and both feed on bacteria resulting in lower
concentration of bacteria.
x5 > x3: since in the interior steady state, the two predators compete for bacteria which
leads to a decline in the population of both and increase in the population of bacteria. This
doesn’t happen at the equilibrium point where only bacteria and protozoa are present.

y13 =
−aδ1 + 1

aω1 + 1
< 1 since ω1 > −δ1

y24 =
−aδ2 + b

b (aω2 + b)
< 1 since ω2 > −δ2

71

y15 < y13: i.e. the concentration of Protozoa in the interior eqm. point is less than it in the
eqm. point where it exists with bacteria because in the interior eqm. point it competes with
Daphnia resulting in less population growth.
Similarly y25 < y13 i.e. the concentration of Daphnia in the interior eqm. point is less than it
in the eqm. point where it exists with bacteria because in the interior eqm. point it competes
with Protozoa resulting in less population growth.

In conclusion, the lowest bacteria concentration is in the equilibrium point where only Proto-
zoa and bacteria are present and highest at the equilibrium point EP2 in which the bacteria
exist on its own. The concentration of microorganisms in the interior equilibrium point is
lower than when only one of them exists with bacteria. This is important in controlling the
system.

4.4 Local stability analysis

We start our analysis by linearizing the system and finding the Jacobian matrix at each
equilibrium point and corresponding eigenvalues, then study its stability.

The Jacobian matrix of the system for an arbitrary point (x, y1, y2) is given by:

J =


−2ax− by2 − y1 + 1 −x −bx

y1 −bψy2 − δ1 − 2ω1y1 + x −bψy1
by2 φy2 −2bω2y2 + bx− δ2 + φy1


4.4.0.1 First Equilibrium point EP1

J1 =J(EP1) =


1 0 0

0 −δ1 0

0 0 −δ2


λ1 = {1, −δ1, −δ2}

The first eigenvalue is positive and others are negative, thus EP1 is unstable for all values of
parameters in x-direction but stable in the y1y2 plane i.e. it is a saddle point. Biologically,
it means the system can’t go to extinction.

72

4.4.0.2 Second Equilibrium point EP2

J2 =J(EP2) =


−1 − 1

a
− b
a

0 −δ1 + 1
a

0

0 0 −δ2 + b
a


λ2 =

{
−1, −δ1 +

1

a
, −δ2 +

b

a

}

From the sign of eigenvalues we conclude that EP2 asymptotically stable in xyz-space if
δ1 >

1
a
, δ2 >

b
a
and it will also be globally stable there. If δ1 < 1

a
, δ2 <

b
a
then it is a saddle

point because it is stable in the x direction but unstable in the y1y2 plane.

4.4.0.3 Third Equilibrium point EP3

J3 =J(EP3) =


−a(δ1+ω1)

aω1+1
− δ1+ω1

aω1+1
− b(δ1+ω1)

aω1+1
−aδ1+1
aω1+1

ω1(aδ1−1)
aω1+1

bψ(aδ1−1)
aω1+1

0 0 b(δ1+ω1)−δ2(aω1+1)−φ(aδ1−1)
aω1+1



λ3 =
{
ω1(aδ1−1−a)−aδ1−

√
µ0

2(aω1+1)
,

ω1(aδ1−1−a)−aδ1+
√
µ0

2(aω1+1)
, E2

aω1+1

}

µ0 =a2δ21ω
2
1 + 2a2δ21ω1 + a2δ21 + 2a2δ1ω

2
1 + 2a2δ1ω1 + a2ω2

1

+ 4aδ21 − 2aδ1ω
2
1 + 2aδ1ω1 − 2aω2

1 − 4δ1 + ω2
1 − 4ω1

E2is as before .

There are three distinct eigenvalues and two cases to consider,

1. Case µ0 > 0, the eigenvalues are all real, and we have the following,

λ31 < 0 if √µ0 > ω1 (aδ1 − 1− a) − aδ1 which is satisfied as aδ1 < 1 from existence
condition.

λ32 < 0 if √µ0 > aδ1 − ω1 (aδ1 − 1− a)

λ32 > 0 if √µ0 < aδ1 − ω1 (aδ1 − 1− a)

73

λ33 < 0 if E2 < 0,
λ33 > 0 if E2 > 0

EP3 will be locally stable if √µ0 > aδ1 − ω1 (aδ1 − 1− a) and E1 < 0 and unstable if
one of the conditions doesn’t hold.

2. Case µ0 < 0,

The eigenvalues λ31 and λ32 are complex with negative real part since

ω1 (aδ1 − 1− a)− aδ1 < 0

, thus EP3 will be stable if E2 < 0 and unstable if E2 > 0.

In the unstable case it will be a saddle point since it is stable in xy1 plane and unstable in
y2 direction.

4.4.0.4 Fourth Equilibrium point EP4

J4 =J(EP4) =


−a(δ2+ω2)

aω2+b
− δ2+ω2

aω2+b
− b(δ2+ω2)

aω2+b

0 −δ1(aω2+b)+δ2+ω2+ψ(aδ2−b)
aω2+b

0
−aδ2+b
aω2+b

−φ(aδ2−b)
b(aω2+b)

ω2(aδ2−b)
aω2+b



λ4 =
{
ω2(aδ2−b−a)−aδ2−

√
µ1

2(aω2+b)
,
ω2(aδ2−b−a)−aδ2+

√
µ1

2(aω2+b)
, E1

aω2+b

}

µ1 =a2δ22ω
2
2 + 2a2δ22ω2 + a2δ22 + 2a2δ2ω

2
2 + 2a2δ2ω2 + a2ω2

2

+ 4abδ22 − 2abδ2ω
2
2 + 2abδ2ω2 − 2abω2

2 − 4b2δ2 + b2ω2
2 − 4b2ω2.

E1 is as before

There are three distinct eigenvalues and two cases to consider,

1. Case µ1 > 0, the eigenvalues are all real, and we have the following,

λ41 < 0 if √µ1 > ω2 (aδ2 − b− a) − aδ2 which is satisfied as aδ2 < b from existence
condition.

λ42 < 0 if √µ1 > aδ2 − ω2 (aδ2 − b− a)

λ42 > 0 if √µ1 < aδ2 − ω2 (aδ2 − b− a)

74

λ43 < 0 if E2 < 0,
λ43 > 0 if E2 < 0

EP3 will be locally stable if √µ1 > aδ2 − ω2 (aδ2 − b− a) and E2 < 0 and unstable if
one of the conditions doesn’t hold.

2. Case µ0 < 0,

The eigenvalues λ41 and λ42 are complex with negative real part since

ω2 (aδ2 − b− a)− aδ2 < 0

. Consequently, EP4 will be stable if E1 < 0 and unstable if E1 > 0.

In the unstable case it will be a saddle point since it is stable in xy2 plane and unstable in
y1 direction.

4.4.0.5 Fifth Equilibrium point EP5

J5 =J(EP5) =


U1a
U0

U1

U0

U1b
U0

−U2

U0

U2ω1

U0

U2bψ
U0

−U3

U0
−U3φ

U0b
U3ω2

U0


Where:

U1 =− δ1ω2 − δ1φ− δ2ω1 + δ2ψ − ω1ω2 − φψ

U2 =aδ1ω2 − aδ2ψ + bδ1 + bψ − δ2 − ω2

U3 =aδ1φ+ aδ2ω1 − bδ1 − bω1 + δ2 − φ

The set of eigenvalues for the fifth equilibrium point is given by

λ5 = {λ51, λ52, λ53}

75

where

λ51 =− A1

3U0

−
3
√
µ3

3
− A2

1 − 3A2

3U2
0

3
√
µ3

λ52 =− A1

3U0

−
3
√
µ3

(
−1

2
−
√
3i
2

)
3

− A2
1 − 3A2

3U2
0

3
√
µ3

(
−1

2
−
√
3i
2

)
λ53 =− A1

3U0

−
3
√
µ3

(
−1

2
+
√
3i
2

)
3

− A2
1 − 3A2

3U2
0

3
√
µ3

(
−1

2
+
√
3i
2

)

and

µ3 =
2A3

1 − 9A1A2 + 27A3 +
√
−4 (A2

1 − 3A2)
3

+ (2A3
1 − 9A1A2 + 27A3)

2

2U3
0

A1 =− U1a− U2ω1 − U3ω2

A2 =U1U2aω1 + U1U2 + U1U3aω2 + U1U3b+ U2U3ω1ω2 + U2U3φψ

A3 =U1U2U3 (−aω1ω2 − aφψ − bω1 + bψ − ω2 − φ)

As the eigenvalues are given by complex expressions that are functions of all parameters, we
will study its stability by both numerical simulation and Lyapunov direct method.

4.5 Global stability analysis

In this section, we study the global stability of equilibrium points of the system and the
existence of periodic solution and chaos using Lyapunov functions, Bendixson-Dulac criteria,
and linear algebra.

Theorem 4.5.1 (EP2). The equilibrium point EP2 is globally stable in the xy1y2-space if
:δ1 > 1

a
and δ2 >

b
a

.

Proof. In case δ1 > 1
a

and δ2 >
b
a

the equilibrium EP2 is the only locally stable equilib-
rium point in xy1y2-space so it must be globally stable there as well.

Theorem 4.5.2 (EP3). The equilibrium point EP3 is globally asymptotically stable in the
positive xy1-plane if it is locally asymptotically stable there.

76

Proof. Let the function H2(x, y1) = 1/(xy1), F1 = x (1− ax− y1) , F2 = y1 (−δ1 − ω1y1 + x)

Clearly H2(x, y1) > in the x1 y1-plane . Then we have

BD2 =
∂

∂x
(H2F1) +

∂

∂y1
(H2F2) = − a

y1
− ω1

x
< 0

i.e BD2 doesn’t change sign and is not identically zero in the positive x1y1-plane. Thus, by
Bendixson-Dulac theorem, there exist no limit cycle in the positive x1y1-plane. This implies
that if EP3 is locally asymptotically stable in the positive xy1-plane, then it will be globally
stable there.

Theorem 4.5.3 (EP4). The equilibrium point EP4 is globally asymptotically stable in the
positive xy1-plane if it is locally asymptotically stable there.

Proof. Let the functionH3(x, y1) = 1/(xy1), F2 = x (1− ax− by2) , F3 = y2 (−bω2y2 + bx− δ2)
Clearly H2(x, y2) > 0 in the x1 y1-plane. Then we have

BD3 =
∂

∂x
(H3F1) +

∂

∂y2
(H3F3) = − a

y2
− bω2

x
< 0

i.e. BD3 doesn’t change sign and is not identically zero in the positive x1y1-plane. Thus, by
Bendixson-Dulac theorem, there exists no limit cycle in the positive x1y1-plane. This implies
that if EP3 locally asymptotically stable in the positive xy1-plane, then it will be globally
stable there.

Theorem 4.5.4 (EP5). Given an equilibrium point ep = (xe, y1e, y2e). A candidate for Lya-
punov function, which is frequently used in literature (see for example [39]),is the following:

V (x, y1, y2) =p1

(
x− xe log

(
x

xe

)
− xe

)
+ p2

(
y1 − y1e log

(
y1
y1e

)
− y1e

)
+ p3

(
y2 − y2e log

(
y2
y2e

)
− y2e

)
Where p1, p2, p3 are positive constants

Clearly V > 0 for all (x, y1, y2) 6= (xe, y1e, y2e) and V (xe, y1e, y2e) = 0

77

The derivative of V is given by:

dV

dt
=p1x

(
1− xe

x

)
(−ax− by2 − y1 + 1) + p2y1

(
1− y1e

y1

)
(−bψy2 − δ1 − ω1y1 + x)

+ p3y2

(
1− y2e

y2

)
(−bω2y2 + bx− δ2 + φy1)

After some algebraic manipulation and using techniques of transforming functions into quadratic
form we obtain,

dV

dt
= −1

2
XTMX

where

M =DA+ ATD

X =



x− xe

y1 − y1

y2 − y2e


, D =


p1 0 0

0 p2 0

0 0 p3

 , A =


a 1 b

−1 ω1 bψ

−b −φ bω2



If we can find p1, p2, p3 that make the matrix M positive definite, then V will be a Lyapunov
function and the interior equilibrium point EP5 will be globally stable.

Proof. We have

M =


2ap1 p1 − p2 b (p1 − p3)
p1 − p2 2ω1p2 bp2ψ − p3φ

b (p1 − p3) bp2ψ − p3φ 2bω2p3


. Choose p1 = 1, p2 = 1, p3 = 1 then the matrix M becomes

M =


2a 0 0

0 2ω1 bψ − φ
0 bψ − φ 2bω2


. The matrix M is positive definite if all the leading principal minors are positive.

78

The first leading principal minor is M0 =
∣∣∣2a∣∣∣⇒ det(M0) = 2a > 0

The second leading principal minor is

M1 =

[
2a 0

0 2ω1

]
⇒ det(M1) = 4aω1 > 0

The third leading principal minor is matrix M itself.

det(M) = 2a
(
4bω1ω2 − (bψ − φ)2

)
> 0

if 4bω1ω2 > (bψ − φ)2 thus the matrix M is positive definite and EP5 is globally stable if the
last condition holds.

79

Chapter 5

Global Sensitivity Analysis (GSA)

In this section, we will study the global sensitivity of the parameters of the nondimensional
model 4.3 together with the initial values to classify which parameters are influential and
which are not influential on the model output. The model studied here has three outputs
and each output is a time series. Therefore, we need to choose some variables of interest
to study their sensitivity. Her we choose the max, mean, median, and equilibrium value for
each output.

5.1 Methodology

The methodology we used to perform sensitivity analysis is as follows,

• All the results are conducted using the SALib package for sensitivity analysis in python.
[19].

• We will use four methods of GSA which are Sobol, Morris, Random Balance Designs
- Fourier Amplitude Sensitivity Test (RBD-FAST), and Delta Moment-Independent
Measure (DMIM) and compare the results.

• The number of samples and the sampling scheme used for each method is as in the
following table:

80

Sensitivity method Sobol Morris RBD-Fast DMIM

Number of samples N 30000 15000 100000 100000

Number of model evaluation D (N + 2) D (N + 1) N N

Sampling method used Saltelli Morris Latin hypercube Latin hypercube

Table 5.1: Number of samples and samplings scheme for different sensitivity analysis methods

where D is the number of parameters or input factors.

• For all methods, we use the following intervals for parameters which we assume they in-
clude the true values for the parameters. The intervals are chosen based on dimensional
parameters which in turn chosen based on some literature, for example, [33] and [56].

a =[10−5, 10−3], b = [0.1, 10], δ1 = [0.1, 10], δ2 = [0.1, 10],

ψ =[0.1, 10] φ = [0.0001, 5], ω1 = [0.001, 10], ω2 = [0.001, 5],

x0 =[0, 10000], y10 = [0, 1000], y20 = [0, 100]

• Validating model output

1. We run the model using Python ODE solver solvivp with RK45 method which is
an explicit method and with relative tolerance rtol = 10−9 and absolute tolerance
atol = 10−9 which is proved to work best after extensive testing.

2. We compute statistics for the model output for comparison’s sake.

3. We compute statistics for positive stable eqm. points (EP3, EP4, EP5) and index
of parameters for which there isn’t any stable equilibrium point.

4. We compute the max value of the output using boundedness of the solutions for
all parameter sets and compute its statistics, we also find the max of the max here
for comparison’s sake.

5. There are parameter sets for which the system does not have any stable equilibrium
points (limit cycle, chaos). For these sets we choose the max of the last 500 outputs
as equilibrium values.

6. We filter out parameter sets that give unreasonable model output (output greater
than the max value from boundedness, negative, not equal to stable eqm. points

81

values from the analytical solution given that the point is stable) and run the model
again until we obtain the expected values. If the ODE solver can’t compute the
correct output after trying with all methods and options we set eqm. values equal
to the ones from the analytical solution.

7. It worth noting that ODE solvers may give very small negative values of order
10−10 or less instead of zero, and it is best to set them to zero as they should
be because this will lead an error if one will perform a log transformation of the
model output before running the sensitivity analysis.

After validating the model output, we run the sensitivity analysis which needs another
validation procedure which we will explain in the next step.

• Validating sensitivity analysis results

We will summarize the criteria for reasonable sensitivity analysis results for each method
in the following table:

Sensitivity method Sobol Morris RBD-Fast DMIM∑
i Si ≤ 1

None

∑
i Si ≤ 1 0 ≤ δi ≤ 1

Criteria
∑

i Si = 1↔ No interactions
∑

i Si ≤ 1∑
i STi ≥

∑
i Si

∑n
i=1 δi = 1↔ No interactions

Table 5.2: Criteria for reasonable sensitivity analysis results

The Delta method is sensitive to outliers. To reduce the effect of outliers we may need
to apply log transformation or square root to the model output before applying sensitivity
analysis, but our tests showed that these transformations change the sensitivity index of the
parameters. Other options are modifying outliers to reduce their effects and for this, we use
the IQR test to find outliers and then modify them. It worth noting that outliers appear
when there is not any stable eqm. points in the system.

5.2 Sensitivity analysis results

The following tables summarize the results of sensitivity analysis. In these tables the green
color indicates the highest values, then comes yellow, and finally, the red color indicates the
lowest values. Additionally, all values are rounded to two decimals for the ease of analysis.

82

5.2.1 Maximum value of x, y1 and y2 respectively

Max Sensitivity of x variable Sensitivity of y1 variable Sensitivity of y2 variable

Si method Sobol Rbd-Fast DMIM Sobol Rbd-Fast DMIM Sobol Rbd-Fast DMIM

a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
b 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.04 0.05
δ1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
δ2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ψ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
φ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ω1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ω2 0.00 0.00 0.00 0.00 0.00 0.00 0.34 0.09 0.15
x0 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
y10 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00
y10 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.11 0.11∑

1.00 1.00 1.00 1.00 1.00 1.00 0.52 0.24 0.31

Table 5.3: Comparison of first-order sensitivity index S1 from Sobol, RBD-FAST and DMIM
methods for max value all variables

Max Sensitivity of x variable Sensitivity of y1 variable Sensitivity of y2 variable

Si method Sobol Morris DMIM Sobol Morris DMIM Sobol Morris DMIM

a 0.00 0.00 0.02 0.00 0.39 0.03 0.00 38.35 0.02
b 0.00 0.00 0.02 0.00 76.65 0.03 0.53 3111.51 0.04
δ1 0.00 0.00 0.02 0.00 15.04 0.03 0.00 80.51 0.02
δ2 0.00 0.00 0.02 0.00 2.50 0.03 0.01 380.12 0.02
ψ 0.00 0.00 0.02 0.00 43.72 0.03 0.01 2206.60 0.02
φ 0.00 0.00 0.02 0.00 96.80 0.03 0.01 1876.67 0.02
ω1 0.00 0.00 0.02 0.00 98.73 0.03 0.01 2024.91 0.02
ω2 0.00 0.00 0.02 0.00 15.73 0.03 0.77 4141.93 0.03
x0 1.00 10000.00 0.96 0.00 63.34 0.03 0.10 1651.83 0.02
y10 0.00 0.00 0.02 1.00 998.55 0.97 0.00 273.36 0.02
y20 0.00 0.00 0.02 0.00 30.29 0.03 0.14 329.42 0.41∑

1.00 10000.00 1.16 1.00 1441.74 1.27 1.58 16115.21 0.64

Table 5.4: Comparison between ST Sobol, µ? Morris and δ from DMIM for max value of all
variables

83

5.2.2 Mean value of x, y1 and y2 respectively

Mean Sensitivity of x variable Sensitivity of y1 variable Sensitivity of y2 variable

Si method Sobol Rbd-Fast DMIM Sobol Rbd-Fast DMIM Sobol Rbd-Fast DMIM

a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
b 0.72 0.72 0.72 0.56 0.52 0.54 0.45 0.44 0.44
δ1 0.01 0.01 0.01 0.02 0.02 0.02 0.01 0.00 0.01
δ2 0.08 0.07 0.07 0.02 0.02 0.02 0.03 0.03 0.03
ψ 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00
φ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ω1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ω1 0.02 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00
x0 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00
y10 0.00 0.00 0.00 0.02 0.02 0.03 0.00 0.00 0.00
y10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00∑

0.84 0.83 0.83 0.63 0.59 0.62 0.49 0.47 0.48

Table 5.5: Comparison of first-order sensitivity index S1 from Sobol, RBD-FAST, and DMIM
methods for mean value all variables

Mean Sensitivity of x variable Sensitivity of y1 variable Sensitivity of y2 variable

Si method Sobol Morris DMIM Sobol Morris DMIM Sobol Morris DMIM

a 0.00 0.04 0.07 0.00 0.00 0.13 0.00 0.04 0.11
b 0.88 5.34 0.41 0.90 0.48 0.16 0.99 4.10 0.74
δ1 0.08 1.76 0.07 0.17 0.14 0.13 0.07 0.78 0.11
δ2 0.15 1.54 0.15 0.28 0.12 0.13 0.47 3.16 0.09
ψ 0.02 0.54 0.07 0.10 0.12 0.13 0.03 1.45 0.11
φ 0.00 0.31 0.06 0.03 0.18 0.13 0.06 1.95 0.11
ω1 0.04 1.63 0.07 0.05 0.17 0.13 0.02 1.46 0.11
ω2 0.05 1.50 0.10 0.04 0.10 0.13 0.06 3.90 0.10
x0 0.01 3.53 0.10 0.00 0.20 0.13 0.00 1.72 0.10
y10 0.00 0.05 0.06 0.02 0.14 0.18 0.00 0.17 0.11
y20 0.00 0.05 0.06 0.00 0.03 0.13 0.00 0.26 0.11∑

1.23 16.29 1.22 1.59 1.68 1.51 1.70 18.99 1.80

Table 5.6: Comparison between ST Sobol, µ? Morris, and δ from DMIM for mean value of
all variables

84

5.2.3 Median value of x, y1 and y2 respectively

Median Sensitivity of x variable Sensitivity of y1 variable Sensitivity of y2 variable

Si method Sobol Rbd-Fast DMIM Sobol Rbd-Fast DMIM Sobol Rbd-Fast DMIM

a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
b 0.72 0.72 0.72 0.56 0.53 0.55 0.42 0.43 0.43
δ1 0.01 0.01 0.01 0.02 0.02 0.02 0.01 0.00 0.01
δ2 0.08 0.07 0.08 0.02 0.02 0.02 0.03 0.03 0.03
ψ 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00
φ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ω1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ω1 0.02 0.02 0.02 0.00 0.00 0.00 0.01 0.00 0.00
x0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
y10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
y20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00∑

0.83 0.82 0.83 0.61 0.58 0.60 0.47 0.46 0.47

Table 5.7: Comparison of first order sensitivity index S1 from Sobol, RBD-FAST, and DMIM
methods for median value all variables

Median Sensitivity of x variable Sensitivity of y1 variable Sensitivity of y2 variable

Si method Sobol Morris DMIM Sobol Morris DMIM Sobol Morris DMIM

a 0.00 0.06 0.07 0.00 0.00 0.17 0.00 0.01 0.10
b 0.89 5.18 0.44 0.93 0.37 -44211.65 0.99 0.84 0.74
δ1 0.08 1.66 0.08 0.18 0.04 0.16 0.08 0.13 0.10
δ2 0.15 1.55 0.16 0.29 0.11 0.16 0.49 0.75 0.09
ψ 0.02 0.46 0.07 0.11 0.04 0.17 0.04 0.13 0.10
φ 0.00 0.29 0.07 0.03 0.05 0.17 0.06 0.27 0.10
ω1 0.05 1.92 0.07 0.06 0.09 0.17 0.03 0.12 0.10
ω2 0.05 1.50 0.10 0.05 0.06 0.17 0.07 0.41 0.10
x0 0.00 2.37 0.07 0.00 0.13 0.17 0.00 0.34 0.10
y10 0.00 0.04 0.07 0.00 0.00 0.17 0.00 0.00 0.10
y20 0.00 0.05 0.07 0.00 0.01 0.17 0.00 0.02 0.10∑

1.24 15.08 1.27 1.65 0.90 -44209.97 1.76 3.02 1.73

Table 5.8: Comparison between ST Sobol, µ? Morris and δ from DMIM for median all
variables

85

5.2.4 Eqm. value of x, y1 and y2 respectively

~Eqm Sensitivity of x variable Sensitivity of y1 variable Sensitivity of y2 variable

Si method Sobol Rbd-Fast DMIM Sobol Rbd-Fast 2 DMIM Sobol Rbd-Fast DMIM

a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
b 0.72 0.70 0.70 0.41 0.22 0.23 0.10 0.06 0.06
δ1 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00
δ2 0.07 0.07 0.07 0.01 0.01 0.01 0.00 0.00 0.00
ψ 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
φ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ω1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ω1 0.02 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00
x0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
y10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
y20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00∑

0.82 0.80 0.80 0.44 0.24 0.25 0.10 0.06 0.06

Table 5.9: Comparison of first order sensitivity index S1 from Sobol, RBD-FAST, and DMIM
methods for eqm. value of all variables

Eqm Sensitivity of x variable Sensitivity of y1 variable Sensitivity of y2 variable

Si method Sobol Morris DMIM Sobol Morris DMIM Sobol Morris DMIM

a 0.00 0.25 0.09 0.00 0.06 0.46 0.00 6.18 0.10
b 0.89 5.78 0.42 1.02 0.60 7.95 0.27 7.40 0.76
δ1 0.10 2.12 0.10 0.38 0.22 0.42 0.20 7.41 0.12
δ2 0.18 1.93 0.15 0.69 0.30 0.79 0.81 13.91 0.23
ψ 0.02 0.83 0.09 0.28 0.19 0.38 0.36 3.75 0.14
φ 0.02 0.56 0.09 0.36 0.18 0.41 0.94 2.43 0.14
ω1 0.07 2.01 0.09 1.05 0.26 0.26 0.23 4.60 0.14
ω2 0.06 1.79 0.11 0.20 0.20 0.46 0.14 7.53 0.16
x0 0.00 2.70 0.09 0.00 0.25 0.47 0.00 5.01 0.11
y10 0.00 0.13 0.09 0.00 0.03 0.46 0.00 4.42 0.12
y20 0.00 0.13 0.09 0.00 0.02 0.49 0.00 0.03 0.11∑

1.34 18.23 1.41 3.98 2.31 12.55 2.95 62.67 2.13

Table 5.10: Comparison between ST Sobol, µ? Morris, and δ from DMIM for eqm. values of
all variables

86

Parameter a b δ1 δ2 ψ φ ω1 ω2 x0 y10 y20
∑

Median value of y10 0.14 0.16 0.16 0.15 0.15 0.14 0.14 0.38 0.14 0.14 0.14 1.84

Eqm. value of y10 0.18 0.17 0.17 0.17 0.17 0.18 0.18 0.18 0.18 0.18 0.18 1.94

Table 5.11: δ sensitivity index from DMIM for median and equilibrium value of y1 after
log-transformation.

5.3 Summary and concluding remarks

Let us summarize the information from the previous tables into three compact tables. The
first table (Table 5.12) represents the most sensitive parameters overall, and the second
(Table 5.13) and third (Table 5.14) tables represent the classification of parameters into
sensitive and moderate or nonsensitive in decreasing order from left to right in terms of
first-order effect and total/interactions effect, respectively.

