Computationally Efficient
Methods for Seismic Modeling

and Inversion

Martin Sarajeervi

Thesis for the degree of Philosophiae Doctor (PhD)
University of Bergen, Norway
2020

UNIVERSITY OF BERGEN




Computationally Efficient Methods
for Seismic Modeling and Inversion

Martin Sarajervi

Thesis for the degree of Philosophiae Doctor (PhD)
at the University of Bergen

Date of defense: 18.11.2020



© Copyright Martin Sarajeervi

The material in this publication is covered by the provisions of the Copyright Act.

Year: 2020
Title: Computationally Efficient Methods for Seismic Modeling and Inversion
Name: Martin Sarajervi

Print: Skipnes Kommunikasjon / University of Bergen



Contents

Preface
Acknowledgments
Abstract

List of publications

1 Background

1.1 Signal processing . . . . . . . ...
1.2 Waveform modeling . . . ... ... ... ... ... ... ... .
1.2.1 Bornintegrals. . . . . ... ... ... .. o000
122 Raytheory . ... ... ... ... ... .. ... ...
1.2.3 Ray-Bornintegrals . . . . . ... ... ... ...
1.2.4 Ray-Born seismograms . . . . . . . . ... ... .. .. ..
1.2.5 Finite-difference . . . ... ... ... ... . 0000
1.3 Velocity model building . . . . .. ... ... ... 0oL
1.4 Waveform inversion . . . . . . .. ... ... ...
1.4.1 Least-squares objective function . .. ... ... ... ..
1.4.2 TImaging . . . . . . . . . e
1.4.3 Full waveform inversion . . . . ... ... .. ... .. ..
1.4.4 Synthetic example . . . .. ... ... ... ........
1.5 Computational aspects . . . . . . . . ... ...
1.6 Scientific contributions . . . . . ... ...
2 Summary of publications
21 Paperl . .. ... ..
2.2 PaperIl . . ... .
23 PaperIIT . . . . . . . .
3 Outlook
3.1 Efficient extraction of isochrons . . . . . . .. .. ... ... ...
3.2 Raytracingon GPU . . ... ... ... ... ... ........
3.3 Multiparameter inversion . . . ... ... ... ... ...,



Bibliography
Paper I
Paper 11

Paper II1

33

34

47

60



Preface

This thesis is submitted as a partial fulfillment of the requirements for the
degree of Philosophiae Doctor (Ph.D.) at the University of Bergen. The advisory
committee consists of Henk Keers (University of Bergen), Jan Qystein Haavig
Bakke (Schlumberger) and Volker Oye (Norsar).

The Ph.D. project has been financially supported by the Research Council of
Norway, Petromaks2 program, grant number 245587.



Acknowledgments

First of all, I would like to thank my supervisor Henk Keers. He has patiently
shared of his deep knowledge on the topics of waveform modeling and inversion.
This has lead to many interesting discussions and has been of great help during
my research work. Henk has also introduced me to both scientific writing and
publishing, with thorough feedback and encouragement along the way.

I would also like to thank my co-supervisors Jan (Jystein Haavig Bakke and
Volker Oye, as well as my colleagues at Schlumberger Stavanger Research. In
particular, Michael Nickel for his support throughout the research work, and
the late Lars Sgnneland for giving me the opportunity to pursue a PhD in
Schlumberger.



Abstract

This thesis presents new methods for the modeling of seismic waveforms based
on ray theory and ray-Born integrals. The waveforms are used in forward mod-
eling, imaging and full waveform inversion and are computed in 3D acoustic
as well as viscoelastic media. These tasks are computationally expensive, espe-
cially in viscoelastic media. A main focus is therefore development of efficient
methods, while retaining accuracy as much as possible.

I first present a method for 3D acoustic ray-Born modeling in the time-domain
using isochron surfaces. Here, integrals over isochrons are used to accurately
compute seismograms for band-limited signals. This is a new development where
the 3D ray-Born integral is reduced to a number of surface integrals. The
surface integral formulation is optimal because the integration is only carried
out for points that correspond to specific two-way traveltimes. I validate the
new method by comparing ray-Born seismograms to seismograms computed
with finite-differences.

An alternative approach to the time-domain technique is to compute waveforms
in the frequency domain. In this case, I focus on hardware oriented methods
and use the graphics processing unit (GPU) for doing efficient computations.
The frequency-domain GPU method is used to not only evaluate 3D viscoelas-
tic ray-Born integrals for modeling, but also for the computation of viscoelastic
imaging integrals. The GPU method is compared to a parallel implementa-
tion on CPU and the results show significant improvements in computational
efficiency.

The improved efficiency for evaluation of 3D ray-Born integrals on GPU is also
of benefit for 3D full waveform inversion, a method that stands at the centre
of current research in the industry to create models of the subsurface. The 3D
inversion problem is analyzed by combining the GPU method with a memory
efficient optimization scheme (L-BFGS). This approach allows for 3D waveform
inversion on a workstation. As in the forward modeling case, I justify use of
the ray-Born integrals for full waveform inversion by numerical examples and
comparisons to finite-difference based inversion.
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Chapter 1

Background

The propagation of seismic waves is caused by a force such as an earthquake
or an air gun (used in seismic exploration) that sets particles of a medium in
motion. Below the surface, we cannot observe these motions directly because
they are buried by layers of rocks. However, we can probe the motions by
putting sensors in boreholes or at the surface to record seismograms.

In a typical seismic acquisition, a large number of seismograms from different lo-
cations are recorded. For example, in permanent reservoir monitoring, receivers
are positioned at the seafloor with a towed source firing from a boat at the sur-
face of the water. After the acquisition is completed, the recorded seismograms
are passed through a sequence of data processing steps (e.g. Yilmaz, 2001). The
end goal of these steps is to produce an image of the subsurface (e.g. Biondi,
2006) or a detailed model of the subsurface’s elastic properties (e.g. Virieux and
Operto, 2009).

In Figure 1.1, three standard data processing phases are shown: a signal pro-
cessing phase (yellow boxes), a velocity model building phase (blue boxes), and
finally, an inversion phase (gray boxes). In each phase, the individual boxes
represent processing steps that are discussed in the following sections.

The goal of this chapter is to provide a general introduction to seismic process-
ing. Special emphasis is given to the theory in the parts that discusses waveform
modeling and inversion which directly concerns the work presented in this PhD
thesis.
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Figure 1.1: The main steps in a seismic data processing sequence, split in three
phases: the signal processing phase (yellow), the velocity model building phase
(blue) and finally, the imaging and full waveform inversion phase.

1.1 Signal processing

The first phase of seismic data processing is usually related to attenuation of
noise and attenuation of direct, refracted and multiply scattered waves (in-
dicated with yellow boxes in Figure 1.1). However, the exact details of the
processing steps depend on the type of acquisition environment. For example,
an acquisition with permanent installations on the seafloor provides a low noise
environment, but may have challenges related to coarsely sampled data. A
towed marine acquisition may have different challenges such as, noise related to
effects such as swells, barnacles stuck to the cable or boat tug, but may have an
advantage of more densely spaced receivers. It is therefore up to a processing
geophysicist to make the more detailed decision of what processing steps or algo-
rithms to use and in what order to apply them. The processing is typically done
using seismic processing software, either free (Stockwell, 1997) or commercially
available products.

A variety of processing algorithms exist, many which are covered in the book by
Yilmaz (2001). Of great importance are the transform methods that converts
seismograms from the time-space domain to some other domain. Naturally, the
Fourier transform method is fundamental. First of all, for filtering of frequencies
that are outside the seismic range, but also for separating dipping (coherent)



noise from the primary seismic events (e.g. Lacoss et al., 1969; Canales, 1984).
Furthermore, Radon transform methods (i.e. linear and parabolic) are useful
(e.g. Thorson and Claerbout, 1985) for separating seismic events based on their
normal moveout velocities. For example, as a technique for removal of wave-
forms that have traveled in the water layer (e.g., the direct wave in a marine
acquisition), but also with applications for attenuation of various types of co-
herent noise and also multiples.

Multiples are parts of the wavefield that have been reflected more than once.
They can be separated in two categories. First, the surface related multiples that
come from the (relatively strong) free surface reflections. Second, the interbed
related multiples that are produced by multiple reflections between seismic in-
terfaces. As indicated in Figure 1.1, the removal of multiples (in practice this
is attenuation of multiples) is a necessary, and important, processing step that
needs to be done before the velocity model building phase. This is because we
most often seek to only use the primary reflections when deriving a velocity
model.

Different approaches are taken for attenuation of multiples, but to obtain the
best possible result, it is common to test various approaches and in some cases
also a combination of these. The standard approaches are predictive decon-
volution (Peacock and Treitel, 1969), moveout discrimination techniques (i.e.
Radon transforms) and the data-driven convolutional methods (Verschuur et al.,
1992; Moore and Dragoset, 2008). When combined with adaptive subtraction
techniques (Guitton and Verschuur, 2004) that are used to account for small
inaccuracies in amplitudes of the multiple predictions, testing of the various ap-
proaches can be time consuming, both in terms of parameter testing and com-
putational time. Nevertheless, this is done routinely for large seismic datasets
in the industry.

After the signal processing phase is completed, seismograms are ready for the
next phase which is velocity model building (indicated with blue boxes in Fig-
ure 1.1). Here the goal is to build a long-wavelength model of the seismic
velocities, referred to as the background model. For this, a waveform modeling
method (e.g. Carcione et al., 2002) is necessary. This is discussed in the next
section.

1.2 Waveform modeling

Seismic modeling is a technique used for numerical simulation of waveforms in
a model of the Earth’s subsurface. For elastic waves in a heterogeneous Earth,
such a model is given by the elastic tensor ¢ and density p. In the frequency-
domain, with angular frequency w, the simulation is governed by the elastic
wave equation

—pw?G+V-(c:VG)=14(r—s), (1.1)



for a point source at s, with the wavefield G recorded at the receiver r and with
I denoting the identity matrix (see Snieder (2001) for a detailed index notation
of tensors).

For the numerical simulation, a solution to equation 1.1 is necessary. In het-
erogeneous media, these solutions are approximate, but various approximate
methods have been developed. The two most popular methods are: ray trac-
ing (Cerveny, 2005; Chapman, 2004) done in combination with Born integrals
(Snieder, 2001; Dahlen et al., 2000) which is a high-frequency approximation,
and finite-differences (Moczo et al., 2014; Virieux et al., 2016) which is consid-
ered approximate in the sense that numerical derivatives are used. The research
work in this thesis is devoted to the ray method and the Born integral which is
discussed in more detail in the next sections.

1.2.1 Born integrals

By the decomposition of ¢ and p into a slowly varying background and a rapidly
varying term, respectively, denoted by subscripts 0 and 1, we have

c=cg+cCy (1.2)
p=po+p1 (1.3)

where from perturbation theory it follows that, to first-order, an approximate
solution to equation 1.1 is
G =Gy+G. (1.4)

This is the Born approximation where Gy is a solution to the wave equation in
the background medium and Gj is the scattered wavefield, written in terms of
GU as:

Gi(r,s,w) =w? /Gg(r,x)pl(x)Go(x,s) dx
. (1.5)
+/ VGI(r,x) 1 c; 1 VGo(x,s)dx.

This expression is of foremost importance in geophysics (Hudson and Heritage,
1981; Tarantola, 1984b, 1986; Snieder, 2001; Ikelle and Amundsen, 2005), in
particular for the seismic inverse problem, because it gives a linear relationship
between an Earth model and the scattered wavefield. In equation 1.5, the wave-
form Go(x,s) propagates in the background medium from the source located at
s to a scatterer at point x, interacts with the scatterer, and then propagates as
Go(r, x) from the scatterer to the receiver at r. The scatterer is either a density
perturbation or a perturbation in the elastic parameters. The total scattered
wavefield G is found by summation of the integrand over all scattering points
X, but to compute this, an expression for Gg is necessary. This is found using
ray theory.
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1.2.2 Ray theory

Seismic ray theory is an approximate solution to the wave equation in slowly
varying media where we consider the wavefront to be separated into individual
elementary waves that are described by individual rays. This separation allows
for tracking of the wavefield using amplitudes and travel times along the ray
paths. The advantage of this is that waveforms can be computed for specific
seismic events at a very low computational cost. This allows for interpretation
of specific seismic interfaces or specific events in a seismogram, but also, rays
can be computed over a full volume of the subsurface.

Ray theory is extensively covered in the literature, see for example the books
by Cerveny (2005) and Chapman (2004) for details and further discussions. Al-
ternatively, the review articles by Gjgystdal et al. (2002); Virieux and Lambaré
(2007); Cerveny et al. (2007) and references therein.

Improved accuracy in waveform modeling is achieved if attenuation effects are
included (Carcione, 2015). The media is then viscoelastic. Normally, viscoelas-
tic modeling is done by using the quality factor ¢). This can be a constant, for
example based on regional knowledge, or a heterogeneous @ model can be esti-
mated using imaging methods (Ribodetti and Virieux, 1998) and tomographic
methods (Dutta and Schuster, 2016). For extensions of ray theory in viscoelastic
media, see the articles on complex rays by Kravtsov et al. (1999); Hanyga and
Seredyniska (2000). Furthermore, the work on real ray tracing by Gajewski and
Psencik (1992); Vavrycuk (2008) is useful in both smooth weakly attenuating
and anisotropic media. Another practical alternative is to include attenuation
effects only in the travel times (e.g. Dahlen et al., 2000; Keers et al., 2001). In
this case, the attenuation effects do not have an effect on the ray geometry. Still,
the method is effective in weakly attenuating media (i.e. @ > 40) as shown by
examples in Sarajaervi and Keers (2019)

As indicated in the last section, the ray method plays an important role in
modeling and inversion when ray theoretical expressions are employed in the
Born integral 1.5. This is then called ray-Born modeling (see, for example,
Moser (2012) for a review) and allows for computation of the scattered wavefield
in slowly varying (smooth) heterogeneous Earth models.

1.2.3 Ray-Born integrals

By employing ray theoretical expression for Gy, combined with evaluation
of VGy in the high-frequency approximation, the ray-Born integral is given
as

Gilrs.w) = [1900 mi (v 5x.0) dx. (L6)

where m; is the perturbation vector, € is a vector containing the Rayleigh
factors and v is a vector containing the ray quantities

v(r, s, x,w) = Ars(x) exp[—iwTs(X, w)|pr(X)ps(X). (1.7)
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See Zhao and Dahlen (1996), Dahlen et al. (2000) and Snieder (2001) for detailed
derivations of v. In equation 1.7, p,. is a polarization vector corresponding to a
waveform arriving at the receiver and p; is a polarization vector corresponding
to a waveform leaving the source. The term

Aps(x) = A(r,x)A(s, x) (1.8)

contains geometrical spreading, group velocities and densities in the amplitude
term A, from a source position s to a receiver position r and then to a scattering
position x. Similarly, the travel time function is given as

Trs(x,w) = T(r,x,w) + T(s,x,w). (1.9)

Here I allow for the complex valued and frequency-dependent travel times 7'
(see Keers et al., 2001, equation 1) where the quality factor is used to describe
attenuation in the background model.

