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SUMMARY 

 
Objective: The main objective of the study was to gain more knowledge about the 

exposure to benzene in the Norway’s offshore petroleum industry, its’ relation to 

effects on the hematological system and the risk of hematopoietic malignancies. More 

specifically we wanted to 1) characterize the benzene exposure in Norway’s offshore 

petroleum industry, 2) investigate the association between exposure to benzene and 

effects on the immune system, and 3) assess whether workers employed in Norway’s 

offshore petroleum industry have an increased risk of developing hematopoietic 

malignancies than the general working population in Norway, focusing on the 

differences in risk according to the subtypes of leukemia in particular. 

Methods: In paper I we assessed the workers exposure to benzene in the breathing 

zone (full work shift) on a crude oil production vessel, including the operation modes 

ordinary activity, a brief shut down and tank work. In paper II and III we estimated the 

associations between the benzene exposure and concentrations of benzene in blood 

and urine among process operators (n=12) and workers maintaining cargo tanks 

containing crude oil residues (n=13). Referents working in the catering section having 

the same shift schedule, matched on age and gender, were included. Benzene exposure 

was measured during three consecutive 12-hour work days. Blood and urine samples 

were collected prior to the first work shift (baseline), immediately after the third work 

shift, and prior to the following work shift. In paper IV we investigated the 

relationship between benzene exposure and alterations of proteins and cells of the 

immune system, measured by peripheral blood lymphocytes (total lymphocytes, 

lymphocytes in subpopulations CD3, CD4, CD8, CD19, CD56 and CD4/CD8 ratio), 

complement factors C3 and C4 and serum concentration of immunoglobulins (IgG, 

IgA, IgM and IgE).  

In paper V, we studied the risk of hematopoietic malignancies among offshore workers 

identified by the Norwegian Registry of Employers and Employees. All subjects 

registered with offshore-related industrial classification codes or with work location in 
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the North Sea from 1981 to 2003 were included. We drew up to six referents per 

petroleum worker from the general working population matched by gender, age and 

community of residence. The cohort comprised 27,919 offshore workers distributed on 

four job categories offshore and 366,114 referents and was linked to the Cancer 

Registry of Norway, the Norwegian Education Registry and the Norwegian Cause of 

Death Registry. 

Results: Full-shift benzene exposure levels measured in the workers breathing zone 

during ordinary activity were low for workers on the crude oil production vessel 

(geometric mean 0.004 ppm, range < 0.001 – 0.22 ppm) (paper I) and also for process 

operators at a fixed oil- and gas installation (geometric mean 0.005 ppm, range <0.001 

- 0.688 ppm ) (paper II). The exposure varied considerably, with some measurements 

being higher than the Norwegian occupational exposure limit of 0.6 ppm for a 12-hour 

shift. The process operators at the fixed oil- and gas installation and tank workers on 

the crude oil production vessel had a mean benzene concentration of benzene in blood 

post-shift of  1.5 nmol/l and 12.3 nmol/l, respectively (paper II and III). Although only 

the tank workers’ benzene concentration in blood differed significantly from referents, 

the biological uptake was significantly related to the exposure levels of benzene in air 

in both groups. 

In paper IV we found that the tank workers declined (versus referents) in IgM from 

baseline to post-shift (t-test, P=0.04), in IgA from baseline to pre–next shift (t-test, 

P=0.01) and in CD4 T cells from baseline to post-shift (t-test, P=0.04). The 

suppression correlated with benzene exposure, benzene concentrations in blood and 

urine and time spent in the tank. The groups did not differ significantly in the change 

in other immune parameters. 

In paper V we found that workers in the job category “upstream operator offshore”, 

who have the potentially highest exposure, had an excess risk of hematopoietic 

malignancies (rate ratio (RR) 1.90, 95% confidence interval (CI) 1.19–3.02). This was 

ascribed to increased risk of acute myelogenous leukemia (RR 2.89, 95% CI 1.25–

6.67) and multiple myeloma (RR 2.49, 95% CI 1.21–5.13). Rate ratios were highest 
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for the workers with their first registered engagement in the offshore petroleum 

industry before 1986. The other job categories had no increased risk, and overall 

cancer (all sites) did not differ. 