S1,Variable of interest Max Mean Median Eqm

x x0 b b b

y1 y10 b b b

y2 ω2, y20 b b b

ST ,Variable of interest Max Mean Median Eqm

x x0 b b b

y1 y10 b, y10 b, ω2 b, ω1

y2 ω2, y20 b b φ, δ2, b

Table 5.12: The most sensitive parameter for each variable of interest in terms of main effect
total/interactions effects. Note that for variables there are more than one parameter due to
the fact that all methods of sensitivity did not agree

87

S1 Max Mean Median Eqm

x

Sobol [x0],

[all others)]
[b, δ2, ω2, x0, δ1],

[ω1, ψ, φ, (a, y10, y20)]

[b, δ2, ω2, δ1],

[ω1, ψ, φ, (a, x0, y10, y20)]

[b, δ2, ω2, δ1],

[ω1, φ, (a, ψ, x0, y10, y20)]

RBD-
Fast

[x0],

[all others)]
[b, δ2, ω2, x0, δ1],

[ω1, ψ, (a, φ, y10, y20)]

[b, δ2, ω2, δ1],

[ω1, ψ, (a, φ, x0, y10, y20)]

[b, δ2, ω2, δ1],

[ω1, ψ(a, φ, x0, y10, y20)]

DMIM [x0],

[all others)]
[b, δ2, ω2, x0, δ1],

[ω1, ψ, φ, y20, (a, y10)]

[b, δ2, ω2, δ1],

[ω1, ψ, (φ, x0),

y20, (a, y10)]

[b, δ2, ω2, δ1],

[ω1, ψ, φ, (x0, y20), (a, y10)]

y1

Sobol [y10],

[(all others)]
[b, y10, δ2, δ1, ψ],

[ω1, φ, ω2, x0, y20, a]

[b, δ2, δ1, ψ],

[φ, ω1, ω2, (a, x0, y10, y20)]

[b, δ2, δ1, ψ],

[φ, ω1, ω2, (a, x0, y10, y20)]

RBD-
Fast

[y10],

[(all others)]
[b, y10, δ2, δ1, ψ],

[(ω1, ω2), φ, (a, x0, y20)]

[b, δ2, δ1, ψ],

[ω1, ω2, φ, (a, x0, y10, y20)]

[b, δ2, δ1],

[ψ, ω1, (a, φ, ω2, x0, y10, y20)]

DMIM [y10],

[(all others)]
[b, y10, δ2, δ1, ψ],

[ω1, ω2, φ, a, x0, y20]

[b, δ2, δ1, ψ],

[ω1, ω2, φ, a, (x0, y10), y20]

[b, δ2, δ1],

[ψ, ω1, φ, ω2, y10, (a, x0), y20]

y2

Sobol [ω2, y20, b],

[x0, ψ, δ2, φ,

(a, δ1, ω1, y10)]

[b, δ2, δ1],

[ψ, ω2, ω1, φ,

(a, x0, y10, y20)]

[b, δ2, δ1, ω2],

[ψ, (φ, ω1), (a, y10),

(x0, y20)]

[b],

[δ2, ω1, ω2, δ1, φ,

(a, ψ, x0, y10, y20)]

RBD-
Fast

[y20, ω2, b],

[(a, δ1, δ2, ψ,

φ, ω1, x0, y10)]

[b, δ2],

[δ1, (ψ, φ), (ω1, ω2),

(a, x0, y10, y20)]

[b, δ2],

[δ1, (ψ, φ), (ω1, ω2),

(a, x0, y10), y20]

[b],

[δ2, (δ1, φ, ω2),

(a, ψ, ω1, x0, y10, y20)]

DMIM [ω2, y20, b],

[x0δ2, φ, δ1,

(a, ψ, ω1, y10)]

[b, δ2, δ1, ψ, φ, ω2, ω1],

[y10, (a, x0, y20)]

[b, δ2, δ1, ω2],

[ψ, φ, ω1, y10, (a, x0, y20)]

[b],

[δ2, (δ1, φ, ω2), ω1,

(ψ, x0, y10), (a, y20)]

Table 5.13: First(Main) effect sensitivity indices for all variables of interest. In each cell,
the first array includes the most sensitive and sensitive parameters, while the array below it
contains the least sensitive and nonsensitive parameters. Note also that the parameters in
the parenthesis are equal in terms of sensitivity.

88

Si
index

Max Mean Median Eqm

x

sT [x0],

[(all others)]
[b, δ2, δ1, ω2, ω1, ψ],

[x0, φ, (a, y10, y20)]

[b, δ2, δ1, ω2, ω1, ψ],

[φ, y10, a, x0, y20]

[b, δ2, δ1, ω1, ω2, ψ, φ],

[x0, (a, y10, y20)]

µ? [x0],

[(all others)]
[b, x0, δ1, ω1, δ2, ω2],

[ψ, φ, y20, y10, a]

[b, x0, ω1, δ1, δ2, ω2],

[ψ, φ, a, y20, y10]

[b, x0, δ1, ω1, δ2, ω2],

[ψ, φ, a, y20, y10]

δ [x0],

[(all others)]
[b, δ2, x0, ω2, δ1, ω1, ψ, a],

[(φ, y20, y10)]

[b, δ2, ω2, δ1],

[ω1, ψ, a, y20, x0, φ, y10]

[b, δ2, ω2, δ1],

[ω1, ψ, a, x0, y20, φ, y10]

y1

sT [y10],

[(all others)]
[b, δ2, δ1, ψ, ω1, ω2],

[φ, y10, x0, y20, a]

[b, δ2, δ1, ψ, ω1, ω2, φ],

[x0, y20, (a, y10)]

[ω1, b, δ2, δ1, φ, ψ, ω2],

[x0, y20, a, y10]

µ? [y10],

[(all others)]
[b, x0, φ, ω1, δ1, y10],

[δ2, ψ, ω2, y20, a]

[b, x0, δ2, ω1, ω2, φ, ψ, δ1],

[y20, y10, a]

[b, δ2, ω1, x0, δ1, ω2, ψ, φ],

[a, y10, y20]

δ [y10],

[(all others)]
[y10, b],

[ψ, δ2, ω2, φ, x0,

y20, a, ω1, δ1]

[ω2, b, δ1, δ2, ψ],

[φ, (a, ω1, x0, y10, y20)]

[(a, φ, ω1, x0, y10, y20, ω2)],

[b, δ2, ψ, δ1]

y2

sT [ω2, b, y20, x0,

ω1, φ, ψ, δ2],

[y10, (a, δ1)]

[b, δ2, δ1, φ, ω2, ψ, ω1],

[x0, y20, (a, y10)]

[b, δ2, δ1, ω2, φ, ψ, ω1],

[x0, y10, y20, a]

[φ, δ2, ψ, b, ω1, δ1, ω2],

[x0, (a, y10, y20)]

µ? [ω2, b, ψ, ω1, φ, x0],

[δ2, y20, y10, δ1, a]

[b, ω2, δ2, φ, x0, ω1, ψ],

[δ1, y20, y10, a]

[b, δ2, ω2, x0, φ, ψ, ω1, δ1],

[y20, a, y10]

[δ2, ω2, δ1, b, a, x0, ω1],

[y10, ψ, φ, y20]

δ [y20, b, ω2],

[ω1, φ, ψ, δ2,

δ1, x0, y10, a]

[b, δ1, ω1, ψ, y10, a, y20, φ],

[x0, ω2, δ2]

[b, δ1, ω1, ψ, y10,

a, φ, y20, x0, ω2],

[δ2]

[b, δ2, ω2, ω1, ψ, φ],

[δ1, y10, x0, y20, a]

Table 5.14: Total/interactions effect sensitivity indices for all variables of interest. In each
cell, the first array includes the most sensitive and sensitive parameters, while the array below
it contains the least sensitive and nonsensitive parameters. Note also that the parameters in
the parenthesis are equal in terms of sensitivity.

5.3.0.1 General results

1. In tables 5.13 and 5.14 the first array in each cell include the most sensitive and sensi-
tive parameters, while the array below it contains the least sensitive and nonsensitive
parameters. The parameters in each vector are arranged in decreasing order in terms
of sensitivity.

2. µ? from Morris method is comparable with Total effect ST Sobol. Although the ranking

89

is different, Morris’ method successfully classifies the most sensitive parameters as well
as the nonsensitive ones.

3. δ index from DMIM gives mostly identical ranking as total effect ST from Sobol method.

4. S1 from Sobol, RBD-FAST Fast, and DMIM give mostly the same ranking for param-
eters and its values are approximately the same.

5. Max value x and y1 are only sensitive to their corresponding initial values x0 and y10,
while max value of y2 is sensitive to ω2, b, y20 as individual and interaction. This is
because the sum of first-order indices does not equal unity, which indicates that there
are interaction effects.

6. For mean, median, and eqm. values, the parameter b is the most sensitive one in terms
of the first-order effect, and there is more effect of interactions than the first-order effect.
This is clear by observing the sum of indices in tables 5.5, 5.7, and 5.9.

7. In terms of total or interactions effects the mean, median, eqm. values of x, y1 and y2
are sensitive to the parameters {b, δ2, δ1, ω2, ω1, ψ, φ} with b being the most sensitive
parameter except for eqm. of y1 as ω1 is the most sensitive one and eqm. value of y2
as φ is the most sensitive one.

8. Overall, we can state that the sensitive parameters are {b, δ2, δ1, ω2, ω1, ψ, φ} and the
nonsensitive parameters are {a, x0, y10, y20} if max value is not in consideration.

9. The most important parameter is b while the least important parameter is a.

90

Chapter 6

Observability

In this chapter we will study the observability of the system 4.3 in different cases and deter-
mine for which variable and under which condition the system is observable.

6.1 Observing bacteria x only

Consider the system 4.3 and the following observation function h(x) = x − xe, then the
observability matrix is given by,

O =
[
C CJ CJ2

]T
=


1 −2ax− by2 − y1 + 1 O13

0 −x x (2ax− bφy2 + bψy2 + by2 + δ1 + 2ω1y1 − x+ y1 − 1)

0 −bx bx (2ax+ 2bω2y2 − bx+ by2 + δ2 − φy1 + ψy1 + y1 − 1)


Where,

J =


−2ax− by2 − y1 + 1 −x −bx

y1 −bψy2 − δ1 − 2ω1y1 + x −bψy1
by2 φy2 −2bω2y2 + bx− δ2 + φy1


O13 =4a2x2 + 4abxy2 + 4axy1 − 4ax− b2xy2 + b2y22 + 2by1y2 − 2by2 − xy1 + y21 − 2y1 + 1

C =
[
∂h
∂x

∂h
∂y1

∂h
∂y2

]
=
[
1 0 0

]
The determinant of the observability matrix O is given by,

det(O) = bx2 (−2bω2y2 − bφy2 + bψy2 + bx+ δ1 − δ2 + 2ω1y1 + φy1 − ψy1 − x)

If it is different than zero, then the rank of the matrix will be 3 and the system will observable.

91

6.2 Observing bacteria y1 only

In this case the observation function is given by h(x) = y1−y1e, and the observability matrix
is given by,

O =
[
C CJ CJ2

]T
=


0 y1 O13

1 −bψy2 − δ1 − 2ω1y1 + x O23

0 −bψy1 O33


where

O13 =y1
(
−2ax− b2ψy2 − bψy2 − by2 − δ1 − 2ω1y1 + x− y1 + 1

)
O23 =b2ψ2y22 + 2bδ1ψy2 + 4bω1ψy1y2 − bφψy1y2 − 2bψxy2

+ δ21 + 4δ1ω1y1 − 2δ1x+ 4ω2
1y

2
1 − 4ω1xy1 + x2 − xy1

O33 =by1
(
2bω2ψy2 + bψ2y2 − bψx+ δ1ψ + δ2ψ + 2ω1ψy1 − φψy1 − ψx− x

)
C = =

[
0 1 0

]
The determinant of the observability matrix O is given by,

det(O) = by21
(
2aψx+ b2ψ2y2 − 2bω2ψy2 + bψx+ bψy2 − δ2ψ + φψy1 + ψy1 − ψ + x

)
If it is different than zero, then the rank of the matrix will be 3 and the system will be
observable by only observing the predator species y1.

6.3 Observing bacteria y2 only

In this case the observation function is given by h(x) = y1−y2e, and the observability matrix
is given by,

O =
[
C CJ CJ2

]T
=


0 by2 O13

0 φy2 O23

1 −2bω2y2 + bx− δ2 + φy1 O33



92

where

O13 =y2
(
−2abx− 2b2ω2y2 + b2x− b2y2 − bδ2 + bφy1 − by1 + b+ φy1

)
O23 =y2

(
−2bω2φy2 − bφψy2 + bφx− bx− δ1φ− δ2φ− 2ω1φy1 + φ2y1 + φx

)
O33 =4b2ω2

2y
2
2 − 4b2ω2xy2 + b2x2 − b2xy2 + 4bδ2ω2y2

− 2bδ2x− 4bω2φy1y2 − bφψy1y2 + 2bφxy1 + δ22 − 2δ2φy1 + φ2y21

C = =
[
0 0 1

]
The determinant of the observability matrix O is given by,

det(O) = y22
(
2abφx− b2φψy2 + b2φy2 − b2x− bδ1φ− 2bω1φy1 + bφx+ bφy1 − bφ− φ2y1

)
If it is different than zero, then the rank of the matrix will be 3 and the system will be
observable by only observing the predator species y2.

Note that since the system is observable by observing each species alone, then it should be
observable by observing any combination of them. Note also that the system is not observable
at the zero equilibrium point regardless of the variable being observed because the determent
of the observability matrix will be zero then.

93

Chapter 7

Bacteria and microorganisms data

In this chapter, we represent some available data regarding bacteria and microorganisms
in surface drinking water in west Norway. The data regarding bacteria are obtained from
Bergen municipality, and reports from Rådgivende Biologer website [21, 22].

7.1 Bacteria data from the untreated water from all water

resources in Bergen

Bergen Municipality takes samples from all the water resources that are used to supply
the community with drinking water. The samples are taken several times each month, but
the frequency differs between months. In each sample, the number of pathogenic bacteria,
Clostridium Perfringens (CP), Coliform Bacteria (CB), E. coli (EC), and Intestinal Entero-
cocci (IE) are measured in number per 100ml. The data analyzed in this work is from 2010
to 2019. Note that the Campylobacter jejuni bacteria type is not measured, thus we do not
have any data concerning it.

The following tables give us the statistics of each individual pathogenic bacteria in all drinking
water resources in Bergen municipality in Norway. In these tables

1. MeanAll is the mean of bacteria considering all water resources.

2. 25% ,50%, 75% are the 25, 50, 75 percentile respectively, and defined as the values below
which 25%, 50%, 75% of data could be found.

3. std is the standard deviation.

94

Espeland Svartediket Jordalen Kismul Risnæs Sædal Bogetveit Gamsebotn Raudtjørn Sætervatn MeanAll

count 285.00 304.00 305.00 304.00 305.00 301.00 139.00 139.00 137.00 138.00 986.00
mean 0.32 0.52 1.68 0.17 0.14 0.52 0.55 2.58 0.38 0.35 1.57
std 0.69 0.80 1.80 0.42 0.59 0.95 1.00 6.04 0.84 1.03 3.29
min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50% 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
75% 0.00 1.00 3.00 0.00 0.00 1.00 1.00 3.00 0.00 0.00 2.00
max 5.00 4.00 10.00 2.00 7.00 7.00 8.00 52.00 6.00 9.00 53.00

Table 7.1: Statistics for Clostridium Perfringens bacteria in all waters in Bergen

Espeland Svartediket Jordalen Kismul Risnæs Sædal Bogetveit Gamsebotn Raudtjørn Sætervatn MeanAll

count 584.00 510.00 590.00 502.00 607.00 503.00 204.00 199.00 202.00 202.00 986.00
mean 65.29 107.66 25.58 15.26 188.95 248.01 107.00 146.96 62.83 79.40 441.21
std 192.15 379.71 53.16 74.85 368.38 525.15 305.11 441.25 118.87 199.68 817.30
min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
25% 1.00 3.00 5.00 1.00 10.00 3.00 5.00 7.50 6.25 11.00 25.00
50% 9.00 9.00 11.00 3.00 43.00 23.00 13.50 22.00 22.50 28.00 108.00
75% 43.25 26.00 25.00 10.00 206.50 200.00 41.25 59.00 58.00 68.75 446.25
max 2420.00 2420.00 687.00 1553.00 2420.00 2420.00 2000.00 2420.00 816.00 2420.00 7481.00

Table 7.2: Statistics for Coliform Bacteria in all waters in Bergen

Espeland Svartediket Jordalen Kismul Risnæs Sædal Bogetveit Gamsebotn Raudtjørn Sætervatn MeanAll

count 585.00 510.00 591.00 504.00 607.00 503.00 234.00 229.00 202.00 202.00 986.00
mean 13.06 1.33 1.83 0.23 39.19 1.33 0.86 0.61 0.23 0.55 34.95
std 50.77 3.92 3.32 0.85 187.92 3.67 3.93 1.77 0.74 2.03 158.16
min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50% 0.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 3.00
75% 5.00 1.00 2.00 0.00 10.00 1.00 1.00 0.00 0.00 0.00 12.00
max 687.00 63.00 34.00 12.00 2420.00 44.00 57.00 17.00 8.00 19.00 2431.00

Table 7.3: Statistics for E.coli Bacteria in all waters in Bergen

95

Espeland Svartediket Jordalen Kismul Risnæs Sædal Bogetveit Gamsebotn Raudtjørn Sætervatn MeanAll

count 476.00 496.00 495.00 491.00 495.00 494.00 228.00 196.00 198.00 227.00 986.00
mean 0.23 0.37 0.74 0.05 2.43 0.18 0.55 0.78 0.07 0.15 2.34
std 1.05 1.03 1.67 0.38 7.31 0.58 6.50 3.65 0.48 0.54 6.80
min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
75% 0.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 2.00
max 13.00 12.00 17.00 7.00 69.00 5.00 98.00 33.00 5.00 4.00 98.00

Table 7.4: Statistics for Intestinal Enterococci Bacteria in all waters in Bergen

Table 7.5 and Figures (7.1 , 7.2 , 7.3) demonstrates the total number of pathogenic bacteria
in all drinking water resources in Bergen municipality in Norway. Here again MeanTotal
represent the mean of total number of bacteria considering all water resources.

Espeland Svartediket Jordalen Kismul Risnæs Sædal Bogetveit Gamsebotn Raudtjørn Sætervatn MeanTotal

count 986 986 986 986 986 986 986 986 986 986 986
mean 47 57 17 8 140 127 22 30 13 16 48
std 180 279 44 54 422 396 145 207 60 96 88
min 0 0 0 0 0 0 0 0 0 0 0
25% 0 0 0 0 0 0 0 0 0 0 3
50% 1 0 4 0 6 0 0 0 0 0 12
75% 15 10 16 4 92 26 0 0 0 0 48
max 2687 2426 687 1553 4842 2464 2002 2428 818 2420 752

Table 7.5: Total number of pathogenic bacteria in different water resources in Bergen. The
maximum value of bacteria occurs in Risnæs with value equal to 4842 and minimum value
is in Jordalen 687

96

(a) Espeland (b) Svartediket

(c) Jordalen (d) Kismul

Figure 7.1: Total number of bacteria in Espeland, Svartediket, Jordalen, and Kismul water
resources in Bergen

97

(a) Risnæs (b) Sædal

(c) Bogetveit (d) Gamsebotn

Figure 7.2: Total number of bacteria in Risnæs, Sædal, Gamsebotn, and Bogetveit water
resources in Bergen.

(a) Raudtjørn (b) Sætervatn

Figure 7.3: Total number of bacteria in Raudtjørn, and Sætervatn water resources in Bergen.

From figures 7.1 ,7.2 , 7.3 we see some kind of periods of up-springs of bacteria and periods
with zero or low numbers of bacteria which indicate some kind of cyclic behavior, but it
doesn’t seem to be periodic.

98

7.2 Daphnia

The following table which is taken from the report [21], gives us an indication about the total
number of Daphnia (Cladocera) in five water resources in Bergen municipality.

Water resource, Date 20 Jun. 19 Jul. 15 Aug. 4 Sep. 2 Oct. 24 Oct.

Svartediket 4193 1970 957 610 246 210

Storediket 2131 709 314.3 473 454 207

Tarlebøvatnet 12234 3218 1077 903.4 376 1287.4

Nodre Gløvervatnet 1551.3 795 2791 1905 627.7 1908.7

Søndre Gløvervatnet 3832.4 1065 2621 6862.5 1172.5 3929

Table 7.6: Total number of all types of Daphnia in 5 water resources in Bergen in 2000 in
num/m3

Total number of Daphnia in Jordalsvannet on 19.Oct.2016 is 53 num/m3 and Indrevatnet on
6.Oct.2016 is 912 num/m3.

From the previous table, we can see that the total number of Daphnia population in Svarte-
diket and Storediket decreases in the wintertime, while in the remaining water resources they
vary monthly.

7.3 Protozoa

We haven’t been able to find any data about the Protozoa for water resources in Bergen or
West of Norway in general.

99

Chapter 8

Numerical simulations

In this chapter, we present a numerical simulation of the different solutions of the system
4.3 using different sets of parameters. For this purpose, we use Python 3.7.7 via Anaconda
and Jupyter Notebook. We will mainly use the ODE solver RK45 with absolute tolerance
1× 10−8 and relative tolerance 1× 10−8 to solve the system numerically. For calculating the
Lyapunov exponents we use Matalb2020a and the code by Vasiliy Govorukhin [18] which is
based on Wolf method. We also wrote a python code (see appendix B.3) to calculate the
largest Lyapunov exponent (LLE) based on Sprott method [52]. Additionally, we use Julia
version 1.5.1 Dynamical system library [11] that has a function to calculate the spectrum of
Lyapunov exponents and another one for the largest Lyapunov exponent.

We will study the effect of changing parameters, taking into consideration the sensitivity
analysis. We will also study the stability of the interior equilibrium point. In general, the
solution will converge to an eqm. point if there exists a stable one, but if there is not any
stable equilibrium point, the solution is either periodic, chaotic or exactly stays in one of the
unstable eqm. points if we start from it.

Let us assume the following values for the dimensional parameters,

k r f1 f2 β1 β2 ε1 ε2 ψ12 φ12 ω11 ω22

5000 0.28,27 1.6 1.8 0.47 0.47/4 0.47/2 0.25/2 2.8 0.34 0.5 0.5

Table 8.1: Biological values of the dimensional parameters.

Note that there are four other parameters which are included in the calculation of ψ12 and

100

φ12 and they are g12 = 0.9, γ12 = 0.6, ω12 = 1.9, ω21 = 0.2. As we did’t perform parameter
estimation, these values of parameters are given based on [25,33,47,48,56] and bacteria data
we obtained from Bergen municipality. For example, we took k as the max number of sum
of bacteria taking in account all water resources in Bergen.

We calculate the non-dimensional parameters from the previous dimensional ones and call it
base parameter set

PMbase = [7.18× 10−5, 0.28, 0.01, 0.46, 1.56, 0.21, 0.31, 0.28]

, then we study the effect of each parameter by changing only one parameter at a time in
their sensitivity ranges. Note that we denote the parameter set as PM , and we will order
it in a vector in the following order PM = [a, b, δ1, δ2, ψ, φ, ω1, ω2] with a subscript for each
individual case.

For the base parameter set, local stability analysis is given in Table 8.2.

Equilibrium point Eigenvalues (Local) Stability

(0, 0, 0) [(1 + 0i), (−0.01 + 0i), (−0.46 + 0i)] Unstable
(13927.58, 0, 0) [(−1 + 0i), (13927.567 + 0i), (3899.261 + 0i)] Unstable
(0.32, 1.0, 0.0) [(−0.155 + 0.544i), (−0.155− 0.544i), (−0.16 + 0i)] Stable
(2.64, 0.0, 3.57) [(−0.14 + 0.849i), (−0.14− 0.849i), (1.073 + 0i)] Unstable
(−1.11, 2.15,−4.09) [(1.508 + 0i), (0.128 + 0i), (−1.981 + 0i)] Unstable

Table 8.2: Equilibrium points and their stability for the base parameter set PMbase.

From the above table, it is clear that the system has only one stable eqm. point EP3 =

(0.32, 1.0, 0.0) and the solution converges to it as shown in Figure 8.1. Furthermore, the
system does not have (positive) interior eqm. point for this parameter set.

101

(a) Time series for PMbase. All populations converge to the eqm. point EP3 = (0.32, 1.0, 0.0).

(b) Phase portrait for PMbase and several initial conditions. All trajectories converge to the eqm.

point EP3 = (0.32, 1.0, 0.0).

Figure 8.1: Time series and phase portrait of the system for base parameter set.

102

8.1 Effect of parameter b

This parameter is given by b = β2f2
β1f1

. Hence, it represents the ratio between the reproduction
rate of the second predator y2 to the first predator y1 and is considered as the most sensitive
parameter in the system. The following table demonstrates the characteristics of the system
for different values of this parameter,

Parameter values
Stable equilibrium point(s)
that the system converge to

Status of the system
Figure(s) that
demonstrate it

b =∈ [0.1, 0.471] EP4

Extinction of the first predator
and no (positive) interior eqm point

Figure 8.2

b =∈ [0.472, 0.781] EP3, EP4

Extinction of the first or second predator
depending on the initial condition.
No stable interior eqm. point.

Figure 8.3

b =∈ [0.782, 10] EP4

Extinction of the first predator
and no (positive) interior eqm point

Figure 8.4

Table 8.3: Characteristics of the system for different values b.

In conclusion, increasing this parameter will lead to the extinction of the predator y1 (see
Figures mentioned in the previous table).

8.2 Effect of parameter δ1

This parameter is given by δ1 = ε1
r
. Thus, it represents the ratio between the death rate of

the predator y1 and the growth rate of the prey species x and is the second most sensitive
parameter. The following table demonstrates the characteristics of the system for different
values of this parameter,

Parameter values
Stable equilibrium point(s)
that the system converge to

Status of the system
Figure(s)
that demonstrate it

δ1 =∈ [0.1, 0.582] EP3 Extinction of the second predator Figure 8.5
δ1 ∈ [0.583, 1.0819] EP5 Coexistence of all three species Figure 8.6
δ1 ∈ [1.0829, 10] EP4 Extinction of the first predator Figure 8.7

Table 8.4: Characteristics of the system for different values δ1.

103

From the previous table we conclude that for large values of δ1, the first predator goes extinct
because then the death rate will be much greater than the bacteria intrinsic growth rate.

8.3 Effect of parameter δ2

This parameter is given by δ2 = ε2
r
. Thus, it represents the ratio between the death rate

of the predator y2 and the growth rate of the prey species x and is the third most sensitive
parameter. The following table demonstrates the characteristics of the system for different
values of this parameter,

Parameter values
Stable equilibrium point(s)
that the system converge to

Status of the system
Figure(s)
that demonstrate it

δ2 ∈ [0.1, 0.1499] EP4 Extinction of the first predator Figure 8.8
δ2 ∈ [0.1599, 0.299] EP5 Coexistence of all second species Figure 8.9
δ2 =∈ [0.3, 10] EP3 Extinction of the second predator Figure 8.10

Table 8.5: Characteristics of the system for different values δ2.

We can conclude from the previous table that for large values of δ2, the second predator goes
extinct because then the death rate will be much greater than the bacteria intrinsic growth
rate.

8.4 Effect of parameter ψ

This parameter is defined as ψ = ψ12

f2
= g12+ω12

f2
. Thus, it represents the ratio between the

sum of predation rate of the predator y2 with respect to predator y1 and decreased rate of
predator species y1 due to interspecific competition with the predator species y2 and the
predation rate of the predator y2 with respect to prey species x i.e. the ratio between two
negative effects on the predator species y1. This parameter is also among the sensitive ones.
The characteristics of the system for different values of this parameter are presented in the
following table,

104

Parameter values
Stable equilibrium point(s)
that the system converge to

Status of the system
Figure(s)
that demonstrate it

ψ ∈ [0.1, 2.63299] EP3 Extinction of the second predator Figure 8.11
and no coexistence eqm. point

ψ =∈ [2.63399, 10] EP3, EP4 Extinction of the first or second predator depending on
initial conditions and unstable coexistence eqm. point Figure 8.12.

8.5 Effect of parameter φ

This parameter is defined as φ = φ12
f1

= γ12g12−ω21

f1
. Thus, it represents the ratio between the

difference between the reproduction rate of y2 due to predation on y1 and decreased rate
of predator species y2 due to interspecific competition with the predator species y1 and the
predation rate of the predator y2 with respect to prey species x.

If φ ∈ [0.0001, 0.37], the system will have one stable eqm. point EP3 and all solution that
starts from points with x > 0, y1 > 0, y2 ≥ 0 will converge to it (See Figure 8.13). For
φ ∈ [0.371, 1.234] the system will have one stable eqm. Point EP5 and all solutions that start
from points with x, y1, y1 > 0 will converge to it (See Figure 8.14). Finally, if φ ≥ 1.235

then the system does not have any stable eqm. point and the solution tends toward a stable
periodic orbit (see Figure 8.15). Thus, there is a bifurcation at φ = 0.37 and φ = 1.234 as
the system changes character after these values.