As presented here, it is not made explicit whether the background medium is
isotropic or anisotropic. However, note that in the (weakly) anisotropic case, I
speak of quasi-P and quasi-S waves because the polarization vectors p are not
in the direction of wave propagation. In this case, the terms in v then have a
slightly different meaning, compared to the isotropic case. Details on anisotropic
ray theory is covered by Cerveny (2005) and references therein.

Finally, the Rayleigh coefficients Q and perturbations m; are necessary in order
to describe the scattering using equation 1.6. In terms of wave velocities «,
for respectively P- and S-waves in isotropic media, the scattering € - m; term
is
(Qa,923,9p) - (A, AB, Ap) (1.10)
with the coefficients given by Dahlen et al. (2000). Similarly, for the anisotropic
case
(Qa, 98,9, 95,0, 9Q,) - (Aa, AB, Ap, Ad, Ae, Av) (1.11)

where §, £ and v denote the weakly anisotropic parameters (Thomsen, 1986)
and with the coefficients detailed by Calvet et al. (2006) for the transversely
isotropic case.

1.2.4 Ray-Born seismograms

In the band-limited case, a source-time function f (with forces in three direc-
tions) is convolved with the Green functions to compute seismograms

up(r,s,w) + uy(r,s,w) = [Go(r,s,w) + G1(r, s, w)]f(w). (1.12)

The convolution is done in the frequency domain and after that the seismograms
transformed to the time-domain using the Fourier transform.

An example of simulated viscoelastic seismic data is shown in Figure 1.2 for
a synthetic 3D isotropic heterogeneous SEG/EAGE Overthrust model (Amin-
zadeh et al., 1997). The simulation is done with a source acting at the center

12



of the model and with receivers positioned in a plane at the surface. The direct
P-wave arrives first with a quite strong amplitude. This is followed by PP, PS,
and SP scattered waves that are, by nature, weaker. Below that, a timeslice is
positioned approximately at the arrival of the direct S-wave.

12 2000

1000

1500 Distance Y (m)
Distance X (m) 2000 0

Figure 1.2: Record sections and timeslice of 3D viscoelastic waveforms, recorded
in a plane of receivers on the surface.

It should be noted that, many times, we need to consider only the elastic
isotropic case. This happens when we have limited knowledge of anisotropy
and attenuation effects. Moreover, in a marine acquisition, we may consider
only compressional waves and use acoustic waveforms. These waveforms are
relatively cheap to compute compared to the more accurate anisotropic and
viscoelastic waveforms and are therefore popular.

1.2.5 Finite-difference

Compared to ray based solutions to the wave equation, finite-differences solves
the wave equation in another way by using a fully numerical approach. Here,
derivatives of the wave equation are computed numerically and modeling is done
by forward propagating the wavefield step by step in time. See e.g. Roberts-
son et al. (1994); Moczo et al. (2007, 2014); Virieux et al. (2016) for further
discussion.

Waveforms are also in this case approximate because the numerical derivatives
are not exact and inaccuracies can, for example, occur at curved interfaces in
the model (which is important in practice for strongly folded areas and salt
domes). However, the method can be applied in more general media compared
to ray theory and complicated wave propagation effects, such as multiple scat-
tering and multipathing are accounted for without special treatment. This is a
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great advantage of the method and is mainly what separates the method from
other solutions. Unfortunately, the time stepping scheme is quite expensive to
compute because a large number of parameters needs to be calculated at each
time step. This is a limitation that can become problematic in practice. In par-
ticular, when waveforms needs to be computed for relatively high frequencies
(> 30 Hz) in 3D media.

Comparing the ray-based modeling methods to finite-differences is useful in
numerical examples. Not only for validation of new codes, but also for analysis
of the effects of multipathing and multiple scattering.

1.3 Velocity model building

In this and the following sections, I discuss three types of velocity models that
are used in seismic exploration. First, a relatively rough, but smooth velocity
model that is obtained by measuring signal coherency along hyperbolic trajec-
tories on common-midpoint gathers. A process referred to as migration velocity
analysis (e.g. Symes, 2008). Second, a smooth, but improved migration veloc-
ity model, constrained by travel time tomography (Woodward, 1992). Third,
a rapidly varying velocity model (high-resolution) obtained from full waveform
inversion (Pratt, 1999; Virieux and Operto, 2009). The two first models repre-
sent the so-called background model (see equation 1.2). The third represents
the perturbations.

In Figure 1.1, the first two models are derived in the velocity model building
phase (indicated with blue boxes), discussed in this section. The third type is
derived using either the ray-based or finite-difference based full waveform inver-
sion (indicated with gray boxes) which are discussed in the next section.

Migration velocity analysis begins by computing semblance panels (Yilmaz,
2001) for common-midpoint gathers on a coarse surface grid that covers the seis-
mic survey area. For each semblance panel, a root-mean-square velocity profiles
in 1D are picked based on high coherency values. This is done either manually
or using automated methods (Adler and Brandwood, 1999; Fabien-Ouellet and
Sarkar, 2020) that are often necessary due to the sheer size of seismic surveys.
After that, the velocity profiles are converted to interval velocities in depth and
smoothed in 3D. The result of this process is a model that acts as the starting
point for both travel time tomography and imaging.

The method of travel time tomography seeks to update the migration veloc-
ity model by minimizing residual moveout on common-image gathers. This is
achieved by an iterative inversion that, in simplified terms, can be described in
two steps (see Figure 1.1). First, ray-based seismic imaging is done in order to
produce the common-image gathers. Second, the tomographic inverse problem
is solved by analyzing residual moveout on the gathers, which combined with
ray tracing in the latest background model, produces a large linear system of
equations. By solving these equations in terms of the background model, the

14



residual moveout becomes smaller and the initial rough migration model is im-
proved incrementally for each tomography iteration. For more details on this
approach, see Woodward et al. (2008) and the references therein.

The velocity model building described here is computationally expensive. To
some extent because the tomography method requires computation of a very
large inverse problem, but mainly because the tomography loop requires imaging
using the latest background model, at each iteration.

1.4 Waveform inversion

After the velocity model building phase, the final background model is used to
compute a final image or model of the subsurface. In this inverse problem, an
accurate background model (for example obtained from tomography) increases
the chance of achieving a successful inversion result. Both in terms of spatial
resolution and correct positioning of seismic events in depth.

For the purpose of discussing inversion, I begin by introducing the operator L
and write the ray-Born integral in equation 1.6 as

u; = L(my), (1.13)

mapping model perturbations m; to seismograms u;, simplifying the integral
equation in a more compact form. Because equation 1.13 is a linear trans-
form, the expression can also be written, after discretization, in matrix notation
as

u; = Lm1. (114)

In this case, m; is a vector covering a 2D- or 3D-space, and u; is a vector that
contains seismograms for all sources, receivers and frequencies. Consequently,
the matrix L is very large and in general not invertible. This is addressed in
the next sections.

Seismic inversion is often put in two categories. First, imaging, also called pre-
stack depth migration, which is a relatively efficient, but approximate solution
to the inverse problem. Second, full waveform inversion which is the more
accurate, but also a more computationally expensive inversion method. Both
methods are indicated with gray boxes in Figure 1.1 and are discussed in more
detail in the sections below.

In addition to these two categories, inversion methods are often classified by the
modeling method that is employed in the inverse operator. For example, ray-
Born and Kirchhoff imaging/inversion methods (Beylkin, 1985; Bleistein, 1987)
are based on ray theory, beam methods are based on ray and beam theory
(Hill, 2001), while the so-called wave equation methods are based one-way wave
propagators and a finite-difference based method is called reverse time migration
(see Mulder and Plessix (2004) for comparisons). The next section is devoted to
inverse operators based on the ray-Born integral 1.6 and solutions to equation
1.14.



1.4.1 Least-squares objective function

A natural way to solve the inverse problem of finding m; given some uy, is to
define an objective function C' using the squared difference between observed
seismograms d and ray-Born seismograms uj:

1
Clmy) = 5w —dJ[*. (1.15)

A direct solution to equation 1.15, in a least-squares sense, is obtained when
VC =0:
L"Lm,; = L7d, (1.16)

where LT is the conjugate transpose of L. Re-arranging the terms of equation
1.16 then gives the normal equations as

m; = H'L"q, (1.17)

where it is assumed that the Hessian H = L™L is invertible. Unfortunately, as
with the direct inversion of L, this assumption is problematic because H is too
large for most practical problems (mainly in terms of computer memory) and
also singular, without a regular inverse.

1.4.2 Imaging

To overcome the problems related to inversion of the Hessian, I use approxi-
mations to H that allow us to compute an approximate inverse solution. One
way to solve equation 1.17 is to use a diagonal approximation by rewriting the
equation as

m; ~ D'LTd. (1.18)

With a regularization parameter A and an identity matrix I, the diagonal matrix
D is then
D = diag(L"L) + AL (1.19)

This is called imaging (cf. integral equation 9 in Sarajaervi and Keers, 2019)
and is less accurate than what can be achieved if off-diagonal elements of H can
be taken into account. However, the diagonal imaging approximation 1.19 is
computationally efficient and the results are useful for structural interpretation,
the tomographic inversion process and also for amplitude studies where relative
amplitude values are compared.

Although the diagonal Hessian approximation is useful (Tarantola, 1984b; Bey-
doun and Mendes, 1989), it is possible to design so-called asymptotic inversion
operators that also take elements in the vicinity of the diagonal of H into ac-
count. This was presented by Beylkin (1985); Beylkin and Burridge (1990) who
derived a quite accurate approximation for seismic imaging using an asymptotic
Hessian. Their work was continued by other authors who focused on improving
accuracy using an iterative asymptotic approach (Jin et al., 1992) that has, with
later developments, been demonstrated for practical applications (Thierry et al.,
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1999; Lambaré et al., 2003; Operto et al., 2003). Both the diagonal and asymp-
totic Hessian approximations are routinely employed in the industry.

Figure 1.3 shows an imaging result using a synthetic example. A true per-
turbation model (Figure 1.3a) is used to produce synthetic seismograms with
finite-differences. These seismograms are then used in equation 1.18 to produce
an approximate image m;j.

1.4.3 Full waveform inversion

Since the early works by Lailly (1983) and Tarantola (1984a, 1986, 1988), the op-
timization approach to seismic inversion has proven useful (Pratt, 1999; Virieux
and Operto, 2009). This is called full waveform inversion and a successful full
waveform inversion results goes beyond what can be achieved with imaging and
also gives an opportunity to accurately de-couple the various elastic parameters
and the density.

As an alternative to the approach of using the normal equations (discussed
above), the full waveform inversion method attempts to minimize the objec-
tive function 1.15 in the framework of iterative optimization (see, for example
Tarantola, 2005). In this case, I seek roots of C' in the vicinity of m; by

mgkﬂ) = mgk) +60Am;,, (1.20)

where 0 is a parameter for the step-length (see Nocedal and Wright, 2006, chap-
ter 3) and Amy is a step-direction for the kth iteration. The method starts with
an initial model m§0> containing zeros, or the diagonal approximation 1.18, and

continues by making incremental updates to m; in the direction
Am; =B7!'VC. (1.21)

The step directions can be purely gradient based (with B as the identity), but
higher accuracy is obtained by using quasi-Newton methods (Brossier et al.,
2009; Pan et al., 2017) where also the Hessian operator is taken into account.
In equation 1.21, B denotes a quasi-Newton Hessian approximation (see Nocedal
and Wright, 2006, chapter 6) and the gradient VC is given by the ray-based
Fréchet derivatives

VC = R{LT(d - Lm,)} (1.22)

(cf. Pratt et al., 1998, equation 10). Even though L also in this case covers a
large parameter space, the practical memory requirements needed to compute
VC' are low. This is because the two matrix vector products in equation 1.22
are both computed without the need to form the L explicitly (Sarajaervi and
Keers, 2019).

To compute B~! in equation 1.21 for the parameter space covered by L, the
so-called limited-memory algorithms (see Nocedal and Wright, 2006, chapter
7) can be applied. A popular variant is the limited-memory BFGS method
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(Byrd et al., 1995) where B is a compact approximation of the Hessian. The
approximation is computed by storing a set of vectors that represent curvature
information from the most recent iterations.

Finally, note that when ray-Born integrals are employed in the optimization
scheme, the observed seismograms d should contain only the singly scattered
waves. As shown in Figure 1.1, this is readily available after the multiple atten-
uation step that is done in preparation for velocity model building.

1.4.4 Synthetic example

Figure 1.3c shows a full waveform inversion result that uses the same input data
as that used for imaging in Figure 1.3b. As expected, this demonstrates that full
waveform version (k = 25 iterations) produces a detailed perturbation model
compared to imaging and the true perturbation model (in Figure 1.3a).

2 2 2
Distance-x (km) Distance-x (km) Distance-x (km)

(2) () (c)

Figure 1.3: A synthetic example of seismic imaging and inversion where a) is
the true velocity perturbation model, b) is the imaging result and c) is a the
full waveform inversion result after 25 iterations.

1.5 Computational aspects

A lot of effort in geophysics has focused on development of the theoretical back-
ground for seismic algorithms. This is important, but to make use of these
theoretical developments, we need to move from theory to numerical implemen-
tations. In this process, it makes sense for the numerical implementations to
take full advantage of hardware developments that can be used to run compu-
tations in parallel. Roughly speaking, there are two ways of doing this when
considering a single computer. Either by using central processing units (CPUs)
with multiple cores, or by using graphics processing units (GPUs).

A typical computer, by today’s standard, has a CPU with multiple cores (8 - 64
cores, depending on hardware). These cores can run computations in parallel,
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but it is up to the programmer to make this happen (e.g. Williams, 2012). For
some problems in seismic processing, this parallel programming is easy. For ex-
ample, shot gathers can be processed in parallel during noise removal or during
multiple attenuation when one shot does not depend on other shots. However,
other problems may require more sophisticated parallel programming. One ex-
ample is finite-difference based modeling which can be made parallel over the
spatial domain. Here, data must be shared on the edges of each sub-domain
leading to a complicated programming problem. In general, we therefore con-
sider parallel programming to be more difficult and time-consuming compared
to the standard sequential programming. Still, these efforts are necessary for
computational problems that may run for days or weeks because, for many prob-
lems, efficiency can be increased by a factor that is close to the number of cores
with a parallel implementation.