Conclusion: In spite of relatively high short term peak exposure to benzene during 

ordinary activity for several job categories on a crude oil production vessel and for 

process operators on a fixed oil- and gas installation, the full-shift mean exposure is 

low. Although both process operators on the fixed oil- and gas installation and tank 

workers on the crude oil production vessel had a low exposure to benzene, the 

biological uptake was significantly related to the benzene exposure. The internal 

concentration of benzene among tank workers was higher than expected at the 

measured exposure levels. This finding is probably due to an extended work schedule 

and high work load.  

The same tank workers showed acute alterations in the immune parameters IgM, IgA 

and CD4 T helper cells that correlated with levels of benzene. The clinical significance 

of the finding for the tank workers’ health is not known. Given the complexity of the 

tank atmosphere and in the work environment in general on oil- and gas installations 

offshore we cannot exclude a possible contribution of other types of specific or 

combined exposure, but occupational exposure to benzene is the most likely candidate 

for the reported decline in immune parameters among tank workers and the risk of 

acute myelogenous leukemia and multiple myeloma found among offshore workers.  
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1. INTRODUCTION 

1.1 Benzene 

1.1.1 Physical and chemical properties 

Benzene (C6H6, cas nr. 71-43-2) is the parent compound of aromatic hydrocarbons, 

and is a highly volatile, flammable, clear and colorless liquid. Benzene has a molecular 

weight of 78.12 g/mol, boiling temperature of 80.1 C° and a vapour density of 2.77.1 

1.1.2 Occurrence, use and occupational exposure  

Occurrence. Benzene is a natural component of crude oil and other petroleum 

products, might be in by-products of operations in coke oven industry and in tobacco 

smoke.2 Benzene was first isolated by Michael Faraday in 1825, and originally 

produced from coal tar in 1948.3 Today benzene is mainly produced by catalytic 

reforming of alkanes and cycloalkanes or by cracking certain gasoline fractions. 4 

Use. According to the Product Registry of Norway, The Authorities' Central Register 

of Chemical Products, total use of benzene in Norway in 2004 was 326,456 tonnes.5 

The number of products containing benzene was 47, used as raw materials for 

synthesis and intermediate products, motor fuels, solvents and paint and varnish. In the 

chemical industry, benzene is industrially the most important of the so-called BTX 

aromatics (benzene, toluene, xylene), and is used in the production of other chemicals, 

such as styrene, phenol, cyclohexane, ethylbenzene and cumene.  

Occupational exposure.  Workers employed in industries such as extraction of crude 

oil and natural gas, petroleum refineries, transport and distribution of petroleum 

products, gasoline stations, car repair shops, chemical industry, coke oven industry and 

shoe manufacturing using benzene-based glues are potentially exposed to benzene.6 
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1.1.3 Toksikokinetics  

1.1.3.1 Absorption and distribution  

During occupational exposure to benzene, inhalation is the most important route of 

absorption. Reports indicate that humans absorb 30–52% of the inhaled benzene, 

depending on the benzene concentration, length of exposure and pulmonary 

ventilation.7-9 

Benzene penetrates skin.10,11 However, benzene absorption is not extensive as it 

evaporates quickly due to a high vapour pressure. Hence, under normal working 

conditions dermal absorption of benzene by direct contact with crude oil residues or 

vapour are probably of minor importance. 12-14 Vermeulen and co-workers14 assessed 

the dermal exposure to benzene and toluene on multiple days in 70 subjects in a shoe 

factory. The mean air concentrations of benzene and toluene were 1.5 and 7.5 ppm, 

respectively. While a strong correlation between benzene in air and benzene in urine 

was reported, no relation was found between the measured dermal exposure and 

benzene in urine. 