8.6 Effect of parameter ω1

This parameter is given by ω1 = ω11

f1
. Thus, it represents the ratio between intraspecific

competition between the predator species y1 and decreased rate of prey species x due to
predation by the predator species y1. The characteristics of the system for different values
of this parameter are presented in Table 8.6,

Parameter values
Stable equilibrium point(s)
that the system converge to

Status of the system
Figure(s)
that demonstrate it

ω1 ∈ [0.1, 0.801] EP3 Extinction of the second predator Figure 8.18
ω1 ∈ [0.901, 10] EP5 Coexistence of all three species Figure 8.19

Table 8.6: Characteristics of the system for different values of ω1

105

It is evident from the previous table that for large values of ω1, all three species will coexist
for indefinite amount of time.

8.7 Effect of parameter ω2

This parameter is given by ω2 = ω22

f2
. Thus, it represents the ratio between intraspecific

competition between the predator species y2 and decreased rate of prey species x due to
predation by the predator species y2. Our numerical tests showed that for all values of this
parameter in its sensitivity range [0.001, 5], the system converges to the third eqm. point i.e.
the second predator is extinct. The following table gives some examples,

Parameter values
Stable equilibrium point(s)
that the system converge to

Status of the system
Figure(s)
that demonstrate it

ω2 = 0.1 EP3 = (0.32, 1., 0.) Extinction of the second predator Figure 8.20
ω2 = 1 EP3 = (0.32, 1., 0.) Extinction of the second species Figure 8.21
ω2 = 5 EP3 = (0.32, 1., 0.) Extinction of the second predator. Figure 8.22

Table 8.7: Characteristics of the system for different values of ω2

However this is not surprising as the equilibrium values of x, y1, y2 are not very sensitive to
ω2 (see Tables 5.9 , 5.10 or Tables 5.13 , 5.14).

8.8 More than one stable eqm. point in the system

For some parameter sets, there are more than one stable equilibrium point. However, our
numerical investigation showed that the only possible situation is two stable eqm. points
which are EP3 i.e. first predator y1 goes extinct, and EP4 i.e. second predator y2 goes
extinct. As an example, we give the following parameter set

PM34 = [0.000504, 0.68, 2.96, 5.53, 9.11, 0.51, 0.06, 1.83]

. In this case, the initial conditions determine which eqm. point the solution will converge
to (see Figure 8.23.)

If we for example start with initial condition x0, y10, y20 = (4, 3, 2) the solution tend to
EP3 = (3.02, 1., 0.), but if we start with x0, y10, y20 = (5, 0.02, 3) the solution tends to the
stable eqm. point EP4 = (10.81, 0., 1.46).

106

8.9 Globally stable interior eqm. point EP5

The interior equilibrium point is globally stable if det(M) = 2a
(
4bω1ω2 − (bψ − φ)2

)
> 0.

There are many parameter sets that satisfy this condition and here we show one example

PMgs =
[
6.95× 10−5, 0.79, 5.58, 7.59, 3.1, 2.99, 1.75, 0.11

]
and for this det(M) = 4.17× 10−5 > 0. To quantitatively check the local stability analysis
of the system for this parameter set, we present the equilibrium points, their corresponding
eigenvalues, and stability in Table 8.8.

Equilibrium point Eigenvalues (Local) Stability

(0, 0, 0) [(1 + 0i), (−5.58 + 0i), (−7.59 + 0i)] Unstable
(14397.188, 0, 0) [(−1 + 0i, (14391.61 + 0i), (11384.33 + 0i)] Unstable
(7.33, 0.999, 0) [(−0.88 + 2.56i, (−0.88− 2.56i), (1.2 + 0i)] Unstable
(9.723, 0.0, 1.263) [(−0.05 + 2.77i, (−0.05− 2.77i), (1.05 + 0i)] Unstable

(8.127, 0.408, 0.748) [(−0.17 + 3.0i), (−0.17− 3.04i, (−0.43 + 0i)]
Locally and globally
asymptotically stable

Table 8.8: Equilibrium points and their stability for the parameter set PMgs

We observe from the table that for the interior equilibrium point, the first two eigenvalues
are complex with a negative real part and the third one is negative real, thus it is locally
stable, and since it satisfied the global stability condition, it is globally stable as well. In
terms of biology, this means that the population will coexist at a concentration equal to their
equilibrium values. However, the concentrations will not exactly be equal to their equilibrium
ones but will oscillate slightly around them.

8.10 Periodic behavior

For many parameter sets, the system has a periodic solution or tends toward a periodic
solution after some transient oscillation. Here we present two examples of such behavior.
The first one clearly shows a limit cycle while the other is periodic, but the limit cycle is
difficult to find at least graphically in the phase portrait. The procedure to find the parameter
sets which give periodic or chaotic solutions is as follows (See appendix B.3).

107

1. We sample parameters using the Saltelli sampling method from the SALib library for
sensitivity analysis, which is done in the sensitivity analysis section.

2. We make a python function that classifies stable eqm. points and find parameter sets
for which there is not any stable eqm. points and these parameters give a periodic or
chaotic solution.

The first parameter set that gives a periodic solution is,

PMperiodic1 = [0.000622, 0.28, 5.20, 1.82, 1.96, 4.23, 0.42, 2.09]

and local stability analysis for this parameter set is given Table 8.9.

Equilibrium point Eigenvalues (Local) Stability

(0, 0, 0) [(1 + 0i), (−5.19 + 0i), (−1.82 + 0i)] Unstable
(1607.06, 0, 0) [(−1 + 0i), (1601.87 + 0i), (444.87 + 0i)] Unstable
(5.61, 1.0, 0.0) [(−0.21 + 2.36i), (−0.21− 2.36i), (3.96 + 0i)] Unstable
(14.0, 0.0, 3.57) [(−1.04 + 1.67i), (−1.04− 1.67i), (6.86 + 0i)] Unstable
(6.64, 0.32, 2.41) [(0.01 + 2.33i), (0.01− 2.33i), (−1.57 + 0i)] Unstable

Table 8.9: Equilibrium points and their stability for the parameter set PMperiodic1

From the table we observe that for each equilibrium point there is at least one positive
real eigenvalue or complex eigenvalue with a positive real part, thus they are unstable. To
investigate the periodicity of the solution, we analyze the time series of the solution with the
initial condition (6.67, 0.35, 2.44). We find the peaks and their corresponding time and the
time difference between them for x, y1 and y2. Here we show these properties for the last five

108

peaks only,[
tXpeaks

Xpeaks

]
=

[
337.609882 340.36990828 343.12660121 345.88662749 348.64665378

8.55990328 8.5607464 8.56154942 8.56229294 8.56297974

]
[
tY1peaks

Y1peaks

]
=

[
337.999886 340.759912 343.516605 346.276631 349.036657

0.72170403 0.72190582 0.72210336 0.72228477 0.72245119

]
[
tY2peaks

Y2peaks

]
=

[
338.239888 340.99658092 343.75660721 346.51663349 349.27665978

4.13092759 4.13180079 4.13262109 4.13337396 4.1340649

]
Tx = [2.7566973, 2.7566973, 2.76003067, 2.7566973]

Ty1 = [2.7566973, 2.7566973, 2.76003067, 2.7566973]

Ty2 = [2.7566973, 2.760030672.7566973, 2.7566973]

From above we see that the time differences between two successive peaks Tx = Ty1 = Ty2 ≈
2.67, are the same (see Figure 8.25 c) thus, the solution is periodic with period 2.67 non-
dimensional time unit (to get the dimensional one we have to divide it by the specific growth
rate of the bacteria r then the unit will be day).

Another way to prove the existence of a periodic solution is by calculating the Lyapunov
exponent spectrum even though it is enough to just compute the largest one LLE(λ1). For
a periodic solution (limit cycle), the largest Lyapunov exponent must be zero and the two
others must be negative (see Table 3.1). For calculating the spectrum of Lyapunov exponents
(LEs) and the largest Lyapunov exponent LLE, we followed the bellow procedure,

1. We wrote a python code (see appendix B.3) based on the Sprott method [52] and tested
it for the Lorenz system with two reference values, and we got the expected results.

2. We used a Matlab code by [18] for calculating the whole spectrum of Lyapunov expo-
nents based on [61]. This code gave reasonable, but not completely correct results for
the Lorenz system and reference values, especially for the zero exponent for which the
result was accurate until two decimals.

3. We used Julia Dynamical system library [11] which has a chaos tool and can calcu-
late both the Largest Lyapunov exponent LLE(λ1) and the spectrum of Lyapunov
exponents LEs based on [16] and [26], respectively.

4. As a final test we calculate the exponents for increasingly large time t to check conver-
gence and also calculate the trace of the Jacobian matrix averaged over the orbit 〈TrJ〉t

109

for the same amount of time and compare it with the sum of Lyapunov exponents
∑
λi

and if they are significantly equal we accept the values.

5. Note that the choice of the ODE solver plays an important role here and it is best to
check the calculation for stiff and non stiff solver and compare the results.

The Lyapunov characteristics for the parameter set PMperiodic1 are given in Table 8.10 :

method Python Sprott method Matlab Wolf method Julia Dynamical system library

IC [6.67, 0.35, 2.44] [6.67, 0.35, 2.44] [6.67, 0.35, 2.44]

t 100000 100000 100000

LEs, LLE 1.827 798× 10−6 [0.000028,−0.027113,−1.513829] [5.192 108× 10−5,−0.027137,−1.513803], 1.818 734× 10−7∑
λi −1.486688 −1.540888

〈TrJ〉t −1.540914

Table 8.10: Lyapunov exponents using different methods and algorithms for the parameter
set PMperiodic1

We observe from the previous table that the largest Lyapunov exponent is approximately
zero and the two others are negative, thus there exists a limit cycle attractor in the system
(see Figure 8.26).

The second parameter set that gives a periodic solution is

PMperiodic2 = [0.0002023, 0.16, 8.81, 3.22, 3.06, 4.0, 1.01, 0.09]

and local stability analysis is given in Table 8.11 :

Equilibrium point Eigenvalues (Local) Stability

(0, 0, 0) [(1 + 0i), (−9.79 + 0i), (−4.33 + 0i)] Unstable
(4935.74, 0, 0) [(−1 + 0i), (2494.87 + 0i), (697.14 + 0i)] Unstable
(9.82, 1., 0.) [(−0.37 + 3.22i), (−0.37− 3.22i), (2.7 + 0i)] Unstable
(20.06, 0., 6.04) [(−0.09 + 2.11i), (−0.09− 2.11i), (6.11 + 0i)] Unstable
(11.12, 0.36, 3.86) [(0.53 + 2.66i), (0.53− 2.66i), (−1.44 + 0i)]] Unstable

Table 8.11: Equilibrium points and their stability for the parameter set PMperiodic2

From the table we observe that for each equilibrium point there exists at least one positive
real eigenvalue or complex eigenvalue with a positive real part, thus they are unstable. To

110

check the periodicity of the solution, we analyze the time series for the solution starting from
third initial condition (see Figure 8.27). We find the peaks, their corresponding times and
the time difference between them for x, y1 and y2. Here we just show these properties for the
last five peaks,[

tXpeaks

Xpeaks

]
=

[
970.01323338 976.20325401 982.3899413 988.57996193 994.76998257

60.65041116 60.65433949 60.66371714 60.67277167 60.68314734

]
[
tY1peaks

Y1peaks

]
=

[
970.10656702 976.29658766 982.48327494 988.67329558 994.86331621

18.75377117 18.74584112 18.76084647 18.762193 18.76832601

]
[
tY2peaks

Y2peaks

]
=

[
970.249901 976.439921 982.629942 988.819963 995.009983

62.2803533 62.26980152 62.31311859 62.27559734 62.3606805

]
Tx = [6.19002063, 6.19002063, 6.18668729, 6.19002063, 6.19002063]

Ty2 = [6.19002063, 6.19002063, 6.18668729, 6.19002063, 6.19002063]

Ty2 = [6.18668729, 6.19002063, 6.19002063, 6.19002063, 6.19002063]

From above we see that the time differences between two successive peaks Tx = Ty1 = Ty2 ≈
6.19, are the same (see Figure 8.27), thus the solution is periodic with period 6.19. To
quantitatively investigate the periodicity of the solution, we calculate Lyapunov exponents
that are shown in Table 8.12 :

method Python Sprott method Matlab Wolf method Julia Dynamical system library

IC [11.155, 0.391, 3.893] [11.155, 0.391, 3.893] [11.155, 0.391, 3.893]

t 100000 1000000 10000000

LEs, LE −5.386 401× 10−5 [−0.001379,−0.209325,−0.209373] [−0.000196,−0.209965,−0.209965],−0.000196∑
λi −0.420077 −0.420126

〈TrJ〉t −0.400393

Table 8.12: Lyapunov exponents using different methods and algorithms for the parameter
set PMperiodic2

From the above table, we observe the largest Lyapunov exponent doesn’t become significantly
zero even though we used a large averaging time. This may be due to the fact that it is a
transient state between periodic and chaotic systems.

The common feature that we can observe from the two examples and related figures, is that
the bacteria x is the first to reach a peak, then comes the first predator protozoa which

111

preys on the bacteria and reaches its peak concentration. Finally comes the second predator
Daphnia which preys on both of them. After that, all species reach their minimum values
with bacteria having the highest concentration and then the cycle repeats for an indefinite
amount of time, i.e. the three species coexist but in a period fashion. This behavior is not
very rare in nature as many populations exhibit cyclic behavior depending on food availability
and other natural factors.

8.11 Chaotic behavior

There are many parameter sets for which the solution has a chaotic behavior, and here we
study one of them. The parameter set is given by,

PMchaos = [0.000399, 0.28, 9.79, 4.33, 0.16, 4.1, 0.74, 0.17]

and the local stability analysis is given in Table 8.13,

Equilibrium point Eigenvalues (Local) Stability

(0, 0, 0) [(1 + 0i), (−9.79 + 0i), (−4.33 + 0i)] Unstable
(2504.65, 0, 0) [(−1 + 0i), (2494.87 + 0i), (697.14 + 0i)] Unstable
(10.52, 1., 0.) [(−0.37 + 3.22i), (−0.37− 3.22j), (2.7 + 0i)] Unstable
(16.06, 0.0, 3.55) [(−0.09 + 2.11i), (−0.09− 2.11i), (6.11 + 0i)] Unstable
(10.17, 0.39, 2.18) [(0.53 + 2.66i), (0.53− 2.66j), (−1.44 + 0i)] Unstable

Table 8.13: Equilibrium points and their stability for the parameter set PMchaos

As we observe from the table, none of the equilibrium points are stable because for each of
them there exists a positive real eigenvalue or a complex one with a positive real part. To
check the periodicity or aperiodicity of the system, we plot the solution of the system for
several initial conditions (see Figure 8.29) and analyze one of them. Here we find the peaks,
their corresponding times, and compute the time difference between two successive peaks
for all variables Tx, Ty1 , Ty2 for the initial condition (0.1, 0.2, 0.3) (see Figure 8.29 b). These
quantities for the last six peaks are given by the following,

112

[
tXpeaks

Xpeaks

]
=

[
948.666 961.137 966.683 979.983 984.457 996.0299

43.204 115.916 49.311 124.002 39.039 107.222

]
[
tY1peaks

Y1peaks

]
=

[
948.796 961.189 966.799 980.037 984.597 996.087

13.431 44.199 16.001 47.664 11.684 40.475

]
[
tY2peaks

Y1peaks

]
=

[
948.963 961.493 966.963 980.357 984.769 996.363

112.710 16.481 127.037 8.233 97.897 30.936

]
Tx =[12.470, 5.547, 13.3004.473, 11.573]

Ty1 =[12.393, 5.610, 13.236, 4.560, 11.490]

Ty2 =[12.530, 5.470, 13.393, 4.413, 11.593]

We clearly see that these time differences are not equal. Therefore, the system is not periodic.
Now we know that the system is not periodic. Let us check sensitivity to initial conditions
by calculating the Lyapunov exponents or the largest Lyapunov exponents. The Lyapunov
exponents using different algorithms are given in the following table:

method Python Sprott method Matlab Wolf method Julia Dynamical system library

IC [10.2, 0.416, 2.207] [10.2, 0.416, 2.207] [10.2, 0.416, 2.207]

t 100000 100000 1000000

LEs, LE 0.045556 [0.037707, 0.000077,−0.428533] [0.046657, 0.066233,−0.503393], 0.046646∑
λi −0.390749 −0.390503

〈TrJ〉t −0.270883

Table 8.14: Lyapunov exponents using different methods and algorithms for the parameter
set PMchaos

It is evident from the previous table that the largest Lyapunov exponent is positive and the
second one is very small positive and the third one is negative, indicating sensitive dependence
on the initial condition, i.e. the system is chaotic for that parameter set (see Figures 8.29 ,
8.30 , 8.31).

113

Furthermore, we observe again that the bacteria reach its peak concentration then got preyed
on by the first predator y1 which reach it peak concentration as well. After that, the second
predator preys on the first predator and reaches its peak concentration. After some time
and as the concentration of bacteria is very low, the second predator population decline
significantly, and all populations reach their minimum concentration with the bacteria having
the largest one around 0.0005 and then this repeats in a non-periodic fashion.

Remark. For the previous chaotic parameter, we can define the following basin of attraction

B = {(x, y1, y2) : x > 0, y1 > 0, y2 > 0 and (x, y1, y2) 6= EP5}

. Therefore, the trajectories must start from B to converge to the strange attractor. Other-
wise, they will converge to one of the equilibrium points.

Now we know that the parameter set PMchaos gives rise to chaos, let us investigate if we
will still have chaos if we change on of the parameter at a time in their sensitivity range.
We increase each parameter with step 0.1 and check the characteristics of the system. The
results are summarized in the following table:

Parameter Chaotic Periodic Equilibrium point

b [0.22, 0.436] [0.437, 0.443], [0.1, 0.21] [0.444, 10]

δ1 [7.53, 10] [2.6399, 7.43] [0.1, 2.6299]

δ2 [2.8, 4.9] [2.7, 2.79], [5, 6.3] [0.2, 2.6], [6.4, 10]

ψ [0.1, 2.2] [2.3, 6] [6.1, 10]

φ [3.5001, 5] [2.1001, 3.4001] [0.0001, 2.0001]

ω1 [0.001, 1.301] [1.401, 9.901] None
ω2 [0.001, 0.201] [0.301, 5] None

Table 8.15: Parameter ranges that give different solution taking the parameter set PMchaos

as a base and changing one parameter at a time

We observe from the previous table that the parameters b, δ2, ψ drive the system from periodic
or chaotic behavior to equilibrium solutions which is important result in terms of controlling
the system.

114

8.12 Effect of the parameter s on global stability of the

coexistence equilibrium point.

Let us investigate the effect of bacteria inflow to the system on the coexistence of the three
species. For this purpose, we use the parameter set PMgs for which we know that the
system has a globally stable interior equilibrium point. Our numerical tests showed that for
s ∈ [0.1, 3] the system will have a globally stable interior equilibrium point, but for s ≥ 4

the first predator became extinct. The following table gives characteristics of the system for
different values of this parameter:

Parameter values
Stable equilibrium point(s)
that the system converge to

Status of the system
Figure(s) that
demonstrate it

s = 0 EP5 = (8.118, 0.415, 0.74) Coexistence of all three species Figure 8.24
s = 0.5 EP5 = (8.395, 0.347, 0.90) Coexistence of all three species Figure 8.32
s = 3 EP5 = (9.575, 0.055, 1.592) Coexistence of all three species
s = 4 EP3 = (9.804, 0., 1.781) Extinction of the first predator
s = 10 EP3 = (9.888, 0.0, 2.545) Extinction of first predator Figure 8.33

Table 8.16: Effect of s at on global stability of the coexistence equilibrium point.

From the previous table we conclude that increasing the value of s ,the species will lose their
coexistence due to the fact that the first predator will go extinct.

115

(a) Time series for b = 0.1. The populations converge to the eqm. point EP3 = (0.32, 0.99, 0).

(b) Phase portrait for b = 0.1 and several initial conditions. All trajectories converge to the eqm.

point EP3 = (0.32, 0.99, 0).

Figure 8.2: Time series and phase portrait for the system for b = 0.1 and other equals to
their base values.

116

(a) Time series for b = 0.7. The solution (continuous lines) that starts from (4, 3, 0.02) converges

to EP3 = (0.32, 1., 0.), while the solution (dashed lines) starts from (4, 3, 0.4 converges to EP4 =

(1.06, 0., 1.43).

(b) Phase portrait for b = 0.7 and several initial conditions. The yellow and blue trajectories represent

the continuous and dashed solutions from time series.

Figure 8.3: Time series and phase portrait of the system for b = 1 and other equal to their
base values.

117

(a) Time series for b = 10. The populations converge to EP4 = (0.07, 0., 0.1).

(b) Phase portrait for b = 10 several initial conditions. All trajectories converge to EP4 =

(0.07, 0., 0.1).

Figure 8.4: Time series and phase portrait of the system for b = 10 and other equal to their
base values.

118

(a) Time series for δ1 = 0.1. The populations converge to EP3 = (0.41, 1., 0.).

(b) Phase portrait forδ1 = 0.1 and several initial conditions. All trajectories converge to EP3 =

(0.41, 1., 0.).

Figure 8.5: Time series and phase portrait of the system for δ1 = 0.1 and other equal to their
base values.

119

(a) Time series for δ1 = 1. The populations converge to EP5 = (2.35, 0.17, 2.98).

(b) Phase portrait for δ1 = 1 and several initial conditions. All trajectories converge to EP5 =

(2.35, 0.17, 2.98).

Figure 8.6: Time series and phase portrait of the system for δ1 = 1 and other equal to their
base values.

120

(a) Time series for δ1 = 10. The populations converge to EP4 = (2.64, 0., 3.57).

(b) Phase portrait for δ1 = 10 and several initial conditions. All trajectories converge to EP4 =

(2.64, 0., 3.57).

Figure 8.7: Time series and phase portrait of the system for δ1 = 10 and other equal to their
base values.

121

(a) Time series for δ2 = 0.1. The populations converge to EP4 = (1.36, 0., 3.57) .

(b) Phase portrait for δ2 = 0.1 and several initial conditions. All trajectories converge to EP4 =

(1.36, 0., 3.57).

Figure 8.8: Time series and phase portrait of the system for δ2 = 0.1 and other equal to their
base values.

122

(a) Time series Time series for δ2 = 0.2. The populations converge to EP5 = (1.21, 0.29, 2.54).

(b) Phase portrait for δ2 = 0.2 and several initial conditions. All trajectories converge to EP5 =

(1.21, 0.29, 2.54).

Figure 8.9: Time series and phase portrait of the system for δ2 = 0.2 and other equal to their
base values.

123

(a) Time series Time series for δ2 = 10. The populations converge to EP3 = (0.32, 1., 0.).

(b) [Phase portrait for δ2 = 10 and several initial conditions. All trajectories converge to EP3 =

(0.32, 1., 0.).

Figure 8.10: Time series and phase portrait of the system for δ2 = 10 and other equal to
their base values.

124

(a) Time series for ψ = 1. The populations converge to EP3 = (0.32, 1., 0.).

(b) Phase portrait for ψ = 1 and different initial condition. All trajectories converge to EP3 =

(0.32, 1., 0.).

Figure 8.11: Time series and phase portrait of the system for ψ = 1 and other equal to their
base values.

125

(a) Time series for ψ = 10. The dashed lines represent the solution that starts from (10, 8, 5) converges

to EP3 = (0.32, 1., 0.), while the continuous lines represent the solution that starts from (10, 0, 5)

converge to the EP4 = (2.64, 0., 3.57).

(b) Phase portrait for ψ = 10 and two different initial conditions. The blue trajectory represents the

dashed solution while the red one represents the continuous line solution from the time series.

Figure 8.12: Time series and phase portrait of the system for ψ = 10 and other equal to their
base values.

126

(a) Time series for φ = 0.37. The system converges to EP3 = (0.32, 1, 0).

(b) Phase portrait φ = 0.37 and several initial conditions. All trajectories converge to EP3 =

(0.32, 1, 0).

Figure 8.13: Time series and phase portrait of the system for φ = 0.37 and other equal to
their base values.

127

(a) Time series for φ = 0.371. The system converges to EP5 = (0.32, 1, 0.007).

(b) Phase portrait for φ = 0.371. and several initial conditions. All trajectories converge to EP5 =

(0.32, 1, 0.007).

Figure 8.14: Time series and phase portrait of the system for φ = 0.371 and other equal to
their base values.

128

(a) Time series for φ = 1.234. The system converges to EP5 = (1.25, 0.26, 2.65) but after long

oscilatioin.

(b) Phase portrait for φ = 1.234 and several initial conditions. The cyan trajectory starts

from (5.32, 6., 0.) and converges to (0.32, 1., 0.), the black trajectory starts from (7.64, 0., 8.57)

and converges to (2.64, 0., 3.57), and finally the blue, red, and yellow trajectories that start

from (1.28, 0.29, 2.68) , (10, 8, 5) , (0.01, 0.02, 0.03), respectively converge to the interior eqm. point

EP5 = (1.25, 0.26, 2.65) but after long time oscillation because it is a border case between stable eqm.

point and periodic solution.

Figure 8.15: Time series and phase portrait of the system for φ = 1.234 and other equal to
their base values.

129

(a) Time series for φ = 1.235. The system is periodic with period 6.39.

(b) peaks of the solution that starts from the initial condition (1.28, 0.29, 2.68).

Figure 8.16: Time series,and peaks of the system for φ = 1.235 and other equal to their base
values.

130

Figure 8.17: Phase portrait for φ = 1.235 and several initial conditions. There is a stable
limit cycle between the blue and yellow trajectories. It is stable because the blue trajectory
starts near the interior eqm. point at (1.28, 0.29, 2.68) and converges outwardly to the limit
cycle, the red and yellow trajectories that start from (10, 8, 5) , (0.01, 0.02, 0.03), respectively
and converge inwardly toward the limit cycle. The limit cycle has a period of 6.393.

131

(a) Time series for ω1 = 0.1. The populations converge to EP3 = (0.11, 1., 0.).

(b) Phase portrait for different initial conditions. All trajectories converge to EP3 = (0.11, 1., 0.).

Figure 8.18: Time series and phase portrait of the system for ω1 = 0.1 and other equal to
their base values.

132

(a) Time series for ω1 = 10. The populations converge to EP5 = (2.46, 0.11, 3.19).

(b) Phase portrait for different initial conditions. All trajectories converge to EP5 = (2.46, 0.11, 3.19).

Figure 8.19: Time series and phase portrait of the system for ω1 = 10 and other equal to
their base values.

133

(a) Time series for ω2 = 0.1. The populations converge to EP3 = (0.32, 1., 0.).

(b) Phase portrait for different initial conditions. All trajectories converge to EP3 = (0.32, 1., 0.).

Figure 8.20: Time series and phase portrait of the system for ω2 = 0.1 and other equals to
their base values.

134

(a) Time series for ω2 = 1. The populations converge to EP3 = (0.32, 1., 0.).

(b) Phase portrait for different initial conditions. All trajectories converge to EP3 = (0.32, 1., 0.).

Figure 8.21: Time series and phase portrait of the system for ω2 = 1 and other equal to their
base values.

135

(a) Time series for ω2 = 5. The populations converge to EP3 = (0.32, 1., 0.)

(b) Phase portrait for different initial conditions. All trajectories converge to EP3 = (0.32, 1., 0.).

Figure 8.22: Time series and phase portrait of the system for ω2 = 5 and others equal to
their base values.

136

(a) Time series for PM34 and two different initial conditions. The dashed solution starts from

(4, 3, 2) and converges to EP3 = (3.02, 1., 0.), while the continuous solution starts from (5, 0.02, 3)

and converges to EP4 = (10.81, 0., 1.46).

(b) Phase portrait for PM34 and several initial conditions. The blue trajectories represent the dashed

solution, whereas the cyan trajectory represents the continuous solution from time series.

Figure 8.23: Time series and phase portrait for the system for PM34 and two different initial
conditions.

137

(a) Time series for the parameter set PMgs and four different initial conditions. All solutions converge

to the eqm. point (8.13, 0.41, 0.75). Thus, it is globally stable.

(b) Phase portrait for several initial conditions. The blue, red, green, and black trajectories represent

solutions that start from (20, 15, 10), (10, 8, 5), (0.8, 0.6, 0.4), (0.01, 0.02, 0.03), respectively, while the

cyan trajectories correspond to solutions that start from random initial conditions between zero and

unity. All trajectories converge to the interior equilibrium point (8.13, 0.41, 0.75), showing its global

stability.

Figure 8.24: Time series and phase portrait for the system for the parameter set PMgs.