Another type of parallel hardware is the GPU. A GPU has less powerful com-
pute cores than that of a CPU, but instead it has a greater number of cores
(approximately 1000 - 3500 cores, depending on hardware). This is a benefit for
computational problems that can be split in many small parts where each part
runs in parallel. Broadly speaking, recognizing these parts is the main challenge
of efficient GPU programming. If handled carefully, this type of parallel pro-
gramming is, for many problems (including seismic), the most efficient way of
doing hardware acceleration for algorithms.

For the seismic algorithms that are discussed above, numerical implementa-
tions of the forward modeling problem in equation 1.6, the imaging problem in
equation 1.18 and the full waveform inversion problem in equation 1.22 should
be implemented using a parallel strategy. If this is not done, it is not prac-
tical to solve the equations in 3D media, especially in elastic and viscoelastic
cases.

1.6 Scientific contributions

The focus of the work presented in this thesis is the development and analysis
of ray-Born integrals that are used in seismic modeling, imaging and full wave-
form inversion. As indicated in the above sections and in Figure 1.1, these are
fundamental topics in seismic data processing and geophysical interpretation.
Of course, numerical solutions to these problems have been successfully applied
in the industry for many years, but there is still a need for analysis of the meth-
ods and new developments that can increase both accuracy and computational
efficiency. My scientific contributions to these topics are presented in the form
of three scientific papers.

In the first paper, I present a new method for the computation of ray-Born
integrals in the time-domain. Here I address issues related to numerical disper-
sion and efficiency in seismic modeling by carrying out numerical integration of
ray-Born integrals along isochron surfaces of two-way travel time.
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The second paper analyses a method for computing both ray-Born and imaging
integrals in the frequency-domain. In this case, the numerical integration comes
at a larger computational cost compared to the time-domain implementation as
large multi-dimensional integrals are evaluated repeatedly (at each frequency),
but the advantage is that frequency dependent attenuation effects can more eas-
ily be included. To increase efficiency for these computations, I have developed
a method for solving the numerical integration problem using GPUs.

In the last paper, I use the GPU method to solve the 3D viscoelastic full wave-
form inversion problem in the frequency domain. Here I present a scheme that is
practical for inversion of large parameter spaces by combining the GPU method
with a limited-memory BFGS method for the numerical optimization.

The following chapter gives a more detailed summary of each of these pa-
pers.
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Chapter 2

Summary of publications

The scientific contributions of this dissertation comes in the form of two pub-
lished journal papers (Sarajaervi and Keers, 2018a, 2019) and one submitted
journal paper. The second paper (Sarajaervi and Keers, 2019) was also pre-
sented as an extended abstract (Sarajaervi and Keers, 2018b) at the interna-
tional EAGE conference.

Below is a brief summary of the three journal papers. After that, the papers
are attached in its original form.
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2.1 Paperl

Title: Computation of ray-Born seismograms using isochrons
Authors:  Martin Sarajaervi, Henk Keers

Journal: Geophysics

DOI: 10.1190/ge02017-0669.1

Paper I concerns acoustic ray-Born modeling in the time-domain and here I
derive a new band-limited form of the ray-Born integral where the waveforms
are modelled accurately by having an integration grid that closely follows curved
isochrons. This is an optimal approach with respect to how many scattering
points are needed for the computation of the wavefield at a specific time and
because the continuous ray-Born integral is expressed as a band-limited ray-
Born integral, numerical dispersion is avoided.

The main result of the paper is the derivation of new expressions for the surface
integrals, but I also investigate the accuracy of ray-Born modeling by compar-
ing ray-Born seismograms to finite-difference seismograms. The comparisons
are done in random models with varying perturbation strength and realistic
models with a heterogeneous background model. Moreover, the comparisons
demonstrate that for weak perturbations ray-Born and finite-difference seismo-
grams are identical and for strong perturbations complicated wave propagation
effects such as multiple scattering and multipathing, as expected, produce more
complicated seismograms in the case of finite-differences.
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2.2 Paper 11

Title: Ray-based modeling and imaging in viscoelastic media
using graphics processing units

Authors:  Martin Sarajaervi, Henk Keers

Journal: Geophysics

DOLI: 10.1190/ge02018-0510.1

There are two main challenges with the time-domain implementation presented
in Paper I. One challenge is inclusion of frequency dependent attenuation effects.
Another is the computational cost of obtaining accurate isochron surfaces. In
paper II, T therefore study viscoelastic waveform modeling in the frequency
domain. Unfortunately, computing ray-Born integrals in the frequency-domain
is computationally expensive compared to the time-domain. This is because,
in 3D, the ray-Born integrals are volume integrals that needs to be computed
for every frequency in the signal. The numerical integration must therefore be
fast. To address this, I make use of the parallel computational power of GPUs
for the numerical integration. The GPU implementation evaluates the ray-Born
integrand in parallel and computes partial sums in a tree structure over the GPU
cores. In the same way, the algorithm is used to evaluate viscoelastic imaging
integrals.

The main contribution of Paper II is the unified GPU approach for both effi-
cient 3D viscoelastic modeling and imaging, but the paper also compares com-
putational performance of the GPU implementation against a parallel CPU
implementation. This is done using numerical examples showing that, against
a ‘standard’ compute node (8 CPU cores), an increase in performance of up
to 48 times is achieved by using GPUs for imaging. Similarly, an increase in
performance of up to 54 times is achieved for modeling.
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2.3 Paper 111

Title: Efficient 3D viscoelastic waveform inversion using ray-
Born integrals
Authors:  Martin Sarajaervi, Henk Keers

Journal: Submitted

Paper III is an extension of the work in Paper II, demonstrating how the GPU
method can be used in 3D viscoelastic full waveform inversion. The development
from modeling and imaging to full waveform inversion is natural. First, be-
cause modeling is used directly in the waveform inversion optimization scheme.
Second, because imaging and the computation of gradients are similar opera-
tions.

The iterative optimization scheme uses an approximate Hessian based on the
limited-memory BFGS algorithm (Nocedal and Wright, 2006). In this case, the
first L-BFGS updates are closely related to a band or diagonal approximation
of the Hessian (Tarantola, 1984a; Beydoun and Mendes, 1989; Beylkin, 1985;
Jin et al., 1992), while subsequent L-BFGS updates incrementally add more
details to the inversion result as long as convergence is achieved. In principle,
the combination of the memory efficient L-BFGS method and the GPU based
computation of waveforms are the necessary ingredients for doing 3D viscoelastic
full waveform inversion on a workstation.

Analysis of the ray-based full waveform inversion is done by computing numer-
ical examples for a set of perturbation models of varying strength (relative to
a fixed background model). The examples demonstrate how stronger perturba-
tions lead to increasingly complicated wave propagation effects (modelled with
finite-differences) and how this influences accuracy of the inversion.
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Chapter 3

Outlook

A major part of the work presented in this thesis has been focused on computa-
tional efficiency and I have analyzed how these developments are useful for three
important applications in geophysics: modeling, imaging and full waveform in-
version. The development of efficient methods is of course useful for practical
applications, but it also enables more efficient testing of the methods. This is
an advantage for further research where several interesting aspects of ray theory
can be analysed in more detail.

For example, we can increase accuracy by taking multipathing into account using
beam (Cerveny et al., 1982) or Maslov (Chapman and Drummond, 1982) exten-
sions of ray tracing. Moreover, anisotropic background models are important for
practical inversion or imaging when longer offset data is available. Anisotropic
ray-Born integrals should therefore be analysed using either anisotropic ray the-
ory as presented by Cerveny (2005), first-order anisotropic ray theory by Pencik
and Farra (2005); Farra (2005) or by adopting the anisotropic viscoelastic real
ray theory presented by Vavrycuk (2008).

Below I give an outlook of other, more specific, research ideas that follow up on
each of the papers that are presented in this thesis.

3.1 Efficient extraction of isochrons

The most important extension to the isochron method in paper I concerns how
isochrons can be extracted efficiently. For this purpose, I have explored two
directions.

In the first direction I used dynamic ray tracing to extract isochrons directly
in the paraxial ray approximation (Cerveny et al., 1984). This is similar to
what is done by Cerveny and Soares (1992) for the computation of Fresnel vol-
umes and by Dahlen et al. (2000) for the computation of sensitivity kernels



for finite-frequency travel times. The preliminary studies showed that for 3D
heterogeneous background models the method is very efficient, but the rela-
tively poor accuracy of the paraxial method (except in very close vicinity of
the main ray) in these media prohibits applications of the method to seismic
exploration. However, there may be applications for relatively simple models,
and for transmission problems, where high accuracy is only required within the
Fresnel volume.

The second direction is to use the so-called isochron rays (Iversen, 2004) in
combination with a ‘wavefront triangulation’ procedure (e.g. Vinje et al., 1993)
applied for isochrons. This gives the isochron directly without the need for ray
tables on a regular grid and directly provides the surface needed for numerical
integration with the ray-Born integral in Sarajaervi and Keers (2018a). The pre-
liminary studies on this topic were encouraging with respect to computational
efficiency, but also in this case the 3D heterogeneous background model poses a
challenge for accuracy (although they are smooth enough for ray tracing). This
is most likely because a first-order approximation is used in the formulation of
isochron rays.

I have only briefly tested these methods with my own numerical implementa-
tions. A more systematic study for accuracy of these methods should therefore
be done. In particular, for the more realistic seismic exploration models such as
a smooth version of the 3D overthrust model (Aminzadeh et al., 1997).

3.2 Ray tracing on GPU

To leverage the full capacity of a GPU with the method presented in paper II, ray
tracing should be done directly on the GPU. Not surprisingly, the GPU is very
well suited for this task. My preliminary numerical experiments with parallel ray
tracing on the GPU have demonstrated a formidable speed-up compared to CPU
implementations. However, more work needs to be done on the interpolation
of results for integration with, for example, the imaging integrals in Sarajaervi
and Keers (2019).

If this integration is achieved, an advantage to the approach is that the need to
transfer data between GPU and CPU memory is eliminated as all ray data is
contained in the GPU memory. This also avoids having to read pre-computed
ray tables from a disk or network connection which tends to be a bottle-neck
for both the modeling and imaging. Instead ray tracing is done ‘on the fly’. For
example, by doing parallel ray tracing (over a variety of take-off angles) for just
the source-receiver rays and scattering point in question, and then discarding
the ray data after computing the ray-Born or imaging integrals.
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3.3 Multiparameter inversion

Multiparameter waveform inversion that inverts for both density and elastic
parameters is a straight-forward extension of the research presented in Paper
III. It is mostly a matter of implementation, because the theory is already
presented for multiple parameters and in principle, this can be handled directly
by the L-BFGS based inverse Hessian.

Another natural next step for the ray-Born full waveform inversion is to apply
the method to real data. This is necessary to understand more about how the
method stands against the more common finite-difference based waveform in-
version methods. Such a project would require resources, in terms of compute
power, and a good quality seismic dataset that is pre-processed for the inver-
sion and is therefore resource intensive. In this case, an accurate anisotropic
background model is likely needed to achieve good estimates of perturbations
in density, velocity and the weakly anisotropic parameters. See discussion in
Virieux et al. (2017) and references therein.
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Computation of ray-Born seismograms using isochrons
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ABSTRACT

Seismic modeling in heterogeneous media is accomplished
by using either approximate or fully numerical methods. A
popular approximate method is ray-Born modeling, which re-
quires the computation of 3D integrals. We have developed an
integration technique for accurate and, under certain circum-
stances, efficient evaluation of the ray-Born integrals in the
time domain. The 3D integrals are split into several 2D inte-
grals, each of which gives the wavefield at a certain time, so
that the waveform at each time step is computed independently
of all other times. We compute seismograms for 3D hetero-
geneous acoustic media using this technique and compare these
seismograms with seismograms computed using two other
modeling methods: frequency-domain ray-Born modeling and
finite-difference modeling of the acoustic wave equation. Our
method can also be applied to elastic ray-Born modeling.
Velocity models with smooth scatterers and the SEG/EAGE
overthrust model are used for comparison. The ray-Born seis-
mograms computed using the time- and frequency-domain
ray-Born modeling methods are identical, as expected. The
comparison between the ray-Born modeling and the finite-dif-
ference-modeling method indicates that the waveforms are sim-
ilar for both types of velocity models. We evaluate the
discrepancies in terms of multiple scattering and multipathing.

INTRODUCTION

Modeling of seismic waves is very important for studying the
Earth’s structure. For example, seismic algorithms such as full-wave-
form inversion require it. In practice, this modeling is often done using
the acoustic wave equation, solved either by using fully numerical
methods or by using approximate methods (e.g., Carcione et al., 2002;

Virieux and Lambaré [2015], chapter 1.05). Fully numerical methods
are popular and very useful, but they are not computationally efficient
at higher frequencies, especially in large 3D models. They also have
limitations in the case of complicated structural models (e.g., finite-
difference seismograms contain artifacts in the case of strongly undu-
lating interfaces). Approximate methods do not necessarily suffer
from these disadvantages; for example, ray theory is particularly valid
at high frequencies in smooth models. Therefore, it is sometimes
beneficial to compute wavefields using approximate methods.

A useful technique for modeling singly scattered waves is the
(first-order) ray-Born approximation. Several papers have investi-
gated the theoretical aspects of the Born (e.g., Knopoff and Hudson,
1964; Hudson, 1977; Hudson and Heritage, 1981) and ray-Born
approximations (see references listed by Chapman [2004], section
10.3 and Cerveny [2005], section 2.6.2). In studies focusing on the
numerical aspects of ray-Born modeling, Cerveny and Coppoli
(1992) generate synthetic seismograms in the case of a background
medium with two curved interfaces and a perturbation consisting of
isolated scatterers. For a model with similar characteristics, Gibson
et al. (1993) use ray-Born modeling to examine reflections from
vertical seismic profile data. Coates and Charrette (1993) compare
the 2D isotropic elastic generalized Born approximation (Coates
and Chapman, 1991) and the conventional Born approximation to
finite-difference modeling. In a study focusing on 3D ray-Born in-
version, Thierry et al. (1999) compute synthetic traces from a mi-
grated image and compare the results with real data. In a review
paper, Moser (2012) pays special attention to the advantages of
acoustic ray-Born modeling for modeling diffractions from specific
structural discontinuities, such as edges and tips. Sachl (2013)
investigates discretization effects of the elastic ray-Born scattering
integral and suggests a cosine window to attenuate boundary
diffractions. Tengesdal (2013) and Minakov et al. (2017) discuss
2D acoustic ray-Born and finite-difference modeling and show syn-
thetic- and real-data examples as well as an application to full-wave-
form inversion. All of the above papers compute the ray-Born
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integrals, in either the time or frequency domain, by summing over
individual volume or area elements (e.g., Coates and Charrette,
1993). An alternative method for the computation of ray-Born
seismograms in the time domain was presented by Spencer et al.
(1997) and Keers et al. (2002). That method used a specific inte-
gration over tetrahedrons.