Benzene is lipophilic and distributes mainly into tissues with high lipid content. A 

study on dogs reports that distribution of benzene throughout the body occurs rapidly, 

and that equilibrium values depend on the blood supply.15 In the same study, bone 

marrow, fat tissue and urine was shown to contain approximately 20-times higher 

concentration of benzene than blood, while the corresponding values for muscle tissue 

and other vital organs were about 1 to 4.7 times the level in blood.  

1.1.3.2 Metabolism and elimination 

Benzene itself is not regarded as a toxic substance. Several metabolites, as well as 

interactions between these metabolites, may be necessary to explain the toxic effects 

of benzene.16,17 
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Half-time of benzene in blood has been reported to be about 8 hours.8,18  Benzene 

elimination occurs rapidly at first, but slows down owing to the large amount of 

benzene stored in the fat.15  

1.1.3.3 Modifying factors on toxicokinetics of benzene 

The level of benzene and its’ metabolites in biological media after a given exposure, as 

well as the sensitivity to benzene’s toxic effects, differs between individuals and also 

in different situations for the same individual. The variability is caused by biologic 

factors such as genetic polymorphisms, amount of adipose tissue, gender and 

environmental influences such as routes of exposure, physical activity, competitive 

metabolic interaction, smoking, alcohol consumption and dietary habits.19 Some of 

these modifying factors are described below. 

Polymorphisms of enzymes involved in metabolism of benzene.  Individual 

differences in sensitivity to benzene’s toxic effects are explained partly by 

polymorphisms in enzymes involved in the metabolism of benzene.20  Genetic 

variations resulting in increased activity of the activation enzymes (phase I) 

cytochrome P450 2E1 (CYP2E1), microsomal epoxide hydrolase, myeloperoxidase in 

the bone marrow and/or decreased activity of detoxification enzymes (phase II) have 

all individually been associated with increased susceptibility to benzene’s toxic 

effects. 21-23 

Physical activity.  Physical strain increases the uptake of organic solvents in humans 

through all routes and modifies the distribution and biotransformation these.29,19,24  

Zimmer and co-workers25 reported that physical activity of 50 and 75 W lead to 

significant increases in blood concentrations for a range of hydrocarbon solvent 

mixtures by mean factors of 1.2 and 1.9, respectively. Nadeau and co-workers26 

reported that even light work load intensity might lead to a 2.5- to 4-fold higher 

absorbed dose of toluene.  

Competitive metabolic interaction.  The knowledge about possible interference of 

the metabolic disposition of benzene by concomitant exposure to other organic 



 20

solvents is rather limited, but some studies have reported that the uptake and 

metabolism of benzene is influenced by co-exposure to toluene.27,28 Further, 

elimination of both t,t-muconic acid and S-phenylmercapturic acid is influenced by co-

exposure to other aromatic hydrocarbons.29 Further, Kim and co-workers30 studied the 

dose-related patterns of benzene metabolism and reported that the production of the 

toxic metabolites hydroquinone and muconic acid were favoured at low benzene 

exposure.  

1.1.4 Toksikodynamics – with special emphasis on the hematological system 

Benzene toxicity is believed to involve biological interactions of multiple reactive 

benzene intermediates with multiple cellular targets within the bone marrow.31,32 In 

addition to hepatic metabolism, the secondary metabolism of benzene in the bone 

marrow plays an important role in benzene’s myelotoxicity.16,17 Especially 

hydroquinone, p-benzoquinone, catechol and muconaldehyde, alone or in combination, 

are reported to be the most potent metabolites in producing toxicity on the 

hematopoietic system.16 A description of benzene’s toxic effects on the hematological 

and hematopoietic system is given below. The review is limited to human data.  