138

(a) Time series for the parameter set PMperiodic1 and four different initial conditions. The colors red,

blue, and green represent x, y1, and y2 respectively. The solution in the upper left plot converge to

(5.61, 1.0, 0.0), upper right to (14.0, 0.0, 3.57). However, the solutions in the two bottom plots are

periodic with period 2.76.

(b) Peaks of the solution that starts from the initial condition (6.67, 0.35, 2.44). All the peaks became

constant in finite time (at t ≥ 300.)

Figure 8.25: Time series and peaks of the system for the parameter set PMperiodic1 .

139

(a) Phase portrait.

(b) Phase portrait-different view angle.

Figure 8.26: Phase portrait of the system for the parameter set PMperiodic1 and five different
initial conditions. The cyan, black, blue, and red trajectories represent the solutions in the
upper left, upper right, bottom left and bottom right from time series, respectively. The
yellow trajectory represents the solution that starts from (0.01, 0.02, 0.03). All trajectories
except cyan and black ones converge to the limit cycle, which has a period of 2.76. It is
between the blue and yellow trajectories and stable as the blue trajectory converges outwardly
to it and the yellow and red trajectories converge inwardly to it.

140

(a) Time series for the parameter set PMperiodic2 and four different initial conditions. The colors red,

blue, and green represent x, y1, and y2 respectively. The solution in the upper left plot converge to

(9.82, 1., 0.), upper right to (20.06, 0., 6.04). However the solution in the two bottom plots are peridic

with period 6.19.

(b) peaks of the solution that starts from the initial conditions (11.15.0.39, 3.89). The peaks became

constant after some transient time.

Figure 8.27: Time series and peaks of the system for PMperiodic2 .

141

(a) Phase portrait.

(b) Phase portrait-different view angle.

Figure 8.28: Phase portrait of the system for the parameter set PMperiodic2 . The cyan, black,
blue, and red trajectories represent the solutions in the upper left, upper right, bottom
left, and bottom right from time series, respectively. The yellow and magenta trajectories
start from (10., 8., 5.), (60.153, 2.263, 0.04). All trajectories except the cyan and black ones
converge to the shown attractor.

142

(a) Time series for the parameter set PMchaos and four different initial conditions. All solutions

exhibit some kind of cyclic behavior, but they are not periodic.

(b) peaks of the solution that starts from the initial conditions (0.1, 0.2, 0.3). As we see, the peaks

varies significantly with time.

Figure 8.29: Time series and peaks of the system for the parameter set PMchaos.

143

(a) Phase portrait.

(b) Phase portrait-different angle of view.

Figure 8.30: Phase portrait of the system for PMchaos and four different initial conditions.
The cyan, blue, red, and yellow trajectories represent the solutions in the upper left, upper
right, bottom left, and bottom right in the time series, respectively. The blue points represent
the equilibrium points in the system. All the trajectories converge to the shown strange
attractor.

144

(a) Integration time is 11.

(b) Integration time is 1000.

Figure 8.31: Phase portrait of the system for the parameter set PMchaos and two initial
condition with separation 1× 10−8. The two trajectories start from (0.001, 0.002, 0.003) with
separation 1× 10−8 and diverge from each other in short time (t ≥ 11), indicating sensitivity
to initial conditions and chaos.

145

(a) Time series for s = 0.5 and four different initial conditions. All solutions converge to EP5 =

(8.395, 0.347, 0.90), showing its global stability.

(b) Phase portrait for s = 0.5 and four different initial conditions. All trajectories converge to

EP5 = (8.395, 0.347, 0.90), showing its global stability.

Figure 8.32: Time series and phase portrait of the system for PMgs and s = 0.5.

146

(a) Time series for s = 10 and four different initial conditions. All solutions converge to EP3 =

(9.888, 0.0, 2.545).

(b) Phase portrait for s = 10 and four different initial conditions. All trajectories converge to

EP3 = (9.888, 0.0, 2.545).

Figure 8.33: Time series and phase portrait of the system for PMgs and s = 10.

147

Chapter 9

Summary, conclusion, and further work

9.1 Summary and conclusion

We have made a dynamical model for the interaction between pathogenic bacteria and two
other microorganisms that feed on them. The model consists of 3 coupled nonlinear ordinary
differential equations. We have performed linear stability analysis of the system and proved
that the system has five non-negative equilibrium points where the system can converge to.
The first one is the zero-equilibrium point, i.e. none of the species are present and it is always
unstable in x direction but stable in y1 and y2 directions. Consequently, any perturbation
in the bacteria population will lead the system to other equilibrium points. However, if the
populations of Daphnia or Protozoa increase, the system will converge back to it. The second
one is when only bacteria x is present and it is an unstable saddle point as it is stable in the
x direction and unstable in the y1y2 plane. This means that if we start with x > 0, y1, y2 = 0

and the number of bacteria changed, the system will converge to it after some time. The
third and fourth equilibrium points are when one of the predators (protozoa y1 or Daphnia
y2) does not exist and these could be stable or unstable based on some condition on the
parameters. The last equilibrium point is the interior equilibrium point where all species
are present and is the most important one. This point exists only if certain conditions
on parameters are satisfied. Furthermore, it is globally stable if the following condition on
parameters 2a

(
4bω1ω2 − (bψ − φ)2

)
> 0 is satisfied. Its global stability means that if we start

with initial condition with all species have concentrations greater than zero, the system will
converge to it in finite time. Consequently, all species will coexist for an indefinite amount
of time and with constant concentrations.

148

The question that may arise here is, what happens if the system does not have any stable
equilibrium points? To where the system will converge given that the system is bounded?
To answer these important questions we conducted random sampling for parameters in the
system using, for example, the Saltelli sampling method from the sensitivity analysis library
[19] and classified the parameter sets that gave stable equilibrium points and the ones for
which the system does not have any stable equilibrium points. Our numerical simulation
for these parameter sets showed that the system will exhibit a periodic behavior and may
converge to a limit cycle (see Figures 8.25,8.26) or will be chaotic (see figures 8.29 and 8.30)
with all solutions converge to some kind of strange attractor and it will be difficult to predict
the long time behavior of the system due to the sensitive dependence on the initial condition.

Usually, it is not biologically desirable to have a system that exhibits periodic or chaotic
behavior. To drive the system from periodicity or chaos, we can use some parameters as
a control measure. In the case of periodic behavior, we observed that the parameter φ
can be used to drive the system into or out of periodicity. Additionally, in the case of a
chaotic system, we can use one of the parameters b, δ2, ψ to drive the system into one of the
equilibrium points (see Table 8.15).

It is known that there is a direct flow of bacteria into surface water resources by fecal contam-
ination of some animals either directly or by contaminated water that flows into these water
resources in fall or in summer when the snow melts. We have investigated the effect of this
on the coexistence of the species for one set of parameters (see Table 8.16). The conclusion
was that increasing this effect above a critical value will surprisingly lead to the extinction
of the first predator, Protozoa.

Our reduced dimensional system 4.1 had 12 parameters. In order to reduce the number
of parameters we nondimensionalized the system using the scaling 4.2 and we obtained the
system 4.3 which has 8. To investigate which parameters are the important ones and have
the most effect on the model output, we performed a global sensitivity analysis using four
different sensitivity analysis methods and for four variables of interest which are the max,
mean, median, equilibrium value. As a result, we can arrange the parameter as follows in
terms of importance b, δ2, δ1, ω2, ω1, ψ, φ, a, x0, y10, y20 for all variables of interest except the
maximum value for which the sensitive parameters are x0 for x, y10 for y1 and ω2, b, y20 for
max value of y2. The parameter b is the most sensitive one, and this is not surprising as it
represents the ratio between the food conversion efficiency of the two predators, i.e. their
ability to convert the energy gained by preying on bacteria to new predators.

149

One question which could be of interest to biologists and authorities is, do we have to measure
all the species to observe the state of the system or it is enough to only observe one of them?
In an attempt to answer this question, we have investigated the observability of the system
4.3 and found out that the system is observable by only observing one of the species. Usually,
water quality authorities only measure the concentration of bacteria in surface drinking water
resources, and it is valuable to know that this is enough to observe the whole system.

Furthermore, we analyzed the bacteria data from different water resources in Bergen munici-
pality in Norway. For that purpose, we computed the statistics for each individual bacterium
and the total number of bacteria along with scatter plots of bacteria as a function of time.
From this simple analysis, we found out that there is aperiodicity in the time evolution of the
bacteria. There are periods of upspring where the concentration of bacteria is highest and
periods where the concentration is low or zero. If we compare Figure 8.29 with Figures 7.2,
7.1, 7.3 , we can see some kind of match between them in terms of existence of spikes and
cyclic behavior. Consequently, our model managed to demonstrate the general trend of data
for the chaotic parameter set. This may indicate that there is indeed chaos in real life, and
predictability of the system is not possible for a long time. However,this needs more detailed
study.

In conclusion, our proposed model for the interaction between the three species, Bacteria,
Protozoa, and Daphnia gives interesting dynamics. There are two possible scenarios for the
interaction between these species, namely extinction of one of the predators or coexistence
depending on the initial condition and values of the parameters. In terms of coexistence, the
model demonstrates three types,

• coexistence at a stable equilibrium point: i.e. all three species coexist at constant
concentrations.

• coexistence in a periodic fashion.

• coexistence in a chaotic fashion, i.e. the cycle repeats but not in the same manner, and
it is not possible to predict the future of the system for a long time.

9.2 Further work

There are several concepts and ideas in this project that can be checked, but because of the
scope of time, we have not focused on them. One could use Monod prey dependent functional
response instead of the logistic equation for bacteria growth and Contois or Arditi-Ginzburg

150

II which are ratio-dependent instead of Lotka-Volterra linear functional response and check
if one can get more interesting dynamics. However, Kesh et al. [28] showed that this is not
the case for Lotka-Volterra systems.

We have ignored the idea that some of the bacteria x become resistant to protozoa y1 digestion
and this is important in terms of biology. One suggestion is to multiply the interaction terms
xy1 by a factor (1 − Ω) where Ω could be a resistance factor or fraction of bacteria that
becomes resistant. If Ω = 0, then we come back to our model, but what will be the effect of
values of Ω that is greater than zero on the dynamics of the system.

Throughout the project, we ignored the parameter s(t) which represents the flux of bacteria
to the water system due to fecal contamination of animals. This could happen all the time,
especially in fall by the flux of accumulated water from rain into drinking water resources or
in the summer when the snow melts and moves down from the mountain to these resources.
Thus, it may be a good idea to make the parameter s time-dependent, not just a constant,
and study its effect on the system in terms of stability and sensitivity.

More work needs to be done to analyze bacteria data, for example, curve fitting, periodicity
detection, and maybe use the data to perform parameter estimation and to determine the
existence of chaos and match the results with chaos from the model.

On important concept in biological systems is controllability to investigate if the system is
controllable and choose the proper control function. Is it possible to control the bacteria
growth by, for example, increase the concentration of the predators y1 and y2 only? Can we
reach the total extinction of the bacteria by such a measure? These questions need more
detailed work.

Finally, In this work we only analyzed nondimensionalized version of the subsystem 4.1

and it would be interesting to analyze the non-reduced system 2.1 at least numerically and
investigate the dynamics.

151

152

Bibliography

[1] P. B. Adler, D. Smull, K. H. Beard, R. T. Choi, T. Furniss, A. Kulmatiski, J. M. Meiners,
A. T. Tredennick, and K. E. Veblen. Competition and coexistence in plant communi-
ties: intraspecific competition is stronger than interspecific competition. Ecology letters,
21(9):1319–1329, 2018.

[2] N. Ali, B. Mondal, L. N. Guin, and S. Chakravarty. Dynamics of species in a two
preys-one predator model system with help.

[3] R. Arditi and L. R. Ginzburg. How species interact: altering the standard view on trophic
ecology. Oxford University Press, 2012.

[4] F. Bichai, P. Payment, and B. Barbeau. Protection of waterborne pathogens by higher
organisms in drinking water: a review. Canadian journal of microbiology, 54(7):509–524,
2008.

[5] R. Blaustein, Y. Pachepsky, R. Hill, D. Shelton, and G. Whelan. Escherichia coli survival
in waters: temperature dependence. Water research, 47(2):569–578, 2013.

[6] E. Borgonovo. A new uncertainty importance measure. Reliability Engineering & System
Safety, 92(6):771–784, 2007.

[7] W. E. Boyce. Elementary differential equations and boundary value problems, 2017.

[8] M. N. Byappanahalli, M. B. Nevers, A. Korajkic, Z. R. Staley, and V. J. Harwood.
Enterococci in the environment. Microbiol. Mol. Biol. Rev., 76(4):685–706, 2012.

[9] F. Campolongo, J. Cariboni, and A. Saltelli. An effective screening design for sensitivity
analysis of large models. Environmental modelling & software, 22(10):1509–1518, 2007.

[10] D. Contois. Kinetics of bacterial growth: relationship between population density and
specific growth rate of continuous cultures. Microbiology, 21(1):40–50, 1959.

153

[11] G. Datseris. Dynamicalsystems.jl: A julia software library for chaos and nonlinear
dynamics. Journal of Open Source Software, 3(23):598, mar 2018.

[12] J. Dawes and M. Souza. A derivation of holling’s type i, ii and iii functional responses
in predator–prey systems. Journal of theoretical biology, 327:11–22, 2013.

[13] R. C. Dorf and R. H. Bishop. Modern control systems. Pearson, 2011.

[14] D. Ebert. Ecology, epidemiology, and evolution of parasitism in Daphnia. National
Library of Medicine, 2005.

[15] M. Elettreby. Two-prey one-predator model. Chaos, Solitons and Fractals, 39(5):2018–
2027, 2009.

[16] K. Geist, U. Parlitz, and W. Lauterborn. Comparison of different methods for computing
lyapunov exponents. Progress of theoretical physics, 83(5):875–893, 1990.

[17] G. Glen and K. Isaacs. Estimating sobol sensitivity indices using correlations. Environ-
mental Modelling & Software, 37:157–166, 2012.

[18] V. Govorukhin. Calculation lyapunov exponents for ode. https://www.mathworks.com/
matlabcentral/fileexchange/4628-calculation-lyapunov-exponents-for-ode„
2020.

[19] J. Herman and W. Usher. SALib: An open-source python library for sensitivity analysis.
The Journal of Open Source Software, 2(9), jan 2017.

[20] S. Hsu and S. P. Hubbell. Two predators competing for two prey species: an analysis of
macarthur’s model. Mathematical Biosciences, 47(3-4):143–171, 1979.

[21] A. O. S. I. V. I. . E. B. Johnsen, G.H. Vassdragsundersøkelser i ned-
børfeltene til vannverkene på byfjellene i bergen sommeren 2000. https:

//www.radgivende-biologer.no/rapporter/ar-2001/vassdragsundersokelser-

i-nedborfeltene-til-vannverkene-pa-byfjellene-i-bergen-sommeren-2000,
2001.

[22] G. H. . E. B. Johnsen. Vannkvalitet i jordalsvassdraget i 2016. https://www.radgivende-
biologer.no/rapporter/ar-2016/vannkvalitet-i-jordalsvassdraget-i-2016/,
2020.

[23] K. A. Johnson and R. S. Goody. The original michaelis constant: translation of the 1913
michaelis–menten paper. Biochemistry, 50(39):8264–8269, 2011.

154

https://www.mathworks.com/matlabcentral/fileexchange/4628-calculation-lyapunov-exponents-for-ode
https://www.mathworks.com/matlabcentral/fileexchange/4628-calculation-lyapunov-exponents-for-ode
https://www.radgivende-biologer.no/rapporter/ar-2001/ vassdragsundersokelser-i-nedborfeltene-til-vannverkene -pa-byfjellene-i-bergen-sommeren-2000
https://www.radgivende-biologer.no/rapporter/ar-2001/ vassdragsundersokelser-i-nedborfeltene-til-vannverkene -pa-byfjellene-i-bergen-sommeren-2000
https://www.radgivende-biologer.no/rapporter/ar-2001/ vassdragsundersokelser-i-nedborfeltene-til-vannverkene -pa-byfjellene-i-bergen-sommeren-2000
https://www.radgivende-biologer.no/rapporter/ar-2016/vannkvalitet-i-jordalsvassdraget-i-2016/
https://www.radgivende-biologer.no/rapporter/ar-2016/vannkvalitet-i-jordalsvassdraget-i-2016/

[24] C. Jost, O. Arino, and R. Arditi. About deterministic extinction in ratio-dependent
predator–prey models. Bulletin of Mathematical Biology, 61(1):19–32, 1999.

[25] K. Jürgens, J. M. Gasol, R. Massana, and C. Pedrós-Alió. Control of heterotrophic
bacteria and protozoans by daphnia pulex in the epilimnion of lake cisó. Archiv fur
Hydrobiologie, 131:55–55, 1994.

[26] H. Kantz. A robust method to estimate the maximal lyapunov exponent of a time series.
Physics letters A, 185(1):77–87, 1994.

[27] T. Kar and A. Batabyal. Persistence and stability of a two prey one predator system.
International Journal of Engineering, Science and Technology, 2(2):174–190, 2010.

[28] D. Kesh, A. Sarkar, and A. Roy. Persistence of two prey–one predator system with ratio-
dependent predator influence. Mathematical methods in the applied sciences, 23(4):347–
356, 2000.

[29] L. K. Korhonen and P. Martikalnon. Survival of escherichia coli and campylobacter
jejuni in untreated and filtered lake water. Journal of Applied Bacteriology, 71(4):379–
382, 1991.

[30] S. S. Lee. Analysis of dynamics in two-prey, one-predator model: Effect of the remained
carcass (theory of biomathematics and its applications iii). 2007.

[31] M. Manca, C. Callieri, and A. Cattaneo. Daphnia and ciliates: who is the prey? Journal
of Limnology, 66(2):170–173, 2007.

[32] C. D. Meyer. Matrix analysis and applied linear algebra, volume 71. Siam, 2000.

[33] R. Milo, P. Jorgensen, U. Moran, G. Weber, and M. Springer. Bionumbers–the database
of key numbers in molecular and cell biology. Nucleic acids research, 38(Database
issue):D750–D753, Jan 2010. 19854939[pmid].

[34] J. Monod. The growth of bacterial cultures. Annual review of microbiology, 3(1):371–394,
1949.

[35] M. D. Morris. Factorial sampling plans for preliminary computational experiments.
Technometrics, 33(2):161–174, 1991.

[36] J. D. Murray. Mathematical biology i: An introduction, volume i, 2003.

[37] K. Ogata and Y. Yang. Modern control engineering, volume 4. Prentice hall India, 2002.

155

[38] S. P. Otto and T. Day. A biologist’s guide to mathematical modeling in ecology and
evolution. Princeton University Press, 2011.

[39] D. Pal, P. Santra, and G. Mahapatra. Dynamical behavior of three species predator–prey
system with mutual support between non refuge prey. Ecological Genetics and Genomics,
3-5:1–6, 2017.

[40] E. Plischke. An effective algorithm for computing global sensitivity indices (easi). Reli-
ability Engineering & System Safety, 95(4):354–360, 2010.

[41] E. Plischke, E. Borgonovo, and C. L. Smith. Global sensitivity measures from given
data. Eur. J. Oper. Res., 226:536–550, 2013.

[42] K. S. Reddy, M. Srinivas, and C. P. Kumar. Dynamics of a two prey and one preda-
tor system with time interruption and random fluctuations. Pacific Science Review A:
Natural Science and Engineering, 18(2):150–156, 2016.

[43] E. J. Routh. A treatise on the stability of a given state of motion: particularly steady
motion. Macmillan and Company, 1877.

[44] A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto, and S. Tarantola. Variance
based sensitivity analysis of model output. design and estimator for the total sensitivity
index. Computer Physics Communications, 181(2):259–270, 2010.

[45] A. Saltelli, S. Tarantola, F. Campolongo, and M. Ratto. Sensitivity analysis in practice:
a guide to assessing scientific models, volume 1. Wiley Online Library, 2004.

[46] B. Samuel. Medical microbiology. The University of Texas Medical Branch at Galveston–
Tx, USA, 1996.

[47] P. A. Saunders, K. G. Porter, and B. E. Taylor. Population dynamics of daphnia spp.
and implications for trophic interactions in small, monomictic lake. Journal of Plankton
Research, 21(10), 1999.

[48] M. Schallenberg, P. Bremer, S. Henkel, A. Launhardt, and C. Burns. Survival of campy-
lobacter jejuni in water: effect of grazing by the freshwater crustacean daphnia carinata
(cladocera). Appl. Environ. Microbiol., 71(9):5085–5088, 2005.

[49] W. J. Snelling, J. E. Moore, J. P. McKenna, D. M. Lecky, and J. S. Dooley. Bacterial–
protozoa interactions; an update on the role these phenomena play towards human
illness. Microbes and Infection, 8(2):578–587, 2006.

156

[50] I. M. Sobol. Global sensitivity indices for nonlinear mathematical models and their monte
carlo estimates. Mathematics and computers in simulation, 55(1-3):271–280, 2001.

[51] J. C. Sprott. Elegant chaos: algebraically simple chaotic flows. World Scientific, 2010.

[52] J. C. Sprott. Numerical calculation of largest lyapunov exponent. http://

sprott.physics.wisc.edu/chaos/lyapexp.htm, 2020.

[53] J. C. Sprott and J. C. Sprott. Chaos and time-series analysis, volume 69. Citeseer, 2003.

[54] G. Strang. Introduction to Linear Algebra. Wellesley-Cambridge Press, 2016.

[55] S. H. Strogatz. Nonlinear dynamics and chaos: with applications to physics, biology,
chemistry, and engineering. CRC press, 2018.

[56] S. L. Strom and T. A. Morello. Comparative growth rates and yields of ciliates and
heterotrophic dinoflagellates. Journal of Plankton Research, 20(3):571–584, 1998.

[57] S. Tarantola, D. Gatelli, and T. A. Mara. Random balance designs for the estimation of
first order global sensitivity indices. Reliability Engineering & System Safety, 91(6):717–
727, 2006.

[58] C. Thomas, H. Gibson, D. Hill, and M. Mabey. Campylobacter epidemiology: an aquatic
perspective. Journal of Applied Microbiology, 85(S1):168S–177S, 1998.

[59] J.-Y. Tissot and C. Prieur. Bias correction for the estimation of sensitivity indices based
on random balance designs. Reliability Engineering & System Safety, 107:205–213, 2012.

[60] V. Volterra. Variations and fluctuations of the number of individuals in animal species
living together. ICES Journal of Marine Science, 3(1):3–51, 1928.

[61] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano. Determining lyapunov exponents
from a time series. Physica D: Nonlinear Phenomena, 16(3):285–317, 1985.

[62] X. Zhou and H. Lin. Local Sensitivity Analysis, pages 1130–1131. Springer International
Publishing, Cham, 2017.

157

http://sprott.physics.wisc.edu/chaos/lyapexp.htm
http://sprott.physics.wisc.edu/chaos/lyapexp.htm

Appendices

158

Appendix A

Derivation of the

model,nondimensionalization, and GSA

for the dimensional model

A.1 Derivation of the model

In this section, we present the detailed derivation of the model 2.1.

dx1(t)

dt
=r1x1 − σ11x1x1 − a1x1x2x3x4 − f11x1y1 − f12x1y2 + s1(t),

dx2(t)

dt
=r2x2 − σ22x2x2 − a2x1x2x3x4 − f21x2y1 − f22x2y2 + s2(t),

dx3(t)

dt
=r3x3 − σ33x3x3 − a3x1x2x3x4 − f31x3y1 − f32x3y2 + s3(t),

dx4(t)

dt
=r4x4 − σ44x4x4 − a4x1x2x3x4 − f41x4y1 − f42x4y2 + s4(t),

dy1(t)

dt
=− ε1y1 − ω11y

2
1 − ω12y1y2 − g12y1y2 + β11f11y1x1

+ β21f21y1x2 + β31f31y1x3 + β41f41y1x4,

dy2(t)

dt
=− ε2y2 − ω22y

2
2 − ω21y2y1 + γ12g12y2y1 + β12f12y2x1

+ β22f22y2x2 + β32f32y2x3 + β42f42y2x4,

with initial conditions N(0) > 0, x1..4(0) > 0, y1(0) > 0, y2(0) > 0.

