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Summary 

Acute myeloid leukemia (AML) is an aggressive disease with a poor overall 

survival rate. The most frequent mutations associated with AML are internal tandem 

duplications (ITD) in the juxtamembrane region of the receptor tyrosine kinase Flt3. 

These mutations render the receptor constitutively active and alter signaling trough 

FLT3-ITD compared to wild type receptor. Non-mutated TP53 and elevated 

expression of its regulator Hdm2 is another interesting feature of AML. Studies have 

shown that the p53 pathway can be linked to Flt3 signaling as a subset of FLT3-ITD 

patients expresses increased levels of the anti-apoptotic protein Bcl-2 and hyper-

phosphorylated p53 protein. This thesis investigates the properties of FLT3-ITD and 

the interconnection of the Flt3 signaling pathway with the p53/Hdm2/Bcl-2 pathway 

in an attempt to elucidate novel therapeutic targets in AML. 

The experiments demonstrate a reciprocal regulation of Flt3 and Hdm2 in AML 

cells with Flt3-wt while FLT3-ITD cells suspend the Hdm2 modulation. FLT3-ITD 

patient cells have a higher level of Flt3 protein and the ITD results in dysregulated 

receptor turnover and attenuated Hdm2 down-regulation. Thus targeting of FLT3-ITD 

may result in elevated Hdm2 and increased tolerance for p53. The involvement of 

Bcl-2 family of proteins is also seen in this setting; a persistent attenuation of Mcl-1 

is required for the cells to undergo apoptosis, however this is only seen in Flt3-wt 

cells. Hdm2 is in addition shown to be important as a regulator of Bcl-2. The 

blockage of Hdm2 E3 ligase activity results in increased Bcl2 and Hdm2 is required 

for Bcl-2 protection from p53-induced cell death. 

To conclude, wild type and mutated Flt3 is interconnected with the important 

p53/Hdm2/Bcl-2 pathway at several levels. Therapeutic targeting of Flt3 should 

therefore be evaluated in co-operation with the p53/Hdm2/Bcl-2 pathway. Combined 

targeting of FLT3-ITD, Hdm2 and Bcl-2 may therefore be interesting when 

approaching the development of novel AML therapy. 
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1. Introduction 

1.1 Acute Myeloid Leukemia 

Definition and classification 

Acute Myeloid Leukemia (AML) is an aggressive hematological disorder in 

which the hematopoietic progenitor cells lose their ability to differentiate and 

proliferate normally (1). This leads to an accumulation of immature myeloid cells in 

the bone marrow (Figure 1).  

Common symptoms of untreated AML are fatigue, bleeding due to 

thrombocytopenia, organ infiltration and fatal infections due to neutropenia, all 

resulting from the suppression of normal bone marrow function. The diagnosis of 

AML is based on the demonstration of an accumulation of myeloid blasts in the bone 

marrow. According to the French-American-British (FAB) cooperative group the 

diagnosis of AML requires at least 30% myeloid blasts in the bone marrow (2, 3). 

The more recent World Health Organization (WHO) classification defines AML as at 

least 20% leukemic blasts in the bone marrow. This last classification is based on 

morphology, histochemistry and cytogenetics. The WHO system defines four major 

categories of AML, namely; i) AML with recurrent genetic abnormalities, ii) AML 

with multilineage dysplasia, iii) therapy related AML and iv) AML not otherwise 

categorized (4, 5). 
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Figure 1. Normal hematopoiesis. In normal hematopoiesis the multipotent 
hematopoietic progenitor cells differentiate into common lymphoid 
progenitors which further differentiate into the different lymphoid cells and 
the common myeloid progenitors which give rise to the myeloid cells. A 
block in maturation, increased proliferation and decreased cell death in the 
myeloid precursor cells lead to the development of AML.  
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The current hypothesis of leukemogenesis is the “two-hit” model first presented 

by Gilliland in 2001 (6). This hypothesis implies that two separate mutations with 

different consequences need to be present for AML to develop. The first group of 

mutations is mutations giving a proliferative and /or survival advantage to the cell; 

referred to as class I mutations. Class I mutations include BCR-ABL, N-RAS, K-

RAS, c-Kit (exon 8), c-Kit (Asp816), FLT3-ITD, FLT3 (Asp835), PTPN11, NF1 and 

TEL-PDGFR� (7). The second group of mutations, the class II mutations, is 

mutations which impair differentiation and apoptosis; including CBF�–MYH11, 

AML1–ETO, TEL–AML1, PML–RAR�, NUP98–HOXA9, PU.1, C/CEBP�, AML1 

and AML1–AMP19 (7).  The “two-hit” model is overviewed in Figure 2. 

 

Figure 2 The ”two-hit” model of AML development. Adapted from (7, 8). 
Class I mutations include mutations which confer a growth advantage 
whereas class II mutations impair the hematopoietic differentiation. AML1-
COPINE VIII is a unique mutation with a resulting fusion protein with both 
class I and class II activities (9).  
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Prognostic factors 

The median survival for AML patients receiving supportive therapy alone is 

only 3-4 months and very few patients survive for more than one year. There are 

numerous chromosomal aberrations and other genetic defects detected in AML, and 

recurrent cytogenetics abnormalities are used in prognosis and guidance for 

therapeutic decisions on hematopoietic stem cell transplantation or intensive 

chemotherapy alone (10-13). Based on the cytogenetics patients can be classified into 

three major subgroups with different prognosis. The group with favorable 

cytogenetics includes about 25% of the patients. Examples of favorable cytogenetics 

are t(8;21)(q22;q22) which creates the fusion protein AML1-ETO and 

t(15;17)(q22;q21) resulting in the PML-RAR� fusion protein. Patients with this latter 

fusion protein receive targeted therapy with all-trans retinoic acid (ATRA) in addition 

to conventional therapy. The adverse cytogenetic group includes about 10% of AML 

patients with e.g. multiple abnormalities as deletions of either chromosome 5 or 7. 

There is also a group with intermediate risk; this includes among others the patients 

with normal karyotype. A detailed review of the cytogenetics in AML can be found 

in (12).  

Several molecular genetic aberrations also have a prognostic impact in AML. 

The most important genetic aberration is in-frame internal tandem duplications 

(ITDs) of the receptor tyrosine kinase FLT3 (14). Several point mutations in FLT3 

have also been described (15-20). FLT3 mutations are associated with an adverse 

prognosis (1), and is the strongest separate marker for disease relapse in AML (21). A 

detailed description of FLT3 mutations is given in a following section. Another 

frequent genetic aberration in AML is mutations in the nucleophosmin gene (NPM1). 

These mutations are present in 40 – 50% of AML patients with normal karyotype and 

represent a favorable prognostic factor for patients without FLT3 mutations (22-26). 

Several other molecular prognostic markers have also been indicated, e.g.:  
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• Partial tandem duplications of the mixed lineage leukemia (MLL) gene 

associated with a short remission duration (27, 28).  

• High expression of the Brain And Acute Leukemia Cytoplasmic 

(BAALC) gene is an adverse prognostic factor (29) . 

• Mutations in CCAAT/enhancer binding protein alpha (CEBPA) gives a 

favorable prognosis of disease outcome (30).  

• Over-expression of ETS-related gene (ERG), meningioma 1 (MN1) or 

breast cancer resistance protein (BCRP) has been shown to be 

predictors of poor prognosis  (31-34).  

• Mutations in TP53 are associated with secondary leukemia and 

chemoresistance (35, 36) 

A more detailed review of these molecular prognostic markers is given in (37, 38). 

Gene expression profiling by DNA microarrays is a new method that is 

increasingly used for prognostic evaluation and identification of novel subclasses of 

AML (39). Gene expression profiling signatures have been correlated to clinical 

outcome in several studies (39-41) and will probably become a valuable tool for 

future molecular diagnostics.  

 

Treatment 

The initial treatment regimen for AML is induction therapy often consisting of 

an anthracycline (daunorubicine (DNR) or idarubicine (IDA)) in combination with 

cytosine arabinoside (AraC). AraC is usually given as a continuous infusion at 100-

200 mg/m2 for seven days together with infusion of daunorubicin at 45 mg/m2 for 30 

minutes daily for the first three days (42). Consolidation treatment is initiated after 

the achievement of complete hematological remission (5% or less of leukemic blasts 
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in the bone marrow (43)). A commonly used regimen for patients below 60 years of 

age is high dose AraC (3000 mg/m2) administered twice daily in 3-hours infusions on 

days 1, 3 and 5. This consolidation treatment is repeated until a total of 4 

consolidations (42). Due to a high risk of treatment-related toxicity for patients above 

60 years of age alternative chemotherapy regimen without high dose AraC have to be 

used for consolidation therapy for elderly patients.  However, risk stratification of the 

patients is important to determine before or early in the consolidation therapy, since 

allogenic hematopoietic stem cell transplantation (HSCT) is recommended as an 

alternative consolidation therapy for selected patients (44). Patients younger than 60 

years with high risk of relapse can be offered allogenic HSCT if a suitable donor is 

available. This is reviewed in (45). The final role of autologous bone marrow 

transplantation in AML remains to be clarified.  

These treatment modalities are generally accepted for all AML-patients with 

the exception of patients with acute promyelocytic leukemia (APL). APL patients 

have a t(15;17) translocation resulting in the fusion protein PML/RAR� and can be 

efficiently treated with ATRA in combination with chemotherapy (46, 47). Long-

term maintenance therapy with ATRA plus low-dose chemotherapy is usually 

recommended for these patients. Many new treatment options for AML have recently 

been proposed and tested in clinical trials as discussed in the following section. 

 Some of the characteristic features of AML are increased proliferation, defects 

in the apoptosis machinery and increased drug-resistance. These are also the major 

targets of new therapeutic modalities. The increased proliferation can be targeted by 

directly inhibiting oncogenic gain-of-function mutations. An example of this is Ras; 

mutations in RAS can be found in 15 – 25% of AML cases (N-RAS 20-25% and K-

RAS 10-15%) (48-53). Anchoring of Ras to the cell membrane via a farnesyl lipid 

moiety is crucial for Ras activation and thus inhibition of farnesyl trasferase has been 

suggested as a therapeutic possibility in AML (54). Several clinical trials have 

demonstrated the antileukemic effect of farnesyl transferase inhibitors (55), although 

no connection to RAS mutations status has been reported. Another example of 
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targeted therapy in AML is kinase inhibitors specific for the mutated Flt3 receptor 

FLT3-ITD. These activating mutations have been found in 30% of AML patients and 

represent an adverse prognostic factor. Several small molecule inhibitors directly 

targeting FLT3-ITD are being evaluated in clinical trials. These are excellently 

reviewed in (56). Table 1 presents an overview of selected new therapy modalities in 

AML. 

 

Table 1:  Selected novel drugable therapeutic targets in acute leukemia 

Target molecule Drug 
Tried in 
leukemia 
therapy 

DNA  (Alkylators) Cloretazine (57) 
Histone deacetylase§ Valproic acid (58-61) 
 Diphenylbutyrate, Depsipeptide  Reviewed in (62) 
DNA methyltransferase§ Decitabine (63) 
Bcl-2§ Oblimersen sodium (64) 
Caspases CDDO (65) 
Hsp90§ 17-allyl-amino-geldanamycin (17-AAG) Reviewed in (66) 
Farnesyl transferase§ R11577 (Tipifarnib, Zarnestra) (67) 
MEK§ U0126 (68) 
 PD098059 (69) 
Cdks Cyclin dependent kinase inhibitors (70, 71) 
mTOR§ Rapamycin Reviewed in (72) 
RTK class III:  
 Flt3§, c-Kit, FMS, PDGFR� 
and PDGFR� 

Receptor tyrosine kinase inhibitors: 
PKC412, CEP-701, CT35318, SU5416 and 
SU11248 

 
(73-84) 

VEGFR BAY 43-9006, SU11248, SU5416, 
Vatalanib 

Reviewed in (85) 

Proteasome§ Bortezomib (Velcade) (86) 
 PR-171 (86) 
CD33 Gemtuzumab ozogamicin (Myelotarg) (87-89) 
CD44 Anti CD-44 antibody Reviewed in (90) 
Angiogenesis: 
IL8 IL8 receptor antagonists Reviewed in (85) 
VEGF Aplidine, Bevacizumab Reviewed in (85) 
Note: § indicate target molecule that putatively influences on the Flt3 signaling 
pathway.  
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1.2 Receptor Tyrosine Kinases class III in normal 
hematopoiesis and leukemogenesis 

The receptor tyrosine kinases (RTK) class III, also known as the PDGF family, 

includes the following receptors: c-Kit (91), Fetal-liver tyrosine kinase; Flt3 (92), 

Platelet-derived growth factor receptor-�; PDGFR� (93), PDGFR� (94) and c-FMS 

(95). They are characterized by five immunoglobulin-like domains in the 

extracellular region, a transmembrane domain, a juxtamembrane (JM) domain and a 

split tyrosine kinase domain in the intracellular region. An overview of the different 

domains is showed in Figure 3. This group of receptors has important roles in normal 

hematopoiesis; c-Kit and Flt3 are important for the survival, proliferation and 

differentiation of early hematopoietic progenitor cells and c-FMS is important for the 

growth and differentiation of the monocyte-macrophage-osteoclast lineage. In 

addition, PDGFR� and its ligand have been suggested a role in megacaryocytopoiesis 

(96). 

 The receptors in the RTK class III family can be expressed by primary human 

AML cells with varying extent. A functional and proliferation-inducing c-Kit 

receptor is expressed in 60 – 90% of de novo AML (97, 98) . Mutations in c-Kit have 

been reported in AML cells with inv(16) or t(8;16) (13 - 48% overall) and may be 

associated with an adverse prognosis (99-105). In addition, a fusion protein of 

PDGFR� (TEL-PDGFR�) expressed together with another fusion protein AML1-

ETO can induce AML in a mouse model (106). However, the most important 

receptor in AML is Flt3. Activating mutations in Flt3 are the strongest single 

predictor for AML relapse after intensive chemotherapy (21), and this will be 

thoroughly discussed in upcoming sections.  
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1.3 FMS-like tyrosine kinase 3 (Flt3) 

The names FMS-like tyrosine kinase 3, fetal liver kinase 2 and stem cell 

tyrosine kinase 1 all represent the same protein; the tyrosine kinase receptor Flt3 (92, 

107, 108). The FLT3 gene is located on chromosome 13 (13q12), is over 1000 

kilobases long and consists of 24 exons (109-111). The gene encodes a 993 amino 

acid protein which is detected as two bands of 130 and 160 kilo Daltons (kDa) on 

Western blots. The 160 kDa band is a result of N-linked glycosylation of the 

extracellular domain and this is the membrane bound form. The 130 kDa band is 

unglycosylated and located to the cytoplasm (92, 107, 108, 112, 113).   

 

 

 

 

 

 

 

 

Figure 3 Overview of the structure of the class III Receptor Tyrosine 
Kinases. The sketch and alignments are representative for all RTK class 
IIIs, while the details in the shaded boxes are specific for Flt3. The line 
above the alignments is used to mark strongly conserved positions. '*' 
indicates positions which have a single, fully conserved residue. ':' indicates 
that one of the following strong groups is fully conserved; STA, NEQK, 
NHQK, NDEQ, QHRK, MILV, MILF, HY and FYW. '.' indicates that one of 
the following weaker groups is fully conserved; CSA, ATV, SAG, STNK, 
STPA, SGND, SNDEQK, NDEQHK, NEQHRK, FVLIM and HFY. The 
numbers under the alignment indicated residue number of the protein 
alignment including gaps. All amino acids are represented by their one-
letter code.  
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Flt3 signaling 

 FL binds to Flt3 as a dimer, this triggers receptor dimerization and trans-

phosphorylation of tyrosine residues in the JM domain followed by a conformational 

change (114). This exposes phosphoryl acceptor sites in the tyrosine kinase domain 

and subsequently causes autophosphorylation and activation of the receptor and the 

downstream signaling cascade. These intracellular events involve phosphorylation 

and activation of several cytoplasmic pathways important for the regulation of 

apoptosis, proliferation and differentiation. 

 The binding of FL to Flt3 leads to phosphorylation of adaptor proteins like 

Gab-1, Gab-2 and SHP-2, which in turn bind to and activate the p85 subunit of the 

phoshoinisitol-3 kinase (PI3K) (115, 116). PI3K is involved in numerous signaling 

pathways of which Akt signaling is the most important with regards to Flt3. Akt is 

activated by Flt3 in a FL dependant manner and the downstream transcription factor 

FOXO3a is inactivated (117). This leads to cell cycle arrest and apoptosis induction. 

Another important downstream protein of Akt is mTOR (mammalian target of 

rapamycin). mTOR is aberrantly activated in more than 70% of AML cases and is an 

important new therapeutic target in AML (reviewed in (72)). The abnormal activation 

of mTOR leads to increased cell survival of AML cells. 

Several components of the Ras/Mitogen activated protein kinase (MAPK) 

pathway are also phosphorylated upon FL stimulation leading to activation of Ras 

(118, 119). Ras activates Raf-1 which subsequently leads to phosphorylation and 

nuclear translocation of Erk-1 and Erk-2. These two mediators catalyze 

phosphorylation and nuclear translocation of transcription factors and are 

constitutively phosphorylated in cells with mutated Flt3 (118-121).  

The Jak/STAT pathway is also important in Flt3 signaling. Signal transducer 

and activator of transcription 5; STAT5 has been reported to be constitutively 

activated in cells with mutated Flt3 (118, 119, 122, 123). Also STAT5 target genes 
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are induced in these cells, while the wild type receptors show little signaling trough 

STAT5. An overview of Flt3 signaling is shown in Figure 4. 