1.1.4.1 Effects on the hematological system 

Hematotoxic effects. The hematopoietic system and the cells of the bone marrow are 

the most sensitive target organs for benzene exposure. Repeated occupational benzene 

exposure over long periods of time may affect several parameters related to the 

hematological system, including the immune system, causing bone marrow depression 

expressed as anemia, leucopenia and/or thrombocytopenia.33-37 Significantly lower 

white blood cell and platelet counts have been found for workers exposed to benzene 

in the work atmosphere even below the occupational exposure limit of 1 ppm.33 At 

present there is no clear evidence of a threshold level below which benzene does not 

cause hematotoxicity in humans.38 

Alterations in the immune system. The immune system, including both innate and 

adaptive components, is also affected by benzene. These effects include a decrease in 
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serum immunoglobulins,39,40 an anti-benzene antibody response,41 a decrease in 

complement levels42 and white blood cell levels,33,36,37,43 as well as alterations in 

subpopulations of lymphocytes. 33,43-45 

1.1.4.2 Hematopoietic malignancies related to benzene 

Leukemia. Epidemiological studies provide evidence for a causal association between 

exposure to benzene and leukemia46,47 – acute myelogenous leukemia in particular. 

Leukemias are monoclonal malignancies of the circulating blood cells, the majority of 

which originate from individual stem or progenitor cells in the bone marrow. Acute 

myelogenous leukemia is characterized by an increase in the number of myelogenous 

cells in the bone marrow and arrest in their maturation, frequently resulting in 

hematopoietic insufficiency (granulocytopenia, thrombocytopenia, or anemia), with or 

without leukocytosis. 48  

The association between benzene exposure and the development of specific subtypes 

of leukemia is still unclear. The most recent meta-analysis of benzene-exposure and 

leukemia subtypes includes nine cohorts and 13 case-control studies from several 

industries, and shows a high and significant risk of acute myelogenous leukemia with a 

positive dose response relationship across study designs. 47 The risk for developing 

chronic lymphocytic leukemia was increased in the case-control studies, but not in the 

cohort studies. The data for chronic myelogenous leukemia and acute lymphocytic 

leukemia were sparse and inconclusive.  

Multiple myeloma.  Multiple myeloma (myelomatosis) is a clonal B-cell neoplasm of 

plasma cells and is characterized by the presence of an elevated number of plasma 

cells in bone marrow synthesizing and releasing IgA, IgD, IgE, IgG or light chains.49-50 

Several biologically plausible risk factors for multiple myeloma have been proposed, 

such as exposure to benzene, ionizing radiation and diesel exhaust, smoking and 

alcohol.49-50 However, the etiology of multiple myeloma remains generally unclear in 

the published literature.  
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The association between exposure to benzene and multiple myeloma is a contentious 

issue.49-52 In a meta-analysis of 22 cohort mortality studies consisting of 250 000 

petroleum workers, mainly from the refinery and distribution segment, it was 

concluded that petroleum workers were not at any increased risk of developing 

multiple myeloma as a result of their exposure to benzene, benzene-containing liquids, 

or other petroleum products in their work environment.53 On the other hand, in a more 

recent meta-analysis including seven cohort studies focusing on benzene-exposed 

workers, including refinery workers, a significant excess in the relative risk (RR) of 

multiple myeloma was reported in relation to benzene exposure (RR 2.13, 95% CI = 

1.31-3.46).54 

1.1.5 Assessing workers benzene exposure by biological monitoring 

Biological monitoring can be defined as the assessment of chemicals or their 

metabolites in biological media (samples of breath, urine or blood) of exposed 

workers. Biological monitoring has a potential advantage compared to air sampling as 

it assesses exposure by all routes, and thereby considers the inter-individual variations 

in absorption as well as individual variation in metabolism, excretion and 

bioavailability of the chemical agents. 

1.1.5.1 Biomarkers of benzene exposure   

The most important biomarkers for benzene exposure are benzene in blood and urine, 

and the metabolites trans,trans-muconic acid and S-phenylmercapturic acid in urine. 

These parameters are sensitive and specific biomarkers of occupational and 

environmental benzene exposure at levels below 1 ppm.55,56 

Benzene in blood.  Benzene in blood is in equilibrium with exhaled air. Because of the 

short half-time of benzene in blood, the timing of sampling is crucial. The collection of 

blood samples must therefore be performed immediately after the work shift, 

preferably during the first half-hour after exposure.8 A potential confounding factor is 

the strong influence of smoking.8,18,57 Correlation coefficients between benzene 
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concentration in air and benzene in blood post-shift range between 0.12 to 0.64,58,59 

depending on the exposure level in air.  