159

Putting the competition term as a product of prey species doesn’t seem to be logical because
if one species is not existent then the competition term cancels out in all other equation, in
addition, each prey species compete differently with each of other prey species with a different
rate.

dx1(t)

dt
=r1x1 − σ11x1x1 − σ12x1x2 − σ13x1x3 − σ14x1x4 − f11x1y1 − f12x1y2 + s1(t),

dx2(t)

dt
=r2x2 − σ22x2x2 − σ21x2x1 − σ23x2x3 − σ24x2x4 − f21x2y1 − f22x2y2 + s2(t),

dx3(t)

dt
=r3x3 − σ33x3x3 − σ31x3x1 − σ32x3x2 − σ34x3x4 − f31x3y1 − f32x3y2 + s3(t),

dx4(t)

dt
=r4x4 − σ44x4x4 − σ41x4x1 − σ42x4x2 − σ43x4x3 − f41x4y1 − f42x4y2 + s4(t),

dy1(t)

dt
=− ε1y1 − ω11y

2
1 − ω12y1y2 − g12y1y2 + β11f11y1x1

+ β21f21y1x2 + β31f31y1x3 + β41f41y1x4,

dy2(t)

dt
=− ε2y2 − ω22y

2
2 − ω21y2y1 + γ12g12y2y1 + β12f12y2x1

+ β22f22y2x2 + β32f32y2x3 + β42f42y2x4,

Taking rixi as a common factor, putting together y1y2 terms in the predators equations, and
defining φ12 = g12 + ω12, ψ12 = γ12g12 − ω21

dx1(t)

dt
=r1x1

(
1− σ11x1 + σ12x2 + σ13x3 + σ14x4

r1

)
− f11x1y1 − f12x1y2 + s1(t), x1(0) > 0

dx2(t)

dt
=r2x2

(
1− σ22x2 + σ21x1 + σ23x3 + σ24x4

r2

)
− f21x2y1 − f22x2y2 + s2(t), x2(0) > 0

dx3(t)

dt
=r3x3

(
1− σ33x3 + σ31x1 + σ32x2 + σ34x4

r3

)
− f31x3y1 − f32x3y2 + s3(t), x3(0) > 0

dx4(t)

dt
=r4x4

(
1− σ44x4 + σ41x1 + σ42x2 + σ43x3

r4

)
− f41x4y1 − f42x4y2 + s4(t), x4(0) > 0

dy1(t)

dt
=y1 [−ε1 − ω11y1 − ψ12y2 + β11f11x1 + β21f21x2 + β31f31x3 + β41f41x4] , y1(0) > 0

dy2(t)

dt
=y2 [−ε2 + φ12y1 − ω22y2 + β12f12x1 + β22f22x2 + β32f32x3 + β42f42x4] , y2(0) > 0

Dividing the fraction in the parentheses by σii in pry equations and the carrying capacity for

160

prey species as Ki = ri
σii

we get:

dx1(t)

dt
=x1

[
r1

(
1−

x1 + σ12
σ11
x2 + σ13

σ11
x3 + σ14

σ11
x3

K1

)
− f11y1 − f12y2

]
+ s1(t), x1(0) > 0

dx2(t)

dt
=x2

[
r2

(
1−

x2 + σ21
σ22
x1 + σ23

σ22
x3 + σ24

σ22
x4

K2

)
− f21y1 − f22y2

]
+ s2(t), x2(0) > 0

dx3(t)

dt
=x3

[
r3

(
1−

x3 + σ31
σ33
x1 + σ32

σ33
x2 + σ34

σ33
x4

K3

)
− f31y1 − f32y2

]
+ s3(t), x3(0) > 0

dx4(t)

dt
=x4

[
r4

(
1−

x4 + σ41
σ44
x1 + σ42

σ44
x2 + σ43

σ44
x3

K4

)
− f41y1 − f42y2

]
+ s4(t), x4(0) > 0

dy1(t)

dt
=y1 [−ε1 − ω11y1 − ψ12y2 + β11f11x1 + β21f21x2 + β31f31x3 + β41f41x4] , y1(0) > 0

dy2(t)

dt
=y2 [−ε2 + φ12y1 − ω22y2 + β12f12x1 + β22f22x2 + β32f32x3 + β42f42x4] , y2(0) > 0

Let us define a common environmental carrying capacity for the prey species as K = ηiiKi.
This is reasonable as they prey on the same type of nutrients. Thus, we multiply the fraction
in the parentheses in the prey equations by ηii and define ηik = σik

σii
ηii and we obtain the

following
and

dx1(t)

dt
=x1

[
r1

(
1− η11x1 + η12x2 + η13x3 + η14x4

K

)
− f11y1 − f12y2

]
+ s1(t), x1(0) > 0

dx2(t)

dt
=x2

[
r2

(
1− η22x2 + η21x1 + η23x3 + η24x4

K

)
− f21y1 − f22y2

]
+ s2(t), x2(0) > 0

dx3(t)

dt
=x3

[
r3

(
1− η33x3 + η31x1 + η32x2 + η34x4

K

)
− f31y1 − f32y2

]
+ s3(t), x3(0) > 0

dx4(t)

dt
=x4

[
r4

(
1− η44x4 + η41x1 + η42x2 + η43x3

K

)
− f41y1 − f42y2

]
+ s4(t), x4(0) > 0

dy1(t)

dt
=y1 [−ε1 − ω11y1 − ψ12y2 + β11f11x1 + β21f21x2 + β31f31x3 + β41f41x4] , y1(0) > 0

dy2(t)

dt
=y2 [−ε2 + φ12y1 − ω22y2 + β12f12x1 + β22f22x2 + β32f32x3 + β42f42x4] , y2(0) > 0

If we consider the nutrients as an independent variable, then the system became :

161

dN(t)

dt
=R(t)− c1x1 − c2x2 − c3x3 − c4x4

dx1(t)

dt
=x1

[
r1

(
1− η11x1 + η12x2 + η13x3 + η14x4

K

)
− f11y1 − f12y2

]
+ s1(t), x1(0) > 0

dx2(t)

dt
=x2

[
r2

(
1− η22x2 + η21x1 + η23x3 + η24x4

K

)
− f21y1 − f22y2

]
+ s2(t), x2(0) > 0

dx3(t)

dt
=x3

[
r3

(
1− η33x3 + η31x1 + η32x2 + η34x4

K

)
− f31y1 − f32y2

]
+ s3(t), x3(0) > 0

dx4(t)

dt
=x4

[
r4

(
1− η44x4 + η41x1 + η42x2 + η43x3

K

)
− f41y1 − f42y2

]
+ s4(t), x4(0) > 0

dy1(t)

dt
=y1 [−ε1 − ω11y1 − ψ12y2 + β11f11x1 + β21f21x2 + β31f31x3 + β41f41x4] , y1(0) > 0

dy2(t)

dt
=y2 [−ε2 + φ12y1 − ω22y2 + β12f12x1 + β22f22x2 + β32f32x3 + β42f42x4] , y2(0) > 0

The carrying capacity is usually a function of several variables as nutrients, area or volume,
water, and perdition, but lets us assume that the carrying capacity is just a function of the
nutrients, so we can write K = K(N) = mN where m is proportionality constant, further-
more, let us take m=1 then system became:

dN(t)

dt
=R(t)− c1x1 − c2x2 − c3x3 − c4x4

dx1(t)

dt
=x1

[
r1

(
1− η1x1 + η2x2 + η3x3 + η4x4

N(t)

)
− f11y1 − f12y2

]
+ s1(t), x1(0) > 0

dx2(t)

dt
=x2

[
r2

(
1− η1x1 + η2x2 + η3x3 + η4x4

N(t)

)
− f21y1 − f22y2

]
+ s2(t), x2(0) > 0

dx3(t)

dt
=x3

[
r3

(
1− η1x1 + η2x2 + η3x3 + η4x4

N(t)

)
− f31y1 − f32y2

]
+ s3(t), x3(0) > 0

dx4(t)

dt
=x4

[
r4

(
1− η4x4 + η1x1 + η2x2 + η3x3

N(t)

)
− f41y1 − f42y2

]
+ s4(t), x4(0) > 0

dy1(t)

dt
=y1 [−ε1 − ω11y1 − ψ12y2 + β11f11x1 + β21f21x2 + β31f31x3 + β41f41x4] , y1(0) > 0

dy2(t)

dt
=y2 [−ε2 + φ12y1 − ω22y2 + β12f12x1 + β22f22x2 + β32f32x3 + β42f42x4] , y2(0) > 0

162

A.2 Nondimensionalization

The purpose of nondimensionalization is to reduce the number of parameters in the system
to ease the analysis. Additionally it is useful tool to determine the parameter combinations
that dominate. Thus we need to choose scaling to keep as many terms as possible. Let us
first expand the dimensional equations as follows,

dx(t)

dt
=

(
−f1xy1 − f2xy2 + rx− rx2

k

)
dy1(t)

dt
=
(
β1f1xy1 − ε1y1 − ω11y

2
1 − ψ12y1y2

)
dy2(t)

dt
=
(
β2f2xy2 − ε2y2 − ω22y

2
2 + φ12y1y2

)
Define the scaling

x = Xz1, y1 = Y1z2 y2 = Y2z3

and substitute,

X

T

dz1
t̄

=− X2rz21
k
−XY1f1z1z2 −XY2f2z1z3 +Xrz1,

Y1
T

dz2
t̄

= XY1β1f1z1z2 − Y 2
1 ω11z

2
2 − Y1Y2ψ12z2z3 − Y1ε1z2,

Y2
T

dz3
t̄

= XY2β2f2z1z3 + Y1Y2φ12z2z3 − Y 2
2 ω22z

2
3 − Y2ε2z3

Multiplying both sides of the first equation by X
T
, the second one by Y1

T
and the third one by

Y2
T
, we obtain,

dz1
dt̄

=− TXrz21
k

− TY1f1z1z2 − TY2f2z1z3 + Trz1,

dz2
dt̄

= TXβ1f1z1z2 − TY1ω11z
2
2 − TY2ψ12z2z3 − Tε1z2,

dz3
dt̄

= TXβ2f2z1z3 + TY1φ12z2z3 − TY2ω22z
2
3 − Tε2z3

Balance the coupled terms,

TY1f1z1z2 ∼ TXβ1f1z1z2 ⇒ Y1 ∼ β1X

TY2f2z1z3 ∼ TXβ2f2z1z3 ⇒ Y2 ∼ β2X

TY2ψ12z2z3 ∼ TY1φ12z2z3 ⇒ Y2ψ12 ∼ Y1φ12

163

Taking T = 1/r and substituting for this and for Y1 ∼ β1X, Y2 ∼ β2X, we obtain

dz1
dt̄

= − Xβ1f1z1z2
r

− Xβ2f2z1z3
r

− Xz21
k

+ z1,

dz2
dt̄

=
Xβ1f1z1z2

r
− Xβ1ω11z

2
2

r
− Xβ2ψ12z2z3

r
− ε1z2

r
,

dz3
dt̄

=
Xβ1φ12z2z3

r
+
Xβ2f2z1z3

r
− Xβ2ω22z

2
3

r
− ε2z3

r

If we choose X = r
β1f1

we will obtain,

dz1
dt̄

=− z1z2 + z1 −
β2f2z1z3
β1f1

− rz21
β1f1k

,

dz2
dt̄

= − ε1z2
r

+ z1z2 −
ω11z

2
2

f1
− β2ψ12z2z3

β1f1
,

dz3
dt̄

= − ε2z3
r

+
φ12z2z3
f1

+
β2f2z1z3
β1f1

− β2ω22z
2
3

β1f1

Finally, we define new parameters as follows and substitute,

a =
r

β1f1k
, b =

β2f2
β1f1

, ω1 =
ω11

f1
, ω2 =

ω22

f2
,

δ1 =
ε1
r
, δ2 =

ε2
r
, ψ =

ψ12

f2
, φ =

φ12

f1

then, obtain our non-dimensional system 4.3. Note that here we used z1, z2, z3 as non-
dimensional variables instead of x̄, ȳ1, ȳ2 for convenience.

A.3 Sensitivity analysis of the dimensional model

Here we will present sensitivity analysis results of the max value , mean value or equilibrium
value (end value) for the reduced dimensional model 4.1.

164

A.3.1 Maximum value of x, y1 and y2 respectively

Max x y1 y1

S1Sobol S1RbdFast S1DMIM S1Sobol S1RbdFast S1DMIM S1Sobol S1RbdFast S1DMIM

k -0.0 -0.0 0.000 0.0 -0.0 0.000 0.000 0.0 0.000
r -0.0 -0.0 0.001 -0.0 0.0 0.000 0.000 0.0 0.000
f1 0.0 0.0 0.000 0.0 0.0 0.000 0.000 -0.0 0.000
f2 0.0 -0.0 0.000 -0.0 -0.0 0.000 0.000 -0.0 0.000
β1 0.0 -0.0 0.000 0.0 -0.0 0.000 0.000 -0.0 0.000
β2 0.0 0.0 0.001 0.0 -0.0 0.000 0.000 -0.0 0.001
ε1 -0.0 0.0 0.001 0.0 0.0 0.001 0.000 -0.0 0.000
ε2 -0.0 -0.0 0.000 0.0 -0.0 0.000 -0.000 0.0 0.001
ψ12 -0.0 0.0 0.001 -0.0 0.0 0.001 0.000 0.0 0.000
φ12 -0.0 -0.0 0.001 0.0 0.0 0.001 -0.000 -0.0 0.001
ω11 -0.0 -0.0 0.000 -0.0 -0.0 0.000 -0.000 0.0 0.001
ω22 -0.0 0.0 0.000 -0.0 0.0 0.001 -0.000 -0.0 0.000
x0 1.0 1.0 1.000 0.0 -0.0 0.000 -0.000 0.0 0.000
y10 0.0 -0.0 0.000 1.0 1.0 1.000 -0.000 -0.0 0.000
y20 0.0 0.0 0.001 0.0 0.0 0.000 0.999 1.0 1.000∑

1.0 1.0 1.006 1.0 1.0 1.004 0.999 1.0 1.004

Table A.1: Main Effect sensitivity index for all methods for Max value of all variables

165

Max x y1 y1

ST Sobol µ?
Morris δDMIM ST Sobol µ?

Morris δDMIM ST Sobol µ?
Morris δDMIM

k 0.0 153.002 0.019 0.0 5.101 0.020 0.00000 8.210 0.018
r 0.0 85.951 0.021 0.0 3.942 0.020 0.00000 6.391 0.019
f1 0.0 142.531 0.020 0.0 11.081 0.020 0.00000 19.556 0.021
f2 0.0 166.142 0.021 0.0 12.866 0.020 0.00000 16.332 0.020
β1 0.0 79.185 0.021 0.0 13.206 0.019 0.00000 10.979 0.021
β2 0.0 82.828 0.020 0.0 7.797 0.020 0.00000 14.493 0.022
ε1 0.0 16.437 0.019 0.0 3.903 0.020 0.00000 8.340 0.020
ε2 0.0 26.688 0.020 0.0 1.930 0.019 0.00000 5.878 0.020
ψ12 0.0 32.098 0.019 0.0 16.717 0.021 0.00000 50.652 0.020
φ12 0.0 11.893 0.020 0.0 14.028 0.021 0.00000 32.618 0.020
ω11 0.0 18.891 0.019 0.0 22.963 0.019 0.00000 42.847 0.021
ω22 0.0 67.723 0.019 0.0 7.303 0.021 0.00000 52.394 0.020
x0 1.0 3831.494 0.958 0.0 10.348 0.019 0.00000 11.586 0.019
y10 0.0 8.415 0.020 1.0 3978.292 0.958 0.00000 11.561 0.020
y20 0.0 8.576 0.021 0.0 5.285 0.019 0.99885 3923.924 0.958∑

1.0 4731.854 1.237 1.0 4114.762 1.236 0.99885 4215.761 1.239

Table A.2: Total or Interaction Effect sensitivity index for all methods for Max value of all
variables

166

A.3.2 Mean value of x, y1 and y2 respectively

Mean x y1 y1

S1Sobol S1RbdFast S1DMIM S1Sobol S1RbdFast S1DMIM S1Sobol S1RbdFast S1DMIM

k 0.000 0.000 0.001 0.000 -0.000 0.000 0.000 0.000 0.001
r 0.001 0.001 0.002 0.052 0.050 0.050 0.068 0.071 0.072
f1 0.025 0.013 0.014 0.003 0.001 0.001 0.082 0.046 0.047
f2 0.017 0.028 0.035 0.166 0.143 0.148 0.083 0.093 0.095
β1 0.002 0.006 0.007 0.026 0.031 0.031 0.012 0.015 0.015
β2 0.003 0.002 0.002 0.053 0.051 0.053 0.006 0.009 0.010
ε1 0.000 0.000 0.001 0.003 0.004 0.004 0.001 0.001 0.001
ε2 0.000 -0.000 0.000 0.010 0.010 0.010 0.003 0.004 0.004
ψ12 0.000 0.000 0.001 0.001 0.004 0.004 0.002 0.001 0.002
φ12 -0.000 -0.000 0.000 0.006 0.005 0.005 -0.001 0.003 0.003
ω11 -0.000 0.000 0.001 0.000 0.001 0.001 0.000 0.000 0.001
ω22 0.001 0.000 0.001 0.015 0.012 0.012 0.004 0.011 0.011
x0 0.000 -0.000 0.000 -0.000 0.000 0.000 -0.000 0.000 0.001
y10 -0.000 -0.000 0.000 0.036 0.033 0.033 -0.000 -0.000 0.001
y20 0.000 -0.000 0.001 -0.000 -0.000 0.000 0.003 0.004 0.004∑

0.049 0.050 0.066 0.371 0.345 0.352 0.264 0.258 0.268

Table A.3: Main Effect sensitivity index for all methods for Mean value of all variables

167

Mean x y1 y1

ST Sobol µ?
Morris δDMIM ST Sobol µ?

Morris δDMIM ST Sobol µ?
Morris δDMIM

k 0.092 226.378 0.296 0.003 1.919 0.039 0.01506 10.467 0.017
r 0.164 137.053 0.606 0.252 2.875 0.146 0.26760 13.309 0.170
f1 0.803 283.822 0.678 0.400 4.717 0.103 0.63442 13.467 0.102
f2 1.195 354.369 0.434 0.634 3.748 0.126 0.73424 21.705 0.171
β1 0.403 112.307 0.507 0.163 2.291 0.093 0.23445 7.628 0.053
β2 0.117 93.772 0.400 0.214 1.785 0.096 0.07263 8.367 0.063
ε1 0.001 13.600 0.360 0.019 0.524 0.053 0.00396 0.454 0.028
ε2 0.001 18.195 0.314 0.039 0.549 0.066 0.02420 1.859 0.049
ψ12 0.107 59.678 0.365 0.049 2.307 0.053 0.05501 4.118 0.022
φ12 0.001 16.425 0.329 0.050 2.419 0.049 0.02822 3.107 0.036
ω11 0.004 29.690 0.367 0.013 3.697 0.042 0.00313 1.829 0.020
ω22 0.068 97.751 0.409 0.108 1.625 0.063 0.24549 18.464 0.037
x0 0.000 6.438 0.342 0.000 0.018 0.040 0.00002 0.054 0.016
y10 0.000 2.855 0.363 0.036 0.517 0.164 0.00001 0.091 0.018
y20 0.000 3.025 0.370 0.000 0.014 0.039 0.00366 0.681 0.059∑

2.956 1455.358 6.140 1.980 29.005 1.172 2.32210 105.600 0.861

Table A.4: Total or Interaction Effect sensitivity index for all methods for Mean value of all
variables

168

A.3.3 Median value of x, y1 and y2 respectively

Median x y1 y1

S1Sobol S1RbdFast S1DMIM S1Sobol S1RbdFast S1DMIM S1Sobol S1RbdFast S1DMIM

k 0.000 0.000 0.001 -0.000 -0.000 0.000 0.000 0.000 0.001
r 0.001 0.001 0.002 0.052 0.049 0.050 0.068 0.071 0.072
f1 0.025 0.013 0.014 0.001 0.001 0.001 0.083 0.047 0.047
f2 0.017 0.028 0.035 0.173 0.149 0.155 0.084 0.092 0.095
β1 0.002 0.006 0.007 0.027 0.030 0.031 0.013 0.015 0.016
β2 0.003 0.002 0.002 0.050 0.049 0.050 0.006 0.010 0.010
ε1 0.000 0.000 0.000 0.003 0.004 0.004 0.001 0.001 0.001
ε2 0.000 -0.000 0.000 0.010 0.010 0.011 0.003 0.004 0.004
ψ12 0.000 0.000 0.001 -0.000 0.004 0.004 0.002 0.002 0.002
φ12 -0.000 -0.000 0.000 0.008 0.006 0.006 -0.001 0.003 0.003
ω11 -0.000 0.000 0.001 -0.000 0.001 0.001 0.000 0.000 0.001
ω22 0.001 0.000 0.001 0.016 0.013 0.014 0.003 0.010 0.010
x0 0.000 -0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.001
y10 -0.000 -0.000 0.000 -0.000 -0.000 0.000 -0.000 -0.000 0.001
y20 -0.000 -0.000 0.001 0.000 0.000 0.000 0.000 -0.000 0.000∑

0.049 0.050 0.065 0.340 0.316 0.327 0.263 0.255 0.264

Table A.5: Main Effect sensitivity index for all methods for Median value of all variables

169

Median x y1 y1

ST Sobol µ?
Morris δDMIM ST Sobol µ?

Morris δDMIM ST Sobol µ?
Morris δDMIM

k 0.092 226.049 0.310 0.003 1.927 0.171 0.01511 10.452 0.090
r 0.164 137.575 0.843 0.262 2.865 0.388 0.26870 13.298 0.551
f1 0.803 282.266 1.544 0.416 4.714 0.196 0.63751 13.447 0.142
f2 1.194 353.143 3.028 0.662 3.743 0.217 0.73702 21.721 0.234
β1 0.403 112.115 0.660 0.168 2.266 0.234 0.23637 7.647 0.098
β2 0.117 93.430 0.449 0.219 1.755 0.190 0.07428 8.364 0.124
ε1 0.001 13.226 0.390 0.021 0.509 0.185 0.00427 0.436 0.093
ε2 0.001 17.800 0.330 0.043 0.539 0.192 0.02449 1.811 0.101
ψ12 0.107 59.402 0.394 0.051 2.262 0.182 0.05621 4.061 0.092
φ12 0.001 15.765 0.355 0.059 2.394 0.179 0.02833 3.027 0.094
ω11 0.004 29.060 0.409 0.017 3.682 0.175 0.00377 1.783 0.092
ω22 0.068 97.381 0.448 0.115 1.601 0.181 0.24562 18.371 0.086
x0 0.000 4.486 0.380 0.000 0.006 0.170 0.00001 0.016 0.091
y10 0.000 2.078 0.404 0.000 0.005 0.170 0.00000 0.072 0.090
y20 0.000 2.526 0.417 0.000 0.006 0.171 0.00000 0.176 0.092∑

2.955 1446.302 10.361 2.036 28.274 3.001 2.33169 104.682 2.070

Table A.6: Total or Interaction Effect sensitivity index for all methods for Median value of
all variables

170

A.3.4 Eqm. value of x y1 and y2 respectively

Eqm. x y1 y1

S1Sobol S1RbdFast S1DMIM S1Sobol S1RbdFast S1DMIM S1Sobol S1RbdFast S1DMIM

k 0.000 0.000 0.001 0.000 -0.000 0.000 0.000 0.000 0.001
r 0.001 0.001 0.002 0.050 0.048 0.049 0.069 0.070 0.071
f1 0.025 0.013 0.014 0.007 0.001 0.001 0.084 0.046 0.046
f2 0.017 0.028 0.035 0.165 0.138 0.144 0.082 0.091 0.093
β1 0.002 0.006 0.007 0.028 0.030 0.030 0.012 0.015 0.015
β2 0.003 0.002 0.002 0.059 0.052 0.053 0.005 0.009 0.009
ε1 0.000 0.000 0.001 0.004 0.004 0.004 0.001 0.001 0.002
ε2 0.000 -0.000 0.000 0.011 0.010 0.010 0.003 0.004 0.004
ψ12 0.000 0.000 0.001 0.004 0.004 0.004 0.002 0.001 0.002
φ12 -0.000 -0.000 0.000 0.006 0.005 0.005 0.001 0.003 0.003
ω11 0.000 0.000 0.001 0.001 0.001 0.002 -0.001 0.000 0.001
ω22 0.001 0.000 0.001 0.014 0.011 0.011 0.002 0.011 0.011
x0 -0.000 -0.000 0.000 -0.001 0.000 0.000 -0.001 0.000 0.001
y10 0.000 -0.000 0.000 0.000 -0.000 0.000 -0.001 -0.000 0.001
y20 -0.000 -0.000 0.001 -0.000 0.000 0.000 -0.001 -0.000 0.000∑

0.049 0.050 0.066 0.349 0.304 0.313 0.261 0.251 0.260

Table A.7: Main Effect sensitivity index for all methods for Eqm. value of all variables

171

Eqm. x y1 y1

ST Sobol µ?
Morris δDMIM ST Sobol µ?

Morris δDMIM ST Sobol µ?
Morris δDMIM

k 0.095 229.348 0.308 0.031 1.975 0.167 0.02363 10.488 0.090
r 0.165 140.435 0.754 0.288 2.912 0.360 0.27522 13.350 0.525
f1 0.805 286.532 1.539 0.462 4.746 0.197 0.63829 13.460 0.141
f2 1.194 357.210 2.870 0.678 3.807 0.181 0.73400 21.792 0.221
β1 0.403 115.783 0.653 0.196 2.309 0.231 0.24018 7.706 0.097
β2 0.117 96.778 0.454 0.287 1.800 0.184 0.08377 8.582 0.119
ε1 0.001 16.401 0.393 0.047 0.551 0.181 0.00903 0.529 0.092
ε2 0.002 21.374 0.331 0.097 0.584 0.188 0.03002 1.888 0.100
ψ12 0.108 61.939 0.387 0.078 2.302 0.178 0.06388 4.188 0.091
φ12 0.001 19.228 0.347 0.125 2.443 0.175 0.04326 3.097 0.093
ω11 0.004 31.877 0.414 0.050 3.711 0.169 0.00894 1.820 0.091
ω22 0.068 100.106 0.439 0.163 1.660 0.177 0.24909 18.453 0.085
x0 0.001 6.516 0.380 0.062 0.054 0.165 0.00538 0.045 0.090
y10 0.000 5.296 0.397 0.035 0.045 0.166 0.00417 0.135 0.090
y20 0.003 5.374 0.417 0.018 0.060 0.167 0.00209 0.269 0.092∑

2.967 1494.197 10.083 2.617 28.959 2.886 2.41095 105.802 2.017

Table A.8: Total or Interaction Effect sensitivity index for all methods for Eqm. value of all
variables

172

δDMIM S1DMIM δDMIM S1DMIM

k 0.058 0.001 0.097 0.001
r 0.132 0.044 0.140 0.050
f1 0.131 0.011 0.127 0.006
f2 0.154 0.022 0.185 0.016
β1 0.126 0.007 0.121 0.004
β2 0.118 0.005 0.124 0.003
ε1 0.082 0.003 0.114 0.002
ε2 0.075 0.003 0.111 0.003
ψ12 0.058 0.002 0.103 0.002
φ12 0.056 0.000 0.103 0.000
ω11 0.063 0.002 0.106 0.002
ω22 0.073 0.027 0.091 0.046
x0 0.056 0.001 0.101 0.001
y10 0.054 0.001 0.102 0.001
y20 0.055 0.000 0.100 0.000∑

1.291 0.129 1.725 0.137

Table A.9: Sensitivity of median and eqm values of y1 after log transformation with DMIM
method

A.3.5 Summary

S1,Variable of interest Max Mean Median Eqm

x x0 f1, f2 f1, f2 f1, f2

y1 y10 f2 f2 f2

y2 y20 f2 f2 f1, f2

ST ,Variable of interest Max Mean Median Eqm

x x0 f2, f1 f1, f2 f2, f1, r

y1 y10 f2, f1, y10 f2 f2

y2 y20 f2 f2 f2, r

Table A.10: The most sensitive parameter

173

Appendix B

Python codes used in the thesis

Here we present python codes used in this work. All codes are in Jupyter notebook form.
Furthermore, the codes are not compiled but they are functional.

B.1 Analysis of the model

Her we present the python code formed via Jupyter notebook used in the stability analysis
of the model 4.3.