‘We present a new method for 3D ray-Born modeling in the time
domain using isochron surfaces. Integrals over isochrons are used
to accurately compute seismograms for a band-limited signal. We
compare the results with seismograms computed using frequency-
domain ray-Born and finite-difference modeling. The method can
be seen as an extension to 3D integrals of what was done for 1D
Wentzel-Kramers-Brillouin-Jeffreys (WKBJ) seismograms by
Chapman (1978), where the band limiting is done before the dis-
cretization and for 2D Kirchhoff seismograms by Haddon and Bu-
chen (1981), where the integrals are computed over isochrons.

The results in this paper are based on the acoustic wave equation,
but the concepts can be extended to the elastic case. We give a brief
description of this in the “Discussion” section.

In the “Theory” section, we review the acoustic ray-Born modeling
and give the theoretical background of the integration technique.
Next, we discuss the numerical implementation of the ray-Born in-
tegrals. For the sake of completeness, this section also gives a brief
description of the two-point ray-tracing algorithm as well as the fre-
quency-domain ray-Born integrals and finite-difference modeling. In
the “Results” section, we present seismograms computed using two
types of velocity models with different scattering characteristics. The
first type has smooth velocity perturbations, analogous to that used in
ray-based tomographic model building (or full-waveform inversion
with low-frequency velocity updates). The second type, the 3D
SEG/EAGE overthrust model of Aminzadeh et al. (1997), contains
rough and rapidly varying perturbations.

THEORY

For a heterogeneous velocity model c(x), the propagation of acous-
tic waves can be described by a Green’s function G(x, s, ), where x
denotes the spatial position of observation, s denotes the source posi-
tion, and ¢ denotes time. The term G satisfies the wave equation (e.g.,
Morse and Feshbach, 1953; Ikelle and Amundsen, 2005)

c2(x)Gy(x,8,1) — AG(x,s,1) = 5(x —8)3(1), (1)

where the source is a Dirac delta function in time and space, which
acts at time = 0, G,, = G /0> and A is the Laplace operator. Ex-
pressions for the solution of equation 1 are often more convenient in
the frequency domain than those in the time domain. For this reason,
we also give the frequency-domain formulation, with @ denoting the
angular frequency, and we adopt the sign convention for the Fourier-
transform pair from Chapman (2004, pp. 58 and 59). The wave equa-
tion in the frequency domain becomes the Helmholtz equation:

@’ (x)g(x,8, ) + Ag(x,s,0) =5(x—s),  (2)

where g(x,s,®) denotes the Green’s function in the frequency
domain.

In forward modeling, equation 2, for a given ¢, needs to be solved
for g. If perturbation theory is used to solve equation 2, then one de-
composes ¢ into a background velocity ¢ and perturbation term c:

Sarajaervi and Keers

c=cy+tcy. 3)

Often, the velocity field ¢ is smooth, or it is only a function of depth,
and c is more rapidly varying. The solution to equation 2 for ¢ = ¢,
is denoted by gy. The modeling problem then is to find g when g is
known. Using perturbation theory, an expression for g in terms of
the background Green’s function g, (e.g., Cerveny, 2005; Ikelle and
Amundsen, 2005) can be found:

9(x.8,0) = go(x. 5, ®)

+w2/go(x,x/,m)V(x/)g(x’,s,u))dx’. )
D

Here, the “scattering term” V is defined as
— =2 -2
V=cy"—c, (&)

and D is the scattering region, i.e., the region where V is nonzero. In
compact notation, if we define the operator L as

(Lg)(x) :0)2/Dgo(x,x’,a))V(x’)g(x’,(u)dx’, (6)

then equation 4 can be rewritten as
g=4go+Lg M
or

9= (I_L)_I.QU’ ¥
where 1 is the identity. The operator (I — L)™' can be expanded,
assuming that it is invertible, as a power series in terms of L (e.g.,
Griffel, 2002):

g=({I+L+L>+ L+ --)go. )

Here, each term describes scattering of a certain order: L describes the
first-order scattering, L? describes the second-order scattering, and so
on. The series is convergent if ||L|| < 1 for some suitable norm. This
is often the case, especially if V is sufficiently small and D is not
too large.

In practice, the explicit expression for g as given by the scattering
series 9 is approximated using only the first two terms. This gives
the Born approximation to the wavefield:

gRgo+Lgo=go+ g (10
In the above expression, the singly scattered waves g, are given as a
volume integral over wavefields propagating through the back-
ground medium:

a1(x, s, @) :wz/go(x,x’,a))V(x’)go(x’,s.a))dx’. (11)
D

As it is assumed that ||c;|| < [|col|, we can rewrite V:

1 1
V=5

2 (co+cp)? (12)

~2cco3
~2cicy”.
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If we furthermore use r to indicate receiver position, then the Born-
scattering integral 11 becomes

0) ~ 0* X, ® 21(x)
nies.o)x o [ o)

A clear physical interpretation of equation 13 can be given (e.g.,
Snieder, 2001): The scattered wave go(X, s, w) propagates in the
background medium from the source located at s to a scatterer
at point X, interacts with the scatterer, and then propagates as
9o(r. X, @) from the scatterer to the receiver at r. The total scattered
wavefield g; is then found by summation of the integrand over all
scattering points x and multiplication by w?.

go(x, s, w)dx. (13)

Background Green’s function

The Born integral 13 requires knowledge of g,. In the case of a
homogeneous background medium, g, is known explicitly. However,
this situation is geologically not realistic. If we assume a slowly vary-
ing co, then it is natural to use ray theory (Cerveny, 2005) to compute
go- In such a case, we look for solutions of the form

go(x,8) = A(x,s)e@Txs), (14)

and we solve for traveltime 7" and amplitude A. Equations for 7 and A
are found by inserting 14 into the wave equation and applying the
high-frequency approximation (@ — oo0). This gives the eikonal
equation for 7'

|VT|? = ¢32, as)
and the transport equation for A
AAT +2VA - VT =0. (16)

Characteristics of the eikonal equation 15 are raypaths, described by
the kinematic ray equations (Cerveny, 2005), and they can be used to
find 7. A solution to the transport equation 16 can be found by solv-
ing the dynamic ray-tracing equations (Cerveny, 2005). Note that it is
assumed that there is no multipathing.

The ray-Born approximation

If the background Green’s function g, is obtained from ray
theory, then the Born approximation is called the ray-Born approxi-
mation. In this case, the ray-Born integral (e.g., Beylkin, 1985) be-
comes

a1 (r,s, ) = wz/A”(x)e"”’Tn(")V(x)dx, 17)
D

which in the time domain is
d2
Gi(es.0) = 5 L A(X)8(t = Tro()V(x)dx.  (I8)

Here, the traveltime function 7', and amplitude function A, are
defined as

T, (x) =T(r.x) + T(x,s) (19)
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and
A (x) = A(r,x)A(X, s). (20)

The integral in equation 18 can be computed using the composition
of a function and the Dirac delta. This gives

d2 " AVS (x)
Gi(r,s, 1) ai s VT, ) V(x)dx, @1
with S, = {x|t = T,(x)}. For aslowly varying c,, S, is a closed 2D
surface, which envelopes the source s and receiver r. We call this
surface an isochron. From equation 21, we see that at time # the ray-
Born seismogram is determined only by the isochron S, and the
values of A, , VT,,, and V on S,.

Later on in this paper, we briefly discuss multiple scattering and
multipathing, and it is important to distinguish the two effects. Mul-
tipathing occurs when, given a velocity model ¢ and source s, there
are two or more rays between s and the receiver r. Multiply scattered
waves form that part of the wavefield that is modeled using the
higher order terms (L2g,, L3g,, etc.) of the scattering series 9.
Therefore, multipathing depends on the source s, the velocity model
¢, but also the background velocity c,. Singly scattered waves are
the waves modeled by the term g; = Lgy. Note that multipathing
and multiple scattering are not mutually exclusive, so that a part
of the wavefield can be interpreted in terms of multipathing and
in terms of multiple scattering.

Discrete ray-Born seismograms in the time domain
We start with the expression for the ray-Born approximation
&
Gl (r~ S, l) = P a”(X)(S(l - T,S(X))dX, (22)
D
with

arg(X) = Ay (x)2¢1 (%) (x), (23)
and T, as given in equation 19. In practice, seismograms are only
recorded and computed at discrete equally spaced time points. It is
therefore natural to compute seismograms at these times only. The
discretization can be done in various ways. One way is to convolve
G with the Boxcar function B(¢) given by the Heaviside step func-
tion H(t) as

B(t) = H(t + At/2) — H(1 — At/2). 24)

This gives the band-limited integral, where the support is bounded

N 42
G,(r,s,1) = W./v( )am(x)dx, (25)
L (x

with
Vi(x) = {x|t — At/2 < T, (x) <1+ At/2}. (26)
We leave the differential d”/dr* to be evaluated numerically later.

The integral over V,(x) is the volume between two isochron surfa-
ces S;_ay2 and Sy pyp With S0 = {X[t £ A1/2 =T (x)} (see
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Figure 1). Note also that V, =U S, with 7 € [r — Ar/2,1 + Ar/2],
i.e., V, is the union for all isochron surfaces and S; N S;, = @ for
7| # 7,. Moreover, because there is no multipathing, all surfaces S,
are well-defined and smooth. For a homogeneous 3D background
medium, the isochrons are ellipsoidal (see Figure 2). The ellipsoids
become spheres in the special case when s = r. If the background
medium is slowly varying, then the surfaces S, are deformed, but
they are still smooth and ellipsoidal with S, 5, completely envel-
oping S,.

A natural parameterization of V, is given in terms of coordinates
(&1, &,), which parameterize the surface S, and coordinate y.
For fixed (&, &), the isochron raypath x(&;, &, y) is approximated
by a line perpendicular to S,. Because of this, the map
(x1,X3,x3) P (&1, &,y) is well-defined and smooth, and so is its
Jacobian

a(xl-x2sx3)
=== 27
' a(élvf%y) ( )
Therefore, we have
~ &’
GI(I‘,S, l) :F//( )am(X(él,fg,y))
a(X],Xz,X3)
— = 2\dE déydy. 28
Sy e
Because
(e, X3, x3)| | 0x <§ "_X> 29
‘ aE ey | oy \og “ag, )

and (dx/dy) L (0x/0E;), with i = 1 or 2, this can be rewritten as

2

- d
Gitrs.0)= o [ anxte £

ox|| ox ox
X|—|| =— X —|d&,dE>dy. 30)
'ay %, 052‘ Srdady
D+ Dy
A
Stynes2

Figure 1. Illustration of a strip from an isochron at §,_/; to an
isochron at S, /> and the line segment Ay that is used to compute
the time-domain surface integral 36. The figure is modified from
Chapman (2004, figure 10.23).
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We now assume that, for fixed (£;,&,), a,, is constant and also
[(0x/0&1) X (0x/0&,)|. We choose these constants, such that
a,,(x(&1.6.y)) = a,5(x(&1.&.Y)), where ¥ is the value for S,
and similarly for |(dx/0&,) X (0x/0&,)|. We denote these constants
for y by a,(x(£1,&)) and |(0x/0E) X (0x/0&,)|. Tt should be
stressed that a,, varies over each isochron (as a function of (&, &)).
In the integration over y in equation 30, it is only assumed that a, is
constant as a function of y when going from one isochron to the next
isochron. We now have

ox % ox
08, 0&

a4
Gi(r.s.1) :ﬁ/g a,s(x(¢1,£2))

«|5to] e

The integral [|0x/dy|dy is found using the length of the line seg-
ment 2Ay (see Figure 1) and from the definition of S; and S;; /2.
This gives

@h

At

== (32)
2|p, +psl

Ay

Here, the slowness vectors from the source and receiver at x are
denoted by p; = VT(s,x) and p, = VT(r, x), respectively. Further-
more, using

2 cos ¢

€o

with ¢ being the half the angle between p, and p; (e.g., Miller et al.,
1987), 2Ay is, to first order

_ CoAr
T 2cos g

2A (34)

Figure 2. Sketch of isochrons for a medium with a homogeneous
background.
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Inserting this in equation 31 and using the definition of a,, gives

A &~ At

bt 5
calslent) o oxl 3
c3(x(&1,&))] 08 a§ n )

or

- & At ci(x)
G\ (rs.1) _PLA”(X)mmdx. (36)

It should be emphasized that equation 36 is band-limited and there-
fore scales when V, changes as a function of Az. Note that when
@ ~ 0, for instance, near zero-offset, the integral can be approxi-
mated by

2
Gy (r.s.1) _ 4 / A,X(X)Atcil(x) dx. @37)

ar Js, c3(x)

Similarly, for forward scattering, we have ¢ = z, so that equation 37
also holds in this case.

For t =1, it is not possible to integrate along an isochron
because the isochron for 7= 1t; — At does not exist. In this
case, there are two different cases that must be distinguished:
)ty —At<T, <ty —At/2and (2) 1y — At/2 < T, < t;. In both
cases, the ray-Born integral is given in terms of a volume integral as
in equation 25. In our experience, these contributions in practice are
not significant. However, this should be included here for the sake
of completeness. The numerical implementation of equation 36 and
the volume integrals are discussed in the next section.

NUMERICAL IMPLEMENTATION
Ray tracing

In preparation for ray-Born modeling using equation 36, the
quantities T, VT, and A, are computed using ray tracing. They
are found by first computing 7'(s,x), VT'(s,x), and A(s, x) from the
source s to all points x in the scattering region D. Likewise, T'(r, X),
VT (r,x), and A(r,x) are computed from the receiver r to the scat-
tering points X.

If the velocity model is slowly varying, raypaths, traveltimes 7,
and wavefront normals VT are found by solving the kinematic ray
equations given the initial conditions (position and take-off angles).
In a similar manner, the amplitude is computed by solving the dy-
namic ray equations. Both sets of equations are solved numerically
with a fourth-order Runge-Kutta method (Press et al., 2007) with
Snell’s law applied when the ray encounters an interface. The result
is two 3D fans of rays emanating from the source and the receiver.

For a given source s and scattering point X, the two-point ray-
tracing problem is to find a ray from s to x. This is done in two
steps. First, all points on the ray fan are used to construct a 3D De-
launay tessellation (de Berg et al., 2000), which covers the scatter-
ing region D. For each x in D, we then interpolate values for 7, VT,
and A using the tessellation and linear interpolation on a tetrahedron
(e.g., Farin, 2002). Likewise, the same procedure is done for a
receiver r and scattering point X.