 

Figure 4. Flt3 signaling. The different proteins implicated in Flt3 signaling 
are described in the text. Activation of the transcription factors STATs lead 
to the transcription of survival factors like Bcl-2. The Ras/Raf pathway 
mediates phosphorylation of p53 and Hdm2 and promotes apoptosis and 
growth arrest. 
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Flt3 and normal hematopoiesis 

Flt3 is highly expressed in hematopoietic progenitor cells in the bone marrow 

as well as in thymus, lymph nodes, brain, placenta and liver (92, 124). The expression 

is usually lost when cells differentiate. The ligand for Flt3 (FL) is almost ubiquitously 

expressed in either a membrane-bound or a soluble form (125-127). Hence, the 

function of FL is specified by the restricted expression of Flt3. Most of the 

information about the role of Flt3 in normal hematopoiesis has come from knock-out 

studies in mice. Knock-out of either Flt3 or FL leads to viable mice with no 

hematological diseases and a normal life span (128, 129). However, these mice have 

reduced number of B progenitor cells, natural killer cells and dendritic cells.  

FL regulates early hematopoiesis by stimulating the Flt3 signal transduction 

pathway, but this is inefficient when FL is present as a single cytokine. The 

stimulating effect of FL mediated signaling is dependant upon a synergism between 

FL and several other cytokines (e.g. interleukin-3 (IL-3), granulocyte colony-

stimulating factor (G-CSF), colony-stimulating factor-1 (CSF-1) and granulocyte 

macrophage colony-stimulating factor (GM-CSF)) (113, 130-133).   

 

Flt3 and leukemogenesis; internal tandem duplications and point 
mutations 

 Mutations in Flt3 occur in approximately 30% of AML patients. The exact 

mechanism for the formation of ITDs is unknown, both slippage of the replication 

machinery and a failure in a mismatch repair mechanism has been proposed (134, 

135). There are two major types of Flt3 mutations; in frame internal tandem 

duplications (ITDs) of 3 – 400 base pairs in the juxtamembrane (JM) region (14, 136) 

and point mutations of the activation loop in the kinase domain (15, 20).  The 

mutations in the JM domain are mostly internal tandem duplications, but there have 

also been reports of deletions and insertions in this region. All these mutations are 
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collectively referred to as length-mutations (LM), but the term ITD is most 

commonly used and will be used throughout this text. 

The juxtamembrane region of Flt3 has been subdivided into three structural 

domains according to their relative location to the tyrosine kinase domain; the JM-

binding motif (JM-B), the JM-switch motif (JM-S) and the zipper or linker peptide 

segment (JM-Z) (114). When this domain is in its auto-inhibitory state, the JM-B 

motif makes contact with the most important structures in the kinase domains. The 

JM-S domain contains two important tyrosine residues (the Y�Y motif; where � 

represent a hydrophobic residue) which promote a framework between the JM 

domains and the kinase domains. Phosphorylation of these tyrosines leads to collapse 

of the auto-inhibitory state and hence activation of the receptor.  ITDs in the JM 

region lead to disruption of the conformation of JM-B and JM-S and thereby relieve 

the auto-inhibitory state without phosphorylation of the Y�Y motif.  

 There are reported various mutations in the activation loop of Flt3, all resulting 

in constitutive active receptor. The most common is missense mutations of aspartate 

(D) 835 to tyrosine (Y) (15, 20). Mutations of the corresponding amino acid in c-Kit 

leads to a conformational change in the active loop structure and subsequent 

constitutive activity of the receptor (for review see (16)). Other activating mutations 

in the same region have been described; tyrosine (Y) 841 to cystein (C), giving a 

switch from an open to a closed conformation in the Flt3 activation loop (18) and 

asparagine (N) 842 to isoleucine (I) which destabilizes the hydrogen-bonding 

network in the activation loop (17). A destabilizing six base-pair insertion between 

codons 840 and 842 has also been reported (19).  
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Flt3 and chemoresistance in human AML 

 The prevalence of FLT3 mutations in AML has been reported in numerous 

studies including more than 5000 individuals (summarized in (137)). The most 

important conclusions from these studies are as follows: 

• FLT3-ITD is strongly associated with increased number of leukemic blasts in 

the peripheral blood and bone marrow of AML patients (136, 138-142)  

• FLT3 mutations are associated with normal or intermediate-risk cytogenetic 

characteristics e.g. t(15;17). In addition, mutations in NPM1 are highly 

associated with FLT3-ITD (143). 

• FLT3-ITD is the strongest separate predictor for disease relapse (21) 

• FLT3-ITD is an independent poor prognostic factor for overall survival, 

disease-free survival and event-free survival (137).  

Since FLT3-ITD is associated with a poor prognosis, a routine screening for FLT3 

mutations is recommended for risk stratification of AML patients. However, the 

optimal treatment for AML patients with FLT3-ITD needs to be further elucidated. A 

retrospective study from the Medical Research Council of the UK showed that HSCT 

did not alleviate the adverse effects of FLT3-ITD in AML (21). 

The precise mechanisms for the increase risk for relapse in AML with FLT3-ITD 

are currently unknown. Increased DNA-damage repair has been reported to be 

associated with FLT3-ITD in AML cell lines (144).  This may be one contribution to 

the high risk for relapse in FLT3-ITD AML because these cells have enhanced 

capabilities of surviving DNA-damage therapy. Flt3 is also known to modulate cell 

adhesion molecules like very late antigen (VLA)-4 (145). This may represent a 

leukemia-host aspect of chemoresistance and can thus only be studied in vivo or in 

appropriate animal models.  Interaction between VLA-4 on AML cells and stromal 

fibronectin seem to promote minimal residual disease (146).  
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1.4 The p53/Hdm2 pathway 

Human homologue of murine double minute 2 (Hdm2) 

 The transforming potential of three genes that was over-expressed in a 

spontaneously transformed BALB/c cell line was connected to small 

extrachromosomal nuclear bodies called double minutes. These genes were called 

mdm1, mdm2 and mdm3 for mouse double minute 1-3. Later, the gene product of 

mdm2 was shown to be responsible for the transforming potential of these cells (147, 

148). Over-expression of Mdm2 leads to transformation and also to tumor formation 

in nude mice. The human homologue of Mdm2 is Hdm2. Increased levels of Hdm2 

are associated with various cancers e.g. breast cancer, osteosacroma and soft tissue 

sarcoma. Soon after its discovery, Hdm2 was shown to inhibit p53-induced 

transformation and it was found that the over-expression of Hdm2 was most 

prominent in cancers with wild type p53 (149, 150). 

 

Hdm2 in regulation of p53 

p53 is a tumor suppressor with anti-proliferative and pro-apoptotic effects on  

normal cells. It is important to keep the level of p53 low; hence regulation of p53 

activity is an important task for the cell. Hdm2 is the key regulator of p53. p53 and 

Hdm2 form an autoregulatory feedback loop and the two proteins mutually control 

their levels. Hdm2 is an E3 ubiquitin ligase responsible for the mono-ubiquitination 

and marking of p53 for degradation (151-154).  The further poly-ubiquitination of 

p53 is mediated through the transcriptional co-activator p300/CBP and this step is 

dependent on previous mono-ubiquitination by Hdm2 (155). Numerous proteins have 

been given an important role in the interplay between Hdm2 and p53; among these is 

the cytoplasmic tyrosine kinase c-Abl. The kinase activity of c-Abl is necessary for 

the maintenance of basal p53 protein level, and c-Abl increases p53 level upon DNA-

damage through prevention of ubiquitination and nuclear export of p53 by Hdm2  
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(156). The mechanism behind c-Abl induced p53 stabilization is proposed to involve 

c-Abl phosphorylation of Hdm2 on Tyr394 (157). An overview of selected members 

in the p53/Hdm2 regulatory pathway is shown in Figure 5. 

 

 

Figure 5. The p53/Hdm2 regulatory pathway. p53 is activated upon DNA 
damage leading to transcription of target genes and subsequent apoptosis, 
cell cycle arrest and differentiation. Hdm2 binds to and serves as a 
regulator of p53. The small molecule inhibitors nutlin abrogated the binding 
of Hdm2 and p53.  

 

p53 independent functions of Hdm2 

 Hdm2 does not only function in the regulation of p53. There is evidence for 

the interaction of Hdm2 with a number of other proteins, including the tumor 
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suppressor p14ARF (158), the retinoblastoma protein pRb (159), the ribosomal 

protein L5 (160), E2F/DP1 (161) and the p73 transcription factor (162). These 

interactions are examples of p53-independent functions of Hdm2, as reviewed in 

(163, 164). Particularly interesting in view of the topic in this thesis is the role of 

Hdm2 in ubiquitination and regulation of receptor endocytosis. Hdm2 regulates the 

trafficking of �2-adrenerg receptor trough ubiquitination of both the receptor and the 

protein �-arrestin (165). The insulin-like growth factor-1 receptor (IGF-1R) is also 

ubiquitinated by Hdm2 (166) and this ubiquitination is necessary for the proteasomal 

degradation of IGF-1R. Hdm2 is also important in the regulation of several hormone 

binding receptors (i.e. glucocorticoid receptor, estrogen receptor and androgen 

receptor) (167, 168). 

 

Hdm2 in AML 

 In contrast to most solid tumors, the TP53 gene encoding the p53 protein is 

usually wild-type in AML (169-171). It has been suggested the inactivation of p53 in 

these cells occurs trough over-expression of Hdm2 since HDM2 mRNA and Hdm2 

protein is over-expressed and has been associated with a poor prognosis in AML 

(172-176). This over-expression may play an important role in the biology of AML. 

A small-molecule antagonists of Hdm2 (the isostereomere nutlin-3a) induces p53-

dependent apoptosis in AML cells with wild-type p53 and cells with a high Hdm2 

level are most susceptible to nutlin-induced apoptosis (172). The molecular 

mechanism of nutlin-3a is explained through its binding to the p53-binding pocket of 

Hdm2 and subsequent displacement of p53 from the complex (177). Recently another 

mechanism for nutlin-3a is described, namely the blockage of Hdm2 binding to 

E2F1. This results in an enhanced effect of chemotherapy in cells with mutated TP53 

and represents a novel therapeutic approach in these cells (178).  
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1.5 The ubiquitin-proteasome pathway 

Protein degradation and regulation by ubiquitin conjugation 

More than 80% of all eukaryotic protein degradation is controlled by the 

ubiquitin (Ub)-proteasome pathway (179) that includes both polyubiquitination of 

lysine residues and the following degradation of targeted protein by the proteasome. 

The proteasome is a large intracellular protease with multiple enzyme activities 

consisting of a 20S catalytic core complex and two 19S regulatory subunits (reviewed 

in (180)). The ubiquitination process is mediated trough the three enzyme families 

E1, E2 and E3. E1 is an Ub-activating enzyme which binds to and activates Ub. The 

next step in the ubiquitination process occurs when an Ub-conjugating E2 enzyme 

transfers an activated Ub to an E3 Ub-ligase that attaches an Ub to the desired 

protein. These steps are repeated until an Ub-chain is formed (reviewed in (181)). 

The ubiquitinated protein binds to the 19S subunit of the proteasome where it is de-

ubiquitinated and unfolded. The unfolded protein is transported to the 20S subunit 

and degraded into peptides of various lengths (reviewed in (182)). 

Polybiquitination is mostly associated with the degradation of target proteins, 

while monoubiquitination has been described as a regulatory signal, similar to post-

translational modifications like neddylation, sumoylation, acetylation and 

phosphorylation. Monoubiquitination is involved in the regulation of histone function 

(183), membrane trafficking (reviewed in (184)), transcription regulation (185), DNA 

repair (186, 187) and DNA replication (188). Receptor tyrosine kinases undergo 

ligand-dependent ubiquitination and this has become recognized as an important 

signal for endocytosis and degradation in the lysosome. It has been shown that 

epidermal growth factor receptor (EGFR) and PDGFR are not polyubiquitinated but 

monoubiquitinated at multiple sites after ligand-induced activation and that 

monoubiquitination is the principal signal responsible for the movement of RTKs 

from the plasma membrane to the lysosome (189). 
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Of particular interest for the work presented in this thesis is  the fact that the 

proteasome regulates short lived proteins as the tumor suppressor p53 (190) and the 

anti-apoptotic protein Mcl-1 (191). Proteins with much longer half life are also 

degraded via the proteasome, including the anti-apoptotic protein Bcl-2. The spatio-

temporal regulation of ubiquitination seems to be determined by the E3 ligase 

activity.  

 

E3 ubiquitin ligases  

 The E3 ubiquitin ligase family consists of around 1000 proteins that can be 

divided into three major types based on structure and substrate recognition. The first 

class is N-end rule ubiquitin ligases which target proteins with specific destabilizing 

N-terminal residues (192). The second group consists of HECT-domain 

(Homologous to the E6-AP Carboxyl Terminus) E3 ligases and the third and largest 

group is the RING (Really Interesting New Gene) family of E3 ligases. There have 

also been reports of E3 ligases with no similarity to any of the groups, linking the E3 

ligase activity to new protein sequences. E3 ubiquitin ligases have also been indicated 

as both targets for cancer therapy and as biomarkers. This is reviewed in (193). 

 Examples of E3 ubiquitin ligases are the RING-finger ubiquitin ligase; Hdm2 

(see above), the Cbl RING-finger ubiquitin ligases and the p300-CBP-associated 

factor (PCAF), a newly described atypical E3 ubiquitin ligase. The Cbl family of 

ubiquitin ligases plays a major role in the ligand-dependent ubiquitination of many 

receptor tyrosine kinases (194). Cbl binds directly to c-Kit (195), and also to Flt3 

(196). An inactivating mutation in c-Cbl was recently found in the bone marrow of 

one AML patient, this mutation lead to Flt3 dependent transformation of AML cells 

in vivo (196). PCAF is a histone acetyltransferase involved in the regulation of p53 

and it possesses an intrinsic ubiquitin ligase activity which is critical for the control of 

Hdm2 expression levels (197). This ubiquitin ligase activity does not map to any 

known E3 ubiquitin ligase motif. 
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Functional role in AML 

 The ubiquitin-proteasome pathway has been validated as an important 

therapeutic target in several hematological malignancies (198). Proteasome inhibitors 

are also suggested as a group of new therapeutic agents for the treatment of AML. 

The proteasome inhibitors bortezomib and PR-171 has been tested in vitro with 

promising effects on primary AML cells (86). The importance of the E3 ligases 

Hdm2 and Cbl in AML can also lead to speculations of the possible targeting of the 

ubiquitin system in AML.  

 

1.6 The Bcl-2 family of proteins 

Overview 

Members of the Bcl-2 family of proteins are key regulators of apoptosis and at 

least 19 different family members have been identified in mammalian cells (reviewed 

in (199, 200)).  These proteins are divided into three groups; 1) the anti-apoptotic 

Bcl-2 subfamily (Bcl-2, Bcl-XL, Bcl-w, Mcl-1 and A1/Bfl-1), 2) the pro-apoptotic 

Bax subfamily (Bax, Bak and Bok/Mtd) and 3) the more distant relatives, the pro-

apoptotic BH3-only proteins (Bik/Nbk, Blk, Hrk/DP5, BNIP3, BimL/Bod, Bad, 

MAP-1, Bmf, Noxa, Puma/Bbc3 and Bid). The pro-apoptotic Bcl-2 proteins localize 

to the mitochondria where they control the permeabilization of the mitochondrial 

outer membrane and subsequent cytochrome c release to the cytosol and further 

caspase activation. The exact mechanisms for regulation of the Bcl-2 proteins involve 

numerous modifications and different factors not completely elucidated (reviewed in 

(200)). Recently, p53 has been shown to bind directly to Bcl-2 and thereby disrupt 

the Bcl-2/Bax binding and thus enhance Bax-dependent apoptosis (201). Conversely, 

phosphorylation of Bcl-2 in a positive regulatory region abrogates Bcl-2/p53 binding 

and favors cell survival. 
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B-cell lymphoma gene 2 (Bcl-2) 

 Bcl-2 is the prototype for this family of proteins and belongs to the anti-

apoptotic subfamily. The name B-cell lymphoma-2 is given since Bcl-2 is the second 

gene from a range of proteins over-expressed in follicular lymphoma. The human 

BCL-2 gene is located at 18q24 on the long arm of chromosome 18. Bcl-2 has been 

implicated in a number of cancers, e.g. melanoma, breast cancer, prostate cancer and 

lung cancer and is thought to be involved in resistance to conventional cancer 

treatment. 

 

Myeloid cell leukemia 1 (Mcl-1) 

Mcl-1 is an anti-apoptotic member of the Bcl-2 family of protein, identified in 

1993 in differentiating myeloid cells (202). Mcl-1 contains three Bcl-2 homology 

(BH) domains and a C-terminal transmembrane domain which localizes Mcl-1 to the 

mitochondrial membrane. N-terminally, Mcl-1 contains two PEST domains. This is 

characteristic of proteins with a short half-life; Mcl-1 has a half-life of one to a few 

hours (203-205). An elimination of Mcl-1 from the cell is a necessary step in the 

induction of mitochondrial apoptosis; therefore Mcl-1 is rapidly degraded following 

DNA-damage (205). Mcl-1 has also been shown to have an important role in the 

regulation of p53 induced apoptosis. p53 and Mcl-1 both interact with and modulate 

the activity of the death effector Bak and thereby have opposing effects on 

mitochondrial apoptosis (206). 

 

Bcl-2 family members in AML 

Bcl-2 over-expression is associated with prolonged survival of malignant cells 

and chemoresistance in AML (207). The ratio of Bax to Bcl-2 has been proposed as a 

prognostic indicator in AML (208). A high Bax/Bcl-2 ratio is associated with a 
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higher complete remission rate and a longer overall survival. Inhibition of both Bcl-2 

and Hdm2 with small-molecule inhibitors leads to the synergistic induction of 

apoptosis in both AML cell lines and primary cells (209). It has also recently been 

shown that high levels of Bcl-2 are associated with p53 hyper-phosphorylation and 

FLT3-ITD in AML (210).  

 

 



 31 

2. Aims of the study 

The aim of this thesis has been to elucidate the differences between Flt3-wt receptor 

and Flt3-ITD receptor in AML, with particular focus on the following topics: 

1. the role of Flt3 and Flt3 signaling in primary AML cells in vitro  

2. the modulation of Flt3 and FLT3-ITD during DNA damage therapy. 