174

Importing packages

In [1]:

from sympy.interactive import printing
printing.init_printing(use_latex='mathjax')
from sympy import *
import sympy as sp
import numpy as np
import matplotlib.pyplot as plt

Defining the symbols

In [2]:

x,y1,y2=sp.symbols('x,y1,y2',real=True,nonnegative=True)
a,b,omega1,omega2,s=sp.symbols('a,b,omega1,omega2,s',real=True,positive=T
rue)
delta1,delta2,psi,phi=sp.symbols('delta1,delta2,psi,phi',real=True,positi
ve=True)
x_d,y1_d,y2_d=sp.symbols('x_d,y1_d,y2_d')

U0,U1,U2,U3,U4,U5,U6,U7,U8,U9=sp.symbols('U0,U1,U2,U3,U4,U5,U6,U7,U8,U9')
mu0,mu1,mu2,mu3,mu4,m5,mu6,mu7,mu8,mu9=sp.symbols('mu0,mu1,mu2,mu3,mu4,m
5,mu6,mu7,mu8,mu9')
E0,E1,E2,E3=sp.symbols('E0,E1,E2,E3')
W0,W1,W2,W3,W4,W5,W6,W7,W8,W9=sp.symbols('W0,W1,W2,W3,W4,W5,W6,W7,W8,W9')

L0,L1,L2,L3,L4=sp.symbols('L0,L1,L2,L3,L4')
A1,A2,A3,A4=sp.symbols('A1,A2,A3,A4')

k,r,f1,f2,s = sp.symbols('k,r,f1,f2,s', positive=True)
epsilon1,epsilon2,beta1,beta2= sp.symbols('epsilon1,epsilon2,beta1,beta2'
, positive=True)
omega11,omega22,phi12,psi12 = sp.symbols('omega11,omega22,phi12,psi12', p
ositive=True)

In [3]:

dxdt=x*(1-a*x-y1-b*y2)
dy1dt=y1*(-delta1-omega1*y1-psi*b*y2+x)
dy2dt=y2*(-delta2-omega2*b*y2+phi*y1+b*x)
F=Matrix([[dxdt,dy1dt,dy2dt]])

175

Check if the nondimensionalization is correct

In []:

pm=[
 (x, (beta1*f1*x_d)/r), (y1,(f1*y1_d)/r), (y2,(beta1*f1*y2_d)/(r*beta

2)),

 (a,r/(beta1*f1*k)), (b,(beta2*f2)/(beta1*f1)), (delta1, epsilon1/r),

 (delta2, epsilon2/r), (psi, psi12/f2),(phi, phi12/f1),

 (omega1, omega11/f1), (omega2,(omega22)/f2)]

F1dim=(simplify(F[0].subs(pm))*(r**2/(beta1*f1))).expand()
F2dim=(simplify(F[1].subs(pm))*(f1/r**2)**-1).expand()
F3dim=(simplify(F[2].subs(pm))*(beta2*r**2/(beta1*f1))).expand()

In []:

[F1dim ,F2dim ,F3dim]

Equilibrium points (EP)

The system has 5 nonnegative EPs

In []:

F_1=(1-a*x-y1-b*y2)
F_2=(-delta1-omega1*y1-psi*b*y2+x)
F_3=(-delta2-omega2*b*y2+phi*y1+b*x)

equ = ((x, F_1), (y1, F_2), (y2, F_3))

from itertools import product
for eqs in product(*equ):
 sol = solve(eqs, [x, y1, y2], simplify=True)
 #pprint(sol)
 #print(sol)
 print('ep=',sol)

176

In [5]:

ep1={y2: 0, y1: 0, x: 0}
EP1=Matrix(list(ep1.values()))
ep2={x: 1/a, y1: 0, y2: 0}
EP2=Matrix(list(ep2.values()))
ep3={x: (delta1 + omega1)/(a*omega1 + 1), y1: (-a*delta1 + 1)/(a*omega1 +
1), y2: 0}
EP3=Matrix(list(ep3.values()))

ep4={x: (delta2 + omega2)/(a*omega2 + b), y1: 0, y2: (-a*delta2 + b)/(b*(
a*omega2 + b))}
EP4=Matrix(list(ep4.values()))

ep5={x: (delta1*(omega2 + phi) + delta2*(omega1 - psi) + omega1*omega2 +
phi*psi)/
 (a*omega1*omega2 + a*phi*psi + b*omega1 - b*psi + omega2 + phi),

 y1: (-b*psi - delta1*(a*omega2 + b) + delta2*(a*psi + 1) + omega2)/
 (a*omega1*omega2 + a*phi*psi + b*omega1 - b*psi + omega2 + phi),

 y2: (b*omega1 - delta1*(a*phi - b) - delta2*(a*omega1 + 1) + phi)/
 (b*(a*omega1*omega2 + a*phi*psi + b*omega1 - b*psi + omega2 + phi))}

EP5=Matrix(list(ep5.values()))

ep=[ep1,ep2,ep3,ep4,ep5]
EP_all=[EP1,EP2,EP3,EP4,EP5]

Simplifying the interiopr equilibrium point EP5

In [6]:

E0s=(delta1*(omega2 + phi) + delta2*(omega1 - psi) + omega1*omega2 + phi*
psi)
E1s=(-b*psi - delta1*(a*omega2 + b) + delta2*(a*psi + 1) + omega2)
E2s=(b*omega1 - delta1*(a*phi - b) - delta2*(a*omega1 + 1) + phi)
U0s=(a*omega1*omega2 + a*phi*psi + b*omega1 - b*psi + omega2 + phi)
EP5p=simplify(EP5.subs([(U0s,U0),(E0s,E0),(E1s,E1),(E2s,E2)]))

In []:

EP5p

Check f the solution satisfys the equations

In []:

for i in ep:
 print(checksol(equs,i))

177

In []:

for i in equs:
 print(simplify(i.subs([(x,EP5[0]),(y1,EP5[1]),(y2,EP5[2])])))

Jacobian matrix and correspounding eigenvalues at each
EP

Jacobian matrix of the subsystem

In []:

X=Matrix([x,y1,y2])
J=F.jacobian(X)
tr_j=simplify(Trace(J)) # Trace of the jacobian matrix

Evaluating Jacobiab matrix at each eqm. point

First equilibrium point

In []:

J1=J.subs([(x,EP1[0]),(y1,EP1[1]),(y2,EP1[2])])
EV1=J1.eigenvals()
lambda1=Matrix(list(EV1.keys()))
V1=J1s.eigenvects()

In []:

lambda1

In []:

V1

Second equilibrium point

In []:

J2=J.subs([(x,EP2[0]),(y1,EP2[1]),(y2,EP2[2])])
EV2=J2.eigenvals()
lambda2=Matrix(list(EV2.keys()))
Vec2=J2.eigenvects()

178

In []:

EV2

In []:

lambda2

In []:

Vec2

Third equilibrium point

In []:

J3=J.subs([(x,EP3[0]),(y1,EP3[1]),(y2,EP3[2])])
J3s=simplify(J3)
EV3=J3s.eigenvals()
ev3=Matrix(list(EV3.keys()))

In []:

ev3

In []:

mu0s=simplify((a**2*delta1**2*omega1**2 + 2*a**2*delta1**2*omega1 + a**2*
delta1**2 + \
 2*a**2*delta1*omega1**2 + 2*a**2*delta1*omega1 + a**2*omeg

a1**2 + 4*a*delta1**2 \
 - 2*a*delta1*omega1**2 + 2*a*delta1*omega1 - 2*a*omega1**2

- 4*delta1 + omega1**2 - 4*omega1))

mu0ss=a*delta1*omega1*(a*(delta1*(omega1+2) +2*(omega1+1))+\
 2*(1-omega1))+a*delta1**2*(a+4)+(omega1**2)*(a-1)**2 -4*(delta1+ome

ga1)

In []:

ev3p=ev3.subs([(E2s.expand(),E2),(mu0s,mu0)])

Fourth equilibrium point

179

In []:

J4=J.subs([(x,EP4[0]),(y1,EP4[1]),(y2,EP4[2])])
J4s=simplify(J4)
EV4=J4s.eigenvals()
ev4=Matrix(list(EV4.keys()))
ev4s=simplify(ev4)

In []:

ev4s

In []:

mu1s=simplify((a**2*delta2**2*omega2**2 + 2*a**2*delta2**2*omega2+ a**2*d
elta2**2 + 2*a**2*delta2*omega2**2 \
 + 2*a**2*delta2*omega2 + a**2*omega2**2 + 4*a*b*delta2**2-

2*a*b*delta2*omega2**2 \
 + 2*a*b*delta2*omega2 - 2*a*b*omega2**2 - 4*b**2*delta2 +

b**2*omega2**2 - 4*b**2*omega2))

In []:

ev4p=ev4s.subs([(mu1s,mu1),(E1s.expand(),E1)])

Fifth equilibrium point

In []:

J5=J.subs([(x,EP5[0]),(y1,EP5[1]),(y2,EP5[2])])
J5s=simplify(J5)
J5ss=simplify(J5s.expand())

In []:

U1s=(-delta1*omega2 - delta1*phi - delta2*omega1 + delta2*psi - omega1*om
ega2 - phi*psi)
U2s=(a*delta1*omega2 - a*delta2*psi + b*delta1 + b*psi - delta2 - omega2)
U3s=(a*delta1*phi + a*delta2*omega1 - b*delta1 - b*omega1 + delta2 - phi)

In []:

J5p=J5ss.subs([(U0s,U0),(U1s,U1),(U2s,U2),(U3s,U3),])

In []:

J5p

180

In []:

EV5p=J5p.eigenvals()
ev5p=Matrix(list(EV5p.keys()))

In []:

A1s=simplify((-U1*a - U2*omega1 - U3*omega2))

A2s=simplify((U1*U2*a*omega1 + U1*U2 + U1*U3*a*omega2 + U1*U3*b + U2*U3*o
mega1*omega2 + U2*U3*phi*psi))

A3s= simplify((-U1*U2*U3*a*omega1*omega2 - U1*U2*U3*a*phi*psi - U1*U2*U3*
b*omega1\
 + U1*U2*U3*b*psi - U1*U2*U3*omega2 - U1*U2*U3*phi))

In []:

ev5pp=ev5p.subs([(A1s,A1),(A2s,A2),(A3s.expand(),A3),])

In []:

ev5pp

In []:

mu3s=(A1**3/U0**3 - 9*A1*A2/(2*U0**3) + 27*A3/(2*U0**3) + sqrt(-4*(A1**2/
U0**2 - 3*A2/U0**2)**3\
 + (2*A1**3/U0**3 - 9*A1*A2/U0**3 + 27*A3/U0**3)**2)/2)

In []:

simplify(mu3s)

In []:

ev5ps=ev5pp.subs([(mu3s,mu3)])

In []:

ev5ps

GLobal stability via Lyapunov function

Global stability of EP5

181

In []:

p1,p2,p3=sp.symbols('p1,p2,p3')
x_e,y1_e,y2_e=sp.symbols('x_e,y1_e,y2_e')

dXdt=Matrix([dxdt,dy1dt,dy2dt]) #system
A=Matrix([[a,1,b],[-1,omega1,psi*b],[-b,-phi,omega2*b]])
r=Matrix([1,-delta1,-delta2])
X_bar=diag(x,y1,y2)

#Lyapunov function
V=p1*(x-x_e-x_e*ln(x/x_e))+p2*(y1-y1_e-y1_e*ln(y1/y1_e))+p3*(y2-y2_e-y2_e
*ln(y2/y2_e))
D=Matrix([[p1,0,0],[0,p2,0],[0,0,p3]])
M=simplify(D*A+A.transpose()*D)
X1=Matrix([[x-x_e],[y1-y1_e],[y2-y2_e]])
FF=-(1/2)*X1.transpose()*(M*X1)

Derivative of the lyapunov function

In []:

dVdt=(diff(V,x))*F[0]+(diff(V,y1))*F[1]+(diff(V,y2))*F[2]

In []:

FF.expand()

In []:

dVdt.expand()

In []:

dVdt.expand()==FF.expand() #They will be equal after manipualtion

Find charachteristic polynomial
not helpful in this case

In []:

M.charpoly()

Find leading principal minors

182

In []:

Ms=simplify(M.subs([(p1,1),(p2,1),(p3,1)]))
det_Ms=simplify(sp.det(Ms))
M1=M.minor_submatrix(2, 2)
M1s=simplify(M1.subs([(p1,1),(p2,1),(p3,1)]))
det_M1=simplify(det(M1s))

In []:

det_Ms

In []:

det_M1

So is globally stable if EP5 2a (− + 4b + 2bϕψ −) > 0b2ψ2 ω1 ω2 ϕ2

In []:

%%latex
EP_{2} is globally stable if it is locallaly stable

Global stability of EP2

In []:

H1=1/x
dH1F1dx=diff(H1*F1,x).subs([(y1,0),(y2,0)])

In []:

dH1F1dx

Global stability of EP3

In []:

H2=1/(x*y1)
dH2F1dx=diff(H2*F1,x).subs([(y2,0)])
dH2F2dy1=diff(H2*F2,y1).subs([(y2,0)])

In []:

BD2=dH2F1dx+dH2F2dy1

183

In []:

BD2

DB2 <0 for all values of x, y so there is no limit cycle in interior of xy1-plane i.e EP3 is
globally stable there.

Global stability of EP4

In []:

H3=1/(x*y2)
dH3F1dx=diff(H3*F1,x).subs([(y1,0)])
dH3F3dy2=diff(H3*F3,y2).subs([(y1,0)])

In []:

BD3=dH3F1dx+dH3F3dy2

In []:

BD3

 for all values of x, y so there is no limit cycle in interior of xy1-plane i.e EP3 is
globally stable there.
B < 0D3

184

B.2 Sensitivity analysis

Her we present the python code formed via Jupyter notebook used in the sensitivity analysis
section.

185

Import packages

In []:

import numpy as np
from numpy import *
from cmath import*
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import scipy as scp
from scipy.integrate import solve_ivp, odeint
import pandas as pd
import SALib
from SALib.sample import saltelli,morris,latin,ff,finite_diff
from SALib.sample import morris
from SALib.analyze import sobol,dgsm,rbd_fast,delta,ff,dgsm
from SALib.analyze import morris
from SALib.plotting.bar import plot as barplot
from SALib.plotting.morris import *

Define the model inputs

We choose the intervals for such that we are in the regime a, b, ,δ1 δ2

< 1/a, < b/aδ1 δ2

In []:

problem = {
 'num_vars': 11,
 'names': ['a','b','$\\delta_{1}$', '$\\delta_{2}$','ψ','$\ph

i$',
 '$\\omega_{1}$','$\\omega_{2}$','x_{0}','${y_{1}}_{0}$',

'${y_{2}}_{0}$'],
 'bounds': [[1e-05,1e-03]
 , [0.1,10]
 , [0.1,10]
 , [0.1,10]
 , [0.1,10]
 , [0.0001,5]
 , [0.001,10]
 , [0.001,5]
 ,[0,10000],
 [0,1000],
 [0,100]
]

}

186

Model ,functions and solvers

In []:

def DM_bacteria(t,X,pm):
 x, y1, y2 = X
 a, b,delta1,delta2,psi,phi,omega1,omega2=pm
 dxdt=x*(1-a*x-y1-b*y2)
 dy1dt=y1*(-delta1-omega1*y1-psi*b*y2+x)
 dy2dt=y2*(-delta2-omega2*b*y2+phi*y1+b*x)
 return [dxdt,dy1dt,dy2dt]
def DM_jac(t,X,pm):
 x, y1,y2 = X
 a, b,delta1,delta2,psi,phi,omega1,omega2=pm
 J=np.array([[-2*a*x - b*y2 - y1 + 1, -x, -b*x],
 [y1, -b*psi*y2 - delta1 - 2*omega1*y1 + x, -b*psi*y1],
 [b*y2, phi*y2, -2*b*omega2*y2 + b*x - delta2 + phi*y1]])
 return J

In []:

#Solver that can be used
SOLVERS=['RK45','RK23','DOP853','BDF','Radau','LSODA']
def run_model(param_values,tMax,solvers,RelTol,AbsTol):
 loop_n = param_values.shape[0]

 x_res = np.empty((loop_n, 4))
 y1_res = np.empty((loop_n, 4))
 y2_res = np.empty((loop_n, 4))

 t = [0, tMax]
 t_eval_pts = np.linspace(0, tMax, 25*tMax)
 for i in range(loop_n):
 a, b,delta1,delta2,psi,phi,omega1,omega2,x0,y10,y20,*_ = param_va

lues[i]
 X0 = [x0, y10, y20]
 pm=np.array ([a, b,delta1,delta2,psi,phi,omega1,omega2])
 #hmax=0.01
 #,max_step=0.01

 sol=solve_ivp(DM_bacteria,t,X0,method= solvers,t_eval= t_eval_pts

,args=(pm,),jac=DM_jac,rtol=RelTol,atol=AbsTol);

 x, y1, y2 = sol.y
 x_res[i, :] = amax(x), mean(x), median(x), x[-1]
 y1_res[i, :] = amax(y1), mean(y1), median(y1), y1[-1]
 y2_res[i, :] = amax(y2), mean(y2), median(y2), y2[-1]
 return x_res, y1_res, y2_res

187

function to calculate max values from boundness for each set of
parameters

In []:

def MaxBound(param_values):
 a, b,delta1,delta2,psi,phi,omega1,omega2,x0,y10,y20 = param_value

s
 X0 = [x0, y10, y20]
 x_m=np.amax(np.array([x0,1/a]))
 y1_m=np.amax(np.array([y10,(x_m-delta1)/omega1]))
 y2_m=np.amax(np.array([y20,(b*x_m+phi*y1_m-delta2)/(b*omega2)]))
 MaxBound=np.array([x_m,y1_m,y2_m])
 return MaxBound

Function to find eqm. points and check their stability for a given
set of parameters

188

In []:

def EqmValues(param_values):
 a, b,delta1,delta2,psi,phi,omega1,omega2,x0,y10,y20 = param_values
 EP1=np.array([0,0,0])

 EP2=np.array([1/a, 0, 0])

 EP3=np.array([(delta1 + omega1)/(a*omega1 + 1), (-a*delta1 + 1)/(a*om

ega1 + 1), 0])

 EP4=np.array([(delta2 + omega2)/(a*omega2 + b), 0, (-a*delta2 + b)/(b

*(a*omega2 + b))])

 EP5=np.array([(delta1*(omega2 + phi) + delta2*(omega1 - psi) + omega1

*omega2 + phi*psi)/
 (a*omega1*omega2 + a*phi*psi + b*omega1 - b*psi + omega

2 + phi),

 (-b*psi - delta1*(a*omega2 + b) + delta2*(a*psi + 1) +

omega2)/
 (a*omega1*omega2 + a*phi*psi + b*omega1 - b*psi + omega

2 + phi),

 (b*omega1 - delta1*(a*phi - b) - delta2*(a*omega1 + 1)

+ phi)/
 (b*(a*omega1*omega2 + a*phi*psi + b*omega1 - b*psi + om

ega2 + phi))])
 EP=np.stack(np.array([EP1,EP2,EP3,EP4,EP5]))

 J1=np.array([[1, 0, 0], [0, -delta1, 0], [0, 0, -delta2]])

 J2=np.array([[-1, -1/a, -b/a], [0, -delta1 + 1/a, 0], [0, 0, -delta2
+ b/a]])

 J3=np.array([
 [-a*(delta1 + omega1)/(a*omega1 + 1), -(delta1 + omega1)/(a*omega1 +

1),-b*(delta1 + omega1)/(a*omega1 + 1)],
 [(-a*delta1 + 1)/(a*omega1 + 1),omega1*(a*delta1 - 1)/(a*omega1 + 1),

b*psi*(a*delta1 - 1)/(a*omega1 + 1)],
 [0, 0, (b*(delta1 + omega1) - delta2*(a*omega1 + 1) - phi*(a*delta1 -

1))/(a*omega1 + 1)]])

 J4=np.array([
 [-a*(delta2 + omega2)/(a*omega2 + b), -(delta2 + omega2)/(a*omega2 +

b),-b*(delta2 + omega2)/(a*omega2 + b)],
 [0, (-delta1*(a*omega2 + b) + delta2 + omega2 + psi*(a*delta2 - b))/(

a*omega2 + b), 0],
 [(-a*delta2 + b)/(a*omega2 + b), -phi*(a*delta2 - b)/(b*(a*omega2 + b

)), omega2*(a*delta2 - b)/(a*omega2 + b)]])

 J5=np.array([
 [a*(-delta1*omega2 - delta1*phi - delta2*omega1 + delta2*psi - omega1

189

*omega2 - phi*psi)/
 (a*omega1*omega2 + a*phi*psi + b*omega1 - b*psi + omega2 + phi),

 (-delta1*omega2 - delta1*phi - delta2*omega1 + delta2*psi - omega1*o

mega2 - phi*psi)/
 (a*omega1*omega2 + a*phi*psi + b*omega1 - b*psi + omega2 + phi),

 b*(-delta1*omega2 - delta1*phi - delta2*omega1 + delta2*psi - omega1

*omega2 - phi*psi)/
 (a*omega1*omega2 + a*phi*psi + b*omega1 - b*psi + omega2 + phi)],

 [(-a*delta1*omega2 + a*delta2*psi - b*delta1 - b*psi + delta2 + omega

2)/
 (a*omega1*omega2 + a*phi*psi + b*omega1 - b*psi + omega2 + phi),

 omega1*(a*delta1*omega2 - a*delta2*psi + b*delta1 + b*psi - delta2 -

omega2)/
 (a*omega1*omega2 + a*phi*psi + b*omega1 - b*psi + omega2 + phi),

 b*psi*(a*delta1*omega2 - a*delta2*psi + b*delta1 + b*psi - delta2 -

omega2)/
 (a*omega1*omega2 + a*phi*psi + b*omega1 - b*psi + omega2 + phi)],

 [(-a*delta1*phi - a*delta2*omega1 + b*delta1 + b*omega1 - delta2 + ph

i)/
 (a*omega1*omega2 + a*phi*psi + b*omega1 - b*psi + omega2 + phi),

 phi*(-a*delta1*phi - a*delta2*omega1 + b*delta1 + b*omega1 - delta2

+ phi)/
 (b*(a*omega1*omega2 + a*phi*psi + b*omega1 - b*psi + omega2 + phi)),

 omega2*(a*delta1*phi + a*delta2*omega1 - b*delta1 - b*omega1 + delta2

- phi)/
 (a*omega1*omega2 + a*phi*psi + b*omega1 - b*psi + omega2 + phi)]
])
 lamda1,ev1=np.linalg.eig(J1)
 lamda2,ev2=np.linalg.eig(J2)
 lamda3,ev3=np.linalg.eig(J3)
 lamda4,ev4=np.linalg.eig(J4)
 lamda5,ev5=np.linalg.eig(J5)
 Lambda=np.stack(np.array([lamda1,lamda2,lamda3,lamda4,lamda5])) # Use

of linear algebra
 EV=np.stack(np.array([ev1,ev2,ev3,ev4,ev5]))
 return EP,Lambda<0

190

Function to find stable eqms and index of parameter sets for
which all eqms are unstable
We will use this to get statistics for positive stable Eqm. values to compare model output at
eqm. with them.If the ODE solver does't give same values we need to find them and run
model again with differnet parameters to get reasonalbe results.

In []:

def SatbleEQMs(param_values):
 StableEP3=[]
 StableEP4=[]
 StableEP5=[]
 UnstableEP=[]
 for i in range(param_values.shape[0]):
 Eqm,L=EqmValues(param_values[i])
 if L[4].all()==True and Eqm[4][0]>0 and Eqm[4][1]>0 and Eqm[4][2]

>0:
 StableEP5.append(Eqm[4])
 elif L[3].all()==True and all(n > 0 for n in Eqm[3]):
 StableEP4.append(Eqm[3])
 elif L[2].all()==True and all(n > 0 for n in Eqm[2]):
 StableEP3.append(Eqm[2])
 else:
 UnstableEP.append(i)

 return [np.stack(StableEP3) , np.stack(StableEP4), np.stack(StableEP

5), np.stack(UnstableEP)]

Find Outliers

1) via IQR test

191

In [2]:

def FindOutliers(dataset):
 Outliers=[]
 DS_sorted = np.sort(dataset)
 Q1 = np.quantile(DS_sorted,0.25)
 Q3 = np.quantile(DS_sorted,0.75)

 # This should be identical to `scipy.stats.iqr(y1_median)`
 dataset_iqr = Q3 - Q1
 lower_bound = Q1 - 1.5 *dataset_iqr
 upper_bound = Q3 + 1.5 *dataset_iqr
 Outliers_data=dataset [(dataset < lower_bound)|(dataset > upper_boun

d)]
 Outliers.append(Outliers_data)
 DataLower =dataset [dataset < lower_bound]
 DataUpper= DS_sorted[dataset > upper_bound]
 Outliers_position=np.where((dataset <lower_bound) |(dataset >upper_b

ound))
 return Outliers_position, DataLower, DataUpper,lower_bound, upper_b

ound

2) via z scores

In [3]:

def outliers_z_score(data):
 threshold = 3
 mean_data = np.mean(data)
 stdev_data = np.std(data)
 z_scores = [(y - mean_data) / stdev_data for y in data]
 return np.where(np.abs(z_scores) > threshold),data[np.abs(z_scores) >

threshold]

Function for finding max,min,median,eqm values for each set of
parameters

192

In [4]:

def SolSystemStat(param_values,tMax,solvers,RelTol,AbsTol):
 t = [0, tMax]
 t_eval_pts = np.linspace(0, tMax, 25*tMax)
 a, b,delta1,delta2,psi,phi,omega1,omega2,x0,y10,y20,*_ = param_values
 X0 = [x0, y10, y20]
 pm=np.array ([a, b,delta1,delta2,psi,phi,omega1,omega2])
 #hmax=0.01
 #,max_step=0.01
 sol=solve_ivp(DM_bacteria,t,X0,method= solvers,t_eval= t_eval_pts,arg

s=(pm,),jac=DM_jac,rtol=RelTol,atol=AbsTol);

 x, y1, y2 = sol.y
 Xstat = np.array([amax(x), mean(x), median(x), x[tMax-500:tMax].max

()])
 Y1stat=np.array([amax(y1), mean(y1), median(y1), y1[tMax-500:tMax].ma

x()])
 Y2stat = np.array([amax(y2), mean(y2), median(y2), y2[tMax-500:tMax].

max()])
 MaxEnd=np.amax([x[tMax-500:tMax].max(),y1[tMax-500:tMax].max(),y2[tMa

x-500:tMax].max()])
 return Xstat,Y1stat, Y2stat,x,y1,y2,MaxEnd

Functions for ploting solution and running the model for
unreasonable model output

193

In []:

#Solvers that can be used
def SolPlot(param_values,tMax,solvers,RelTol,AbsTol):
 E,L=EqmValues(param_values)
 MB=MaxBound(param_values)
 a,b,delta1,delta2,psi,phi,omega1,omega2,x0,y10,y20 = param_values
 X0 = [x0, y10, y20]
 t = [0, tMax]
 t_eval_pts = np.linspace(0, tMax, 25*tMax)
 a, b,delta1,delta2,psi,phi,omega1,omega2,x0,y10,y20,*_ = param_values
 X0 = [x0, y10, y20]
 pm=np.array ([a, b,delta1,delta2,psi,phi,omega1,omega2])
 #hmax=0.01
 #,max_step=0.01
 sol=solve_ivp(DM_bacteria,t,X0,method= solvers,t_eval= t_eval_pts,arg

s=(pm,),jac=DM_jac,rtol=RelTol,atol=AbsTol);
 x,y1,y2=sol.y
 Xstat = np.array([amax(x), mean(x), median(x), x[-1]])
 Y1stat=np.array([amax(y1), mean(y1), median(y1), y1[-1]])
 Y2stat = np.array([amax(y2), mean(y2), median(y2), y2[-1]])
 MinXY12=([np.min(x),np.min(y1),np.min(y2)])
 MaxEnd=np.amax([x[tMax-500:tMax].max(),y1[tMax-500:tMax].max(),y2[tMa

x-500:tMax].max()])
 fig=plt.figure(figsize=(15,5))
 plt.xlabel('Time (day)')
 plt.ylabel('populations (num/ml)')
 plt.title(r'$\delta_{1}<\frac{1}{a}\quad and\quad \delta_{2}<\frac
{b}{a}\quad $'+' '+'$x_{0}=$' +str(X0))
 plt.plot(t_eval_pts,x,'r--' ,linewidth=2.5, markersize=1.5)
 plt.plot(t_eval_pts,y1,'b:', linewidth=3, markersize=0.5)
 plt.plot(t_eval_pts,y2,'g-.', linewidth=3.5, markersize=0.2)
 # set the limits
 plt.xlim([tMax-50, tMax])
 plt.ylim([0,MaxEnd])
 plt.legend(('x','y_{1}','y_{2}'),loc='upper center', shadow=True

)
 plt.show()

 return E,L,Xstat, Y1stat,Y2stat,MinXY12,MB,sol['message']

Title for plotting

194

In []:

TITLE=['Sensitivity of Maximum value of x' ,'Sensitivity of Mean va
lue of x' ,
 'Sensitivity of Median value of x' ,'Sensitivity of Equilibri

um value of x',
 'Sensitivity of Maximum value of y_{1}' ,'Sensitivity of Mean va

lue of y_{1}' ,
 'Sensitivity of Median value of y_{1}','Sensitivity of Equilibri

um value of y_{1}',
 'Sensitivity of Maximum value of y_{2}' , 'Sensitivity of Mean v

alue of y_{2}',
 'Sensitivity of Median value of y_{2}','Sensitivity of Equilibri

um value of y_{2}']

SOBOL METHOD

Generate Sampels

In []:

num_par=11
N1=1000*num_par

N1*(2*num_par+2)

param_values1 = saltelli.sample(problem, 30000,calc_second_order=False)
print(param_values1.shape)

Statistics for parameter sampling

In []:

pd.DataFrame(param_values1).describe()

Run the model

In []:

%%time
xSobol, y1Sobol, y2Sobol=run_model(param_values1,364,SOLVERS[0],1e-09,1e-
09)

195

In []:

param_values1=np.loadtxt('NonDimFigures\ModelNewNonDim\ModelNewNonDimSobo
l/'
 +"ParamValues1SobolNewNonDimV1.txt", delimiter=

',')

In []:

param_values1.shape

Save parameter values and model output to txt file for later
use

In []:

with open('NonDimFigures\ModelNewNonDim\ModelNewNonDimSobol/'+"ParamValue
s1SobolNewNonDimV1.txt", "w+") as f:

 np.savetxt(f,param_values1, delimiter=',',header='a,b,delta1,delta2,p

si,phi,omega1,omega2,x0,y10,y20,x0,y10,y20')

with open('NonDimFigures\ModelNewNonDim\ModelNewNonDimSobol/'+"xSobolNewN
onDimV1.txt", "w+") as f:
 np.savetxt(f,xSobol, delimiter=',')

with open('NonDimFigures\ModelNewNonDim\ModelNewNonDimSobol/'+"y1SobolNew
NonDimV1.txt", "w+") as f:
 np.savetxt(f,y1Sobol, delimiter=',')

with open('NonDimFigures\ModelNewNonDim\ModelNewNonDimSobol/'+"y2SobolNew
NonDimV1.txt", "w+") as f:
 np.savetxt(f,y2Sobol, delimiter=',')

Loading the results after saving them as text files

In []:

xSobol, y1Sobol, y2Sobol=[
np.loadtxt('NonDimFigures\ModelNewNonDim\ModelNewNonDimSobol/'+"xSobolNew
NonDimV1.txt", delimiter=','),
np.loadtxt('NonDimFigures\ModelNewNonDim\ModelNewNonDimSobol/'+"y1SobolNe
wNonDimV1.txt", delimiter=','),
np.loadtxt('NonDimFigures\ModelNewNonDim\ModelNewNonDimSobol/'+"y2SobolNe
wNonDimV1.txt", delimiter=',')]

196

Analysis of errors in model output

I)Get statistics for model output to check positivity and
boundness

In []:

xdfSobol=pd.DataFrame(xSobol[:,:]).describe()
y1dfSobol=pd.DataFrame(y1Sobol[:,:]).describe()
y2dfSobol=pd.DataFrame(y2Sobol[:,:]).describe()
print(xdfSobol.to_markdown())
print(y1dfSobol.to_markdown())
print(y2dfSobol.to_markdown())

In []:

EP3psSobol,EP4psSobol,EP5psSobol,usEPsSobol=SatbleEQMs(param_values1)