Benzene in urine.  Traces of unmetabolized benzene, reported to be about 0.1% of 

totally absorbed benzene in humans, are eliminated unchanged in the urine.60 Benzene 

in urine is recommended as a biomarker of choice at air concentrations below 1 ppm 

benzene because it is non invasive.59,61 In addition the timing of sampling is not as 

crucial as for benzene in blood. Correlation coefficients between benzene 

concentration in air and benzene in urine post-shift have been reported to be 0.38–

0.98.57,62-65 

Smoking - a potential confounder. Cigarette smoke is a known source of benzene 

exposure,66 and is a potential confounder in biological monitoring of benzene. Pekari 

and co-workers8 reported that current smokers not exposed to benzene had a benzene 

concentration ranging from 12 to 15 nmol/l. The corresponding mean level of non 

smokers was 0.8 nmol/l. Similar benzene concentrations have been reported in other 

studies.18,57  

1.1.5.2 Standards for chemical exposure in the work environment  

Occupational exposure limit.  As the knowledge of benzene’s hematotoxic effects 

has increased over the years, the occupational exposure limit for benzene has been 

extensively revised and reduced, from 100 ppm in 1946 to values ranging from 0.1 to 

1 ppm in 2006.67 At present the recommended Norwegian occupational exposure limit 

for benzene is 1 ppm averaged over an 8-hour workday.68 However, in general 

Norwegian offshore workers have 12 hour shifts seven days a week for two weeks 

with 28 days of leave between the tours. In the guidelines to the Activities 

Regulations, the Norwegian Petroleum Directorate therefore recommends a safety 

factor of 0.6 to correct the standard for a 12-hour shift.69 Thus, the occupational 

exposure limit for benzene is 0.6 ppm over a 12-hour workday.  

Biological exposure limits. Several countries and organisations have established 

biological limit values for benzene (table 1).  
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Table 1 Biological limit values and its corresponding occupational exposure limit 

(OEL) for selected countries and organisations. 
Country or 

organisation 

OEL 

(ppm) 

 

Biomarker 
 

Biological limit value
 

Comment 
 

Reference 

Benzene 50 nmol/l Blood 

End of shift 

FinlandBAL  1.0 

t,t-muconic acid  14 µmol/l Urine 

End of shift 

 

70 

1.0 5.0 µg/l 

0.6 2.4 µg/l 

0.3 

Benzene 

0.9 µg/l  

Blood  

End of shift 

1.0 0.045 mg/g creatinine 

0.6 0.025 mg/g creatinine 

GermanyEKA   

0.3 

S-phenylmercapturic acid 

0.010 mg/g creatinine 

Urine 

End of shift 

 

 

 

71 

S-phenylmercapturic acid 25 µg/g creatinine Urine 

End of shift 

ACGIHBEI 0.5 

t,t-muconic acid 500 µg /g creatinin Urine 

End of shift 

 

72 

ACGIH = American Conference of Governmental Industrial Hygienists, BAL = biological action limits, EKA = 

exposure equivalents for carcinogenic substances, BEI = biological exposure indices, DFG = Deutsche 

Forschungsgemeinschaft  
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1.2 Norway’s petroleum industry 
The petroleum industry can be divided in upstream and downstream segments. The 

upstream segment refers to exploration, extraction and production of crude oil and 

natural gas. The downstream segment consists of refinery operations, distribution and 

retail of the petroleum fractions. In Norway the upstream petroleum industry is 

confined to the Norwegian continental shelf, and is henceforth denoted Norway’s 

offshore petroleum industry.  

Norway’s petroleum industry started in 1969 when the Ekofisk oil field was 

discovered, while the production from the field started in 1971. Today it is Norway’s 

largest industry, accounting for 21 percent of the value creation in 2005.73 The number 

of employees who works in the upstream petroleum segment differs between the 

official sources, ranging for 2003 from 14 720 to 28 500.74 According to Statistics 

Norway,75 a total of 29 000 people were employed offshore in the upstream petroleum 

industry in 2005, including 16 800 employees in the sector “Extraction of oil and 

natural gas” and 11 800 employees in the sector “Service activities incidental to oil 

and gas extraction”.  

