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Abstract

This work presents the development of a method based on the ensemble Kalman
filter (EnKF) for continuous reservoir model updating with respect to the com-
bination of production data, 3D seismic data and time-lapse seismic data. The
reservoir-seismic model system consists of a commercial reservoir simulator cou-
pled to existing rock physics and seismic modelling software. The EnKF provides
an ideal-setting for real time updating and prediction in reservoir simulation mod-
els, and has been applied to synthetic models and real field cases from the North
Sea.

In the EnKF method, static parameters as the porosity and permeability, and
dynamic variables, as fluid saturations and pressure, are updated in the reservoir
model at each step data become available. In addition, we have updated a lithology
parameter (clay ratio) which is linked to the rock physics model, and the fracture
density in a synthetic fractured reservoir.

In the EnKF experiments we have assimilated various types of production and
seismic data. Gas oil ratio (GOR), water cut (WCT) and bottom-hole pressure
(BHP) are used in the data assimilation. Furthermore, inverted seismic data, such
as Poisson’s ratio and acoustic impedance, and seismic waveform data have been
assimilated.

In reservoir applications seismic data may introduce a large amount of data
in the assimilation schemes, and the computational time becomes expensive. In
this project efficient EnKF schemes are used to handle such large datasets, where
challenging aspects such as the inversion of a large covariance matrix and potential
loss of rank are considered.

Time-lapse seismic data may be difficult to assimilate since they are time dif-
ference data, i.e. data which are related to the model variable at two or more
time instances. Here we have presented a general sequential Bayesian formu-
lation which incorporates time difference data, and we show that the posterior
distribution includes both a filter and a smoother solution. Further, we show that
when time difference data are used in the EnKF, a combination of the ensemble
Kalman filter and the ensemble Kalman smoother has to be applied. However, the
method is still completely recursive, with little additional cost compared to the



standard EnKF.
An underestimation of the uncertainty of the model variables may become a

problem when few ensemble members and a large amount of data are used during
the assimilation. Thus, to improve the reservoir model updating we have proposed
a methodology based on a combination of a global and a local analysis scheme.



Preface

The dissertation is submitted as a partial fulfilment of the requirements for the
degree of Doctor of Philosophy at the University of Bergen. The studies leading
to the submission of the thesis started in February 2004, and have been done at
the Department of Mathematics at the University of Bergen, and at the Centre for
Integrated Petroleum Research.

Principal Researcher Professor II Sigurd Ivar Aanonsen has been the main
adviser for the work, while Dr. Geir Evensen, Professor Tor Arne Johansen and
Professor Magne Espedal have been co-advisers.

The thesis is organized in two parts. Part I focuses on the theoretical back-
ground and methodology used for updating of a coupled reservoir-seismic model.
In Part II a set of research papers is presented. A brief outline of the thesis follows
below:

Part I: Theoretical background

Chapter 1 gives an introduction to petroleum reservoir evaluation. Further, the
main objectives of the research work are outlined, an overview of the papers and
the results are presented.

In Chapter 2 the concept of reservoir characterization is presented. A general
theory for inverse problems described in a Bayesian framework is outlined, and
different sampling routines to explore the posterior distribution are discussed.

In Chapter 3 the inverse problem is introduced as a combined parameter and
state estimation problem and formulated as a sequential data assimilation method
using Bayesian statistics. Further, the Kalman filter and sampling of the Kalman
filter distribution are discussed. Particularly the incorporation of time difference
data are presented in detail.

Chapter 4 contains an overview of the ensemble Kalman filter methodology. A
description of the ensemble Kalman filter, the ensemble Kalman smoother and the
ensemble square root filter are presented, and a brief introduction to some other
analysis schemes is given. Especially the challenging issue of dealing with large
datasets involved in the assimilation are discussed, and a detailed explanation of



an efficient analysis scheme which handles such large amount of data is given.
Chapter 5 specifies different methods to generate Gaussian random fields

which can be used in the sampling of ensemble realizations.
In Chapter 6 different challenges when incorporating seismic data in a data

assimilation process are considered. It is pointed out that conditioning to seismic
data requires a coupling method for combined modelling of reservoir fluid flow
and seismic parameters. Seismic data may be available at different processing
levels and may have different degrees of spatial resolution - this topic is discussed
in detail. The procedure applied to incorporate time-lapse seismic data in the
ensemble Kalman filter is explained thoroughly. Further, a brief description of the
rock physics model and the seismic modelling approach is presented.

Part II: Papers and reports

Paper A: “Incorporating 4D Seismic Data in Reservoir Simulation Models
Using Ensemble Kalman Filter”. J. A. Skjervheim, G. Evensen, S. I. Aanonsen,
B. O. Ruud and T. A. Johansen. Proceeding at the 2005 Annual Technical
Conference and Exhibition held in Dallas, Texas, U.S.A, October 2005. Accepted
for publication in the SPE Journal.
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Paper D: “Using the Ensemble Kalman Filter with 4D Data to Estimate
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Part I

General Background





Chapter 1

Introduction

In a petroleum reservoir evaluation the aim is to forecast the future production
under different recovery strategies. The production forecast should be predicted
with as little uncertainty as possible. Thus in a reservoir evaluation all the avail-
able information about the reservoir should be used in a consistent way.

Stochastic modelling is frequently used in reservoir characterization to quan-
tify uncertainty and to integrate different types of information. The knowledge of
the reservoir properties is initially very vague. Hence, a multivariate stochastic
model should be used to describe the spatial variability of the reservoir properties
such as porosity, permeability, lithology, initial reservoir pressure and fluid satu-
ration. In addition, the stochastic model should represent the pressure and fluid
saturation changes in accordance with the fluid flow model.

The fluid flow model is a forward function, defined from Darcy’s law, and is
represented by a numerical simulator, taking the reservoir characteristics and the
recovery strategy as input. The fluid flow simulator describes the flow of water,
oil, and gas in the reservoir and provides the behaviour of performance variables
like bottom-hole pressure, gas-oil ratio, water-cut and cumulative oil production
over time.

The information used in the stochastic model should include both the measure-
ments from the reservoir and the geological knowledge. Reservoir measurements
comprise production performance data, well log observations and seismic data
achieved from the reservoir under production. The geological knowledge may
consist of the knowledge from analog reservoir fields, well logs, core data, the
evolution of the geological formations and the geological deposition. Further, im-
portant issues in a reservoir evaluation are the understanding of the procedures
used in the data acquisition and the insight into the development of the physical
properties and the geological model of the reservoir under study.

The geological model defines the reservoir in the geological context, and the
geological model has several functions: It is utilized to design the geometry and
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trap mechanisms and to unravel structure. It is used to delineate the stratigraphic
architecture, lithology and lithofacies of the reservoir. Moreover, the interpreta-
tion of the reservoir properties is also based on the geological model. Core mea-
surements and well log data are integrated to derive permeability and porosity.
Based on production data, laboratory experiments and electrical logs, saturation
profiles can be calculated. Production tests and well tests measure pressure and
can be used to calculate permeability.

All this information is combined with different seismic attributes to design the
fluid flow model. In this process geostatistical methods can be applied to capture
the observed heterogeneity and complexity in a detailed description, and provide
proper upscaled models to be used in the reservoir simulation model.

In a reservoir simulation model the different geological layers are character-
ized by their permeability and the porosity. The permeability is a measure of the
rock’s ability to transmit fluids through the porous medium. The permeability
tensor is usually spatially dependent, since pores in the reservoir often show pre-
ferred alignment directions. The porosity, Φ, is the parameter which characterizes
the porous medium, and is defined as the ratio of the pore volume to the total
volume. The pore volume only includes the connected pores which contribute to
fluid flow in a reservoir.

Figure 1.1 shows a reservoir simulation model of a North Sea field case. The
reservoir model includes partly communicating fault blocks, and the heterogeneity
of the permeability is shown in the oil zone.

The porous reservoir rock is sealed from above by an impermeable cap rock,
typically a shale layer, preventing the hydrocarbons to escape from the reservoir.
Below, the reservoir has an aquifer, which excites pressure support. Water, oil
and gas are filling the porous rock and the individual fluid phases are separated by
their densities, defining distinct fluid contacts: a water-oil (WOC) and a gas-oil
(GOC) contact. The knowledge of the initial depth of both the water-oil and the
gas-oil contact will be important in volumetric calculations when the production
plan of the reservoir is designed. The main issue is to optimally place the pro-
duction wells, and design water and gas injectors to effectively drain the reservoir.
Pressure gradients towards the producers allow the oil start flowing into the wells.
The purpose for the injectors will be to prevent pressure drop and to displace the
oil towards the producers. The requirement for these reservoir simulation models
should be that they are conditioned to reservoir specific observations (e.g produc-
tion history, pressure, 3D seismic and time-lapse seismic data), and the aim is
to adjust the model in such a way that the simulated performance of the model
matches the observed history. This is referred to as the history matching problem
of reservoir simulation models.

These conditioned models provide the basis for an uncertainty assessment
through an ensemble of simulation studies, which, in turn, may be used to evalu-
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Figure 1.1: A reservoir simulation model of a real field case from the North Sea.

ate different recovery strategies. Such recovery strategies define the closing and
opening criteria for production and injection wells, propose injection strategies of
water, gas or chemicals and help to position infill wells. From an economical point
of view, a reasonable description of the reservoir properties is a prerequisite for
net-present value calculations. Optimal production techniques that will maximize
the hydrocarbon production are assessed by simulating the fluid flow behaviour
within the reservoir under various strategies.

The history matching process is known as an inverse problem, and a Bayesian
framework is suitable for finding a solution [1]. A Bayesian framework for sto-
chastic reservoir characterization includes a prior model and a likelihood function
and both define the posterior model. The prior model typically involves the ge-
ological knowledge of the reservoir properties and should give a reasonable de-
scription of the prior uncertainty. The likelihood function normally includes both
a forward modelling of the data acquisition procedure and a measurement error
term which takes into account the uncertainty connected to the acquisition instru-
ments.

In reservoir studies the posterior model will be of high dimension, including
highly nonlinear forward models. Thus, an analytical derivation of the posterior
model will not be feasible and sampling techniques are required to explore the
uncertainty in the posterior model [2].
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1.1 Main Objectives

Sampling from the posterior model requires that the reservoir models are condi-
tioned to the dynamic data. The conditioning process is difficult and time con-
suming, and to date mainly done manually by trial and error approaches. Lately,
computer-aided history matching processes have gained popularity and have been
used in different reservoir applications. Traditionally, the reservoir models are
then conditioned to dynamic data using an automatic history matching procedure
in which the model is adjusted and the simulator is rerun in an interactive loop
until a satisfactory match between the observed data and the simulated data has
been achieved.

In this study we present a sequential data assimilation procedure, based on a
Bayesian framework, where the model parameters and the state variables are up-
dated continuously in time. When new data become available, the current model
and the data are assimilated to improve the model. The idea is that the quality
of the model will continuously improve with time. The focus lies on the predic-
tions, and the model is not rerun after each update to check whether it matches the
history. This methodology for continuous model updating is based on an ensem-
ble Kalman filter (EnKF) technique [3], which is a Monte Carlo type sequential
Bayesian inversion method.

The EnKF is related to the Kalman filter (KF) [4], which provides the opti-
mal state estimate of a linear dynamic system, when the error statistics are as-
sumed Gaussian. In Chapter 3 the Kalman filter is described and in Section 3.3.2
we present a correct sampling, called conditional simulation with kriging, of the
Kalman filter distribution. Further, in Chapter 4 a complete description of the
EnKF method is given, and in Section 4.1 we use the conditional simulation with
kriging method to derive the EnKF sampling algorithm. In Section 4.2 we show
that the same sampling strategy can be used when the data are dependent on more
than one time instant.

In this work an assimilation of both production data and seismic data have
been used. Production data are measurements of gas-oil ratio (GOR), water-cut
(WCT) and flowing bottom-hole pressure (BHP). Regarding the seismic data, dif-
ferent ways of incorporating 3D seismic data and time lapse seismic data in the
updating procedure are thoroughly investigated. Mainly, seismic data are mea-
surements of acoustic impedance and Poisson’s ratio. Grid cell pressure, grid cell
saturation and seismic waveform data are also used as seismic data in the EnKF
update. The sensitivities of both the size of the seismic measurement error and the
correlation structure are studied.

The number of possible model variables to update in the EnKF process are
usually very large. In this project we have mainly updated the static parameters,
porosity and permeability, and the dynamic variables, saturations and pressures.
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Moreover, we have updated lithology which is linked to a rock physics model,
while the fracture density is updated in a synthetic fractured reservoir.

To incorporate both production data and seismic data in the data assimilation
a coupled reservoir-seismic model is required. Hence, in this project a coupled
reservoir-seismic model is developed for simulation of production data and re-
peated seismic surveys. Existing reservoir simulation software and a seismic mod-
elling tool are applied in this task. In this work the coupled model is connected to
rock physics models which are either based on the Gassmann relation [5] or effec-
tive medium theory (e.g Kuster-Toksöz method) [6]. A development of a coupling
to a fast seismic modelling tool [7] is performed, where seismic waveform data
are used as measurements in the assimilation. We have also developed a coupling
tool for fractured reservoirs, where the hydraulic properties (i.e permeability) and
the seismic attributes are derived at each simulation time step from the fracture
density parameter by using a T-matrix approach [8].

The assimilation of time-lapse seismic data may be difficult since time-lapse
seismic data are time difference data related to a model state at different times.
Thus, special care needs to be taken when this type of data are introduced in the
EnKF scheme. In Section 3.2 we present a general sequential Bayesian formu-
lation which incorporates time difference data, and we show that the posterior
model includes both a filter and a smoother solution. Further, in Section 4.2 we
utilize time difference data and a non-linear state space model to present the EnKF
scheme. We show that for updating a reservoir simulation model a combination
of the ensemble Kalman filter and ensemble Kalman smoother has to be applied.

The important issue of large amounts of data, introduced by 3D seismic and
time-lapse seismic data, is governed by efficient EnKF schemes [9]. The chal-
lenging aspects such as the inversion of a large covariance matrix and potential
loss of rank are considered. In Section 4.5 we present an efficient subspace EnKF
algorithm where a proper sampling avoids the loss of rank. The motivation for this
algorithm is based on the efficient square root algorithm presented by Evensen [9].

Problems related to an underestimation of the uncertainty in the low rank co-
variance matrix representation of the static and dynamic variables may occur when
few ensemble members and a large amount of data are used during the assimila-
tion [10]. Hence, to improve the results a methodology based on a combination
of a global and a local analysis scheme is proposed. The global and local analysis
are used to assimilate production data and seismic data, where the local scheme,
see Section 4.4.1, assumes that only seismic data within a certain distance from a
model variable will impact the analysis of this particular model variable.

The EnKF method has been tested on both synthetic and real field reservoir
models. In complex reservoir systems the forward simulation requires high com-
putational costs. Thus, in a EnKF methodology, with typical ensemble sizes of
100 members or more, a sequential forward simulation for each member is very
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time demanding. Hence, in this project we have developed a parallel implemen-
tation of the EnKF algorithm, which ensures that all the members are evolved
forward in time in parallel until the next time step where new data become avail-
able. At this time the simulated data and the measured data are assimilated before
a new parallel forward simulation is started up.

Seismic data have a much higher areal resolution than the simulation model,
while the opposite is the case for the vertical resolution. In addition, the geological
model and well log data show different degrees of spatial resolution. When cou-
pling the models, this effect has to be taken into account. This includes upscaling
and downscaling of properties and uncertainties, as well as data correlations. In
this project we have performed a simulation study of a specific downscaling algo-
rithm called Sequential Gaussian Simulation with Block Kriging (SGSBK) [11].

1.2 Overview of Papers and Results

In Paper A we show how the ensemble Kalman filter method can be used to update
a combined reservoir simulation/seismic model using production data and inverted
4D seismic data. The efficient subspace EnKF algorithm presented in Section 4.5
is used to handle the large amount of data resulting from 4D seismic. When
the seismic data are given as a difference between two surveys, a combination
of the ensemble Kalman filter and the ensemble Kalman smoother is used, see
Section 4.2. The method is applied to a synthetic model and a real field case from
the North Sea.

For the synthetic model, the EnKF model updating with production data only
is not able to recover the trend in the true permeability field, although a good
match to the data is obtained. Furthermore, it is shown that the introduction of
seismic data gives a much better estimate of reservoir permeability. However
using only the seismic difference measurement reduces the quality significantly.

For the field case, two cases of EnKF updating were run. The first case as-
similated production data only, while the second case assimilated one seismic
difference dataset in addition to the production data. The EnKF run with both
production and seismic data gave a better match both to production data and seis-
mic data than the base case, and the run with only production data. For the EnKF
runs, the root mean square for the seismic data was reduced by 25% and 14% for
the runs with and without seismic data, respectively. The introduction of seismic
data resulted in considerable different porosity and permeability estimates than
using only production data, while retaining the production match. Conditioning
only to production data and seismic difference data are an obvious weakness of
the procedure used here, as it was also seen in the synthetic example. In future
real field reservoir studies, the base line seismic survey should be included in the



1.2 Overview of Papers and Results 9

EnKF updating.
Paper B presents a more detailed overview of the ensemble Kalman filter tech-

nique for continuous model updating with respect to time difference data, i.e. data
related to a model state at different times. It shows that the use of time differ-
ence data involves a combination of the ensemble Kalman filter and the ensemble
Kalman smoother. In addition, Paper B focuses on handling a large amount of
data in the assimilation schemes, and an efficient subspace EnKF algorithm is pro-
posed. The method is applied to a 3D synthetic reservoir model, where acoustic
impedance is used as seismic data.

The synthetic case shows that the combined assimilation of production data,
3D seismic data and time-lapse seismic data is performed in a statistical consistent
manner and has a positive impact in the EnKF update. For the synthetic model,
the EnKF method gives good history matching results, and it is shown that a better
estimate of the porosity and the permeability is obtained by adding seismic data to
the production data measurements. Especially an improvement of the porosity is
obtained, and one reason might be that the acoustic impedance measurements do
have a stronger correlation to the porosity than to the permeability in the reservoir.

Simulation runs have been performed to compare the traditional and the sub-
space EnKF scheme, where different combinations of a diagonal and a correlated
seismic measurement error covariance matrix have been used. It is shown from the
simulation runs that the results obtained from the subspace EnKF scheme, when a
diagonal measurement error covariance matrix is used, are nearly identical to the
traditional EnKF scheme. Further, the simulation runs show that the use of a cor-
related measurement error covariance matrix in the subspace EnKF scheme gives
a lower reduction of the ensemble variance compared to the traditional scheme,
but results in similar rms values and correlation values between the estimated and
the true porosity and permeability fields.

The computation time of the subspace EnKF scheme, when a large amount
of data are incorporated in the assimilation, is very small compared to the tradi-
tional EnKF algorithm. Furthermore, it is seen from the experiments that there are
no loss of rank in the analyzed ensemble, when the subspace EnKF scheme has
been used. The results are fairly consistent, although the subspace EnKF scheme
introduces an approximate pseudo inverse, when a correlated measurement error
covariance matrix is included.

In Paper C a combination of 4D seismic waveforms data with production data
are used to improve a synthetic 2D reservoir model during production. The inver-
sion is based on the ensemble Kalman filter and the forward method is a combi-
nation of a fast seismic modelling tool [7] and a reservoir simulator. The method
is applied to synthetic 2D reservoir model, and it is shown that introduction of
production data and seismic waveform data give a fairly good estimation of the
porosity and permeability fields. The method demonstrate that the estimates of
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both the porosity and permeability fields can be improved over time with repeated
seismic surveys and assimilation of production data.

In Paper D an improvement of the reservoir characterization is performed by
introducing an uncertainty connected to parameters in the rock physics model, and
we show that when seismic data are available the lithology can also be estimated.
In this work the lithology is quantified by the clay ratio. A large amount of seis-
mic data in the assimilation step is a concern, and to improve the results we have
proposed a methodology based on a combination of a global and a local analysis
scheme. The technique is applied to synthetic 2D and 3D reservoir models. The
global and the local analysis are used to assimilate the production data, 3D seis-
mic and 4D seismic data, where the local scheme assumes that only seismic data
within a certain distance from a state variable will impact the analysis of this par-
ticular state variable. The rock physics model used here to compute the effective
properties of a porous, fluid filled medium is an inclusion based model.

The results show that the combined global/local scheme is able to recover the
main features in the true lithology field, and it is demonstrated that taking into
account uncertainty in lithology by updating the clay ratio may be important to
obtain satisfactory porosity and permeability estimation results. A proper rep-
resentation of the seismic data error model is also shown to be of importance
during the assimilation. Large amount of data in a global scheme with few en-
semble members may cause a too large reduction in the uncertainty of the model
variables. Here, the combined global and local scheme gave promising results
regarding the uncertainty estimation, even with few members applied.

Paper E is an extension of Paper D, where effects of using local versus global
analysis schemes on inverted seismic data are investigated. The elastic parameters
derived from the rock physics model had different sensitivity to the parameters
in the model. Hence, to take into account the complementary information both
acoustic impedance and the Poisson’s ratio differences are used simultaneously
at a given seismic assimilation step. Other evaluated factors are the effects of
using different stencil sizes in the local scheme, and the sensitivity of the EnKF
performance related to the seismic measurement error quantity.

The performance of the EnKF was clearly sensitive to the ensemble size and
the error level of the seismic data. And in the local scheme an increase of the sten-
cil size gave a gradually smoother ensemble mean and a decrease in the ensemble
spread. All of these sensitivities affected the characterization of the reservoir and
influenced the covariance estimation of the model variables, and thus the uncer-
tainty in the predictions of the production data.

The ensemble spread obtained from the global/local scheme are all higher than
the global scheme with the same ensemble size, and the uncertainty level for both
the permeability and the oil production rate predictions are similar to the global
scheme using a large number of ensemble members.
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The results show that the lithology may have a strong impact on the seismic
signal, and an estimation of the clay ratio will be of importance to achieve satis-
factory predictions of the elastic parameters. The use of an improved sampling
algorithm is also shown to have a positive influence on the quality of the EnKF
results.

Paper F proposes a method for characterization of natural fractures in hydro-
carbon reservoirs by quantitative integration of production data and seismic attrib-
utes. The method is based on a unified model for the effective elastic and hydraulic
properties of fractured porous media and an ensemble Kalman filter method. The
methodology is applied to a 2D synthetic reservoir model, and when data becomes
available the fracture density in each reservoir grid block is updated.

An application to synthetic data suggested that one may obtain a significantly
better estimate of the fracture density and permeability distributions within a frac-
tured reservoir, by using time-lapse measurements of seismic attributes (acoustic
impedance) in addition to reservoir production data (BHP, WCT, GOR) in the
dynamic reservoir characterization process.

Report 1 presents a study of a North Sea field case, where real production data
(BHP, WCT) and seismic time-lapse data (Poisson’s ratio) have been assimilated
using the ensemble Kalman filter methodology.

In this history matching study it has been difficult to obtain a good match of
both production data and seismic data simultaneously. Matching the seismic data
resulted in a too early water break-through in most of the wells, and the EnKF
tried to compensate for this by performing large modifications of the permeability
and the porosity. The difference in the absolute values between the simulated and
measured 4D seismic data were very large, and the EnKF had problems adjusting
the reservoir model properly to honor the data. An incorrect rock physics model
may explain the discrepancy in the level, and in future work it would be desirable
to introduce an uncertainty to parameters in the rock physics model which are
sensitive to the seismic signal.

In Report 2 a simulation study of a specific downscaling algorithm, named
Sequential Gaussian Simulation with Block Kriging (SGSBK), is performed.

The SGSBK results show that the method generates fine-scale geostatistical
models constrained to coarse-scale average constraints in a proper way, that honor
the prescribed histogram and the spatial covariance models.





Chapter 2

Reservoir Characterization in a
Bayesian Setting

Following Tarantola [1] the study of a physical system can be divided into three
major steps. The first step is called the parametrization of the system, where the
main objective is to identify a minimal set of model parameters that are able to
characterize the physical system completely.

The second step is named the forward modelling. A forward model is typically
designed by a mathematical model, where a complete description of the physical
system and the physical properties exists and a unique response prediction of the
observable variables in the system is available. Thus, in reservoir characteriza-
tion where also seismic attributes are calculated, the typical forward problem is
represented by a combination of the fluid flow simulator and the seismic forward
model.

The third step is the inverse modelling. The inverse modelling can be described
as a determination of model parameters that characterize the system, given mea-
surements of the observable variables of the system. In this work we focus on
the inverse problem and we try to recover reservoir properties, which will be of
importance to characterize the reservoir.

2.1 Bayesian Framework

The inverse problem is normally an ill-posed problem [12, 13], and the most gen-
eral theory is achieved when using a probabilistic point of view. In a Bayesian
framework one assumes that prior information on model parameters is given by
a probability density function (pdf), and the available observations are linked to
the parameters of interest through their respective likelihood models. Given prior
information on the model parameters, the likelihood distribution of the measure-
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ments, and an uncertain relation between the data and the model parameters, a
posterior distribution can be established [14, 15]. The construction of the poste-
rior pdf is often expressed as

Posterior ∝ Observed Likelihood×Prior, (2.1)

and represents the solution of the inverse problem [16, 17]. To obtain a plausible
solution, the model must be consistent with the physical constraints and the mea-
sured data. However for inverse problems in reservoir characterization infinitely
many models may satisfy this criterion. In a Bayesian setting, such a model will
typically be a sample from the posterior distribution [2, 18].

In a reservoir characterization approach of the inverse problem, also called
history matching, the establishment of the prior distribution for the reservoir pa-
rameters (e.g porosity and permeability) are typically based on geological infor-
mation. The prior is often assumed to be Gaussian distributed and the stochastic
model is then fully explained by the mean and the covariance. The likelihood
model for the well production data and the seismic data involve both the forward
model and the measurement uncertainties, where the measurement error term is
normally assumed Gaussian distributed. The characterization of the reservoir pa-
rameters given production and seismic data, are then found from the posterior pdf,
where an estimate of the mean or the maximum a posteriori solution is a main ob-
jective. The forward model in reservoir cases is highly non-linear and a sampling
strategy is needed to create a suite of realizations of reservoir parameters from the
posterior pdf. Then, for each realization a reservoir prediction performance can be
generated, and a determination of the uncertainty for each performance variable
(e.g bottom-hole pressure, gas-oil ratio, water-cut, cumulative oil production) can
be found from the predicted outcome statistics. It is important to notice that if the
simulated reservoir properties do not represent a correct sampling of the posterior
distribution, the realizations of the fields can not be expected to give a reliable
characterization of the uncertainty in the predictions.

2.2 Inverse Problem

Let the model parameters be denoted by the vector α, the recovery strategy by
η, the observable variables (data) by dη, and the forward model by the model
operator f . The theoretical relationship between the model parameters and the
data can then be expressed as

dη = f (α, η). (2.2)

The forward model will normally not represent the physical system exactly, and
the uncertain relation between the model parameters and the data can be described
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as

dη = f (α, η)+εm, (2.3)

where εm is a vector of random model errors with mean zero and covariance ma-
trix Pεm , denoted on a short form as εm ∼N (0,Pεm). Normally it is assumed that
εm is Gaussian distributed, and that α are independent of the model errors. Let
from now the recovery strategy η be implicitly assumed in the forward model and
not visible in the notation. The difference between the data, dη, and the model
prediction, f (α), is given by the following conditional probability density func-
tion

g(dη|α) = g(εm = dη−f (α))

= const · exp

(

−
1
2

(dη−f (α))TP−1
εm (dη−f (α))

)

, (2.4)

with const being the normalizing constant. In a similar way the measurement
errors can be represented as a conditional probability density function for the ob-
served data values, d, given the data, dη, denoted g(d|dη). Assuming the mea-
surement errors are Gaussian distributed with mean zero and covariance matrix
Pεo , the probability density, g(d|dη), is given as

g(d|dη) = const · exp

(

−
1
2

(dη−d)TP−1
εo (dη−d)

)

. (2.5)

The likelihood function, g(d|α), defined as the conditional probability density
for the observed data values given a model parameter value, is found from the
following equation

g(d|α) =
∫

g(d|dη)g(dη|α)ddη, (2.6)

where we assume that the measurement errors are independent of the model errors.
If the model and the measurement errors are assumed Gaussian it can be shown
that the likelihood function can be written as [1]

g(d|α) = const · exp

(

−
1
2

(f (α)−d)TP−1
d (f (α)−d)

)

, (2.7)

where the covariance matrix Pd = Pεm+Pεo combines the modelling and the mea-
surement errors. The density function g(d|α) is Gaussian with expectation f (α)
and covariance Pd.
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The prior probability density for the model parameters, g(α), is based on in-
formation which is found independently of the observations. Assuming that the a
priori information on the model parameters is Gaussian

g(α) = const · exp

(

−
1
2

(α−αprior)TP−1
α (α−αprior)

)

, (2.8)

where αprior and Pα are respectively the a priori mean and covariance.
In a Bayesian framework the solution of the inverse problem is given by the

posterior pdf. The posterior pdf is the probability distribution for the model para-
meters, α, given the observations, d, which takes into account both the likelihood
function and the prior model [19],

g(α|d) =
g(d|α)g(α)

g(d)
=

g(d|α)g(α)
∫

g(d|α)g(α)dα
. (2.9)

The solution for Gaussian statistics can also be written as

g(α|d) = const · exp(−J (α)), (2.10)

where J (α) is the objective function

J (α) =
1
2

(

(f (α)−d)TP−1
d (f (α)−d)

)

+
1
2

(

(α−αprior)TP−1
α (α−αprior)

)

. (2.11)

The traditional Bayesian maximum a posteriori (MAP) predictor for the model
parameters is given as [20]

αmap = argmax{g(α|d)}
= argmin{J (α)}, (2.12)

where argmax and argmin are the arguments which optimize the function. If the
relation between the model parameters and the data is linear

dη = f (α) = Fα, (2.13)

the posterior pdf of interest, g(α|d), will be Gaussian with mean [21]

αc = αprior+PαF T (FPαF T +Pd)−1(d−Fαprior), (2.14)

and covariance

Pc = Pα −PαF T (FPαF T +Pd)−1. (2.15)

Notice that for the Gaussian linear model the mean in Equation (2.14) and the
map solution in Equation (2.12) will give the same solution.
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2.3 Sampling from the Posterior Distribution

To quantify the prediction uncertainty of the model parameters an assessment of
the full posterior distribution, g(α|d), is required. By using a non-linear forward
model an analytical evaluation will be prohibited and the exploration of the pos-
terior pdf can only be done by sampling. Rejection sampling and Markov chain
Monte Carlo (MCMC) are two sampling routines which can be used to sample
from the posterior pdf, and both of the algorithms can be shown to provide correct
samples from the target pdf.

2.3.1 Rejection Sampling

In the rejection sampling method [22], we sample from a relatively simple pro-
posal distribution p(α) rather than from the target probability density g(α|d), and
then apply a test to decide whether to accept it or not.

Specifically let c be a constant so that

g(α|d)
p(α)

≤ c ∀ α. (2.16)

We then have the following technique for simulating samples from g(α|d):

Algorithm 2.3.1

1. Generate a proposal sample α∗ from pdf p(α) and simulate a random num-
ber u from a uniform distribution U(0,1)

2. If u ≤ g(α∗|d)/cp(α∗) set α = α∗. Otherwise return to Step 1.

Here, all generated samples will be independent.
A high acceptance rate in the rejection sampling method is obtained by se-

lecting a proposal distribution that is a close approximation to the posterior dis-
tribution. In reservoir applications, it can be very hard to find a simple proposal
distribution, especially because the number of model parameters is large in such
cases.

2.3.2 MCMC Algorithm

The aim behind the MCMC algorithm is to build a Markov chain that is easy
to simulate and has a target distribution given by the distribution of interest. In
a MCMC methodology this is done by an iterative procedure with each iteration
containing a proposal and an accept/reject step. An advantage of the MCMC algo-
rithm is that it provides samples from a probability density where the normalizing
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constant is very difficult to compute since the unknown normalization constant
cancels in the algorithm. The MCMC method is as follows [2, 23]:

Algorithm 2.3.2

1. For initiation j = 1, choose an initial state α(1) with g(α(1)|d) > 0

2. Generate a sample α∗ from the proposal pdf p(α|α(j))

3. Calculate the acceptance probability

β(α∗,α(j)) = min
(

1, g(α∗|d)
g(α(j)|d)

× p(α(j)|α∗)
p(α∗|α(j))

)

4. Assign α(j+1) by:
α(j+1) = α∗ with probability β(α∗,α(j))
α(j+1) = α(j) else

5. j→ j+1, return to Step 2.

For a sufficiently large number of iterations, this trajectory will eventually produce
draws from g(α|d). By constructing a suitable Markov chain, one is able to per-
form a Monte Carlo simulation of values from the equilibrium distribution g(α|d),
thus the name MCMC. There exists different possibilities for the acceptance cri-
terion and in the algorithm above a Metropolis-Hastings criterion is used [24].
In the Metropolis-Hastings algorithm the procedure for assigning the initial state,
α(1), and the choice of p(·|·) will have an important influence of the chain mix
and the convergence rate. Another scheme is provided by the Gibbs sampler al-
gorithm [25], and a more detailed discussion can be found in [26].

No matter which scheme is used to establish the chain, a stream of values,
α(1),α(2),. . ., is generated. Although consecutive values α(j) and α(j+1) are de-
pendent, a random sample of size N from g(α|d) can be formed by retaining N
successive values after convergence has been ascertained.

Independent samples can be obtained by holding only the N samples lagged
by κ units, for example (α(n),α(n+κ), . . . ,α(n+(N−1)κ)), where κ is large enough
to carry only residual correlation over the chain and n is large enough to ensure
convergence has been achieved. A challenge in the applications of MCMC meth-
ods is to ensure convergence of the Markov chain. A common approach is to plot
the averages of the components of the model parameters and assess by visual in-
spection whether the convergence has occurred. The degree of correlation may be
quantified by an auto-correlation function.

The MCMC-algorithm has been applied to many history matching applica-
tions, see [23, 27, 28, 29]. However, the computer expenses to obtain an uncer-
tainty assessment by the MCMC-algorithm are very large, and many papers use
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approximate sampling algorithms, which include an optimization step, in order to
reduce the computational cost. Randomized maximum likelihood (RML) is such
an approximate algorithm.

2.3.3 Randomized Maximum Likelihood

Randomized maximum likelihood is known as an approximate sampling algo-
rithm when the forward model is nonlinear. However, it can be shown that the
algorithm samples correctly when the data relationship is linear and Gaussian sta-
tistics are assumed. To create samples with an RML method for large problems,
will as for the MCMC-algorithm be a difficult task and require large computer
processing resources. An important advantage by using the RML method is that
the generated samples often obtain a satisfactory history match to the data and
look reasonable compared to the input properties from the prior model. The al-
gorithm was first introduced by Kitanidis [30] and Oliver et. al. [18], and they
proposed that unconditional samples from a Gaussian distribution could be used
to generate samples conditional to nonlinear data by an optimization process. In
the algorithm, it is required that the prior covariance of the model parameters, Pα,
and the data error covariance, Pd, are known. Samples from the RML method can
then be generated as follows:

Algorithm 2.3.3

1. Generate an unconditional sample from the prior distribution g(α):
α∗ ∼N (αprior,Pα)

2. Generate an unconditional sample of the data:
d∗ ∼N (d,Pd)

3. Compute the conditional model αc that minimizes

J (α) = 1
2

(

(f (α)−d∗)TP−1
d (f (α)−d∗)+ (α−α∗)TP−1

α (α−α∗)
)

Step three in the algorithm performs a minimization comparable to the computa-
tion of the maximum a posteriori estimate in Equation (2.12). The difference is
now that the regularization is with respect to unconditional samples of the data
and the model instead of the observed data and the prior model.

Numerical Optimization Methods

The sampling of the posterior pdf performed by the RML algorithm and the maxi-
mum a posteriori predictor in Equation (2.12) shows that the inverse problem can
be reformulated as an optimization problem. If the forward model is non-linear,
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the inverse problem may have several local minima and in some cases no unique
global minimum. This is typically the case when using a multi-phase fluid flow
model, where the relationship between the physical properties and the output from
the model is highly non-linear.

Inverse problems defined as a minimization problem can be solved by a
gradient-based methodology, and different minimization algorithms can be used,
such as steepest decent, quasi Newton, conjugate gradient or Levenberg-Marquart,
and a variety of different methods for computing the gradient are available (e.g.
sensitivity or adjoint equations).

One of the most efficient gradient-based methods solving the history match-
ing problem, is the algorithm based on an adjoint method to calculate the gradi-
ent of the squared data mismatch, see for example [31], and the limited memory
Broyden-Fletcher-Goldfarb-Shanno method (LBFGS) [32] to compute the direc-
tion of the change [33]. The adjoint method has gained popularity and is widely
used in history matching applications [31, 34]. However, an implementation of
the adjoint system can be very time consuming, and might also be difficult to
perform since it requires a detailed knowledge of the numerical schemes used in
the forward simulator. Such gradient-based methods are called deterministic op-
timization methods since they always produce the same result for a given starting
condition.

An alternative to the deterministic optimization methods are the stochastic op-
timization methods. The stochastic optimization methods include randomness in
the optimization process, and the randomness is commonly related to how the
search process is performed. Some of the stochastic methods may obtain an en-
semble of solutions, which can be used to represent the uncertainty of the solution.
Typically stochastic methods are direct search methods such as simulated anneal-
ing, genetic algorithms and neighborhood approximation. The latter one was first
applied in petroleum reservoir applications by Subbey et al. [35].