With the two-point ray tracing completed for the source-receiver
pair, we compute the traveltime function 7', using equation 19 and
the amplitude function A, using equation 20.

Ray-Born seismograms: Time domain

The isochron can be computed in various ways. In a hetero-
geneous background with the traveltime function T, given on a
discrete grid, one of several isosurface extraction techniques can
be used (e.g., Sutton et al., 2000). We have computed T, using
the ray-tracing procedure described above, and we have used the
marching cubes algorithm (Lorensen and Cline, 1987) to extract
surfaces. In this case, S, is defined on a triangular grid with vertex
positions  x; = x;(n), X, =X,(n), and x3 =x3(n), where
n=1,...,n, and n,, is the number of triangles.

The numerical integration on the triangular grid is carried out by
computing an average value for the integrand at each triangle times
the area of each triangle. We evaluate the integrand 36 at vertex
positions x,,(n) with m = 1,2,3 and compute an average value
I, as

Z rs C; (Xm) . (38)
£ \cos p(x

m CO(Xm)

Furthermore, we denote the area element of a triangle AA, and cal-
culate this as half the area of the parallelogram spanned by x, — x;
and X3 — X;:

S0 =3, () X () =3 ()] (39)

AA, =
Having at our disposal the area AA,, and integrand /,, on the triangu-
lar grid, we compute the integral for 7',; = t; as

i

Gy(r.s. 1) ZZI AA,. (40)

The second derivative is computed once for each source-receiver
pair using numerical differentiation. In the following sections, we
show seismograms computed using equation 40.

The volume integral 25 for the two special cases mentioned in the
previous section can also be evaluated numerically. For this, the ver-
tices of the first isochron as well as the points on the background
ray, which is completely enclosed by the isochron, can be used. In
this case, the integral 25 becomes a sum of the volume contributions
of the tetrahedrons | 7,1AV,1, where n,, is the total number of
tetrahedrons, AV, is the volume of tetrahedron n, and },1 is the in-
tegrand of tetrahedron n (which may be computed as the average of
the integrand on the vertices of each tetrahedron).

Ray-Born seismograms: Frequency-domain comparison

The computation of the ray-Born approximation in the frequency
domain is done using equation 17. The discretization of the integral
is accomplished using a regular grid over the scattering region D.
By approximating the integrand in each grid element by a constant,
the computation of g, (r, s, @) becomes a sum over these integrand
values, multiplied by the volume element.
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The comparison with the time-domain ray-Born modeling
method and finite-difference modeling is done in the time domain.
Therefore, after computation of g, (r,s,w) for all frequencies, an
inverse fast Fourier transform is used.

Finite-difference comparison

The finite-difference method (e.g., Etgen and O’Brien, 2007) is
used to solve the wave equation 1. For our implementation, we do
not include any absorbing boundary conditions. To avoid edge ef-
fects within the time window of interest, all velocity models are
extended beyond the area of interest.

Table 1. Velocity information for one realization of a
random Gaussian velocity model, but with different
perturbation strengths.

Model name Velocity range Strength (¢)

Weak perturbation 1990 — 2010 m/s  0.5% (0.001)
Medium-strength perturbation 1800 — 2205 m/s 10.18% (0.02)

Strong perturbation 1706 — 2302 m/s 15.18% (0.03)
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Figure 3. Random Gaussian media with medium-strength perturba-
tion (10%) for: (a) y-direction and (b) a depth slice at 1000 m used
to compute synthetics. The black dots indicate the receiver posi-
tions, and the crosses indicate the shot position.

RESULTS

In this section, seismograms computed using the three modeling
methods (time-domain ray-Born using isochrons, frequency-
domain ray-Born, and finite-difference) discussed in the previous
section, are presented for two different velocity models. The first of
these velocity models is a smooth model with random reflectivity.
The second one is the 3D EAGE/SEG overthrust model (Aminzadeh
etal., 1997). This is a complicated velocity model with a rapidly vary-
ing velocity. Small differences between the computed seismograms
are assessed using single-trace displays. Larger scale differences, with
significance for structural interpretation, are assessed using shot re-
cords and zero-offset sections.

3D random Gaussian model

First, we present the modeling results for the velocity models
with random variations. These random velocities are generated with
a Gaussian autocorrelation function characterized by a perturbation
strength & (root-mean-square slowness variation) and correlation
distance a (Baig and Dahlen, 2004). We use this to create a random
realization with weak, medium-strength, and strong perturbations
(details are given in Table 1). The correlation distance in all
cases is @ =50 m and the velocity model covers a volume of
1.8 2.4 x2 km. A constant background velocity of 2000 m/s
is used. Figure 3 shows two cross sections of the particular reali-
zation that was used.

The model grid spacing is 10 m, and this is used for the ray-Born-
modeling methods as well as the finite-difference-modeling
method. This way, amplitudes, traveltimes, and velocities are all
sampled on the same grid. The models are extended in all directions
to avoid interference from artificial boundary reflections within the
recording length of 2 s. The sampling interval used was 4 ms.
Receivers are positioned at a 50 m interval from 0 to 2350 m in
the y-direction and at depth of 100 m (Figure 3). Synthetics are
generated for a shot located at s = (800, 1200,200) m, using a
source time function in the form of a causal Ricker wavelet, with
a center frequency of 15 Hz.

For three discrete sample points in time, ¢; = (0.65,0.85,1.05) s
and a source-receiver distance of 800 m, Figure 4 shows the
corresponding isochron surfaces 7',; = t;. The values on the surfa-

<107
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g

Integrand value
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<
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1000

_ 1500
Distance y (m) 1500 Distance x (m)

Figure 4. Isochron surfaces in a homogeneous background with
integral values for the random Gaussian model at times
t; = (0.65,0.85,1.05) s. The source and receiver positions are in-
dicated by a star and a triangle, respectively.
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x1074

ces are the values of the integrand of equation 36 a) ,
for the weak perturbation model. As the back-
ground medium is homogeneous, the isochron
surfaces are part of a spheroid.

Figure Sa (0.5% perturbation) shows a trace

Amplitude
L o
T

|
)
u

FD
——-rRB(M ||

offset by 800 m relative to the source position
(see the dashed blue line in Figure 6 for the lo-
cation of the receiver) for the weak perturbation

model (Table 1). We show the finite-difference
seismogram and ray-Born seismograms com-
puted in the time and frequency domains. Next,
we show traces for the same random realization,
but with medium-strength and strong perturba-
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models with 0.5%, 10%, and 15% perturbation,
the ray-Born seismograms all appear with the
same phase, but with a relative difference in the
amplitudes. The results computed in the time and
frequency domain are basically identical, as ex-
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pected. In the comparison with finite-difference
modeling, the seismograms appear with changes
in the waveforms for the medium-strength (Fig-
ure 5b) and more so for the strong perturbation
model (Figure 5c). This is because finite-differ-
ence modeling accounts for complicated wave-
propagation effects such as multiple scattering
and multipathing that become more predominant
for stronger perturbations.

Figure 6 shows synthetic shot gathers for the medium-strength
perturbation model. The synthetics generated by the ray-Born
method and finite differences are shown in Figure 6a and 6b, respec-
tively. Across the offset positions, we can recognize events from the
singly scattered wavefield in both seismograms.

3D SEG/EAGE overthrust model

In this subsection, time-domain ray-Born, frequency-domain
ray-Born, and finite-difference synthetics are computed using the
acoustic 3D SEG/EAGE overthrust model (Aminzadeh et al., 1997,
Operto et al., 2003). The overthrust model represents a succession
of sedimentary deposits in a compressional tectonic setting, result-
ing in strong vertical and lateral velocity variations. It was created
to study 3D wave propagation and to test seismic processing algo-
rithms.

Two minor modifications are made to the original model: Edges
are extrapolated to avoid artificial boundary reflections, and a sea-
floor interface is added at a depth of 500 m using a water layer
velocity of 1480 m/s. A subvolume of the larger model is displayed
as a vertical cross section in Figure 7a and at a depth of 2 km in
Figure 7b.

We create the background model by 3D boxcar averaging of the
model without the water layer. The background model is shown in
Figure 7c and 7d. The difference ¢ — ¢, then gives the perturbation
model, which, in Figure 7e and 7f, is displayed in terms of percent
relative to the background. Perturbation strengths have a maximum
of 41.1% and a minimum of —21.7%. On average, the positive
velocity perturbation is 6.8% and the average value of the negative
velocity perturbation is —5.1%. In contrast to the velocity models of

Time (s)

Figure 5. Comparison of traces computed using finite-difference and ray-Born model-
ing in 3D random Gaussian media for: (a) the weak perturbation (0.5%), (b) the medium-
strong perturbation (10%), and (c) the strong perturbation (15%). Finite difference (solid
blue) is compared with time-domain ray-Born (dashed black) and frequency-domain
ray-Born (black dots).
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Figure 6. Modeling results in 3D random Gaussian media with
10% maximum perturbation for (a) ray-Born and (b) finite-differ-
ence method. Individual traces, for different perturbation strengths,
are selected for the location indicated by the dashed blue line.



T252 Sarajaervi and Keers

the previous section, the perturbation model contains sharp velocity
variations, and, therefore, it is quite rough.

The grid spacing is 12.5 m along all spatial axes, and it is the same
for frequency-domain ray-Born-modeling and finite differences. To

a)

Depth (m)
Velocity (m/s)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Distance (m)
¢) o 6000
5500
5000
4500
= Q
E 4000 €
= EY
a S
8 3500 8
>
3000
2500
2000
1500
500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Distance (m)
e)
<
o
_ T
e
i
° g
k)
o

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Distance (m)

Downloaded 08/07/20 to 84.212.253.191. Redistribution subject to SEG license or copyright; see Terms of Use at https://library.seg.org/page/policies/terms
DOI:10.1190/ge02017-0669.1

Distance (m)

Distance (m)

Distance (m)

achieve an exact match between time-domain ray-Born modeling and
frequency-domain ray-Born modeling, we reduced the vertical grid
spacing to a 6.25 m space for the time-domain implementation. This
allows for a more precise isochron surface extraction. The source-
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Figure 7. Cross sections and depth slices for the decomposed 3D overthrust model for (a and b) the complete model, (¢ and d) the smooth
model, and (e and f) the perturbation model. The position of the cross section is indicated by the dotted black lines in (b).
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Ray-Born integrals over isochrons

time function used for the computation of seismograms is defined by
a causal Ricker wavelet with a center frequency of 10 Hz. In the case
of the ray-Born modeling methods, we include the direct wave trav-
eling in the water layer, but we do not calculate the seafloor re-
flection.

With a water layer, take-off angles for ray tracing are limited by
the critical angle at the water-sediment interface. Therefore, we do
not have any real valued raypaths beyond these angles. This limited
ray coverage creates an artificial boundary in the scattering volume,
with an associated end-point signal (Bender and Orszag, 1999). To
avoid these artifacts, traveltime and amplitude values are interpo-
lated by including points just above the seafloor from ray tracing
in the water layer, and adding these to the collection of spatial lo-
cations from one-point ray tracing before the Delaunay tessellation
process. Figure 8 shows traveltimes and amplitudes for a source at
s = (2500, 5000,200)m after interpolation on the uniform grid.
Figure 8 also shows the interpolated ray shadow zone, the triangular
wedges between the dashed line and the seafloor (the solid line).
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Figure 8. Cross section for two-point (3D) ray tracing in the over-
thrust model for (a) traveltimes and (b) amplitudes. The region be-
tween the water-sediment interface (solid black lines) and the dotted
black lines indicate the ray shadow zones, in which the traveltimes
and amplitudes are interpolated.
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For a source positioned at s = (2500, 5000, 200) m and a receiver
positioned at r = (2500, 5000, 100) m, Figure 9 shows isochron sur-
faces in the overthrust background model for times 7', = 1.8 s (Fig-
ure 9a) and T,, = 2.36 s (Figure 9b). Values on the surfaces are
computed with the integrand in equation 36. Because the background
model is heterogeneous, the isochron surfaces look like deformed
spheroids as expected.

Ray-Born and finite-difference zero-offset sections

We show an example of zero-offset synthetics computed across a
region with complicated faulting as well as a structurally simpler
area with near-horizontal layers. Sources (at a depth of 100 m) and
receivers (at a depth of 200 m) are positioned from 500 to 5000 m in
the x-direction and at 5000 m in the y-direction. This is indicated by
the dotted black line in Figure 7b. With an x, y aperture of 4000 m,
the wavefield is computed using the two ray-Born-modeling meth-
ods and the finite-difference-modeling method.

Seismograms, computed using finite-difference and ray-Born
modeling, are shown in Figure 10, for three positions in the over-
thrust model. The three positions are at 1000, 2500, and 4000 m, as
indicated with the dashed blue lines in Figure 11. The seismograms
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Figure 9. Isochron surfaces in a heterogeneous background, with in-
tegrand values for the overthrust model at times (a) ¢t = 1.8 and
(b) t = 2.36 s. For the later arrival times in (b), the bounding box of
the total integration area intersects the surface. The source and
receiver positions are indicated by a star and triangle, respectively.
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in Figure 10a (1000 m) are extracted from a region with less com-
plicated wave-propagation effects (the velocity model has horizon-
tal and dipping layers). Here, the comparison with the finite
differences shows that the phase and amplitude appear to be well-
matched, indicating the relative importance of singly scattered
waves. We also compare the seismograms shown in Figure 10b
(2500 m). In this case, the source and receiver are located in a region
where the velocity model has steeply dipping layers and faulted
structures. These structures cause complicated wave-propagation
effects (such as multiply scattered events) that appear as differences
in the modeling results after traveltimes of approximately 1.4 s. In
Figure 10c (4000 m), the early-time waveform mismatch in the time
interval 1—1.4 s is caused by a triplication in the wavefield that is
formed by the shallow syncline. Perturbations at the syncline are
relatively strong (up to 30%) and are therefore not accurately cap-
tured by the ray-Born approximation.

A zero-offset section for the ray-Born synthetics is shown in Fig-
ure 11a and for finite differences in Figure 11b. Strong reflections
from the horizontal and dipping layers are indicated in the blue rec-
tangle labeled by I, confirming what was discussed above for
Figure 10a. The wavefield becomes more complicated below the
anticline, indicated by the blue rectangle labeled II. In this area,
ray-Born synthetics exhibit stronger reflections than the finite-dif-
ference synthetics. This is likely an effect of multiple scattering and
multipathing: Internal reflections in the finite-difference synthetic
interfere with the main reflections, and these internal reflections do
not exist in the case of ray-Born modeling. In the blue rectangle
labeled III, we have indicated the triplication effect that causes
the mismatch at early times in Figure 10c. This particular effect is
present in the finite-difference synthetic, but poorly modeled in the
ray-Born synthetic.