1.2.1 Norway’s offshore petroleum industry 

Oil and gas installations used on the Norwegian continental shelf include fixed 

platforms, semi-submersible platforms, jack-up platforms and floating production 

systems. These offshore production installations generally consist of a drilling unit, a 

processing unit and living accommodation (crew area).  

Drilling unit. The drilling rig is used to drill and maintain wells, and consists of mud 

handling devices, derrick, rotary table, drillstring, power generators and auxillary 

equipment. Most drilling operations, including drilling of wells and installation, 

disassembling and maintenance of drilling towers, are now often performed by drilling 

contractors and not the company operating the oil field. The drilling crew typically 

consists of roustabouts, roughnecks, mud loggers- and engineers, shale shaker 

operators and well service crew, motormen, derrickmen, assistant drillers, and the 
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drillers. Drilling rigs operate around the clock. The drilling mud process has been 

described by Steinsvåg and co-workers.76 

Processing unit. After arriving the offshore production facility, the effluent (crude oil, 

natural gas and natural gas liquids) is piped through a closed system of separators and 

treaters where it is separated into gas, oil, water and solid waste (sand and sediment). 

The oil and gas are transported to the market (i.e. to an onshore terminal for refining, 

distribution segments or consumers) via either shuffle tankers or in pipelines. The 

water produced in the separation process is either reinjected into the well or purified 

and disposed overboard. The oil-contaminated produced water varies between the oil 

fields in amount and composition. It is generally a mixture of formation water from the 

reservoir, injected water used for secondary oil recovery and treatment chemicals 

added during production. Job categories in the processing area include process 

operators, mechanics, electricians, instrument technicians and maintenance personnel 

such as insulators, scaffold crew, industrial cleaners, surface treaters and welders.  

1.2.2 Offshore workers’ exposure to crude oil and benzene 

Benzene is a natural component of crude oil, natural gas, natural liquid gas and 

produced water. Hence, occupational exposure to benzene is a potential hazard in the 

offshore petroleum industry. During ordinary operation most of the processes are 

performed in a closed system, and the exposure is thought to be low. However, 

whenever the system is opened there is potential for exposure to the oil components. 

Information about past exposure of benzene in the upstream petroleum industry is 

scarce, and no good exposure estimates for the different job categories exist. However, 

due to regulations and other initiatives in the 90ies, it is assumed that there has been a 

general improvement of the work environment offshore, including reduced benzene 

exposure.  

1.2.2.1 Benzene content in petroleum streams offshore  

The composition of petroleum streams and the fraction of benzene differ between the 

oil- and gas fields depending on several factors such as geological conditions in the 
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reservoirs and production period of the oil field. Crude oil assays from different 

regions on the Norwegian continental shelf (n = 14) reported a mean and median value 

of 0.28% benzene by weight, within a range of <0.01–0.66 %.77  

1.2.2.2 Exposure measurements in the upstream petroleum industry  

Some authors have summarized common occupational exposure data from oil 

companies mainly performed to document compliance with the regulations under the 

Working Environment Act, and concluded that average exposure during a full shift is 

low for most job categories.78-83 An overview of the studies performed in the upstream 

petroleum industry is given in table 2. The wide ranges of reported exposure values 

indicate that some workers might experience relatively high benzene exposure over a 

12 hour shift. It is expected that specific tasks causing high short-term exposures, such 

as opening of blind flanges and valves, changing of filters, inspections and 

maintenance of processing units, pipeline clean-out (“pigging”), spill clean-up and 

sampling of crude oil and produced water, contribute significantly to the total benzene 

exposure.  

Steinsvåg and co-workers83 pooled full shift benzene measurements from processing- 

and drilling areas of 12 installations on the Norwegian continental shelf in the period 

1994-2003 (n=367). They reported arithmetic and geometric mean benzene exposure 

of 0.037 and 0.0067 ppm, ranging from below level of detection to 2.6 ppm. These 

measurements did not include cleaning or maintenance of processing equipment 

(vessels, separators or tanks), thought to give a potential for high exposure to aromatic 

hydrocarbons such as benzene, toluene and other hydrocarbons.78,84 
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Table 2 Studies on benzene exposure performed in the upstream petroleum industry. 