Chapter 3

Sequential Data Assimilation

In Chapter 2, the parameter estimation problem and different strategies for sam-
pling the posterior probability density function were discussed. In this chapter
we will present a statistically consistent formulation of the combined parameter
and state estimation problem, and discuss the main concepts of the Kalman filter
method.

As stated by Evensen [3], the joint parameter and state estimation problem for
a dynamical model can in general form be formulated as: “how to find the joint
pdf of the parameters and model state, given a set of measurements and a dy-
namical model with known uncertainties”. In this context, based on the Bayesian
framework, it is possible to derive a statistical algorithm for the combined para-
meter and state estimation, which processes the information from measurements
sequentially in time.

3.1 Parameter and State Estimation

The general smoother for non-linear dynamics can be formulated as a sequential
method, that is, observations can be assimilated sequentially during a forward in-
tegration. The general data assimilation problem was introduced using a Bayesian
formulation, see [36, 37], and following the probabilistic derivation is explained.

Let ψ (x, t) denote the unknown model variable
[

u(x, t)
α(x)

]

, (3.1)

where u(x, t) represent an unknown model state in space and time, and α(x) rep-
resent some poorly known model parameters, which are assumed to be constant in
time. The unknown model variable can be described by a prior probability density
g(ψ ), and the probability density for the observations, d, is given by the likelihood
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ψ0 → ψ1 → ·· · → ψk → ψk+1 → ·· ·
↓ ↓ ↓
d1 dk dk+1

Figure 3.1: Data assimilation scheme.

distribution g(d|ψ ). From Bayesian theory the conditional probability density of
a model variable ψ given a vector of observations, d, can then be defined as

g(ψ |d) =
g(d|ψ )g(ψ )

∫

g(d|ψ )g(ψ )dψ
. (3.2)

Now assume that the observations are available at the same discrete set of times,
t0, t1, . . . , tk, as where we want to estimate ψ , and let ψk = ψ (x, tk) ∈ <q and
dk ∈ <mk denote the model variables and the observations at time tk. Figure 3.1
illustrates a data assimilation scheme where dk depend only on ψk.

To simplify the notation we let ψk:0 denote the sequence {uk, . . . ,u1,u0,α}.
The general smoother in Equation (3.2) can be formulated as a sequential
method [37], and the smoother for the time interval t ∈ [t0, tk] can be expressed as

g(ψk:0|dk:1) = const ·g(dk|ψk:0)g(ψk|ψk−1:0)g(ψk−1:0|dk−1:1). (3.3)

We now assume that the model evolution is a first-order Markov process, and
that the observations collected at different times are independent. Moreover, it is
assumed that dk will only depend on ψk. We can then write the smoother as

g(ψk:0|dk:1) = const ·g(dk|ψk)g(ψk|ψk−1)g(ψk−1:0|dk−1:1). (3.4)

In Equation (3.4) the density function g(dk|ψk) represent the likelihood term,
g(ψk|ψk−1) corresponds to an integration of the solution forward in time from
tk−1 to tk, and the multiplication with the last two densities represent the prior
distribution at time tk.

In a similar probabilistic formalism the general filter solution can be derived
from Equation (3.4) by integrating over the solutions ψk−1:0, and the filter equa-
tion is given by

g(ψk|dk:1) = const ·g(dk|ψk)g(ψk|dk−1:1), (3.5)

where the prior density, g(ψk|dk−1:1), is defined as

g(ψk|dk−1:1) =
∫

g(ψk|ψk−1)g(ψk−1|dk−1:1)dψk−1. (3.6)
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In the filter Equation (3.5) the information is carried only forward in time and the
model variable ψk is dependent on all the previous data, d1,d2, . . . ,dk. Notice
that the estimate at the final time, tk, will be identical for the smoother and the
filter.

3.2 Sequential Update Using Time Difference Data

When using time difference data the observations at a particular time are related to
the model state at more than one time instant. Thus, in the Bayesian formulation
of the sequential data assimilation the posterior distribution includes both a filter
and a smoother solution. In this section we present how this can be performed in
a statistical consistent manner, and a more detailed discussion is given in Paper A
and B.

In the smoother (3.4) and filter (3.5) equations, we assumed that the data at a
specific time were only related to the model variables at that time. In this section
we will derive the update procedure for the smoother and filter solutions when
data dk = [dkk,dkj]T at a particular time tk are related to both ψk and ψj, where
tj < tk. The likelihood function is then represented by g(dk|ψk,ψj). From now on
dkk denote an observation that depend only on ψk, and dkj denote an observation
that depend both on ψk and ψj. In our model we let dkj be the time difference
observation between ψk and ψj. We still assume a Markov process and Figure 3.2
introduces the model, where the sequential updating procedure is as follows:

1. For the time interval ti ∈ (t0, tj] the data, di = [dii], depend only on ψi.

2. For the time interval ti ∈ (tj, tk) the update is based on the data, di = [dii].
Here ψj will be included in the update procedure as a smoother update, be-
cause at time tk the observation dk will include time difference data between
ψk and ψj.

3. When the time is equal tk the update based on the data, dk = [dkk,dkj]T ,
depend on ψk and ψj.

4. When ti > tk the update is based on the data, di = [dii], and the observation
depend only on ψi.

From Equation (3.3) and Figure 3.2 the smoother at time tk can be written as

g(ψk:0|dk:1) ∝ g(dk|ψk,ψj)g(ψk|ψk−1)g(ψk−1:0|dk−1:1), (3.7)
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ψj ψj
ψ0 → ψ1 · · · → ψj → ψj+1 · · · → ψk → ψk+1 → ·· ·

↓ ↓ ↓ ↓ ↓
d1 dj dj+1 dk dk+1

︷︸︸︷

dkk
dkj

Figure 3.2: Data assimilation scheme where dk depend both on ψk and ψj.

and the filter solution for Equation (3.7) is given by

g(ψk|dk:1) ∝
∫

g(dk|ψk,ψj)g(ψk|ψk−1)g(ψk−1:0|dk−1:1)dψk−1:0

∝
∫ ∫

g(dk|ψk,ψj)g(ψk|ψk−1)

·
[

∫ ∫

g(ψk−1:0|dk−1:1)dψk−2:j+1dψj−1:0

]

dψk−1dψj

∝
∫

g(dk|ψk,ψj)
[

∫

g(ψk|ψk−1)g(ψk−1,ψj|dk−1:1)dψk−1

]

dψj

∝
∫

g(dk|ψk,ψj)g(ψk,ψj|dk−1:1)dψj, (3.8)

where the forecast step defining the prior distribution is expressed by

g(ψk,ψj|dk−1:1) =
∫

g(ψk|ψk−1)g(ψk−1,ψj|dk−1:1)dψk−1, (3.9)

and the posterior distribution at time tk is defined by

g(ψk,ψj|dk:1) ∝ g(dk|ψk,ψj)g(ψk,ψj|dk−1:1). (3.10)

Notice that the forecast step in Equation (3.9) requires the filter solution of ψk−1
and the smoother solution of ψj obtained from g(ψk−1,ψj|dk−1:1). The Bayesian
formulation of the filter solutions in Equations (3.5) and (3.8) now gives the pos-
sibility to compute an update of the posterior distribution when we include time
difference data. This sequential update procedure should also be possible to use
for other types of data which depend on two or more time instances.
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Figure 3.3: Typical Kalman filter application.

3.3 Kalman Filter

In 1960 Rudolph E. Kalman published his famous paper describing a recursive
solution to the discrete-data linear filtering problem, and the method was named
Kalman filter [4]. Figure (3.3), reproduced from [38], illustrates the application
context in which the Kalman filter is used. The figure illustrates that a physical
system (e.g. production of an oil-reservoir) is driven by a set of external controls
or inputs, where the outputs of the system are typically evaluated by different
measuring devices. The knowledge of the behavior of the system is then entirely
given by the inputs and the measured outputs. The uncertainties and the errors in
the process, such as the measuring device noise and the system errors, are then
disclosed in the observations. Based on the control inputs and the observations,
the aim of the filter is to find an estimate of the state of the system that optimizes
a given criteria.

The Kalman filter can be viewed as an optimal recursive data processing al-
gorithm, and it is a technique for assessing the posterior distribution, g(ψk|dk:1),
based on the likelihood pdf, g(dk|ψk), and the prior pdf of the model variables,
g(ψk|dk−1:1). Assuming linear dynamics and Gaussian statistics the Kalman fil-
ter is a statistical consistent method, and provides the best linear unbiased es-
timate (BLUE) of the posterior mean E(ψk|dk:1) and the posterior covariance
Cov(ψk|dk:1). Since the likelihood and the prior distributions are assumed Gauss-
ian, the posterior is also Gaussian and fully described by the mean and covariance,
and the Kalman filter utilizes the dynamical equations to evolve the most probable
model state and the error covariance matrix in time. The Kalman filter has been
the subject of extensive research and application, and a more complete introduc-
tory discussion of the Kalman filter can be found in [38, 39] and at the web page:
www.cs.unc.edu/∼whelch/kalman.

In this section the derivation of the Kalman filter, the Kalman smoother and
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the extended Kalman filter are outlined, and we present a sampling algorithm from
the Kalman filter distribution which is closely related to the sampling procedure
used in the ensemble Kalman filter algorithm.

3.3.1 Derivation of the Kalman Filter

In the standard state space form, observations dk are related to the model variables
ψk by a linear observation equation

dk =Hkψk+ε
o
k εok ∼Nmk (0,Pεok ), (3.11)

where Hk is the observation operator, and εok is a Gaussian observation noise
process where Pεok is the time-varying observation covariance matrix. The model
state evolution is defined as

ψk = Fkψk−1 +ε
m
k εmk ∼Nq(0,Pεmk ), (3.12)

where Fk is the linear model operator, and εmk is a Gaussian model noise sequence
with error covariance matrix Pεmk . The initial prior distribution has expectation
E(ψ0) = ψ init0 and covariance Cov(ψ0) = P initψ0

and is assumed Gaussian

ψ0 ∼Nq(ψ
init
0 ,P initψ0

). (3.13)

The mean and the covariance of the model variables are fully specified by assum-
ing that εok, εmk and ψ0 are mutually independent. Here, we have also assumed
that the noise processes have zero mean, although this need not to be the case in
general.

Given the measurements dk:1, estimation of ψk is the primary objective, and
following distributions will be of interest

• Filtering, i.e finding g(ψk|dk:1)

• Prediction, i.e finding g(ψk|dj:1), j < k

• Smoothing, i.e finding g(ψk|dl:1), k < l

This provides the key to perform statistical inference.
The derivation of the Kalman filter is as follows. Assume that the posterior

distribution at time tk−1, g(ψk−1|dk−1:1), is known,

ψk−1|dk−1:1 ∼Nq(ψ
a
k−1,P

a
ψk−1

), (3.14)
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where the conditional expectation and the error covariance matrix is given as

ψak−1 = E(ψk−1|dk−1:1), (3.15)

P aψk−1
= E((ψk−1 −ψak−1)(ψk−1 −ψak−1)T |dk−1:1). (3.16)

Combining Equation (3.14) and the system equation (3.12) yields the prior distri-
bution at time tk, g(ψk|dk−1:1),

ψk|dk−1:1 ∼Nq(ψ
f
k ,P

f
ψk ), (3.17)

where the prior mean, ψfk , and the prior covariance, P fψk , are defined by

ψ
f
k = E(ψk|dk−1:1), (3.18)

P
f
ψk = E((ψk−ψ

f
k )(ψk−ψ

f
k )T |dk−1:1). (3.19)

For the linear state space model in Equation (3.12) the prior moments are given
as

ψ
f
k = Fkψ

a
k−1, (3.20)

P
f
ψk = FkP

a
ψk−1

F Tk +Pεmk . (3.21)

Based on the prior distribution in Equation (3.17), the one-step forecast distribu-
tion of dk given dk−1:1 is derived using the observation equation (3.11)

dk|dk−1:1 ∼Nmk (dfk ,Pdk ), (3.22)

where the one-step forecast mean and the one-step forecast covariance are

d
f
k =Hkψ

f
k , (3.23)

Pdk =HkP
f
ψkH

T
k +Pεok . (3.24)

The derivation of the posterior distribution at time tk, g(ψk|dk:1), is found from
the joint distribution of g(ψk,dk|dk−1:1). The joint distribution is established by
observing from Equation (3.11) that

Cov(ψk,dk|dk−1:1) = Cov(ψk,Hkψk+ε
o
k|dk−1:1) = P fψkH

T
k , (3.25)

and hence the joint distribution can be expressed as

(

ψk
dk

dk−1:1

)

∼Nq+mk

((

ψ
f
k

d
f
k

)

,

[

P
f
ψk P

f
ψkH

T
k

HkP
f
ψk Pdk

])

. (3.26)
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Recall that when we have a jointly Gaussian distribution g(z1,z2):
(

z1
z2

)

∼N
((

µ1
µ2

)

,

[

P1 P12
P21 P2

])

, (3.27)

then the conditional probability distribution g(z1|z2) is also Gaussian with mean
µ1|2 and covariance P1|2, where [21]

µ1|2 = µ1 +P12(P2)−1(z2 −µ2), (3.28)

P1|2 = P1 −P12(P2)−1P21. (3.29)

By applying these formulas to the joint distribution in Equation (3.26) the poste-
rior distribution, g(ψk|dk:1), can be expressed as

(ψk|dk:1) ∼Nq(ψ
a
k ,P

a
ψk ). (3.30)

Here the analysis mean and covariance are given as

ψak = ψ
f
k +Kk(dk−Hkψ

f
k ), (3.31)

P aψk = (I −KkHk)P fψk , (3.32)

where the Kalman gain matrix, Kk, is given by

Kk = P
f
ψkH

T
k (HkP

f
ψkH

T
k +Pεok )−1. (3.33)

Notice that for the case with a linear dynamical model and Gaussian distributions
the linear variance minimizing analysis or map estimate also can be found from
the minimum of

ψak = argmin{J (ψk)}, (3.34)

where the objective function, J (ψk), is defined as

J (ψk) =
1
2

(

(dk−Hψk)T (Pεok )−1(dk−Hψk)
)

+
1
2

(

(ψk−ψ
f
k )T (P fψk )−1(ψk−ψ

f
k )
)

. (3.35)

Taking the derivative of J (ψk) with respect to ψk, and let it equal to zero, the best
estimate of ψk is obtained and equal to the result in Equation (3.31).

Based on the results above the forecast distribution, g(ψk|dj:1), where j < k,
can be derived in a similar manner, and it can be shown that g(ψk|dj:1) also will
be Gaussian distributed [40].
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3.3.2 Sampling from the Kalman Filter Distribution

From the Kalman filter theory the state space models are assumed linear with
Gaussian statistics and the posterior distribution, g(ψk|dk:1), is then Gaussian and
subject to analytical evaluation. The objective is to sample from the posterior
pdf g(ψk|dk:1), see Equation (3.30), and to generate a sample from this distrib-
ution, different sampling strategies can be applied. Here, we present a standard
algorithm based on conditional simulation with kriging, and the algorithm is as
follows (see e.g. [41]):

Algorithm 3.3.2

1. Generate a sample from the posterior distribution g(ψk−1|dk−1:1):

ψa,∗k−1 ∼Nq(ψ
a
k−1,P

a
ψk−1

)

2. Forecast the sample ψa,∗k−1 using Equation (3.12):

ψ
f,∗
k = Fkψ

a,∗
k−1 +ε

m,∗
k , εm,∗k ∼Nq(0,Pεmk )

- ψf,∗k represent a sample from the prior distribution g(ψk|dk−1:1).

3. Generate a sample from the measurement distribution:

d∗k ∼Nmk (dk,Pεok )

4. Use the kriging formula to generate a sample from the posterior distribution
g(ψk|dk:1):

ψa,∗k = ψf,∗k +P fψkH
T
k (HkP

f
ψkH

T
k +Pεok )−1(d∗k−Hkψ

f,∗
k )

To prove that the algorithm provides samples from the correct posterior pdf, the
expectation and covariance need to be identical with the moments given in Equa-
tions (3.31)-(3.32). Let now (ψa,sk−1, εm,sk , ψf,sk , dsk) represent the stochastic inter-

pretation of (ψa,∗k−1, ψf,∗k , εm,∗k , d∗k).

To show thatψf,∗k represents a sample from the prior distribution g(ψk|dk−1:1)
given in Equation (3.17), the first and second order moments have to be equal to
the moments in Equations (3.20)-(3.21). The expectation and the covariance are
given as

E(ψf,sk ) = FkE(ψa,sk−1)+E(εm,sk )

= Fkψ
a
k−1

Cov(ψf,sk ) = FkCov(ψa,sk−1)F Tk +Cov(εm,sk )

= FkP aψk−1
F Tk +Pεmk ,
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where (ψa,sk−1,ε
m,s
k ) are assumed independent. Hence, it is shown that ψf,∗k will be

a sample from the correct Gaussian prior distribution.
The analysis step can now be written as

ψa,sk = ψf,sk +P fψkH
T
k (HkP

f
ψkH

T
k +Pεok )−1(dsk−Hkψ

f,s
k ),

where (ψf,sk , dsk) are independent with distributions as specified in the algorithm.

Due to (ψf,sk , dsk) being stochastic, ψa,sk will be stochastic, and the expectation
and the covariance are given as

E(ψa,sk ) = E(ψf,sk )+P fψkH
T
k (HkP

f
ψkH

T
k +Pεok )−1(E(dsk)−HkE(ψf,sk ))

= ψfk +P fψkH
T
k (HkP

f
ψkH

T
k +Pεok )−1(dk−Hkψ

f
k )

Cov(ψa,sk ) = Cov(ψf,sk )+P fψkH
T
k (HkP

f
ψkH

T
k +Pεok )−1

· (Cov(dsk)+HkCov(ψf,sk )HT
k )(HkP

f
ψkH

T
k +Pεok )−1HkP

f
ψk

−2P fψkH
T
k (HkP

f
ψkH

T
k +Pεok )−1HkCov(ψf,sk )

= P fψk −P
f
ψkH

T
k (HkP

f
ψkH

T
k +Pεok )−1HkP

f
ψk .

Hence, it is proven that the algorithm samples correctly.

3.3.3 Kalman Smoothing

In Kalman smoothing [40] the main objective is to find the conditional distribution
of ψk given observations dl:1, where time tk ≤ tl. Using a similar approach as
for the Kalman filter, the posterior distribution, g(ψk|dl:1), can be shown to be
Gaussian

(ψk|dl:1) ∼Nq(ψ
a
k|l,P

a
ψk|l ), (3.36)

where ψak|l and P aψk|l are respectively the smoother mean and the smoother covari-
ance.

The Kalman smoother consists of backwards recursions for time tl, . . . , t1, and
the smoother moments can be derived as

ψak|l = E(ψk|dl:1) = ψak +Bk(ψak+1|l−ψ
f
k+1), (3.37)

and

P aψk|l = Cov(ψk|dl:1) = P aψk +Bk(P aψk+1|l −P
f
ψk+1)BTk , (3.38)
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with

Bk = P aψkF
T
k+1(P fψk+1)−1. (3.39)

Here at each update step, the smoothing estimateψak|l is achieved from the Kalman
filter estimate ψak by adding the weighted difference between the smoothing esti-

mate ψak+1|l of the previous step and the prediction estimate ψfk+1. From Equa-
tions (3.37) and (3.38) it is clear that the implementation of the Kalman smoother
moments requires that the analysis and forecast momentsψak , P aψk , ψfk+1 and P fψk+1

are computed from the Kalman filter.

3.3.4 Extended Kalman Filter

Consider the non-linear state space model

ψk = fk(ψk−1)+εmk εmk ∼Nq(0,Pεmk ), (3.40)

dk = hk(ψk)+εok εok ∼Nq(0,Pεok ), (3.41)

where fk : <q →<q is a non-linear model operator with model errors εmk , and hk :
<q →<mk is the non-linear measurement operator, relating the model variable ψk
to the observations dk allowing for measurement errors εok.

In a non-linear state space model the model variables undergoing nonlinear
transformations, Equations (3.40) and (3.41), and as a result the posteriori dis-
tribution g(ψk|dk:1) can no longer be explicitly described by a Gaussian distri-
bution. To solve the estimation problem a non optimal approach, in the frame
of linear filters, can be used, and it is referred to as an extended Kalman filter
(EKF) [38, 42, 43]. The EKF gives an approximation of the optimal minimum
mean-square estimate by linearization, and at each step the non-linear dynamics
are linearized around the last consecutive predicted and filtered state estimates.
Based on the linearized dynamics the EKF applies the Kalman filter to obtain es-
timates of first and second order moments of the posterior distribution g(ψk|dk).
To achieve a valid solution, this linearization should be a good approximation of
the non-linear state space model in all the uncertainty domain related to the model
variable estimate.

Assume that the mean, ψak−1, and the covariance, P aψk−1
, of the posterior dis-

tribution g(ψk−1|dk−1:1) are known. One iteration of the EKF is composed by the
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following steps:

Fk =
[

∂fk(ψk−1)
∂ψk−1

]

ψk−1=ψ
a
k−1

ψ
f
k = fk(ψak−1)

P
f
ψk = FkP

a
k−1F

T
k +Pεmk

Hk =
[

∂hk(ψk)
∂ψk

]

ψk=ψ
f
k

Kk = P
f
ψkH

T
k (HkP

f
ψkH

T
k +Pεok )−1

ψak = ψ
f
k +Kk(dk−hk(ψfk ))

P aψk = (I −KkHk)P fψk .

Notice that the EKF is not an optimal filter, but rather it is constructed on the basis
of a set of approximations. Thus the matrix P fψk and P aψk do not represent the true
covariance of the estimate of the model variables.



Chapter 4

Ensemble Kalman Filter (EnKF)

The Ensemble Kalman filter (EnKF) is a Monte Carlo type sequential Bayesian
inversion method, and was first introduced by Geir Evensen in 1994 for data as-
similation of non-linear ocean models [44]. Since its introduction the EnKF has
been applied and examined in a number of studies related to atmospheric and
oceanographic systems [45, 46]. An example is the data assimilation of Topaz,
(see e.g. [3] and the web page: topaz.nersec.no), which is a high dimensional op-
erational ocean prediction system for the Atlantic and Arctic oceans, where the
state vector consist of almost 80 million variables.

Recently, several investigations have also shown promising results of the
EnKF method for continuous updating of reservoir simulation models, as an al-
ternative to traditional history-matching. This was first proposed by Nævdal et
al. [47] who estimated the reservoir permeability on a simplified reservoir model
by using the EnKF methodology. Other publications and studies discussing the
estimation problem within petroleum reservoir applications using EnKF can be
found in [3, 34, 48, 49, 50, 51].

EnKF has a promising potential in reservoir and seismic characterization,
since it has a simple conceptual formulation and can be implemented relatively
easy for reservoir topics. The method requires no integrations backward in time,
and avoids computation of the gradient operator or adjoint equations. An impor-
tant advantage is that any reservoir simulator and seismic forward model can be
used in the EnKF history matching process without additional amount of work.

Lately, the growth in deployment of permanent sea bed sensors for seismic
monitoring has increased rapidly, and as a result seismic datasets become avail-
able with a higher time frequency. Thus, in a reservoir problem, both production
data and seismic data may be available at different time steps during the oil pro-
duction history. The EnKF is a method for sequentially updating estimates of
model variables and for assimilating different types of data and, therefore, well
suited to solve such problems.
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Figure 4.1: Illustration of ensemble Kalman filter methodology

The EnKF was introduced as a Monte Carlo alternative to the traditional EKF.
Evensen [44] has shown that a Monte Carlo approach can be utilized to solve an
equation for the time evolution of the pdf of the model variable, as a stochastic
alternative to using the approximate error covariance equation in the EKF. The
general evolution of the model variable can be written as stochastic differential
equation

dψ = f (ψ )dt+w(ψ )dθ. (4.1)

This equation implies that a model variable increment dψ can be described by
the forward model over the time increment considered, f (ψ )dt, which in addition
is influenced by the term w(ψ )dθ, called the stochastic forcing and representing
the model errors. If the dynamical model is written as in Equation (4.1), one can
derive the Fokker-Plank or Kolmogorov’s equation for the time evolution of the
pdf, which includes all the information about the prediction error statistics. A
detailed description is given in Jazwinski [52].

The EnKF applies a Monte Carlo method to solve the Fokker-Plank equation
and is based on the use of an ensemble representation for the pdfs of interest. The
EnKF is a sequential data assimilation method, and provides an approximate solu-
tion to the combined parameter and state estimation problem [3]. The result is an
ensemble of solutions approximating the posterior pdf. In the EnKF each ensem-
ble member is updated according to the traditional scheme of the Kalman filter, but
the main difference is that the model variable error covariance matrix in the EnKF
is estimated from an ensemble of typical short-range, non-linear forecasts. At the
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analysis times, the members of the ensemble are updated so that the perturbations
of the ensemble approximate a random sample from the analysis error distribu-
tion. The mean and the spread of the ensemble of the model variables at a given
time step will then reflect both an estimate of the true state and an uncertainty of
that estimate. Each member of the ensemble will be evolved independently for-
ward in time, until new measurements from the system are available. At that point
the mean and the covariance from the ensemble are used to generate the new state
estimate and the reduced uncertainty introduced by the measurements. Here, the
EnKF provides a linear update to a non-linear forecast ensemble and can thus be
viewed as an intermediate step between the Kalman filter and particle filters, see
for example Bertino et al. [53]. An illustration of the EnKF method is presented
in Figure 4.1.

Evensen [3, 54] provides both a comprehensive review of the progress on the
EnKF since its introduction, and a detailed interpretation and description of the
EnKF as a data assimilation method.

4.1 Derivation of the EnKF Algorithm

Let the non-linear state space model be represented by the Equations (3.40) and
(3.41). In the EnKF setting the nonlinear state space model is reformulated, so
that the observation equation can be treated as linear [54]. To obtain a linear
observation equation it is possible to augment the model variable with a diagnostic
variable which is the model prediction of the measurement. The linear observation
equation can then be written as

dk = H̃kψ̃k+ε
o
k, (4.2)

where ψ̃k = (ψk,hk(ψk))T and H̃k being the linear measurement operator that
picks data from ψ̃k. For simplicity we omit the augmented notation and let ψ
from now include the parameters, the states and the model prediction of the mea-
surements. The derivation of the EnKF algorithm is as follows.

Define the matrix holding the ensemble members, ψk ∈ <q, at time tk, as

Ψk =Ψ(x, tk) = (ψ1
k ,ψ

2
k , · · · ,ψ

N
k ) ∈ <q×N , (4.3)

where N is the ensemble size. The ensemble mean can be defined as

Ψ̄k =Ψk1N , (4.4)

where 1N ∈ <N×N is the matrix where each element is equal to 1/N . Based on
Equations (4.3) and (4.4) the ensemble perturbation matrix,Ψ′

k, can be expressed
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as

Ψ′
k =Ψk− Ψ̄k =Ψk(I −1N ). (4.5)

The ensemble covariances matrix, P eψk ∈ <q×q, can then be defined as

P eψk =
Ψ′
k(Ψ′

k)T

N −1
. (4.6)

Given a vector of observations, dk ∈<mk , theN vectors of perturbed observations
can be expressed as

dik = dk+ε
o,i
k , i = 1,2 · · · ,N, (4.7)

where the perturbed observations can be stored in the columns of a matrix

Dk = (d1
k,d

2
k, · · · ,d

N
k ) ∈ <mk×N . (4.8)

The ensemble of observation perturbations can be represented in the columns of
the matrix

Ek = (εo,1k ,εo,2k , · · · ,εo,Nk ), (4.9)

and the ensemble representation of the error covariance matrix of the observations
becomes

P e
εok
=
EkE

T
k

N −1
. (4.10)

The EnKF sampling can be viewed as a conditional simulation with kriging, and
the algorithm is as follows:

Algorithm 4.1

0. Generate N independent samples, ψa,ik−1, from g(ψk−1|dk−1:1)

1. Forecast each of the samples, ψa,ik−1 using Equation (3.40):

ψ
f,i
k = fk(ψa,ik−1)+εm,ik , εm,ik ∼Nq(0,Pεmk )

- ψf,ik represent a sample from the prior distribution g(ψk|dk−1:1).

2. Use Monte Carlo integration to estimate the first and second order moments
from the prior pdf using Equations (4.4) and (4.6)
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3. Generate N samples from the measurement distribution:

dik ∼Nmk (dk,Pεok ) ∀ i = 1 :N

4. Use the kriging formula to generate a sample from the posterior distribution
g(ψk|dk:1):

ψa,ik = ψf,ik +P e,fψk H
T
k (HkP

e,f
ψk H

T
k +Pεok )−1(dik−Hkψ

f,i
k )

- where ψa,ik represent a sample from the filter distribution g(ψk|dk:1).

The ensemble representation of the analysis equation can be expressed as

Ψa
k =Ψf

k +P
e,f
ψk H

T
k (HkP

e,f
ψk H

T
k +Pεok )−1(Dk−HkΨ

f
k ). (4.11)

At time tk we define the ensemble of innovation vectors, D′
k ∈ <mk×N , as

D′
k =Dk−HkΨ

f
k , (4.12)

the measurement of the ensemble perturbations, Sk ∈ <mk×N , as

Sk =HkΨ
f ′

k , (4.13)

and the matrix Ck ∈ <mk×mk as

Ck = SkS
T
k + (N −1)Pεok . (4.14)

By using the Equations (4.12)-(4.14) and the ensemble error covariance matrix
definition in Equation (4.6), the analysis in Equation (4.11) can be written as

Ψa
k =Ψf

k +Ψf ′

k Ψ
f ′T
k HT

k (HkΨ
f ′

k Ψ
f ′T
k HT

k + (N −1)Pεok )−1D′
k

=Ψf
k +Ψf

k (I −IN )STk C
−1
k D′

k

=Ψf
k (I + (I −IN )STk C

−1
k D′

k) (4.15)

=Ψf
k (I +STk C

−1
k D′

k)

=Ψf
kXk,

where we have used the ensemble perturbation matrix in Equation (4.5) and
1NSTk ≡ 0. Hence, the analyzed ensemble can be considered as a combina-
tion of the forecast ensemble. Assuming a linear model and Gaussian statistics
Equation (4.15) converges towards the correct posterior density solution of the
Bayesian problem with increasing ensemble size [3].

A detailed description of how the EnKF analysis can be implemented and
computed efficiently for practical applications can be found in Evensen [54] and
on the web-page: enkf.nersc.no.
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4.1.1 Ensemble Kalman Smoother (EnKS)

As described in Evensen and van Leeuwen [37], the general smoother for non-
linear dynamics, see Equation (3.4), can be formulated as a sequential method, so
that measurements can be assimilated sequentially during a forward integration.
The general filter, see Equation (3.5), can be found from the smoother, and at
the final time the general filter and smoother will have identical solutions. The
EnKS is closely related to the EnKF algorithm. The difference is that every time
new observations become available, an update of the ensemble is performed for
all previous times up to this time. Hence, the EnKF solution will be the first guess
for the smoother, and the estimate of the smoother provides an improvement of
this. The analysis utilizes the space-time covariance between the model state at a
prior time and the model forecast at measurement locations. Thus, similar to the
ensemble update in Equation (4.15) the EnKS update for a prior time tj, based on
a new set of measurements at time tk > tj, is given by

Ψa
j =Ψj +Ψ

′

jΨ
′T
k H

T
k (HkΨ

′

kΨ
′T
k H

T
k + (N −1)Pεok )−1D′

k

=ΨjXk. (4.16)

The matrix of coefficients Xk is used on the analysis ensemble at prior times tj to
update the smoother estimate at time tj, and the equation is updated at each time
new observations are introduced at future times. An estimate of the smoother at
a prior time tj where tj < tj+1 ≤ tk, using measurements from future times, i.e.,
(tj+1, tj+2, . . . , tk), can then be written as

Ψa
EnKS,j =ΨEnKF,j

k
∏

i=j+1

Xi. (4.17)

The multiplication sequence of Xi in Equation (4.17) will for each repetitive up-
date result in a slight change of the ensemble mean and a slight reduction of the
ensemble spread.

4.2 EnKF and Time Difference Data

In Section 3.2 we derived a sequential Bayesian formulation which incorporated
time difference data, where the update included both a filter and a smoother so-
lution. In this Section we consider the same data assimilation scheme, given in
Figure 3.2 where the observations at time tk depend both on ψk and ψj, and we
derive the corresponding EnKF scheme and show that a combination of the en-
semble Kalman filter and the ensemble Kalman smoother has to be applied.
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Let the non-linear state space model for times ti ∈ (tj, tk] be defined as

ψ̃i =
[

fi(ψi−1)
ψj

]

+
[

εmi
0

]

εmi ∼Nq(0,Pεmi ) (4.18)

di = H̃iψ̃i+ε
o
i εoi ∼Nmi (0,Pεoi ) (4.19)

where ψ̃i = [ψi,ψj]T ∈ <q̃, fi is a non-linear model operator operating only on
ψi−1 with model errors εmi . The model errors are only added to the terms where fi
is operating onψi−1 and are zero elsewhere. The linear measurement operator, H̃i,
is relating the model state ψ̃i to the observations di in accordance with the data
assimilation scheme in Figure 3.2 (i.e. dk include time difference observations
between ψk and ψj) allowing for measurement errors εoi .

Consider now a joint ensemble matrix including the ensemble matrices for the
different time instants, Ψi =Ψ(x, ti),Ψj =Ψ(x, tj)

Ψ̃i =
[

Ψi

Ψj

]

∈ <q̃×N . (4.20)

The ensemble mean and the ensemble perturbation matrix at time ti can be written
as

¯̃Ψi = Ψ̃i1N (4.21)

Ψ̃′
i = Ψ̃i− ¯̃Ψi = Ψ̃i(I −1N ), (4.22)

where 1N ∈ <N×N is the matrix where each element is equal to 1/N . The en-
semble covariances, P eψ̃i ∈ <q̃×q̃, can then be estimated as

P eψ̃i =
Ψ̃′
i(Ψ̃

′
i)
T

N −1
. (4.23)

The sampling algorithm for a case with time difference data will then be as fol-
lows:

Algorithm 4.2

0. Generate N independent samples, ψa,lj from g(ψj|dj:1).

For i = j+1, j+2, . . . ,k

1. Forecast each of the samples, ψa,li−1, using Equation (4.18):

ψ̃
f,l
i =

[

fi(ψ
a,l
i−1)

ψa,lj,i−1

]

+
[

εm,li
0

]

εm,li ∼Nq(0,Pεmi ) ∀ l = 1 :N
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- ψa,lj,i−1 is the smoother update of ψa,lj at the previous time step.

- ψ̃f,li represents a sample from the prior distribution g(ψ̃i|di−1:1).

2. Use Monte Carlo integration to estimate the mean and the covariance from
the prior density, given in Equations (4.21) and (4.23).

3. Generate N samples from the measurement distribution:

dli ∼Nmi (di,Pεoi ) ∀ l = 1 :N

4. Use the kriging formula to generate a sample from the posterior distribution
g(ψ̃i|di:1):

ψ̃a,li = ψ̃f,li +P e,fψ̃i H̃
T
i (H̃iP

e,f
ψ̃i
H̃T
i +Pεoi )

−1(dli− H̃iψ̃
f,l
i )

- where ψ̃a,li = [ψa,li ,ψa,lj,i ]T and ψa,li represent a sample from the filter
distribution g(ψi|di:1).

If we now at time ti define the measurement of the ensemble perturbations,
Si ∈ <mi×N , as

Si = H̃iΨ̃
f ′

i , (4.24)

the ensemble of innovation vectors as

D′
i =Di− H̃iΨ̃

f
i , (4.25)

and the matrix Ci ∈ <mi×mi as

Ci = SiS
T
i + (N −1)Pεoi , (4.26)

we have from Equation (4.15) that the ensemble representation of the analysis
step is

Ψ̃a
i = Ψ̃f

i Xi. (4.27)

The EnKF update in Equation (4.27) can be written as

[

Ψa
i

Ψa
j,i

]

=

[

Ψf
i Xi

Ψa
j,i−1Xi

]

, (4.28)

where Ψa
j,i is the smoother solution at time tj when the observations at time ti have

been assimilated.
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This updating process continues until time tk where the time difference data
are to be assimilated, and we have the augmented ensemble as

[

Ψf
k

Ψa
j,k−1

]

. (4.29)

At time tk we use the time difference measurement operator which relates the
measurements to both Ψf

k and Ψa
j,k−1 and compute a standard EnKF analysis.

More discussion of this procedure can be found in Paper A and B.
This method is particularly useful when assimilating the difference of the seis-

mic data, since such data depend on the model state at two different time instances.
The method has been applied to all EnKF runs throughout this work, where differ-
ent types of seismic time-lapse data have been used. The overall results show that
adding seismic time-lapse data to the production data measurements give an im-
provement of the characterization of the reservoir. However, special challenges,
such as inversion of a large covariance matrix and potential loss of rank, are in-
volved in the assimilation of the large amount of data comming from 4D seismic
data. Hence, the use of efficient EnKF algorithms handling the problems properly
are required.

4.3 Ensemble Square Root Filter

In the EnKF the traditional analysis scheme uses a randomization or a stochas-
tic perturbation of the observations to ensure that the updated ensemble attain
the correct variance. The so called deterministic analysis is an alternative algo-
rithm which avoids the perturbation of observations, and the scheme is based on a
square-root formulation. Here, the updates of the ensemble mean and the ensem-
ble perturbations are performed separately [55].