3. Flt3 signaling and its modulation of the p53/Hdm2/Bcl-2 pathway. 
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3. Methodological considerations 

Several different methods and techniques have been utilized in the work of this 

thesis. The use of primary cells from a biobank of consecutive AML patients 

admitted to Haukeland University Hospital has been a major advantage. However, 

this cell material is limited, and the use of more experimental systems, like AML cell 

lines, had to be considered. Determination of designated protein levels, either static or 

in treatment response experiments has been a major part of this thesis. Various 

methods have been evaluated, the results of which are discussed below. In addition to 

static protein levels, the interplay between proteins in the cell is important. There are 

different methods to determine protein-protein interactions, some of which will be 

discussed below. 

 

3.1 Choice of experimental cell model  

AML cell lines versus primary AML cells  

In paper I, primary AML cells were utilized in a well established setup to study 

proliferation, cytokine secretion and apoptosis. These methods are all set up in a 96- 

and 24-well format requiring only a minimum of cells. In this paper we also 

established Western blots as a method to quantify protein expression and this method 

was used throughout papers II to IV. This is discussed in more detail below. As 

Western blots are a more material demanding method, we chose to use AML cell 

lines as our main source of material in the next papers.   

Previous works from our group indicate that the use of cell lines has obvious 

limitations in reflecting modulation of important in vivo cell signaling pathways (123, 

211). Others have pointed out that the gene expression profiles of breast cancer cell 

lines are quite distant from profiles from primary breast tissue (212). Investigation of 
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DNA-damaging therapy has recently elucidated cancer-host reactions as important to 

understand the complete effect of chemotherapy in animal models (213). This 

illustrates yet another limitation when using cell lines in in vitro experiments.  

 Most AML cell lines comprise mutations in TP53 as this is part of the 

immortalization process. Primary AML cells, in contrast, rarely have TP53-

mutations.(169-171). In vitro both cell lines and primary cells are easy to kill with 

chemotherapeutics, while patients harboring mutated TP53 in their AML cells have a 

notoriously bad prognosis (36). Together, this implies that cell lines and primary cells 

should be used complimentary, and that the in vivo situation needs to be taken into 

consideration. 

 

3.2 Protein quantification 

Quantification in Western blots and by flow cytometry 

In paper I we investigated the relationship between Flt3 protein level and Flt3 

mutational status, but found no correlation. The protein levels were determined by 

Western blots and quantification of signal intensities with Kodak 1D software from 

cell lysates stored in -80ºC. A 70 kDa band from Jurkat cells was used as intragel 

control. The lack of correlation is most likely due to inaccuracy in the quantification 

and also to the lack of protein detection for many of the samples. The cause of this 

can be degradation of protein samples during harvest, preparation and handling. The 

use of a cell line as intra-experimental control was also an issue we reconsidered 

when retying to establish a correlation in later experiments. In paper III we utilized 

cryopreserved primary AML cells as source for determination of Flt3 protein level. 

Because of the problem with protein degradation in cell lysates, we chose to use flow 

cytometry as a means for determining Flt3 and Hdm2 protein levels in paper III. Even 

if protease activity may happen in the flow cytometric procedure, viable cells or 
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swiftly fixated cells were analyzed immediately, securing a limited degradation. 

Normal peripheral blood mononuclear cells (PBMCs) from the same donors were 

used as intra-experimental controls. Both surface Flt3 determined by extracellular 

flow cytometry and total Flt3 determined by intracellular flow cytometry showed a 

strong correlation to Flt3 mutational status with highest level in Flt3-ITD patients.  

Variance by flow cytometry was less than the variance observed when using 

Western blots, but Western blots have its advantage when information about 

molecular weight is needed. In some cases a simple Western blot may provide the 

researcher with important information about the target protein based on small 

changes in molecular weight, e.g. phosphorylation and glycosylation. However, these 

modifications can be more specifically examined by flow cytometry if verified 

modification-specific antibodies are used.  

An advantage of single cell analysis like flow cytometry is that is allows 

studies of distinct subsets of cells. This is not approachable when using cell lysates 

(214). Flow cytometry can also be used for the quantification of receptor number on 

the cell surface. Commercial kits are available that uses microbeads conjugated with 

defined number of antibodies to establish calibration curves for the determination of 

receptor number on the cell surface (215).  

 

Intra- and extracellular flow cytometry 

 Extracellular flow cytometry is a well-known technique in hematology, used to 

determine surface markers (CD markers; CD denotes cluster of differentiation) on 

blood cells. Since Flt3 is a surface protein (CD135) we have used this technique to 

determine surface Flt3. However, since the cellular pool of Flt3 protein also includes 

an intracellular part, we decided to investigate the Flt3 level in permeabilized cells as 

well. Intracellular flow cytometry is a powerful technique that allows simultaneous 
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analysis of up to 17 parameters (216). The advantages of this technique compared to 

e.g. ELISA or Western blotting are many (reviewed in (217)). 

In paper III, the levels of total Flt3 was only slightly higher than levels of 

surface Flt3 in the primary AML cells. Like Western blot determination of Flt3, flow 

cytometric determination of total Flt3 should be the sum of surface Flt3 and 

intracellular Flt3. However, we only observed a minor augmentation when comparing 

the mean values from surface and total staining. This difference may reflect the 

technical difference between the two methods. When staining for surface protein, the 

cells are live and only fixated after the fluorescent antibody is bound. The 

intracellular staining requires a permeabilization step. The cells are therefore fixed in 

paraformaldehyde prior to the permeabilization in methanol; the cells are then stained 

with fluorescent antibodies after the permeabilization step. The quality of the 

antibodies is also very important in flow cytometry applications. Visualization of IR-

induced Hdm2 down-regulation was not possible using flow cytometry, but was easy 

when using Western blots. The same clone of antibody was tried on both flow 

cytometry and Western blots, but only the Western blots showed the down-

regulation. A reason for this inconsistency may be that the epitope for the antibody 

unavailable when preparing the samples for flow cytometry. 

The advantages of intracellular flow cytometry are many; the use of 

modification-specific antibodies is mentioned before. When comparing the levels of 

both surface and intracellular proteins in the same experimental setup, the use of one 

standardized staining protocol is recommended. The comparison of values obtained 

from different protocols is difficult and requires the use of carefully designed control 

samples. 
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3.3 Immunoprecipitation 

 Both paper III and IV raises questions about protein-protein interaction as a 

part of the regulation of Bcl-2, Hdm2 and Flt3. Co-immunoprecipitation is a natural 

choice of technique to illustrate native protein-protein interactions and has been 

utilized in this thesis as an approach to detect interactions between central players in 

the Flt3/p53/Hdm2/Bcl-2 pathways. There are also several other approaches to 

illustrate protein-protein interaction; e.g the Yeast Two Hybrid System or FRET 

(Fluorescence resonance energy transfer). However, these methods require an over-

expression of the proteins of interest, and might not represent the normal situation in 

the cell. 

 

Co-immunoprecipitation; determination of protein-protein 
interactions 

 In spite of numerous attempts to demonstrate an interaction between 

endogenous Flt3 and Hdm2, and also between Hdm2 and Bcl-2, no such interactions 

were found by co-immunoprecipitation. Several different immunoprecipitation 

systems have been utilized in these attempts. We have tried assays where the 

antibody, cell lysate and capture resin were in the same solution, assays where the 

antibody was conjugated to a semisolid gel and systems utilizing small magnetic 

particles to capture the antibody/protein complex. All these different methods had 

their advantages and disadvantages, but in our hands they only worked in 

immunoprecipitation. None of the desired co-immunoprecipitations was convincingly 

and reproducibly performed, but these negative results do not mean that no 

interactions exist.  

One challenge with immunoprecipitations is the high levels of 

immunoblobulins from the antibody that may contaminate the Western blots. The 

heavy and light chains of immunoglobulins give bands at approximately 25 and 50 

kDa. However, incomplete disruption of immunoglobulins may give reactivity on the 
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Western blots above these molecular weights. A way of avoiding this is to use 

antibodies for Western from other species. This is more easily done for well studied 

proteins where the number of commercially available antibodies is high. The choice 

of buffer is also important. A native protein-protein interaction can be very fragile, so 

the buffer needs to mimic the intracellular or subcellular condition for the particular 

interaction (218). 

For future work, epitope tagged proteins and over-expression could be tried to 

elucidate putative interactions between Flt3 and Hdm2 and between Hdm2 and Bcl-2, 

in addition to novel flow cytometry-based techniques. 

 

Alternatives to co-immunoprecipitation 

 A classical method of detecting protein-protein interactions is the yeast two-

hybrid (Y2H) system (219, 220). A problem with the Y2H-system is that is requires a 

nuclear localization of the proteins in interest. In addition, the proteins need to fold 

correctly in the nucleus. This can be an obstacle for membrane proteins like Flt3. A 

novel system has been designed for the study of interactions between membrane 

proteins and cytoplasmic proteins; namely the split-ubiquitin system where 

interactions between protein X and Y can be detected by monitoring the size of the 

reporter proteins on Western blots (221). Modified versions of this system have been 

successfully used to screen for interactions associated with membrane proteins (222, 

223). 

Fluorescence (Förster) resonance energy transfer (FRET) is also a very 

powerful technique for the detection of protein-protein interactions in living cells. 

FRET is based on a transfer of energy between two fluorescent molecules; a donor 

molecule which is exited with subsequent energy transfer to an acceptor molecule. 

This causes an emmition of fluorescence from the acceptor (224). A new method 

combining FRET with the localization of target proteins on the cytoplasmatic surface 
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of the plasma membrane has recently been described (225). This method and other 

very useful techniques for the study of protein-protein interactions is nicely reviewed 

in (226). 
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4. Summary of papers 

4.1 Paper I 

FLT3-ITD is a frequent mutation in AML, and is associated with recurrent 

relapse and poor prognosis after chemotherapy. Mutated Flt3 is constitutively active, 

while Flt3-wt is activated upon binding of its ligand (FL). We wanted to investigate 

the effects of exogenous FL on primary AML cells with and without Flt3 mutations 

in vitro. Our first observation was that the basal protein level of Flt3 varied among 

the patients and did not correlate to Flt3 mutational status as judged by Western blot 

in 42 patients examined. Further, the secretion of FL, AML blast colony-formation, 

cytokine secretion, morphology and apoptosis induction varied among the AML 

patients and was not influenced neither by the addition of FL nor by the Flt3 

mutational status of the patients. However, the majority of AML blasts showed an 

increased proliferation upon FL stimulation both alone and in combination with 

various cytokines. The increased proliferation was not significantly different in AML 

cells with mutated versus wild-type Flt3. This suggests that signaling through Flt3 

occurs irrespectively of Flt3 mutational status. 

 

4.2 Paper II 

AML cells treated with intensive chemotherapy in vivo show a rapid activation 

of p53 and an induction of p53 target genes. Hdm2 is in addition to its p53 

antagonism implicated a role in receptor tyrosine kinase regulation. Thus, we wanted 

to investigate the effects of therapeutic DNA-damage on the protein and mRNA 

levels of Flt3, the p53 regulator Hdm2 and Bcl-2 protein family members in relation 

to Flt3 mutational status and induction of apoptosis.  Ionizing radiation (IR) induced 

concerted regulation of Hdm2 and Flt3 in Flt3-wt cells accompanied by apoptosis and 
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down-regulated Mcl-1. The IR-resistant FLT3-ITD cells also had a response on 

Hdm2 in spite of unchanged Flt3 and Mcl-1 protein levels. Attenuation of Hdm2 and 

Mcl-1 was also seen in cells without p53. Another DNA-damaging agent, the 

anthracycline daunorubicin also induced attenuation of Hdm2 and Mcl-1 independent 

of TP53 and FLT3 status. A reciprocal regulation of Flt3 and Hdm2 was furthermore 

seen in AML patients undergoing chemotherapy in vivo. Based on these findings 

targeting of Hdm2 and Mcl-1 can be important for optimizing therapy for AML 

patients with FLT3-ITD.  

 

4.3 Paper III 

The establishment of a relationship between Flt3 and Hdm2 in paper II called 

for a more thorough investigation of the reciprocal protein modulations of Flt3 and 

Hdm2 in relation to Flt3 mutational status. In a flow cytometry assay, the level of 

Flt3 was significantly higher in AML patients with Flt3-ITD than in patients with 

Flt3-wt. A sequence alignment of Flt3-ITD sequences revealed a potential ubiquitin 

dependent endocytosis motif in proximity to the duplicated region in Flt3. Further 

examination showed that Flt3-ITD cells were more rapidly recycled than the Flt3-wt 

cells. Long term treatment with Flt3 ligand (FL), down-regulation of Flt3 with 

siRNAs and the kinase inhibitor PKC412 all induced a simultaneous increase in 

Hdm2 and decrease in Flt3. This was most evident in Flt3-wt cells. However, the use 

of nutlin-3, an inhibitor of the p53/Hdm2 interaction had no effect on Flt3. These 

observations suggest a dysregulated Flt3-receptor turnover in FLT3-ITD cells in 

combination with an attenuated Hdm2 down-regulation and tightly connect Flt3 to 

the p53/Hdm2 pathway.  
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4.4 Paper IV 

Paper III suggested a regulatory interconnection between Flt3 and p53 through 

Hdm2. A recent paper from our group demonstrated a correlation between Bcl-2, 

mutated Flt3 and hyper-phosphorylated p53 in AML (211). It was therefore of 

interest to determine if Bcl-2 could contribute more directly to Hdm2 regulation. A 

positive correlation between Hdm2 and Bcl-2 levels was seen in various cell lines. 

This could be manipulated with transient transfections of Bcl-2, over-expression of 

Bcl-2 and Bcl-2 inhibition by retroviral shRNA expression and HA14-1. Over-

expression of Bcl-2 protected cells from IR-induced Hdm2 down-regulation. The 

expression of Hdm2 with impaired ubiquitin ligase activity led to an increased level 

of Bcl-2 protein, but had no effect on the IR-induced Hdm2 down-regulation. 

However, inhibition of E1 ubiquitin activation enzyme activity, inhibition of the 

proteasome and blocking of poly-ubiquitination by mutant ubiquitin lead to blockage 

of IR-induced Hdm2 attenuation but had no effect on Bcl-2. These results propose of 

a novel mechanism for Bcl-2 inhibition of p53-induced apoptosis through Hdm2. 
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5. General discussion 

Bcl-2, Hdm2 and p53 proteins are examined in papers I-IV of this thesis, and 

will therefore be discussed in the light of current knowledge of Flt3 in AML. The 

putative involvement of an ubiquitin dependent endocytosis motif in the 

juxtamembrane region of Flt3 is of particular interest, and this region will be more 

extensively debated. Finally, the role of FLT3-ITD in regulation of the 

p53/Hdm2/Bcl-2 pathway will be emphasized. 

 

5.1 The juxtamembrane region of Flt3 

Sequence similarity of the RTK III family 

 The multiple sequence alignments in paper III were performed using the 

ClustalX software described in (227). This software implements a progressive 

alignment method in which the most similar sequences are aligned first and then less 

related sequences are added to the alignment until all the sequences have been 

incorporated. Other methods for multiple sequence alignments include dynamic 

programming (228), iterative methods (229) and motif finding (e.g. MOTIF (230)). In 

addition several techniques inspired by computer science have been applied to the 

multiple sequence alignment problem, the most well-known is hidden Markov 

models (231). Multiple sequence alignment methods are reviewed in (232). For the 

use in this paper we believe that ClustalX is satisfactory for recognition of the UbE-

domain. 

 There are high sequence similarities between the five receptors in the RTK 

class III family; alignments of the juxtamembrane region show 19% sequence 

identity and 60% sequence homology (data not shown).   This sequence homology 

allows for speculations about the high frequencies of FLT3-ITDs in AML, while 



 43 

related receptors like Kit and PDGFR� are only rarely affected in AML Internal 

tandem duplication in itself seems to be a rare mutational occurrence in disease, 

mostly associated with Flt3 and AML in humans. Up to date there is only a few other 

reports of ITDs in human diseases, e.g. CBP in esophageal squamous cell carcinoma 

(233), MLL in AML (234) and in collagene genes associated with 

spondyloepiphyseal dysplasia and also lethal osteogeneis imperfecta (235, 236). The 

importance of the juxamembrane region of Flt3 in AML is therefore indisputable and 

will be discussed in detail below. 

 

Importance of the juxtamembrane region 

 Several residues in the juxtamembrane region of the RTK class IIIs are shown 

to have important roles in cancer cell transformation, endocytosis of receptors, as 

phosphorylation cites and as hot-spots for mutations. These are overviewed inTable 

2. 
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Table 2 Overview of juxtamembrane residues and their function in Flt3 

Residue in Flt3 
Corresponding in 
other RTK class III Importance 

Referenc
e 

Y572 
L576 
M578 
V579 
Y589§ 
Y591§ 
Y597 
Y599 

PDGFR �; Y562 
PDGFR �; W566 
PDGFR �; V568 
PDGFR �; I569 
PDGFR �; Y579 
PDGFR �; Y581 
PDGFR �; L587 
PDGFR �; Y589 

Residues which cause constitutive 
activation when mutated in 
PDGFR� 

(237) 

V579 and V592§  
Point mutations in Flt3 identified 
in AML-patients: valine 
substituted to alanine  

(238) 

Y589§ PDGFR �; Y579 Critical for ligand mediated 
endocytosis in PDGFR � (239) 

Y589§ and Y591§  Candidate STAT5 docking sites (240) 

Y589§ 
V592§ 

c-Kit; Y568 
c-Kit; I571 

Phosphorylation of Y568 and 
presence of I571 essential for 
binding of Cbl to c-Kit  

(195) 

Y589§ and Y599  

Ligand-induced auto-
phosphorylation sites; bind Src 
family kinases and protein tyrosine 
phosphatase SHP2. 

(241) 

Y591§  
Duplicated in some patients with 
Flt3-ITD; have elevated Bcl-2 and 
potentiated STAT5 signaling 

(211) 

R595  
Duplicated in 77% of Flt3-ITD. 
Critical for the transforming 
potential of Flt3. 