In []:

EP3psSobol_stat=pd.DataFrame(EP3psSobol).describe()
EP3psSobol_stat.rename(columns={0: 'x', 1: 'y_{1}',2:'y_{2} '},inplac
e=True)
EP4psSobol_stat=pd.DataFrame(EP4psSobol).describe()
EP4psSobol_stat.rename(columns={0: 'x', 1: 'y_{1}',2:'y_{2} '},inplac
e=True)
EP5psSobol_stat=pd.DataFrame(EP5psSobol).describe()
EP5psSobol_stat.rename(columns={0: 'x', 1: 'y_{1}',2:'y_{2} '},inplac
e=True)
UsEPsIndexSobol_stat=pd.DataFrame(EPusSobol).describe()
UsEPsIndexSobol_stat.rename(columns={0: 'Index of parameter that gives un
stable Eqm. points'},inplace=True)

In []:

EP3psSobol_stat

In []:

EP4psSobol_stat

In []:

EP5psSobol_stat

In []:

UsEPsIndexSobol_stat

197

In []:

usEPsSobol

Max of of the third, fourth and fifth eqm. pointsx, ,y1 y2

In []:

XmaxEP345Sobol=np.amax(np.array([EP3psSobol[:,0].max(),EP4psSobol[:,0].ma
x(),EP5psSobol[:,0].max()]))
Y1maxEP345Sobol=np.amax(np.array([EP3psSobol[:,1].max(),EP4psSobol[:,1].m
ax(),EP5psSobol[:,1].max()]))
Y2maxEP345Sobol=np.amax(np.array([EP3psSobol[:,2].max(),EP4psSobol[:,2].m
ax(),EP5psSobol[:,2].max()]))
print(XmaxEP345Sobol,Y1maxEP345Sobol,Y2maxEP345Sobol)

Statistics for max values from boundness

In []:

MB1=np.empty((param_values1.shape[0],3))
for i in range(param_values1.shape[0]):
 MB1[i,:] =MaxBound(param_values1[i])

In []:

MBdfSobol=pd.DataFrame(MB1[:,:]).describe()
MBdfSobol.rename(columns={0: 'Max x', 1: 'Max y_1',2: 'Max y_2'},in
place=True)

Get index of unreasonable model output to modify them

1)Get index of the output that is less than zero

In []:

np.where(xSobol<0) # Same for other variables
y1Sobol[xSobol<0]

1)Get index of the output that is greater than max value at eqm or from
boundedness

In []:

np.where(xSobol[:,:]>MB1[:,0].max()) #Same for other variables
np.where(xSobol[:,-1]>XmaxEP345Sobol)[0]

198

In []:

#Store index of parameter that gives wrong model output in this
WrongOutput=[]

Run the model for the parameter set that give unreasnable model
output

In []:

for i in WrongOutput[]:
 XX=SolPlot(param_values1[i],2000,SOLVERS[0],1e-7,1e-7)
 print('EP=',XX[0],'Lambda=',XX[1],
 'Max , min ,median ,eqm. of x=',XX[2],
 'Max , min ,median ,eqm. of y1=',XX[3],
 'Max , min ,median ,eqm. of y2=',XX[4],
 'Min of x,y1,y2=',XX[5],
 'MaxBound=',XX[6],
 'SolStatus=',XX[7] ,
 'index of the parameter=',i,sep='\n\n')
 print('Inital values=',param_values1[i][-4:-1])

Last Workabout
Set eqm values from solvers to eqm. values from analytical solution for stable eqm. points

In []:

for i in range(param_values1.shape[0]):
 Eqm,L=EqmValues(param_values1[i])
 if L[4].all()==True and Eqm[4][0]>0 and Eqm[4][1]>0 and Eqm[4][2]

>0:
 xSobol[i][-1],y1Sobol[i][-1],y2Sobol[i][-1]=Eqm[4]

 elif L[3].all()==True and all(n > 0 for n in Eqm[3]):
 xSobol[i][-1],y1Sobol[i][-1],y2Sobol[i][-1]=Eqm[3]

 elif L[2].all()==True and all(n > 0 for n in Eqm[2]):
 xSobol[i][-1],y1Sobol[i][-1],y2Sobol[i][-1]=Eqm[2]

Run analysis
Here we run the analysis and plot the results as well

199

In []:

Total_Sobol=[]
First_Sobol=[]
SOBOL = [i for i in xSobol.T] + [i for i in y1Sobol.T] + [i for i in y2So
bol.T]
for i, j in zip(SOBOL, range(12)):
 SI_Sobol=sobol.analyze(problem, i,calc_second_order=False,num_resampl

es=1000)
 total, first =SI_Sobol.to_df()
 #Renaming the columns names to put them in math notation
 totalNew=total.rename(columns={'ST': 'S_{T}','ST_conf':'${S_{T}}_{c
onf}$'})
 firstNew=first.rename(columns={'S1': 'S_{1}','S1_conf':'${S_{1}}_{c
onf}$'})
 Total_Sobol.append(totalNew)
 First_Sobol.append(firstNew)
 barplot(total)
 #plt.xlim([-1, 100])
 plt.ylim([0, 1.2])
 plt.title(TITLE[j])
 plt.gcf().set_size_inches(10, 4.8)
 plt.savefig('NonDimFigures\ModelNewNonDim\ModelNewNonDimSobol/'+TITLE

[j]+''+'NewNonDimModelTotalSobolV1.png',
 dpi=300, bbox_inches='tight')
 barplot(first)
 #plt.xlim([-1, 100])
 plt.ylim([0, 1])
 plt.title(TITLE[j])
 plt.gcf().set_size_inches(10, 4.8)
 plt.savefig('NonDimFigures\ModelNewNondim\ModelNewNonDimSobol/'+TITLE

[j]+''+'NewNonDimModelFirstSobolV1.png',
 dpi=300, bbox_inches='tight')
 plt.show();plt.close()

Save Sensitivity results as dataframe into txt file

In []:

with open('NonDimFigures\ModelNewNonDim\ModelNewNonDimSobol/'+
 "Total_SobolNewNonDim.txt", "w+") as txt_file:
 print (Total_Sobol, file=txt_file)
with open('NonDimFigures\ModelNewNonDim\ModelNewNonDimSobol/'+
 "First_SobolNewNonDim.txt", "w+") as txt_file:
 print (First_Sobol, file=txt_file)

Convet dataframe to latex table

200

In []:

STx_Max,STx_Mean,STx_Median,STx_End,STy1_Max,STy1_Mean,STy1_Median,STy1_E
nd,
STy2_Max,STy2_Mean,STy2_Median,STy2_End=Total_Sobol
S1x_Max,S1x_Mean,S1x_Median,S1x_End,S1y1_Max,S1y1_Mean,S1y1_Median,S1y1_E
nd,
S1y2_Max,S1y2_Mean,S1y2_Median,S1y2_End=First_Sobol

The whole table

In []:

with open('NonDimFigures\ModelNewNonDim\ModelNewNonDimSobol/'+
 "NewNonDimModelTotal_Sobolv1.txt", "w+") as latex_file:
 for i, j in zip(Total_Sobol, range(12)):
 print (TITLE[j], file=latex_file)
 print(i.to_latex(index=True,escape=False), file=latex_file)

In []:

with open('NonDimFigures\ModelNewNonDim\ModelNewNonDimSobol/'
 +"NewNonDimModelTotal_Sobolv1Sorted.txt", "w+") as latex_file:
 for i, j in zip(Total_Sobol, range(12)):
 print (TITLE[j], file=latex_file)
 print(i.round(4).sort_values(by=['S_{T}'], ascending=False).to_

latex(index=True,escape=False), file=latex_file)

Morris method

Generate Samples

In []:

N2=100*num_par
N2*(num_par+1)
param_values2 =SALib.sample.morris.sample(problem, 15000)
print(param_values2.shape)

Run the model

201

In []:

%%time
xMorris, y1Morris, y2Morris=run_model(param_values2,364,SOLVERS[0],1e-09,
1e-09)

Run sensitivty analysis and plot results

In []:

MORRIS = [i for i in xMorris.T] + [i for i in y1Morris.T] + [i for i in y
2Morris.T]
RESULTSMorris=[]

for i, j in zip(MORRIS, range(12)):
 SI=morris.analyze(problem,param_values2, i)
 SI_DF=SI.to_df()
 #Renaming columns names to get mathematical notation
 SI_DFnew=SI_DF.rename(columns={'mu': 'μ','mu_star':'$\mu^{\star}

$','sigma':'$\sigma$',
 'mu_star_conf':'μ^{\star}_{conf}'

})
 #Plotting in two differint wayys
 fig, ax1 = plt.subplots(1)
 plt.gcf().set_size_inches(6.4, 4.8)
 SALib.plotting.morris.horizontal_bar_plot(ax1,SI , {'color':'r'}, sor

tby='mu_star', unit='')
 #plt.xlim([-1, 100])
 #plt.ylim([-2, 0.7])
 plt.title(TITLE[j])
 plt.savefig('NonDimFigures\ModelNewNonDim\ModelNewNonDimMorris/'+TITL

E[j]+''
 +'NewNonDimModelMorris.png', dpi=300, bbox_inches='tight'

)

 barplot(SI_DFnew.drop(['μ^{\star}_{conf}'],axis=1))
 #plt.xlim([-1, 100])
 #plt.ylim([-2, 0.7])
 plt.title(TITLE[j])
 plt.gcf().set_size_inches(8, 4.8)
 plt.savefig('NonDimFigures\ModelNewNonDim\ModelNewNonDimMorris/'+TITL

E[j]+''
 +'NewNonDimModelMorris1.png', dpi=300, bbox_inches='tigh

t')
 plt.show();plt.close()

 RESULTSMorris.append(SI_DFnew)

202

In []:

Sixm_Max,Sixm_Mean,Sixm_Median,Sixm_End,Siy1m_Max,Siy1m_Mean,
Siy1m_Median,Siy1m_End,Siy2m_Max,Siy2m_Mean,Siy2m_Median,Siy2m_End=RESULT
SMorris

rbd_fast method

Generate Samples
Number of model runs = number of samples

In []:

param_values3 =SALib.sample.latin.sample(problem, 100000)

In []:

%%time
xRbdFast, y1RbdFast, y2RbdFast=run_model(param_values3,364,SOLVERS[0],1e-
09,1e-09)

Run analysis

In []:

RbdFast = [i for i in xRbdFast.T] + [i for i in y1RbdFast.T] + [i for i i
n y2RbdFast.T]
RESULTSRbdFast=[]

for i, j in zip(RbdFast, range(12)):
 Si_RbdFast= rbd_fast.analyze(problem,param_values3, i)
 Sidf_RbdFast=Si_RbdFast.to_df()
 #Renaming the columns names to put them in math notation
 Sidf_RbdFastNew=Sidf_RbdFast.rename(columns={'S1': 'S_{1}'})
 RESULTSRbdFast.append(Sidf_RbdFastNew)
 barplot(Sidf_RbdFastNew)
 #plt.xlim([-1, 100])
 #plt.ylim([-0.5, 0.7])
 plt.title(TITLE[j])
 #plt.gcf().set_size_inches(20, 4)
 #Save file in a specific folder and name from title
 plt.savefig('NonDimFigures\ModelNewNonDim\ModelNewNonDimRbdFast/'+TIT

LE[j]+''+
 'NewNonDimModelRbdFast.png', dpi=300, bbox_inches='tight'

)
 plt.show

203

param_values4 =SALib.sample.latin.sample(problem, 60000)
print(param_values4.shape)%%time xDelta, y1Delta, y2Delta=run_model(param_values4)

Delta method
We can use samples and model output from rbd_fast method as both uses the same
sampling method

Run model

In []:

xDelta,y1Delta, y2Delta=xRbdFast,y1RbdFast,y2RbdFast
param_values4=param_values3

Run analysis

In []:

%%time

DELTA=[i for i in xDelta.T] + [i for i in y1Delta.T] + [i for i in y2Delt
a.T]
RESULTSDelta=[]
for i, j in zip(DELTA, range(12)):
 Si_Delta= delta.analyze(problem,param_values4, i,num_resamples=1000)
 Sidf_Delta= Si_Delta.to_df()
 #Renaming the columns names to put them in math notation
 Sidf_DeltaNew=Sidf_Delta.rename(columns={'delta':'δ','delta_co

nf':'δ_{conf}',
 'S1': 'S_{1}','S1_conf':

'${S_{1}}_{conf}$'})
 RESULTSDelta.append(Sidf_DeltaNew)
 barplot(Sidf_DeltaNew.drop(['δ_{conf}','${S_{1}}_{conf}$'],ax

is=1))
 #plt.xlim([-1, 100])
 #plt.ylim([-0.5, 0.7])
 plt.title(TITLE[j])
 #plt.gcf().set_size_inches(20, 4)
 #Save file in a specific folder and name from title
 plt.savefig('NonDimFigures\ModelNewNonDim\ModelNewNonDimDelta/'+TITLE

[j]+''+
 'NewNonDimModelDeltat.png', dpi=300, bbox_inches='tight')

Run analysis for median and eqm. value of after log and
square root transformation

y1

204

In []:

y1Delta[y1Delta<=0]

In []:

y1DeltaC=y1Delta.copy()
#y1DeltaC[y1DeltaC<=0] = np.nextafter(0, 1)
#y1DeltaC[y1DeltaC<0]=0
y1DeltaC=y1DeltaC+np.nextafter(0, 1)

Run Si analysis after log transforming

In []:

DELTA1=[y1DeltaC.T[2],y1DeltaC.T[3]]
title=['Sensitivity of Median value of y_1 after log transformation',
 'Sensitivity of Equilibrium value of y_1 after log transformatio

n']
RESULTSDelta1=[]
for i, j in zip(DELTA1, range(2)):
 Si_Delta= delta.analyze(problem,param_values4, np.log(i),num_resample

s=1000)
 Sidf_Delta= Si_Delta.to_df()
 #Renaming the columns names to put them in math notation
 Sidf_DeltaNew=Sidf_Delta.rename(columns={'delta':'δ','delta_co

nf':'δ_{conf}',
 'S1': 'S_{1}','S1_conf':

'${S_{1}}_{conf}$'})
 RESULTSDelta1.append(Sidf_DeltaNew)
 barplot(Sidf_Delta)
 #plt.xlim([-1, 100])
 #plt.ylim([-0.5, 0.7])
 plt.title(TITLE[j])
 #plt.gcf().set_size_inches(20, 4)
 #Save file in a specific folder and name from title
 plt.savefig('NonDimFigures\ModelNewNonDim\ModelNewNonDimDelta/'+TITLE

[j]+''+
 'NewNonDimModelDeltatLog.png', dpi=300, bbox_inches='tigh

t')
 plt.show

Analyzing and setting results together

Comparison between Sobol ,RBD-FAST and DMIM methods for
S1

205

In []:

S1Max_all= pd.concat([First_Sobol[0]['S_{1}'].round(4),
 RESULTSRbdFast[0].round(4) ['S_{1}'],RESULTSDel
ta[0].round(4) ['S_{1}'] ,
 First_Sobol[4]['S_{1}'].round(4),RESULTSRbdFast
[4].round(4) ['S_{1}'],
 RESULTSDelta[4].round(4) ['S_{1}'],First_Sobol[
8] ['S_{1}'].round(4),
 RESULTSRbdFast[8].round(4) ['S_{1}'],RESULTSDel
ta[8].round(4) ['S_{1}']],axis=1,
 keys=['${S_{1}}_{Sobol}$' , '${S_{1}}_{RbdFast}$'
,'${S_{1}}_{DMIM}$ '
 ,'${S_{1}}_{Sobol}$', '${S_{1}}_{RbdFast}$'
,'${S_{1}}_{DMIM}$ '
 ,'${S_{1}}_{Sobol}$ ' , '${S_{1}}_{RbdFast}
$', '${S_{1}}_{DMIM}$ '])

S1Mean_all= pd.concat([First_Sobol[1]['S_{1}'].round(4),RESULTSRbdFast
[1].round(4) ['S_{1}'],
 RESULTSDelta[1].round(4) ['S_{1}'] ,First_Sobol
[5]['S_{1}'].round(4),
 RESULTSRbdFast[5].round(4) ['S_{1}'],RESULTSDel
ta[5].round(4) ['S_{1}'],
 First_Sobol[9] ['S_{1}'].round(4),RESULTSRbdFas
t[9].round(4) ['S_{1}'],
 RESULTSDelta[9].round(4) ['S_{1}']],axis=1,
 keys=['${S_{1}}_{Sobol}$' , '${S_{1}}_{RbdFast}$'
,'${S_{1}}_{DMIM}$ ' ,
 '${S_{1}}_{Sobol}$', '${S_{1}}_{RbdFast}$' ,
'${S_{1}}_{DMIM}$ ' ,
 '${S_{1}}_{Sobol}$ ' , '${S_{1}}_{RbdFast}$'
, '${S_{1}}_{DMIM}$ '])

S1Median_all=pd.concat([First_Sobol[2]['S_{1}'].round(4),RESULTSRbdFast
[2].round(4) ['S_{1}'],
 RESULTSDelta[2].round(4) ['S_{1}'] ,First_Sobol
[6]['S_{1}'].round(4),
 RESULTSRbdFast[6].round(4) ['S_{1}'],RESULTSDel
ta[6].round(4) ['S_{1}'],
 First_Sobol[10]['S_{1}'].round(4),RESULTSRbdFas
t[10].round(4) ['S_{1}'],
 RESULTSDelta[10].round(4) ['S_{1}']],axis=1,key
s=
 ['${S_{1}}_{Sobol}$' , '${S_{1}}_{RbdFast}$' ,'${S
{1}}{DMIM}$ ' ,

 '${S_{1}}_{Sobol}$', '${S_{1}}_{RbdFast}$' ,'${S_
{1}}_{DMIM}$ ' ,

 '${S_{1}}_{Sobol}$ ' , '${S_{1}}_{RbdFast}$',
'${S_{1}}_{DMIM}$ '])

S1End_all= pd.concat([

206

 First_Sobol[3]['S_{1}'].round(4),RESULTSRbdFast[3].round(4) ['$S_
{1}$'],
 RESULTSDelta[3].round(3) ['S_{1}'] ,First_Sobol[7]['S_{1}'].round
(4),RESULTSRbdFast[7].round(4) ['S_{1}'],
 RESULTSDelta[7].round(4) ['S_{1}'],First_Sobol[11]['S_{1}'].round
(4),RESULTSRbdFast[11].round(4) ['S_{1}'],
 RESULTSDelta[11].round(4) ['S_{1}']],axis=1,
 keys=['${S_{1}}_{Sobol}$' , '${S_{1}}_{RbdFast}$' ,'${S_{1}}_{DMIM}$
' ,'${S_{1}}_{Sobol}$',
 '${S_{1}}_{RbdFast}$' ,'${S_{1}}_{DMIM}$ ' ,'${S_{1}}_{Sobol}$
' , '${S_{1}}_{RbdFast}$', '${S_{1}}_{DMIM}$ '])

Comparison between Sobol and Morris and from
DMIM

ST μ⋆ δ

207

In []:

STMax_all=pd.concat([
Total_Sobol[0]['S_{T}'].round(4),RESULTSMorris[0].round(4) ['$\mu^{\sta
r}$'],RESULTSDelta[0].round(4) ['δ'] ,
Total_Sobol[4]['S_{T}'].round(4),RESULTSMorris[4].round(4) ['$\mu^{\sta
r}$'],RESULTSDelta[4].round(4) ['δ'],
Total_Sobol[8]['S_{T}'].round(4), RESULTSMorris[8].round(4) ['$\mu^{\st
ar}$'], RESULTSDelta[8].round(4) ['δ']],
axis=1, keys=['${S_{T}}_{Sobol}$', '${\mu^{\star}}_{Morris}$','${\delt
a}_{DMIM}$ ','${S_{T}}_{Sobol}$',
 '${\mu^{\star}}_{Morris}$','${\delta}_{DMIM}$ ','${S_{T}}

{Sobol}$', '${\mu^{\star}}{Morris}$',
 '${\delta}_{DMIM}$ '])

STMean_all= pd.concat([
Total_Sobol[1]['S_{T}'].round(4),RESULTSMorris[1].round(4) ['$\mu^{\sta
r}$'],RESULTSDelta[1].round(4) ['δ'] ,
Total_Sobol[5]['S_{T}'].round(4),RESULTSMorris[5].round(4) ['$\mu^{\sta
r}$'],RESULTSDelta[5].round(4) ['δ'],
Total_Sobol[9]['S_{T}'].round(4), RESULTSMorris[9].round(4) ['$\mu^{\st
ar}$'], RESULTSDelta[9].round(4) ['δ']],
axis=1, keys=['${S_{T}}_{Sobol}$', '${\mu^{\star}}_{Morris}$','${\delt
a}_{DMIM}$ ','${S_{T}}_{Sobol}$',
'${\mu^{\star}}_{Morris}$','${\delta}_{DMIM}$ ','${S_{T}}_{Sobol}$',
'${\mu^{\star}}_{Morris}$','${\delta}_{DMIM}$ '])

STMedian_all=pd.concat([
Total_Sobol[2]['S_{T}'].round(4),RESULTSMorris[2].round(4) ['$\mu^{\sta
r}$'],RESULTSDelta[2].round(4) ['δ'] ,
Total_Sobol[6]['S_{T}'].round(4),RESULTSMorris[6].round(4) ['$\mu^{\sta
r}$'],RESULTSDelta[6].round(4) ['δ'],
Total_Sobol[10]['S_{T}'].round(4),RESULTSMorris[10].round(4)['$\mu^{\st
ar}$'],RESULTSDelta[10].round(4) ['δ']],
axis=1, keys=['${S_{T}}_{Sobol}$', '${\mu^{\star}}_{Morris}$','${\delt
a}_{DMIM}$ ','${S_{T}}_{Sobol}$',
'${\mu^{\star}}_{Morris}$','${\delta}_{DMIM}$ ','${S_{T}}_{Sobol}$',
'${\mu^{\star}}_{Morris}$','${\delta}_{DMIM}$ '])

STEnd_all= pd.concat([
Total_Sobol[3]['S_{T}'].round(4),RESULTSMorris[3].round(4) ['$\mu^{\sta
r}$'],RESULTSDelta[3].round(4) ['δ'] ,
Total_Sobol[7]['S_{T}'].round(4),RESULTSMorris[7].round(4) ['$\mu^{\sta
r}$'],RESULTSDelta[7].round(4) ['δ'],
Total_Sobol[11]['S_{T}'].round(4),RESULTSMorris[11].round(4)['$\mu^{\st
ar}$'], RESULTSDelta[11].round(4) ['δ']],
axis=1, keys=['${S_{T}}_{Sobol}$', '${\mu^{\star}}_{Morris}$','${\delt
a}_{DMIM}$ ','${S_{T}}_{Sobol}$',
'${\mu^{\star}}_{Morris}$','${\delta}_{DMIM}$ ','${S_{T}}_{Sobol}$',
'${\mu^{\star}}_{Morris}$','${\delta}_{DMIM}$ '])

Add sum to all tables and set negative values to zero

208

In []:

SiTables=[S1Max_all,S1Mean_all,S1Median_all,S1End_all,STMax_all,STMean_al
l,STMedian_all,STEnd_all]
for i in SiTables:
 i.drop(['\sum'],inplace=True)
 i.loc['\sum'] =i.clip(lower=0).sum(axis=0)

In []:

AllTablesTitle=['Main Effect sensitivity index for all methods for Max va
lue of all variables',

 'Main Effect sensitivity index for all methods for Mean v
alue of all variables',

 'Main Effect sensitivity index for all methods for Median
value of all variables',

 'Main Effect sensitivity index for all methods for Eqm. v
alue of all variables',

 'Total or Interaction Effect sensitivity index for all me
thods for Max value of all variables',

 'Total or Interaction Effect sensitivity index for all me
thods for Mean value of all variables',

 'Total or Interaction Effect sensitivity index for all me
thods for Median value of all variables',

 'Total or Interaction Effect sensitivity index for all me
thods for Eqm. value of all variables'

]

AllTablesTitleShort=['MainEffetctMax',
 'MainEffetctMean' ,
 'MainEffetctMedian',
 'MainEffetctEqm',

 'TotalInteractionsEffectMax',
 'TotalInteractionsEffectMean',
 'TotalInteractionsEffectMedian',
 'TotalInteractionsEffectEqm',
]

Save summary tables as latex files

209

In []:

with open('NonDimFigures\ModelNewNonDim\ModelNewNonDimAllTablesCompared/'
+
 "MainTotalInteractionEffectAllNewNonDim.txt", "w+") as latex_fi

le:
 for i,j in zip(SiTables,range(8)):
 print(AllTablesTitle[j], file=latex_file)
 print(i.to_latex(index=True,escape=False), file=latex_file)

Save summary tables as excel files

In []:

for i,j in zip(SiTables,range(8)):
 i.to_excel(r'C:\Users\farha\Documents\Python_new\NonDimFigures\ModelN

ewNonDim\ModelNewNonDimAllTablesCompared/'+
 AllTablesTitleShort[j]+'NewNonDim.xlsx',index = True, head

er=True)

Save with use of rank

In []:

with open('NonDimFigures\ModelNewNonDim\ModelNewNonDimAllTablesCompared/'
+
 "MainTotalInteractionEffectAllNewNonDimRank.txt", "w+") as late

x_file:
 for i,j in zip(SiTables,range(8)):
 print(AllTablesTitle[j], file=latex_file)
 print(i.rank(method='average',ascending=False).to_latex(index=Tru
e,escape=False), file=latex_file)

210

B.3 Numerical simulation

Her we present the python code formed via Jupyter notebook used in the numerical simulation
section.