Several variations of implementing the square root filter are introduced, caused
by the non-uniqueness of analysis perturbations that can be used to represent the
covariance matrix of the analysis error [56]. Existing publications of the square
root filter approach are the ensemble adjustment filter [10], ensemble transform
Kalman filter [57], local ensemble Kalman filter [58], and the ensemble square
root filter (EnSRF) [56, 59, 9]. In this section the EnSRF is based on the formula-
tion presented by Evensen [9]. Here we have dropped the time subscript and the
forecast notation f to simplify the notation.

The scheme is used to update the ensemble perturbations, and the derivation
of the algorithm is based on the traditional analysis equation for the covariance
update of the Kalman filter in Equation (3.32). The ensemble representation for
the error covariance matrix, P eψ , is defined in Equation (4.6), and by using this
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and the definitions for S and C from Equations (4.13) and (4.14), respectively,
the EnSRF equation can be expressed as

Ψa′Ψa′T =Ψ′Ψ
′T −Ψ′Ψ

′THT (HΨ′Ψ
′THT + (N −1)Pεo)−1HΨ′Ψ

′T (4.30)

=Ψ′(I −STC−1S)Ψ
′T (4.31)

=Ψ′(I −ZΛZT )Ψ
′T (4.32)

=Ψ′Z(I −Λ)ZTΨ
′T (4.33)

=
(

Ψ′Z
√

I −Λ
)(

Ψ′Z
√

I −Λ
)T
, (4.34)

where Z and Λ represent respectively the eigenvectors and the eigenvalues found
from an eigenvalue decomposition of the second term within the brackets of Equa-
tion (4.30). Hence a given solution of the ensemble perturbations is:

Ψ
′a =Ψ′Z

√

I −Λ. (4.35)

The updated mean is computed by a similar equation to the standard Kalman
filter analysis (see Equation (3.31)) and is given as

ψa = ψf +Ψ′STC−1(d−Hψf ), (4.36)

where d are the unperturbed observations. As long as the measurement perturba-
tions average to zero Equation (4.36) will give exactly the same updated ensemble
mean as the EnKF. The above equations are similar to the equations solved in the
EnSRF algorithms discussed by Tippett et al. [56].

Simulation of non-linear problems have shown that an ensemble collapse may
occur when deterministic filters are applied. An insertion of a random orthogonal
matrix product I = ΘTΘ can avoid this problem, as shown by Leewuenburgh et.
al [55] and Evensen [9], i.e

Ψa′Ψa′T =
(

Ψ′Z
√

I −Λ
)

ΘTΘ
(

Ψ′Z
√

I −Λ
)T
, (4.37)

and the randomized EnSRF update equation can be written as

Ψ
′a =Ψ′Z

√

I −ΛΘT . (4.38)

This solution is still a square root of the updated covariance. A random rotation
of the eigenvectors in Z is obtained by the multiplication with ΘT , and the effect
is a randomly redistribution of the variance among all the ensemble members.

The formulation of the square root scheme presented above can also be writ-
ten in the same simple form as the EnKF equation (4.15). To obtain this form
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the analysis is written as the updated ensemble mean plus the updated ensemble
perturbations, i.e

Ψa =Ψa+Ψa′ . (4.39)

The analyzed mean using Equation (4.11), can be expressed as

Ψa =Ψ1N +Ψ(I −1N )STC−1(D−HΨ)1N , (4.40)

and the perturbations are, from Equation (4.38),

Ψa′ =Ψ(I −1N )Z
√

I −ΛΘT (4.41)

Combining the previous equations we get Ψa =ΨX with X defined as

X = 1N + (I −1N )STC−1(D−HΨ)1N + (I −1N )Z
√

I −ΛΘT . (4.42)

Hence, we search for the EnSRF solution as a combination of ensemble members
as discussed in Evensen [54]. As pointed out by Evensen [9] the forming ofX and
then computing the matrix multiplication Ψa =ΨX is the most efficient algorithm
for computing the analysis when many measurements are used.

The EnSRF scheme has been used in Report 1 to assimilate real production
data and seismic time-lapse data, and in the North Sea field study the EnSRF
method was able to improve the match during the assimilation. An efficient
subspace EnSRF implementation was used, when seismic data were assimilated
(see [9] and Paper B). In this example we observed the necessity of using a ran-
dom orthogonal matrix ΘT in the EnSRF scheme to avoid loss of rank.

4.4 Other EnKF Analysis Schemes

4.4.1 Local Analysis

Local analysis is applied in many data assimilation application to reduce the im-
pact of a finite ensemble size in the EnKF, especially when the model system is
high dimensional and involves a large amount of observations [54, 58, 60, 61].
The local scheme assumes that only observations within a given influence region
from a grid cell will impact the update in this specific grid cell. The local analysis
updates each grid cell independently, and accounts for the observations only in the
influence region surrounding the grid cell.

The local analysis is an approximate scheme and does not solve the original
problem posed. However, the approximation is dependent of the size of the in-
fluence region, and when the region includes all the observations for all the grid
cells, the local scheme solution is equal to the solution from the global scheme.
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An improvement by using a local analysis is dependent on the range size, and
the input of the range parameter will become a tuning problem. Thus, when using
the local analysis it will be important that the size of the region is large enough
to include all observations, which will significantly impact the analysis of the
grid cell, but small enough to suppress spurious correlations between uncorrelated
variables.

The local scheme is given as follows. First construct the matrices involved in
the global scheme, i.e. the innovations D′, the measured ensemble perturbations
S, and the measurement covariance matrix Pεo . For each grid cell the rows from
these ensemble matrices, corresponding to observations that will be used in the
local update, are copied to local matrices and used in the standard EnKF to calcu-
late the local update Ψa

l for grid cell l. The EnKF update at grid cell l, is given
by

Ψa
l =ΨlXl, (4.43)

where Xl is the solution for a local analysis corresponding to grid cell l where
only the observations inside the influence region are used in the analysis.

A combination of a global and a local analysis scheme is investigated in Pa-
pers D and E. The local scheme is used to assimilate seismic data, and in each
grid cell update, the scheme accounts for the seismic observations only in the lo-
cal region surrounding the cell. In reservoir simulation models the dimension of
the model variable and the corresponding covariance matrix is often very large
compared to the space spanned by the ensemble members, and in practical appli-
cations an ensemble size of typically 100 is used. Seismic data introduce a large
number of data points in the assimilation step, and the results show that problems
related to an underestimation of the uncertainty in the low rank covariance matrix
representation of the model variables may occur when few ensemble members are
used during the assimilation.

The advantage of using a local scheme is that the ratio between the dimension
of the model variable and the ensemble size is smaller than for a standard global
EnKF scheme, and this allows for a larger flexibility to obtain different model
solutions, since the scheme will use a different combination of ensemble members
for each grid point. This is also seen in the results in Papers D and E, and the
combined global/local scheme shows an improvement in the characterization of
the reservoir and the uncertainty predictions compared to the global scheme with
the same ensemble size.

4.4.2 An Iterative EnKF Method

An iterative form of the EnKF algorithm is proposed for the case when the poste-
rior pdf of interest may be non-Gaussian and the relation between model variables
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and the predicted data may be highly nonlinear. Lately, different publications have
shown that the standard EnKF may not provide an appropriate characterization of
uncertainty in such problems [62].

The iterative algorithm incorporates some of the main features of EnKF, but
the implementation of iterative EnKF requires far more computationally effort
than the standard EnKF. This is due to the fact that the iterative EnKF algorithm
requires gradients of the objective function, which in most reservoir applications
can only be obtained by the adjoint method.

The motivation of the iterative algorithm was that the EnKF update equations
can be derived as an approximation to the Gauss-Newton method, with an “av-
erage” sensitivity matrix. The iterative scheme combining RML, described in
Section 2.3.3, and the EnKF and can be referred to as an RML/EnKF algorithm.
In Gao and Reynolds [34] a comparison study between the RML/EnKF and the
standard EnKF scheme was performed on a reservoir model, and the methods
obtained similarly results.

4.4.3 Ensemble Particle Filters

An alternative filtering for ensemble data assimilation, called ensemble particle
filter, has been investigated in several articles [63, 64, 65]. The ensemble particle
filter also relies on the assumption that a relatively small ensemble size represents
the uncertainty in a high dimensional model system. The particle filter, more
generally known as a sequential Monte-Carlo method [66], is a fully nonlinear
filter, where the first and second order moments of the error distribution are not
directly used in the calculation. Hence the particle filter has potential to explore
non-Gaussian probability distributions, where linearization of the observational
and dynamical operators are omitted.

When the ensemble particle filter is used in data assimilation problems , where
the non-linear dynamical models contain multimodal properties, this advantage
can be exploited. For more information see the Sequential Monte Carlo Methods
Particle Filtering web-page: www-sigproc.eng.cam.ac.uk/smc/

4.5 EnKF and Large Amount of Data

In simulation of reservoir models, spatial data such as 3D seismic and time-lapse
seismic data may introduce large datasets in the assimilation and we have m�N .
Thus, in reservoir cases, it will be important to have the possibility to use efficient
EnKF schemes which handle such large amount of data. When working with
efficient EnKF schemes, special challenges such as inversion of the m×m matrix
C in Equation (4.14), and potential loss of rank are involved.
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It has been pointed out by Evensen [9] that the EnKF scheme may have prob-
lems in cases where the number of observations is larger than the number of
ensemble members or when the matrix C , defined in Equation (4.14), has poor
conditioning.

Large datasets may introduce numerical singularity in C even when a full rank
error covariance matrix Pεo is used. When C becomes singular it is possible to use
the pseudo inverse C+ of C . The pseudo inverse of the quadratic matrix C with
eigenvalue factorization

C =ZΛZT (4.44)

is given as

C+ =ZΛ+ZT . (4.45)

The matrix Λ+ is diagonal and with p = rank(C) it is defined as

diag(Λ+) = (λ−1
1 , . . . ,λ−1

p ,0, . . . ,0) (4.46)

with eigenvalues λi ≥ λi+1.
In cases with many observations, the computational effort increases signifi-

cantly since an order of O(Nm2) operations are required to form the matrix C
and the eigenvalue decomposition requires O(m3) operations. Hence, an ensem-
ble representation of the error covariance matrix, defined in Equation (4.10), can
be used to reduce the computational cost [54]. As stated by Kepert [67] the use of
an ensemble representation, P eεo for Pεo in some cases may lead to loss of rank in
the ensemble when m >N . The rank problem may occur both using the standard
EnKF analysis scheme with perturbations of observations and using the square
root algorithm.

Evensen [9] showed that the rank problem can be avoided if the observations
are projected onto a subspace LS , spanned by the column vectors of S, defined
in Equation (4.13). Based on this result, an alternative inversion algorithm which
reduces the factorization of the m×m matrix to a factorization of an N ×N ma-
trix was proposed [9]. The algorithm computes the inverse in the N-dimensional
ensemble space rather than the m-dimensional measurement space.

In the following we will first present an alternative EnKF expression and then
we use this interpretation to derive an efficient subspace EnKF algorithm.

4.5.1 An Alternative EnKF Expression

The alternative EnKF expression is based on the singular value decomposition
(SVD) of the measurement of the ensemble perturbations S, and is

S = UΣV T , (4.47)
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with U ∈<m×m,Σ ∈<m×N and V ∈<N×N . The matrix SST can then be written
as

SST = UΣV V TΣTUT = UΣΣTUT , (4.48)

since the eigenvectors in V are orthogonal and, thus, V V T = I . Furthermore, the
columns of U are orthogonal, thus, UUT = I .

We define the rotation of the measurements, d̂ ∈ <m, as

d̂ = UTd, (4.49)

and the rotated measurement operator Ĥ ∈ <m×q as

Ĥ = UTH . (4.50)

The new observation equation will then be given by

d̂ = Ĥψ + ε̂o ε̂o ∼N (0,Pε̂o). (4.51)

Here the rotated measurement errors are defined by ε̂o = UT εo, and the error
covariance matrix is given by Pε̂o = UTPεoU . If we now define the rotated mea-
surements of the ensemble perturbations, Ŝ ∈ <m×N as

Ŝ = ĤΨ′ = UTHΨ′, (4.52)

and the rotated ensemble of innovation vectors, D̂′ ∈ <m×N , as

D̂′ = D̂− ĤΨ = UT (D−HΨ), (4.53)

then the alternative EnKF analysis scheme can be written as

Ψa =Ψ
(

I + ŜT
(

ŜŜT + (N −1)Pε̂o
)−1

D̂′
)

, (4.54)

where the rotation is defined so that ŜŜT = ΣΣT becomes diagonal. Equa-
tion (4.54) can be rewritten as

Ψa =Ψ
(

I + ŜT
(

ΣΣT + (N −1)UTPεoU
)−1

D̂′
)

=Ψ
(

I +STU
(

ΣΣT + (N −1)UTPεoU
)−1

UTD′
)

=Ψ
(

I +ST
(

U (ΣΣT + (N −1)UTPεoU )UT
)−1

D′
)

(4.55)

=Ψ
(

I +ST
(

UΣΣTUT + (N −1)Pεo
)−1

D′
)

=Ψ
(

I +ST
(

SST + (N −1)Pεo
)−1

D′
)

=Ψ
(

I +STC−1D′) ,

and we see that the assimilation of m rotated measurements in Equation (4.55) is
equivalent to the original EnKF scheme in Equation (4.15).
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4.5.2 Efficient Subspace EnKF Algorithm

In this section we present the derivation of the efficient subspace EnKF algorithm.
The motivation for the proposed subspace EnKF algorithm is based on the effi-
cient square root algorithm presented by Evensen [9] and the alternative EnKF
expression. Now assume that S has rank p≤ min(m,N−1). Some of the singular
values in Σ may then be zero. We therefore partition Σ into a submatrix Σp of p
nonzero singular values and several zero matrices as

Σ =
[

Σp 0
0 0

]

, (4.56)

where Σp is a p×p diagonal matrix. The decomposition then becomes

S = UΣV T = UpΣpV
T
p , (4.57)

where Up ∈ <m×p and Vp ∈ <N×p consist of the first p columns of U and V ,
respectively. From the decomposition in Equation (4.57) the matrix SST can be
written as

SST = UpΣpΣT
pU

T
p , (4.58)

where the projection operator Up span the ensemble space LS .
We now define the projection of the measurements, d̂p ∈ <p, as

d̂p = UT
p dp, (4.59)

and the projected measurement operator Ĥp ∈ <p×q as

Ĥp = UT
p H . (4.60)

The new observation equation will then be given by

d̂p = Ĥpψ + ε̂op ε̂op ∼N (0,Pε̂op ). (4.61)

Here the projected measurement errors are defined by ε̂op = U
T
p ε

o
p, and the error

covariance matrix is given by Pε̂op = U
T
p PεoUp.

Define the projected measurements of the ensemble perturbations, Ŝp ∈<p×N

as

Ŝp = ĤpΨ′ = UT
p HΨ′, (4.62)

and the projected ensemble of innovation vectors, D̂
′
p ∈ <p×N , as

D̂
′
p = D̂p− ĤpΨ = UT

p (D−HΨ). (4.63)
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The subspace EnKF analysis scheme can then be written as

Ψa =Ψ
(

I + ŜTp
(

ΣpΣT
p + (N −1)UT

p PεoUp
)−1

D̂
′
p

)

. (4.64)

If we use the ensemble approximation P eε̂o = EE
T/(N − 1) of Pε̂o , the subspace

EnKF analysis scheme can be written as

Ψa =Ψ
(

I + ŜTp
(

ΣpΣT
p + (N −1)UT

p P
e
εoUp

)−1
D̂

′
p

)

(4.65)

=Ψ
(

I + ŜTp
(

ΣpΣT
p + ÊpÊ

T
p

)−1
D̂

′
p

)

, (4.66)

where UT
p P

e
εoUp and Êp = UT

p E are the projection of the measurement error co-
variance matrix P eεo and the projection of the ensemble of measurement perturba-
tions E onto the subspace LS , respectively. This ensures that the measurement
perturbations explain the variance within the ensemble space LS and we avoid the
loss of rank pointed out by Evensen [9] and Kepert [67].

The sub-space pseudo inversion in Equation (4.64) can be computed at a cost
of order O(Nm2), and when a low rank representation, P eεo , is used for the error
covariance matrix the cost of the inversion is of order O(N2m). This is a signifi-
cant saving when m�N .

The interpretation of this subspace EnKF algorithm can be viewed as an assim-
ilation of a set of measurements after they have been projected onto the subspace
LS as defined by the first p singular vectors of S. The subspace EnKF algorithm
does not introduce any approximation if Pεo is diagonal, since the matrix C and
SST will have the same eigenvectors. However, if Pεo is non-diagonal they may
have different eigenvectors and the projection onto LS eliminates the part of C
which is orthogonal to the LS space. The use of a low rank representation of the
measurement error covariance matrix, P eεo , allows us to assimilate very large data
sets at a low cost, and the result will be the same as obtained by using a full rank
Pεo if UT

p P
e
εoUp = U

T
p PεoUp.

To ensure an appropriate representation of the uncertainty of the ensemble,
Ψ, it is important that the rank of the covariance matrix, P eψ , defined by Equa-
tion (4.6), is maintained during the time integration. The rank of the covariance is
maximum equal toN−1, and in reservoir applications we typically haveN = 100.
Paper B shows that the results obtained from the subspace EnKF scheme, when
either a full rank measurement error covariance matrix, Pεo , or a low rank matrix,
P eεo , are used, are fairly consistent with the standard EnKF scheme. The experi-
ments also show that there is no loss of rank in the analyzed ensemble. Further
discussions can be found in Paper B and Evensen [3, 9].





Chapter 5

Generation of Realizations

In this chapter we discuss how to generate Gaussian random realizations with a
specified mean and covariance. In an EnKF technique such simulation methods
can be used to generate the model and measurement perturbations, and the initial
ensemble members.

In geostatistics the variable under study is called the regionalized variable
{ψ (x) : x ∈ Ω ⊆ <nd}, where nd is the dimension of the system. We assume a
second order stationary stochastic process

E(ψ (x)) = µ (5.1)

E(ψ (x)−ψ (x+ r))2 = 2γ(r) ∀x ∈Ω, (5.2)

where both the expected value and the second moment are location independent.
The γ(r) is called the variogram, see e.g. [68], and is defined as

γ(r) = P (0)−P (r). (5.3)

The covariance function P (r) at distance r is given as

P (r) = σ2ρ(r) = Cov(ψ (x),ψ (x+ r)), (5.4)

where σ2 denote the variance and ρ(r) denote the correlation function.
Since it is required that the correlation function ρ(r) is positive definite, a num-

ber of parametric forms are commonly used, such as the exponential correlation
function

ρexp(r) = exp
(

−
r

a

)

, (5.5)

the Gaussian correlation function

ρgauss(r) = exp

(

−
r2

a2

)

, (5.6)
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and the spherical correlation function

ρsphere =
{

1− 3
2
r
a +

1
2
r3

a3 for 0 ≤ r ≤ a
0 for r > a

(5.7)

where a defines the range.
In a history matching process we approach the problem in a probabilistic

frame, since different models of the reservoir could reproduce the same observed
data. Multiple realizations of the reservoir should therefore be generated in order
to assess the uncertainty in reservoir performance. Hence, simulation of initial re-
alizations from the prior distribution is required. The simulation algorithm should
reproduce the variability of the regionalized variable given from the prior model,
and the multiple realizations should be equiprobable. In the following we present
a FFT method, a sequential method and a matrix decomposition method, which
can be used to generate Gaussian realizations.

5.1 Efficient Gaussian Simulation with Fast Fourier
Transform

Let ψz = ψz(x,y) be a continuous field with zero mean, variance equal to one
and a Gaussian correlation. An efficient method for generating a two dimensional
pseudo random fields was presented by Evensen [44], and in the following an
outline of the method is given.

A continuous field ψz(x,y) can be described by its Fourier transform

ψz(x,y) =
∫∞

−∞
ψ̂z(k)eikxdk. (5.8)

Let now nx× ny be the dimension of the grid, and define the wave numbers in x
and y directions as, k = (κl,λp), where l and p are counters. The discrete form of
Equation (5.8) can be given as

ψz(xn,ym) =
∑

l,p

ψ̂z(κl,λp)ei(κlxn+λpym)∆k, (5.9)

where we have xn = n∆x, ym = m∆y,κl = 2πl
nx∆x

, λp =
2πp
ny∆y

and ∆k = ∆κ∆λ =
(2π)2

nxny∆x∆y
. Define the following Gaussian form for the Fourier coefficients

ψ̂z(κl,λp) =
c

∆k
e−(κ2

l +λ
2
p)/ς2

e2πiφl,p . (5.10)
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In Equation (5.10) the variable φl,p ∈ [0,1] denote a uniformly distributed random
number that introduces a random phase shift. By inserting Equation (5.10) into
Equation (5.8) the pseudo random field can be written as

ψz(xn,ym) = ∆k
∑

l,p

c
√
∆k

e−(κ2
l +λ

2
p)/ς2

e2πiφl,pei(κlxn+λpym). (5.11)

Typically the values for c and ς are determined by using a numerical algorithm,
and when these values are found the Equation (5.11) can be used to generate an
ensemble of pseudo random fields. An efficient method for finding the inverse
transform in Equation (5.11) is to use a two dimensional fast Fourier transform
(FFT).

If this method is used to generate realizations in a three dimensional model, we
may need to impose a vertical correlation ρv between two independent realizations
ψzi (x) and ψzi−1 (x), and a following method can be used [54]

ψzi (x) =
√

(1−ρ2
v)ψzi (x)+ρvψzi−1 (x), (5.12)

A back transform of a standarized field ψz to a field ψ with mean, µ, and standard
deviation, σ, can be performed by using the formula

ψ = µ+σψz. (5.13)

A more comprehensive description of the method can be found in Evensen [3].

5.2 Sequential Gaussian Simulation

The sequential Gaussian simulation (SGS) algorithm is based on the kriging equa-
tions [41]. The kriging equations give an estimate of both the mean and the vari-
ance of the regionalized variable at each grid cell, so that the variable can be
represented at each grid cell as a random variable following a Gaussian distribu-
tion. Instead of choosing the mean as the estimate at each grid cell, SGS chooses
a sample from this Gaussian distribution. Kriging is a class of linear estimators,
and the Simple Kriging (SK) is given as

ψ̂SK(x) = µ+
n(x)
∑

i=1

βSK
i [ψ (xi)−µ], (5.14)

where n(x) is the number of data points in local neighborhood used for estimation
of ψ̂SK(x) and βSK

i is the kriging weight. The estimate in Equation (5.14) is
unbiased, since E[ψ (xi)−µ] = 0, and we have E[ψ̂SK(x)] = µ = E[ψ (x)].
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The kriging variance is given by

σ2
SK = P (0)−

n(x)
∑

i=1

βSK
i P (x−xi), (5.15)

where P (x−xi) is the point-to-point covariance between point x and xi.
The kriging weights βSK

i , i = 1, . . . ,n(x), are determined from the following
system of equations

n(x)
∑

j=1

βSK
j P (xi−xj) = P (xi−x) ∀ i = 1, . . . ,n(x) (5.16)

obtained by requiring that Var[ψ̂SK(x)−ψ (x)] is minimal. The basic steps in the
SGS algorithm are:

Algorithm 5.2

1. Generate a random path through the grid cells.

2. Visit the first cell along the path and use the kriging Equations (5.14)
and (5.15) to estimate the mean and the variance for the variable at that
cell based on data values in the local neighbourhood.

3. Sample a value from the corresponding Gaussian distribution and set the
variable value at that cell to that number.

4. Visit each successive cell in the random path and repeat the process, includ-
ing previously simulated cells as data values in the kriging process.

The SGS algorithm uses a random path to avoid artifacts, which may be intro-
duced by moving through the grid in a regular way, and in order to preserve the
correlation structure between the simulated values the previously simulated grid
cells are included as data in the method.

5.3 Simulations via Cholesky Decomposition

The Cholesky method is a Monte Carlo simulation method for generating Gauss-
ian realizations [69]. In the Cholesky method the covariance matrix, P , is written
as the product of a lower-triangular matrix and its transpose:

P = ΓΓT . (5.17)
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Then, if ψzi ∼ N (0,1) is a independent standard normal realization vector , the
model

ψi = µ+Γψzi (5.18)

is a realization from the pdf of interest, i.e

ψi ∼N (µ,P ), (5.19)

since

E[(ψ −µ)(ψ −µ)T ] = ΓE(ψzψTz )ΓT = ΓΓT = P . (5.20)

When the Cholesky decomposition of P has been performed, the generation of
new realizations will be inexpensive. However, the disadvantage of the Cholesky
method is that the dimension of the covariance matrix is equal to the number of
points for which simulated values should be calculated, and the computational
effort of the method increases with the number of points.





Chapter 6

Conditioning to Seismic Data

In a reservoir characterization perspective it will be important to utilize all the
available data to make an improvement of the reservoir model and provide more
reliable predictions of the performance of future production efforts.

Traditionally, in a history matching process reservoir properties have been
conditioned to dynamic production data from wells only. Such data can be water
cut (WCT), gas-oil ratio (GOR) and bottom-hole pressure (BHP). Typically the
well data are recorded at high frequency in time but are of low frequency in space,
and they can be measured with a relatively low uncertainty.

Recently, time-lapse seismic data have been used as an additional data set
in the history matching process. Time-lapse seismic, commonly known as 4D
seismic, is the comparison of an initial 3D seismic survey, called base-line, to
subsequent repeat surveys, called monitor-lines, over the same geographical lo-
cation. The seismic signature of a reservoir is mainly dependent on two primary
elements, the static rock properties of the reservoir such as lithology, cementa-
tion and porosity, and the time varying dynamic properties such as pore pressure
and fluid saturation. The use of 3D seismic data was first introduced in the early
1980’s in the geophysical community, while time-lapse seismic, which involves
the acquisition, processing and interpretation of 3D seismic data, was first intro-
duced in the late 1990’s. To date, in addition to traditional marine surface seismic,
the ability to use Ocean Bottom Seismometer (OBS) data in 4D becomes increas-
ingly important. The data can be obtained from permanent acquisition systems,
and will both have a higher reliability and time frequency.

The 4D data will be of importance in a reservoir-description process, since
they have potential to contain information about pressure changes and fluid move-
ment in the reservoir due to depletion or injection. Thus, by monitoring fluid
fronts and discriminating between pressure and fluid saturation changes over time,
we may be enable to identify water encroachment, gas-cap formations and by-
passed oil reserves. Compared to the spatial variations in model properties the
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changes in seismic properties due to time lapse effects will often be small, and
it is possible to use this advantage to construct more efficiently repeated seismic
modelling [70].

The uncertainties of the time-lapse seismic measurements are normally much
larger than for the well data. In the space domain seismic data have a high lateral
resolution, and a medium to low vertical resolution. Contrary to the well data, the
seismic data have a low frequency in time.

Time-lapse seismic has until now mainly served as a monitoring tool to map
changes in reservoir pressure and saturation. Recently, several publications have
discussed the problem of using real 4D seismic data in history matching of reser-
voir simulation models, to improve the characterization of permeability and poros-
ity heterogeneities; see for example [71, 72, 73, 74, 75, 76]. However, most of the
publications incorporate the 4D seismic qualitatively [74]. Lately, different pub-
lications have discussed how time-lapse seismic data can be incorporated in a
computer-aided history matching process in a quantitative way [73, 75, 77], and
results from history matching cases based on this approach on real field data, can
be found in Aanonsen et al. [78] and Haverl et al. [79].

A challenging issue when using seismic data is how to compare the measured
data to the model data. In principle, seismic data may be included in a number
of different ways when conditioning reservoir models. One possibility is to use
seismic amplitudes, another is to use inverted and/or processed data, and finally
pressures and saturations derived from a rock physics model can be used. The
uncertainty, amount of data, and information content are very different and re-
lated to the way seismic data are incorporated. Furthermore the efficiency of the
conditioning process will also vary.

Measuring the mismatch between the model and data in a consistent way will
always be required when conditioning a model to data [76]. To make the model
data and the measured data comparable, both a seismic forward model and a seis-
mic inversion process are needed. An illustration of the different seismic mis-
match levels is shown in Figure 6.1. To incorporate measured seismic amplitude
data seismic modelling is required, so that synthetic seismograms, adherent pre-
and post stack seismic sections, and seismic attributes such as AVO (angle versus
offset) parameters can be produced. Input to seismic modelling is a static descrip-
tion of the overburden and reservoir, and for dynamic modelling, fluid saturation
and pressure. The static reservoir data may be taken from a geological model of
the reservoir or from a reservoir simulation model, while the dynamic data have
to be achieved from a reservoir simulation model.

A mismatch in the elastic properties will involve a seismic inversion and a
rock physics forward model. A seismic inversion process converts measured seis-
mic amplitude data, an interface property, to the elastic parameter of the layers,
see [80]. Similarly those elastic quantities, such as acoustic impedance and Pois-
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Figure 6.1: Forward and inverse modelling. The left column illustrates the cou-
pled modelling tool, while the right column illustrate various levels of data pro-
cessing/inversion. In a model updating process or when conditioning a model to
time-lapse data, the conditioning may be introduced at different levels correspond-
ing to where the mismatch between simulated and measured data is evaluated.

son’s ratio can be constructed by a rock physics model, from dynamic data (pres-
sures and saturations) obtained by a reservoir simulator [76, 78, 79].

Inversion of the elastic properties to saturation and pressure is another possi-
bility for comparing seismic observations to the simulated data. In the literature
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several publications have discussed this conversion; see for example [81, 82, 83].
To obtain consistency between the matched data a method for coupling the

simulation grid and the seismic grid, which will be independent of the seismic
mismatch level, is needed. Seismic data have a much higher areal resolution than
the simulation model, while the opposite is the case for the vertical resolution. In
addition, there are well log data and the geological model, all with different de-
grees of spatial resolution. When coupling the models, this effect has to be taken
into account, and in a history matching process it will be important to incorporate
the various types of data in a consistent way. This includes downscaling and up-
scaling of uncertainties and properties, as well as data correlations [84]. Behrens
et al. [11] proposed a downscaling algorithm based on the sequential Gaussian
simulation with Block kriging (SGSBK), and a simulation study of this method
can be found in Report 2.

6.1 Rock Physics Model

A rock physics model is needed to link the elastic parameters which govern wave
propagation, and the rock and fluid properties which govern fluid flow. The rock
physics model calculates the elastic properties ( e.g. acoustic impedance and Pois-
son’s ratio) from seismic velocities and densities, based on the reservoir state vari-
ables (saturations and pressures). The relationship to perform forward modelling
from the reservoir to the elastic domain, is related on principles from a general
theory, individually applied for one reservoir field to another.

The rock physics model is often composed of empirical laws calibrated to
laboratory measurements and analytical formulas. A comprehensive overview of
rock physics can be found in Mavko et al. [6].

In many applications an important part of the rock physics model is
Gassmann’s equation [5], where the effective bulk modulus of a fluid-saturated
rock, K, is connected to the bulk modulus of the mixture of the pore fluids, Kmix,
the dry rock frame, Kdry, and the matrix mineral, Km:

K =Kdry +

(

1− Kdry
Km

)2

φ
Kmix

+ (1−φ)
Km

− Kdry
(Km)2

, (6.1)

where φ is the porosity. Gassmann’s equation assumes that both the solid and fluid
phase are homogeneous and isotropic, and that the frequencies of the seismic wave
are so low that the fluid pressures have time to equilibrate throughout the pore
space.

Further, according to the assumption that the fluids are not too viscous, the
effective shear modulus can be set equal to the shear modulus of the dry rock
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frame

G = Gdry. (6.2)

The effective density ρ may be defined as a volume average of the mineral density
and the fluid density

ρ = φ(Swρw +Sgρg +Soρo)+ (1−φ)ρm, (6.3)

where So,Sg,Sw are respectively the oil, gas and water saturations. If K, G and
ρ are obtained from the Equations (6.1)-(6.3), the isotropic compressional and
shear wave velocities can be computed from

Vp =

√

K + (4G/3)
ρ

(6.4)

Vs =

√

G

ρ
, (6.5)

and the compressional and shear acoustic impedance are given as

Ip = ρVp (6.6)

Is = ρVs. (6.7)

The Poisson’s ratio, ν, may be calculated from

ν =
γ−2
2γ−2

(6.8)

where γ is given as

γ =
(

Vp

Vs

)2

. (6.9)

The bulk modulus of the pore fluid, Kmix, can be obtained by using Wood’s
law [6]

1
Kmix

=
So
Ko

+
Sw
Kw

+
Sg

Kg
, (6.10)

where the bulk moduli of the individual fluids, (Ko,Kw,Kg), are derived from the
Batzle & Wang equations [85].
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The dry rock bulk modulus, Kdry, and shear modulus, Gdry, are assumed to
be given from Equations (6.4) and (6.5) using dry rock density, ρdry, and velocity
values, (Vp,dry,Vs,dry). The dry rock wave velocities and densities can be esti-
mated from empirical functions of effective pressure and porosity, for instance the
critical porosity model or from Krief’s relation [6] or laboratory core measure-
ments.

In the petroleum industry Gassmann’s equation is widely used to calculate
fluid saturation effects. However, in many applications the properties of the reser-
voir rocks will not be compatible with Gassmann, i.e. there may be several fluids
forming a non-homogeneous mixture, there may be more than one solid phase,
the frequencies of the seismic waves may be too high, and the medium may be
anisotropic due to the alignment of flat pores. In carbonate rocks for instance, the
main contribution to the compressibility is coming from micro-fractures or cracks
since they are the most compliant part of the pore space. The distribution and form
of the pore spaces and the way in which the fluid phases are mixed are decisive for
the effective elastic properties of the medium and, hence, for the seismic response.

Alternative methods not limited to the Gassmann assumptions are for example:
the self-consistent method (SCA), the differential effective medium theory (DEM)
(e.g. Kuster-Toksöz model), see Johansen et al. [86] for further discussion, and the
so called T-matrix approach by Jakobsen et al. [8]. Common for the SCA, DEM
and T-matrix approach, is that a more detailed description of the microstructure of
the medium is required. In such approaches the shape of the pore space is typically
limited to ellipsoids which are defined by their aspect ratios (ratio between the
short and long axis) and their volume fractions (concentrations). Although pores
usually are not ellipsoids, it is assumed that any structure may be approximated by
a suitable blend of different aspect ratios. Cracks may be modelled as cavities with
a very small aspect ratio. Information about the micro-structure of the medium is
rarely known. Thus, in order to compute the fluid substitution effect, one is forced
to calibrate the model so that a given set of aspect ratios and volume fractions
match the observed data.

6.2 Seismic Modelling

Seismic reflection surveying is a widely used geophysical technique, and has
gained popularity because raw data can be processed to create a seismic section
which is an image of the structure of the subsurface. To achieve such images
controlled sources of seismic energy are deployed to generate elastic waves in the
underground. These energy waves are reflected, and refracted at the layer bound-
aries, or diffracted by the heterogeneities in the sub-surface. Hence, large datasets
are created that give information on the geological structure.
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The details in the seismic sections of the geological structure are on a scale
from tens of meteres to the whole lithosphere. A seismic section is in a way
similar to a depth section of the geology, but they are also fundamentally different
from each other. Raw data generally have a complex appearance and suitable
processing techniques are necessary to recover the signature of the seismic signal.
In order to interpret seismic sections reliably, we need to understand seismic wave
phenomena, acquisition footprints and processing artefacts.

Seismic modelling involves the calculation of synthetic seismic traces [87]. A
synthetic seismic trace represents the combined reflection response of the layered
ground (i.e. the output for a spike input) and the recording system to a seismic
pulse. Consider for example a normal incident compressional ray on an interface
separating two media with different density and velocity. Incident energy will be
partitioned according to the contrast in the acoustic impedance at the interface,
i.e. partly reflected to the surface and partly transmitted.

The normal incidence reflection coefficient, r, is given by

r =
ρ2Vp2 −ρ1Vp1

ρ2Vp2 +ρ1Vp1

=
Ip2 −Ip1

Ip2 +Ip1

(6.11)

where ρ1,Vp1 ,Ip1 and ρ2,Vp2 ,Ip2 are the density, P-wave velocity and acoustic
impedance of the first and second layer, respectively. The reflection coefficient
defined in Equation (6.11) takes values between −1 ≤ r ≤ +1 , where a negative
value of r implies a phase change of π in the reflected ray. Notice that the velocity
changes as a function of depth, since the physical properties may be different for
the individual layers. The velocity may also vary in the horizontal direction, due
to lithological variation within the individual layers.

Figure 6.2 shows the correspondence between the geological sections, the al-
ternation in the acoustic impedance and the reflection coefficient as a function of
the depth. The reflected pulses are received by the detector at the surface, and
the size of the amplitude of the signal is determined by the travelling distance and
the reflection coefficient at the boundary of the layers. The arrival times of the
pulses are given by the depths to the layer boundaries and the propagation veloc-
ities between them. Hence, the sum of the individual reflections are enclosed in
the synthetic seismogram in their correct travel-time relationship.

A synthetic seismogram y(t) may be considered in its simplest form as the as-
sumed source function s(t) convolved with a reflectivity function r(t) representing
the contrasts in acoustic impedance in the layered model

y(t) = s(t) ?r(t). (6.12)

This process is also called a 1D convolution. However, in general the geological
structure in both overburden and reservoir may be more complex. Hence, an ac-
curate modelling is required, and typically finite-difference modelling (FDM) or
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Figure 6.2: Output of seismic traces from different geological sections.

ray-tracing methods are applied. FDM is a standard seismic modelling technique
that models the complete elastic wave field on a grid of depth points by using the
elastodynamic wave equation [88]. Ray-tracing methods are based on the con-
cept that seismic energy of infinitely high frequency follows a path determined by
the ray-tracing equations. These equations explain physically how energy contin-
ues in the same direction up to the point where the rays are refracted by velocity
variations [89].