(242) 

Note: § denotes residues included in potential UbE in Flt3 

 

In paper III we hypothesize an ubiquitin dependent endocytosis (UbE) motif in 

Flt3, in close proximity to the area being duplicated in FLT3-ITD patients. Table 2 

lists the most important residues in the JM-region of RTK class III and of the ten 

residues reported as being important in the literature, three are included in the 

putative UbE motif. In addition, 37% of the AML patients with sequenced FLT3-ITD 

in our collection of patient material have a totally duplicated UbE motif. The 

consequences of this duplication have not been tested experimentally, but the 
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possible implications for Flt3 receptor recycling and Flt3 signaling will be discussed 

below. 

Duplicated ubiquitin dependent endocytosis motif (UbE) 

 The ubiquitin dependent endocytosis motif (UbE) was first described in 

Growth Hormone Receptor (GHR) by Govers et. al. in 1999 (243). This domain 

contains 10 amino acids, namely DSWVEFIELD. UbE has been shown to be 

essential for the internalization of GHR. However, conjugation of ubiquitin to lysine 

residues in the cytosolic domain of GHR is not required. The sensitivity of cells 

towards GH is mainly regulated trough the UbE in GHR (244) and this UbE has 

recently been associated with the ubiquitin ligase SKP1-CUL1-�TrCP complex 

(245). 

The presence of an UbE motif has so far only been studied in GHR, however 

sequence alignments have revealed similar motifs in other proteins including 

PDGFR. We describe that most internal tandem duplications of Flt3 are in close 

proximity to an UbE motif, and that this UbE motif is duplicated in a subset of the 

sequenced FLT3-ITD patients. The implications of a duplicated UbE motif can only 

be speculated so far. FLT3-ITD has been shown to have a higher Flt3 level and a 

more rapid receptor recycling. A duplicated UbE motif could result in an even higher 

Flt3 level and more rapid recycling. An interesting observation is that our patients 

with FLT3-ITD including a duplicated Y591 are shown to have increased Bcl-2 

protein level and elevated expression of hyper-phosphorylated p53 (211): These 

patients actually have the entire UbE motif duplicated (patients # 3, 6, 8 and 14 in 

Fig. 1, paper III is identical to patients P28, P11, P12 and P05 in (211)). This linkage 

can guide us towards a functional understanding of the importance of the UbE motif 

in FLT3-ITD. 
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5.2 FLT3-ITD function in chemoresistance and disease 
relapse 

GM-CSF/STAT5 signaling depending on FLT3 mutational status. 

In paper I, neither the addition of FL nor the Flt3 mutational status was 

statistically correlated with the properties examined. However, FLT3-ITD is hyper 

responsive regarding STAT-5 activation after GM-CSF stimulation (123). The 

mechanism of potentiated GM-CSF signaling in the presence of FLT3-ITD has so far 

not been described. The plasma membrane is not a homogenous surface, but consists 

of numerous lipid microdomains floating around in the semi-solid membrane; called 

“lipid rafts”. These structures vary in size, composition and stability and have been 

implicated in signal transduction trough a number of cancer-related pathways (for 

review see (246)). It is tempting to speculate that FLT3-ITD receptors somehow can 

be retained in such rafts and thereby have a different micromilieu than their wild type 

counterparts. If FLT3-ITD receptor is trapped in lipid rafts with the receptors for GM-

CSF, it is not unlikely that these cells will have potentiated GM-CSF signaling. 

 

FLT3-ITD in cell-cell interaction involved in relapse predisposition 
and chemoresistance?  

The leukemia-host interaction is an important aspect of AML. Flt3 has been 

associated with VLA-4 and VLA-5 via Flt3 ligand (145). This has implications for 

the homing of Flt3 expressing immature hematopoietic progenitor cells to the bone 

marrow microenvironment. Several reports indicate that the threshold for 

chemotherapy-induced apoptosis is elevated in AML blasts that interact with stromal 

cells (247-249). High expression levels of Flt3 will keep these blasts in the bone 

marrow, and might contribute to relapse predisposition. The properties of FLT3-ITD 

can hypothetically be associated with increased adhesiveness in the bone marrow, 

and therefore lead to increased chemoresistance. 
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5.3 Interaction between Flt3 and Hdm2 

 In paper II and III, a reciprocal protein regulation of Flt3 and Hdm2 is 

described, but no convincing direct interaction has been observed so far. However, 

this does not rule out the possibility for a direct or indirect interaction between Flt3 

and Hdm2. The lack of Flt3 response to a nutlin-3 induced up-regulation of Hdm2 

has led us to hypothesize that nutlin-3 abrogates an interaction between Flt3 and 

Hdm2. It is well known that nutlin-3 binds to Hdm2 in the p53 binding pocket and 

blocks the binding of p53 to Hdm2 (177). In addition it has been shown that nutlin-3 

abrogates binding of Hdm2 and Hypoxia-inducible factor-1� (HIF-1�) (250). A 

putative Hdm2 binding motif in HIF-1� was found in the NH2 terminus, this motif 

have sequence similarities with Hdm2-binding motifs in p53, p73 and E2F. The 

possibility of a similar sequence in Flt3 is speculative but a sequence alignment 

revealed a vague similarity of these Hdm2-binding domains to a sequence in the 

extracellular part of Flt3 (Figure 6). 

 

Figure 6 Putative nutlin-3 sensitive Hdm2-binding motif in Flt3 

 

The presence of such an Hdm2-binding motif in the extracellular part of Flt3 

does not preclude the possibility for an Hdm2-Flt3 interaction. Little is known about 

the structure of intracellular Flt3 and it is possible to envision a scenario in which the 

extracellular part of the protein is accessible for Hdm2 binding at some point in the 

life-cycle of Flt3. As discussed before; several novel techniques are now available for 

the more thorough investigation of a possible Hdm2-Flt3 interaction and these will be 

attempted in future experiments. 
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5.4 Flt3-Hdm2-Bcl-2: How to tightly control wild type p53 in 
AML 

In AML 90% of the patients comprise wild type TP53. In this thesis several 

novel factors have been included as means to control this protein in the AML-cells. 

When the Flt3 level is decreased, an increase in Hdm2 is seen. Hdm2 is the most 

important regulator of p53, therefore inhibiting Flt3 will sequentially lead to 

decreased p53. Hdm2 is also important in the regulation of Bcl-2 and has been shown 

to be crucial for the most effective Bcl-2 protection against p53-induced apoptosis.  

p53-induced apoptosis is important as a means to eradicate cancer cells. Bcl-2 

protection against p53-induced apoptosis and also the novel Hdm2 involvement is 

thus unwanted in the AML cells. Inhibition of Bcl-2 is therefore an alternative to 

drive the cells towards p53-induced apoptosis. 

Based on the evidence shown in this thesis, we postulate a p53/Hdm2/Bcl-2 

pathway which is highly modulated by Flt3 in AML. Flt3 and Hdm2 are reciprocally 

regulated, but the exact mechanisms for this regulation need to be further evaluated. 

Several mutants of Flt3 and Hdm2 have been made in our lab including Flt3 with a 

deficient UbE motif, Flt3 with impaired kinase activity, Hdm2 without E3 ligase 

activity and Hdm2 that cannot be tyrosine phosphorylated. These constructs in 

addition to FLT3-ITD constructs with sequences derived from our patient material 

will be used to evaluate the mechanisms behind the reciprocal regulation and 

differences in Flt3 recycling.  

Both Bcl-2 and Mcl-1 was regulated by Hdm2 in a positive manner. A 

persistent Hdm2 and Mcl-1 down-regulation was needed for apoptosis to occur. Bcl-2 

protects cells from p53-induced apoptosis; this protection was most effective in the 

presence of Hdm2. We have made an AML-cell line with Bcl-2 shRNA to further 

study this regulation. The cell line we have created has wt TP53 and mutated FLT3, a 

perfect tool for studying the p53/Hdm2/Bcl-2 pathway and modulations by Flt3. 
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To conclude, the work in this thesis has shown that different signaling 

pathways in AML are tightly connected. Hdm2 is implicated both a p53-independent 

role and a role in the p53/Hdm2/Bcl-2 pathway. The differences between wild type 

Flt3 cells and cells with FLT3-ITD regarding the p53/Hdm2/Bcl-2 pathway are 

obvious and open for novel thinking with regards to therapy. The combined targeting 

of FLT3-ITD, the p53/Hdm2 interaction and Bcl-2 is both speculative and interesting. 
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6. Future perspectives 

The definition of a p53/Hdm2/Bcl-2 pathway opens for interesting studies in 

AML. More mutagenesis studies need to be performed in order to elucidate the exact 

molecular mechanisms behind the different regulations and modulations shown in 

this thesis. An IL3 dependant mouse leukemia cell line (BAF/3) is relatively easy to 

transfect and gains IL3-independence upon FLT3-ITD transfection. This system will 

be used to further study the mechanisms underlying the novel pathway postulated in 

this thesis.  

Different facets of combination therapy are interesting aspects that need to be 

tested. The combined targeting of FLT3-ITD, the p53-Hdm2 interaction and Bcl-2 

can be tested using the inhibitors PKC412, nutlin-3 and HA14-1 in AML-cell lines 

and patient cells in vitro. Furthermore a novel fluorescent reporter system for small 

animal optical imaging in AML has recently been developed in our lab (McCormack 

et. al, unpublished data). Animal testing followed by optical imaging analyses are 

currently being planned. 
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Flt3-mediated signaling in human acute myelogenous leukemia (AML) blasts: a
functional characterization of the effects of Flt3-ligand in AML cell populations
with and without genetic Flt3 abnormalities 
ØYSTEIN BRUSERUD, RANDI HOVLAND, LINE WERGELAND, TIEN-SHENG HUANG, BJØRN TORE GJERTSEN

Background and Objectives. Intracellular signaling ini-
tiated via Flt3 seems important in both leukemogenesis
and chemosensitivity in acute myelogenous leukemia
(AML). Flt3 is activated by binding of its natural Flt3-lig-
and (Flt3-L), but Flt3 genes with internal tandem dupli-
cations (Flt3-ITD) or Asp(D)-835 point mutations encode
molecules with constitutive activation. The aim of this
study was to compare functional effects of exogenous
Flt3-L on AML blast populations with and without genet-
ic Flt3 abnormalities.

Design and Methods. Native AML blasts were derived
from 64 consecutive patients with high blast counts in
peripheral blood, and in vitro models were used to char-
acterize the Flt3-L effects.

Results. The Flt3 protein levels showed a similar wide
variation between AML blast populations with and with-
out genetic Flt3 abnormalities. Flt3-L was an autocrine
growth factor only for 2 patients. Flt3-ITD+ AML cells had
lower responsiveness to exogenous cytokines than cell
populations without Flt3 abnormalities, but exogenous
Flt3-L increased blast proliferation both for patients with-
out Flt3 abnormalities and patients with Flt3-ITD as well
as D835 mutations. This enhancement was observed even
in the presence of other exogenous cytokines and includ-
ed clonogenic AML progenitors. Flt3-L inhibited prolifer-
ation only for 1 patient, but had divergent effects on AML
blast cytokine release. Flt3-L affected AML blast differ-
entiation (inhibition of erythroid colonies, increased neu-
trophil granulation) only in a minority of patients, where-
as it had an anti-apoptotic effect for a larger subset of
patients.

Interpretation and Conclusions. Intracellular signaling
initiated by Flt3 ligation modulates the functional phe-
notype for native human AML blasts both with and with-
out genetic Flt3 abnormalities.

Key words: acute myelogenous leukemia, Flt3 internal
tandem duplications, Flt3-D835 mutations, Flt3 ligand,
cytokines, in vitro effects.

Haematologica 2003;88:416-428
http://www.haematologica.org/2003_04/88416.htm

©2003, Ferrata Storti Foundation

Acute myelogenous leukemia (AML) is characterized
by clonal proliferation of immature myeloid cells
and has an overall disease-free survival after inten-

sive chemotherapy of less than 50%.1-4 The most impor-
tant cause of death is AML relapse,1-4 and the two most
important predictors of relapse have been cytogenetic
abnormalities and response to induction therapy.2 How-
ever, recent studies have demonstrated that abnormali-
ties of the Flt3 gene (a membrane-anchored receptor
tyrosine kinase) are also associated with an increased
relapse risk.3-12 At diagnosis nearly 30% of AML patients
have genetic Flt3 abnormalities,10-12 and new abnormal-
ities can develop later in leukemia relapse.13,14 The adverse
prognostic impact of Flt3 internal tandem duplications
(Flt3-ITD) is now well established,3,4 and recent evidence
suggests that Asp(D)-835 point mutations have a similar
prognostic effect.12

The Flt3 gene encodes for a tyrosine kinase with an
extracellular ligand-binding part and an intracellular cat-
alytic unit.6-10 Ligation of the Flt3 molecule induces acti-
vation of the tyrosine kinase through ligand-induced
receptor oligomerization and autophosphorylation with
subsequent phosphorylation of cytoplasmic substrates.5-9

However, genetic Flt3 abnormalities result in the expres-
sion of a tyrosine kinase with constitutive activity in the
AML blasts.8,9,15,16 Previous experimental evidence sug-
gests that the constitutive activation is implicated in
leukemogenesis, and recent clinical studies have demon-
strated that constitutive kinase activation is also impor-
tant for chemosensitivity in AML.3,4,12

The clinical and experimental studies discussed above
suggest that intracellular signaling events initiated by
Flt3 activation are important for the regulation of func-
tional characteristics of AML blasts.3,4,8-10 However, it is
not known whether the functional effects of Flt3-ligation
by the natural Flt3-L differ between AML blasts without
genetic Flt3 abnormalities and leukemia cells that express
abnormal Flt3 molecules with constitutive activity. The
aim of the present study was, therefore, to characterize
the functional effects of natural Flt3 ligation in detail in
a large group of consecutive patients, and to compare
these effects in native AML blasts with and without
genetic Flt3 abnormalities (Flt3-ITD or D835 mutations).

Design and Methods

Patients
The study was approved by the local Ethics Committee

and samples were collected after informed consent had
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been provided. During the period 1991-2001 AML
blasts were taken from 64 consecutive patients
with high peripheral blood blast counts. The
patients were classified as having AML-M0/M1 (21
patients), AML-M2 (20 patients) and AML-M4/M5
(23 patients). Forty-six patients had newly diag-
nosed de novo AML, 6 patients had AML relapse,
and 12 patients had AML secondary to chemother-

apy (4 patients), chronic myeloproliferative disor-
ders (2 patients) or primary myelodysplastic syn-
dromes (6 patients). Leukemic cells from the last 20
patients were used in most experiments, and the
characteristics of these patients are presented in
Table 1.

Cytogenetic analyses were performed for the last
48 patients included in our study; of these, 28

In vitro effects of Flt3-L on human AML blasts

Table 1. Clinical and biological characteristics of AML patients.

Membrane molecule expression1

Pat. Sex Age Previous malignant FAB CD13 CD14 CD15 CD33 CD34 Cytogenetic FLT3- WBC
or pre malignant classification analysis abnormality2 counts3

disease

1. M 44 AML-M5 + − + + + inv(16) PM 351

2. F 36 Neurofibromatosis, AML-M5 + − + + − t(9;11) − 37.6
malignant Schwannoma

3. M 49 AML-M4 − − + + − nt3 ITD 78

4. M 69 AML-M2 + − nt + − inv(16) − 89

5. F 87 AML-M1 − − nt + − nt − 51.2

6. M 83 AML-M1 − − − + + nt − 80

7. M 72 AML-M4 + + + + − +11 ITD 290

8. M 49 AML-M5 + + nt + − Normal ITD 63.5

9. F 58 AML-M2 + − + + − Normal ITD, wt− 40.7

10. F 56 AML-M2 + − − + − +21 − 69.2

11. F 38 AML-M5 + + + + + Normal nt 182

12. F 55 AML-M0 + − − − + Normal ITD 43.6

13. M 51 AML-M4 + + + + − Normal − 31.4

14. F 49 AML-M1 − − − + + +21 − 121

15. M 65 AML-M1 + − − + − Normal ITD, wt− 166

16. M 64 AML-M2 + − + + + nt − 23.5

17. F 63 AML-M5 − + + + − t(2;3), (q37;q21), − 57.8
(q13;q21;q21) der (11q), 

19q+

18. F 36 AML-M5 + + + + − Normal nt 88.6

19. F 82 AML-M2 + − − + + nt ITD 49

20. F 63 AML-M4 − − − + − nt nt 126

Patients were regarded as positive when more than 20% of blast cells stained positive judged by flow cytometric analysis. All AML
populations were negative for T-lymphocyte (CD2, CD3) and B-lymphocyte (CD19, CD20) markers; Flt3- abnormalities were internal
tandem duplications (ITD), Asp-D835 point mutations (PM) and loss of wild type (wt−), nt, not tested; white blood cell (WBC)
counts in peripheral blood are expressed  as ×109/L (normal range 3.5-10.5×109/L ).The WBC included at least 80% leukemia blasts.
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patients had a normal karyotype, 3 patients had a
favorable karyotype (all inv(16)) and 5 had an unfa-
vorable karyotype according to the definitions used
by Wheatley et al.2 and Kottaridis et al.3 A total of
98 patients with AML were admitted to our insti-
tution during the same period. The distribution of
karyotypes in the patients selected for our present
study did not differ significantly from that in the
whole series of patients seen during the same peri-
od. The relatively low frequency of patients (3/48)
with favorable karyotypes is different from that
reported in other studies2,3 and was also observed
for the whole series of patients from the same peri-
od (6/98).

Preparation of AML blasts
Native AML blasts. Leukemic peripheral blood

mononuclear cells (PBMC) were isolated by densi-
ty gradient separation (Ficoll-Hypaque; NyCoMed,
Oslo, Norway; specific density 1.077) from the
peripheral blood of patients with a high percent-
age of AML blasts among blood leukocytes (Table
1). Cells were stored frozen in liquid nitrogen.23 The
percentage of blasts among leukemic PBMC
exceeded 95% for all patients,24-26 the contami-
nating cells being small lymphocytes.