Sarajaervi and Keers

DISCUSSION

The main results of this paper are the derivation and computation
of ray-Born integrals as integrals over isochron surfaces. First, we
give the continuous ray-Born integral 21 and then derive the band-
limited ray-Born integral 36, which is used in the numerical imple-
mentation. In the derivation of the band-limited integral, we use the
normal distance from the isochron S, to S, 4,/ to reduce a volume
integral to a surface integral. Then, we described a numerical inte-
gration over this surface in equation 40, where the integration is
carried out over triangles.

The concepts discussed above are derived for the acoustic case,
but they can be applied to the elastic case and also to the generalized
ray-Born integrals (Chapman, 2004). For an elastic isotropic model,
a natural starting point is to carry out the derivations from equa-
tions 21-36 using the elastic ray-Born integral (e.g., Dahlen et al.
[2000], equation 56) as a starting point.

Waveforms computed using this new method are compared with
ray-Born integrals computed on a regular grid in the frequency do-
main. This latter method is accurate as long as sampling intervals
for the integration grid are kept small; however, relative to the new
time domain method, the frequency-domain method is not as com-
putationally efficient. This is because a summation is carried out
over all volume elements in the scattering region and the summation
is repeated for every frequency. The numerical efficiency of the time-
domain isochron ray-Born method largely depends on the efficiency
of the method used to compute the isochrons. If the isochrons are
readily available, as they could be in a 1D background model, the
integration over triangles is very cheap and the computational cost
is insignificant compared with the frequency-domain method.

In the ray-Born integration method by Spencer et al. (1997) and
Keers et al. (2002) (see also Chapman, 2004), the
computations are made accurate in the time do-
main by having an integration grid that closely
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It should be noted that isochrons play an impor-
tant role in many seismic methods because they
associate the traveltime of a point in the subsur-
| face with a source-receiver pair. Some examples
- are Kirchhoff imaging (Bleistein, 1987), the com-
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putation of Fresnel volumes (Cerven)’/ and Soares,
1992), and finite-frequency kernels (Dahlen et al.,
2000). Isochrons have also been studied by
Iversen (2004), who presents a system of differ-
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Figure 10. Zero-offset synthetics for the overthrust model at distances: (a) 1000,

(b) 2500, and (c) 4000 m.

E 24 the singly scattered wavefield as an approximation

to the complete wavefield, where multiple scatter-
ing and multipathing are present. We broadly con-
clude that, for weak perturbations, or for regions
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Figure 11. The 3D overthrust model synthetics for (a) ray-Born and
(b) finite-difference modeling. The dashed blue lines indicate posi-
tions where individual traces are extracted for comparison. In the
simple region (box I), singly scattered waves are important, but in
the other two regions (boxes II and III), the wave-propagation ef-
fects are more complicated.

where the wavefield to a large extent consists of singly scattered
waves, the ray-Born approximation is the most successful. Based
on its ability to produce multiple-free data, it is natural to consider
the ray-Born approximation as a modeling method for full-waveform
inversion (e.g., during early iterations when the background model is
slowly varying) or for the purpose of testing various inversion and
imaging algorithms. Furthermore, there are applications in target-ori-
ented studies, for example, in the modeling of the seismic responses
caused by small and localized scatterers.

CONCLUSION

We have presented a physically intuitive method for computing
3D ray-Born integrals over isochrons in the time domain. The inte-
grals are simplified because volume integrals are split in a natural
way to several surface integrals. Each surface integral gives the wave-
form in the ray-Born integral for a certain time. The integration tech-
nique was used to compute ray-Born seismograms for two velocity
models with different scattering characteristics: slowly and rapidly
varying velocities. For both model types, the seismograms computed
over surface integrals in the time domain are identical to ray-Born
seismograms computed over volumes in the frequency domain.
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Ray-based modeling and imaging in viscoelastic media using graphics

processing units

Martin Sarajaervi' and Henk Keers?

ABSTRACT

In seismic data processing, the amplitude loss caused by
attenuation should be taken into account. The basis for this is
provided by a 3D attenuation model described by the quality
factor Q, which is used in viscoelastic modeling and imag-
ing. We have accomplished viscoelastic modeling and im-
aging using ray theory and the ray-Born approximation.
This makes it possible to take Q into account using com-
plex-valued and frequency-dependent traveltimes. We have
developed a unified parallel implementation for modeling
and imaging in the frequency domain and carried out the
numerical integration on a graphics processing unit. A cen-
tral part of the implementation is an efficient technique
for computing large integrals. We applied the integration
method to the 3D SEG/EAGE overthrust model to generate
synthetic seismograms and imaging results. The attenuation
effects are accurately modeled in the seismograms and com-
pensated for in the imaging algorithm. The results indicate a
significant improvement in computational efficiency com-
pared to a parallel central processing unit baseline.

INTRODUCTION

Amplitude loss in seismic data caused by attenuation should be
taken into account in processing algorithms such as seismic mod-
eling and imaging. The basis for this is provided by a 3D attenuation
model described by the quality factor Q (Aki and Richards, 2009).
The building and use of 3D Q models (Ribodetti and Virieux, 1998;
Cavalca et al., 2011) in seismic algorithms have proven to be im-
portant to correct for the distortion of seismic waveforms caused by

attenuation. For example, below gas or mud regions (e.g., Traynin
et al., 2008), the distortion, due to attenuation, can be significant.

A general account of viscoelastic wave propagation is given by
Carcione (2015). This book contains a comprehensive review for
isotropic and anisotropic media. We accomplish viscoelastic wave-
form modeling using ray tracing (Cerveny, 2005) in combination
with the viscoelastic ray-Born approximation (e.g., Dahlen et al.,
2000). For viscoelastic ray tracing, the theory has been developed
for complex rays and real rays (Kravtsov et al., 1999; Hanyga and
Seredynska, 2000; Vavrycuk, 2012), with further developments for
real rays in anisotropic media (Vavrycuk, 2008, 2010). Complex
and real viscoelastic ray tracing in attenuating media are important
developments in ray theory and useful in practice for regions with
attenuation effects. One mainly uses real rays because this is com-
putationally more efficient. This is valid only in weakly attenuat-
ing media.

The ray-Born integrals used for viscoelastic modeling are also a
fundamental starting point for deriving an imaging condition for
viscoelastic media. In the perfectly elastic case, imaging conditions
based on the Born and ray-Born integrals were derived by Tarantola
(1986) and Beylkin and Burridge (1990), respectively. The ray-
Born integrals are closely related to the Kirchhoff integrals (Jara-
millo and Bleistein, 1999) used for imaging by Bleistein (1987).
For inversion in attenuating media, a comprehensive theoretical
background was given by Tarantola (1988). In the more recent lit-
erature, attenuation was included using Kirchhoff integrals by Keers
et al. (2001), Traynin et al. (2008), Xie et al. (2009), and Wu et al.
(2017). In these studies, complex-valued and frequency-dependent
traveltimes are obtained from real ray tracing and, for this reason,
the integration was carried out in the frequency domain. We formu-
late attenuation using the same principle. However because we
describe a modeling and an imaging algorithm, it is natural to use
ray-Born integrals rather than Kirchhoff integrals, so that the
scatterers are volume elements.
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Ray-based methods are efficient when compared with fully
numerical methods such as finite differences. Unfortunately, for
modeling and imaging in large 3D models with multiple source-
receiver pairs, even when ray-based methods are used, the compu-
tations may still run for days or weeks. This is particularly true in
the case of viscoelastic media in which the velocity model is fre-
quency dependent. Therefore, it is important to be able to speed up
the computations. This can be done using parallel computing hard-
ware such as the graphics processing unit (GPU). To achieve this,
software must be written that can efficiently run sequential opera-
tions in parallel.

Several authors have studied the parallel implementation of seis-
mic processing algorithms. For example, imaging using the acoustic
Kirchhoff integral was studied by Panetta et al. (2009), Brouwer
et al. (2011), and Shi et al. (2011). These authors present methods
to compute images on the GPU and use a trace-based parallel strat-
egy. This resulted in a significant increase in computational effi-
ciency for acoustic Kirchhoff imaging. The compensation of
attenuation effects using viscoacoustic ray theory and Kirchhoff im-
aging was done by Han and Sun (2015). They compute individual
image points on the GPU and use a so-called image-domain parallel
strategy for a multi-GPU system. Also in this case, the authors re-
ported a significant increase in efficiency compared to a central
processing unit (CPU) baseline. A fast method for solving the ei-
konal and transport equations on a GPU was presented by Noack
and Gillberg (2015). Several other authors have also present parallel
methods for finite-difference-based modeling (Weiss and Shragge,
2013), imaging (Wang et al., 2019), and waveform inversion (Yang
et al., 2015).

We present the use of GPU acceleration for numerical evaluation
of large integrals that appear in two important seismic applications.
The first application is viscoelastic ray-Born modeling, and the sec-
ond application is the computation of seismic images. In both
instances, we also describe a queueing system on the CPU for pass-
ing the ray data efficiently to the GPU.

‘We first give a brief account for the quantities needed to compute
ray-Born integrals and derive an expression for the viscoelastic im-
aging condition. Then, we describe the numerical and the parallel
implementations in a unified way. The modeling and imaging, with
and without attenuation, are then applied to the 3D SEG/EAGE
overthrust model (Aminzadeh et al., 1997), and the computational
performance is assessed.

THEORY

The viscoelastic modeling and viscoelastic imaging can be done
efficiently using viscoelastic ray theory in a 3D heterogeneous
background model (e.g., Hanyga and Seredyfiska, 2000; Chapman,
2004; Cerveny, 2005; Vavry&uk, 2008). In general, the background
model must be slowly varying, but a few interfaces can be added to
improve accuracy in the case of sharp velocity contrasts. Com-
monly, the background model is based on seismic interval velocities
that have been calibrated using well information with subsequent
reflection tomography updates (e.g., Woodward et al., 2008). In
the background model {cy, O} with wave velocity ¢, and quality
factor Q 2 40, raypaths are characteristics of the eikonal equation
and are computed by solving the kinematic ray equations (e.g., Cer-
veny, 2005). Solutions to the eikonal equation are complex-valued
in attenuating media (Vavrycuk, 2012), but we ignore this effect for
the ray geometry and include only the complex-valued traveltimes.
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Along individual raypaths parameterized by arc length I, we
compute the traveltime 7' = [(1/cy)d! and the attenuation time
T* = [(1/coQ)d! by integration along the raypath. Here, we de-
note the traveltime from a source position s to a scattering point
x as T'(s,x) and from a receiver position r to a scattering point
x as 7'(r, x). Likewise for the attenuation time 7*. The polarization
vectors p are also obtained along raypaths and, in this instance, we
use a subscript notation p, and p, to indicate vectors leaving from
the source s and arriving at the receiver r, respectively. Note that we
have separate polarization vectors for the SH, SV, and P-waves, and
we assume that the P- and S-waves are linearly polarized, rather
than elliptically polarized (Carcione, 2006). The polarization vec-
tors are also assumed to be real valued; therefore, we incorporate
attenuation effects in the traveltimes only and not directly in the
amplitudes. This assumption is practical for numerical computa-
tions, but it is not a theoretical limitation for ray-Born integrals.
Furthermore, using the dynamic ray equations (e.g., Cerveny,
2005), we find the geometric spreading A, denoted in a similar man-
ner as the traveltimes by A(r, x) and A(s, x). The real raypaths are
computed separately for P- and S-waves by using the substitution
¢o = ag and Q — O, for P-waves, and likewise for S-waves using
co — fo and Q — Q..

Ray-Born modeling

Once the ray quantities described in the previous section are
available, the scattered wavefield u; is computed using ray-Born
integrals. The explicit expression for the viscoelastic ray-Born in-
tegral (Dahlen et al., 2000) is

w(r5.0) = 02 (@) [ ME (9P, 04,50
P.S
X [@(x) - my (X)) T p, (WIdx, (1)

with angular frequency w, source-time function f, moment tensor M,
and unit polarization vector k; = p,/|p,|. The amplitude factor A, is

A(x) = A(r, x)A(S, X) 2
and T, is the complex-valued traveltime function
T,(x,0) =T(r,x,0) + T(s,X, w). 3)

For a reference frequency @, the complex-valued traveltime from r
to X is given by

T(r.%,0) = T'(r,x) — % i (r, x) — % T* (. x) In(w/ay)
4

with the traveltime T’ and the attenuation time 7* as described above.
The model parameter vector m; = (ay, 8, p;) in equation 1 contains
the model perturbations for the P-wave velocity a;, S-wave velocity
P, and density p;. Combined with the background medium «, the
actual medium is @ = a + «; in the case of the P-wave velocity and
similarly for the S-velocity and density. The Rayleigh factors Q are
given by Dahlen et al. (2000, Table 1), where the different compo-
nents of Q are described by the polarization vectors for the incoming
and outgoing waves at the scattering positions.
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Imaging

For viscoelastic imaging, we follow the method outlined by
Tarantola (1984, 1986, 1988) and seek a solution for minimizing
the objective function M with respect to the model perturbation
m,;. Here, M is the difference between the recorded 3C waveform
d and the corresponding synthetics u,. The difference is taken for
all sources, receivers, and angular frequencies in the least-squares
norm:

M(m,) = /\d(r,s,(u)—u](r,s,(o,ml)|2drdsdw. (5)

The observed waveform d is here assumed to be preconditioned in
the sense that direct waves, refracted waves, and multiples were
removed so that only the singly scattered wavefield remains.

Now, we derive the imaging condition. For the purpose of brevity,
we rewrite the ray-Born integral from equation 1 using only the
perturbation m; = a; and we consider PP scattered waves only.
Furthermore, we use a more compact notation and write the
ray-Born integral 1 as

u (a) = /V(a,x)al(x)dx, 6)

where a = (r,s,w) is the acquisition vector and

v(a.%) = 0 [f(@)M(®):k, (x)p,(x)]
X [ag (04, (x)e T, (0], (7)

Here, the P-wave background model « is present because we use
the explicit Rayleigh factor for PP scattering (Dahlen et al., 2000)
rather than Q. If we insert u,, as defined in equation 6, in equation 5,
and expand the square of the objective function (for details, see Ap-
pendix A), then we obtain the normal equations in integral form

/d(a)v(a,x)da:/v(a,x)v(a,y)al(y)dady ®3)

with a new variable y denoting the spatial scattering positions. A
solution to equation 8 in terms of a; can be obtained if we use
a numerical inversion algorithm such as LSQR (Paige and Saun-
ders, 1982). This is often not practical or necessary if we want to
compute structural images of the subsurface. Instead, we use a
diagonal approximation of the Hessian. This is accomplished by
inserting a delta function 5(x —y) on the right side of equation 8
and results in an explicit expression for a; (the so-called imaging
condition):

a (%) ~ U d(a)ﬁda} U Iv(a, X)|2da] "o

Compensation for attenuation effects (Q) in the imaging process is
accounted for by the conjugate of v as shown on the left side in
equations 8 and 9.