To perform a seismic modelling of complex models the so called Simulated
Prestack Local Imaging (SimPLI) method may be used [7]. The method is based
on theories related to seismic resolution and seismic imaging, and is a method
for modelling the seismic response of oil reservoirs. The results are prestack mi-
grated images, in time or depth, simulated directly from angle dependent reflec-
tivity grids, without needing prestack synthetic traces. The process is fast, and is
an extension of 1D convolution techniques in time-domain, but with 2D/3D con-
volution directly in space-domain. The method is able to predict 2D/3D effects
of acquisition, resolution and illumination, where these effects take both the over-
burden properties and the lateral and vertical survey characteristics into account.
A coupling between the reservoir simulator and this seismic modelling tool is
developed in Paper C.

6.3 Assimilation of Seismic Data

Assimilation of seismic data require that a corresponding error covariance matrix
is established. The error covariance matrix includes the noise level in the seismic
data and may also include a correlation structure in the measurement error. In
synthetic cases the error covariance matrix used in the EnKF scheme should be
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Figure 6.3: Illustration of a coupling process between a reservoir simulation
model, with grid size nx = 40 and nz = 10, and a seismic forward model. The
reservoir has a gas injector in the gas cap, located in grid cell (1,1), an oil pro-
ducer, located in grid cell (22,1), penetrating three layers, and an aquifer at the
bottom. The figure shows the initial oil saturation and at two simulation time-
steps. At each time-step the saturation, pressure and porosity at each grid cell are
used as an input to the seismic forward model, and a synthetic seismic response
is obtained. Further a difference between the seismic response at time step 2 and
time step 1 is computed, called 4D data. The 4D seismic response indicates a
movement of both the gas-oil and water-oil contact.

equal to the error covariance matrix used in the sampling of the perturbed noise.
For real field reservoirs the error covariance matrix should be estimated from the
observed seismic data and then used in the EnKF scheme. The variance can be
defined as an absolute value or as a percentage of the seismic signal and may vary
from grid cell to grid cell. Commonly the correlation is given as exponential,
gaussian or spherical with a given range (see Equations (5.5), (5.6) and (5.7)).

The results from the EnKF runs, where seismic data are used, show that there
is a close relationship between the improvement of the characterization and the
error level used for the seismic data. However, as seen in Paper A, a positive
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impact could be found regardless of the high noise level in the real field time-
lapse seismic data. A proper representation of the seismic measurement error
covariance matrix may also be important to achieve satisfactory EnKF results.

When using 3D seismic and time-lapse seismic in a data assimilation process
a coupling method for combined modelling of reservoir fluid flow and seismic
properties has to be applied. The method must control the seismic forward model
and the reservoir simulator, as well as the data flow between those two. A normal
simulator run will then in addition generate simulated seismic data at the time
where data from seismic surveys are available. Figure 6.3 illustrates the coupling
process, where the reservoir simulator is coupled to a seismic modelling tool.

In this project we have developed different couplings to rock physics mod-
els so that elastic parameters like acoustic impedance and Poisson’s ratio can be
assimilated. The rock physics models used in the papers are either based on a
poro elastic model (e.g. the Gassmann equation [5]), an inclusion based model
(e.g. the Kuster-Toksöz method [6]), or the T-matrix approach [8]. In Paper C we
have also developed a coupling to a fast seismic modelling tool which simulates
prestack depth migrated sections such that seismic waveform data can be assim-
ilated. The results in this work show that incorporating both production data and
seismic data have a positive impact on the reservoir evaluation. However, the use
of an incorrect rock physics model, as may be the case in Report 1, shows that
large modifications in the model variables are obtained. Such large updates can
lead to model instabilities and make the ensemble corrupt. The seismic dataset
may contain outliers, and we have implemented a filter to ensure that such prob-
lematic data are handled in a proper way. A criterion is used where the distance
between the observed and simulated data is compared with the sum of the mea-
surement and the predicted standard deviations. If the distance is too large the
measurement standard deviations for the outliers are increased and the influence
of these data are decreased in the update.

In an EnKF method an efficient coupling between the reservoir simulator, the
seismic forward simulator and the data assimilation will be of importance, since
normally a size of 100 ensemble members are used in the EnKF analysis. Real
field reservoir models typically include a large number of grid cells and the for-
ward simulation of both the fluid flow model and the seismic model then becomes
very time consuming. Hence, to reduce the computational time we have devel-
oped a parallel implementation of the system so that the fluid flow simulation and
the forward simulation of the seismic data are performed in parallel for all the
members. This implementation has been used in Paper A and Report 1, where
we have performed an update of two different real field reservoir models from the
North Sea.

Incorporating time-lapse seismic data in sequential assimilation methods are
complicated since such data are time difference data dependent on the model state
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of the reservoir at two different time steps. However, time-lapse seismic data can
be assimilated properly in the EnKF when an EnKS term is included as discussed
in Section 4.2. This formulation is based on the general sequential assimilation
method presented in Section 3.2, where data related to more than one time instant
are assimilated. Notice that the filter solution of the parameters in the reservoir
model is equal to the smoother solution. Hence, to reduce the computational time,
only the smoother solution of the dynamic variables has to be calculated.

In reservoir applications both 3D seismic and time-lapse seismic data may
introduce a large amount of data in the assimilation. In all the papers except from
Paper C, the size of the seismic cube is similar to the number of grid cells in the
reservoir simulation model. Assimilation of seismic waveform data, as performed
in Paper C, introduced even more data in the update. Thus, to assimilate such
large datasets the use of efficient EnKF schemes are required. In Section 4.5
and Paper B this problem is discussed and an efficient global EnKF scheme is
presented.

Incorporation of large seismic datasets may introduce problems related to an
underestimation of the uncertainty of the model variables when few ensemble
members are used in the update. Thus, an assimilation of seismic data with a local
analysis scheme has been investigated in Papers D and E. Here we assume that
only seismic data within a certain distance from a state variable will impact the
analysis of this state variable. Promising results of the reservoir charachterization
and the uncertainty estimation are obtained when the combined global and local
scheme is applied. The local analysis can be implemented in parallel, and each
local update will involve relatively small matrices in the assimilation, so that the
method inverts many small matrices instead of one large. Hence, with the local
scheme, large seismic datasets can be assimilated at a low computational effort.





Chapter 7

Conclusions and Further Work

We have presented a method based on the ensemble Kalman filter (EnKF) for
continuous model updating with respect to the combination of production data,
3D seismic data and time-lapse seismic data. The method has been implemented
and applied to synthetic models and real field cases from the North Sea. In this
project a coupled reservoir-seismic model is developed for simulation of produc-
tion data as well as different kinds of seismic data: Inverted data (acoustic imped-
ance and Poisson’s ratio) and prestack depth migrated sections (seismic waveform
data). The model system consists of a commercial reservoir simulator coupled
to existing rock physics and seismic modelling software. In the estimation both
static parameters (permeability, porosity) and dynamic variables (pressures and
saturations) are updated by the EnKF method. Furthermore, we have updated a
lithology parameter (clay ratio) which is linked to a rock physics model, and the
fracture density which is updated in a synthetic fractured reservoir. In reservoir
applications seismic data may introduce a large amount of data in the assimilation
schemes, and the computational time becomes expensive. In this work efficient
EnKF schemes are used to handle such large datasets, where challenging aspects
such as the inversion of a large covariance matrix and potential loss of rank are
considered.

Time-lapse seismic data may be difficult to assimilate since they are time dif-
ference data, i.e. data which are related to the model variable at two time in-
stances. Here we have presented a general sequential Bayesian formulation which
incorporates time difference data, and we show that the posterior pdf includes both
a filter and a smoother solution. Further, we show that when time difference data
are used in the EnKF, a combination of the ensemble Kalman filter and the ensem-
ble Kalman smoother has to be applied. However, the method is still completely
recursive, with little additional cost compared to the standard EnKF.

An underestimation of the uncertainty of the model variables may become a
problem when few ensemble members and a large amount of data are used during
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the assimilation. Thus, to improve the reservoir model updating we have proposed
a methodology based on a combination of a global and a local analysis scheme.
In this context, the global scheme assimilates the production data, while the local
scheme assimilates the seismic data. The local scheme assumes that only seismic
data within a given range from a model variable will influence on the analysis of
this particular model variable. By solving the global and the local schemes in a
sequential process, we obtain the global analysis ensemble conditioned to both
production and seismic data.

In the examined reservoir cases the developed EnKF provides satisfactory
characterization of the reservoir and history matching results. Furthermore, a
proper representation and prediction of uncertainty in the reservoir simulation
models are obtained.

Promising results have been achieved and further improvements are suggested.
Especially the effect of including seismic data at different mismatch levels, see
Figure 6.1, when conditioning reservoir models should be further investigated.
The quantification of the uncertainties from the acquisition stage to the final
processed seismic data will then become important.

In a history matching process it will be important to incorporate the various
types of seismic data in a consistent way. That is, how to assimilate data, which
are given on a wide range of scale; from well log data, via geological models to
reservoir models and seismic data. In future work improved methods for resolving
the scale problem, which includes upscaling and downscaling of reservoir proper-
ties and uncertainties, should be developed. In Report 2 a simulation study of one
specific downscaling algorithm (SGSBK) was performed, and good results were
obtained. However, more extensive research on different upscaling/downscaling
algorithms is required on real field seismic data. The EnKF might be further de-
veloped with a coupling to an upscaling/downscaling interface so that measured
and simulated seismic data, represented on different scales, can be assimilated in
a proper way.

In Papers D and E we show that an improvement of the reservoir characteriza-
tion can be obtained by introducing an uncertainty connected to the rock physics
model, and in this study lithology was updated as an additional static parame-
ter to permeability and porosity. Possibilities of updating uncertain parameters
in rock physics and seismic modelling should be further investigated. This issue
may become important, when the mismatch between the simulated and measured
seismic data is big. As seen in Report 1, such a large mismatch may cause large
modifications of the reservoir parameters in the data assimilation. An ability to
perform an adjustment of the rock physics and seismic modelling parameters may
then prevent undesirable updates in the EnKF analysis scheme.

An underestimation of the uncertainty of the model variables is of concern
when large amount of data and few ensemble members are applied in the EnKF.
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Regarding this issue, the combined global and local scheme proposed in Papers D
and E gave promising results, but the method should be examined on real field
cases before final conclusions are drawn. A potential disadvantage of the local
scheme is that non-physical modes may occur in the analysis fields, because the
updates are performed independently in each local region. Especially when obser-
vations with a fairly high white noise (typically real field seismic) are assimilated.
It is then required to use a large influence region in the local update in order to
preserve the smoothness of the analysis fields.

In past work on ensemble Kalman filters [63] it was found that in order to
compensate for the tendency of a small ensemble to underestimate uncertainty,
it may be suitable to inflate the forecast error covariance before each analysis
step. The standard variance inflation approach is to multiply the forecast error
covariance by a constant factor slightly larger than one. The variance inflation
approach is not used in our experiments, and in further work we should investigate
the improvement of inflating the covariance when assimilating seismic data.

A proper treatment of non-Gaussian and multi-modal facies distributions in
the EnKF is an unresolved issue. This is a difficult task since then the underlying
pdf for the facies variables can not be described properly by the mean and the co-
variance which is used in the EnKF analysis scheme. In such cases, typically the
predicted measurements will also be multimodal. In particular the pluri-Gaussian
and truncated Gaussian methods are promising approaches for handling the prob-
lem. Liu [90] showed, by providing good results, that, if underlying Gaussian
variables can be used to define the facies distribution, then the Gaussian variables
could be updated instead.

Estimation of structural parameters is another issue to explore. This is also
a difficult task because the EnKF analysis steps combine the ensemble members,
and this requires that all the members of the ensemble are using the same simula-
tion grid.

Additional model parameters such as initial fluid contacts, fault transmissivity
multipliers and vertical transmissivity multipliers may also be estimated in future
EnKF applications, and Evensen [3] has shown that an update of such parameters
may have a positive impact on the results in real field cases.
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Summary 
 
A method based on the ensemble Kalman filter (EnKF) for continuous model updating with respect to the 
combination of production data and 4D seismic data is presented. When the seismic data are given as a 
difference between two surveys, a combination of the ensemble Kalman filter and the ensemble 
Kalman smoother has to be applied. Also, special care has to be taken because of the large amount of data 
assimilated. Still, the method is completely recursive, with little additional cost compared to the traditional 
EnKF. The model system consists of a commercial reservoir simulator coupled to a rock physics 
and seismic modelling software. Both static variables (porosity, permeability, rock physic parameters, etc.) 
and dynamic variables (saturations and pressures) may be updated continuously with time based on the 
information contained in the assimilated measurements. The method is applied to a synthetic model and a 
real field case from the North Sea. In both cases, the 4D seismic data are different variations of inverted 
seismic. For the synthetic case, it is shown that the introduction of seismic data gives a much better estimate 
of reservoir permeability. For the field case, the introduction of seismic data gives a very different 
permeability field than using only production data, while retaining the production match. 
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Abstract

An overview of the ensemble Kalman filter technique for continuous model updating with
respect to time difference data i.e, data related to a model state at different times, is pre-
sented. The method is a Monte Carlo type sequential Bayesian inversion, and provides
an approximate solution to the combined state and parameter estimation problem. The
use of time difference data involves a combination of the ensemble Kalman filter and the
ensemble Kalman smoother, and the result is a sequential simulation from the a posteriori
distribution. In reservoir application time lapse seismic data may introduce a large amount
of data in the assimilation schemes. Special challenges are involved concerning rank issues
and inversion of a large covariance matrix, and a subspace EnKF algorithm, based on the
sampling strategy used in the existing efficient square root scheme, is proposed. A compar-
ison between the traditional and the subspace EnKF scheme has been performed, where
both a diagonal and a correlated measurement error covariance matrix has been used. The
method is applied to a 3D synthetic reservoir model assimilating production and seismic
data, where the model consist of a rock physics modelling software coupled to a reservoir
simulator. In the estimation both dynamic variables (pressures and saturations) and sta-
tic variables (permeability, porosity) are updated based on the information contained in
the assimilated measurements. The synthetic case shows that the combined assimilation
of production data, 3D seismic data and time difference seismic data is performed in a
statistical consistent manner and have a positive impact in the EnKF update.

1 Introduction

In this paper we focus on a data assimilation method based on the ensemble Kalman
filter (EnKF) for estimation of oil reservoir parameters and state variables given the 3D
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seismic data, the time difference seismic data and the production history data. The EnKF
method was introduced by Evensen (1994) for updating non-linear ocean models, and it has
attained popularity in reservoir history matching because of it’s relatively simple conceptual
formulation. Several publications have discussed the use of EnKF with oil reservoir models
such as Nævdal et al. (2002a,b, 2004), Gu and Oliver (2004), Gao and Reynolds (2005), Liu
and Oliver (2005), Wen and Chen (2005) and Skjervheim et al. (2005), and most of them
have shown promising results. This paper is based on the work performed by Skjervheim
et al. (2005), and here we present in more details the theory when a large amount of time
difference data are incorporated in the EnKF.

Data assimilation in reservoir simulation models can be applied to a combined parameter
and state estimation problem, where both static variables (permeability, porosity, etc.) and
dynamic variables (pressures and saturations) may be estimated. The estimation problem
can be described in a Bayesian inversion framework, and a general introduction is presented
by Evensen (2005). The Bayesian framework provides a methodology to incorporate a prior
and a likelihood model, where the ultimate solution of the inverse problem is the posterior
probability density function which is uniquely defined by the prior and the likelihood.

The EnKF method is a Monte Carlo type sequential Bayesian inversion, and provides an
approximate solution to the combined parameter and state estimation problem. The result
is an ensemble of solutions approximating the posterior probability density function for the
model input parameters, state variables and other output data conditioned to measured,
dynamic data.

To quantify the uncertainty in the reservoir models it is important to utilize all available
measurements, and the motivation for the presented work is to perform a continuously
reservoir model update by assimilating both production data, 3D seismic data and time
difference seismic data in a statistical consistent manner using an ensemble Kalman filter
method, where time difference seismic is defined as a difference between two 3D seismic
surveys. Such time difference data may for instant be the result of a 4D inversion where
the seismic difference between two surveys are inverted to differences in elastic parameters.
Elastic parameters for the individual surveys may then not be available.

When using time difference data the observations at a particular time depend on the model
state at more than one time instant. In the Bayesian formulation of the data assimilation
the posterior distribution of the combined parameter and state estimation problem then
include both a filter and a smoother solution, and a combination of the ensemble Kalman
filter and ensemble Kalman smoother has to be applied for updating a reservoir simulation
model.

3D seismic and time difference seismic may introduce a large amount of data in the assim-
ilation, and the paper is concerned with the use of efficient EnKF algorithms which can
handle such a large amount of data, where special challenges, such as potential loss of rank
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and the inversion of a large covariance matrix are involved. Evensen (2004) proved that the
rank problem can be avoided by proper sampling of measurement perturbations, and an
efficient square root algorithm was presented. In this paper we present a subspace EnKF
algorithm based on the sampling strategy given by Evensen with the same efficiency and
approximations as the efficient square root algorithm.

The combined state and parameter estimation problem is described in a Bayesian frame-
work in the following section. In Section 3 we derive a Bayesian formulation which incorpo-
rate time difference data, and we show that the posterior distribution include both a filter
and a smoother solution. In Section 4 we use time difference data and present a sampling
strategy for the posterior distribution assuming Gaussian statistics and linear dynamics,
while in Section 5 we utilize time difference data and a nonlinear evolution model to present
the ensemble Kalman filter sampling scheme.

In Section 6 we present the derivation of the subspace EnKF scheme. Finally, some results
when using a large amount of time difference data is presented in Section 7. Here we have
used a synthetic 3D reservoir model involving production data, seismic 3D data and seismic
difference data. Comparison between the traditional and the subspace EnKF algorithm
using different combinations of analysis schemes and measurement error covariance matrix
representations is then discussed.

2 Bayesian framework

To improve forecasts the data assimilation methods incorporate observations into a dy-
namical model, where the state space model is in principle a hidden Markov chain with a
finite set of states. In the model each of the hidden states is associated with a probability
distribution, and transitions among the states are governed by a set of probabilities called
transition probabilities. The probabilistic framework is necessary to quantify the uncer-
tainty, and in this article we have used a sequential data assimilation method based on a
Bayesian formalism, introduced by van Leeuwen and Evensen (1996) and Evensen and van
Leeuwen (2000).

The sequential data assimilation method estimate the state and the parameters of the
system sequentially by propagating information only forward in time using the Bayesian
probability theory. In a Bayesian formalism the stochastic model consists of a prior model
for the model state variables u and for the model parameters α, and a likelihood function
model for the available observations d. The model state variables termed u=u(x, t) repre-
sent an unknown model state in space and time, and α(x) represent a set of poorly known
parameters of the model, which are assumed to be constant in time.

3



Let now ψ(x, t) denote the combination of the state vector and the parameters, i.e.,

ψ(x, t) = (u(x, t), α(x))T . (1)

The joint prior probability density function (pdf) for the model state and the parameters
is given by g(ψ). The observations, d, are also treated as stochastic variables, and the
likelihood model for the observations is represented by the distribution g(d|ψ).

The posterior pdf of interest is g(ψ|d), i.e., the stochastic model for ψ given the available
observations d, and from Bayesian theory, e.g Tarantola (2005), it follows that the posterior
pdf of this combined state and parameter estimation problem can be written as

g(ψ|d) ∝ g(d|ψ)g(ψ). (2)

Let now ψl = ψ(x, tl) ∈ ℜq and dl ∈ ℜml represent respectively the model variables and
the observations at time tl, and assume that we want to estimate ψ at a discrete set of
times, t0, t1, . . . , tl, given observations at the same times (except at t0) d1, d2, . . . , dl.

In the following we denote the sequence {ul, . . . , u1, u0, α} by ψl:0. It was shown in Evensen
and van Leeuwen (2000) that a general smoother and filter could be derived from the
Bayesian formalism, and for the time interval t ∈ [t0, tl] the general smoother in Eq. (2)
can now be expressed by

g(ψl:0|dl:1) ∝ g(dl:1|ψl:0)g(ψl:0), (3)

where the prior probability function, g(ψl:0), can be represented by

g(ψl:0) = g(ψl|ψl−1:0)g(ψl−1:0). (4)

The likelihood distribution of the data can be written as

g(dl:1|ψl:0) = g(dl|ψl:0) . . . g(d1|ψl:0)

= g(dl|ψl:0)g(dl−1|ψl−1:0) . . . g(d1|ψ1:0), (5)

where we assume independence between the data available at different times, and that the
data at a given time are independent on states at future times. The smoother defined by
Eq. (3) is then represented by

g(ψl:0|dl:1) ∝ g(dl|ψl:0)g(dl−1:1|ψl−1:0)g(ψl|ψl−1:0)g(ψl−1:0)

∝ g(dl|ψl:0)g(ψl|ψl−1:0)g(ψl−1:0|dl−1:1). (6)

Generally it is common to assume that the model evolution ψl+1 is a first-order Markov
process, where ψl+1 depends only on ψl but not on previous ones ψl−1:0. Similarly, the
methodology normally assume that the observations dl depend only on the model variables
at that time, ψl, according to Figure 1. From Figure 1 and Eq. (6) the smoother can now
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ψ0 → ψ1 → · · · → ψl → ψl+1 → · · ·
↓ ↓ ↓
d1 dl dl+1

Figure 1: Data assimilation scheme where dl depend only on ψl.

be written as

g(ψl:0|dl:1) ∝ g(dl|ψl)g(ψl|ψl−1)g(ψl−1:0|dl−1:1). (7)

Eqs. (6) and (7) are both recursive formulas, and thus the solution may be calculated
sequentially and forward in time. The forecast density in the middle of the expressions
corresponds to integration of the solution forward in time from tl−1 to tl, and the multi-
plication with the last two probability densities introduce the prior distribution at time tl.
From now on, we use the following notation

∫

g(∗)dψl:0 =

∫

· · ·

∫

g(∗)dψldψl−1 · · ·dψ0. (8)

The filter solution for Eqs. (6) and (7) can be found by integrating over the solutions ψl−1:0,
and for Eq. (7) we obtain

g(ψl|dl:1) ∝

∫

g(dl|ψl)g(ψl|ψl−1)g(ψl−1:0|dl−1:1) dψl−1:0

∝ g(dl|ψl)

∫

g(ψl|ψl−1)

[∫

g(ψl−1:0|dl−1:1) dψl−2:0

]

dψl−1

∝ g(dl|ψl)

∫

g(ψl|ψl−1)g(ψl−1|dl−1:1) dψl−1

∝ g(dl|ψl)g(ψl|dl−1:1), (9)

where the forecast step, which compute the current prior for ψl, is defined by

g(ψl|dl−1:1) =

∫

g(ψl|ψl−1)g(ψl−1|dl−1:1) dψl−1. (10)

This is the framework that has been outlined by Evensen and van Leeuwen (2000).

3 Bayesian framework using time difference data

In the smoother (7) and filter (9) equations from Figure 1, we assumed that the data at
a specific time depend only on the model variables at that time. In this section we will

5



ψk ψk
ψ0 → ψ1 · · · → ψk → ψk+1 · · · → ψl → ψl+1 → · · ·

↓ ↓ ↓ ↓ ↓
d1 dk dk+1 dl dl+1

︷︸︸︷

dll
dlk

Figure 2: Data assimilation scheme where dl depend both on ψl and ψk.

investigate the update procedure for the smoother and filter solutions when data dl =
[dll, dlk]

T at a particular time tl depend both on ψl and ψk, where tk < tl. The likelihood
function is then represented by g(dl|ψl, ψk). From now on dll denote an observation that
depend only on ψl, and dlk denote an observation that depend both on ψl and ψk. I our
model we let dlk be the time difference observation between ψl and ψk. We still assume
a Markov process and Figure 2 introduces the model, where the updating procedure is as
follows:

1. For the time interval ti ∈ (t0, tk] the data, di = [dii], depend only on ψi.

2. For the time interval ti ∈ (tk, tl) the update is based on the data, di = [dii]. Here ψk
will be included in the update procedure as a smoother update, because at time tl
the observation dl will include time difference data between ψl and ψk.

3. When the time is equal tl the update based on the data, dl = [dll, dlk]
T , depend on

ψl and ψk.

4. When ti > tl the update is based on the data, di = [dii], and the observation depend
only on ψi.

From Figure 2 and Eq. (6) the smoother at time tl can be written as

g(ψl:0|dl:1) ∝ g(dl|ψl, ψk)g(ψl|ψl−1)g(ψl−1:0|dl−1:1), (11)

6



and the filter solution for Eq. (11) is expressed by

g(ψl|dl:1) ∝

∫

g(dl|ψl, ψk)g(ψl|ψl−1)g(ψl−1:0|dl−1:1) dψl−1:0

∝

∫

g(dl|ψl, ψk)

[∫

g(ψl|ψl−1)g(ψl−1, ψk|dl−1:1)dψl−1

]

dψk

∝

∫

g(dl|ψl, ψk)g(ψl, ψk|dl−1:1)dψk

∝

∫

g(ψl, ψk|dl:1) dψk, (12)

where the forecast step defining the prior distribution is given by

g(ψl, ψk|dl−1:1) =

∫

g(ψl|ψl−1)g(ψl−1, ψk|dl−1:1)dψl−1, (13)

and the posterior distribution at time tl is defined by

g(ψl, ψk|dl:1) ∝ g(dl|ψl, ψk)g(ψl, ψk|dl−1:1). (14)

Notice that the forecast step in Eq. (13) requires the filter solution of ψl−1 and the smoother
solution of ψk obtained from g(ψl−1, ψk|dl−1:1). The Bayesian formulation of the filter
solutions in Eqs. (9) and (12) now gives the possibility to compute an update of the
posterior distribution in a statistical consistent manner, when we include time difference
data.

4 The Kalman Filter and Linear Dynamics

The probabilistic framework presented above can be difficult to solve when the dimension
of the state space is high and with general probability density functions. To investigate
closer the influence of using a model which include time difference data, we consider the case
of linear dynamics where we assume Gaussian statistics, see Bertino et al. (2003). From
Eq. (12) we have the general filter expression and the dependency of the observations,
dl = [dll, dlk]

T ∈ ℜml , is given from the likelihood function g(dl|ψl, ψk). Defining the joint
model variables as ψ̃l = [ψl, ψk]

T ∈ ℜq̃, the state space model can be written as

ψ̃l = F̃lψ̃l−1 + ǫml ǫml ∼ Nq̃(0, Pǫm
l
) (15)

dl = H̃lψ̃l + ǫol ǫol ∼ Nml
(0, Pǫo

l
), (16)

where F̃l ∈ ℜq̃×q̃ defined by

F̃l =

[
Fl 0
0 I

]

(17)

7



is the dynamic model operator, and H̃l ∈ ℜml×q̃ is the observation operator on the form

H̃l =

[
Hll 0
Hlk −Hlk

]

. (18)

This form is obtained as a result of including time difference data, where the matrices
Hll ∈ ℜmll×ql and Hlk ∈ ℜmlk×ql are respectively the observation matrices for dll and for
the time difference data dlk. The terms ǫml and ǫol are respectively model and observation
random errors, and their covariance matrices are Pǫm

l
and Pǫo

l
. Notice that the model errors

are only added to the terms where Fl is operating on ψl−1 and is zero elsewhere.

Eq. (12) shows that the filter solution at time tl can be found from the posterior distri-
bution in Eq. (14), and as a result we now want to find a Gaussian expression for the
posterior distribution g(ψ̃l|dl:1). Define the conditional expectations and the conditional
error covariance matrices for the forecast and the analysis respectively as

ψ̃fl = E(ψ̃l|dl−1:1) (19)

P f

ψ̃l

= E((ψ̃l − E(ψ̃l|dl−1:1))(ψ̃l − E(ψ̃l|dl−1:1))
T ), (20)

and

ψ̃al = E(ψ̃l|dl:1) (21)

P a

ψ̃l
= E((ψ̃l − E(ψ̃l|dl:1))(ψ̃l − E[ψ̃l|dl:1))

T ). (22)

Assume that we know the posterior distribution g(ψ̃l−1|dl−1:1) at time tl−1

ψ̃l−1|dl−1:1 ∼ Nq̃(ψ̃
a
l−1, P

a

ψ̃l−1

). (23)

The prior distribution g(ψ̃l|dl−1:1) in Eq. (13) can then be written as

ψ̃l|dl−1:1 ∼ Nq̃(ψ̃
f
l , P

f

ψ̃l

), (24)

where the two forecast moments are found by using basic results from conditional expec-
tation

ψ̃fl = E(E(ψl|ψl−1)|dl−1:1) = E(F̃lψ̃l−1|dl−1:1) = F̃lψ̃
a
l−1 (25)

P f

ψ̃l
= E(Cov(ψl|ψl−1)|dl−1:1) + Cov(E(ψl|ψl−1)|dl−1:1)

= E(Pǫm
l
|dl−1:1) + Cov(F̃lψ̃l−1|dl−1:1)

= Pǫm
l

+ F̃lP
a

ψ̃l−1

F̃ T
l . (26)
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The likelihood distribution g(dl|ψ̃l) is found using the observation equation (16)

dl|ψ̃l ∼ Nml
(H̃lψ̃l, Pǫo

l
), (27)

and from Gaussian theory the posterior distribution g(ψ̃l|dl:1) can be written as

ψ̃l|dl:1 ∼ Nq̃(ψ̃
a
l , P

a

ψ̃l
), (28)

where the analyzed moments are

ψ̃al = ψ̃fl + P f

ψ̃l
H̃T
l (H̃lP

f

ψ̃l
H̃T
l + Pǫo

l
)−1(dl − H̃lψ̃

f
l ) (29)

P a

ψ̃l
= P f

ψ̃l

− P f

ψ̃l

H̃T
l (H̃lP

f

ψ̃l

H̃T
l + Pǫo

l
)−1H̃lP

f

ψ̃l

. (30)

To generate a sample from the filter distribution g(ψl|dl:1) in Eq. (12) we can either sample
directly from the Gaussian distribution given in Eq. (28)

ψ̃a∗l = [ψa∗l , ψ
a∗
k ]T ∼ Nq̃(ψ̃

a
l , P

a

ψ̃l
) (31)

where ψa∗l represents a sample from the filter solution, or sample by using conditional
simulation with kriging (see e.g., Cressie (1991) , Sect. 3.6.2). That is,

1. Sample from the posterior distribution g(ψ̃l−1|dl−1:1):

ψ̃a∗l−1 ∼ Nq̃(ψ̃
a
l−1, P

a

ψ̃l−1

)

2. Forecast the sample ψ̃a∗l−1
using Eq.(15):

ψ̃f∗l = F̃lψ
a∗
l−1 + ǫm∗l , ǫm∗l ∼ Nq̃(0, Pǫm

l
)

- ψ̃f∗l represent a sample from the prior distribution g(ψ̃l|dl−1:1).

3. Sample from the measurement distribution:

d∗l ∼ Nml
(dl, Pǫo

l
)

4. Use the kriging formula to generate a sample from the posterior distribution g(ψ̃l|dl:1):

ψ̃a∗l = ψ̃f∗l + P f

ψ̃l
H̃T
l (H̃lP

f

ψ̃l
H̃T
l + Pǫo

l
)−1(d∗l − H̃lψ̃

f∗
l )

- ψ̃a∗l = [ψa∗l , ψ
a∗
k ]T and ψa∗l represent a sample from the filter distribution g(ψl|dl:1).
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5 The Ensemble Kalman Filter

To continue our study of using an evolution model which include time difference data, we
consider now a nonlinear state space model defined by

ψ̃l =

[
fl(ψl−1)
ψk

]

+ ǫml ǫml ∼ Gq̃(0, Pǫm
l
) (32)

dl = H̃lψ̃l + ǫol ǫol ∼ Gml
(0, Pǫo

l
) (33)

where ψ̃l = [ψl, ψk]
T ∈ ℜq̃, fl : ℜq → ℜq is a non-linear model operator operating only

on ψl−1 with model errors ǫml , H̃l is the linear measurement operator, defined by Eq. (18),
relating the model state ψ̃l to the observations dl allowing for measurement errors ǫol , and
G(µ, P ) denote a partially specified distribution with mean µ and covariance P . Notice
that the error statistics are now free to take any form provided they are consistent with
their defined first and second-order moments, and that the model errors are only added to
the terms where fl is operating on ψl−1 and is zero elsewhere. Because of the nonlinearity
in the state space model the posterior distribution g(ψ̃l|dl:1) can now longer be explicitly
described by a Gaussian distribution, and as a result we need to use a sampling strategy
to explore the distribution.

Assume now that the joint distribution of g(ψ̃l, dl|dl−1:1) can be partially specified through
the mean and the covariance. By applying linear Bayes estimation with respect to a
quadratic loss function we achieve the approximations to the posterior moments of the
posterior distribution g(ψ̃l|dl:1) (see e.g., West and Harrison (1997), Sect. 4.9). The linear
posterior mean ψ̃al and linear posterior covariance P a

ψ̃l
are respectively given by Eq. (29)

and Eq. (30), and g(ψ̃l|dl:1) is represented by

ψ̃l|dl:1 ∼ Gq̃(ψ̃
a
l , P

a

ψ̃l
). (34)

Notice that the expressions for the posterior moments are the same as for the Gaussian case,
but an optimal variance minimizing estimate is only obtained when we assume Gaussian
statistics and linear dynamics.

To sample from the posterior distribution g(ψ̃l|dl:1) we are using an Ensemble Kalman
filter (EnKF) technique, and to describe the EnKF analysis scheme we now introduce an
EnKF notation, which is similar to that used in Evensen (2003). The matrix holding the
ensemble members, ψl ∈ ℜq, is defined by

Ψl = Ψ(x, tl) = (ψ1

l , . . . , ψ
N
l ) ∈ ℜq×N , (35)

where N is the number of ensemble members, and the ensemble mean is given by

ψ̄l =
1

N

N∑

i=1

ψil . (36)
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Consider now a joint ensemble matrix including the ensemble matrices for the different
time instants, Ψl = Ψ(x, tl),Ψk = Ψ(x, tk)

Ψ̃l =

[
Ψl

Ψk

]

∈ ℜq̃×N . (37)

The ensemble perturbation matrix at time tl can be written as

Ψ̃′

l = Ψ̃l −
¯̃Ψl = Ψ̃l(I − 1N), (38)

where ¯̃Ψl is the ensemble mean matrix and 1N is the N ×N matrix where each element is
equal to 1/N. The ensemble covariances, P e

ψ̃l
∈ ℜq̃×q̃, can then be estimated as

P e

ψ̃l
=

Ψ̃′

l(Ψ̃
′

l)
T

N − 1
. (39)

Given a vector of measurements, dl ∈ ℜml, we can define the N vectors of perturbed
measurements as

djl = dl + ǫo,jl ∀ j = 1 : N, (40)

which can be stored in the columns of a matrix

Dl = (d1

l , . . . , d
N
l ) ∈ ℜml×N . (41)

The ensemble of perturbations can be stored in the matrix

El = (ǫo,1l , . . . , ǫo,Nl ) ∈ ℜml×N , (42)

and the ensemble representation of the measurement error covariance matrix is given by

P e
ǫo
l

=
ElE

T
l

N − 1
. (43)

The EnKF sampling may be viewed as a conditional simulation with kriging, and the
sampling strategy for a case with time difference data is then as follows:

0. Generate N independent samples, ψa,jk from g(ψk|dk:1).

For i = k + 1, k + 2, . . . , l

1. Forecast each of the samples, ψa,ji−1
, using Eq.(32):

ψ̃f,ji =

[
fi(ψ

a,j
i−1)

ψa,jk,i−1

]

+ ǫm,ji , ǫm,ji ∼ Gq̃(0, Pǫmi ) ∀ j = 1 : N

11



- ψa,jk,i−1
is the smoother update of ψa,jk at the previous time step.

- ψ̃f,ji represent a sample from the prior distribution g(ψ̃i|di−1:1).

2. Use Monte Carlo integration to estimate the moments from the prior density given
in Eqs. (19)-(20).

3. Generate N samples from the measurement distribution:

dji ∼ Gmi
(di, Pǫoi ) ∀ j = 1 : N

4. Use the kriging formula to generate a sample from the posterior distribution g(ψ̃i|di:1):

ψ̃a,ji = ψ̃f,ji + P e,f

ψ̃i
H̃T
i (H̃iP

e,f

ψ̃i
H̃T
i + Pǫoi )

−1(dji − H̃iψ̃
f,j
i )

- where ψ̃a,ji = [ψa,ji , ψa,jk,i ]
T and ψa,ji represent a sample from the filter distribution

g(ψi|di:1).