 

Industry 

 

Sector/group/task 

 

Sampling 
strategy 

 

Benzene 
(ppm) 

 

Range, ppm 
(min–max) 

 

Reference 

Deck (n = 29) AM=0.17 
GM = 0.0099 

< LOD – 2.6 

Process (n = 204) AM=0.036 
GM = 0.0084 

< LOD – 0.97 

Laboratory (n = 40) AM=0.012 
GM = 0.0056 

< LOD – 0.11 

Mechanics (n = 78) AM=0.0062 
GM = 0.0020 

< LOD – 0.08 

Electrician (n = 6) AM=0.015 
GM = 0.0058 

< LOD – 0.05 

Pooled data from 
Norway’s upstream 
petroleum industry 
(1994 – 2003) 

All (n = 367) 

Personal long 
term  
(full shift 
samples of 12 
hours) 

AM=0.037 
GM = 0.0067 

< LOD – 2.6 

 
 
 

83 

Personal long 
term (n=198) 

AM = 0.064 
GM=0.011 

<0.001 – 2.431 

Personal short-
term (n=21) 

AM = 0.399 
GM=0.114 

0.005 – 3.844 

Pooled data from 
Canada’s upstream 
petroleum industry 

Conventional oil and gas 
sector (1985-1996) 

Area long- term 
(n=23) 

AM = 0.207 
GM=0.007 

<0.001 – 2.431 

 
 

80 

Upstream operator 
offshore 

0.02  
⎯ 

Pooled data from 
Australia’s petroleum 
industry Cleaning of crude tanks 

(crude and slop storage) 

Estimated 
exposure 

2.01  

Crude (n = 13) 
and slops storage 
data (n = 46) 

⎯ 

 
 

81, 82 

 Cleaning of tanks, 
separators and vessels 
containing crude oil  

 < LOD – 5.8 ⎯  

84 

Pooled data from US 
petroleum industry 
(US) 

Storage tank gauging Personal short 
term 

N =124 

 < 0.01 – 50   

78 

 

 

1.2.3 Cancer risks among workers in the upstream petroleum industry 

Only one mortality study has been performed exclusively on workers from the 

upstream petroleum industry whose primary exposure was to crude oil.85,86 The 

original study comprised production and pipeline workers who worked in the 

petroleum industry within the years 1946 to 1980,85 while the update extended the 

follow up time to 1994.86 In the total cohort comprising 19,588 white men, increased 
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mortality rates were reported for prostate cancer (SMR 119; 95% CI 100-141) and 

acute myelogenous leukemia (SMR 192; 95% CI 110-313). When examining mortality 

rates for acute myelogenous leukemia by job group the SMRs were significantly 

increased for crude oil workers ever worked as roustabout (SMR 276; 95% CI 142-

482) or pumper (SMR 280; 95% CI 127-531). Importantly, mortality was not 

significantly increased for all causes combined nor for major mortality groups, such as 

all cancers, lung cancer, stroke, heart disease and respiratory disease. This is in line 

with other studies performed in the petroleum industry, mainly including refineries and 

distribution. These show that the overall mortality and overall cancer incidence among 

these workers are significantly lower than in the general population.87-96 Lewis and co-

workers91 found an increased SMR for aortic aneurysms among marketing and 

distribution workers (SMR 1.27 (1.04 – 1.53), but the risk disappeared when only 

subjects with relatively complete work histories were included.92 

Several other studies on workers in the petroleum industry, mainly comprising refinery 

workers and petroleum distribution workers, have reported an increased risk of 

leukemia88,93,95,97,98 and multiple myeloma.89 In some studies the increased risk of 

leukemia disappeared with extended follow up time.89,96 

The same studies as described above reported significantly increased risks of prostate 