UNIFIED IMPLEMENTATION

Viscoelastic modeling using equation 1 and viscoelastic imaging
using equation 9 require evaluating multidimensional integrals
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using precomputed ray data. We present a straightforward imple-
mentation for both types of integrals, in three steps, which can be
applied to both situations: (1) ray tracing for all sources and receiv-
ers in the background model, (2) initialization of the ray data on the
CPU, and (3) computation of the integrals using a GPU.

Ray tracing

Amplitudes, traveltimes, and polarization vectors are computed
in the viscoelastic background model along real raypaths by solving
the real ray equations, given the initial conditions such as the source
position and take-off angles. For a given source s and receiver r, this
is the two-point real ray-tracing problem of finding a real ray from s
to r. In 3D media, it is common to use triangulation and an inter-
polation scheme on a bundle of rays to solve the problem (e.g.,
Vinje et al., 1993; Kraaijpoel, 2003), but a variety of other tech-
niques have been published (Cerveny, 2005, section 3.8). In some
situations, the real two-point ray tracing is simpler, for example, in a
homogeneous or a 1D medium. For the modeling and imaging ex-
amples, discussed below, we have solved the two-point ray-tracing
problem analytically in a homogeneous medium. However, rather
than computing the quantities directly, the values were stored as ray
tables, as would be the case if the ray tracing had been done in
heterogeneous media.

In the following sections, we assume that the real ray tables are
readily available on a regular grid, but with a different sorting order,
depending on the application. If the application is modeling, then
the ray data should first be sorted by source-receiver pairs, and then
by scattering points. If the application is imaging, then the ray data
are first sorted by scattering points and then by source-receiver
pairs. This is not a requirement, but it ensures that we read ray data
efficiently for each application.

Parallel computations using CPU and GPU

Parallel strategies for assigning computational tasks across multi-
ple CPU or GPU cores should be used for the efficient implemen-
tation of seismic algorithms. Fundamental to each such strategy is
the use of threads to run programmed instructions in parallel. More-
over, we need to be able to start threads programmatically, keep
track of them, and eventually retrieve the computational results
(Williams, 2012). This is done differently for a CPU than for a

Table 1. A comparison of the computation time for
viscoelastic ray-Born modeling for the GPU method with the
computation time of the multicore CPU baseline.

8 Haswell cores 64 Haswell cores

Integration grid: 20 X 20 X 10 m

Tesla K80 229 .

Tesla P100 39.5 5.5
Integration grid: 20 X 20 X 5 m

Tesla K80 27.3 3.8

Tesla P100 54.5 7.5

Note: Values larger than one favor the GPU implementation. The results are
computed in the overthrust model for two GPU configurations and two CPU
configurations.
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GPU, and it also depends on programming language-specific meth-
ods or specialized programming interfaces.

GPU hardware was originally designed for fast rendering of com-
puter graphics, but it later found use in general purpose computing
as well as in scientific computing. Its advantage over a CPU lies in
its ability to run a large number of threads in parallel, using a large
number of cores. This differs from a CPU, which has fewer, but
more powerful cores, and therefore runs a much smaller number
of threads in parallel.

For the management of threads on a CPU, there are various
options. These options depend on the programming language that
is used. Some programming languages have built-in support for
threads, whereas other programming languages may require the
use of additional programming libraries. We have used the C++
language in which thread creation and manipulation is part of
the standard library since the 2011 standard (Stroustrup, 2013).
However, it is still up to the programmer to write the code that keeps
track of the various threads that are running as well as their out-
come. We create threads from a parent process and let each thread
run until its computational task is finished. The outcome of the com-
putations is then communicated to the parent. To do this, we make
use of a data type that is “thread safe,” which means that its content
can be shared between different threads. In our implementation, we
have used a thread-safe queue (Williams, 2012), which is a
so-called container type in which data can be inserted or removed.

For the management of threads on a GPU, we use the CUDA
application programming interface (e.g., Nickolls et al., 2008). This
programming interface can be used in combination with various
programming languages such as C or C++, and it is also used
for GPU memory management. In a typical CUDA-based program,
the data are first moved from the CPU memory to the GPU global
memory. Once the data reside in GPU memory, programmed in-
structions can be executed across a large number of GPU threads.

Each thread can process part of the data and store the outcome of the
computation in the GPUs memory. Finally, after completion of all
threads, the data are copied from the GPU and its memory, back to
the CPU and its memory.

The computational procedure presented in this paper is outlined
using a flow diagram (see Figure 1) that consists of two main proc-
esses: A and B. Process A describes the parallel initialization, and
process B describes the GPU-accelerated integral evaluation. In the
case of modeling (equation 1), we compute integrals over the spatial
coordinates, for each source-receiver-frequency point. In the case of
imaging (equation 9), we compute integrals over sources, receivers,
and frequencies, for each image point.

We discuss our use of GPUs in more detail in the next two
subsections. In the first subsection, we discuss how the data are
prepared for the GPU. In the second subsection, we discuss how
these data are used to efficiently compute the integral equation 1
(modeling) or 9 (imaging).

Parallel initialization

This section concerns the part of the flow diagram that is called
process A in Figure 1. Process A consists of five steps with each
represented by a numbered box in the flow diagram in Figure 1.

In step 1, we create a queue with no members but with room for
member data types. Each member contains a set of vectors with data
for the numerical integration. At the beginning, the queue is empty
because integral data have not yet been prepared.

In step 2, we start the main loop by getting a new integral from a
list of integrals to be processed. We then move on to step 3. If the
queue length is smaller than a maximum queue length, then we
move on to step 4. Otherwise, we wait for the queue length to be
reduced. Reduction of the queue length is discussed in the next
section on GPU acceleration.

In step 4, we perform the parallel initialization
across the CPU threads, as indicated by multiple
arrows for the data that flow through CPU thread

| Process A ‘ |

Process B

1 to CPU thread N. Here, N is the maximum
number of threads. In each thread, we create a

) ’ Initialize an empty queue |

(6) | Wait for available GPU

new member data type, as discussed above,
and we fill the member vectors with data. Various

tasks are performed in each of the threads. The

@ -
—>| Get next integral )

Wait until queue length is

Remove element from
l queue and transfer integral
data to the GPU

most important ones for the seismic applications
are the actual reading of integrand tables from
disk (e.g., ray tables), interpolation onto a suit-

(3]

smaller than max length

able grid (if needed), and contraction of quan-
tities that do not depend on the integration

| CPU thread 1 | [ CPU thread N ‘
! ! } ®
() | Initialize integral data ‘

' ! '

l Compute integral on GPU

domain. Once a thread has finished, the member
and its data are moved to the queue in step 5. At
this step, the data are ready to be used in step 7 of
process B in which the numerical integration is
done. This is discussed in more detail in the next
section.

The maximum queue size depends on the size

(5) | Queue of initialized data }7

of the available CPU memory. For example, if
one member type requires 10% of the memory,

| 0

Exit if all integrals have
been computed

then we can safely use a maximum queue size of
nine whereby we would use, at a maximum, 90%

Figure 1. Flowchart describing the parallel initialization of integrals using CPU threads
and the GPU-accelerated numerical integration shown as a reduction tree in step 8.

of the available memory. In this case, up to nine
members with vector data are pending to be
passed on to the GPU memory.
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GPU accelerated integral evaluation

Process B in Figure 1 shows the part of the diagram in which the
evaluation of integrals in equation 1 or 9 is done. For this, one or
multiple GPUs are used in collaboration with the data initialization
process A. We start process B in step 6 by waiting for an available
GPU. Once a GPU is available, we move to step 7 in which we get
the integrand from members of the queue in step 5 (process A). If a
member exists in the queue, we get its vectors with the integrand
data and remove the member from the queue. The data are then
moved from the CPU and its memory to the GPU and its memory.
In this step, we free up space in the queue and memory used by the
vectors and also the GPU receives the data needed for the numerical
integration.

In step 8, the numerical integration is carried out as a summation
over a list of elements. The list size is determined by the size of the
integration domain, and the list elements are either spatial volume
elements (in the case of modeling) or contributions from different
sources, receivers, and frequencies (in the case of imaging).

Because summation is associative (a + (b +¢) = (a + b) + ¢,
for real numbers a, b, ¢) and commutative (a + b = b + a, for real
numbers a, b), it is natural to split the integration into many partial
sums so that these partial sums can be computed in parallel. In a
specific computer implementation, an algorithm based on a tree
structure can be used for this purpose. Using a tree, we start at
the leaf nodes of the tree and compute partial sums for two nodes
at the same time (these are the white squares in Figure 1, step 8).
When all partial sums for these nodes are completed, we pass the
results down to the parent nodes in which new partial sums are com-
puted. This continues until the root of the tree is reached, and the
final result is available (the black squares in Figure 1, step 8). This
procedure is similar to a sum reduction, but with one modification.
We evaluate the integrands of equation 1 or 9 already on the leaf
nodes of the tree before passing the results downward rather than
just summing all nodes. This has the advantage that the integrands
are evaluated in a highly parallel manner.

In practice, we have a so-called computation grid that is made up
of multiple thread blocks, in which each thread block is a group of
GPU threads. Across the computation grid, we distribute the calcu-
lation of equation 1 or 9 as mentioned above. Because many blocks
and threads run at the same time on the GPU, the integral evalua-
tions become very efficient.

Once the integrand evaluations at the leaf nodes of the tree are
done, the reduction is performed in each thread block to compute
partial sums. To maximize efficiency of the reduction, low-level
techniques can be used here to efficiently exchange the partial sums
between threads (or tree nodes). For CUDA, Harris (2007) suggest
strategies that are efficient at reducing large data sets, which is
important for seismic applications. The tests presented by Harris
(2007) show that by carefully improving the CUDA kernels so
that partial results are communicated optimally between threads,
we can achieve significant benefits in efficiency. These results
were later improved upon by Luitjens (2014) who takes advantage
of new hardware instructions for efficient communication of partial
sums between GPU threads. We adopt this low-level algorithm
for the reduction. Finally, after all the GPU threads in each of
the thread blocks are completed, we compute the final sum over
only the blocks. This completes the numerical integration for one
integral.

In step 9, we perform a check to see if all integrals have been
computed. If there are no new integrals to compute in step 2 and
the queue in step 5 is empty, then the check holds true and we exit.
Otherwise, the computational loops continue. In practical applica-
tions in which we compute a large number of integrals, steps 6—8
will be done many times and continue as long as the queue in step 5
contains data.

Handing complex numbers on the GPU

The real and imaginary parts of the integrands are evaluated
separately on the GPU using equation 3, and by rewriting the com-
plex exponential in equations 1 and 7 as

em0Tr(¥) = =T (X4 (53] (coswr(x)] + i sin[wr(X)]).

10

Here, T' is the previously described traveltime, 7™ is the attenuation
time, and 7 is defined as

7(x) =77 In(w/wo) [T* (r,x) + T*(s,x)] = T'(r,x) = T'(s,X).
an

This is a practical choice which, compared to using other data types
that handle complex numbers, leads to increased computational per-
formance.

Parallel CPU baseline

To compare the GPU implementation with an efficient implemen-
tation using CPU only, we implemented the modeling and imaging
algorithms on multicore CPU. For the modeling, we compute sets of
frequencies in parallel (using CPU threads); for imaging, we com-
pute multiple image points in parallel.

The numerical integration in this case is also carried out in an
optimized manner using the Intel SSE3 instructions (e.g., Hassabal-
lah et al., 2008) for all mathematical operations that are performed
multiple times (e.g., the integral kernels) and with the sum reduction
done using the horizontal addition instruction (e.g., function
_mm_hadd_ps).

RESULTS
Modeling

‘We demonstrate the validity of the waveforms computed with the
viscoelastic ray-Born integrals in three ways. First, by comparing
the computed seismograms with a closed-form solution for the
far field in homogeneous viscoelastic media (Vavrycuk, 2007). Sec-
ond, by comparing ray-Born seismograms in a 1D layered medium
with viscoelastic seismograms computed using finite differences
(Graves, 1996). Finally, we compute synthetic seismograms in
the overthrust model (Aminzadeh et al., 1997). The seismograms
computed in the overthrust model are input data for the imaging
integrals. We also assess the performance of the GPU method in
the overthrust model.
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Ray-based seismograms compared with the viscoeleastic
closed-form solution

Computation of waveforms using the real-valued ray geometry,
discussed in the “Theory” section above, is compared with the exact
viscoelastic Green’s function (Vavrycuk, 2007; equation A-1) for
the direct S-wave at 4.5 km (Figure 2). We consider only the
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Figure 2. Seismogram for an S-wave at a distance of 4.25 km from
the source position. Real ray tracing seismogram (solid) and the
closed-form solution, given by Vavrycuk (2007; far-field term in
equation A-1) (dashed) are shown for various frequencies and Q
values. The amplitudes are normalized based on the seismogram
for fo = 10 Hz in each of (a-c).
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far-field term of the exact solution in Vavrycuk (2007) because only
the far-field is modeled in ray theory. For a very high attenuation
with Q = 10, Figure 2a shows the real ray tracing (the solid) and the
exact solution (the dashed) for Ricker wavelets with center frequen-
cies of 10, 30, and 60 Hz. Synthetics corresponding to the higher
Q-values, 20 and 40, are shown in Figure 2b and 2c, respectively.
These numerical modeling results show that the real-valued ray
approximation is accurate in weakly attenuating media (Q 2 40) for
the propagation distances under consideration. For very low values
of Q, the approximation is less accurate.