The ensemble representation of the analysis step is

Ψ̃a
i = Ψ̃f

i + Ψ̃f ′

i Ψ̃f ′T
i H̃T

i (H̃iΨ̃
f ′

i Ψ̃f ′T
i H̃T

i + (N − 1)Pǫoi )
−1(Di − H̃iΨ̃

f
i ). (44)

If we now at time tl define the measurement of the ensemble perturbations, Sl ∈ ℜml×N ,
as

Sl = H̃lΨ̃
f ′

l , (45)

the ensemble of innovation vectors as

D′

l = Dl − H̃lΨ̃
f
l , (46)

and the matrix Cl ∈ ℜml×ml as

Cl = SlS
T
l + (N − 1)Pǫo

l
, (47)

we have from Evensen (2003) that the analysis equation (44) can be written as

Ψ̃a
l = Ψ̃f

lXl, (48)

where the matrix Xl ∈ ℜN×N is defined as

Xl = I + STl C
−1

l D′

l. (49)

The filter solution is then expressed by

Ψa
l = Ψf

lXl. (50)
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6 EnKF and large data sets

In reservoir simulation models spatial data such as 3D seismic and time difference seismic
may introduce a large amount of data in the assimilation. In this section we are concerned
with the use of efficient EnKF algorithms which handle such large data sets, where special
challenges such as inversion of the m×m matrix C in Eq.(47), and potential loss of rank
are involved. To simplify the notation we have in this section dropped the forecast notation
f , the time subscripts l and the joint notation ψ̃.

A large amount of data may introduce numerical singularity in C even when using a full
rank error covariance matrix Pǫo, and the pseudo inverse C+ of C has to be used in the
analysis schemes. The pseudo inverse of C is given as

C+ = ZmΛ+

mZ
T
m, (51)

where the diagonal matrix Λ+
m is defined as

diag(Λ+

m) = (λ−1

1 , . . . , λ−1

p , 0, . . . , 0), (52)

when p = rank(C) and the eigenvalues λj ≥ λj+1 > 0. The computation may be very
time demanding when the size of the observation vector gets large, since the factorization
of C requires a cost proportional to O(m3). In the following we will discuss how the time
demanding pseudo inverse can be avoided in the analysis scheme and we will focus on the
rank issues presented by Evensen (2004) and Kepert (2004).

Evensen (2004) and Kepert (2004) have pointed out that the use of an ensemble represen-
tation, P e

ǫo for Pǫo in some cases may lead to loss of rank in the ensemble when m > N −1.
Evensen (2004) showed that the rank problem can be avoided if the measurement pertur-
bations is defined such that the column vectors of E lies in the N − 1 dimensional space
LS spanned by the column vectors of S in Eq. (45). Based on this sampling strategy an
efficient square root algorithm was presented, which reduced the factorization of the m×m
matrix C in Eq.(47) to a factorization of a N×N matrix. The factorization in the efficient
square root algorithm can be computed at a cost of O(Nm2) floating point operations, and
when a low rank representation, P e

ǫo, for the error covariance matrix is used the cost is of
O(N2m).

In this section a subspace EnKF algorithm, with the same computational cost as given
above, is proposed based on a principal component projection of the measurements d,
where the projection matrix U ∈ ℜm×N−1 span the ensemble space LS. The motivation for
the proposed subspace EnKF algorithm is based on the algorithm presented by Evensen
(2004). The projection introduces an approximate pseudo inverse of C in a similar way as
Evensen (2004) and reduces the factorization of the m×m matrix C to a factorization of
a N − 1×N − 1 matrix.
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We now define the projection of the measurements, d̂ ∈ ℜN−1 as

d̂ = UTd, (53)

and the projected measurement operator Ĥ ∈ ℜN−1×q as

Ĥ = UT H̃. (54)

Assuming a nonlinear evolution model like in Eqs. (32) and (33), where we apply the
projection matrix U on the observations d, the new observation equation will then be
given by

d̂ = Ĥψ + ǫ̂o ǫ̂o ∼ GN−1(0, Pǫ̂o). (55)

Here the projected measurement errors are defined by ǫ̂o = UT ǫo ∈ ℜN−1, and the error
covariance matrix is given by Pǫ̂o = UTPǫoU . The likelihood distribution is obtained from
Eq. (55):

d̂|ψ ∼ GN−1(Ĥψ, Pǫ̂o). (56)

By using the ensemble approximation, P e
ǫo , of Pǫo in Eq. (43) the analysis of the ensemble

can be written as

Ψa = Ψ + Ψ
′

Ψ
′T ĤT (ĤΨ

′

Ψ
′T ĤT + (N − 1)P e

ǫ̂o)
−1D̂

′

, (57)

where D̂′ is given by

D̂′ = D̂ − ĤΨ = UT (D −HΨ). (58)

The matrix P e
ǫ̂o = UTP e

ǫoU is the projection of the measurement error covariance matrix,
P e
ǫo, onto the subspace LS and all possible contributions in L⊥S are rejected. This ensures

that the measurement perturbations explain the variance within the ensemble space LS
and we avoid the loss of rank pointed out by Evensen (2004) and Kepert (2004).

From Eq. (45) we have defined S ∈ ℜm×N with rank(S) = N − 1, where the columns of S
span the subspace LS of dimension N − 1. The spectral decomposition of the covariance
matrix associated with the ensemble measurement perturbations can be written as

SST = UΛUT . (59)

The diagonal matrix Λ ∈ ℜN−1×N−1 is given by

diag(Λ) = (λ1, λ2, . . . , λN−1), (60)

with the eigenvalues λj ≥ λj+1 ≥ 0. If we now define the projected measurements of the

ensemble perturbations, Ŝ ∈ ℜN−1×N as

Ŝ = ĤΨ′ = UTHΨ′ = UTS, (61)
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we can define the matrix Ĉ ∈ ℜN−1×N−1 as

Ĉ = ŜŜT + (N − 1)P e
ǫ̂o

= UTSSTU + (N − 1)UTP e
ǫoU

= UTUΛUTU + UTEETU

= Λ + ÊÊT . (62)

Here the matrix product UTU = IN−1 ∈ ℜ
N−1×N−1 where IN−1 is the identity matrix and

the projection of the ensemble of perturbations is given as Ê = UTE.

The analysis equation can now be written as

Ψa = ΨfX̂, (63)

where the matrix X̂ ∈ ℜN×N is defined by

X̂ = I + ŜT Ĉ−1D̂′, (64)

and from Eq.(64) the pseudo inverse of C becomes

C+ = UĈ−1UT . (65)

The interpretation of this subspace pseudo inversion can be viewed as an assimilation
of a set of observations after they have been projected onto the subspace LS as defined
by the first N − 1 singular vectors of S. The subspace EnKF scheme do not introduce
any approximation if Pǫo is diagonal, since the matrix C and SST will have the same
eigenvectors. However, if Pǫo is non-diagonal they will have different eigenvectors and the
projection onto LS space eliminates the part of C which is orthogonal to the LS space. The
use of a low rank representation for Pǫo allows us to assimilate very large data sets to a low
cost, and the results will be the same as obtained using a full rank Pǫo if UTP e

ǫoU = UTPǫoU .

In Appendix A we have presented the derivation of the square root algorithm, where a low
rank or a full rank Pǫo can be specified.

7 Example

7.1 Combined assimilation of production and seismic data

A synthetic 3D reservoir model with 30×30×5 grid cells has been used to show the impact
of adding seismic data in the assimilations. The reservoir is produced by water injection,
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True Inital
L 1 L 2 L 3 L 4 L 5 Layers 1-5

Mean permeability (mD) 2000 1900 1800 1700 1600 1800
Std. of permeability (mD) 100 350
Mean porosity 0.30 0.29 0.28 0.27 0.26 0.28
Std. of porosity 0.01 0.04
Variogram range along x dir. (m) 700 (45o counter clockwise) 400
Variogram range along y dir. (m) 300 (45o counter clockwise) 400
Variogram range along z dir. (m) 40 40
Correlation between perm. and poro. 0.5 0.5
Reservoir dimension (m) 1800 × 1800 × 100

Table 1: Input data to synthetic reservoir model.

where the water injector and the oil producer are respectively located in the upper right and
in the lower left corner. The water is injected in the bottom layer, while oil is produced
from the top layer. Injection of water starts after one year of production, allowing for
production below bubble-point, and before a higher reservoir pressure is re-established,
free gas will evolve around the producer.

The reference (“true”) porosity and permeability fields were simulated as Gaussian fields
with a trend from the top to the bottom of the reservoir and with a fairly strong variogram
range parallel to the flow direction, Figure 3.

The initial ensemble consists of 100 realizations sampled from Gaussian random fields with
constant mean permeability and porosity in all layers and a gaussian variogram model.
Model data are listed in Table 1, and one realization from the initial ensemble is plotted
in Figure 4.

Total simulation time is 9 years, where 6 years are history and 3 years prediction. During
the run, 1 seismic survey, 1 seismic difference survey and production data every 3 months
are assimilated. The seismic survey is assimilated after one month production, and the
seismic difference survey, which is the difference between the surveys after 6 years and 1
month production, is assimilated after 6 years production.

Production data are measurements of water cut (WCT), gas-oil ratio (GOR) and flowing
bottomhole pressure (BHP). Seismic data are acoustic impedance calculated from grid cell
properties (saturation, pressure and porosity) using a petroelastic model from a real North
Sea reservoir, see Haverl et al. (2005). The measurement uncertainties of the well data are
presented in Table 2.

While running the EnKF we update the static variables, which are porosity and perme-
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Water cut (fraction) Gas-oil ratio (Sm3/Sm3) Bottomhole pressure (bar)
0.03 10 % 2.0

Table 2: Measurement errors for well data, standard deviations.

ability, and the state variables, which are the saturation of gas and water, the solution
gas-oil ratio, and the pressure.

Eight cases of model updating with the EnKF were run. One case assimilates only pro-
duction data, and seven cases assimilate production data, seismic 3D data and seismic
difference data with different combinations of analysis schemes and error covariance ma-
trix representations. The last seven cases have been run to show the impact of adding
seismic data in the assimilation and to evaluate the properties of the efficient analysis
schemes when m≫ N . The cases are listed in Table 3.

The analysis schemes which have been used are the traditional EnKF scheme (Case 1,
2a, 2b), and the subspace EnKF scheme presented in Section 6 where either a full rank
prescribed error covariance matrix is used (Case 3a, 4a, 4b), or E is used directly without
Pǫo being formed (Case 5a, 5b). In case 3a we have used a lower seismic measurement
error than in the rest of the cases. The seismic measurement errors used are described in
Table 4.

In the naming of the experiments, a denotes that we have used a diagonal error covariance
matrix with the observation error variance on the diagonal, and b denotes that we have used
an error covariance matrix computed from an exponential variogram model with ranges
respectively equal to 7, 7 and 2 blocks in x, y and z-direction. The error term, ǫo, added
to the “true” observations are Gaussian noise simulated respectively from a diagonal Pǫo

(“a-cases”), and a Pǫo computed from the exponential variogram model (“b-cases”).

To evaluate the quality of the solution of the static variables we use the root mean square
(RMS) error defined as

Γ(α) =

√
√
√
√ 1

Ng

Ng∑

j=1

(

1

N

N∑

i=1

(αij − αtj)
2

)

(66)

where Ng is the number of grid cells, N is the number of ensemble members, αij is the
estimate of static variable j in ensemble member i, and αtj is the true value of static
variable j.

Figure 5 show the mean porosity field for case 1 obtained by averaging the final estimated
porosities of all the ensemble members, when only production data are assimilated. As
can be seen, there is little information about the trend structure of the porosity in the
production data, and almost no features from the true porosity field are recovered. A
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Case no. Scheme Rank Pǫo Seismic Porosity Permeability
RMS Corr. RMS Corr.

Initial 0.044 385.83
Case 1 trad. EnKF full diag. no 0.041 -0.07 366.22 -0.12
Case 2a trad. EnKF full diag. yes 0.019 0.52 212.19 0.28
Case 2b trad. EnKF full exp. yes 0.020 0.37 180.86 0.31
Case 3a sub. EnKF full diag. yes 0.012 0.88 182.82 0.77
Case 4a sub. EnKF full diag. yes 0.021 0.48 221.03 0.28
Case 4b sub. EnKF full exp. yes 0.024 0.39 225.41 0.32
Case 5a sub. EnKF low diag. yes 0.023 0.45 257.59 0.25
Case 5b sub. EnKF low exp. yes 0.027 0.30 259.90 0.32

Table 3: Summary of experiments: The first column is the name of the experiment, in the
second column is the analysis scheme used, the third column specify if a full or low rank
Pǫo is used, the fourth column specify if Pǫo is diagonal or has a exponential correlation
structure and the fifth column indicate if seismic data is included. The four last columns
contain the RMS deviation and correlation between estimated and true static variables.

similar result is obtained for the permeability field, but still a good match to the data is
achieved. Figure 8 shows the ensemble predictions of water cut and oil production rate,
compared with the true solution and a simulation run where the final static ensemble
average fields is used to simulate both the history and prediction period. As can be seen
the uncertainty increases with time, but compared with the predictions based on the initial
ensemble, which are plotted in Figure 7, a significant reduction in the estimated uncertainty
is obtained.

The final mean ensemble porosity and the predictions for case 3a, using both production
and seismic data in the assimilation, are plotted in Figures 6 and 9. In case 3a both a good
history match and a good characterization of the main features of the true porosity and
permeability fields are obtained, and clearly the addition of seismic data have a positive
impact in the EnKF update.

The RMS values defined by Eq.(66) and the correlation values between the estimated mean
ensemble and the true fields at the last assimilation step for both the porosity and the
permeability are given for case 1 and 3a in Table 3. As can be seen, fairly high correlation
values and low RMS values are obtained for case 3a compared to case 1, and the results
shows an improvement of the estimate of the static variables when adding seismic data to
the production data measurements. Especially an improvement of the porosity is obtained,
and one reason might be that the acoustic impedance measurements do have a stronger
relation to the porosity than to the permeability in the reservoir.
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Case no. Acoustic imp.(kg/m2s) Acoustic imp. difference kg/m2s
Case 1 - -
Case 3a 1.5·105 2.0·103

Cases 2a,4a,5a 1.0·106 1.0·104

Cases 2b,4b,5b 1.0·106 3.0·103

Table 4: Measurement errors for seismic data, standard deviations.
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Figure 3: The reference (“true”)
porosity field.
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Figure 4: Realization from initial en-
semble.

 

 

0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33

x−axis

y−axis

Figure 5: Final mean ensemble porosity
case 1 (well data only).
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Figure 6: Final mean ensemble porosity
case 3a (well data + seismic data).

7.2 Simulation runs when m≫ N

To perform a comparison between the subspace EnKF scheme proposed in Section 6 and
the traditional EnKF when m ≫ N , we have been running following six cases 2a, 2b, 4a,
4b, 5a and 5b, where all of them are described in Table 3. For cases 2a, 4a and 5a we have
sampled normal independent perturbations for each element of E, while for cases 2b, 4b
and 5b we have used a Cholesky decomposition method (see e.g Cressie (1991)) to generate
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Figure 7: Predictions based on the initial ensemble. Red dots: True.
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Figure 8: Predictions Case 1, with production data only. Red dots: True. Green line:
Simulation based on final ensemble mean porosity and permeability.

the Gaussian noise realizations. Notice that E is sampled with rank equal to N − 1.

To evaluate the results it is interesting to look at how the conditioning and the rank of
the ensemble impacts the analysis, and in Figures 10 and 11 we have plotted the singular
value spectra for the ensemble of porosities and permeabilities at the end of the analysis
time for each of the six cases. The initial singular spectrum of the ensemble of the static
variables is plotted as the upper black line. The lower blue, red and green lines show the
singular spectrum at the end of the experiment for each of the cases, and Figures 10 and 11
indicate respectively the reduction of the ensemble variance when either a diagonal error
covariance matrix or a error covariance matrix with an exponential correlation structure
has been used.
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Figure 9: Predictions Case 3a, with production data and seismic data. Red dots: True.
Green line: Simulation based on final ensemble mean porosity and permeability.

Further, both the RMS values and the correlation values between the estimated mean
ensemble and the true fields for the static variables obtained at the end of each run for all
the cases have been evaluated, and they are presented in Table 3.

Comparing cases 2a and 4a we see that they produce singular spectra, RMS and correlation
values that are almost identical, which is expected since the pseudo inverse in Eq.(65) will
contain the same eigenvector and eigenvalues as the pseudo inverse in Eq.(51) when a full
rank diagonal error covariance matrix is used. In case 5a we avoid the formation of the
full measurement error covariance matrix, and both the RMS and the correlation values
are consistent with the values obtained from cases 2a and 4a. A slightly larger reduction
in the variance compared to cases 2a and 4a can be seen, which is in agreement with the
results presented by Evensen (2004).

In cases 2b and 4b we have used a full rank error covariance matrix with an exponential
correlation structure, and comparing cases 2b and 4b we see from Figure 11 that a lower
reduction of the ensemble variance by using the subspace EnKF scheme is obtained. The
lower variance reduction is related to the calculation of the approximate pseudo inverse
in Eq.(65), and as can be seen, case 4b produces slightly higher RMS values then case 2b.
Looking at the correlation values in Table 3, we see that the updated ensemble mean of
the static variables from both cases are fairly similar. In case 5b we have used the matrix
E generated from a Cholesky decomposition method in the update. The RMS and the
correlation values obtained are respectively a bit higher and lower than seen for cases 2b
and 4b, and a slightly larger reduction in the variance compared to case 4b is obtained.

From the above experiments it is clear that there is no loss of rank in the analyzed ensemble,
when the subspace EnKF scheme has been used. Notice that the subspace EnKF scheme
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Figure 10: The singular value spectra for the ensemble of porosities (left) and permeabilities
(right) for cases 2a, 4a and 5a.
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Figure 11: The singular value spectra for the ensemble of porosities (left) and permeabilities
(right) for cases 2b, 4b and 5b.

gives a significant saving in the computational cost compared to the traditional EnKF
when m≫ N .

8 Conclusion

A methodology to solve the combined parameter and state estimation problem using time
difference data is presented in a Bayesian framework. The method is completely recursive,
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and thus the solution may be calculated sequentially and forward in time.

A sequential EnKF simulation from the posterior distribution of interest using time differ-
ence data and a nonlinear evolution model, has been derived and examined. The EnKF
simulation can be viewed as a conditional simulation with kriging, and we have shown
that introduction of time difference data in the methodology involves a combination of the
ensemble Kalman filter and the ensemble Kalman smoother. The method requires little
additional cost compared to the traditional EnKF method.

Special challenges related to a potential loss of rank and the inversion of a large covari-
ance matrix are introduced in the assimilation of large data sets, such as time difference
seismic data. This resulted in a subspace EnKF scheme derived in Section 6, based on a
principal component projection of the measurements, where the projection matrix U span
the ensemble space LS. In assimilations where m ≫ N , the projection avoid the loss of
rank when a low rank representation of the measurement error covariance matrix is used.

The ensemble Kalman filter for continuous model updating with respect to the combination
of production data, 3D seismic data and time difference seismic data is tested on a synthetic
reservoir model. For the synthetic reservoir model, the method gives good history matching
results, and it is shown that a better estimate of the porosity and the permeability is
obtained by adding seismic data to the production data measurements.

Additional simulation runs have been performed to compare the traditional and the sub-
space EnKF scheme, where different combinations of a diagonal and a correlated measure-
ment error covariance matrix have been used. It is shown from the simulation runs that
the results achieved from the subspace EnKF scheme, when a diagonal measurement error
covariance matrix is used, are nearly identical to the traditional EnKF scheme. Further,
the simulation runs show that the use of a correlated measurement error covariance matrix
in the subspace EnKF scheme gives a lower reduction of the ensemble variance compared to
the traditional scheme, but results in similar RMS values and correlations values between
the estimated and the true porosity and permeability fields. The computation time of the
subspace EnKF scheme, when a large amount of data is incorporated in the assimilation,
is very small compared to the traditional EnKF algorithm. The results are fairly consis-
tent, although the subspace EnKF scheme introduces an approximate pseudo inverse of
the original matrix C, when a correlated measurement error covariance matrix is included.
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Appendix A: Square root analysis algorithm

From Section 6 the subspace square root algorithm can be written as

Ψa′Ψa′T = Ψ′(I − ŜT Ĉ−1Ŝ)Ψ
′T , (67)

and the analysis equation for the ensemble mean is given by

Ψ̄a = Ψ̄ + Ψ′ŜT Ĉ−1(d̂− ĤΨ̄). (68)

Notice that because Ĉ ∈ ℜN−1×N−1 is a full rank matrix the inverse, Ĉ−1, exists and we
can compute the eigenvalue decomposition ZΛ̂ZT = Ĉ, and obtain

Ĉ−1 = ZΛ̂−1ZT , (69)

where Z ∈ ℜN−1×N−1 and Λ̂ ∈ ℜN−1×N−1. We can now write the square root scheme as
follows

Ψa′Ψa′T = Ψ′(I − ŜT Ĉ−1Ŝ)Ψ
′T

= Ψ′(I − ŜTZΛ̂−1ZT Ŝ)Ψ
′T

= Ψ′(I − (Λ̂−
1

2ZT Ŝ)T (Λ̂−
1

2ZT Ŝ))Ψ
′T

= Ψ′(I −QTQ)Ψ
′T , (70)

where Q ∈ ℜN−1×N is defined as

Q = Λ̂−
1

2ZT Ŝ, (71)

and rank(Q) = N − 1. Defining the singular value decomposition of Q as

UQΛQV
T
Q = Q, (72)

with UQ ∈ ℜN−1×N−1, ΛQ ∈ ℜN−1×N and VQ ∈ ℜN×N , the square root scheme can be
written as

Ψa′Ψa′T = Ψ′(I − (UQΛQV
T
Q )T (UQΛQV

T
Q ))Ψ

′T (73)

= Ψ′(I − VQΛT
QΛQV

T
Q )Ψ

′T (74)

= Ψ′VQ(I − ΛT
QΛQ)V T

Q Ψ
′T (75)

=

(

Ψ′VQ

√

I − ΛT
QΛQ

)(

Ψ′VQ

√

I − ΛT
QΛQ

)T

. (76)

The analyzed ensemble perturbations is then given by

Ψa′ = Ψ′VQ

√

I − ΛT
QΛQΘ, (77)

where Θ is a random orthogonal matrix. Similarly to the algorithm presented by Evensen
(2004), there are no matrix operations which requires O(m2) floating point operations.
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Combined inversion of 4D seismic waveform data and production datausing ensemble Kalman filter
Jan-Arild Skjervheim∗ and Bent Ole Ruud, Centre for Integrated Petroleum Research, University of Bergen

SUMMARY
In this computational study we combine 4D seismic data with produc-
tion data to continuously update the reservoir model during produc-
tion. The inversion is based on the ensemble Kalman filter (EnKF),
and the forward method is a combination of a fast seismic modeling
tool and a reservoir simulator. The EnKF method is a Monte Carlo
approach, and state variables, as fluid saturations and pressure, and
model input parameters as the porosity and permeability, are updated
in the reservoir model at each assimilation step. The assimilated mea-
surements are seismic waveforms data and production data, which are
measured gas-oil ratio, water cut and flowing bottomhole pressure.
The updated models allow for improved estimation of the parameters
and the state variables during the production, because additional well
data and repeated seismic surveys are sequentially includedin the in-
version. The method is applied to a synthetic 2D reservoir model, and
it is shown that introduction of production and seismic waveforms data
gives a fairly good estimation of the porosity and permeability fields.

INTRODUCTION
The purpose of repeated seismic acquisitions (4D) is to reveal changes
in the fluid saturations and fluid pressure during production. Such in-
formation is crucial when trying to maximize oil and gas recovery from
a field. To get the most out of the seismic and production data, they
should be combined in order to get a consistent model of the dynamic
reservoir. This is usually done by running the inversion of the seis-
mic data and the history matching of the production data as separate
processes and then check for consistency in the results, butideally the
inversion of both types of measurements should be performed simul-
taneously. The latter approach has been reported by Gosselin et al.
(2003), Haverl et al. (2005) and Skjervheim et al. (2005) by incorpo-
rating the seismic data as elastic parameters (P-wave impedance and
Poisson’s ratio) in the history matching process. In the present study,
we do not rely on a previous inversion of the seismic data to elastic
parameters, but directly include the seismic waveform data inthe ex-
tended inversion process. Before inversion the seismic datashould be
processed to obtain migrated angle stacks, and the (assumed known)
source signature should be removed by deconvolution. Otherwise,
only a time integration operator (mainly a phase rotation) is applied
before the waveform data are included in the extended inversion pro-
cess realized as an ensemble Kalman filter.

The ensemble Kalman filter method is a Monte Carlo type sequential
Bayesian inversion, and provides an approximate solution tothe com-
bined parameter and state estimation problem, see Evensen (2005).
The result is an ensemble of solutions approximating the posteriori
probability density function (pdf) for the reservoir model input pa-
rameters (porosity and permeability), state variables (saturations and
pressures) and other output data (well production and seismic data)
conditioned to measured, dynamic data. In our study, we are using a
three phase (gas,oil and water) black-oil reservoir simulation model.

METHOD
Seismic modelling and processing
The seismic modelling tool used in the study (SimPLI) computes di-
rectly prestack depth-migrated seismic angle stacks in 2D or 3D, see
Lecomte et al. (2003). The only additional processing we haveapplied
to the data before inclusion the EnKF is a deconvolution and atime in-
tegration. The motivation for this preprocessing originates from the
simple 1D convolutional model for computation of synthetic seismo-
grams, i.e.,

y(t) = S(t)∗R(t), (1)

where the synthetic tracey(t) is computed by convolving the time se-
ries of reflection coefficientsR(t) with the source waveletS(t). The
reflection coefficients may be approximated by

R(t) =
1
2

d
dt

lnZ(t), (2)

whereZ(t) is the P-wave impedance, see e.g., Buland and Omre (2003).
If we assume that the source wavelet is known, an approximationfor
the inverse waveletS−1

(t) may be found by a least square method, and
lnZ(t) may be retrieved directly, except for an integration constant C,
by a time integration

lnZ(t) = 2
∫ t

0
S−1

(t ′)∗ y(t ′)dt ′ +C. (3)

HereS−1
(t) serves as a deconvolution operator. It is the traces denoted

lnZ(t) which are input to EnKF, but we emphasize that we consider the
deconvolution and time integration just as filter operationsand not as
seismic inversion. The seismic forward modelling method we are us-
ing is not restricted to 1D media, and the physical meaning of the input
data is of no importance to the EnKF as long as the forward modelling
method is able to produce the same kind of data. In principle, wemay
skip these filter operations, but we have experienced that better results
are obtain when they are included. Examples of unfiltered and filtered
data are shown in Figure 1.

EnKF
Following Tarantola (2005) the general solution of the combined pa-
rameter and state estimation problem is given as the posteriorpdf from
the Bayesian theory. Let nowψn = ψ(x, tn) ∈ ℜqn anddn ∈ ℜmn rep-
resent respectively the parameters, the state variables andthe observa-
tions at timetn, and assume that we want to estimate the parameters
and the states at a discrete set of times,t0, t1, . . . , tn, given observa-
tions at the same times (except att0) d1,d2, . . . ,dn. In the following
we denote the sequence{ψn, . . . ,ψ1,ψ0} by ψn:0.

In Evensen and van Leeuwen (2000) it was shown that a general smoother
and filter could be expressed from the Bayesian formalism, and for the
time intervalt ∈ [t0, tn] the general smoother can be written as

f (ψn:0|dn:1) ∝ f (dn:1|ψn:0) f (ψn:0), (4)

where data available at different times are assumed independent, and
that the data at a given time are independent on states at future times.
In Eq.(4) the prior pdf is represented byf (ψn:0), and the likelihood
distribution is given asf (dn:1|ψn:0).

A first order Markov process is normally assumed in the forward model.
That is, the solution at a given time step depends only on the solution
at the previous time step. The filter solution for Eq. (4) can then be
derived by integrating over the solutionsψn−1:0, and we obtain

f (ψn|dn:1) ∝ f (dn|ψn) f (ψn|dn−1:1). (5)

When the seismic data are given as a difference between two surveys
at timetk < tn andtn, the estimation problem include both a filter and a
smoother solution, see Skjervheim et al. (2005), and the updating step
is given as

f (ψn,ψk|dn:1) ∝ f (dn|ψn,ψk) f (ψn,ψk|dn−1:1). (6)

To sample from the posterior distributionf (ψn|dn:1) we are using an
ensemble Kalman filter technique, see Evensen (2003).
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Figure 1: Synthetic depth converted seismic data before (upper part) and after deconvolution and time integration (lowerpart). The sections to the
left are the initial seismic data, and the sections to the right are the difference between the data acquired three years after start of production and the
initial data. The difference sections (at the right) have been scaled up by a factor of 2.5 relative to the initial data. The initial seismic sections are
dominated by reflections from the top and bottom of the reservoir, while the difference sections clearly shows the changesin the fluid saturations,
especially on the deconvolved and time integrated section (see also Figure 2).

The matrix holding the ensemble members,ψn ∈ ℜqn , is defined by

Ψn = Ψ(x, tn) = (ψ1
n , . . . ,ψN

n ) ∈ ℜqn×N , (7)

whereN is the number of ensemble members. The ensemble covari-
ances,Pψn ∈ ℜqn×qn , can then be defined as

Pψn =
(Ψn − Ψ̄n)(Ψn − Ψ̄n)

T

N−1
, (8)

whereΨ̄n is the ensemble mean matrix. Given a vector of measure-
ments,dn ∈ ℜmn , we can define theN vectors of perturbed measure-
ments as

d j
n = dn + ε j

n ∀ j = 1 : N, (9)

which can be stored in the columns of a matrix

Dn = (d1
n , . . . ,dN

n ) ∈ ℜmn×N , (10)

whereεn ∼ Nmn (0,Pεn ) are Gaussian measurement errors. The ensem-
ble representation of the analysis step is

Ψa
n = Ψ f

n +P f
ψn

HT
n (HnP f

ψn
HT

n +(N−1)Pεn )
−1

(Dn −HnΨ f
n ), (11)

whereΨ f
n is the forecast (prior) andΨa

n is the analysis (posterior) for
all the members in the ensemble at timetn.

For time difference data, the analysis scheme is similar, except that we
also have to update the smoother solution at the time of the previous
survey according to Eq(6). The EnKF update in Eq(11) can still be
used, butΨ need to be replaced by the combination ofΨn andΨk.
Hence, the analysis equation can be written as

Ψ̃a
n = Ψ̃ f

n +P f
ψ̃n

H̃T
n (H̃nP f

ψ̃n
H̃T

n +(N−1)Pεn )
−1

(Dn − H̃nΨ̃ f
n ), (12)

whereΨ̃a
n = [Ψn,Ψk]

T andH̃n is the observation operator on the form

H̃n =

[
H prod

n 0
Hseis

n −Hseis
k

]

, (13)

whereH prod picks the simulated production data, andHseis picks the
simulated seismic data.

RESULTS

The test of combining assimilation of production data and seismic data
has been performed on a synthetic 2D vertical reservoir model with
40×10 grid cells. The reservoir is produced by gas injection, where
the gas injector is located in grid cell (1,1) and penetratedin one layer,
while the oil producer is located in grid cell (30,1) and penetrated in
three layers. Total simulation time is 41

4 years, where 314 years are
history and 1 year prediction, and during the run, 4 seismic survey and
14 assimilation step of production data are used in the EnKF update.
The seismic data from the 3 last surveys were included in the inversion
by computing difference data relative to the first survey. Thefluid
saturations at an early and a late time after the start of production are
shown in Figure 2.

Seismic data are waveforms data, and production data are measure-
ments of gas-oil ratio (GOR), water cut (WCT) and flowing bottom-
hole pressure (BHP). Measurement errors for the production data are
presented in Table 2, and the signal to noise ratio in the seismic data
is set to 10. The elastic properties of the dry reservoir rockdepends
on the porosity through a simple critical porosity sandstonemodel.
The fluid properties are computed from standard relations, and Wood’s
equation is used for mixed fluids. The effective elastic properties of the
saturated rock are then found from Gassmann’s relations. Thepressure
depends mainly on depth in our modeling case, so that the effects of
pressure variations with time are negligible.

The reference (“true”) permeability and porosity fields (seeFigure 3)
were simulated as Gaussian fields, and the ensemble consists of100
members with a spherical variogram and constant means. Model data
are listed in Table 1. In evaluating the quality of the estimation of
the permeability and the porosity we use the root mean square (RMS)
error defined as

Γ(X) =

√
√
√
√

1
Ng

Ng

∑
j=1

(

1
N

N

∑
i=1

(X i
j −X t

j)
2

)

, (14)

whereNg is the number of grid cells,N is the number of ensemble
members,X i

j is the estimate of static variablej in ensemble memberi,
andX t

j is the true value of static variablej.
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Figure 2: Fluid saturations at two different times (6 months and 3 years) after start of production. A production well is situated at block number 30
(see numbering along top of model), and a gas injection well is found in the upper left corner at block number 1.
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Figure 3: The evolution of the mean ensemble porosity and permeability at three different assimilation steps compared to the true solution. Perme-
ability in millidarcy.
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Figure 4: Initial prediction of GOR (left) and GOR predictedfrom the last assimilation step and one year forward (right).Red line: True production
profile of GOR, based on the true porosity and permeability fields given at the top of Figure 3.

True Initial
Layers 1-10 Layers 1-10

Mean perm (mD) 1800 1800
Std. of perm (mD) 200 350
Mean poro. 0.28 0.28
Std. of poro. 0.02 0.03
Variogram range along x dir. 5 blocks 3 blocks
Variogram range along z dir. 5 blocks 3 blocks
Correlation between perm. and poro. 0.7 0.7

Table 1: Input data to synthetic reservoir model.

Water cut Gas-oil ratio Bottomhole pressure
(fraction) (Sm3/Sm3) (bar)

0.03 10 % 2.0

Table 2: Measurement errors for well data, standard deviations.

Figure 4 shows the predictions of the ensemble of gas-oil ratio, which
are compared with the true solution. The uncertainty in the predictions
cover the true solution quite well, and compared with the predictions
based on the initial ensemble, a clearly reduction in the uncertainty is
achieved.

Figure 3 shows the averaged permeability and porosity fields at three
different assimilation step, where the true fields are plotted at the top.
As can be seen, the combined assimilation of production and seismic
waveforms data gives a fairly good estimation of the main features of
the true permeability and porosity fields.

The initial RMS value of the permeability is 497.27 md, and it isre-
duced to a value of 355.44 md at the last assimilation step, while the
RMS value for the porosity is reduced from 0.036 to 0.018. Clearly,
a decrease in the RMS deviations for the reservoir parametersare ob-
tained, and the results show a good relation between the estimated and
the true parameter fields. Especially, a strong relation between the
estimated and the true porosity field is achieved, which is expected be-
cause the seismic signal has a stronger correlation to the porosity than
to the permeability in the reservoir.

CONCLUSIONS

The ensemble Kalman filter for continuous model updating of the pa-
rameters (permeability and porosity) and the state variables(satura-
tions and pressures) with respect to a combination of seismic wave-
form data and production data are presented. For the synthetic reser-

voir model, the EnKF update gives good estimation results of the per-
meability and porosity fields. The method demonstrate that seismic
waveforms data can be introduced in the methodology, and that the
estimates of both the porosity and permeability fields can be improved
over time with repeated seismic surveys and assimilation of produc-
tion data. When using seismic waveforms data, it is important that
the members of the ensemble correctly reflects the uncertainty both in
the reservoir model and the seismic modelling during the assimilation,
and this have to be further investigated.
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Abstract

Improvement of the seismic reservoir characterisation is performed by introducing an uncer-

tainty connected to parameters in the rock physics model. Traditionally the Ensemble Kalman

filter (EnKF) method has been used to estimate permeability and porosity.

In this paper we show that when seismic difference data are available also the lithology

can be estimated, which is coupled to the effective bulk modulus via the rock physics model.

Incorporation of inverted seismic difference data in the EnKF introduces a large amount of data

in the assimilation step. Thus, to improve the results a methodology based on a combination

of a global and a local analysis scheme is proposed. The global and the local analysis are

used to assimilate respectively the production data and the inverted seismic difference data,

where the local scheme assume that only seismic data within a certain distance from a state

variable will impact the analysis in this state variable. The technique is applied to synthetic

2D and 3D reservoir models, where effects of using local versus global analysis schemes on

different inverted seismic difference data, such as acoustic impedance and Poisson’s ratio, are

investigated. Other evaluated factors are the effects of using an incorrect seismic data error

model in the analysis schemes.
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Introduction

This paper describes an estimation of both static variables (lithology, porosity and permeability)
and dynamic variables (saturations and pressures) in a Bayesian framework based on the inform-
ation contained in the assimilated reservoir measurements, such as water cut (WCT), flowing
bottom hole pressure (BHP), gas-oil ratio (GOR) and seismic difference data. The use of seis-
mic data may introduce a large number of data points in the assimilation step, and problems
related to an underestimation of the uncertainty in the low rank covariance matrix representa-
tion of the static and dynamic variables may occur when few ensemble members are used during
the assimilation.

To avoid this problem we propose a combination of a global and local EnKF. Assimilation
of production data is performed with a global scheme, while the seismic difference data are as-
similated with a local scheme, where we assume that only seismic data within a certain distance
from a state variable will impact the analysis in this state variable. Different formulations and
applications of the local scheme can be found in Evensen (2003); Ott et al. (2004); Szunyogh
et al. (2005).

The local scheme updates each grid cell independently accounting for the seismic observa-
tions only in the local region surrounding the cell. The local schemes can be implemented in
parallel, and each local update will involve relatively small matrices in the assimilation. Thus,
with the local scheme, large amounts of seismic data can be assimilated at a low computational
cost.

The seismic reservoir characterisation can be improved by introducing an uncertainty con-
nected to parameters in the rock physics model. Lithology is such a variable of interest, which
for siliciclastic rocks can be quantified by the clay ratio (see e.g., Dræge et al. (2006)). Litho-
logy may have a strong impact on the seismic signal, and an estimation of the clay ratio will be
of importance to achieve satisfactory predictions of the elastic parameters.