211

Importing necessary packages

In [16]:

%matplotlib inline
#uncomment the next three lines if you want interactive polts
#%matplotlib notebook
#from matplotlib import use
#use("Qt5Agg")
import numpy as np
from numpy import *
from cmath import*

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from scipy.signal import find_peaks
from scipy import signal
import scipy as scp
from scipy.integrate import solve_ivp, odeint
import pandas as pd
from scipy import linalg as LA
import SALib
from SALib.sample import saltelli,morris,latin,ff,finite_diff
from SALib.sample import morris
from SALib.analyze import sobol,dgsm,rbd_fast,delta,ff,dgsm
from SALib.analyze import morris
from SALib.plotting.bar import plot as barplot
from SALib.plotting.morris import *
import nolds

Import the parameter set from saltelli (Sobol) sampling
method

In [17]:

param_values1=np.loadtxt('NonDimFigures\ModelNewNonDim\ModelNewNonDimSobo
l/'+
 "ParamValues1SobolNewNonDimV1.txt", delimiter=

',')

Get nondimensional parameter from dimensional parameter
to check that both Dim and NonDim models give the same dynamics

212

In [18]:

def DimToNonDim(pDim):
 k,r,f1,f2,beta1, beta2, epsilon1,epsilon2,psi12,phi12,omega11,omega22

,x0,y10,y20=pDim
 pNonDim=np.array([r/(beta1*f1*k),

 (beta2*f2)/(beta1*f1),

 epsilon1/r,

 epsilon2/r,

 psi12/f2,

 phi12/f1,

 omega11/f1,

 (omega22)/f2,

 (beta1*f1*x0)/r,

 (f1*y10)/r,

 (r*beta2*y20)/(beta1*f1)])

 return pNonDim

Model ,functions and solvers

In [19]:

def DM_bacteria(t,X,pm):
 x, y1, y2 = X
 a, b,delta1,delta2,psi,phi,omega1,omega2=pm
 dxdt=x*(1-a*x-y1-b*y2)
 dy1dt=y1*(-delta1-omega1*y1-psi*b*y2+x)
 dy2dt=y2*(-delta2-omega2*b*y2+phi*y1+b*x)
 return [dxdt,dy1dt,dy2dt]
def DM_jac(t,X,pm):
 x, y1,y2 = X
 a, b,delta1,delta2,psi,phi,omega1,omega2=pm
 J=np.array([[-2*a*x - b*y2 - y1 + 1, -x, -b*x],
 [y1, -b*psi*y2 - delta1 - 2*omega1*y1 + x, -b*psi*y1],
 [b*y2, phi*y2, -2*b*omega2*y2 + b*x - delta2 + phi*y1]])
 return J

213

In [20]:

#Solver that can be used
SOLVERS=['RK45','RK23','DOP853','BDF','Radau','LSODA']

Function to find eqm. points and check their stability for a given
set of parameters

214

In [21]:

def EqmValues(param_values):
 a, b,delta1,delta2,psi,phi,omega1,omega2,x0,y10,y20 = param_values
 EP1=np.array([0,0,0])

 EP2=np.array([1/a, 0, 0])

 EP3=np.array([(delta1 + omega1)/(a*omega1 + 1), (-a*delta1 + 1)/(a*om

ega1 + 1), 0])

 EP4=np.array([(delta2 + omega2)/(a*omega2 + b), 0, (-a*delta2 + b)/(b

*(a*omega2 + b))])

 EP5=np.array([(delta1*(omega2 + phi) + delta2*(omega1 - psi) + omega1

*omega2 + phi*psi)/
 (a*omega1*omega2 + a*phi*psi + b*omega1 - b*psi + omega

2 + phi),

 (-b*psi - delta1*(a*omega2 + b) + delta2*(a*psi + 1) +

omega2)/
 (a*omega1*omega2 + a*phi*psi + b*omega1 - b*psi + omega

2 + phi),

 (b*omega1 - delta1*(a*phi - b) - delta2*(a*omega1 + 1)

+ phi)/
 (b*(a*omega1*omega2 + a*phi*psi + b*omega1 - b*psi + om

ega2 + phi))])
 EP=np.stack(np.array([EP1,EP2,EP3,EP4,EP5]))

 J1=np.array([[1, 0, 0], [0, -delta1, 0], [0, 0, -delta2]])

 J2=np.array([[-1, -1/a, -b/a], [0, -delta1 + 1/a, 0], [0, 0, -delta2
+ b/a]])

 J3=np.array([
 [-a*(delta1 + omega1)/(a*omega1 + 1), -(delta1 + omega1)/(a*omega1 +

1),-b*(delta1 + omega1)/(a*omega1 + 1)],
 [(-a*delta1 + 1)/(a*omega1 + 1),omega1*(a*delta1 - 1)/(a*omega1 + 1),

b*psi*(a*delta1 - 1)/(a*omega1 + 1)],
 [0, 0, (b*(delta1 + omega1) - delta2*(a*omega1 + 1) - phi*(a*delta1 -

1))/(a*omega1 + 1)]])

 J4=np.array([
 [-a*(delta2 + omega2)/(a*omega2 + b), -(delta2 + omega2)/(a*omega2 +

b),-b*(delta2 + omega2)/(a*omega2 + b)],
 [0, (-delta1*(a*omega2 + b) + delta2 + omega2 + psi*(a*delta2 - b))/(

a*omega2 + b), 0],
 [(-a*delta2 + b)/(a*omega2 + b), -phi*(a*delta2 - b)/(b*(a*omega2 + b

)), omega2*(a*delta2 - b)/(a*omega2 + b)]])

 J5=np.array([
 [a*(-delta1*omega2 - delta1*phi - delta2*omega1 + delta2*psi - omega1

215

*omega2 - phi*psi)/
 (a*omega1*omega2 + a*phi*psi + b*omega1 - b*psi + omega2 + phi),

 (-delta1*omega2 - delta1*phi - delta2*omega1 + delta2*psi - omega1*o

mega2 - phi*psi)/
 (a*omega1*omega2 + a*phi*psi + b*omega1 - b*psi + omega2 + phi),

 b*(-delta1*omega2 - delta1*phi - delta2*omega1 + delta2*psi - omega1

*omega2 - phi*psi)/
 (a*omega1*omega2 + a*phi*psi + b*omega1 - b*psi + omega2 + phi)],

 [(-a*delta1*omega2 + a*delta2*psi - b*delta1 - b*psi + delta2 + omega

2)/
 (a*omega1*omega2 + a*phi*psi + b*omega1 - b*psi + omega2 + phi),

 omega1*(a*delta1*omega2 - a*delta2*psi + b*delta1 + b*psi - delta2 -

omega2)/
 (a*omega1*omega2 + a*phi*psi + b*omega1 - b*psi + omega2 + phi),

 b*psi*(a*delta1*omega2 - a*delta2*psi + b*delta1 + b*psi - delta2 -

omega2)/
 (a*omega1*omega2 + a*phi*psi + b*omega1 - b*psi + omega2 + phi)],

 [(-a*delta1*phi - a*delta2*omega1 + b*delta1 + b*omega1 - delta2 + ph

i)/
 (a*omega1*omega2 + a*phi*psi + b*omega1 - b*psi + omega2 + phi),

 phi*(-a*delta1*phi - a*delta2*omega1 + b*delta1 + b*omega1 - delta2

+ phi)/
 (b*(a*omega1*omega2 + a*phi*psi + b*omega1 - b*psi + omega2 + phi)),

 omega2*(a*delta1*phi + a*delta2*omega1 - b*delta1 - b*omega1 + delta2

- phi)/
 (a*omega1*omega2 + a*phi*psi + b*omega1 - b*psi + omega2 + phi)]
])
 lamda1,ev1=np.linalg.eig(J1)
 lamda2,ev2=np.linalg.eig(J2)
 lamda3,ev3=np.linalg.eig(J3)
 lamda4,ev4=np.linalg.eig(J4)
 lamda5,ev5=np.linalg.eig(J5)
 Lambda=np.stack(np.array([lamda1,lamda2,lamda3,lamda4,lamda5])) # Use

of linear algebra
 EV=np.stack(np.array([ev1,ev2,ev3,ev4,ev5]))
 return EP,Lambda<0

216

Function to find stable eqms and index of parameter sets for
which all eqms are unstable
We will use this to get statistics for positive stable Eqm. values to compare model output at
eqm. with them.If the ODE solver does't give same values we need to find them and run
model again with differnet parameters to get reasonalbe results.

In [22]:

def SatbleEQMs(param_values):
 StableEP3=[]
 StableEP4=[]
 StableEP5=[]
 UnstableEP=[]
 for i in range(param_values.shape[0]):
 Eqm,L=EqmValues(param_values[i])
 if L[4].all()==True and Eqm[4][0]>0 and Eqm[4][1]>0 and Eqm[4][2]

>0:
 StableEP5.append(Eqm[4])
 elif L[3].all()==True and all(n > 0 for n in Eqm[3]):
 StableEP4.append(Eqm[3])
 elif L[2].all()==True and all(n > 0 for n in Eqm[2]):
 StableEP3.append(Eqm[2])
 else:
 UnstableEP.append(i)

 return [np.stack(StableEP3) , np.stack(StableEP4), np.stack(StableEP

5), np.stack(UnstableEP)]

Parameter sets used in simulation

217

In [23]:

Base parameter set
pm_base=np.array([7.18e-05, 0.28, 0.01, 0.46 ,
 1.56, 0.21, 0.31, 0.28,
 278.52, 592.59, 3.75])

#Psrsmeter sets used in study the effect of each parameters
pmbioAll=np.array([
 [7.18e-05, 0.28, 0.01, 0.46 ,1.56, 0.21, 0.31, 0.28,278.52, 592.59,

3.75],

 [7.18e-05, 0.1, 0.01, 0.46 ,1.56, 0.21, 0.31, 0.28,278.52, 592.59, 3.

75],
 [7.18e-05, 1, 0.01, 0.46 ,1.56, 0.21, 0.31, 0.28,278.52, 592.59, 3.

75],
 [7.18e-05, 10, 0.01, 0.46 ,1.56, 0.21, 0.31, 0.28,278.52, 592.59, 3.

75],

 [7.18e-05, 0.28, 0.1, 0.46 ,1.56, 0.21, 0.31, 0.28,278.52, 592.59, 3.

75],
 [7.18e-05, 0.28, 1, 0.46 ,1.56, 0.21, 0.31, 0.28,278.52, 592.59, 3.75

],
 [7.18e-05, 0.28, 10, 0.46 ,1.56, 0.21, 0.31, 0.28,278.52, 592.59, 3.7

5],

 [7.18e-05, 0.28, 0.01, 0.1 ,1.56, 0.21, 0.31, 0.28,278.52, 592.59,

3.75],
 [7.18e-05, 0.28, 0.01, 1 ,1.56, 0.21, 0.31, 0.28,278.52, 592.59, 3.7

5],
 [7.18e-05, 0.28, 0.01, 10 ,1.56, 0.21, 0.31, 0.28,278.52, 592.59, 3.

75],

 [7.18e-05, 0.28, 0.01, 0.46 ,0.1, 0.21, 0.31, 0.28,278.52, 592.59,

3.75],
 [7.18e-05, 0.28, 0.01, 0.46 ,1 , 0.21, 0.31, 0.28,278.52, 592.59,

3.75],
 [7.18e-05, 0.28, 0.01, 0.46 ,10 , 0.21, 0.31, 0.28,278.52, 592.59,

3.75],

 [7.18e-05, 0.28, 0.01, 0.46 ,1.56, 0.37 , 0.31, 0.28,278.52, 592.59,

3.75],
 [7.18e-05, 0.28, 0.01, 0.46 ,1.56, 0.371 , 0.31, 0.28,278.52, 5

92.59, 3.75],
 [7.18e-05, 0.28, 0.01, 0.46 ,1.56, 1.234 , 0.31, 0.28,278.52, 5

92.59, 3.75],
 [7.18e-05, 0.28, 0.01, 0.46 ,1.56, 1.235 , 0.31, 0.28,278.52, 5

92.59, 3.75],

 [7.18e-05, 0.28, 0.01, 0.46 ,1.56, 0.21, 0.1 , 0.28, 278.52, 592.5

9, 3.75],
 [7.18e-05, 0.28, 0.01, 0.46 ,1.56, 0.21, 1 , 0.28, 278.52, 59

218

2.59, 3.75],
 [7.18e-05, 0.28, 0.01, 0.46 ,1.56, 0.21, 10 , 0.28, 278.52, 59

2.59, 3.75],

 [7.18e-05, 0.28, 0.01, 0.46 ,1.56, 0.21, 0.31, 0.1 ,278.52, 592.59,

3.75],
 [7.18e-05, 0.28, 0.01, 0.46 ,1.56, 0.21, 0.31, 1 ,278.52, 592.59,

3.75],
 [7.18e-05, 0.28, 0.01, 0.46 ,1.56, 0.21, 0.31, 5 ,278.52, 592.59,

3.75]])

#Parameter set that gives chaotic behavoir
chaotic=np.array([3.99256592e-04, 2.80065918e-01, 9.78851318e+00, 4.33094
482e+00,
 1.59216309e-01, 4.10463217e+00, 7.37010376e-01, 1.67592651e-01,
 4.92309570e+03, 7.03787720e+02, 9.29061279e+01])

#Parameter set that gives periodic behavoir
periodic=np.array([
 [6.22254333e-04, 2.77951050e-01, 5.19471741e+00, 1.81878357e+00,
 1.95896912e+00, 4.23143017e+00, 4.14471832e-01, 2.08935788e+00,
 9.27642822e+03, 1.40179749e+01, 8.68908386e+01],
 [1.52433304e-06, 2.20304719e-01, 2.19023890e+01, 5.75428250e+00,
 2.35503628e-01, 1.38396945e+00, 3.52600725e-01, 1.21520420e-01,
 2.91293087e+05, 1.14919364e+04, 8.40371055e+00]])

#Parameter set that gives globally stable interior equilibrium poin
gsEP5All=np.array([6.94580078e-05, 7.91259766e-01, 5.57690430e+00, 7.5878
4180e+00,
 3.10190430e+00, 2.99076284e+00, 1.75375439e+00, 1.05959473e-01,
 3.33496094e+03, 4.64891113e+02, 5.39892578e+00])

#Parameter set that gives two stable equilibrium points EP3 ,EP4
StableEP34=np.array(
 [5.03549805e-04, 6.84912109e-01, 2.95688477e+00, 5.52856445e+00,
 9.10571289e+00, 5.05460986e-01, 6.44702148e-02, 1.82924756e+00,
 5.21972656e+03, 5.49767090e+02, 1.43505859e+00])

Save stability information to a text file for parameter sets used in
simulation

219

In []:

with open('NumericalSimulation/'+"ParameterValus-(StableEP34All).txt", "w
+") as txt_file:
 for i,j in zip(pmbioAll,range(100)):
 eqm,ev=EqmValues(param_values1[i])

 print ('Parameter'+str(j)+'=',param_values1[i],'Equilibrium Valu

e'+str(j)+ '=',
 eqm,'EV'+str(j)+'=',ev,'Stability(EigenValues)'+str(j)+'='

,ev<0,sep='\n', file=txt_file)

Function to find parameter sets for which the condition for

global stability of interior eqm. point is sataisfied

In [25]:

def GlobalStabilityEP5(param_values):
 GS=[]
 for i in range(param_values.shape[0]):
 a,b,delta1,delta2,psi,phi,omega1,omega2,x0,y10,y20 = param_values

[i]
 GSep5=2*a*(4*b*omega1*omega2 - (b*psi - phi)**2)
 Eqm,L=EqmValues(param_values[i])
 if Eqm[4][0]>0 and Eqm[4][1]>0 and Eqm[4][2]>0 and GSep5>0:
 GS.append(i)

 return GS

In [26]:

Cond=GlobalStabilityEP5(param_values1)

Function to find parameter sets for which both and are
stable.

EP3 EP4

220

In [27]:

def SatbleEP34(param_values):
 StableEP34=[]
 for i in range(param_values.shape[0]):
 Eqm,L=EqmValues(param_values[i])
 if L[3].all()==True and all(n > 0 for n in Eqm[3]) and L[2].all()

==True and all(n > 0 for n in Eqm[2]):
 StableEP34.append(i)
 return StableEP34

Function to find parameter sets for which both and are
stable.
However ther is not any one

EP3 EP5

In [41]:

def SatbleEP35(param_values):
 StableEP35=[]
 for i in range(param_values.shape[0]):
 Eqm,L=EqmValues(param_values[i])
 if all(n >= 0 for n in Eqm[2]) and L[2].all()==True \
 and Eqm[4][0]>0 and Eqm[4][1]>0 and Eqm[4][2]>0 and L[4].all()==T
rue :
 StableEP35.append(i)
 return StableEP35

Function to find parameter sets for which both and are
stable.
However ther is not any one

EP4 EP5

In [42]:

def SatbleEP45(param_values):
 StableEP45=[]
 for i in range(param_values.shape[0]):
 Eqm,L=EqmValues(param_values[i])
 if all(n >= 0 for n in Eqm[3]) and L[3].all()==True and Eqm[4][0]

>0 \
 and Eqm[4][1]>0 and Eqm[4][2]>0 and L[4].all()==True :
 StableEP45.append(i)
 return StableEP45

221

Function to find parameter sets for which both ,and
 are stable.

However ther is not any one

E ,EP3 P4

EP5

In [43]:

def SatbleEP345(param_values):
 StableEP345=[]
 for i in range(param_values.shape[0]):
 Eqm,L=EqmValues(param_values[i])
 if L[2].all()==True and all(n > 0 for n in Eqm[2]) and L[3].all()

==True \
 and all(n > 0 for n in Eqm[3]) and L[4].all()==True and all(n >

0 for n in Eqm[4]):
 StableEP345.append(i)
 return StableEP345

Function for ploting time series, peaks, and phase portrait

222

In []:

#Solvers that can be used
colors1=['c','k','b','r','y','m','g']
def SolPlot4(pm,tMax,solvers,RelTol,AbsTol):
 a,b,delta1,delta2,psi,phi,omega1,omega2,x0,y10,y20 = pm
 #find equilibrium points from analytical solution
 E,L=EqmValues(pm) # initial values
 InitVals=np.array([[E[2][0]+5,E[2][1]+5,E[2][2]],
 [E[3][0]+5,E[3][1],E[3][2]+5],
 list(E[4]+0.03),
 [10,8,5],
 [0.01,0.02,0.03],
])
 t=[0,tMax]
 t_eval_pts=np.linspace(0,tMax,300*tMax)
 sol= [solve_ivp(DM_bacteria,t,init,method= solvers,t_eval= t_eval_pts

,\
 args=(pm[0:8],),jac=DM_jac,rtol=RelTol,atol=AbsTol) f
or init in InitVals];
first plot Time series

 fig1=plt.figure(figsize=(10,5))
 for k in range(len(InitVals[0:4])):
 plt.subplot(2,2,k+1);
 xsol,y1sol,y2sol=sol[k].y
 print([xsol.min(), y1sol.min(),y2sol.min()])
 eqms=[xsol[-1],y1sol[-1],y2sol[-1]]
 plt.xlabel('Time')
 plt.ylabel('populations ')
 plt.title(r' $\delta_{1}<\frac{1}{a}\quad and\quad \delta_{2}<\f

rac{b}{a}\quad $'+' '+'$x_{0}=$'
 +str(list(np.round(InitVals[k],2))))
 plt.plot(t_eval_pts,xsol,'r--' ,linewidth=1, markersize=1.5)
 plt.plot(t_eval_pts,y1sol,'b:', linewidth=1.2, markersize=0.5)
 plt.plot(t_eval_pts,y2sol,'g-.', linewidth=1.5, markersize=0.2)
 # set the limits
 plt.xlim([0, tMax])
 #plt.ylim([0, MaxEnd])
 plt.legend(('x','y_{1}','y_{2}'), shadow=True)
 #if you want horizontal legend use
 #plt.legend(('x','y_{1}','y_{2}'), shadow=True, loc= 2, mo

de = "expand", ncol = 3)
 plt.tight_layout();
 plt.savefig('NumericalSimulation\TimeSeries-(chaotic2).png', dpi=

300, bbox_inches='tight')

#second plot peaks
 # Calculate the peaks for the third inirial condition and plotting
 xsolPeak,y1solPeak,y2solPeak=sol[2].y
 fig2=plt.figure(figsize=(10,5))
 plt.subplot(2,2,1);
 plt.xlabel('Time')
 plt.ylabel('populations ')

223

 plt.title(r' $\delta_{1}<\frac{1}{a}\quad and\quad \delta_{2}<\frac
{b}{a}\quad $'+' '
 +'$x_{0}=$' +str(list(np.round(InitVals[0],3))))
 plt.plot(t_eval_pts,xsolPeak,'r--' ,linewidth=1.5, markersize=1)
 plt.plot(t_eval_pts,y1solPeak,'b:', linewidth=2, markersize=0.5)
 plt.plot(t_eval_pts,y2solPeak,'g-.', linewidth=1.1, markersize=0.2)
 plt.xlim([tMax-50, tMax])
 #plt.ylim([0, 100])
 plt.legend(('x','y_{1}','y_{2}'), shadow=True)
 plt.tight_layout()

 plt.subplot(2,2,2)

 Xpeaks, XPropDic = find_peaks(xsolPeak, distance=2,height=0.1)
 Y1peaks, _ = find_peaks(y1solPeak, distance=2,height=0.1)
 Y2peaks, _ = find_peaks(y2solPeak, distance=2,height=0.1)
 plt.plot(t_eval_pts[Xpeaks] ,xsolPeak[Xpeaks],'r--')
 plt.plot(t_eval_pts[Y1peaks], y1solPeak[Y1peaks],'b:')
 plt.plot(t_eval_pts[Y2peaks], y2solPeak[Y2peaks], 'g-.')
 plt.xlabel('Time ')
 plt.ylabel('Peaks ')
 plt.xlim([0, tMax])
 #plt.ylim([0, 100])
 plt.legend(('x','y_{1}','y_{2}'), shadow=True)
 plt.title(r' $\delta_{1}<\frac{1}{a}\quad and\quad \delta_{2}<\frac
{b}{a}\quad $'+' '
 +'$x_{0}=$' +str(list(np.round(InitVals[0],3))))
 plt.tight_layout()
 #plt.savefig('NumericalSimulation\Timeseries-(chaotic2Peaks).png', dp

i=300, bbox_inches='tight')

#Third plot Phase portrait
 fig3=plt.figure(figsize=(10,5))
 ax = plt.axes(projection="3d")
 for k,j in zip(range(len(InitVals)),colors1):
 x,y1,y2=sol[k].y
 ax.plot(x,y1,y2,j, lw=1.2)
 #plot equilibrium points
 ax.scatter(E[:,0],E[:,1],E[:,2],'c', lw=1)
 ax.set_xlim([0, np.mean(x)+70])
 ax.set_ylim([0, np.mean(y1)+10])
 ax.set_zlim([0, np.mean(y2)+100])
 ax.set_xlabel('x ',labelpad=20)
 ax.set_ylabel('y_{1} ',labelpad=20)
 ax.set_zlabel('y_{2} ')
 #Change angle of view
 #ax.view_init(20,-90)
 #plt.draw()
 plt.tight_layout()
 #plt.savefig('NumericalSimulation\PhasePortrait-(chaotic2).png', dpi=

300, bbox_inches='tight')
 plt.show(); plt.close()

 return [t_eval_pts[Xpeaks][-10:],

224

 xsolPeak[Xpeaks][-10:],
 t_eval_pts[Y1peaks][-10:],
 y1solPeak[Y1peaks][-10:],
 t_eval_pts[Y2peaks][-10:],
 y2solPeak[Y2peaks][-10:],

 np.ediff1d(t_eval_pts[Xpeaks])[-10:],
 np.ediff1d(t_eval_pts[Y1peaks])[-10:],
 np.ediff1d(t_eval_pts[Y2peaks])[-10:],

 E,L,
 [sol[n].y[:,-1] for n in range(InitVals.shape[0])]

]

In []:

for psi in np.arange(0.3,0.4,0.01):
 SOL= SolPlot4([3.99256592e-04, 2.80065918e-01, 9.78851318e+00, 4.3309

4482e+00,
 psi, 4.10463217e+00, 7.37010376e-01, 1.67592651e-01,
 4.92309570e+03, 7.03787720e+02, 9.29061279e+01],1000,'RK45',1e-9,1

e-9)
 print('TidXpeaks=',SOL[0],'Xpeaks=',SOL[1],
 'TidY1peaks=',SOL[2],'Y1peaks=',SOL[3],
 'TidY2peaks=',SOL[4],'Y2peaks=',SOL[5],
 'Tx=',SOL[6], 'Ty1=',SOL[7],'Ty2=',SOL[8],

 'EqmPoints=',SOL[9],'Stability=',SOL[10],'XX=',SOL[11],sep='\n\n')
 print(psi)

Calculating Largest Lyapunov Exponent (LLE) by Sprott
method
Refernce http://sprott.physics.wisc.edu/chaos/lyapexp.htm
(http://sprott.physics.wisc.edu/chaos/lyapexp.htm)

225

In []:

def LLE(pm,IC,IS,NumItr,Ntr,func,JAC,solvers,RelTol,AbsTol):
 #Ic: initial condition used
 # IS: Initial separation
 # pm: Set of parameter used (vector or list)
 # solvers: ODE solver used
 # RelTol, AbsTol: relative error and absolute error respectively
 # NumItr: the number of iterations
 #Ntr: number of transient to ignore to guarantee that we are on the a

ttractor.
 # func: function that calculates the right hand side of the system.
 # JAC: function that calculates the Jacobian matrix (used in ODE solv

er) (matrix form)
 x,y1,y2= IC
 x1,y11,y21=[x+IS,y1+IS,y2+IS]
 lam=np.zeros(NumItr)
 lle=np.zeros(NumItr)
 for i in range(0,NumItr):
 InitVals=np.array([[x, y1, y2],
 [x1,y11,y21]])
 t0=0
 tMax=1
 t=[t0,tMax]
 t_eval_pts=np.linspace(t0,tMax,2*tMax)

 sol= [solve_ivp(func,t,init,method= solvers,t_eval= t_eval_pts,
 args=(pm,),jac=JAC,rtol=RelTol,atol=AbsTol) for init in Ini

tVals];
 X, Y1, Y2 = sol[0].y
 X1, Y11, Y21 = sol[1].y

 d0=LA.norm(InitVals[1]- InitVals[0])
 d1=LA.norm(sol[1].y[:,-1]-sol[0].y[:,-1])
 lam[i]=np.log(abs(d1/d0))

 #reinitialization of the trajectories after each iteration
 #such that their seperation remains as IS
 x1=X[-1]+(X1[-1]-X[-1])*(d0/d1)
 y11=Y1[-1]+(Y11[-1]-Y1[-1])*(d0/d1)
 y21=Y2[-1]+(Y21[-1]-Y2[-1])*(d0/d1)
 x=X[-1]
 y1=Y1[-1]
 y2=Y2[-1]
 t0=tMax
 tMax=tMax+1
 lle[i]=np.mean(lam) # save the mean after each iteration to check

convergence
 LLE=np.mean(lam[Ntr:NumItr]) # we sum from Ntrto be on the attractor
 #plot the last 300 lle
 plt.figure(figsize=(10,5))
 plt.plot(range(0,NumItr),lle)
 plt.xlabel('Time')
 plt.ylabel('Largest Lyapunov Exponent')

226

 plt.xlim(len(lam)-300,len(lam))
 plt.show
 return lle[-1],LLE

In []:

Calculate the trace of the Jacobian matrix for an orbit
to check if the system is dissapative (If the trace is negative, then the system is
dissapative). Also to compare it with the sum of lyapunov exponents

In []:

def MeanTraceJac(pm,IC,tMax,func,JAC,solvers,RelTol,AbsTol):
 t=[0,tMax]
 t_eval_pts=np.linspace(0,tMax,300*tMax)
 init=IC
 sol= solve_ivp(func,t,init,method= solvers,t_eval= t_eval_pts,args=(p

m,),jac=JAC,rtol=RelTol,atol=AbsTol)
 x,y1,y2=sol.y
 TrJAll=[]
 for i,j,k in zip(x,y1,y2):
 x=i
 y1=j
 y2=k
 TrJ=np.trace(JAC(0,[x,y1,y2],pm))
 TrJAll.append(TrJ)
 TrJMean=np.mean(np.array(TrJAll))
 return TrJMean, TrJAll[-10:]

Lyapunov exponent for the chaotic paraneter set

In []:

LE= LLE(chaotic, [10.2 , 0.416, 2.207],1e-08,100000,1000,DM_bacteria,D
M_jac,'Radau',1e-9,1e-9)

In []:

LE

Lyapunov exponent for the periodic paraneter set periodic 1 and
2

227

In []:

LEperiodic1= LLE(periodic[0][0:8], [6.67, 0.35, 2.44],1e-08,100000,1000,D
M_bacteria,DM_jac,'RK45',1e-8,1e-8)

In []:

LEperiodic1

In []:

LEperiodic2= LLE(periodic[1][0:8], [11.155, 0.391, 3.893],1e-08,100000,
1000,DM_bacteria,DM_jac,'Radau',1e-9,1e-9)

In []:

LEperiodic2

Test with Lorenz System

In []:

def Lorenz(t,X,pm):
 x,y,z=X
 SIGMA,R,BETA=pm
 f1=SIGMA*(y-x)
 f2=-x*z+R*x-y
 f3=x*y-BETA*z
 return(f1,f2,f3)

def Lorenz_Jac(t,X, pm):
 SIGMA,R,BETA=pm
 LzJac=np.array([
 [-SIGMA, SIGMA, 0],
 [R-z, -1, -x],
 [y, x, -BETA]])

 return LzJac

In []:

LE_Lz1=LLE([10,28,8/3], [0 , 1, 0],1e-08,100000,1000,Lorenz,Lorenz_Jac
,'RK45',1e-8,1e-8)

In []:

LE_Lz1

228

In []:

LLE_Lz2= LLE([16,45.29,4], [0 , 1, 0],1e-08,100000,1000,Lorenz,Lorenz_
Jac,'RK45',1e-8,1e-8)

In []:

LLE_Lz2

Refernce values for lorenz systems

Reference values for t=10 000 (Lorenz):

InitialCondition=[0 , 1, 0]

Reference values for t=10 000 (Lorenz):

InitialCondition= not known

 base 2 logaritm

 base e logaritm

σ = 10, R = 28, β = 8/3

= 0.9056, = 0, L = −14.5723L1 L2 E3

σ = 16, R = 45.29, β = 4

= 2.16, = 0, = −32.4λ1 λ2 λ3

= 1.5, = 0, = −22.46λ1 λ2 λ3

Calculated values by the function LLE

First set of parameters of Lorenz

LLE=0.9064129395130333, t=100000,IC=[0 , 1, 0]

Second set of parameters of Lorenz

LLE=1.4902486394652161,t=100000,IC=[0 , 1, 0]

In []:

229

Life is a chaotic system, and we can’t predict it for more than a few seconds.
So enjoy your life with being caring and sharing.

Farhan Omar