Enriched AML blasts. Immunomagnetic beads
coated with anti-CD2 and anti-CD19 specific mon-
oclonal antibodies (Dynabeads; Dynal, Oslo, Nor-
way) were used for depletion of CD2+ and CD19+

cells, respectively.24 Depletion was performed in
two separate steps before adherent cells were
removed, and the enriched populations contained
<1% of CD2+ T-cells and CD19+ B-cells.24

Analysis of Flt3 abnormalities in
AML blasts 

Our method for analysis of Flt3-ITD has recently
been described in detail.14 Analysis of D835 point
mutations (PM) was performed using the restric-
tion fragment gene length polymorphism at codon
835/836 as described previously.27 Briefly, after
amplification of a 111 bp fragment from exon 20
using genomic DNA with primer 20F-5’-CCGCCA-
GGAACGTGCTTG-3’ and 20R-5’-GCCTCACATTGCC-
CCTGA-3’, polymerase chain reaction (PCR) prod-
ucts were digested by EcoRV and the fluorescence
(6-FAM, 6-carboxylfluorescein)-labeled product
analyzed.14 Undigested products served as template
for a new polymerase chain reaction with the same
primer combination, and the products were there-
after cleaned using ExoSAP-IT before being direct-
ly sequenced using an ABI BigDyeTM Terminator
Cycle Sequencing Kit (Applied Biosystems, Foster
City, CA, USA).

Analysis of Flt3 expression
Cell suspensions were lysed at 4°C in 60-100 µL

of lysis buffer (10 mM trishydroxymethyl-amino-

methane (Tris) with pH 7.5, 400 mM NaCl, 10%
glycerol, 0.5% detergent Nonidet P-40 (Amersham
Biosciences, Uppsala, Sweden), 5 mM NaF, 0.5 mM
Na-orthovanadate, 1 mM dithiotreitol (DTT), and
protease inhibitor cocktail Complete (Roche, Basel,
Switzerland). Samples were kept at 4°C, homoge-
nized and centrifuged (14,000g, 15 minutes). 3X
sodium dodecyl sulphate (SDS) loading buffer (0.5
M Tris pH 6.8, 2 M β-mercaptoethanol, 12% SDS,
30% glycerol, bromphenol blue) was added to
supernatant aliquots containing 40 µg of protein,
and thereafter boiled for 7 minutes before separa-
tion in SDS-polyacrylamide gel electrophoresis
(PAGE) minigels with 7.5% polyacrylamide. After
electroblotting to polyvinylidene difluoride (PVDF)
membranes (Amersham Biosciences) and blocking
for 1 h in phosphate-buffered saline with 0.5%
Tween (PBS-T), the filters were incubated with pri-
mary anti-Flt3 antibody (the rabbit polyclonal S18
and C20 antibodies diluted 1:250 in PBS-T; Santa
Cruz, CA, USA) for 1 h (room temperature) or
overnight (4°C) before washing for 1 hour in PBS-
T. Both antibodies recognized the p160 and p130
isoforms of Flt3. The C-20 antibody reacts with a
C-terminal epitope whereas S-18 reacts with the
kinase insert region. The PVDF membranes were
thereafter washed (1 hour in PBS-T), incubated for
1 hour with a secondary anti-rabbit antibody con-
jugated to alkaline phosphatase (the antibody dis-
solved in PBS-T), washed (1 hour in PBS-T), and
finally incubated with CDP-Star Chemiluminisence
Substrate (Applied Biosystems, Foster City, CA,
USA). The membranes were then exposed to Kodak
X-ray films which were scanned for densiometric
analysis of the 130 plus 160 kDa bands (Microtek
Scanmaker 5700, NIH Image ver. 1.60 for Apple
Macintosh). The intensity for each AML sample was
normalized to the lower 70 kDa anti-Flt3-reactive
band in Jurkat control extracts which were includ-
ed in each gel (equal intensity defined as 1.0). Equal
protein loading was confirmed by staining the
minigels with Coomassie blue. Actin could not be
used as the loading control because of differences
in the molecular weight of the immunoreactive
bands between patients.

Reagents for tissue culture
Cytokines. Recombinant human Flt3-L (Pepro-

tech; Rocky Hill, NJ, USA) was used at a concen-
tration of 20 (only 3H-thymidine incorporation) or
50 ng/mL; this was based on previous studies of in
vitro cultured AML blasts showing that Flt3-L
effects reach a plateau at concentrations ≥10
ng/mL.8,18,21 Other recombinant human cytokines
were used at the following concentrations: inter-
leukin 1β (IL1β, Peprotech) 50 ng/mL; IL3 (Pepro-
tech) 20 ng/mL, stem cell factor (SCF; Peprotech)
20 ng/mL, thrombopoietin (TPO; Peprotech) 50
ng/mL, vascular endothelial growth factor (VEGF;
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Peprotech) 50 ng/mL, macrophage colony-stimu-
lating factor (M-CSF, Peprotech) 50 ng/mL, granu-
locyte-macrophage colony-stimulating factor
(GM-CSF; Sandoz, Basel, Switzerland) 100 ng/mL,
G-CSF (Roche) 100 ng/mL.

Culture media. Unless otherwise stated, the cul-
ture medium was RPMI 1640 with HEPES and glu-
tamine (BioWhitacker; Walkersville, MA, USA) and
supplemented with 10% inactivated fetal calf
serum (FCS; BioWhitacker).26 The serum-free media
X-vivo 10®, X-vivo 15® (BioWhitacker) and Stem-
Span SFEM™ (referred to as StemSpan; Stem Cell
Technologies, Vancouver, BC, Canada) were used in
certain experiments.26 All the media contained 100
µg/mL of gentamicin.

Antibodies. The monoclonal Flt3-L specific neu-
tralizing antibody (clone 40416.111; R&D Systems,
Abingdon, UK) was always tested in parallel with an
isotypic control antibody; 0.02-0.06 µg/mL of this
anti-Flt3-L antibody will neutralize 50% of the bio-
activity of 5 ng/mL of recombinant human Flt3-L
(manufacturer’s information).

Assays for AML blast proliferation 
Suspension cultures. As described previously,24-26

5×104 cells/well were cultured in 150 µL medium
in flat-bottomed microtiter plates (Costar 3796;
Cambridge, MA, USA). Cultures were incubated at
37°C in a humidified atmosphere of 5% CO2. After
six days 3H-thymidine (37 kBq/well; TRA 310,
Amersham International, Amersham, UK) was
added in 20 µL of 0.9% NaCl solution and nuclear
radioactivity assayed 18 hours later by liquid scin-
tillation counting.

Colony formation assays. AML blasts were cul-
tured in different methylcellulose-based media: (i)
medium alone (MethoCult H4230; Stem Cell Tech-
nologies, referred to as spontaneous colony for-
mation) or the same medium supplemented with
GM-CSF (GM-CSF-dependent colony formation);
(ii) medium with erythropoietin plus phytohemag-
glutinin-leukocyte conditioned medium (Metho-
Cult H4433; Stem Cells Technologies). Cells were
cultured in 24 well tissue culture plates (Costar
3524) with 105 cells in 0.5 mL medium per well.
Cultures were incubated for 14 days before the
number of colonies containing at least 20 cells was
determined by light microscopy (duplicate analy-
sis). The colonies were classified as erythroid (red
color in the whole or a part of the colony) and non-
erythroid.

Cytokine analysis
Analysis of AML cell cytokine secretion. As

described previously,25 1×106 AML blasts/mL were
cultured in 24-well tissue culture plates (Costar
3524; 2 mL medium/well) for 48 hours before
supernatants were harvested. ELISA analyses were

used to determine levels of IL1β, IL6, tumor necro-
sis factor (TNF) α (Pelikine compact ELISA kits; Cen-
tral Laboratory of the Netherlands’ Red Cross Blood
Transfusion Services, Amsterdam, The Netherlands),
Flt3-L, G-CSF and GM-CSF (Quantikine ELISA kits;
R&D Systems) in the supernatants. The minimal
detectable levels were IL1β 0.8 pg/mL, IL6 0.8
pg/mL, TNFα 1.0 pg/mL, Flt3-L 7 pg/mL, GM-CSF 3
pg/mL and G-CSF 8 pg/mL.

Cytokine-specific RNA levels. AML blasts (2×106

cells in 2 mL FCS-containing medium per well;
Costar 3524 culture plates) were cultured for 48
hours before cells were harvested and washed in
phosphate-buffered saline. The cell pellets were
stored frozen at -70°C until total RNA was isolat-
ed.29 For quantification of IL1β- and IL6-specific
RNA the samples and calibrators were hybridized in
microwells with gene-specific biotin-labeled cap-
ture oligonucleotide probes and digoxigenin-
labeled detection probes, and cytokine-specific
RNA levels then determined in a calorimetric
microplate assay (Quantikine RNA assay, R&D Sys-
tems). The results are expressed as concentrations
of IL1β- and IL6-specific RNA when testing total
RNA at the concentration of 2.5 µg/mL.

Studies of apoptotic cell death
Estimation of the number of apoptotic cells. AML

blasts were incubated for 24 and 48 hours before
cell death was analyzed as described in detail pre-
viously.24,25,30-32 Firstly, AML blasts were stained with
DNA-specific bisbenzimide H33258 (Hoechst;
Basel, Switzerland) or daunorubicin (Pharmacia),
and the percentage of cells showing chromatin dis-
tribution consistent with apoptosis was determined
by fluorescence microscopy.25,30 Secondly, detec-
tion of phosphoserine exposure on the cell surface
was used as a marker for apoptosis; flow cytomet-
ric analysis was then performed on FITC-annexin V
stained cells as described previously.31 Thirdly, JC-
1 staining (Molecular Probes) was used to deter-
mine the mitochondrial status, and the number of
cells with depolarized mitochondria consistent
with apoptosis was determined by flow cytometric
analysis.31,32

Caspase-3 activity in AML cells. Caspase-3 activ-
ity was measured in cell extracts using a specific
caspase-3 cellular activity assay kit (Calbiochem;
La Jolla, CA, USA). Briefly, 1×106/mL AML blasts (2
mL of medium per well, 24-well Costar 3524 cul-
ture plates) were cultured for 48 hours before cells
were harvested, washed twice, and cell concentra-
tion adjusted to 1×106 cells/mL in lysis buffer. These
cell extracts were stored at -70°C until enzymatic
activity was assayed according to the manufactur-
er’s instructions. The results are presented as
pmol/min for 80 µL of sample volume.
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Presentation of the data
3H-thymidine incorporation was assayed in trip-

licate and the mean counts per minute (cpm) used
for all calculations. The incremental response was
defined as the cpm for cultures with AML blasts
minus cpm for negative controls, and significant
blast proliferation was defined as an incremental
response exceeding 1,000 cpm. A significant alter-
ation of proliferation was defined as a difference in
incremental responses (i) exceeding 2000 cpm, and
(ii) the difference in cpm being >20% of the control
response. For cytokine combinations an additive
enhancing or inhibitory effect was defined as a pro-
liferative response exceeding the highest/lowest of
the two single responses by at least 2000 cpm and
20%; smaller differences are referred to as inter-
mediate. A significant alteration of AML blast colony
formation was defined as a difference correspond-
ing to >20% of the control response and with an
absolute value >10 per 105 seeded cells. Cytokine
concentrations were transformed to logarithmic val-
ues that were used for statistical comparisons. The
Sign test, χ2 test and Wilcoxon's test for paired sam-
ples were used for statistical analysis, and differ-
ences were regarded as significant when p<0.05.

Results

Flt3 protein expression in native AML
blasts

The protein level of Flt3 in native AML blasts was
examined for 42 patients. Two molecules corre-
sponding to the 130 and 160 kDa isoforms of Flt3
were detected by both antibodies. The protein lev-
el of Flt3 showed a wide variation between
patients, and the relative expression ranged from
not detectable to 3.0. The relative levels of Flt3 did
not differ significantly between Flt3-ITD+ (median
0.31, range 0.01-2.40) and ITD– (median 0.38, range
<0.01-3.00) AML cell populations. A wide variation
was also observed for the 3 ITD−PM+ patients (range
<0.01-1.5). This is illustrated by the results pre-
sented in Figure 1.

The proliferative capacity of AML blast
populations with and without Flt3
abnormalities

AML blasts derived from 55 patients were available
for analysis of Flt3 abnormalities. Flt3-ITD was
detected for 21 patients (38%). A D835 point muta-
tion was detected for 7 patients (13%), and 3 of
these patients had both ITD and point mutations.

Figure 1. Protein expression of Flt3 by Jurkat cells and native AML blasts derived from 12 patients. An antibody reactive with
the C-terminal domain (C-20 antibody) was used as described in Design and methods. The molecular weight (Mw) in kDa is
indicated on the left side, and the arrows on the right side indicate that the antibody bound two bands corresponding to the
130 and 160 kDa isoforms. The patients’ number is given at the top of the figure. For each individual patient it is also indi-
cated whether Flt3-ITD was detected, and detection of D835 mutations is indicated by +. The Flt3 protein level is presented
as the relative expression (Expr) compared with the 70 kDa band of the Jurkat cell (nd, not detectable). The figure illustrates
the wide variation in the expression of both the 130 and 160 kDa bands. 
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The presence of Flt3-ITD showed no association with
FAB classification, the expression of the stem cell
marker CD34 or the ability of autocrine proliferation
(data not shown). We also investigated the prolifer-
ative capacity in the presence of exogenous
cytokines (IL1β, IL3, G-CSF, M-CSF, GM-CSF, SCF,
Flt3-L, TPO, VEGF). This wide range of cytokines was
used because the growth factor responsiveness of
AML populations is heterogeneous. A total of 495
patient/cytokine combinations were thus examined.
The frequency of combinations with undetectable
3H-thymidine incorporation (<1000 cpm) was sig-
nificantly higher for Flt3-ITD+ patients (n=21, 90 out
of 189 combinations) than for Flt3−ITD− patients
(n=34, 89 out of 306 combinations, χ2 test, p<0.001).
This difference was also statistically significant when
Flt3-PM+ patients were excluded from the control
group. Undetectable 3H-thymidine incorporation in
the presence of all nine cytokines was most common
among patients with Flt3 abnormalities (Flt3-ITD+ or
PM+ 6/21, no Flt3 abnormalities 4/34), but this dif-
ference did not reach statistical significance.

Effects of exogenous Flt3-L on proliferation
of AML blasts in suspension cultures

The proliferation of native AML blasts derived
from 64 consecutive patients was assayed when
cells were cultured with and without exogenous
Flt3-L 20 ng/mL in FCS-containing medium alone
and medium with various exogenous cytokines.
AML blasts from 10 patients did not proliferate in
vitro either in medium alone or in the presence of
any exogenous cytokine. The overall results for the
other 54 patients with detectable 3H-thymidine
incorporation (corresponding to >1000 cpm) are
presented in Figure 2 and summarized in the upper
part of Table 2. When the statistical analysis only
included those patients with detectable prolifera-
tion (>1000 cpm), (i) Flt3-L increased AML blast
proliferation significantly both for cells cultured in
medium alone and cells cultured with exogenous
IL1β, IL1RA, IL3, G-CSF, M-CSF, TPO, and VEGF (Sign
test, p<0.002 for each), and (ii) the enhancement
reached a significant level (for definitions see
Design and methods, presentation of the data) for

Figure 2. The effect of Flt3-L on AML blast proliferation. Leukemia blasts were derived from 64 consecutive patients, but the
figure presents the results only for those patients showing detectable 3H-thymidine incorporation for cultures without (−−) or with
(+) Flt3-L 20 ng/mL. AML blasts were cultured either in medium alone (Sp, 40 out of 64 patients showing detectable prolifer-
ation) or in the presence of IL1ββ (49/64), IL1RA (37/64), IL3 (49/64), G-CSF (52/64), M-CSF (44/64), TPO (41/64) or VEGF
(38/64). All these exogenous cytokines were tested at 50 ng/mL except G-CSF that was tested at 100 ng/mL. The results
for each patient are presented as the mean cpm of triplicate determinations, and undetectable proliferation is indicated in the
figure (o). The median 3H-thymidine incorporation for all these patients is also indicated in the figure (___).
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a large group of patients both when cells were cul-
tured in medium alone and when they were cul-
tured with medium and exogenous cytokines (Table
2, upper part). These differences were also statis-
tically significant when all patients were included
in the analysis (data not shown). Flt3-L and the
other cytokines had additive effects only for a sub-
set of the patients (Table 2, middle part). When
comparing the overall results for the 54 patients
with detectable proliferation, Flt3-L had signifi-
cant effects on blast proliferation in medium alone
or in the presence of at least one exogenous
cytokine for 50 of these patients. However, the
Flt3-L effect showed no correlation with the Flt3
protein levels (data not shown), and the growth-
enhancing effect was detected for blast popula-
tions both with and without Flt3 abnormalities
(Table 2, lower part).

AML blast expression of wild-type Flt3 could not
be detected for 3 ITD+ patients. However, exoge-
nous Flt3−L could modulate AML blast prolifera-
tion even for these patients (Table 3).

The effects on spontaneous and cytokine-depen-
dent blast proliferation were also compared for
Flt3-L, GM-CSF and SCF (Figure 3). All three
cytokines caused strong enhancement of the pro-
liferation for a majority of patients both when cells

were cultured in medium alone and when the cells
were cultured with medium in the presence of
exogenous cytokines (Figure 3). Flt3-L (Table 2),
GM-CSF and SCF (data not shown) had additive
growth-enhancing effects with other cytokines
only for a subset of patients.

Enriched AML blasts were prepared for 5 patients
(Table 1, patients #7, 8, 11, 14 and 20), and Flt3-L
increased the proliferation of enriched cells for all
these patients (data not shown).

Flt3-L as an autocrine growth factor for
native AML blasts

AML blasts derived from 64 patients were cul-
tured for 48 hours before concentrations of Flt3-L
were determined in the supernatants. Flt3-L did
not reach detectable levels (<7 pg/mL) for any
patient. Leukemia cells derived from the 9 patients
with the highest spontaneous in vitro proliferation
were also cultured with Flt3-L specific monoclon-
al antibody and isotypic control antibodies. Anti-
Flt3-L caused a dose-dependent inhibition of spon-
taneous blast proliferation only for patient 8 (Flt3-
ITD+PM−) and 10 (Flt3-ITD−PM−), but anti-Flt3-L did
not have an antiproliferative effect for any patient
in the presence of exogenous GM-CSF (Figure 4).