Combined global and local EnKF scheme

The objective of an ensemble Kalman filter (EnKF) is to simulate samples from the posterior
probability density function (pdf) of interest, which from Bayesian theory can be defined as

g(ψ |d) ∝ g(d|ψ)g(ψ). (1)

Here g(d|ψ) is the likelihood pdf for the observations, d ∈ <m, and g(ψ) is the joint prior
distribution for the parameters and the model state, ψ ∈ <q.

When working with seismic difference data, the measurements at a given time may de-
pend on the model state at more than one time instant. Such seismic data may be a result of a
4D inversion, where the seismic difference between two surveys are inverted to differences in
elastic parameters. The individual surveys of the elastic parameters may then not be available.
In Skjervheim et al. (2006) it was seen that the posterior distribution then included both a filter
and a smoother solution, and that the EnKF simulation involves a combination of the ensemble
Kalman filter and the ensemble Kalman smoother. Further, it was shown that this could be
handled in a similar framework as in the traditional EnKF, and for simplicity we here present
the equations on a filter form.

Let now ψj = ψ (x, tj) ∈ <qj and dj ∈ <mj represent the model variables and the measure-
ments at time tj, where the observations dj = [dpj ,dsj ]

T at a particular time tj depend on ψj.
The likelihood distribution is then represented by g(dj|ψj). Let dpj denote production observa-
tions and dsj denote seismic difference observations. In a Bayesian formulation the posterior
distribution can be represented as

g(ψj|dj, . . . ,d1) ∝ g(dj|ψj)g(ψj|dj−1, . . . ,d1), (2)
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and to sample from g(ψj|dj, . . . ,d1) a combination of a global and a local ensemble Kalman
filter is proposed.

The observation equation in the nonlinear state space model is defined by Evensen (2003),
as

dj =Hjψj + εj, (3)

where Hj = [Hpj ,Hsj ]
T is a linear observation operator. We define, Hpj , as the linear produc-

tion measurement operator, and Hsj relates the model state ψj to the seismic difference meas-
urements. Both operators allow for measurement errors εj, which are assumed to be Gaussian:

εj =
[

εpj
εsj

]

∼N
( [

0
0

]

,

[

Pεpj 0
0 Pεsj

] )

. (4)

The terms εpj and εsj are respectively production and seismic measurement errors with covari-
ance matrices Pεpj and Pεsj . Here we have assumed independence between the production and
the seismic measurement errors.

The ensemble mean and the ensemble spread of the model variables at any given time reflects
both an estimate of the true reservoir state and an uncertainty of that estimate. Each member of
the ensemble are evolved independently forward in time, but when new measurements from the
reservoir are available the first and second order moments from the ensemble is used to generate
the new reservoir state estimate and the reduced uncertainty introduced by the measurements.

The combined global and local EnKF analysis scheme is described in the following. Let the
ensemble matrix holding the members ψj ∈ <qj be defined by

Ψj = Ψ(x, tj) = (ψ1
j , . . . ,ψ

N
j ) ∈ <qj×N , (5)

where N is the number of ensemble members. All the equations below is evaluated at time tj,
and to simplify the notation we have from now dropped the time subscript j.

The ensemble perturbation matrix can be represented by

Ψ′ = Ψ− Ψ̄ = Ψ(I −1N ), (6)

where Ψ̄ is the ensemble mean matrix and 1N is the N ×N matrix where each element is equal
to 1/N. The error covariance matrix of the ensemble can be estimated as

Pψ = (N −1)−1Ψ′(Ψ′)T . (7)

Given vectors of production data, dp ∈<mp , and seismic difference data, ds ∈<ms , we can define
the N vectors of perturbed measurements as

dkp = dp+ ε
k
p

dks = ds+ ε
k
s

∀ k = 1 :N , (8)

which can be stored in the columns of the matrices

Dp = (d1
p, . . . ,d

N
p ) ∈ <mp×N

Ds = (d1
s , . . . ,d

N
s ) ∈ <ms×N .

(9)

Dp and Ds are respectively the perturbed measurements matrix for the production data and the
seismic difference data. The ensemble representation of the analysis step using production data
is

Ψa
p = Ψf +P fψH

T
p (HpP

f
ψH

T
p +Pεp )

−1(Dp−HpΨf ). (10)

The analysis step Ψa
p is now used as input to the local EnKF scheme, where seismic difference

data are assimilated.
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Figure 1: Acoustic impedance and Poisson’s ratio,
as function of porosity and clay ratio. Evaluated at
the saturations: Sw=0.2 and So=0.8.
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In the local analysis, only data from a local region is applied when updating the state vector
in a given grid cell. Thus, the data influencing the analysis for grid cell, l, are given by

dsl = Llds ∈ <msl , (11)

where the matrix Ll includes only zeros and ones and picks the simulated seismic difference
data within this prescribed local region. Correspondingly, the local observation equation can be
written as

dsl =Hslψl+ εsl εsl ∼N (0,Pεsl ), (12)

where Hsl = LlHs, εsl = Llεs, and the error covariance matrix is given by Pεsl = LlPεsL
T
l .

Defining the local representation of the seismic difference ensemble perturbations, Ssl ∈
<msl×N , and the ensemble of innovation vectors, D′

sl ∈ <msl×N , as

Ssl =HslΨ
a′

p = LlHs(Ψa
p− Ψ̄a

p), D′
sl =Dsl −HslΨ

a′

p = Ll(Ds−HsΨa′

p ) (13)

the local analysis equation at grid point l, i.e., Ψa
l , see Evensen (2003), becomes

Ψa
l = Ψa

p,lXl, (14)

where Xl can be written as

Xl = I +STsl (SslS
T
sl + (N −1)Pεsl )

−1D′
sl . (15)

By solving the local analysis equation (14) for each grid cell in the reservoir, we have determined
the global analysis ensemble conditioned to both production and seismic data.

Rock physics model

Several models have been proposed to model the effect of clay in sandstones, see Dræge et al.
(2006); Sam and Andrea (2001). The main difference between the various approaches is whether
the clay is included as a part of the load-bearing structure or not. In order to choose between
alternative models one would in practical cases use geological information, or base the choice
on previous experience with the reservoir in question. For the purpose of this numerical exper-
iment we have chosen to use the so-called dispersed clay model, i.e., the clay is considered as
dispersed in the pore volume of the sandstone and not as a part of the load-bearing structure.
This approach allows the clay to be easily included by any rock physics model, but the clay ratio
should not be too high because when the pore-filling clay exceeds about 40% of the pore space,
it will become pore-bridging, see Dræge et al. (2006). The rock physics model used here to
compute the effective properties of a porous, fluid filled medium is the Kuster-Toksøz model as
described by Johansen et al. (2002).
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In order to compute the elastic properties for a rock with porosity φ and clay ratio c (the
volume ratio of clay to the total solid), the pore space must be increased to accommodate the
volume of the clay. The pore space volume φ′ which is used to compute the properties of the
load-bearing structure becomes

φ′ = φ+ (1−φ)c. (16)

The properties of the pore fluid, including the clay, is computed by the Reuss average. The
acoustic impedance and the Poisson’s ratio, computed as functions of the porosity and clay
ratio, are shown in Fig. 1.

Synthetic 2D example

We consider a synthetic 2D problem with 15 × 15 grid cells to show the effects of using a
local versus a global scheme, when assimilating a large dataset of seismic difference data. The
reservoir consists of one oil producer and one water injector located respectively in the upper
right and in the lower left corner.

The initial ensemble of clay ratio, porosity and permeability are sampled as Gaussian fields
with constant mean and a spherical variogram model, and the reference (“true”) fields are gen-
erated from the same statistics. The means, variances and other model data are summarised in
Table 1.

The production data consist of observations of GOR, BHP and WCT. Seismic difference data
are acoustic impedance and Poisson’s ratio computed from the rock physics model presented
above. The measurement uncertainties are given in Table 2. Here, the seismic measurement
errors have the same variogram as the static fields. Two acoustic impedance difference datasets,
two Poisson’s ratio difference datasets, calculated in all grid cells, and production data every
3 months are assimilated. The simulation time is 8.5 years, where 7 years are history and 1.5
years prediction. The reference permeability field, and the Poisson’s ratio difference dataset at
the last seismic assimilation step, are plotted in Fig. 2.

The EnKF analysis updates the parameters, which are clay ratio, porosity and permeability,
and the state variables, which are saturation and pressure. The clay ratio only appears in the rock
physics model, and is therefore updated only at the time steps where seismic difference data are
assimilated.

Four experiments of model updating were performed. In Cases 1, 2, and 3 only the global
EnKF scheme is applied with respectively 100, 250 and 800 ensemble members. Case 4 uses
the combined global and local EnKF scheme, with a local stencil of 5×5 grid cells.

To evaluate the performance of the EnKF update, we have focused on the estimation of
permeability. Most of the information affecting this parameter should be in the water flooded
areas, propagating forward in time with the water front, and thus the correlation between the
seismic difference data and the permeability is expected to be stronger in the lower left part of
the reservoir during the assimilation. The quality of the EnKF estimation is measured by the
correlation between the ensemble mean and the true field, and by the root mean square (RMS)
error defined for the parameter α as

Γ(α) =



N−1
g

Ng
∑

j=1

(

N−1
N
∑

i=1

(αij −α
t
j)

2

)





1/2

, (17)

where αij is the estimate of α in grid cell j in ensemble member i, αtj is the corresponding true
value, and Ng is the number of grid cells.

The top row of Fig. 3 shows the ensemble of permeability estimates in all grid cells, plotted
together with the true field at the last assimilation step for Cases 1 to 4, where the counting of
grid cells starts from the lower left to the upper right corner in the reservoir. The middle row
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Clay ratio Porosity Permeability Variogram range Corr. between
Mean Std. Mean Std. Mean Std. along x and y dir. static fields
0.11 0.03 0.17 0.03 665 170 5 cells 0.0

Table 1: Model data used as input in the EnKF.

WCT (-) GOR (Sm3/Sm3) BHP(bar) Acoustic imp. (kg/m2s) Poisson’s ratio (-)
0.03 10 % 2.0 1.0E+04 1.0E-03

Table 2: Measurement errors for well data and seismic difference data, standard deviations.

Case no. Init. Case 1 Case 2 Case 3 Case 4
Scheme Global 100 Global 250 Global 800 Global and local 100
RMS 240.52 192.04 160.73 155.48 181.79
Corr. 0.37 0.64 0.81 0.78

Table 3: Summary of the permeability estimations for Cases 1 to 4.

of Fig. 3 shows the final ensemble mean of permeability and the last row of Fig. 3 shows the
ensemble predictions of WCT for the different cases.

From the first column in Fig. 3, where we have used a global scheme with 100 members,
we clearly see that the ensemble spread does not cover the true field in many grid cells. The
global scheme is underestimating the uncertainty, and we have obtained some strong updates
of the permeability in parts of the reservoir, where we expected the correlation between the
seismic difference data and the permeability to be small. In the final ensemble mean only parts
of the true permeability field are recovered, and all the predictions of WCT from the ensemble
is higher than the true solution.

The second column of Fig. 3 shows the EnKF results, using a global scheme of 250 mem-
bers. The ensemble spread now covers the true field in almost all grid cells, but parts of the true
field are still close to the boundary of the ensemble spread. The final ensemble mean is better
correlated with the true field than in the case with 100 members, and a lower RMS value is ob-
tained (Table 3). The WCT predictions for Case 2 seem to have a reasonable uncertainty spread.
However, the permeability variation for many of the ensemble members are quite similar, and a
too low uncertainty in the predictions might be achieved.

In column three and four in Fig. 3, we have respectively used a global scheme with 800
members and a combined global and local scheme with 100 members. As can be seen, the true
field is covered by the ensemble spread in both cases, and a large uncertainty remains in the
upper right part of the reservoir as expected. The final ensemble means characterise the true
field well, and Table 3 show that strong correlations are obtained. From Table 3 we see that
the lowest RMS is obtained for Case 3. An interesting observation is that Case 4 has a higher
RMS than Cases 2 and 3. An explanation can be that the local scheme has introduced stronger
local updates, and the ensemble spread for Case 4 shows that some members have taken both
lower and higher permeability values than the global schemes. The final ensemble mean for
Case 4 is also not as smooth as the final ensemble means obtained from the other cases. The
ensemble predictions of WCT for Cases 3 and 4 cover the true solution fairly well. The predicted
uncertainties increase faster with time, and are larger than for the predictions based on Cases 1
and 2.

The results of the above experiments show that when the amount of data is large, there are
problems related to the low rank representation of the model variable covariance matrix Pψ , and
that a large ensemble size is needed to avoid these. This problem becomes more pronounced
if the measurement error is decreased. The proposed global and local scheme seems to obtain
a better uncertainty estimation, when a fairly small local region is used, and it acts more as a
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Figure 3: Top row shows the ensemble of permeability in all grid cells. Middle row shows the final
ensemble mean permeability, where the colour scale is equal to the reference plot. Last row shows the
WCT predictions from year 7 and 1.5 years forward. The red dashed line shows the true solution.

global scheme with a large ensemble.

Synthetic 3D example

In this simulation study a synthetic 3D model of size 30×30×5 is used to show the impact of
introducing an uncertainty connected to the clay ratio in the rock physics model. The aim is also
to illustrate the effects of using an incorrect seismic difference measurement error in the EnKF
scheme. The production plan and the ensemble statistics are equal to the 2D model, where the
wells now are penetrated in all layers, and the variogram range in the z-direction is equal to
2 grid cells. The local region stencil is set to be 7× 7× 1 in this study. Three Poisson’s ratio
difference datasets, three acoustic impedance difference datasets, and well data every 3 months
are assimilated.

Four cases of model updating were performed. In Case 5 clay ratio, porosity and permeab-
ility are updated using the combined global and local scheme with 100 members. Case 6 is
similar to Case 5, but uses a constant clay ratio value equal to 0.11. Case 7 is similar to Case 5,
but uses a diagonal seismic measurement error covariance matrix. Case 8 uses a global scheme
with 250 members.

The reference fields and the final ensemble mean fields for Case 5 are plotted in the three
first columns of Fig. 4. The plots show that the combined global and local scheme obtain results
that are in good agreement with the true model, and this can also be seen from the RMS and
correlation values in Table 4. Especially the estimation of the clay ratio and the porosity are
better when the global/local scheme is used. The reason for this is most probably that the rock
physics parameters in this case have a stronger correlation to the seismic, than the permeability.

Notice that the porosity RMS value is higher than the initial RMS for Case 6. This is
caused by an over- and underestimation of the porosity values in parts of the reservoir during
the assimilation, and seems to occur because a significant information in the seismic is related
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Case no. Scheme Clay ratio Porosity Permeability
RMS Corr. RMS Corr. RMS Corr.

Initial 0.041 0.041 222.83
Case 5 Local 100 0.020 0.82 0.026 0.71 190.55 0.29
Case 6 Local 100, clay ratio=0.11 0.041 0.0 0.048 0.45 228.97 0.03
Case 7 Local 100, Pεs = diagonal 0.029 0.67 0.036 0.61 239.57 0.07
Case 8 Global 250 0.025 0.66 0.031 0.52 225.81 0.20

Table 4: Summary of experiments from the synthetic 3D model.
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Figure 4: Columns (a,b,c) show the true static fields (top) and the EnKF fields for Case 5 (bottom).
Column (d) show the seismic difference ensemble predictions (black stars), 0.5 year after the last assim-
ilation step, for Case 5 (top) and Case 6 (bottom), for the first 60 cells in layer 1. The red diamonds show
the true solution.

to a variation in the clay ratio. The correlation value obtained for the porosity is much lower
than for Case 5, and this is due to the fact that the signature from the true clay ratio is found
in the update of the porosity. The use of a constant clay ratio value also affects the estimation
of the permeability, and non-satisfactory RMS and correlation values are obtained. In the last
column in Fig. 4 the Poisson’s ratio difference predictions for Cases 5 and 6 are plotted. As can
be seen, the seismic ensemble predictions for Case 5 cover the true model much better than for
Case 6, and clearly, including the lithology in the update improves the prediction of the elastic
parameters.

To investigate the importance of using a correct seismic measurement error covariance mat-
rix, we used in Case 7 a diagonal Pεs instead of the correct spherical covariance matrix. The
RMS and correlation values in Table 4 show that the EnKF performance is then significantly
reduced, and the results indicate the necessity of working with a proper Pεs .

Case 8 is performed as a comparison run with the proposed global/local scheme. The RMS
and correlation results for Cases 8 and 5 in Table 4 show that Case 5 has obtained a better
estimation result.

Discussion and conclusions

A combined global and local EnKF scheme for the estimation of lithology, porosity and per-
meability by an assimilation of production data and seismic difference data has been presented.

The benefit of using a local scheme is that the ratio between the dimension of the model
state space and the ensemble size is smaller than for a standard global analysis in the EnKF
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update, and this allows for a larger flexibility to obtain different model solutions, since the
analysis will use a different combination of ensemble members for each grid point. The local
scheme might also be more advantageous when many observations, especially with long range
correlated errors, are assimilated.

A potential disadvantage of the local scheme is that non-physical modes may occur in the
analysis fields, because the updates are performed independently in each local region. Especially
when observations with a fairly high white noise are assimilated, this is a concern. It is then
required that a large influence region is used in the local update to preserve the smoothness of
the analysis fields.

It is demonstrated that taking into account uncertainty in lithology by updating the clay ratio
may be important. A proper representation of the seismic data error model is also shown to be
of importance during the assimilation.

Large amount of data in a global scheme with few members may cause a too large reduction
in the uncertainty of the model variables. Here, the combined global and local scheme gave
promising results regarding the uncertainty estimation, even with few members applied, and
should be investigated further.
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Abstract

Traditionally in reservoir models the Ensemble Kalman filter (EnKF) method has been used to estimate permeability and porosity.

An improvement of the reservoir characterisation can be obtained by introducing an uncertainty connected to parameters in the

rock physics model. In this paper we show that when seismic data are available also the lithology can be estimated, which is

coupled to the effective bulk modulus via the rock physics model. Incorporation of inverted seismic data in the EnKF introduces

a large amount of data in the assimilation step. Thus, to improve the results a methodology based on a combination of a global

and a local analysis scheme is proposed. The global and the local analysis are used to assimilate the production data, the inverted

3D seismic and time-lapse seismic data, where the local scheme assumes that only seismic data within a certain distance from a

state variable will impact the analysis of this particular state variable. The technique is applied to synthetic 2D and 3D reservoir

models, where effects of using local versus global analysis schemes on different inverted seismic data, such as acoustic impedance

and Poisson’s ratio, are investigated. Other evaluated factors are the effects of using different stencil sizes in the local scheme, and

the sensitivity of the EnKF performance related to the seismic measurement error quantity. An improved sampling algorithm is

also shown to influence the quality of the EnKF results.

Key words: EnKF, time lapse seismic, lithology, local analysis

1. Introduction

Conditioning petroleum reservoir simulation models to

dynamic data, also called history matching, is a challeng-

ing task in reservoir characterisation. History matching can

be considered as an ill-conditioned inverse problem, where

the characterisations of the reservoir are represented in a

high-dimensional space, and where the relation between

the reservoir model and the reservoir performance data is

represented by a highly non-linear fluid flow model which

require a large computational effort.

The inverse problem can be formulated in a Bayesian

context, e.g Tarantola (2005), which provides a stochastic

framework for generating realizations of reservoir variables

conditional to both dynamic and static data and consistent
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TorArne.Johansen@geo.uib.no (Tor Arne Johansen).

with a prior knowledge of the geology. Based on the Bayes

rule the uncertainty in the description of the reservoir and

thereby the description of future model predictions can be

characterised by the posterior probability density function,

and the aim is to perform a sampling of the posterior pdf,

such that the properties of the posterior distribution can

be assessed.

Different conditional sampling methods have been pro-

posed to explore the posterior pdf. Markov Chain Monte

Carlo (MCMC) sampling algorithms are used by Oliver

et al. (1997) and Hegstad and Omre (2001) in uncertainty

evaluation of reservoirs. In many applications samples rep-

resenting the uncertainty are obtained by reformulating

the history matching problem as a minimization problem,

where the objective function takes into account both the

data mismatch and the prior term. The Randomized Max-

imum Likelihood (RML) is such a method, and for addi-

tional discussion see e.g Liu and Oliver (2003) and Gao and

Reynolds (2005).

In this paper we describe an estimation of both static

variables (permeability, porosity and lithology) and dy-
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namic variables (pressures and saturations) by an ensem-

ble Kalman filter (EnKF) method. The update is based on

the information contained in the assimilated reservoir mea-

surements, such as water cut (WCT), flowing bottom hole

pressure (BHP), gas-oil ratio (GOR), 3D seismic data and

time-lapse seismic data.

The EnKF, developed by Evensen (1994), is a Monte

Carlo type sequential Bayesian inversion method which as-

similate observations as they becomes available. The EnKF

is related to the Kalman filter (KF), see Kalman (1960),

which provides the optimal state estimate of a linear dy-

namical system, when the error statics are assumed Gauss-

ian. The main difference between the Kalman Filter and

the EnKF is that an ensemble of non-linear forecasts are

used to estimate the error covariance. At the analysis step,

each member is then updated such that the EnKF gener-

ate an ensemble of approximate random samples from the

posterior pdf.

The analysis schemes used in the simulation studies are

based on the EnKF formulation with perturbed obser-

vations (see Burgers et al. (1998) and Houtekamer and

Mitchell (1998)), and some recent studies and publications

discussing the combined parameter and state estimation

problem within petroleum reservoir applications using

EnKF can be found in Nævdal et al. (2003); Gu and Oliver

(2004); Skjervheim et al. (2005); Wen and Chen (2005);

Haugen et al. (2006); Evensen (2006).

The use of seismic data may introduce a large number

of data points in the assimilation step, and problems re-

lated to an underestimation of the uncertainty in the low

rank covariance matrix representation of the static and dy-

namic variables may occur when few ensemble members

are used during the assimilation (see e.g Anderson (2001)).

A reason which may affect the estimation of the variance

is that a finite ensemble size will introduce spurious long-

range correlations and cause a reduction of the estimated

variance. Another reason is that the rank of the ensemble

covariance matrix is limited by the ensemble size, and the

variance of the system can only be represented within the

space spanned by the ensemble.

Anderson (2001) and Hamill et al. (2001) pointed out

that spurious correlations between uncorrelated variables

would be suppressed by using localization (local analysis).

A localization may also improve the underestimation of the

variance since it involves less data and the ratio between

the dimension of the model state space and the ensemble

size will become smaller.

To obtain an improvement regarding the underestima-

tion problem we propose a combination of a global and lo-

cal EnKF scheme in our reservoir study. Assimilation of

production data is performed with a global scheme, while

the seismic data are assimilated with a local scheme, where

we assume that only seismic data within a certain distance

from a state variable will impact the analysis in this state

variable. The local scheme updates each grid cell indepen-

dently accounting for the seismic observations only in the

local region surrounding the cell. The local schemes can be

implemented in parallel, and each local update will involve

relatively small matrices in the assimilation, such that the

method inverts many small matrices instead of one large.

Thus, with the local scheme, large amounts of seismic data

can be assimilated at a low computational cost.

Recently, several formulations and applications of the

local EnKF have been reported, mostly within ocean and

atmospheric sciences. Haugen and Evensen (2002) applied

a local analysis to assimilate sea-surface temperature and

sea-level anomalies of a Indian ocean model, and a general

formulation of the local analysis was presented by Evensen

(2003).

Local analysis is also applied in the data assimilation

of Topaz (topaz.nersec.no), which is an operational ocean

prediction system for the Atlantic and Arctic oceans. In

atmospheric data assimilations Ott et al. (2004) introduced

a local EnKF approach, where the scheme is based on an

ensemble square root filter formulation (see e.g Tippett

et al. (2003)). The accuracy and computational efficiency of

the local EnKF was investigated on a operational numerical

weather prediction model by Szunyogh et al. (2005).

The seismic reservoir characterisation can be improved

by introducing an uncertainty connected to parameters in

the rock physics model. Lithology is such a variable of in-

terest, which for siliciclastic rocks can be quantified by the

clay ratio (see e.g., Dræge et al. (2006)). Lithology may have

a strong impact on the seismic signal, and an estimation

of the clay ratio will be of importance to achieve satisfac-

tory predictions of the elastic parameters. For the purpose

of this numerical experiment we have chosen to use the so-

called dispersed clay model, i.e., the clay is considered as

dispersed in the pore volume of the sandstone and not as

a part of the load-bearing structure. This approach allows

the clay to be easily included by any rock physics model.

This paper proceeds as follows. In Section 2 we define

the notation, describe the global/local EnKF method and

discuss the complexity of the algorithm. Then in Section 3

we present the rock physics model used to compute the

inverted seismic data. Section 4 presents a 2D synthetic

example and examines the impact of using a global versus

the local scheme. In Section 5 we discuss the simulation

results obtained by introducing clay ratio as an lithology

parameter. Finally in Section 6 some conclusions are given.

2. Combined global and local EnKF scheme

The objective of an ensemble Kalman filter is to simulate

samples from the posterior distribution of interest, which

from Bayesian theory is given by

g(ψ|d) ∝ g(d|ψ)g(ψ). (1)

Here g(ψ) is the joint prior distribution for the parameters

and the model state, ψ ∈ ℜq, and g(d|ψ) is the likelihood

pdf for the observations, d ∈ ℜm, see Tarantola (2005).

In a reservoir history matching process both production

data and seismic data becomes available at different time

steps during the production history. Thus, a sequential

2



processing will be of importance, and in Evensen and van

Leeuwen (2000) it was shown that the general smoother in

Eq. (1) could be formulated as a sequential method.

When working with time-lapse seismic data, the mea-

surements at a given time may depend on the model state

at more than one time instant. Such seismic data may be

a result of a 4D inversion, where the seismic difference be-

tween two surveys are inverted to differences in elastic pa-

rameters. The individual surveys of the elastic parameters

may then not be available. In Skjervheim et al. (2006) it

was shown that the posterior pdf then included both a fil-

ter and a smoother solution, and that the EnKF simula-

tion involves a combination of the ensemble Kalman filter

and the ensemble Kalman smoother. Further, it was shown

that this could be handled in a similar framework as in the

traditional EnKF, and for simplicity we here present the

equations on a filter form.

Let now ψj = ψ(x, tj) ∈ ℜqj and dj ∈ ℜmj represent the

model variables and the observations at time tj , where the

measurements dj at a particular time tj depend on ψj . The

likelihood distribution is then expressed by g(dj |ψj). Let

dj = [dpj
, dsj

]
T
, where dpj

denote production observations

and dsj
denote seismic observations. By using the prior dis-

tribution, g(ψj |dj−1, . . . , d1), obtained from the evolution

equation in the state space model, and the likelihood dis-

tribution, g(dj |ψj), the posterior distribution can be rep-

resented by a sequential Bayesian formulation

g(ψj |dj , . . . , d1) ∝ g(dj |ψj)g(ψj |dj−1, . . . , d1), (2)

where a first order Markov process and independence be-

tween the data available at different times are assumed (see

e.g Evensen (2006)).

If we augment the model state with the model predic-

tion of measurements, see Evensen (2003), the observation

equation in the nonlinear state space model can be defined

as

dj = Hjψj + ǫj , (3)

where Hj = [Hpj
, Hsj

]
T

is a linear observation operator,

Hpj
relates the model state ψj to the production data, and

Hsj
to the seismic measurements. Both operators allow for

measurement errors, ǫj , which are assumed to be Gaussian:

ǫj =




ǫpj

ǫsj



 ∼ Gauss








0

0



 ,




Pǫpj

0

0 Pǫsj







 . (4)

The terms ǫpj
and ǫsj

are respectively production and seis-

mic measurement errors with covariance matrices Pǫpj
and

Pǫsj
. Here we have assumed independence between the pro-

duction and the seismic measurement errors.

To sample from the posterior pdf, g(ψj |dj , . . . , d1), a

combination of a global and a local ensemble Kalman filter

is proposed. The ensemble mean and the ensemble spread

of the model variables at any given time reflect both an es-

timate of the true state of the reservoir and an uncertainty

of that estimate. Each member of the ensemble is evolved

independently forward in time, but when new observations

from the reservoir are available the first and second order

moments from the ensemble are used to generate the new

reservoir state estimate and the reduced uncertainty intro-

duced by the observations.

Let the ensemble matrix holding the members ψj ∈ ℜqj

be defined by

Ψj = Ψ(x, tj) = (ψ1

j , . . . , ψ
N
j ) ∈ ℜqj×N , (5)

whereN is the number of ensemble members. All the equa-

tions below are evaluated at time tj , and to simplify the

notation we will now on drop the time subscript j.
The ensemble perturbation matrix, Ψ

′ ∈ ℜq×N , can be

expressed by

Ψ
′
= Ψ− Ψ̄ = Ψ(I − 1N ), (6)

where Ψ̄ is the ensemble mean matrix and 1N is the N ×
N matrix where each element is equal to 1/N. From the

ensemble perturbations matrix the error covariance matrix

of the ensemble, Pψ ∈ ℜq×q, can be estimated as

Pψ =
Ψ
′
(Ψ

′
)
T

N − 1
. (7)

The rank of the product in Eq. (7) cannot exceed the small-

est rank of the ensemble perturbation matrix Ψ
′
. Hence,

the rank of the covariance matrix is given by

rank(Pψ) ≤ min(q,N − 1). (8)

Note that N − 1 appear because of the mean subtraction

in Eq. (6).

Given vectors of production data, dp ∈ ℜmp , and seismic

data, ds ∈ ℜms , we can define the N vectors of perturbed

measurements as

dkp = dp + ǫkp

dks = ds + ǫks
∀ k = 1 : N . (9)

Define now ensemble matrices for the measurement pertur-

bations and the perturbed measurements

Ep = (ǫ1p, . . . , ǫ
N
p ) ∈ ℜmp×N Es = (ǫ1s, . . . , ǫ

N
s ) ∈ ℜms×N

(10)

Dp = (d1

p, . . . , d
N
p ) ∈ ℜmp×N Ds = (d1

s, . . . , d
N
s ) ∈ ℜms×N .

(11)

The ensemble representation of the production and the seis-

mic measurement error covariance matrices, denoted re-

spectively as, P eǫp ∈ ℜ
mp×mp and P eǫs ∈ ℜ

ms×ms , are then

given by

P eǫp =
EpE

T
p

N − 1

P eǫs =
EsE

T
s

N − 1
.

(12)

Using the equations above the ensemble representation of

the analysis step conditioned only to the production data,

Ψ
a
p ∈ ℜ

q×N
, can be written as (see e.g Evensen (2006)

Ψ
a
p = Ψ

f
+P fψH

T
p (HpP

f
ψH

T
p +Pǫp)

−1
(Dp−HpΨ

f
), (13)

where Ψ
f ∈ ℜq×N is the forecast ensemble matrix. The

analysis step Ψ
a
p is now used as input to the local EnKF

scheme, where seismic data are assimilated.
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In the local scheme, only data from a local region is ap-

plied when updating the state vector in a given grid cell.

Hence, the the seismic data influencing the analysis for grid

cell, l, is denoted dsl
∈ ℜmsl , and extracted by a matrix Ll

which includes only zeros and ones and picks the seismic

data within this prescribed local region. Correspondingly,

the local observation equation can be written as

dsl
= Hsl

ψl + ǫsl
ǫsl

∼ Gauss(0, Pǫsl
), (14)

where Hsl
= LlHs, ǫsl

= Llǫs, and the error covariance

matrix is given by Pǫsl
= LlPǫsL

T
l .

Defining the local representation of the seismic measure-

ments of the ensemble perturbations, Ssl
∈ ℜmsl

×N
, as

Ssl
= Hsl

Ψ
a′

p = LlHs(Ψ
a
p − Ψ̄

a
p), (15)

the ensemble of innovation vectors, D′

sl
∈ ℜmsl

×N
, as

D′

sl
= Dsl

−Hsl
Ψ
a′

p = Ll(Ds −HsΨ
a′

p ), (16)

and the matrix Csl
∈ ℜmsl

×msl as

Csl
= Ssl

STsl
+ (N − 1)Pǫsl

, (17)

the local analysis equation at grid point l, i.e., Ψ
a
l ∈ ℜ

ql×N ,

see Evensen (2006), becomes

Ψ
a
l = Ψ

a
p,l + Ψ

a′

p,lΨ
a′T
p,l H

T
s

· (HsΨ
a′

p,lΨ
a′T
p,l H

T
s + (N − 1)Pǫs)D

′

sl

= Ψ
a
p,l + Ψ

a
p,l(I − 1N )STsl

C−1

sl
D′

sl

= Ψ
a
p,l(I + (I − 1N )STsl

C−1

sl
D′

sl
) (18)

= Ψ
a
p,l(I + STsl

C−1

sl
D′

sl
)

= Ψ
a
p,lXl,

where the ensemble matrix conditioned to production data

at the same grid point, Ψ
a
p,l, is used as the forecast. The

matrix Xl ∈ ℜN×N can be written as

Xl = I + STsl
C−1

sl
D′

sl
, (19)

where we have used that 1NS
T
sl
≡ 0.

By solving the local analysis equation (18) for each grid

cell in the reservoir, we obtain the global analysis ensemble

conditioned to both production and seismic data.

2.1. Computational cost

When computing the analysis ensemble Ψ
a
l at a seismic

assimilation step, the corresponding local region includes

ql model variables together with msl
seismic observations

and an ensemble size ofN members. The computations are

repeated Ng times, where Ng denotes the total number of

local regions. In reservoir applications Ng is typical equal

to the number of active grid cells in the reservoir.

For each local region the calculation of the inverse of the

matrix Csl
defined in Eq. (17) is required. The inverse of

Csl
is found from an eigenvalue decomposition and is given

as

C−1

sl
= Zsl

Λ
−1

sl
ZTsl

, (20)

where Zsl
∈ ℜmsl

×msl contains the eigenvectors and the

diagonal matrix Λsl
∈ ℜmsl

×msl holds the eigenvalues. The

inverse in Eq. (20) will be the pseudo inverse if the matrix

is singular. If Csl
is a matrix of full-rank a computational

cost of orderO(Nm2
sl

) is required to form it. The eigenvalue

decomposition requires O(m3

sl
) operations.

In our applications we normally have msl
< N in the

local scheme. Thus, based on the construction of the in-

verse matrix C−1

sl
the dominant cost is related to the form-

ing of Xl which is O(msl
N2

) and the final computation in

Eq. (18) which is of order O(qlN
2
). The main cost for a se-

quential process is then O(qlNgN
2
) since ql > msl

. Notice

that the data assimilation on each local region is performed

independently in the local scheme. Hence each assimilation

can be implemented in parallel, which may reduce the com-

putational time significantly.

For a global analysis of the seismic data q model vari-

ables andms seismic observations are included in the equa-

tions. In this case we havems ≫ N , and the eigenvalue de-

composition of the matrix Cs will be the dominating part

of the computational time. Hence, an alternative efficient

algorithm is used, which reduces the factorization of the

ms ×ms matrix Cs to a factorization of a N × N matrix

(see e.g Evensen (2004)). The dominant cost of forming X
is of order O(m2

sN), and the final computation will be of

order O(qN2
). In a real field case we typically have ms =

Ng and q = 10Ng and the main cost for the global analy-

sis require then O(N2

gN) operations. Comparing the com-

putational cost for the local scheme, O(qlNgN
2
), and the

global scheme, O(N2

gN), we see that as Ng increase the

global scheme will become the most expensive scheme to

compute.

A reduction in the computational cost for the global

analysis in the case when ms ≫ N can be obtained by us-

ing a low rank representation of the seismic measurement

error covariance matrix, P eǫs , given in Eq. (12). The domi-

nant cost is then of order O(NgN
2
). If msl

≫ N this effi-

cient algorithm can also be used in the local scheme. A more

detailed description of the efficient EnKF schemes when a

large amount of data are introduced in the analysis can be

found in Evensen (2004) and Skjervheim et al. (2006).

3. Rock physics model

Several methods have been proposed to model the effect

of clay in sandstones, e.g Dræge et al. (2006); Sam and An-

drea (2001). The main difference between the various ap-

proaches is whether the clay is included as a part of the

load-bearing structure or not. In order to choose between

alternative models one would in practical cases use geolog-

ical information, or base the choice on previous experience

with the reservoir in question. In this study we have used

a dispersed clay model, i.e., the clay is considered as dis-

persed in the pore volume of the sandstone and not as a

part of the load-bearing structure. In such a model the clay

ratio should not be too high because when the pore-filling
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clay exceeds about 40% of the porespace, it will become

pore-bridging, see Dræge et al. (2006). If this happens, the

additional amount of clay should be included as part of the

load-bearing matrix. In such cases we compute new effec-

tive properties of the matrix material by the Voigt-Reuss-

Hill average, see Mavko et al. (2003). The rock physics

model used here to compute the effective properties of a

porous, fluid filled medium is the Kuster-Toksöz model as

described by Johansen et al. (2002). The Kuster-Toksöz

method is an effective medium theory in which the fluid

filled pores are modelled as ellipsoidal inclusions in a homo-

geneous background medium. Thus, it is not necessary to

use Gassmann’s relation in order to calculate the effect of

the fluids. The resulting moduli are slightly higher than if

the moduli were calculated for empty pores (dry rock) and

the fluid effect were accounted for by Gassmann’s relation.