Ray-Born seismograms compared with viscoelastic finite
differences

For the comparison with finite-difference modeling, we compute
seismograms for a 3D medium with (1D) layered perturbations
(Figure 3). The perturbations are small relative to the background
model. This ensures that the effects of multiple scattering and multi-
pathing are not very strong (for a more in-depth discussion and ex-
amples, see Sarajaervi and Keers, 2018). Figure 4 shows that, under
these assumptions, there is a close agreement between the ray-Born
and finite-difference seismograms. The values for Q in the back-
ground model are, respectively, 80, 40, and 20. The perturbations
remain fixed. We compare the viscoelastic ray-based waveforms
with a finite-difference implementation presented by Graves

0.5

Depth-z (km)

25
5 0 -5
Perturbation %

Figure 3. Perturbation strength for P- and S-wave scattering as a
percentage, relative to the elastic background models. For these
weak perturbations, the wave-propagation effects attributed to
multipathing and multiple scattering are small, and the effects of
attenuation in the ray-Born and finite-difference methods can be
compared.
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(1996). In this implementation, Q is assumed to be independent of
frequency whereby the convolutional relations between the stresses
and strains are avoided (for details, see Graves, 1996, equations 19—
21). We choose the center frequency of the Ricker wavelet as the
reference frequency. Figure 4 shows that the differences between
ray-Born seismograms and the finite-difference seismograms
increase with increasing attenuation (i.e., decreasing values of Q).
As in the case of the closed-form comparison,
these results also show that the real ray approxi-
mation is useful for weakly attenuating media
(Q = 40). We note that the finite-difference im-
plementation slightly over-attenuates the lower
frequencies for our choice of reference fre-
quency, and that various other methods have
been presented for viscoelastic finite-difference
modeling in which a system of memory variables
is used (e.g., Carcione, 1993; Moczo et al.,
2014). However, these methods come at a higher
computational cost.

Amplitude

Amplitude

Overthrust model

Amplitude

We apply the GPU acceleration method to the
computation of synthetic seismograms for the 3D
SEG/EAGE overthrust model (Aminzadeh et al.,
1997). Precomputed ray tables for a constant den-
sity background with velocities ay = 3 km/s and
Bo = 2 km/s and quality factors Q, = Q, = 50
are used. The overthrust model (Figure 5) is modi-
fied along the edges using a cosine taper to avoid
end-point signals. The model extends from 0 to
9 km in the x- and y-directions and has a depth
of 1.8 km. Sources are positioned along the x-di-
rection, s, € [0.8,8.2] km at a 50 m interval, and
at s, = 4.5 km (149 sources in total). All sources
are modeled as explosions (so that the only non-
zero components of the moment tensor M are its diagonal elements:
M,, = My, = M_, = 1) and a Ricker wavelet with a peak frequency
of 20 Hz is used. The receivers are positioned in the x-direction
at r, =s,km with a 50 m interval and in the y-direction at
ry € [4.4,4.6] km with a 100 m interval. In Figure 5, the receiver
positions (447 receivers in total) are indicated using black dots.

Modeling results for the overthrust model are shown in Figure 6
for a source positioned at s, = s, = 4.5 km using an integration
grid of 451 x 451 x 181 points based on sampling intervals of
20 %20 % 10 m. For PP scattering, the shot record is shown for
waveforms modeled without attenuation in Figure 6a and with at-
tenuation using Q,, = 50 in Figure 6b. Figure 6¢ shows all modes
(PP, PS, SP, and SS) without attenuation and, likewise, in Figure 6d,
with attenuation using Q, = Q, = 50. In this example, all con-
verted modes originate from a P-wave because an isotropic moment
tensor was used, as mentioned above.

Figure 7 shows trace-by-trace comparisons of the modeling re-
sults at (r,, ry) = (4.5,3.2) km. In Figure 7a, we show PP scatter-
ing without attenuation (the solid black line) with attenuation
0, =100 (the dashed blue line) and with attenuation Q, = 50
(the dashed red line). Figure 7b shows all wave modes (PP, PS,
SP, and SS) without attenuation (the solid black line), with Q,, =
O, = 100 (the dashed blue line) and Q, = O, = 100 (the dashed

Amplitude

red line). Finally, Figure 7c shows a comparison of only PP scatter-
ing and scattering from all four waves modes, both with attenuation.

Imaging

For the imaging application, we first computed ray-Born seismo-
grams for all source-receiver pairs as described above. We created a

No attenuation

Time (s)

Figure 4. Ray-Born seismograms (solid) are compared with seismograms computed
using finite-differences (dashed) for the layered model in Figure 3. The seismograms
are computed without attenuation and for Q = {80,40, 20} from, respectively, the top
figure to the bottom figure. The amplitudes are normalized based on the seismogram
without attenuation.

800

500

1000

Depth (m)

1500

—200

—600

o
P-wave velocity perturbations (m/s)

N -800
Distance y (km) 6

0 0 Distance x (km)

Figure 5. Cross sections and depth slices for perturbations «; in the
3D SEG/EAGE overthrust model. The black dots indicate receiver
positions that are used in the numerical examples.
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data set to be used as input for the imaging using only PP scattered
waves. Therefore, only images were computed for PP-waves. The
modeling used in this case is done without attenuation and with
attenuation (using 0, = 50).

Figure 8 shows image sections across a faulted anticline in the
overthrust model. First, for comparison, Figure 8a shows the result

o
=)

I
IS

0.2

Amplitude

2 4 6 8
Distance x (km)

Amplitude

2 4 6 8
Distance x (km)

Amplitude

2 4 6 8 10 12 14
Distance x (km)

Amplitude

Distance x (km)

Figure 6. Modeling results in the 3D overthrust model for wave-
forms with (a) no attenuation with only PP scattering, (b) attenuation
using 0, = 50 with only PP scattering, (c) no attenuation with all
scattering modes (PP, PS, SP, and SS) included, and (d) attenuation
using 0, = Q, = 50 with all of the scattering modes (PP, PS, SP,
and SS) included.
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when the PP modeling and imaging are done without attenuation.
Then, Figure 8b shows the result when the PP modeling and im-
aging are done with attenuation using @, = 50. These two images
(Figure 8a and 8b) are almost identical. The modeled data with at-
tenuation are accurately corrected by the imaging condition with
attenuation, as expected. In Figure 8c, the modeling is done using
Q, =50, and the imaging is done without including attenuation.
This result shows that the amplitude loss caused by attenuation
has not been compensated because attenuation was not included
in the imaging. As a result, the quality of the image deteriorates.

A detailed trace-by-trace comparison is shown in Figure 9 for
receivers at r, =4.5 km with r, =2.0 (Figure 9a), r, =4.8
(Figure 9b), and r, = 6.8 km (Figure 9c). The viscoelastic imaging
result (the solid black) is compared with the imaging result without
attenuation (the dashed black) and, as a reference, we show results
when the modeling and the imaging are done without attenuation
(the black dots). The latter comparison shows that, using the imag-
ing condition in equation 9, we correctly compensate for the am-
plitude loss. As in the case of the results discussed in the previous
paragraph, these results show in more detail that attenuation should
be included in the imaging process. If that is not the case, then the
amplitudes will incorrectly decay with increasing depth and this
will negatively affect the quality of the images.

Performance comparison

In this subsection, we compare the performance of the GPU-ac-
celerated algorithm with the multicore CPU baseline. We measured

a) 1 T T T

No attenuation
o 05F ----Q, =100 1
E === Qp =50
3 0
£
<

——No attenuation
--=-Qp=Q; =100
- Qp=Q, =50

0.5r

Amplitude
o

——PP,PS,SP,SS (Q, = Q, = 50)
0.5F t -=-=PP (Q, =50) 1

Amplitude
o

|
o
13

-1
0.4 0.6 0.8 1 1.2 1.4 1.6
Time (s)

Figure 7. Single-trace comparison for synthetic seismograms in the
3D SEG/EAGE overthrust model shown at the distance x = 3.2 km
(see the shot records in Figure 6): (a) only PP scattering, with and
without attenuation, (b) all scattering modes (PP, PS, SP, and SS),
with and without attenuation, and (c) all scattering modes (PP, PS,
SP, and SS) and only PP scattering, both with attenuation.
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the computation time using virtual machines that are widely avail-
able to the scientific community and commercial actors on cloud
infrastructures. The tests for the GPU method ran on a virtual ma-
chine with either an NVIDIA Tesla K80 GPU (less powerful) or an
NVIDIA Tesla P100 GPU (more powerful). These results are com-
pared to the baseline implementation running on virtual machines
with either 8 or 64 virtual Haswell cores at 2.30 GHz.

For the modeling comparison, we measured the average runtime
for computing one source-receiver pair using the CPU divided by
the runtime for the same computation done using the GPU. Thus, a
ratio greater than one means that the GPU computations are more
efficient. The results are summarized in Table 1 for an integration
grid of 20 X 20 X 10 m that was used to create the synthetic seismo-
grams for our numerical examples. This is compared to results com-
puted on a denser grid of 20 X 20 X 5 m (needed, for example, for
modeling higher frequencies). The results show that the GPUs are
significantly faster for modeling, even when we use a powerful node
with up to 64 CPU cores.

Depth (m)
Image amplitude (m/s)

Image amplitude (m/s)

Distance x (km)

Depth (m)
Image amplitude (m/s)

0 2 4 6 8
Distance x (km)

Figure 8. Imaging results in the 3D SEG/EAGE overthrust model
shown for a vertical cross section across a faulted anticline: (a) mod-
eling and imaging done without attenuation, (b) modeling and im-
aging done using 0, = 50, and (c) modeling with attenuation using
0, = 50, but imaging done without attenuation.

To assess the computational efficiency, without the initialization
step, we run a second set of performance tests for the modeling and
evaluate only the sum reductions. For the tests, we vary the spatial
sampling of the integration domain on the assumption that denser
grids represent domains with larger spatial extents. The reason for
this is that the larger domains have a higher computational burden
than the smaller domains. In Figure 10, the x-axis denotes the num-
ber of integration points. Sampling intervals of 20 X 20 X 10 m are
used for the smallest domain (the same grid as used in the “Results”
section for modeling), and the sampling intervals of the largest do-
main are 10 X 10 X 10 m. In Figure 10a, the y-axis denotes the total
computation time and the results are shown for the baseline (red),
the K80 GPU (black), and the P100 GPU (blue) runs. The values are
calculated as the total time used to carry out the integrations for all
frequencies. The same performance comparison is shown in Fig-
ure 10b, but here as a speed-up factor for the computation times
for GPUs relative to the CPU baseline. The results show that, re-
gardless of the domain size, the K80 and P100 GPUs are, respec-
tively, 6 and 15 times more efficient than the baseline when
computing the multidimensional integrals.

Table 2 shows the computational performance results for the im-
aging. In this case, we measured the total runtime required to com-
pute the imaging result shown in Figure 8b. We performed the
imaging using 240 frequencies (up to 60 Hz) in one case and using
120 frequencies (up to 30 Hz) in another case. As in the modeling
example, the results show that the GPU reduction scheme is signifi-
cantly more efficient than the CPU baseline.
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Figure 9. Imaging results shown for single traces in the black dots
for modeling and imaging done without attenuation, in the solid
black for modeling and imaging done with O, = 50 and in the
dashed black for modeling with Q,, = 50, and imaging without at-
tenuation. Traces are selected at the x-locations along the imaged
vertical cross section at (a) 2 km, (b) 4.8 km, and (c) 6.8 km.
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Figure 10. Performance comparison for the computation of ray-Born
integrals for various sizes of the integration domain: (a) the time in
seconds for computing one source-receiver pair and (b) the speed-up
achieved for the GPU architectures as compared with the 64 CPU
core baseline.

DISCUSSION

Increasing the computational efficiency is especially important
for the processing of large seismic surveys. For example, a marine
seismic acquisition may contain hundreds of thousands of shots and
may take weeks to process on a cluster of nodes using conventional
CPU-based techniques. For practical applications of this size, we
note that our strategy is perfectly parallel and can also be imple-
mented for multiple nodes or GPUs without difficulty. In the case
of the modeling application, one can process source-receiver pairs
separately on different nodes. Similarly, one can process image
points separately for the imaging application. If the integration do-
main is very large and does not fit in the GPU memory, the domain
can be decomposed into smaller domains that are passed to multiple
GPUs in parallel or to one GPU sequentially.

In our numerical results, the performance comparisons in the 3D
SEG/EAGE overthrust model suggest that a node with 64 virtual
CPU cores cannot outperform a single GPU. Therefore, given
the hardware configurations discussed in this paper, using a
GPU is more cost effective. We also observe that if we increase
the computation domain, then the speed-up factor remains the same
and we do not saturate the GPU capacity.

The integration method used is based on straightforward summa-
tion. It could be thought that using more sophisticated integration
algorithms that use irregular grids or higher order integration meth-
ods, such as Gaussian quadrature techniques (Stroud and Secrest
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Table 2. A comparison of the computation time for viscoelastic
imaging for the GPU method with the computation time of the
multicore CPU baseline.

8 Haswell cores 64 Haswell cores

Sources X receivers X frequencies: 149 x 447 x 120

Tesla K80 12.2 2.3
Tesla P100 29.0 5.5

Sources X receivers X frequencies: 149 x 447 x 240
Tesla K80 19.7 4.0
Tesla P100 48.4 9.7

Note: Values larger than one favor the GPU implementation.

1966), would also lead to faster ray-Born modeling algorithms.
However, initial tests indicate that this is, in general, not the case.
The reason for this is that the integrand in the ray-Born integral
varies quite randomly, except near the source and receiver, as
the perturbation often has a “random” component (e.g., when it
is derived from tomography). This confirms the usefulness of more
hardware-oriented methods to speed up ray-Born modeling.

CONCLUSION

‘We presented a unified implementation strategy for viscoelastic
modeling and imaging using GPUs. Fundamental to the implemen-
tation is efficient numerical integration using a sum reduction
method. The reduction is done in a tree-like manner across the GPU
cores, using a general purpose reduction algorithm. This has the
advantage that further developments of reduction algorithms, for
example, with developments of new hardware, can easily be picked
up from the field of high-performance computing for use in geo-
physical algorithms.

Comparisons to the closed-form solutions and the finite-differ-
ence method show that real ray tracing is a useful approximation
in weakly attenuating media. Furthermore, we show the signifi-
cance of amplitude decay in the modeling of synthetic seismo-
grams, and we show how attenuation effects are compensated for
in the imaging algorithm. Finally, the performance comparison
shows a significant improvement in computational efficiency as op-
posed to a parallel CPU baseline.
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DATA AND MATERIALS AVAILABILITY

The fundamental aspects of the algorithms we present are avail-
able in the public domain. References are included.

APPENDIX A

MINIMIZATION OF THE OBJECTIVE FUNCTION
FOR IMAGING

The square of the objective function 5 is defined as

M(ay) = Mo+ (My, 1) + (H(a), o), (A-1)

when the complex inner product is defined by (f,g) =
[f(x)g(x)dx, f(x) is the complex conjugate of f(x) and

My = /@d(a)da, (A-2)
My(x) = =2 / V(@ x)d(a)da, (A3)
Hxa) = [Vaxvayapady. A

Equation A-4 defines the Hessian H with the new variable y denot-
ing the spatial scattering points. The least-squares objective func-
tion A-1 can be differentiated with respect to the perturbation model
dM/da; =0, and this gives

M (x) +2H(x,a;) = 0. (A-5)

Inserting equations A-3 and A-4 into A-5 gives the normal equa-
tion 8 in integral form.
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