Table 2.  Effects of Flt3-L on in vitro proliferation of native AML blasts; studies of 3H-thymidine incorporation of AML blasts derived
from 64 patients.

Exogenous cytokine added alone and together with Flt3-L1

Comparison (patient number) Effect (number of patients)

None IL1 IL1RA IL3 G-CSF M-CSF TPO VEGF

Cultures with exogenous Flt3-L Increase2 34 26 29 29 31 23 26 28
compared with corresponding
controls ( n=64)

Intermediate2 5 21 7 17 15 20 14 8
Decrease2 1 1 1 3 6 1 1 2
No detectable proliferation2 24 16 27 15 12 20 23 26

Cultures with exogenous Flt3-L  Additive growth-enhancing effects3 − 15 0 27 28 16 14 2
compared with corresponding
controls (n=64)

Flt3-ITD+ AML blasts (n=21)4 Flt3-L induced increase of proliferation2 9 8 7 9 13 7 7 6

Flt3-PM+ AML blasts (n=4)4 Flt3-L induced increase of proliferation 2 2 3 2 1 1 1 2

Flt3-ITD− AML blasts (n=30)4 Flt3-L induced increase of proliferation 19 13 16 12 15 12 14 15

The results for 64 patients are presented.1 For each cytokine the effects were classified (see below) and the number of patients showing enhanced/indifferent/decreased/no
significant proliferation in the presence of exogenous Flt3-L is given for each cytokine. The effect of Flt3-L was investigated for AML blasts cultured in medium alone or medium
with exogenous cytokines (IL1β, IL1RA, IL3, G-CSF, TPO, M-CSF, VEGF). The upper part of the table describes the effect of exogenous Flt3-L in the presence of other media-
tors, the middle part states the number of patients with an additive effect of Flt3-L and other exogenous cytokines (for detailed definitions see Design and Methods, presenta-
tion of the data), and the lower part compares the numbers of patients with Flt3-L-induced growth enhancement for Flt3-ITD+ and -ITD- AML blast populations.2 A significant
alteration was defined as a difference being (i) >20% of the corresponding Flt3-L-free control and (ii) with an absolute value >2000 cpm. Smaller differences were classified
as intermediate. No detectable proliferation was defined as 3H-thymidine incorporation <1000 cpm both for cultures with and without Flt3-L.3 An additive effect of Flt3-L and
another cytokine was defined as a proliferative response exceeding the highest of the two responses by at least 20% and this difference being >2000 cpm.4 Nine patients
were not available for Flt3-ITD testing. The group of Flt3-ITD+ patients includes 3 patients with additional Flt3-PM, whereas patients with Flt3-PM alone are presented as a sep-
arate group.
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Effects of exogenous Flt3-L on AML blast
colony-formation

AML blasts derived from 17 patients (Table 1,
patients #1-10 and 12-18) were pre-incubated in
serum-free StemSpan™ medium without and with
Flt3-L 50 ng/mL for 7 days before the frequency of
colony-forming cells was determined under Flt3-L-
free conditions by using the erythropoietin+condi-
tioned medium assay. Patients with Flt3 abnormal-
ities showed lower frequencies of clonogenic cells
than did the other patients, but this difference did
not reach statistical significance (Table 4). For most
patients Flt3-L either increased (10 of 17 patients)
or did not alter (4/17) the frequencies of non-ery-
throid colonies, but a reduction was observed for 3

patients. Erythroid colonies were detected for 10
patients; pre-incubation with Flt3-L reduced this
frequency for 4 patients and increased it for 2
patients. The Flt3-L effects did not differ between

Table 3. Effects of exogenous Flt3-L on in vitro proliferation
of native AML blasts: studies of Flt3-ITD+ leukemia cells
with undetectable expression of wildtype Flt3.

Patient and Flt3-L 20 Patient Patient Patient 
culture ng/mL 9 15 24
characteristics

Flt3-ITD 24 63/33 48
(base pairs)

Flt3-PM (D835) − − −

Exogenous 
mediator

None − 1084±172 147±29 299±27
+ 5891±998 696±98 497±98

IL1 − 3456±627 568±108 14.836±1982
+ 7090±882 939±111 17.005±2035

IL1RA − 478±87 183±23 485±82
+ 2769±524 724±74 612±54

IL3 − 68.911+3760 542±225 8653±1230
+ 80.511+4072 939±339 11.783±1074

G-CSF − 2156±524 524±92 21.284±2310
+ 10.330±1099 1706±233 21.058±1962

M-CSF − 564±38 510±44 539±27
+ 3166±422 833±92 591±83

TPO − 378±88 228±76 4836±623
+ 2962±499 876±73 4471±826

VEGF − 259±78 127±29 312±27
+ 2654±881 594±127 483±99

AML blasts were cultured in suspension cultures with and
without Flt3-L 20 ng/mL. The Flt3-L effects were assayed for cells cultured in
medium alone and medium supplemented with various exogenous cytokines. 3H-
thymidine incorporation was assayed after 7 days of culture, and the results are
presented as the mean+standard deviation of triplicate determinations. Results
in bold represent significant alterations induced by
Flt3-L (the difference corresponding to >20% of the controls and an absolute val-
ue >2,000 cpm).

Table 4. The effect of Flt3-L on clonogenic AML cells;
effects of pre-incubation with Flt3-L before analysis of
colony formation.

Colony-formation with erythropoietin
plus conditioned medium
(number of colonies per

105 seeded cells)

Patient FLT3- Flt3-L Non Erythroid
abnormality 50 ng/mL Erythroid

1. PM − 16.5±0.7 0
+ 17.5±0.7 0

2. − + 117.0±26.9 150.0±6.3
115.0±9.9 170.0±14.0

3. ITD − 85.0±15.4 0
+ 125.0±4.2 2.0±1.4

4. − − 170.0±11.3 96.0±25.4
+ 144.0±11.3 23.0±7.0

5. − − 194.0±31.1 30.0±12.5
+ 265.0±29.6 1.0±1.4

6. − - 15.0+712.5 0
+ 123.0+12.6 0

7. ITD − 41.5±3.5 0
+ 91.0±14.7 0

8. ITD − 118.0±14.1 71.5±18.3
+ 168.0±24 0.5±0.7

9. ITD, wt− − 72.0±25.5 23.0±9.1
+ 126.0±1.4 1.5±0.7

10. − − 329.0±43.8 0
+ 371.0±49.5 0

12. ITD − 39.0±5.6 4.0±2.8
+ 64.0±21.0 1±1.4

13. − − 24.5±2.1 23.5±10.5
+ 28.0±0 23.0±13.3

14. − − 57.7±6.3 0
+ 45.0±2.8 0

15. ITD, wt- − 82.0±24.8 3.0±2.8
+ 154.0±4.2 0

16. − − 176.0±34.3 0
+ 127.5±33.6 0

17. − − 4.5±3.5 4.0±5.6
+ 4.0±5.6 44.5±9.1

18. nt − 50.0±4.2 0
+ 90.0±7.0 0

Cells were pre-cultured in suspension cultures with and without Flt3-L 50 ng/mL
for 7 days before the number of colonies was determined in the erythropoietin-
conditioned medium assay. Values for  patients with significant effects of Flt3-L
are marked in bold: this was defined as differences >10 and exceeding the Flt3-
L-negative control by 10%. The results are presented as
the mean+SD of duplicate determinations.
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patients with and without Flt3 abnormalities and
were reproduced for 5 patients (Table 1, patients
1#, 2, 6, 8, 9) when using various media for the pre-
incubation (RPMI + 10% FCS, X-vivo 10®, X-vivo 15®,
StemSpan™, data not shown).  Spontaneous and
GM-CSF-dependent colony formation were exam-
ined for 8 patients (Table 1, patients #7-14); the
assays were then prepared with and without Flt3-
L 50 ng/mL. Only non-erythroid colonies were
detected. Flt3-L could increase both spontaneous

(1 out of 8 patients) and GM-CSF-dependent (3/8)
colony formation, and decreased colony-formation
was not observed for any patients.

Effects of exogenous Flt3-L on constitutive
cytokine secretion by native AML blasts

Flt3-L 50 ng/mL had divergent effects on the
release of IL1β, IL6, TNFα, G-CSF and GM-CSF by
native human AML blasts (Figure 5). This diver-
gence was observed for native blasts and was

Figure 3. Effects of Flt3-L, GM-CSF and SCF on AML blast
proliferation. The proliferation of native AML blasts cultured
in medium alone or with Flt3-L 20 ng/mL (open columns),
GM-CSF 100 ng/mL (stippled) or SCF 20 ng/mL (stripes)
was first compared (Sp, i.e. spontaneous proliferation in
medium alone). The effects of these three cytokines were
also examined when the culture medium was supplement-
ed with other exogenous cytokines (IL1, ILββ1RA, IL3, G-
CSF, M-CSF, TPO, VEGF; see the bottom of the figure), and
proliferation in Flt3-L/GM-CSF/SCF containing cultures was
then compared with that in the corresponding cytokine-con-
taining controls. An increase or decrease in blast prolifera-
tion was defined as an alteration corresponding to (i) >20%
of the corresponding control and (ii) exceeding 2000 cpm;
smaller differences are referred to as intermediate respons-
es. A total of 64 patients were examined, and the figure pre-
sents the results for those patients who showed detectable
proliferation (corresponding to >1000 cpm) for each of the
cytokines. The figure shows the number of patients with
increased (the part of the columns above the X-axis) and
intermediate/decreased (the part of the column below the
X-axis) proliferation in the presence of Flt3-L/GM-CSF/SCF.
The number of patients with decreased responses is indi-
cated in black at the lowest part of each column.

Figure 4. The effect of Flt3-L specific neutralizing antibod-
ies on spontaneous and GM-CSF-dependent AML blast pro-
liferation. Native AML blasts derived from two patients
(Table 1; patients 8 •• , 10 o) were cultured either in medi-
um alone (____) or in the presence of GM-CSF 100 ng/mL
(----). Proliferative responses were then compared for cul-
tures with Flt3-L-specific neutralizing monoclonal antibodies
and cultures containing isotypic control antibodies at the
same concentration (see x-axis). The results are presented
as the percent inhibition by neutralizing antibodies, i.e. the
incremental cpm for cultures with Flt3-L specific antibodies,
relative to the incremental cpm for corresponding isotypic
control cultures. The responses in isotypic control cultures
were: patient #8, spontaneous proliferation 8302+1876
cpm, GM-CSF dependent proliferation 36.813+852 cpm;
patient # 10, spontaneous proliferation 17.206+1428 cpm,
GM-CSF dependent proliferation 94.865+3474 cpm.
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reproduced for enriched leukemia cells (7 patients
examined), and neither the cytokine levels nor the
divergent effects of exogenous Flt3-L differed
between patients with and without Flt3 abnor-
malities. Exogenous SCF also had divergent effects
on the secretion of IL1β, IL6 and TNFα (data not
shown). Furthermore, AML blasts derived from 5
patients (Table 1, patients 1-4 and 7) were cul-
tured with and without Flt3-L 50 ng/mL for 48
hours before IL1β- and IL6-specific RNA was quan-
tified. IL1β- (range 15.0-39.0 amol/µg total RNA)
and IL6-specific RNA (range 32.0-86 amol/µg RNA)
were detected for all patients, and Flt3-L had diver-
gent effects on these levels (data not shown). 

Effects of exogenous Flt3-L on AML blast
morphology

Native AML blasts derived from 10 consecutive
patients (Table 1, patients 1-10) were cultured with
and without Flt3-L 50 ng/mL for 2 and 7 days
before examination of cell morphology (May-Grün-
wald-Giemsa staining). After 2 days neutrophil dif-
ferentiation was observed in ≤ 10% of the cells for
all patients, and these percentages were not sig-
nificantly altered (i.e. ≤ 5%) by Flt3-L. In contrast,
after 7 days of culture with Flt3-L an increased
percentage of cells with neutrophil granulation
was observed for patients 1 (ITD−PM+, 17 versus
5%), 2 (ITD−PM−, 28 versus 1%), 4 (ITD−PM−, 12
versus 1%) and 7 (ITD+PM−, 8 versus 2%). Howev-
er, neutrophil differentiation further than the
promyelocyte stage and erythroid or monocytoid
differentiation was not observed for any patient.

Effects of Flt3-L on regulation of apoptosis
in native AML cells

The frequency of apoptotic AML blasts (H33258
staining) after 24 and 48 hours of culture was first
examined for 11 patients (Table 1, patients 1 and
10-19), and this frequency exceeded 30% only for
patient 17 (ITD− PM−, 54% after 48 hours). Flt3-L
reduced apoptosis significantly (i.e. ≥5% differ-
ence) for patients 1 (ITD− PM+), 10 (ITD− PM−), 13
(ITD− PM−), 17 (ITD− PM−) and 18 (ITD not tested,
PM−). Furthermore, the effects of Flt3-L, GM-CSF
and SCF on apoptosis were compared for an addi-
tional group of 12 consecutive patients, 4 of whom
were Flt3−ITD+ and 1 of whom was Flt3−PM+ (chro-
matin staining, JC-1 staining, annexin-V labeling).
For Flt3−L the morphologic examination demon-
strated reduced apoptosis (≥5% alteration) for 6 of
the 12 patients, whereas increased apoptosis was
observed for 2 patients. A similar divergence was
observed both after 24 and 48 hours of culture and
with all three methods (data not shown). The anti-
apoptotic effect was observed for AML blast pop-
ulations both with and without Flt3 abnormalities
(including the Flt3−PM+ patients). SCF and GM-CSF
also had divergent effects on apoptosis (data not
shown).

Caspase-3 activity in AML blasts was examined
after 48 hours of in vitro culture with and without
Flt3− L 50 ng/mL for patients 1 (ITD− PM+), 10 (ITD−

PM−) and 19 (ITD+ PM−). These patients were select-
ed because Flt3-L increased the blast proliferation
both in cultures with medium alone and in cul-
tures in the presence of all the exogenous cyto-
kines. In contrast, Flt3-L had divergent effects on
caspase-3 activity and caused either minimally
altered (patient 10: without Flt3-L 34.8 pmol/min,
with Flt3-L 42.9 pmol/min), decreased (patient 1:
107 versus <13.4 pmol/min) or increased activity
(patient 19: 6.7 versus 68 pmol/min). Caspase-
inhibitory activity was not detected for any patient.

Figure 5. The effect of Flt3-L on AML blast cytokine secre-
tion. The AML cells were cultured without and with Flt3-L
50 ng/mL, and cultures were prepared with either native
(____) or enriched (-----) AML blasts. The cells were cultured
at 1××106 cells/mL for 48 hours before supernatants were
harvested and cytokine levels (IL1ββ, IL6, TNFββ, G-CSF, GM-
CSF; see top of the figure) determined by ELISA analyses.
The figure compares the cytokine levels (pg/mL) for cul-
tures without (−−) and with (+) Flt3-L, and only the results for
patients showing detectable cytokine levels for at least one
of these cultures are presented: - IL1ββ: 25 patients tested,
9 patients showed detectable levels; - IL6: 15 out of 25
patients showed detectable levels; in addition the figure
presents the results for enriched AML blasts derived from
7 of these patients (-----); - TNFαα: detectable levels were
observed for 7 out of 25 patients; - G-CSF, 11 out of 19
patients showed detectable levels; - GM-CSF, 17 out of 19
patients showed detectable levels.
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Discussion

In our present study we included consecutive
patients with high peripheral blood blast counts,
and thus highly enriched populations of native AML
blasts could be prepared by density gradient sepa-
ration from peripheral blood samples. This simple
technique has a minimal risk of inducing function-
al alterations in the blasts,35,36 but a high degree of
leukemization may reflect biologic differences2,37

and thus our results are only representative of this
particular subset of patients. The cytogenetic stud-
ies demonstrated a normal karyotype in nearly 60%
of our patients, whereas favorable and unfavorable
karyotypes were detected only for small subsets of
patients (6% and 11% respectively). This distribu-
tion is not much different from that found in oth-
er studies, except for the low frequency of favor-
able karyotypes, which was also observed when we
analyzed all patients admitted to our institution
during the same study period.2,3 However, the rel-
atively high frequencies of Flt3-ITD (38 versus
27%)3 and D-835 mutations (13 versus 7%),28 in
our present study possibly reflect a selected patient
population. The relatively low number of patients
examined may then explain why the frequencies of
abnormal karyotypes did not differ from that found
in our overall population and in other studies.2,3

Previous studies have reported a wide variation
in the percentage of patients with Flt3-L-respon-
sive AML blasts (range 62-88%).22 In contrast to
these studies we examined the effects of Flt3-L in
a large group of consecutive patients. We detect-
ed Flt3 expression by AML blasts in more than 80%
of patients, and exogenous Flt3-L altered blast pro-
liferation in at least one in vitro model for a large
majority of patients. The expression of Flt3 iso-
forms showed a wide quantitative variation
between patients without there being any correla-
tion with the effects of Flt3-L on blast proliferation,
suggesting that downstream mechanisms are more
important than receptor density for these func-
tional Flt3-L effects.

Ligation of wild-type Flt3 leads to activation of
the intracellular tyrosine kinase,5 whereas abnormal
Flt3 genes encode molecules with constitutive
enzyme activity.8,9 Our present results demonstrated
that Flt3-L was a growth factor even for AML blasts
with genetic Flt3 abnormalities, an observation sug-
gesting that receptor ligation can induce additional
growth-stimulatory signaling even in cells with con-
stitutive kinase activity. Although it seems likely that
this effect is caused by ligation of wild-type Flt3,
the observation of increased proliferation in the
presence of exogenous Flt3−L for Flt3−ITD+ blasts
without detectable wild-type suggests that ligation
of mutated Flt3 may also contribute. However, this
last observation should be interpreted with great
care because relatively few patients were examined

and the presence of small, undetectable amounts of
wild-type Flt3 may influence these results. Further-
more, Flt3 ligation could also modulate colony for-
mation and spontaneous apoptosis of in vitro cul-
tured Flt3-ITD+ and -ITD− blast populations. Our
results thereby support the hypothesis that exoge-
nous Flt3−L is an important growth factor for AML
blasts in a major part of patients. In contrast, Flt3−
L is an autocrine growth factor only for a small sub-
set, and the importance of the autocrine secretion is
also reduced by the presence of other exogenous
cytokines (e.g. GM-CSF).