This is because the Kuster-Toksöz method assumes that

the pore are unconnected while Gassmann assumed con-

nected pores. When clay partially fills up the pore-space,

the assumption of unconnected pores may be preferable.

In order to compute the elastic properties for a rock with

porosity φ (volume fraction of fluids) and clay ratio c (the

volume ratio of clay to the total volume of solids), the pore-

space must be increased to accommodate the volume of the

clay. The pore-space volume φp which is used to compute

the properties of the load-bearing structure becomes

φp = φ+ (1− φ)c. (21)

However, the pore-space volume should stay below the crit-

ical porosity φc of sandstones, typically 40%, i.e.

φp < φc. (22)

If this limit is exceeded, the excessive clay is again included

in the load-bearing matrix material by the Voigt-Reuss-Hill
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Fig. 1. The clay will be fully or partially dispersed in the pore-space

depending on the combination of porosity and clay ratio. The limits

shown here were computed from equations (24) and (25) for a critical

pore-space porosity φc = 0.4 and a pore-bridging limit cp = 0.4. Both

requirements must be fulfilled if all the clay should be dispersed, so

it is only in the lower triangular area that the clay is fully dispersed.

For other combinations of porosity and clay ratio, the remaining clay

will be included in the matrix.

Table 1

Pore structure model. The relative concentration for a given aspect

ratio is the fraction of the total porosity. Hence, the relative concen-

tration for all aspect ratios sum up to one.

Aspect ratio 1 0.5 0.1 0.05 0.01

Relative concentration 0.40 0.38 0.16 0.05 0.01

Table 2

Fluid components used in the modelling, computed at 140 bar and

109 deg C.

Bulk modulus Shear modulus Density

(GPa) (GPa) (kg/m3)

Brine 2.52 - 990

Oil 0.384 - 683

Gas 0.025 - 87.7

Sandstone matrix 30.0 30.0 2650

Clay 20.0 10.0 2600
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Fig. 2. Acoustic impedance and Poisson’s ratio as a function of

porosity and clay ratio. Evaluated at a pressure of 140 bar and

saturations: Sw = 0.2 and So = 0.8.

average. The limitation on c imposed by pore-bridging may

be expressed as

(1 − φ)c

φp
< cp. (23)

where cp is the limit for when the dispersed clay becomes

pore-bridging. By inserting (21) into (22) and (23) and

solving for c, we get the following two requirements for the

dispersed clay:

c <
φc − φ

1− φ
(24)
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c <
cp

1− cp

φ

1− φ
. (25)

These two requirements are plotted as functions of porosity

(fluid content) in Figure 1.

The effective bulk modulus of the pore fluid, including

the dispersed clay, is computed by the Reuss average.

The pore structure in the rock physics model is given in

Table 1. The model contain both spherical and ellipsoidal

inclusions defined by the aspect ratio, β = b/a, where b
and a are the smallest and largest semi-axis, respectively.

Five different aspect ratios are used in the model, where

the relative concentration for each aspect ratio is given as a

fraction of the total porosity. The material properties of the

solid and the fluids are given in Table 2. Typical acoustic

impedance and the Poisson’s ratio, computed as functions

of the porosity and clay ratio, are shown in Fig. 2. If this

way of including the clay (dispersed) were compared to

the more common practice of including all the clay in the

load-bearing matrix, we would find that the dispersed clay

method has a higher sensitivity, i.e., small quantities of clay

have a larger effect on the elastic properties of the rock.

4. Synthetic 2D example

To evaluate the effects of using a global versus a local

scheme when assimilating a large dataset of time-lapse seis-

mic data, we consider a synthetic 2D problem with 15× 15

grid cells. The reservoir consists of one water injector and

one oil producer located respectively in the lower left and

upper right corner. Injection of water starts after one year

of production, allowing for production below bubble-point,

and before a higher reservoir pressure is re-established, free

gas will evolve around the producer.

The initial ensemble of permeability, porosity and clay

ratio are assumed independent and sampled as Gaussian

fields with constant mean and a gaussian variogram model.
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Fig. 3. (a): True permeability, (b) and (c): True acoustic impedance

difference and Poisson’s ratio difference at the last seismic assimila-

tion step.

Table 3

Model data used as input in the EnKF.

Mean Standard deviation

Clay ratio 0.11 0.03

Porosity 0.17 0.03

Permeability (mD) 665 170

Table 4

Measurement errors for production data, standard deviations.

Water cut Gas-oil ratio Bottomhole pressure

(-) (Sm3/Sm3) (bar)

0.01 10 % 2.0

Table 5

Measurement errors for time-lapse seismic data, standard deviations.

“a-cases” “b-cases”

Acoustic impedance (kg/m2s) 1.0E+04 5.0E+04

Poisson’s ratio (-) 1.0E-03 5.0E-03

Table 6

Summary of the permeability estimations at the last assimilation

step for Cases 1 to 8.

Cases Scheme “a-cases” “b-cases”

Corr. RMS Corr. RMS

Case 1 Global 100 0.04 200.1 -0.12 203.3

Case 2 Global 250 0.80 110.2 0.28 173.5

Case 3 Global 800 0.86 89.6 0.31 160.2

Case 4 Local 100, 3× 3 0.78 112.6 0.13 177.3

Case 5 Local 100, 5× 5 0.79 106.2 0.17 180.0

Case 6 Local 100, 7× 7 0.69 121.9 0.14 189.1

Case 7 Global 100 Imp. 0.23 193.0

Case 8 Local 100 Imp., 5× 5 0.40 154.7

The reference (“true”) fields are generated from the same

statistics. The variogram range is set to be 5 grid cells in x
and y direction. The means and variances are summarised

in Table 3.

The production data consist of observations of WCT,

GOR and BHP. Time-lapse seismic data are acoustic

impedance and Poisson’s ratio computed from the rock

physics model presented in Section 3. The measurement

uncertainties for the production data are given in Table 4.

In our study we have used two different measurement error

levels for the time-lapse seismic data, denoted by “a-cases”

and “b-cases”, and the standard deviation values can be

found in Table 5. The seismic measurement errors have a

spherical variogram with same range as the static fields.

From the study of the rock physics model it was seen that

the elastic parameters had different sensitivity to the para-

meters in the model. Thus, to take in to account the com-

plementary information both the acoustic impedance and

the Poisson’s ratio differences are used simultaneously at a

given seismic assimilation step. The measurement errors in

the acoustic impedance and Poisson’s ratio differences are

assumed independent, and the assimilation of the elastic

parameters is performed sequentially one dataset at a time.

This approach is used to avoid that a poor scaling between

the acoustic impedance and the Poisson’s ratio may affect

the results, see Evensen (2003). The validity of this ap-
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Fig. 4. EnKF results for Cases 1a-3a. The top row in (a) and (b) shows the final ensemble mean permeability, where the colour scale is equal

to the reference plot. Middle row shows the ensemble mean plus/minus three standard deviation plotted together with the true field. Last

row shows the OPR predictions from year 7.5 and 1.5 year forward, where the red dashed line shows the true solution.
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Fig. 5. EnKF results for Cases 1b and 3b. The explanation of the

plots are given in Fig. 4.

proach can be found in Evensen and van Leeuwen (2000).

The time-lapse seismic datasets are assimilated at years 1,

3.5, 6 and 7
1

4
, and are the differences between the monitor

surveys at these times and the base survey, computed at

time zero. Production data are assimilated every 3 month.

The simulation time is 9 years, where 7.5 years are history

and 1.5 years prediction. The reference permeability field

is plotted in Fig. 3 together with the computed acoustic

impedance and the Poisson’s ratio differences datasets at

the last seismic assimilation step.

The EnKF updates the parameters, which are permeabil-

ity, porosity and clay ratio, and the state variables, which

are pressure and saturation. The clay ratio only appears in

the rock physics model, and is therefore updated only at the

time steps where time-lapse seismic data are assimilated.

Eight cases of model updating were performed. In Cases

1, 2, and 3 only the global EnKF scheme is applied with

respectively 100, 250 and 800 ensemble members. When

using the local scheme it is important that the size of the

local stencil is large enough to include all the information

from the surrounding observations, which will significantly

impact the analysis of state variable at the center of the

stencil. On the other hand, an underestimation of the vari-

ance in the low rank ensemble covariance matrix may oc-

cur if the stencil is too large. Thus, in Cases 4, 5, and 6

we vary the size of the local region, using 3 × 3, 5× 5 and

7 × 7 stencils, and keeping the ensemble size fixed at 100

members. Each of the six cases above have been run by the

two different seismic measurement error levels, given in Ta-

ble 5. In Cases 7 and 8 we have used an improved sampling

algorithm presented by Evensen (2004), where a start en-
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Fig. 6. EnKF results for Cases 4a-6a. The explanation of the plots are given in Fig. 4.
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Fig. 7. EnKF results for Cases 5b and 8b. The explanation of the

plots are given in Fig. 4.

semble of 800 members are used to generate the initial 100

member ensemble. Case 7 uses a global scheme and Case 8

uses a local scheme with a 5× 5 stencil. Both cases use the

largest seismic measurement error in Table 5.

To evaluate the quality of the EnKF solution, we have

focused on the estimation of permeability. Most of the in-

formation affecting this parameter should be in the water

flooded areas, propagating forward in time with the water

front, and thus the correlation between the permeability

and the time-lapse seismic data is expected to be stronger

in the lower left part of the reservoir during the assimi-

lation. The performance of the EnKF update is measured

by the correlation between the true field and the ensem-

ble mean, and by the root mean square (rms) error of the

ensemble mean, J , defined for the parameter α as

J =

√
√
√
√
√

1

Ng

Ng∑

j=1

(

1

N

N∑

i=1

αij − αtj

)2

, (26)

where αij is the estimate of α in grid cell j in ensemble

member i, αtj is the corresponding true value, andNg is the

number of grid cells. As a measure of how well the mem-

bers in the ensemble represent the true solution, we will

use the ensemble spread of permeability by the envelope

of plus/minus three standard deviations. The rms and cor-

relation results for the different cases are summarized in

Table 6.

In Fig. 4 the experimental results for Cases 1a-3a are

plotted. For the global scheme with 100 members, shown

in the left column, only few parts of the true permeabil-

ity field is recovered in the final ensemble mean. The en-

semble spread is small, and the obtained low rank covari-

ance matrix of the permeability is clearly underestimating

the uncertainty. Large rms and small correlation values are
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achieved in Table 6, and the predictions of OPR from the

ensemble are all higher than the true solution except from

some few members.

The middle and right column show a significantly im-

provement in the EnKF performance, when the number

of ensemble members is increased. Especially, the global

scheme with 800 members obtain a final ensemble mean

that has a close resemblance to the true field. The spread

of the ensemble covers the true field except a few grid cells,

and a rather large uncertainty remains in grid cells close to

the boundary of the reservoir as expected since the water

front has not reached this area. The ensemble predictions

of OPR also cover the true solution well.

Fig. 5 shows the corresponding plots for Cases 1b and

3b, where the time-lapse seismic data have a higher uncer-

tainty level. The representation of the truth is clearly re-

duced for all cases, and they have obtain a much larger en-

semble spread, both for the permeability and the OPR pre-

dictions. However, for Case 1b, the true field is still outside

the envelope for some grid cells. Similar as for the a-cases

the largest ensemble size in the b-cases obtain the best per-

meability estimation and highest spread.

By using a large number of members in the EnKF the

computational effort will be demanding when working with

real reservoir cases. Thus, to avoid the large ensemble size

and at the same time achieve an improvement regarding

the underestimation problem, a combined global and local

scheme is investigated.

In Fig. 6 the EnKF results for Cases 4a-6a are presented,

where the left, middle and right column show respectively

the results when a stencil of size 3 × 3, 5 × 5 and 7 × 7

is used. As can be seen from the top row the final ensem-

ble means are in close agreement to the truth, even with

the smallest stencil. The local scheme use the information

in the time-lapse seismic data from each local region, and

is able to produce permeability estimation results that are

consistent with the global scheme using a large ensemble

size. The plot show that the ensemble spread from the local

schemes are all higher than the global scheme with 100 and

250 members, and the uncertainty level for both the per-

meability and the OPR predictions are similar to the global

scheme using 800 members. Further examination show that

final ensemble means produced by the local scheme are a

bit sparser than for the cases using the global scheme, and

an explanation can be that the small influence region has

a stronger impact of the center update. The final ensem-

ble mean becomes gradually smoother and the ensemble

spread decrease as the size of the stencil increase. Notice

that if a stencil of size 15 × 15 had been used in the local

scheme the results should be essentially indistinguishable

with the global scheme using members of 100.

Corresponding plot for Case 5b is plotted in the left col-

umn of Fig. 7, where a higher measurement error in the

seismic is used. By increasing the measurement error the

correlation between the final ensemble mean and the truth

is reduced. However, comparing the estimated mean for

Cases 1b, 3b and 5b, similar features in part of the reservoir

for Cases 3b and 5b can be seen, but some stronger local

updates seems to be introduced in the local scheme.

The uncertainty results for the ensemble spread and the

OPR predictions are significantly higher for Case 5b than

for 1b, and have a closer relationship with the results ob-

tained for Case 3b.
Inspecting Table 6, we see a slightly better performance

of the local scheme when using a 5× 5 stencil. Further, we

see that Cases 4b-6b have lower rms values and higher corre-

lation values than the global scheme with the same ensem-

ble size, but the results are not as good as the global scheme

with 250 and 800 members. Thus, to make the schemes with

100 ensemble members more comparable with the global

scheme using 800 members, we have used an improved sam-

pling strategy where an ensemble of 800 members is used

to generate the initial 100 members.

Two cases using the improved sampling strategy were

run. Case 7b use a global scheme and Case 8b, plotted in

right column of Fig. 7, use a local scheme with a 5×5 sten-

cil. An improvement can be seen for both the global and the

local scheme, and Case 8b has obtained results that are at

the same level as the global scheme using 800 members. The

improvement of the results are in an agreement with the

results observed by Evensen (2004), where the EnKF sim-

ulations were based on a linear advection model to demon-

strate the impact of the improved sampling strategy.

Compared to Case 5b, a small reduction in the uncer-

tainty of the permeability is seen for the improved sam-

pling, and this can be explained by that a stronger corre-

lation between the seismic signal and the permeability is

obtained.

5. Synthetic 3D example

A synthetic 3D model of size 30× 30× 5 is used to show

the impact of introducing an uncertainty connected to the

lithology in the rock physics model, and in this study we

have quantified the lithology by the clay ratio parameter.

The production plan is equal to the 2D model, where the

wells now are penetrated in all layers. The realizations of

permeability, porosity and clay ratio are generated and up-

dated similarly as in Section 4. The ensemble statistics can

be found in Table 7, where the variogram range in x and

y direction is now set to be 10 grid cells and 2 grid cells in

z-direction.

During the run 1 3D seismic dataset and 3 time lapse seis-

mic datasets are assimilated, where each dataset include

both the acoustic impedance and the Poisson’s ratio. The

3D seismic dataset is assimilated after 1 year production,

and the time lapse seismic datasets, which are the differ-

ence between the monitor and base survey at years 3 and 1,

5 and 3, and 7 and 5, are assimilated after 3, 5 and 7 years of

production. The seismic measurement errors are presented

in Table 8. Here we have used a spherical variogram with

range of 5 grid cells in x and y direction and 2 grid cells

and z-direction. The measurement errors in the acoustic
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Fig. 8. Reference fields. Left: Permeability, Middle: Porosity, and Right: Clay ratio.

Fig. 9. Final estimated ensemble means for Case 9. Left: Permeability, Middle: Porosity, and Right: Clay ratio

Fig. 10. Final estimated ensemble means for Case 10. Left: Permeability, Middle: Porosity, and Right: Clay ratio

Fig. 11. Final estimated ensemble means for Case 11. Left: Permeability, Middle: Porosity, and Right: Clay ratio

Table 7

3D model data used as input in the EnKF.

Mean Standard deviation

Clay ratio 0.13 0.04

Porosity 0.23 0.03

Permeability (mD) 665 170

impedance and the Poisson’s ratio are assumed to be un-

correlated. The well data are assimilated every 6 month,

and the measurement errors can be found in Table 4.

Three cases of model updating were performed. In Case

Table 8

Measurement errors for seismic data, standard deviations.

3D data 4D data

Acoustic impedance (kg/m2s) 5.0E+05 1.0E+04

Poisson’s ratio (-) 5.0E-02 1.0E-03

9 clay ratio, porosity and permeability are updated using

the combined global and local scheme with 100 members

and a stencil of size 9× 9× 1. Case 10 is similar to Case 9,

but uses a constant clay ratio value equal to 0.13. Case 11

uses a global scheme with 200 members.
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Fig. 12. Poisson’s ratio predictions, Left: Case 9, Middle: Case 10, Right: Case 11. The plots show the plus/minus three standard deviation

around the ensemble mean plotted together with the true solution. The predictions are calculated at year 9, where following grid cells are

plotted: 1-60 in the upper layer, 1861-1920 in the third layer, and 4441-4500 in the bottom layer. The counting starts from the lower left

grid cell in the first layer to the upper right grid cell in the fifth layer.

Table 9

Summary of experiments from the synthetic 3D model.

Case no. Scheme Clay ratio Porosity Permeability

RMS Corr. RMS Corr. RMS Corr.

Case 9 Local 100 0.027 0.79 0.021 0.72 143.09 0.40

Case 10 Local 100, const. 0.045 0.0 0.037 0.59 170.65 0.30

Case 11 Global 200 0.046 0.37 0.033 0.32 220.84 0.11

The reference fields are plotted in Fig. 8 and the final

ensemble mean fields for Case 9 are plotted in Fig. 9. The

plots show that the combined global and local scheme ob-

tain results that are in good agreement with the true model,

and this can also be seen from the rms and correlation val-

ues in Table 9. Especially the estimation of the clay ratio

and the porosity are better when the global/local scheme

is used. The reason for this is most probably that the rock

physics parameters in this case have a stronger correlation

to the seismic, than the permeability.

Fig. 10 shows the final ensemble mean fields for Case 10.

The plot shows that an over- and underestimation of the

porosity values in parts of the reservoir during the assimila-

tion are achieved. This seems to occur because a significant

information in the seismic is related to a variation in the

clay ratio. The rms and correlation values obtained for the

porosity are respectively higher and lower than for Case 9,

and this is due to the fact that the signature from the true

clay ratio is found in the update of the porosity. The use

of a constant clay ratio value also affects the estimation of

the permeability shown by the values in Table 9.

Case 11 is performed as a comparison run with the pro-

posed global/local scheme, and the final ensemble means

are plotted in Fig. 11. The features in the estimated fields

recover only some parts of the truth, and compared with

Case 9 the values in Table 9 show that the global/local

scheme has obtained a much better estimation result.

To examine the importance of introducing an uncertainty

connected to the clay ratio parameter in the rock physics

model the spread of the predictions of the elastic parame-

ters will be of interest. Thus, a forward run from year 7.5 to

year 9 is performed, and at the end time the Poisson’s ra-

tion for each member is calculated. In Fig. 12 the Poisson’s

ratio predictions for Cases 9, 10 and 11 are plotted, where

we have chosen the grid cells 1-60 in the upper layer, 1861-

1920 in the third layer, and 4441-4500 in the bottom layer.

The counting starts from the lower left grid cell in the first

layer to the upper right grid cell in the fifth layer. As can

be seen, the seismic ensemble predictions for Case 9 cover

the true model significantly better than for Case 10, and

clearly, including the lithology in the update improves the

prediction of the elastic parameters. Fig. 12 also show the

performance of the global scheme, and compared with the

results in Case 9, a too low uncertainty in the seismic pre-

dictions are obtained. For the local scheme, the grid cells

in the fifth layer show a higher uncertainty in the predic-

tions, and a reason of this behavior may be related to the

lack of information in the conditioning, since the the wa-

terfront had not reached those cells at the last time lapse

seismic assimilation step.

6. Discussion and conclusions

In this study we have presented a combined global and

local EnKF scheme to estimate the permeability, porosity

and lithology by an assimilation of production data and

seismic data. An investigation of the performance of the lo-

cal scheme versus the global scheme, when different ensem-

ble sizes and stencil sizes are used in the EnKF method, is

also performed.

The EnKF performance of the experiments discussed

here were sensitive to the ensemble size, the sampling

scheme, the error level of the seismic data, and in the lo-

cal scheme an increase of the stencil size gave a gradually

smoother ensemble mean and a decrease in the ensemble

spread. All of these sensitivities affected the characteriza-

tion of the reservoir and influenced the covariance estima-

tion of the model variables, and thus the uncertainty in

the predictions of the production data.

The results of the above experiments show that when

the amount of data is large, there are problems related to

the low rank representation of the model variable covari-

ance matrix Pψ , and that a large ensemble size is needed to
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avoid these. This problem becomes more pronounced if the

measurement error is decreased. Here, the combined global

and local scheme gave promising results regarding the un-

certainty estimation, even with few members applied.

The benefit of using a local scheme is that the ratio be-

tween the dimension of the model state space and the en-

semble size is smaller than for a standard global analysis

in the EnKF update, and this allows for a larger flexibility

to obtain different model solutions, since the analysis will

use a different combination of ensemble members for each

grid point. The local scheme might also be more advanta-

geous when many observations, especially with long range

correlated errors, are assimilated.

A potential disadvantage of the local scheme is that non-

physical modes may occur in the analysis fields, because the

updates are performed independently in each local region.

Especially when observations with a fairly high white noise

are assimilated, this is a concern. It is then required that a

large influence region is used in the local update to preserve

the smoothness of the analysis fields.

It is demonstrated that taking into account uncertainty

in lithology by updating the clay ratio may be important.

A dispersed clay model was chosen to model the effect of

clay in sandstones, and in such a model the lithology may

have a strong impact on the seismic signal. The simula-

tions show an improvement of the reservoir characterisa-

tion, when an estimation of the clay ratio was performed.

The results also show the importance of including the clay

ratio to obtain satisfactory uncertainty predictions of the

elastic parameters.
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ABSTRACT

This paper proposes a method for characterization of natural fractures in hy-

drocarbon reservoirs by quantitative integration of production data and (anisotropic)

seismic attributes. The method is based on a unified model for the effective elastic and

hydraulic properties of fractured porous media (which takes into account the effects

of fracture geometry and fracture-fracture interaction in a consistent manner) and an

Ensemble Kalman Filter (data assimilation) method (which provides uncertainties as

well as mean values). In principle, our method can deal with fairly complex models of

fractured reservoirs (e.g., involving multiple sets of vertical fractures that are embed-

ded in a heterogeneous matrix). However, the initial inversion results presented here

are based on a simplified model (involving a single set of horizontal fractures that

are embedded in a homogeneous matrix). At the same time, the simplified model is

both heterogeneous and anisotropic, since the fracture density was allowed to vary

from grid block to grid block, in accordance with a (Gaussian) geostatistical model.

An application to synthetic data suggests that one may obtain a significantly bet-

ter estimate of the fracture density and permeability distributions within a fractured

reservoir, by using time-lapse measurements of seismic attributes (the vertical P-wave

acoustic impedance of each grid block) in addition to reservoir production data (bot-
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tomhole pressure, water cut, gas-oil ratio), in the dynamic reservoir characterization

(history matching) process.

INTRODUCTION

As conventional clastic reservoirs deplete, exploration and production of tight

sandstones and carbonates becomes an increasingly important business for the pe-

troleum industry. Its success is largely determined by our ability to identify and

characterize fracture networks that often provide pathways for hydrocarbon flow.

Heterogeneities related to fractures between wells cannot be reliably inferred from

borehole data, logs or cores alone. However, they, may be obtained from remote

physical measurements, especially seismic measurements. Seismic methods may play

a more central role in helping to simulate the flow of fluids in fractured reservoirs,

but first we need a better understanding of the relevant physics and scaling-issues.

When a fluid flows in a fractured porous medium the scale-size of pressure vari-

ations (the size of a typical grid block in a numerical reservoir simulator) is often

much larger than the scale-size of the fractures (e.g., the distance between them) so

that the flowing fluid cannot ‘see’ the individual fractures, but only a homogenized

(or upscaled) structure. For the purpose of numerical reservoir simulation, there-

fore, the (heterogeneous) fractured porous medium may be replaced by an effective

homogeneous porous medium.

Similarly, when a seismic wave propagates through a fractured porous medium the

seismic wavelength is often much larger than the scale-size of the fractures, so that

the propagating wave cannot ‘see’ the individual fractures, but only an averaged, or

smeared-out structure. For the purpose of seismic modelling, therefore, the (hetero-

geneous) fractured porous medium may be replaced by a long-wavelength equivalent

homogeneous porous medium.

The effective hydraulic and elastic properties of a fractured porous medium will
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be anisotropic if the fractures have a preferred orientation and/or if they are not dis-

tributed in space in accordance with isotropic correlation functions. Curies principle

implies that the tensors of effective elastic stiffnesses and hydraulic permeabilities are

at least as symmetric as the underlying fracture pattern (which is responsible for the

anisotropy). In other words, there may be strong correlations between the effective

permeability and seismic anisotropy of a fractured porous medium.

In this study, we are interested in the physics of heterogeneous media like frac-

tured reservoirs (composite porous media) in the domains of effective hydraulic and

(poro)elastic properties. As discussed by Gueguen and Palciauskas (1994), there exist

a formal mathematical relationship between the physical properties of heterogeneous

mediarocks in these two domains. This analogy is quite useful because a calculation

of an effective property in one domain can more or less directly be carried over to an-

other. This was recently demonstrated by Jakobsen (2006), who carried the T-matrix

approximations of Jakobsen et al. (2003a) over from the (poro)elastic domain for use

in the hydraulic domain.

The correlations between the effective hydraulic and (poro)elastic properties of

fractured porous media discussed above suggests that one could in principle use 3D

seismic data to determine the effective permeability of fractured reservoirs. However,

this task generally represents an ill-posed (nonlinear) inverse problem, which can

only be solved (by linearization) if we know the initial fluid-saturations. Temporal

changes in the dynamic variables (fluid-saturations, pore pressure) can be predicted by

using a numerical reservoir simulator, provided that we know the effective (absolute)

permeability tensor of each grid block. However, the effective permeabilities are

exactly what we are trying to determine within the framework of fractured reservoir

characterization. This is not so easy, because the properties (porosity, permeability)

of the matrix material (in which the fractures are embedded) can also vary with

position. In general, the use complementary data types may help us to reduce the

uncertainty associated with an inverse problem. For many reasons, therefore, it may
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be a good idea to try to perform some kind of (iterative) joint inversion of production

data and seismic attributes (derived from the effective elastic properties of each grid

block). The historically first attempt to integrate production data and (anisotropic)

seismic attributes for characterization of naturally fractured reservoirs (using discrete-

feature-network models) is represented by the paper of Will et al. (2005). Essentially,

the present study represents an attempt to improve on the work of Will et al. (2005).

The outline of this paper is as follows. First, we discuss how to estimate the ef-

fective permeability and undrained stiffness tensors of fractured porous media on the

basis of rigorous integral equation methods (eg., Jakobsen et al., 2003a; Jakobsen and

Hudson, 2003; Jakobsen, 2006), rather than the empirical methods of Oda (1985) and

Schoenberg and Sayers (1995) used by Will et al. (2005). Second, we discuss how to

perform a joint inversion of seismic data (vertical P-wave acoustic impedances) and

production data (gas-oil ratios, water cuts, bottomhole pressures) on the basis of an

Ensemble Kalman Filter (Bayesian data assimilation) method (see Evensen, 2006),

rather than the gradient-based method of optimization used by Will et al. (2005).

Numerical examples as well as short discussions about the advantages and disad-

vantages of the different methods of effective medium modelling and joint inversion

will be presented as we go along. Finally, we provide some concluding remarks and

recommendations for future work.

EFFECTIVE MEDIUM MODELLING OF FRACTURED POROUS MEDIA

We depict a fractured porous medium as being composed of a porous matrix with

a population of oblate spheroidal inclusions representing the fractures. The elastic

and hydraulic properties of the matrix is assumed to be known and represented by

the permeability and stiffness tensors k(0) and C(0), respectively. The population

of fractures is divided into families of fractures having the same shape/orientation,

and volume concentration v(n), labelled by n = 1, 2, ..., N . The fracture volume
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concentration (or porosity) v(n) is related with the fracture density ǫ(n) by v(n) =

(4/3)ǫ(n)α(n), where α(n) is the aspect ratio for fractures of type n. The aspect ratio

α(n) of a spheroidal inclusion with short (long) axis c(n) (a(n)) is given by α = c(n)/a(n).

Effective hydraulic properties

The effective permeability tensor tensor k∗ of the fractured porous medium de-

scribed above is given by (Jakobsen, 2006)

k∗ = k(0) + k1

(

I2 + k−1

1 k2

)−1

. (1)

Here, I2 is the identity for second-rank tensors, k1 is a second-rank tensor of first-

order corrections (for the effects of isolated fractures), and k2 is a second-rank tensor

of second-order corrections (for the effects of fracture-fracture interaction).

The first-order correction is given by (Jakobsen, 2006)

k1 =
∑

r

v(r)τ (r), (2)

where

τ (n) =
(

k(n) − k(0)
) [

I2 − g(n)
(

k(n) − k(0)
)]−1

. (3)

Here, k(n) is a second-rank tensor of effective permeability coefficients for fractures of

type n, g(n) is a second-rank tensor given by the pressure gradient Green’s function

(for a material with properties given by k(0)) integrated over a characteristic (oblate)

spheroid having the same shape as fractures of type n (see Jakobsen, 2006).

The second-order correction is given by (Jakobsen, 2006)

k2 =
∑

r

∑

s

v(r)τ (r)g
(rs)

d τ (s)v(s). (4)

Here, g
(rs)

d is a second-rank tensor given by the pressure gradient Green’s function

(for a material with properties given by k(0)) integrated over a characteristic (oblate)
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spheroid having the same aspect ratio as p(s|r)(x − x′) which, in turn, gives the

probability density for finding an inclusion of type s at point x′ given that there is

an inclusion of type r at point x (see Jakobsen et al., 2003a; Jakobsen, 2006).

Figure 2 shows the results of a numerical investigation of the effective hydraulic

properties of a porous medium containing a single set of horizontal fractures. The

ratio of the isotropic permeabilities of the fractures and matrix was 104. The aspect

ratio of the fractures was taken to be 1/100. The figure shows that the horizontal

permeability of the fractured porous medium can be 60 percent higher than the matrix

permeability, whereas the vertical permeability is hardly affected by the fractures.

These results are consistent with those of Pozdniakov and Tsang (2004). Jakobsen

(2006) compared the prediction of the T-matrix approach with numerical simulations

performed by Pozdniakov and Tsang (2004), and obtained a good match between

theory and numerical experiments.

Effective elastic properties

The dry case.—The effective stiffness tensor Cd∗ of the fractured porous medium

described above is given (for the dry case) by (Jakobsen et al., 2003a; Jakobsen and

Hudson, 2003)

Cd∗ = C(0) + C1

(

I4 + C−1

1 C2

)−1

, (5)

Here, I4 is the identity for second-rank tensors, C1 is a fourth-rank tensor of first-

order corrections (for the effects of isolated fractures), and C2 is a fourth-rank tensor

of second-order corrections (for the effects of fracture-fracture interaction).

The first-order correction is given by (Jakobsen et al., 2003a)

C1 =
∑

r

v(r)t(r) (6)

where
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t(r) = −C(0)
[

I4 + G(n)C(0)
]−1

. (7)

Here, G(n) is a fourth-rank tensor given by the strain Green’s function (for a material

with properties given by C(0)) integrated over a characteristic (oblate) spheroid having

the same shape as fractures of type n (see Jakobsen et al., 2003a).

The second-order correction is given by (Jakobsen et al., 2003a)

C2 =
∑

r

∑

s

v(r)t(r)G
(rs)

d t(s)v(s) (8)

Here, G
(rs)

d is a fourth-rank tensor given by the strain Green’s function (for a material

with properties given by C(0)) integrated over a characteristic (oblate) spheroid having

the same aspect ratio as the two-point correlation function p(s|r)(x − x′) (described

earlier).

The saturated case.—In order to calculate the effects of fluid-saturation on the

effective elastic properties of a fractured porous medium, one can use the (anisotropic

Gassmann) relation of Brown and Korringa (1975):

S∗

ijkl = Sd∗
ijkl +

(

Sd∗ − S(m)
)

ijuu

(

Sd∗ − S(m)
)

vvkl

φ0

(

S
(m)
uuvv − 1/κf

)

− (S∗

d − S(m))uuvv

. (9)

Here, S(m) = (C(m))−1, Sd∗ = (Cd∗)−1 and S∗ = (C∗)−1 is the compliance tensor

of the solid mineral component, the dry fractured porous medium and the saturated

fractured porous medium (in the undrained case), respectively. φ is the total porosity;

that is, the sum of the storage porosity associated with the homogeneous matrix

material, and the fracture porosity (which is normally extremely small) and κf is the

bulk modulus of the saturating fluid.

Brown and Korringa (1975) originally assumed that the anisotropic porous system

was fully saturated with a single fluid constituent. In the case of a fractured porous

medium which is partially saturated with oil (o), gas (g) and water (w), κf may be

regarded as the bulk modulus of an effective fluid, and we may use the well-known

formula of Wood:
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1

κf

=
Sw

κw

+
So

κo

+
Sg

κg

, (10)

where

Sw + So + Sg = 1. (11)

Woods equation (10) corresponds with an iso-stress calculation, which is generally

believed to be useful in the low-frequency regime, where there is enough time for

the pore pressure to equalize throughout the pore space (as assumed by Brown and

Korringa, 1975).

Jakobsen et al. (2003b) have developed a theory of wave-induced fluid flow, which

is (consistent with the Brown-Korringa relations) based on the higher-order T-matrix

approximations of Jakobsen et al. (2003a). As discussed by Aagersborg et al. (2007),

the theory of Jakobsen et al. (2003a,b) includes (but is more general) than the the-

ory for frequency-dependent anisotropy due to mesoscopic fractures in the presence of

equant porosity developed by Chapman (2003). By ignoring the higher-order terms

in the theory of Jakobsen et al. (2003a,b) and assuming that the ratio of the char-

acteristic times for wave-induced fluid flow at the scale of the mesoscopic fractures

and the pore scales is given by the ratio of the corresponding scale-sizes (as suggested

by Chapman, 2003), Aagersborg et al. (2007) obtained a complete match between

these two theories. This is very encouraging, but we decided to use neither of these

two (squirt flow) theories in this study. The reason for this is two-fold: (1) they are

restricted to a single fluid constituent only, and (2) they become single-scale models

in the low-frequency limit. By single-scale, we mean that they becomes independent

of the fracture-size in the limit of very low frequencies (and in the dry case), because

the fractures in these models were embedded in the solid matrix material rather than

in the porous matrix (unfractured reservoir).

Figure 3 shows T-matrix estimates of the effective elastic properties of a fractured

porous medium which is partially saturated with a water and gas. Displayed are the
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anisotropy parameters of Thomsen (1986), as well as the speed of vertical P- and

S-waves. If we look at the effects of fluid-saturation at the highest fracture densities,

we see that a small amount of gas leads to a large drop in the vertical P-wave speed,

and a significant increase of Thomsens anisotropy parameters ǫ and δ. We note that

the anellipticity is positive (ǫ− δ) < 0, which means that the slowness surface bulges

outward from the ellipse which is connecting the horizontal and vertical slownesses.

This observation may be used as a constraint within the context of seismic inversion.

Figure 4 is similar to Figure 3 but for a fractured porous medium which is partially

saturated with water and oil. We note that the surfaces are now much more planar,

and the anellipticity is still positive.

JOINT INVERSION OF SEISMIC AND PRODUCTION DATA

General considerations

In the traditional (seismic) history matching system of Will et al. (2005) (Figure

6), the model parameters of a discrete-feature-network model (e.g., fracture den-

sity, fracture strike) are adjusted until the synthetic production data and seismic

anisotropy attributes matches the observations. This procedure requires repeated

flow simulations and seismic attribute generations, because it is formulated in the

form of a minimization problem in which the mismatch between measurements and

computed values is minimized. Will et al. (2005) used a gradient-based method for

this minimization problem, which require the computation of sensitivity coefficients.

Such computations are very time-consuming, and so there is a limit on the number

of model parameters that one can practically use. Furthermore, the assessment of

uncertainty (not performed by Will et al., 2005) can only be done through repeated

history matching with different initial models, which makes the process even more

time-consuming. In addition, traditional methods for joint inversion of seismic and
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production data, like the one used by Will et al. (2005), does not allow for continuous

model updating.

The Kalman filter (KF) method (which is compared with the conventional method

in Figure 5) was originally developed to continuously update the states of linear

systems to account for available measurements. When the system is non-linear, the

extended Kalman Filter was proposed to linearize the non-linear system. For very

large models and/or highly non-linear systems, the extended Kalman filter fails (see

Evensen, 2006).

The ensemble Kalman filter (EnKF) (which is illustrated in Figure 7) was intro-

duced to overcome some of the problems of the extended Kalman filter (Nævdal et al.,

2003; Evensen, 2006). Particularly, instead of evaluating the necessary statistics (e.g.,

correlations between model parameters and responses) based on linear assumptions,

EnKF uses an ensemble of model representations from which all necessary statistics

can be directly computed (Nævdal et al., 2002; Evensen, 2006). As discussed by

Skjervheim et al. (2005), the EnKF method represents a data assimilation method

based on a sequential use of Bayes’s theorem (e.g., Tarantola, 2005; Evensen, 2006).

Workflow

In the EnKF approach used in this paper, the state vectors ψ include four types

of variables: (1) static parameters (related with the fractures and the porous matrix

in which they are embedded) (2) dynamic state variables (the fluid saturation and

pore pressure within each grid block), (3) production data (observations in boreholes)

and (4) seismic attributes (derived from the effective density and elastic properties

of each grid block). The process of seismic history matching in fractured reservoirs

using the EnKF approach consists of the following stages:

1. Initialization of the state vector.

2. Forecasting.
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3. Updating of the state vector by data assimilation.

4. Evaluate and repeat from stage 2.

Each step of this process will be detailed in what follows.

Initialization of the state vector

The filter is initialized by generating initial ensembles of static and dynamic vec-

tors (Nævdal et al., 2003; Wen and Chen, 2005). There is no production data available

at the starting time t0, but 3D seismic data may be available. The initial state should

be conditioned to the initial seismic data.

In our system, a geostatistical model is used to generate multiple realizations of

the fracture density, with given statistical parameters (histogram and variogram) to

represent the initial uncertainty in the fracture distribution before the sequential data

assimilation process is started. All other parameters related with the fractures and

the matrix are kept constant. If other static variables related with the fractures (e.g.,

fracture orientations, shapes) and/or the matrix (e.g., the background permeability,

storage porosity) are not known they should also be represented by ensembles.

Initial dynamic variables (i.e., initial saturations and pore pressures) are some-

times assumed known without uncertainty, so that they are the same for each re-

alization. If the initial dynamic variables are not known then they should also be

represented by ensembles.

Forecasting

The forecast step calls a numerical reservoir simulator and a seismic attribute

generator for each of the realizations of the uncertain fracture distribution, until

the next point in time where production and/or seismic data are available and to

be assimilated (e.g., t1). The state vector for ensemble member i after running the
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forecasting is denoted by ψf
i . The determination of ψf

i (which includes the old static

variables, the new dynamic variables and forecasted production data and seismic

attributes) is a two-stage process that can be described as follows.

Fluid flow simulation.—For each realization of the fracture density, the effec-

tive absolute permeability tensor of each (fractured) grid block was estimated by

using the T-matrix approach. For simplicity, the relative permeabilities of each grid

block (which depends on the corresponding fluid-saturations) were in this study as-

sumed approximately equal to the relative permeabilities of the unfractured matrix

material. In the future, however, we shall try to perform a steady-state upscaling (or

homogenization) of the relative permeabilities based on a repeated use of single-phase

upscaling methods (the T-matrix approach), in the limit of capillary equilibrium (see

Ekran and Aasen, 2000).

An ensemble of forecasted dynamic variables and production data were subse-

quently generated by using a single-porosity formulation associated with the Eclipse

reservoir simulator. Will et al. (2005) used a dual-porosity formulation, but both

single- and double-porosity simulators have been used for fractured reservoirs (see

Gurpinar and Kossack, 2000).

It is well-known that the pore pressure and the fluid saturations changes during

production of hydrocarbones from a naturally fractured reservoir. The absolute per-

meabilities are independent of the saturations, but generally depends on the pore

pressure, which controls the deformation (closure) of the fractures, when they are

subjected to a constant overburden stress.

A combination of the T-matrix approximations of Jakobsen (2006) with the for-

mula of Jakobsen and Johansen (2005) for the deformation of a population during

drained loading may in principle be used to estimate the effects of pore pressure on

the effective absolute permeability tensors of fractured porous grid block. However,

in this paper we followed Will et al. (2005) in ignoring such geomecanical effects.
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Seismic attribute generation.—The T-matrix approach was used to transform

maps of fracture densities and dynamic variables into corresponding maps of effective

elastic parameters which, in turn, where used to construct synthetic seismic data. In

this study, we treated the vertical P-wave acoustic impedance of each grid block as

seismic data. As discussed below, however, the cost function (describing the difference

between synthetic and observed seismic data) may be defined at various levels.

Within the context of seismic history matching (in unfractured media), it is com-

mon to treat the acoustic impedance of each grid block as ”seismic data”. This

is probably because standard (isotropic) methods for inverting the seismic sections

with respect to the acoustic impedance and the vp/vs ratio (or other combinations of

the two independent elastic parameters for an isotropic medium) of each grid block

are commonly available (see Skjervheim et al., 2005). A proper joint inversion of

seismic and production data is possible if one includes (the effects of overburden)

seismic sections and/or higher-level seismic attributes (travel time and/or amplitude

information) in the (cost function) data assimilation process (Skjervheim and Ruud,

2006).

Updating of the state vector by data assimilation

The presentation of the EnKF given in this section follows the presentation of

Nævdal et al. (2002). To take into account the measurements we use the covariance

matrix of the ensemble around the ensemble mean. The mean value of the ensemble

is given by

〈ψ〉 =
1

N

N∑

i=1

ψj, (12)

and the ensemble covariance matrix is given by (Nævdal et al., 2002)

R =
1

N − 1

N∑

i=1

(ψf
i − 〈ψ〉)(ψf

i − 〈ψ〉)T , (13)
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where N is the number of members in the ensemble. We now assume that we have

an ensemble of observations given in the following form (Nævdal et al., 2002):

di = d + ηi, (14)

where d is the actual observation and η is often drawn from a Gaussian distribution

with zero mean and covariance matrix Σ. The observation vector contains both

production and seismic data and is related to the state vector ψ through the linear

relation

d = Hψ. (15)

Here, the matrix H, which contains only zeros and ones, pick the production data

and the seismic attributes from the state vector ψ). We consider the time lapse

production and seismic data to be properly assimilated when they have been used to

evaluate the Kalman gain matrix (Nævdal et al., 2002):

K = RHT (HRHT + Σ)−1. (16)

The state vectors in the ensemble are updated using the following equation (Næv-

dal et al., 2002):

ψa
j = ψ

f
j + K(dj −Hψ

f
j ). (17)

The second part on the right-hand side of the above equation is the difference be-

tween simulated and observed production data and seismic attributes; the larger the

difference, the large update will be applied to the initial/previous state vector. With

this updating, the state vector of each realization in the ensemble is considered to

reflect the most current production data and seismic attributes, and we can proceed

to the next time step, where new production data and seismic attributes are available

for assimilation.
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Example

For simplicity, we consider a flay-lying reservoir consisting of a uniform porous

matrix with embedded horizontal fractures. The fractures are assumed to be spher-

oidal in shape and characterized by a single aspect ratio. The different grid blocks will

then have different tensors of effective permeabilities, because the fracture density is

varying from grid block to grid block.

Figure 8 shows a 2-D geostatistical reference fracture density field (15 × 15 × 1)

grid with cell size 120 × 120 × 100 meter. The reference field is generated using

a Gaussian Fast Fourier Transform (FFT) method. The fracture density ǫ has a

Gaussian distribution with a mean and variance of 0.08 and 0.03, respectively. The

(spherically symmetric) variogram is Gaussian with a range of 5 grid blocks. We

assume an injection well (I) at the lower left corner and a producer (P) at the upper

right corner. The reference field is considered as the true model, and our goal is to

reconstruct it using a combination of production data and seismic attributes.

The reservoir was assumed to be initially fully saturated with oil at constant pore

pressure of 140 bar. The injection well has a constant injection rate of 7000 Sm3/day,

and the producer is producing a constant volume of 6000 Sm3/day. The relative

permeability curves we have used in this study are taken from the real field case of

Skjervheim et al. (2006). The flow simulation is run for 2500 days and results for the

bottomhole pressure (BHP) as well as the water cut (WCT) and gas-oil ratio (GOR)

are shown in Figure 2b-d. We can see in Figure 2b-d that the bottomhole pressure

starts to increase after 365 days. This corresponds to the start of the injection process.

Figure 9 shows the acoustic impedances (with noise added) at the reference time

t0 = 0.25 years, the difference between the acoustic impedances at the first repetition

time t1 = 4.5 years and the reference time, and the difference between the acoustic

impedances at the second repetition time t2 = 6.5 years and the first repetition

time. The assumed noise level (standard deviation of the acoustic impedances) for
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the initial time (3D seismics) was 2× 105, and 104 for the repetitions (4D seismics).

The elastic properties of each grid block were estimated from the true fracture density

field and the fluid-saturations predicted by the reservoir simulator for each time step.

In the difference at time t1, we can see changes in the acoustic impedances near

the producer, even though the water front has not yet reached this area. This can

be explained by a production-induced decrease in the pore pressure, leading to the

formation of gas-bubbles in the oil phase (near the producer), and a consequent drop

of the vertical P-wave speed (see Figure 3). The difference at time t2 is mainly related

to the movement of the waterfront.

Figure 10 shows a comparison of the true fracture density field with the recon-

structed fields obtained by using production data only or a combination of seismic

and production data. Clearly, a significantly better estimate of the fracture density

is obtained by including time-lapse measurements of changes in the vertical P-wave

acoustic impedance into the fractured reservoir history matching process.

As stated earlier, one of the main advantages of using the EnKF approach, rather

than a conventional method of seismic history matching, is that we can estimate

uncertainties as well as mean values. Figure 11 shows that the effect of adding seismic

attributes to the history matching loop is to reduce the uncertainty of the estimated

fracture densities.

Figure 12 shows a comparison of the true horizontal permeability field with the one

reconstructed using both seismic and production data. Clearly, the concept of joint

inversion is working even for complicated systems like naturally fractured reservoirs.

Having determined the permeability tensor of each grid block, the reservoir simu-

lator can be used to a relatively high confidence for such tasks as predicting primary

reservoir performance (Figure 13), well planning and EOR programs.
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CONCLUDING REMARKS

The material presented here was the result of initial synthetic tests on a simplified

model. The following conclusions and comments are made:

• The addition of seismic data to the data assimilation process improved our

estimates of the fracture densities as compared with the use of production data

only.

• The vertical P-wave acoustic impedance of each grid block were treated like

”seismic data” in this study. It could be interesting to see if good results can be

obtained if we ignore the anisotropy when we estimate the acoustic impedance

of each grid block. After all, amplitude-based seismic inversion in anisotropic

media does not represent an easy task.

• In principle, one could use all the five independent elastic parameters of each

VTI grid block as seismic data. As discussed by Michelena et al. (1995),

elastic constants in heterogeneous transversely isotropic media can in principle

be determined by traveltime-based crosswell tomography.

• In any case, the assumption of a transversely isotropic medium with a vertical

symmetry axis (VTI medium) means that the present system can not only be ap-

plied to reservoirs containing horizontal fractures but also to related anisotropic

systems like sand-shale formations (see Desbarats, 1987; Pozdniakov and Tsang,

2004).

• It is possible to perform a proper joint inversion of seismic and production

data on the basis of the present method, if full seismic sections are treated as

seismic data and assimilated in the workflow of Ensemble Kalman Filtering.

However, it could then be that the EnKF method will compensate for errors in
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the model of the reservoir overburden by introducing unrealistic heterogeneities

in the reservoir target zone.

• The next step may be to develop a similar system for reservoirs containing

(multiple sets of) vertical fractures. A theory for calculating pressure-dependent

seismic attributes of such azimuthally anisotropic media (in the case of a single

fluid-constituent) was developed by Aagersborg et al. (2007).

• The work of Boulenko et al. (2005) suggests that it is also possible to use con-

trolled source electromagnetic (CSEM) data in the characterization of fractured

reservoirs by joint inversion of geophysical and production data.
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FIGURES

FIG. 1. The hydraulic response of an interacting fracture due to an applied pressure

gradient at infinity. Reproduced from Pozdniakov and Tsang (2004).

FIG. 2. The effective hydraulic properties of a fractured reservoir.

FIG. 3. Estimated effective elastic parameters as functions of the fracture density

and water-saturation for a fractured porous medium which is partially saturated with

water and gas.

FIG. 4. Same as Figure 3 but for a fractured porous medium which is partially

saturated with water and oil.

FIG. 5. The conventional (gradient-based) workflow for joint inversion of seismic

and production data used by Will et al. (2005).

FIG. 6. A comparison between the workflows of conventional and seqential (data

assimilation) methods of (seismic) history matching.

FIG. 7. An illustration of the Ensemble Kalman Filter.

FIG. 8. The reference fracture density field and production data.

FIG. 9. Acoustic impedances (with noise added) at 0.25 years (left), the difference

between the acoustic impedances at 4.5 years and 0.25 years (middle), the difference

between the acoustic impedances at 6.5 years and 4.5 years (right).

FIG. 10. The true fracture density field (left) vs the estimated fracture density field
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using production data only (middle) and using both seismic and production data

(right).

FIG. 11. The uncertainty of the fracture density (represented by the standard devia-

tion) obtained by using the EnKF method with production data only (top) and both

seismic and production data (bottom).

FIG. 12. The true horizontal permeability field (left) vs the estimated horizontal

permeability field using production data only (middle) and using seismic and produc-

tion data (right).

FIG. 13. Forcasting changes in the future oil production.
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FIG. 1. The hydraulic response of an interacting fracture due to an applied pressure

gradient at infinity. Reproduced from Pozdniakov and Tsang (2004).
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FIG. 2. The effective hydraulic properties of a fractured reservoir.
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FIG. 3. Estimated effective elastic parameters as functions of the fracture density and

water-saturation for a fractured porous medium which is partially saturated with water and

gas.
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FIG. 4. Same as Figure 3 but for a fractured porous medium which is partially saturated

with water and oil.
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;

FIG. 5. The conventional (gradient-based) workflow for joint inversion of seismic and

production data used by Will et al. (2005).
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;

FIG. 6. A comparison between the workflows of conventional and seqential (data assim-

ilation) methods of (seismic) history matching.
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FIG. 7. An illustration of the Ensemble Kalman Filter.
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FIG. 8. The reference fracture density field and production data.
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FIG. 9. Acoustic impedances (with noise added) at 0.25 years (left), the difference

between the acoustic impedances at 4.5 years and 0.25 years (middle), the difference between

the acoustic impedances at 6.5 years and 4.5 years (right).
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using production data only (middle) and using both seismic and production data (right).
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FIG. 11. The uncertainty of the fracture density (represented by the standard deviation)

obtained by using the EnKF method with production data only (top) and both seismic and

production data (bottom).
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FIG. 12. The true horizontal permeability field (left) vs the estimated horizontal per-

meability field using production data only (middle) and using seismic and production data

(right).
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Abstract

This report presents a study of a North Sea field case, where real production data and seismic

time-lapse data have been assimilated using the ensemble Kalman filter (EnKF) methodology.

1 Introduction

The goal of this study is to improve the history matching process of a North Sea reservoir by

incorporating both production data and 4D seismic data. The following procedure is based

on the ensemble Kalman filter (EnKF) methodology developed by Evensen (1994, 2003).

The EnKF methodology has shown promising results in reservoir applications and has been

reported in several papers, see Nævdal et al. (2003); Gu and Oliver (2004); Gao and Reynolds

(2005).

The EnKF methodology has previously been applied to other fields in the North Sea, and it

was demonstrated that an improvement of the match to seismic data could be obtained by

adjusting the model permeability and porosity fields, see Skjervheim et al. (2005).

2 The EnKF

In this work an ensemble square root formulation is used in the data assimilation, and in the

following paragraph the ensemble square root filter is described. The notation follows the one

used in Evensen (2004).
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2.1 Ensemble representation for Pψ

We define the matrix holding the ensemble members ψj ∈ ℜ
q

as,

Ψ = (ψ1, ψ2, . . . , ψN ) ∈ ℜq×N , (1)

where q is the size of the model state vector and N is number of ensemble members. The

ensemble mean is stored in each column of Ψ which can be defined as

Ψ = Ψ1N , (2)

where 1N is the N×N matrix where each element is equal to 1/N . The ensemble perturbation

matrix can then be defined as

Ψ
′
= Ψ−Ψ = Ψ(I − 1N ). (3)

The ensemble covariance matrix Pψ can be defined as

P eψ =
Ψ
′
(Ψ

′
)
T

N − 1
. (4)

2.2 Measurement perturbations

Given a vector of measurements d ∈ ℜm, where m is the size of the measurement vector, we

can define the N vectors of perturbed measurements as

di = d+ ǫi i = 1, . . . , N (5)

where ǫ is Gaussian distributed with zero mean and covariance Pǫ. The perturbed measure-

ments can be stored in the columns of a matrix

D = (d1, d2, . . . , dN ) ∈ ℜm×N , (6)

and the ensemble of perturbations can be stored in the matrix

E = (ǫ1, ǫ2, . . . , ǫN ) ∈ ℜm×N . (7)

The ensemble representation of the measurement error covariance matrix can then be con-

structed as

P eǫ =
EET

N − 1
. (8)

2.3 Ensemble matrices

We now introduce the ensemble of innovation vectors defined as

D′
= D −HΨ, (9)
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where H is a linear measurement operator. The matrix holding the measurements of the

ensemble perturbations, S ∈ ℜm×N , is given as

S = HΨ
′, (10)

and we define the matrix C ∈ ℜm×m as

C = SST + (N − 1)Pǫ. (11)

2.4 Analysis equation

The analysis equation for the standard EnKF is then given by

Ψ
a

= Ψ + PψH
T
(HPψH

T
+ Pǫ)

−1D′. (12)

The square root algorithm for the EnKF analysis is derived from the traditional analysis

equation for the covariance update in the Kalman filter (Kalman (1960)).

P aψ = P fψ − P fψH
T
(HP fψH

T
+ Pǫ)

−1HPψ. (13)

Using the ensemble representation for the error covariance matrix, Pψ, as defined in Eq. (4),

and the definitions of S and C in Section 2.3, the above equation can be expressed as

Ψ
a′

Ψ
a′T

= Ψ
′

Ψ
′T −Ψ

′

Ψ
′THT

(HΨ
′

Ψ
′THT

+ (N − 1)Pǫ)
−1HΨ

′

Ψ
′T

= Ψ
′

(I − STC−1S)Ψ
′T . (14)

The analyzed ensemble mean is computed from the standard Kalman filter equation, which

can be achieved by multiplication of Eq. (12) from the right with 1N . Each column is the

resulting equation for the mean and is given as

ψa = ψf + Ψ
′

STC−1
(d−Hψf ). (15)

2.5 Derivation of the EnSRF algorithm

We now assume that C, defined in Eq. (11), is of full rank. The inverse of C is found from

an eigenvalue decomposition and is given as

C−1
= ZΛ

−1ZT , (16)

where Z ∈ ℜm×m contains the eigenvectors and the diagonal matrix Λ ∈ ℜm×m holds the

eigenvalues. The Eq. (14) can then be written as

Ψ
a′

Ψ
a′T

= Ψ
′

(I − STZΛ
−1ZTS)Ψ

′T
(17)

= Ψ
′

(

I − (Λ
−

1

2ZTS)
T
(Λ

−
1

2ZTS)

)

Ψ
′T

(18)

= Ψ
′

(I − Y TY )Ψ
′T , (19)

(20)
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where we have defined the m×N matrix Y as

Y = Λ
−

1

2ZTS. (21)

Computing the singular value decomposition (SVD) of Y ,

UΣV T
= Y, (22)

where U ∈ ℜm×m, Σ ∈ ℜm×N and V ∈ ℜN×N , the Eq. (19) can be expressed as

Ψ
a′

Ψ
a′T

= Ψ
′

(I − (UΣV T
)
T
(UΣV T

))Ψ
′

(23)

= Ψ
′

(I − V Σ
T
ΣV T

)Ψ
′T

(24)

= Ψ
′

V (I − Σ
T
Σ)V T

Ψ
′T

(25)

=

(

Ψ
′

V
√

I − ΣTΣ

) (

Ψ
′

V
√

I − ΣTΣ

)T

. (26)

Hence, a solution for the analysis ensemble perturbations is

Ψ
a′

= Ψ
′

V
√

I − ΣTΣΘ
T , (27)

where Θ is a random orthogonal matrix. A random redistribution is in some cases necessary,

and a further discussion can be found in Evensen (2004). In this work an efficient subspace

ensemble square root implementation is used when seismic data are assimilated, and a more

detailed discussion of the subspace method can be found in Evensen (2004) and Skjervheim

et al. (2006). Notice that when the seismic data are given as a difference between two surveys,

a combination of the ensemble Kalman filter and the ensemble Kalman smoother has to be

applied, see Skjervheim et al. (2006).

3 Field case

3.1 Simulation model

The study is based on an eclipse simulation model of a field located in the North Sea. The

reservoir model consists of 17×39 cells areally and 13 layers. In this model layers 1-6 is called

Upper Part, layers 7-12 is called Middle Part, and layer 13 is called Lower Part. There are

three oil producers and one water injector in the model. The producers P-1 (start 17 Oct.

1993), P-2 (start 20 Sept. 1994), and P-3 (start 14 Nov. 2000); and the water injector I-1

(start 23 Apr. 1994).

The global average rate of water circulation has been relatively large, and this, together

with the good reservoir properties, has made the oil production and the reservoir pressure

sensitive to the daily injection rates. Starting at an initial pressure of 245 barsa, the reservoir

pressure has been varying between 190 and 260 barsa (well above the bubble point pressure),

and these fluctuations, together with spatial pressure variations, may have influenced the

time-lapse seismic survey.
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Figure 1: Measured and simulated Poisson’s ratio averaged over each simulation model layer.

3.2 Rock physics model and inverted seismic data

In the history matching process we have focused on matching the Poisson’s ratio difference

between two time steps of several years of production. Thus, the purpose of the rock physics

model is to convert simulated saturations and pressures to Poisson’s ratio, in order to com-

pared them to the observed counterparts.

The rock physics model, developed by others, is applied in the built-in petroelastic module

in Eclipse, consisting mainly of the Gassmann equation to derive the effective rock properties

and the Batzle & and Wang equations to derive fluid properties. However, dependencies of

elastic parameters, and optionally fluid parameters have to be included and represent a crucial

task. These dependencies, which are the dry-rock bulk and shear modulus versus porosity,

are derived from laboratory core plug measurements. In the measured data there is a very

good consistency between the inverted seismic data and the initial water oil contact.

Difference in Poisson’s ratio from the base line survey to the monitor survey averaged over

each simulation model layer is plotted in Figure 1. Measured and simulated Poisson’s ratio

differences in one of the model layers is plotted in Figure 2, which shows that the size of the

seismic signal for the simulated data are much larger than for the measured data.

Theoretically, only pressure changes should influence the data below the original oil-water

contact, and since pressure changes only have a limited influence on the Poisson’s ratio, the

water-flooded areas are expected to have an increase in Poisson’s ratio.

When Poisson’s ratio reflect water movement, we anticipate that water has mainly flooded the

lower layers of the oil zone (i.e Middle Part) before it has moved up to the producers, which

are only perforated in the Upper Part. However this is not the case in the current model,

where both the Middle and Upper Part are flooded. Thus, the seismic data may indicate

that the communication between the Middle and Upper Part, or vertical communication in

general, is lower than the current model. However, because of the uncertainties associated
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Figure 2: Measured (left) and simulated (right) Poisson’s ratio difference in layer 3 of simu-

lation grid.

with seismic data, we should be cautious when drawing conclusions.

3.3 Data assimilation

Statistical information from the geological model is used to generate the initial ensemble of

100 realizations of a Gaussian random field. In this model, information about correlation

lengths and orientation, vertical layer correlation and correlation between permeability and

porosity are given.

In this field case, the dynamic variables pressures and saturations are updated, as well as the

static parameters porosity and permeability. The well variables BHP and WCT predicted by

the model are used in the data assimilation to update the model state at the analysis times.

Two cases of EnKF updating were run: i) With production data only, i.e., BHP and WCT for

3 wells over a 12 years period with measurements approximately every month, called ”EnKF

prod”; and ii) Poisson’s ratio difference between the base line and monitor surveys in addition

to the production data, called ”EnKF prod 4D”. The simulation run of the base case model

is called ”Base case”.

Well data errors (standard deviations) used in this study are 4 bars for the bottom-hole pres-

sure and 0.025 for the water cut. A constant standard deviation of 0.007 was applied for

the Poisson’s ratio. No spatial correlations were applied for the seismic data. The measure-

ment errors are drawn from a Gaussian distribution with mean zero and the above standard

deviations.
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Base case EnKF mean prod EnKF mean prod 4D

RMS 3.06 3.16 2.65

Table 1: RMS values for the seismic data (Poisson’s ratio difference).
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Figure 3: Measured and simulated Poisson’s ratio for the two EnKF runs averaged over each

simulation model layer.

3.4 Results

RMS deviation and correlation between simulated and measured Poisson’s ratio for the base

case and the two EnKF runs are listed in Table 1. Difference in Poisson’s ratio averaged over

each simulation model layer for the two EnKF runs is plotted in Figure 3. The RMS results

and the results in Figure 3 are based on one simulation of the entire history using the final

estimated mean permeability and porosity, therefore called ”EnKF mean prod” and ”EnKF

mean prod 4D”. As can be seen, a minor reduction in the RMS value and a slightly smaller

mismatch for the seismic data is obtained in the EnKF run when both production data and

seismic data are assimilated.

Considering the vertical trend in the simulated Poisson’s ratio of the base case model, the

main increase occurs from layer 2 to 4, then the trend flattens out, and decreases again from

layer 5-6. For the measured data, there is a more gradual increase all the way down to the

water-oil contact (see Figure 3). It is clear that one way of matching the measured data

is to adjust the model such that the top part of the reservoir becomes less flooded than

the lower part. However, it is also possible that the overall level of either the simulated or

measured data is wrong; the simulated data because of an incorrect rock physics model, and

the measured data because of the uncertainties in the inversion process. The reason that the

simulated data start to decrease is, that some layers are below the initial water-oil contact.

These parts increase in size, and although there is a good correlation between the measured

Poisson’s ratio difference and the initial water-oil contact, this correlation is not large enough

to achieve the same trend as in the model.

Since water is injected in the lower part of the reservoir (Middle Part), and the producers
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are perforated in the upper part of the reservoir (in Upper Part), the main water flood may

be ”shifted downwards” by modifying the permeability or the communication between the

Upper and Lower Part. However, by doing that, the effective volume flooded in the early

period will be reduced, and the water will break through earlier. So by tuning the model to

match the seismic data, the match to production data is expected to be worse, and this also

turned out to be the case in the EnKF run where both production data and seismic data were

assimilated.

Production data for the two EnKF runs are compared with the base case in Figure 4. As

can be seen the EnKF run with production data only is matching the history better than the

base case. For the EnKF run using both production data and 4D data, a clear increase in

the mismatch term of the production data is seen at the analysis time where the seismic data

are assimilated. This is as expected, and it seems to be difficult to obtain a good match of

both production data and seismic data simultaneously. As mentioned, a major uncertainty in

the process is the rock physics model, especially the pressure effects, which are not properly

understood. Still, it is not believed that using a different rock physics model will change

the results significantly. However, in future work it would be interesting to introduce an

uncertainty to parameters in the rock physics model which are sensitive to the seismic signal.

The final permeability and porosity fields after 12 years of assimilation for the two EnKF

runs were used to re-initialize the base case simulation. The results are plotted in Figure 5,

and show the effect of the updated permeability and porosity fields on a single integration.

The forward run of the final estimated fields from the EnKF run with production data only

shows a better match than the base case model. Especially an improvement in well P-3 is

obtained. Matching the seismic data results in a too early water break through in the wells

P-1 and P-2, and the EnKF method has tried to compensate for this by increasing the pore

volume of the lower parts of the reservoir. This is seen in Figure 6, where we have plotted

final ensemble mean permeability and porosity for the two EnKF runs averaged over each

simulation model layer.

Figures 7 and 8 show the final ensemble mean of permeability and porosity in two layers for

the two EnKF runs. The results in Figures 5-6 show that relatively large modifications have

been obtained during the assimilation, and the estimation results are quite different for the

two EnKF runs.
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Figure 4: Production profiles for Wells P-1 (top), P-2 (middle), and P-3 (bottom). For base

case, EnKF with production data, and EnKF with production data and 4D data.
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Figure 5: Production profiles for Wells P-1 (top), P-2 (middle), and P-3 (bottom). For base

case, EnKF with production data, and EnKF with production data and 4D data. The results

are based on the final estimated permeability and porosity fields.
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Figure 6: The final ensemble mean of permeability (left) and porosity (right) for the two

EnKF runs averaged over each simulation model layer.
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Figure 7: EnKF results for permeability in layers 3 (top) and 12 (bottom). Base case (left),

EnKF prod (middle) and EnKF prod 4D (right).
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Figure 8: EnKF results for porosity in layers 3 (top) and 12 (bottom). Base case (left), EnKF

prod (middle) and EnKF prod 4D (right).

4 Conclusion

A method based on the ensemble Kalman filter was used on a real field reservoir to improve

model parameters such as porosity and permeability by assimilating both production data

(WCT,BHP) and seismic data (Poisson’s ratio).

To match both production data and the time-lapse seismic data the EnKF method posed a

combination of permeability modifications and an increased pore volume in the lower part

of the reservoir. In this history matching study it has been difficult to obtain a good match

of both production data and seismic data simultaneously, and the uncertainty in data and

validity of the obtained results should be investigated further.
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1 Introduction

Seismic data have a much higher areal resolution than the simulation model, while the opposite

is the case for the vertical resolution. In addition, the geological model and well log data show

different degrees of spatial resolution. When coupling the models in an ensemble Kalman

filter (EnKF) methodology, this effect has to be taken into account. This includes upscaling

and downscaling of properties and uncertainties, as well as data correlations. In this report

we have performed a simulation study of a specific downscaling algorithm called Sequential

Gaussian Simulation with Block Kriging (SGSBK), see Behrens et al. (1998) and Tran et al.

(2001).

2 Sequential Gaussian Simulation With Block Kriging (SGSBK)

method

Let Z be a multivariate Gaussian random variable with

E(Z) = 0 (1)

Var(Z) = 1. (2)

In a discretized 3D geologic model, let V denote a coarse block that comprises n point values

zi, i = 1, . . . n, and let z̄V represent the linear block average

z̄V =

n∑

i=1

αizi, where

n∑

i=1

αi = 1, (3)

where the weights are set to 1/n, such that each fine-scale grid cell contributes equally to the

linear coarse-block average.
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In this study the aim is to simulate a realization of Z in a geostatistically consistent manner

that honor the block average constraint in Eq. (3) in addition to prescribed histogram and

spatial covariance models and any conditioning known data. The simulation is performed by

a Sequential Gaussian Simulation With Block Kriging method.

From the sequential Gaussian simulation paradigm we have that the joint probability density

function of a random variable X = [X1, . . . , Xm] can be expressed by

g(x) = g(x1, . . . , xm) = g(xm|xm−1, . . . , x1) · · · g(x2|x1)g(x1), (4)

where we can simulate the joint distribution as

• x1 ∼ g(x1)

• x2 ∼ g(x2|x1)

• Continue until

• xm ∼ g(xm|xm−1, . . . , x1)

In the special case when X is a Gaussian process it can be shown that the conditional

distributions g(x2|x1), . . . , g(xm|xm−1, . . . , x1) are Gaussian processes too and the mean and

the variance can be expressed by kriging systems.

Let now zo be the value to be simulated at the current grid cell, and let {zSGS} be the set

of previously simulated values. The mean and the variance of the conditional distribution

g(zo|{zSGS}, z̄V ) is then given by the kriging system, see Behrens et al. (1998):

µo,BK =

∑

i∈{SGS}

λizi + λV z̄V (5)

σ2
o,BK = 1−

∑

i∈{SGS}

λiCoi − λV C̄oV (6)

where

• λi is the kriging weight corresponding the the previously simulated value zi

• λV is the kriging weight given to the coarse-block average constraint z̄V

• Coi is the point to point covariance between the values at cell o and cell i.

• CoV is the point to block covariance between the value at cell o and the block value at

V

• {SGS} denotes the set of previously simulated cells
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The kriging weights in Eqs (5) and (6) are the unknowns in the following equations

∑

j∈{SGS}

λjCij + λV C̄iV = Coi for i ∈ {SGS} (7)

∑

j∈{SGS}

λjC̄jV + λV
¯̄CV V = C̄oV (8)

The point-to-block and block-to-block covariances can be approximated by

C̄iV = Cov(zi, z̄V ) = Cov(zi,
1

n

n∑

j=1

zj) =
1

n

n∑

j=1

Cov(zi, zj) (9)

¯̄CV V = Cov(z̄V , z̄V ) = Cov(
1

n

n∑

j=1

zj ,
1

n

n∑

k=1

zk) =
1

n2

n∑

j=1

n∑

k=1

Cov(zj , zk) (10)

The Sequential Gaussian Simulation with Block Kriging (SGSBK) algorithm is then given as

follows:

Algorithm

1. Transform the known fine-scale data to normal-score data with zero mean and unit

variance; transform the coarse-scale data to normal-score data with zero mean and

variance of
¯̄CV V as given in Eq. (10)

2. Define a random path visiting all grid nodes to be simulated

3. At each node, construct the Gaussian conditional density function whose mean,µo,BK ,

and variance, σo,BK , are given by Eqs. (5) and (6), using all known fine-scale normal-

score data and all previously simulated values that are within the search neighborhood

4. Draw a value from the above Gaussian conditional density functions:

zo ∼ N (µo,BK , σ2
o,BK)

5. Return to Step 3. until all nodes have been visited

6. Back-transform to the simulated normal-score values to original data space

3 2D Example

In this example we assume that the true field is Gaussian distributed given by

Yt ∼ N (100, 10
2C), (11)

with mean, µ = 100, variance, σ2
= 10

2
, and where C contains a spherical covariance struc-

ture. The two dimensional true field consists of 64× 64 grid cells, and the correlation range
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is set to 20 grid cells in both directions. The true field is plotted in Figure 2 and Figures 3

and 4 shows the estimated histogram and variogram, respectively. The statistics of the true

random field is given in Table 1.

The true field is then transformed (linear averaging) to a 8×8 coarse-scale, plotted in Figure 1.

From now on we assume that we only know the coarse-scale random field and the fine-scale

covariance C. Before the SGSBK method is applied we transform the coarse-scale random

field to the normal-score domain with zero mean and variance
¯̄CV V . Figure 2 shows the

random field generated by the SGSBK algorithm, and Figures 3 and 4 shows the estimated

histogram and variogram respectively. The statistics is given in Table 1. As can be seen

the SGSBK algorithm reproduce the features and the statistical properties of the true 2D

field fairly good, and the correlation coefficients between the coarse-grid constraints and the

corresponding averages from fine-grid values are 0.99.

4 3D Example

In this example we assume that the true field is a three dimensional cube of size 16× 16× 16

that is Gaussian distributed with zero mean and unit variance

Yt ∼ N (0, C), (12)

where C is a spherical covariance structure with range equal 10 grid cells in all three directions.

The true field is plotted in Figure 6 and Figures 7 and 8 shows the estimated histogram and

variogram respectively. The statistics of the true field is shown in Table 2.

The true field is then transformed (linear averaging) to two different coarse-scale fields of size

8×8×8 and 4×4×4, plotted in Figure 5. These two fields are then normal-score transformed

and used as input to the SGSBK algorithm.

Figure 6 shows the random fields generated by the SGSBK algorithm, when either the 8×8×8

coarse-scale field or the 4×4×4 coarse-scale field is used the as the constraint. The estimated

histogram and variogram are shown in Figures 7 and 8, and the statistics of the fields is given

in Table 2.

The results show that the SGSBK algorithm reproduce the features and the statistical prop-

erties of the true 3D field satisfactory. The correlation coefficients between the coarse-grid

constraints 8× 8× 8 and 4× 4× 4 and the corresponding averages from fine-grid values are

0.98 and 0.97, respectively .

5 Conclusion

A simulation study of a specific downscaling algorithm, called Sequential Gaussian Simulation

with Block Kriging (SGSBK), is performed.
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Mean Variance

True 100.82 101.08

SGSBK 100.82 98.22

Table 1: True statistics compared with the statistics estimated from the SGSBK field for the

2D case

Mean Variance

True 0.00 1.00

SGSBK constraint to 4× 4× 4 0.03 0.91

SGSBK constraint to 8× 8× 8 0.01 0.95

Table 2: True statistics compared with the statistics estimated from the SGSBK field for the

3D case
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Figure 2: True field (left) compared with the field generated by the SGSBK method (right).

The SGSBK results show that the method generate fine-scale geostatistical models constrained

to coarse-scale average constraint in a properly way, that honor the prescribed histogram and

the spatial covariance model.
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Figure 3: Estimated histogram of the true field (left) compared with the estimated histogram

of the field generated by the SGSBK method (right).

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Distance

γ

Variogram, True field

 

 

x−direction
y−direction

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Distance

γ

Variogram, SGSBK

 

 

x−direction
y−direction

Figure 4: Estimated variogram from the true field (left) compared with the estimated vari-

ogram of the field generated by the SGSBK method (right).
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Figure 5: Coarse-scale fields, Left: 8× 8× 8, Right:4× 4× 4.
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Figure 6: True field (top) compared with two fields generated by the SGSBK method. Bottom

Left: SGSBK constraint to a coarse-grid of size 8× 8× 8. Bottom Right: SGSBK constraint

to a coarse-grid of size 4× 4× 4.
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Figure 7: Estimated histogram from the true field (top) compared with the estimated his-

togram of the fields generated by the SGSBK method Bottom Left: SGSBK constraint to

a coarse-grid of size 8 × 8 × 8. Bottom Right: SGSBK constraint to a coarse-grid of size

4× 4× 4.
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Figure 8: Estimated variogram from the true field (top) compared with the estimated vari-

ogram of the fields generated by the SGSBK method Bottom Left: SGSBK constraint to a

coarse-grid of size 8×8×8. Bottom Right: SGSBK constraint to a coarse-grid of size 4×4×4.
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