ITD+ AML blasts have decreased proliferative
capacity in stroma-supported cultures.33,34 Our pre-
sent study demonstrated an association between
Flt3-ITD and decreased AML blast proliferation in
suspension cultures. This observation suggests that
the decreased proliferative capacity is caused by a
direct effect of the Flt3-ITD on intracellular sig-
naling and not by indirect effects with modulation
of paracrine growth-regulatory mechanisms.

GM-CSF and SCF can increase AML blast prolif-
eration for most patients,37,38 but their effects on
the proliferative capacity of native human AML
blasts have not been compared with those of Flt3-
L. All three growth factors had similar effects with
regard to growth enhancement and anti-apopto-
sis and divergent effects on cytokine release (Fig-
ure 5),37-40 including the autocrine growth factors
IL1β, G-CSF and GM-CSF. Thus, the overall results
demonstrate that these three cytokines have
growth-enhancing effects that are only minimally
influenced by local cytokine networks and are inde-
pendent of autocrine growth factor release and
regulation of apoptosis.

The growth-enhancing effect of Flt3-L was char-
acterized in detail. Firstly, Flt3-L could not be
detected in culture supernatants for any patient,
but Flt3-L specific neutralizing antibodies inhibit-
ed spontaneous AML blast proliferation for two
patients. This observation suggests that Flt3-L can
function as an autocrine growth factor in a small
minority of patients. Secondly, the growth-enhanc-
ing effects of Flt3-L were not due to increased IL1β
release because (i) the Flt3-L effects on prolifera-
tion and IL1β levels showed no correlation; (ii) Flt3-
L had divergent effects on cytokine-specific RNA
levels both for IL1β and IL6 independently of its
growth-enhancing effect; and (iii) Flt3-L enhanced
proliferation even in the presence of the antago-
nistic IL1RA. Thirdly, the growth-enhancing effect
of Flt3-L involved the clonogenic AML cell subset,
and this effect could be detected when using var-
ious experimental approaches. Lastly, control
experiments with serum-free conditions and
enriched AML blast populations showed that the
Flt3-L effects were not dependent on unidentified
serum components or the small lymphocyte cont-
amination.
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The possible interaction between differentiation
status and Flt3-L effects was investigated by var-
ious experimental approaches. Flt3-L had only min-
imal effects on AML blast differentiation in sus-
pension cultures. Differentiation was then analyzed
by light microscopy because we regard morpho-
logic alterations as a more robust sign of differen-
tiation than flow-cytometric detection of altered
expression of a single or a few membrane mole-
cules.35,36,41-43 Flt3-L did not induce erythroid dif-
ferentiation in the colony formation assays either.
Thus, the effects of Flt3-L seem to be only mini-
mally affected by and have only a minimal influ-
ence on the differentiation status of native human
AML blasts.

To conclude, Flt3-L was able to modulate the
functional phenotype of native human AML blasts,
and the most important effect seemed to be
enhanced proliferation. This growth-enhancing
effect was observed both for AML cells with and
those without genetic Flt3 abnormalities, and our
results thereby suggest that intracellular signaling
initiated by Flt3-ligation in the AML blasts is
involved in leukemogenesis and possibly also
chemosensitivity for a majority of patients.
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Abstract
Background: Acute myeloid leukemia (AML) cells are characterized by non-mutated TP53, high
levels of Hdm2, and frequent mutation of the Flt3 receptor tyrosine kinase. The juxtamembrane
mutation of FLT3 is the strongest independent marker for disease relapse and is associated with
elevated Bcl-2 protein and p53 hyper-phosphorylation in AML. DNA damage forms the basic
mechanism of cancer cell eradication in current therapy of AML.

Hdm2 and pro-apoptotic Bcl-2 members are among the most intensely induced genes immediately
after chemotherapy and Hdm2 is proposed a role in receptor tyrosine kinase regulation. Thus we
examined the DNA damage related modulation of these proteins in relation to FLT3 mutational
status and induction of apoptosis.

Results: Within one hour after exposure to ionizing radiation (IR), the AML cells (NB4, MV4-11,
HL-60, primary AML cells) showed an increase in Flt3 protein independent of mRNA levels, while
the Hdm2 protein decreased. The FLT3 mutant MV4-11 cells were resistant to IR accompanied by
presence of both Mcl-1 and Hdm2 protein three hours after IR. In contrast, the FLT3 wild type NB4
cells responded to IR with apoptosis and pre-apoptotic Mcl-1 down regulation. Daunorubicin
(DNR) induced continuing down regulation of Hdm2 and Mcl-1 in both cell lines followed by
apoptosis.

Conclusion: Both IR and DNR treatment resulted in concerted protein modulations of Mcl-1,
Hdm2 and Flt3. Cell death induction was associated with persistent attenuation of Mcl-1 and Hdm2.
These observations suggest that defining the pathway(s) modulating Flt3, Hdm2 and Mcl-1 may
propose new strategies to optimize therapy for the relapse prone FLT3 mutated AML patients.
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Background
Anthracyclines like daunorubicin (DNR) are used in the
induction treatment of acute myeloid leukemia (AML),
obtaining short time complete hematological remission
for more than 65% of adult AML patients with de novo
AML [1]. Successful hematological remission after only
one induction cycle is a favorable prognostic parameter
and is associated with decreased risk of later AML relapse
[1,2]. Induction therapy causes rapid activation of the
tumor suppressor p53 followed by dominating p53-tar-
geted gene expression in vivo [3]. A major mechanism for
this p53 induction is DNA damage through anthracycline-
stabilization of the DNA:topoisomerase II complex [4],
but cell death induction by anthracyclines may also
involve other molecular targets independent of p53 [4-7].

Ionizing radiation (IR) is frequently used in the treatment
of solid cancers, in the conditional treatment before
allotransplantation of leukemia patients and in radioiso-
tope-conjugated therapeutic antibodies directed against
AML cells [8,9]. IR and anthracyclines induce growth
arrest and cell death through DNA-damage, but also
involve cell membrane-related effects in regulation of
apoptosis [4-7,10]. We have previously reported that AML
patient cells respond with varying sensitivity to IR-
induced proliferation arrest [11], and it may therefore be
of interest to determine molecular mechanisms for radi-
oresistance in more detail.

The strongest molecular predictor for AML relapse is inter-
nal tandem duplications in the juxtamembrane domain
of the receptor tyrosine kinase Flt3 (Flt3-ITD). These
mutations are present in approximately one third of the
patients [12]. Flt3-ITD are associated with increased DNA
repair [13], an observation suggesting that these cells are
able to recover from DNA damage caused by topoisomer-
ase II blockage and thus have a more drug-resistant phe-
notype. The expression of anti-apoptotic Bcl-2 protein
family members is also influenced by the mutational sta-
tus of Flt3 [14]. We have recently shown that a duplication
of Y591 in Flt3-ITDs is associated with elevated Bcl-2 pro-
tein and hyper-phosphorylated wild type (wt) p53 in
AML, proposing a mechanism for inactivation of p53
[14].

Mcl-1 is an anti-apoptotic member of the Bcl-2 family of
proteins. High levels of Mcl-1 have been detected in cells
from patients with relapsed AML [15]. Therapeutic target-
ing of Bcl-2 family proteins seems to depend on Mcl-1 to
trigger apoptosis [16]. It may therefore be of particular
interest to examine the Mcl-1 modulation in DNA damage
therapy.

In contrast to solid tumors, more than 90% of the AML
cases comprise wild type p53 [17,18]. On the other hand,

the E3 ubiquitin ligase Hdm2 is usually strongly expressed
in AML, contributing to block the growth inhibitory and
pro-apoptotic effect of p53 [19]. IR induces DNA damage
and rapid down regulation of Hdm2 through induction of
auto-ubiquitination and subsequent proteasomal degra-
dation [20]. Recent reports indicate that Hdm2 have
important p53-independent activities, including regula-
tion of cell membrane receptors like insulin-like growth
factor (IGF) 1 receptor and β2-adrenergic receptor
through ubiquitination [21]. However, it is not known
whether the Flt3 receptor is regulated by Hdm2.

Concerted protein modulation of a receptor tyrosine
kinase, the E3 ubiquitin ligase Hdm2 and selected Bcl-2
family members through DNA damage therapy has previ-
ously not been reported. Our study indicated that both IR
and DNR induced Hdm2 protein down regulation, partly
Flt3 protein elevation, and a pro-apoptotic shift in the
expression of proteins in the Bcl-2 family. Flt3 and Hdm2
might have a reciprocal regulation at the protein level and
FLT3 mutations could be involved in protection against
IR-induced apoptosis through a persisting Mcl-1 level.

Results
Ionizing radiation induces reciprocal regulation of Flt3 and 
Hdm2 protein in NB4 cells
The promyelocytic cell line NB4 is characterized by
mutated TP53 and non-functional p53 protein [22,23] as
well as wild type FLT3 [24]. DNA damaging 25 Gy IR of
NB4 cells resulted in increased apoptosis, but no modula-
tion of FLT3 or HDM2 mRNA was observed (Fig. 1a,b; left
panel). Hdm2 responds to IR with protein auto-degrada-
tion [20], and it regulates endocytosis of certain receptors
like the IGF 1 receptor [25]. We examined Flt3 and Hdm2
at different time points after IR (25 Gy) and found highly
significant reciprocal regulation at the protein level (Fig.
1c; left panel). This was accompanied by attenuation of
the anti-apoptotic Mcl-1, an increase in Bax but unaltered
Bcl-2 (Fig. 1d; left panel) and Bcl-XL (data not shown).
Previous studies have shown that DNA-damaging in vivo
chemotherapy of AML has no effect on MCL-1 gene induc-
tion, but rapidly induces BAX and PUMA mRNA [3]
(Øyan et al., manuscript in preparation). p21 protein was
not detected in NB4 cells (data not shown), and the p53
protein level was not altered after irradiation (Fig. 1d; left
panel), reflecting its non-functional status.

Hdm2 response and stable Mcl-1 in the IR-resistant cell 
line MV4-11
MV4-11 is characterized by FLT3-ITD, loss of wilt type
FLT3 allele, and wild type TP53 [22,24]. MV4-11 cells
were resistant to IR with regards to apoptosis induction
(Fig 1a, right panel), but responded with more than one
fold increase in HDM2 mRNA (Fig. 1b), reflecting the
functional p53. The level of Hdm2 protein showed a
Page 2 of 11
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Rapid IR-induced protein modulation of Flt3, Hdm2 and Bcl-2 family members in AML cell linesFigure 1
Rapid IR-induced protein modulation of Flt3, Hdm2 and Bcl-2 family members in AML cell lines. A. Cells were 
exposed to 25 Gy and fixed after the indicated time (minutes). The percentage of normal nuclei in a total of 200 cells was 
determined in Hoechst stained cells for each time point. The results shown represent the mean of three separate experiments 
and the error bars show standard error of mean (SEM = Standard Deviation/√n). The star denotes statistical significance rela-
tive to the control, this is determined by a Students two-tailed t-test, p < 0.05. B. mRNA level of FLT3 and HDM2 was deter-
mined by Real-time PCR in one typical experiment. GAPDH was used as endogenous control. C. IR down regulated Hdm2 
protein and up regulated Flt3 protein in these AML cell lines. The diagram shows measured intensity on three separate West-
ern blots (normalized to Actin). The error bars show standard error of mean SEM and the stars represents significance as in A. 
D. Visualization of the protein modulations of Flt2 and Hdm2 shown in C. in addition to modulation of proteins in the Bcl-2 
family. Mean intensity on the Western blots written below the corresponding panel were measured and normalized to Actin 
and to the control. The values shown are arbitrary units and represent one typical experiment.
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small but significant decrease after 60 minutes before an
increase was detected, whereas the Flt3 level increased in
response to IR and was not attenuated by the elevated
HDM2 level after 180 minutes (Fig. 1c,d). Another strik-
ing difference from the NB4 cells with FLT3-wt was that
the Mcl-1 level did not change in response to IR (Fig. 1d).
Furthermore, MV4-11 responded to IR with increased pro-
tein levels of p53, Bax, Bcl-2, (Fig. 1d) and p21 (data not
shown) while the level of Bcl-XL was unaltered (data not
shown). The IR induction of p53, Hdm2, Bax and p21
suggests that the p53 transcriptional activation in MV4-11
is intact [3].

Attenuation of Hdm2 and Mcl-1 is independent of p53 and 
Flt3
The effect of IR was also examined in HL-60 cells, charac-
terized by wild type FLT3 and deleted alleles for TP53
[22,24]. Like inNB4 and MV4-11 cells, Hdm2 was attenu-
ated and Flt3 increased, but the Flt3 protein appeared not
to be full length (Fig. 2a; ~150 versus ~60 kDa). The lack
of full length Flt3 was confirmed in cells from both ATCC
and DSMZ within four passages of culture, and immuno-
precipitation of Flt3 in these cells did not reveal any low
molecular anti-Flt3 reactive form (data not shown). Flt3
protein has previously been reported non-detectable in
HL-60 cells [26].

Bcl-2 family members showed no significant response to
IR in HL-60 cells except a late decrease in Mcl-1.

Human primary AML cells (patient 1) were irradiated and
examined for Flt3 and Hdm2 modulation (Fig. 2b), indi-
cating that the reciprocal Flt3-Hdm2 response to DNA
damage also could be present in primary leukemia cells.
In contrast to the HL-60 cells where the p21 response was
absent, early increase was present in the primary AML
cells. These differences reflects an absence of a p53
response in HL-60 cells and a presence of such in the
patient cells (Fig. 2a,b).

Daunorubicin induces attenuation of Hdm2 and Mcl-1 
independent of TP53 and FLT3 status
Since both DNR and IR induce DNA damage, we exam-
ined the effect of DNR in both AML cell lines (NB4, MV4-
11 and HL-60) and primary cells (patient 2). The cells
were treated in vitro (Fig. 3) with DNR for 5 hours at rele-
vant concentrations [3]. The NB4 and MV4-11 cell lines
were sensitive to DNR with regards to apoptosis induc-
tion, and both Mcl-1 and Hdm2 were down regulated
(Fig. 3a). Although DNR increased Flt3 protein in all the
AML cells tested (Fig. 3ab), this effect was most prominent
in MV4-11 cells, HL-60 and the primary AML cells. HL-60
cells showed an increase in putative short forms of Flt3
protein with low doses of DNR (Fig. 3b).

IR decrease Hdm2 protein in HL-60 (p53 -/-) and in primary AML cellsFigure 2
IR decrease Hdm2 protein in HL-60 (p53 -/-) and in 
primary AML cells. A. HL-60 cells treated with 25 Gy and 
harvested at indicated time (minutes) demonstrated a rapid 
decrease in Hdm2 protein after IR. There was no detectable 
Flt3 protein at 130 kDa. B. Primary AML cells also treated 
with IR and harvested at indicated time, demonstrated the 
rapid Flt3 increase and Hdm2 attenuation as previously 
observed. This was followed by an increase in Hdm2, reflect-
ing functional and elevated p53 protein. Mean intensity on 
the Western blots were measured and normalized to Actin 
and to the control. Values shown are arbitrary units and rep-
resent one typical experiment.
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Daunorubicin therapy of primary AML cells and cell lines increased Flt3 protein and attenuated Hdm2/Mcl-1Figure 3
Daunorubicin therapy of primary AML cells and cell lines increased Flt3 protein and attenuated Hdm2/Mcl-1. 
A. Treatment of NB4 and MV4-11 cells with DNR resulted in an increase in Flt3 and a decrease in Hdm2. The mean intensity 
on one representative Western blot was calculated and normalized to Actin and to the control. The numbers shown are in 
arbitrary units and represent one typical experiment. The percentage of living cells was determined by flow cytometry. The liv-
ing cells distinct forward and side scatter properties were used to separate viable cells from dead cells. B. Increasing doses of 
DNR induce Flt3 and down regulate Hdm2 protein in primary AML cells in vitro. Note that Hdm2 is down regulated in HL-60 
cells, a cell line with lack of full length Flt3 protein and with deleted alleles for p53. All wells on the SDS-PAGE gel was loaded 
with equal amounts of protein, and Coomassie staining of the gel after blotting confirmed this equal loading.
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Flt3 and Hdm2 protein are reciprocally regulated in vivo
We have recently demonstrated swift induction of p53
and Bax proteins in AML cells collected from patients
undergoing induction chemotherapy with anthracyclines
and cytarabine [3]. It was therefore of interest to examine
the AML cells' protein levels of Flt3 and Hdm2 after in vivo
chemotherapy (Fig. 4, one representative patient). AML
cells from patients were collected within the first 4 hours
of chemotherapy, and showed a strong in vivo decrease in
Hdm2, in addition to increase in p53 and Flt3.

Discussion
We demonstrated that Flt3 protein increased in response
to IR and DNR in all AML cell lines and primary leukemic
cells tested, in vitro and in vivo. Likewise, Hdm2 was down
regulated in concert with the Flt3 increase. This reciprocal
regulation was consistent in all experiments except in
MV4-11 cells 3 hours after IR and in NB4 cells treated with
DNR. A summary of all the results is shown in Fig. 5. Sev-

eral scenarios may explain this mutual modulation of Flt3
and Hdm2. The IGF 1 receptor, a more distant relative of
Flt3, has been demonstrated to undergo Hdm2-depend-
ent ubiquitination and degradation [25]. If Hdm2 regu-
lates the turnover of Flt3 through ubiquitination, IR-
induced Hdm2 degradation will result in elevated levels
of Flt3. The observed down regulated Hdm2 in irradiated
AML cells (Fig. 5) is probably due to proteasomal degra-
dation [27,28]. In addition to its ability of auto-ubiquiti-
nation, Hdm2 is ubiquitinated by several E3 ubiquitin
ligases, including the p300-CBP associated factor (PCAF)
and TSG101 [29,30]. Future work is needed to address if
modulation of Flt3 level may affect the level of Hdm2,
and if this possible action is directly mediated by Flt3 on
Hdm2 or involves other E3 ligases.

It can not be ruled out that the increase in Flt3 protein
after IR is based on mechanisms independent of Hdm2.
IR has been shown to increase the mRNA and protein lev-

Induction therapy of AML reciprocally regulates Flt3 and Hdm2 proteins in vivoFigure 4
Induction therapy of AML reciprocally regulates Flt3 and Hdm2 proteins in vivo. AML cells sampled from a patient 
undergoing induction chemotherapy with an anthracycline and cytarabin were subjected to Western blotting and analyzed for 
Flt3, Hdm2 and p53 expression. The mean intensity on one representative Western blot was calculated and normalized to 
Actin. The numbers shown are in arbitrary units.
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Summary of the resultsFigure 5
Summary of the results. A. FLT3 and TP53 mutational status of the cell lines used in this study. B. A summary of the ability 
of IR and DNR to induce apoptosis in the three different cell lines studied (n.d; not determined). C. Overview of the concerted 
protein modulations elicited by DNA-damaging therapy found in this study (n.d; not determined).

Flt3:    Protein

           
            mRNA

Hdm2: Protein

           
            mRNA

n.d

N
B4

M
V4

-1
1

H
L-

60
IR DNR

N
B4

Apoptosis

n.d

M
V4

-1
1

H
L-

60

IR, 180 min

DNR

Viable 

Apoptotic

N
B4

M
V4

-1
1

H
L-

60

FLT3

TP53

Wildtype 

Mutated

Deleted

N
B4

M
V4

-1
1

H
L-

60

n.d

Unaltered

Increased

Decreased

Mcl-1

Bcl-2

Bax

p53

A

B

C

n.d



Molecular Cancer 2007, 6:33 http://www.molecular-cancer.com/content/6/1/33
els of epidermal growth factor (EGF) receptor as well as
the cell surface protein expression of IGF 1 receptor
[31,32]. Such mRNA regulation of Flt3 after IR was not
observed in our study (Fig. 5).

The NB4 cells, in contrast to the MV4-11 cells, showed IR
induced apoptosis (Fig. 5) and a lack of increase in HDM2
mRNA level. Since NB4 cells have non-functional p53
[33], this suggests that NB4 undergoes a p53-independent
apoptosis during IR-exposure. A possible explanation for
the IR-resistance of MV4-11 is that AML cells with Flt3-
ITD can repair double-stranded breaks in DNA more effi-
cient than in cells with wild type Flt3 [13], but an anti-
apoptotic effect on p53 by the MLL-fusion products may
be an alternative mechanism [34]. This makes MV4-11
more protected against apoptosis induced by IR. Other
explanations for early IR-induced apoptosis in NB4 cells
in contrast to in the MV4-11 cells could include a pro-
apoptotic response on the Bcl-2 family members and a
lack of Hdm2 induction (Fig. 5). No shift in the balance
of Bcl-2/Bax was observed (Fig. 5), thus our data suggest
that Mcl-1 is a central player in regulation of DNA-damage
induced cell death. A striking feature of IR treated NB4
cells, as well as DNR treated NB4 and MV4-11 cells, was
the Mcl-1 down regulation accompanied by apoptosis.
These observations emphasize the putative importance of
Mcl-1 in regulation of apoptosis in AML, with possible
implications for the biology behind disease relapse
[15,16].

MV4-11 cells were resistant to IR while DNR effectively
induced apoptosis (Fig. 5). DNR elicited a lasting Hdm2
and Mcl-1 down regulation in contrast to IR. This suggests
that DNR ignites apoptosis through more pathways than
IR and that the Mcl-1 attenuation is a pre-apoptotic event.
In addition to the induction of DNA damage, DNR is
known to stimulate the level of the second messenger
ceramide by de novo synthesis and thus trigger apoptosis
[5]. Anthracyclines may also induce apoptosis via signal-
ling through altered plasma membrane lipid rafts and the
death receptor pathway [6] (for review see [7]).

The p53-deficient HL-60 cell line demonstrated Hdm2
decrease as well as a putative Flt3 increase in response to
IR or DNR (Fig. 5). The FLT3 gene in HL-60 is wild type
[24], confirmed by sequencing of the juxtamembrane
region and the kinase activation domain. Interestingly,
lack of full length Flt3 protein in HL-60 has previously
been reported [26], and we were not able to detect full
length Flt3 in different batches of HL-60 cells from ATCC
and DMZS (Fig. 3b). The protein bands between 50 and
100 kDa may be protein products from alternative splic-
ing of FLT3 mRNA, as reported for the closely related
platelet-derived growth factor alpha-receptor and KIT
[35,36]. Additional work is clearly needed to address the

possibility of alternative splicing of FLT3 in HL-60 and in
AML cells in general.

Flt3-ITD is the strongest predictor for relapse of AML in
therapy with anthracyclines [12], and is recently associ-
ated with enhanced DNA repair [13]. We demonstrated
that the anti-apoptotic protein Bcl-2 was induced in MV4-
11, HL-60 cells and primary AML cells during DNA dam-
age therapy (Fig. 5). This could indicate that anthracy-
clines elicit an anti-apoptotic signal through Flt3. The
anti-apoptotic signal may be particular strong in AML
cells with a Flt3-ITD mutation including an Y591 duplica-
tion [14].

Conclusion
In this study we show a concerted protein modulation of
Flt3, Hdm2 and Mcl-1 after DNA damaging therapy in
AML. IR resulted in decreased levels of Hdm2 and ele-
vated levels of Flt3 and may involve p53 independent
activities of Hdm2 acting on Flt3 as proposed for other
receptor tyrosine kinases. The apoptotic response may
depend on a persisting down regulation of Hdm2 and
Mcl-1 [37]. Targeting of Flt3, Bcl-2/Bcl-XL and Mcl-1 is
proposed to enhance the response of chemotherapy. Pre-
clinical studies and early clinical trials that follow these
principles are underway [38,39], and we believe that rele-
vant biomarker examinations [3] including the proteins
presented in this study may help to pinpoint the patients
that will benefit from this enhanced therapy.

Methods
Cell culture
All patient studies were approved by the local ethical com-
mittee (REK Vest) and the Data Inspectorate, Norway.
REK Vest is affiliated with the University of Bergen and
Haukeland University Hospital. Samples were collected
after informed consent. Patient data is overviewed in
Table 1.

Leukemic peripheral blood mononuclear cells (PBMC)
were isolated by density gradient separation (Ficoll-
Hypaque; Nycomed, Oslo, Norway) and were stored fro-
zen in liquid nitrogen [40]. The percentage of blasts
among leukemic PBMC exceeded 95% for all patients as
judged by light microscopy of May-Grünwald-Giemsa
stained cytospin smears [41]. PBMC were cultured in
serum free conditions in StemSpan (Stem Cell Technolo-
gies, Vancouver, BC, Canada) at an average concentration
of 2 × 106 cells per ml. Cells collected from patients during
therapy followed the procedures as described by Anensen
et al. 2006 [3].

The AML cell line NB4, kindly provided by Dr. Michel
Lanotte (INSERM U-301, Hôpital St. Louis, Centre
Hayem, Paris, France) [42], was cultured in RPMI 1640
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(Sigma-Aldrich, Inc. St. Louis, MO, USA) with 10% fetal
bovine serum (Foetal Calf Serum Gold, PAA Laboratories
GmbH, Pasching, Austria) and penicillin/streptomycin 50
IU/50 µg per ml. Sequence analysis of both DNA strands
of the NB4 cells used in this study confirmed wild type
juxtamembrane region and activation loop of FLT3, and
FISH analysis confirmed the presence of t(15;17) translo-
cation. The same culture conditions as for NB4 were used
for HL-60, purchased from DSMZ (Deutsche Sammlung
von Mikroorganismen und Zellkulturen, Braunschweig,
Germany). Reverse transcriptase PCR of HL-60 confirmed
presence of normal length of FLT3 mRNA in the juxtam-
embranous region. The MV4-11 cell line was purchased
from ATCC (American Type Culture Collection, Manas-
sas, VA, USA) and cultured in IMDM (BioWhittaker, Cam-
brex Bio Science, Verviers, Belgium) with 10% FBS and
penicillin/streptomycin 50 IU/50 µg per ml. The FLT3
gene in MV4-11 comprised a length mutation in the jux-
tamembrane region, and the t(4;11)(q21;q23) transloca-
tion was confirmed by FISH. The TP53 gene in MV4-11 is
wild type according to data published [22] and the IARC
TP53 Database [43]. The protein level of Flt3 in NB4 was
approximately 50% of the level in MV4-11, estimated by
Western blot and flow cytometry.

Irradiation and chemotherapy treatment of cells
For irradiation induced DNA double strand breaks, sam-
ples were exposed to 25 Gray (Gy) from a Ce137 source
[11] and maintained in culture until samples were col-
lected for Western blot analysis at time indicated. To
secure that the observed effect was from the irradiation,
the control samples were handled the same way as the
exposed samples except for the actual irradiation. Collec-
tion of cells from AML patients under therapy and in vitro
treatment of cells with daunorubicin was performed as
previously described [3].

Apoptosis assays
Cells were fixed in 2% paraformaldehyde solution con-
taining the DNA specific nuclear stain Hoechst (Hoechst
33342, Invitrogen, Carlsbad, CA, USA; 10 µg/ml) and
examined as previously described [33]. The number of
normal and apoptotic nuclei was counted in an inverse

fluorescence microscope (×400 magnification; Leica IRB,
Leica Microsystems GmbH, Wetzlar, Germany). The mean
number of three experiments was calculated together with
the standard error of mean (standard deviation/√number
of experiments). Nuclear staining with Hoechst of the
cells treated with daunorubicin was not possible due to
the strong fluorescence from the drug. These cells were
fixed in 4% paraformaldehyde solution and their forward
scatter and side scatter properties were examined by flow
cytometry and used to determine the number of living
cells. Flow cytometry was performed on a FacsCalibur
flow cytometer (BD Biosciences, San Jose, CA, USA) and
data analyses were carried out using the FlowJo software
(Tree Star, Inc., Ashland, OR, USA).

Western blotting
Samples for Western blotting were prepared by pelleting
the cells (3–10 millions) and washing them twice in 0.9%
NaCl following lysis in the following buffer: 10 mM Tris
(pH 7.5), 1 mM EDTA, 400 mM NaCl, 10% glycerol, 0.5%
NP40, 5 mM NaF, 0.5 mM sodium orthovanadate, 1 mM
DTT, and 0.1 mM PMSF (50–200 µl lysis buffer per sam-
ple) and transfered to 1.5 ml tubes. The samples were
homogenized by 20 strokes of a plastic mini homogenizer
before centrifugation at 14000 × g for 20 minutes. Protein
concentrations were determined using the Bradford pro-
tein assay, following the manufacturers instructions (Bio-
Rad Laboratories, Inc., Hercules, CA, USA). The protein
samples were added SDS loading buffer (Final: 1% SDS,
10% Glycerol, 12 mM Tris-HCl pH 6.8, 50 mM DTT and
0.1% Bromophenol Blue) and boiled for 10 minutes.

SDS-polyacrylamide gels, 10 or 12.5 % were loaded with
50–70 µg protein per well. After electrophoresis (100–200
V, 1–3 hours) and electroblotting (200 mA, o/n 4°C) the
PVDF-membranes (HybondP, Amersham Biosciences,
Oslo, Norway) were blocked for 1 hour in I-Block Block-
ing agent (Applied Biosystems, Foster City, CA, USA). Pri-
mary antibodies were incubated for 1–2 hours in room
temperature or over night at 4°C followed by 1 hour
washing in TBS-Tween. The antibodies Flt3 S-18, Hdm2
SMP-14, p53 BP53-12, Mcl-1 22, Bcl-2 ∆C 21 and Bax
2D2 were from Santa Cruz Biotechnology, CA, the Actin

Table 1: Clinical and biological characteristics of AML patients

Patients Age Sex Previous 
malignant 

disease

FAB Membrane molecules Karyotype FLT3 
LM

FLT3 
Asp835

Survival 
(Weeks)

CD 13 CD 14 CD 15 CD 33 CD 34

# 1 72 M Residive AML M1 + - + + - Normal wt wt 6
# 2 34 F - AML M5a - - + + - 46 XX, t(9;11), 

(q22;q23)
wt 0.31 >24 (Tx)

# 3 55 M - Atypical + - + + - Multiple wt wt >23

The patients were randomly selected; their clinical and biological data are included as background information.
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antibody AC-15 was from Abcam plc, Cambridge, UK and
the Hdm2 antibodies 2A10 and IF2 were from Calbio-
chem, San Diego, CA, USA.

Secondary antibodies conjugated to horse radish peroxi-
dase (Jackson ImmunoResearch laboratories, West Grove,
PA, USA) were diluted in 4% fat-free dry milk in TBS-
Tween and incubated 1 hour at room temperature. After
washing for 1 hour with TBS-Tween, the membranes were
developed using Supersignal® West Pico or West Femto
Chemiluminiscence Substate from Pierce Biotechnology
Inc, Rockford, IL, USA according to the manufacturers'
instructions. The membranes were imaged using a Kodak
Image Station 2000R (Eastman Kodak Co., Lake Avenue,
Rochester, NY, USA), and bands were quantified using the
Kodak analysis software. Data were exported to Excel
spreadsheet, corrected for background and loading con-
trol intensities and a Student's two-tailed t test was used
for determination of significance.

Real time PCR
Immediately after in vitro experiments, 5 × 106 cells were
dissolved in RNAlater (Ambion Inc.) to stabilize and pro-
tect RNA and then stored at -80°C. RNAeasy plus mini kit
(Qiagen Inc.) was used for isolation of total RNA. Cells
were thawed, centrifuged and resuspended in RTL buffer
and further procedures were followed according to manu-
facturer's instructions. RNA quality was tested on a 2100
Bioanalyzer (Agilent Technologies) and total RNA was
quantified with a spectrophotometer for small aliquots
(NanoDrop Technologies, Wilmington, DE, USA). cDNA
were synthesized using the High-Capasity cDNA Archive
Kit (Applied Biosystems, Foster City, CA) running 625 ng
RNA in 50 µl total reaction volume. Real Time PCR was
performed using assays-on-demand containing primers
and FAM dye-labelled probes. Human GAPDH and β-
Actin were used as endogenous controls. For Flt3 and
Hdm2, assays Hs00174690_m1 and Hs00234753_m1
(Applied Biosystems) were used. TaqMan Universal PCR
Master Mix (Applied Biosystems) was run with 2 µl cDNA
in 10 µl total reaction volumes. The PCR was performed
in a 384-well clear optical reaction plate on a 7900HT real
time PCR system (Applied Biosystems). The calibrator
sample in each experiment was used for standard curve
dilution. All samples were run in three replicates and data
were analyzed using the relative standard curve method as
described by the manufacturer (Applied Biosystems).
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Abstract 

Purpose: Acute myeloid leukemia (AML) frequently features mutations in the 

receptor tyrosine kinase Flt3 and elevated expression of the oncogenic E3 ubiquitin 

ligase Hdm2. Additional to the p53 inhibitory effect of Hdm2, Hdm2 appears 

involved in endocytosis of cell surface receptors. In this study we explore the 

possibility of Flt3 modulation by Hdm2.  

Experimental design: Primary AML cells and cell lines (NB4 and MV4-11) 

with wild type Flt3 (Flt3-wt) or mutated Flt3 (Flt3-ITD) were used with Flt3 ligand 

(FL), small molecular inhibitors and small interfering RNA (siRNA) to elucidate the 

relation between Flt3 and Hdm2 on protein level, mRNA expression and modulation 

of apoptosis.  

Results: The basal level of Flt3 is higher in AML patients with Flt3-ITD than 

in patients with Flt3-wt.  Flt3-ITD affects an ubiquitin dependent endocytosis motif 

possibly resulting in enhanced receptor cycling. Down-regulation of Flt3-wt by FL, 

small interfering RNA or PKC412 resulted in elevated level of Hdm2. Similarly, 

Hdm2 attenuation resulted in increased Flt3 protein expression. Flt3-ITD responded 

less to Flt3 down-regulation, and was only weakly responding to Hdm2 modulation.  

Conclusion: We demonstrate that modulation of Flt3 or Hdm2 results in 

reciprocal regulation, and that Flt3 with internal tandem duplications may suspend its 

Hdm2 modulation. Together, Flt3-ITD results in dysregulated receptor turnover and 

an attenuated mechanism for Hdm2 down-regulation. Thus Hdm2 is interconnecting 

the two pathways of Flt3 and p53, both related to chemoresistance in AML. 
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Abstract. Hdm2 is up-regulated in several malignancies including sarcomas and acute 

myeloid leukemia, where it counteracts the anti-proliferative and pro-apoptotic effect of wild type 

p53. The anti-apoptotic protein Bcl-2 is often elevated in many tumors with wild type p53, and 

serves to block p53-induced apoptosis. We demonstrate that the protein level of Hdm2 protein 

positively correlates with the level of Bcl-2, following Bcl-2 levels in different cells and tracking 

Bcl-2 modulated by over-expression or shRNA knockdown. Consequently, treatment with the 

Bcl-2 small inhibitory molecule HA14-1 attenuated the level of Hdm2. The Bcl-2 level, but not 

the DNA damage induced Hdm2 degradation, was affected by the disrupted E3 ubiquitin ligase 

activity of Hdm2. DNA-damage induced Hdm2 down-regulation was blocked by disrupted E1 

activity, defect polyubiquitination and proteasome inhibitors. Finally, we show that Bcl-2 

protection from p53-induced cell death requires co-expression of Hdm2 in double null p53/mdm2 

mouse embryonic fibroblasts. Our results indicate that Bcl-2 regulates Hdm2 level, and that 

Hdm2 is a key mediator in Bcl-2 inhibition of p53-induced apoptosis. This is of particular 

therapeutic interest for cancers displaying elevated Hdm2 and Bcl-2. 
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