cancer,95,96,99 kidney cancer,96 malignant melanoma,91,94-97,99 mesothelioma,91,96 

pleura,94 gall bladder,92,94 bladder cancer95 and bone cancer.88 



 30

1.3 Gaps in knowledge 

Although Norway has been a producer of oil and gas since 1971 and benzene’s 

leukemogenic effects has been known at least since 1974,100 benzene exposure in 

Norway’s upstream petroleum industry is poorly described. The lack of measured data 

also applies to the petroleum industry internationally. Hence, at present we do not have 

knowledge about the risk posed by benzene on workers in Norway’s offshore 

petroleum industry. 

A question of controversy is at which threshold benzene may cause an adverse effect 

on the hematopoietic system33,38,51. Further, the association between benzene exposure 

and multiple myeloma49,51,52 and leukemia subtypes other than acute myelogenous 

leukemia47 is a contentious issue.  
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2.  AIMS OF STUDY 

 

Our hypothesis was that employees in the Norway’s offshore petroleum industry have 

been and still are exposed to benzene to such a degree that there is an increased risk of 

hematotoxic effects and/or hematopoietic malignancies.  

 

The main objective of the study was to gain more knowledge of the exposure to 

benzene in the Norwegian offshore petroleum industry, its’ relation to effects on the 

hematological system and the risk of hematopoietic malignancies. More specifically 

we wanted to: 

 

1) characterize the benzene exposure in Norway’s offshore petroleum industry (paper 

I-III) 

2) investigate the association between exposure to benzene and effects on the immune 

system (paper IV).  

3) assess whether workers employed in Norway’s offshore petroleum industry have 

an increased risk of developing hematopoietic malignancies than the general 

working population in Norway. We particularly wanted to focus on the differences 

in risk according to the subtypes of leukemia (paper V). 
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3.  MATERIALS AND METHODS 

3.1 Benzene exposure and acute effects of the immune system 

(papers I-IV) 

3.1.1 Offshore installations 

Five of the largest oil companies operating on Norway’s continental shelf were invited 

to participate in the study of benzene exposure in the Norway’s offshore petroleum 

industry and possible effects on the hematological system (appendix 2). However, only 

one of the invited companies accepted the invitation, and the second company in the 

project was included based on their own initiative. Hence, the present study was 

restricted to workers employed at one crude oil production vessel and one fixed oil-

and gas platform.  

The crude oil production vessel included in our study (paper I, III, IV; picture 1 in 

appendix 1) started production in 1998 and is 214.7 m in length, 38.2 m wide, and 

contains nine cargo tanks with a storing capacity of 470,000 barrels of crude oil. The 

production vessel is tied to an unstaffed wellhead platform, which is a transfer point 

for crude oil from the oil wells on the seabed. From the wellhead the oil is transported 

to the production vessel through pipelines and risers. The production vessels are 

equipped with processing facilities. In contrast to fixed oil platforms, which often 

deliver the crude oil directly to onshore terminals by pipeline, the production vessels 

store the crude oil in cargo tanks before it is offloaded and transported onshore. While 

fixed platforms are designed for long term use, production vessels can eliminate the 

need for expensive long-distance pipelines from the oil well to an onshore terminal 

and can be used economically on smaller oil fields. Once the field is depleted, the 

production vessel can move to a new location. As several existing oil fields are in the 

tail-end production phase and the oil fields being discovered are getting smaller, the 

demand for crude oil production vessels is increasing.  

The fixed platform complex under study (paper II; picture 1 in appendix 1) started 

production in 1988, and includes three platforms connected to one another with 
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bridges. The first one is a concrete base platform with process equipment and living 

quarters, the second is placed on steel jacket and has drilling, production and injection 

equipment, while the third is a steel platform with gas processing and export 

equipment. In 2005 the platform complex had an average production of 90,900 barrels 

of oil and 7.8 million standard cubic meter of gas each day. 

3.1.2 Study population 

The activity on an offshore installation is normally divided into two main modes of 

operation; ordinary activity and partly or complete shut down when cleaning and 

maintaining the processing equipment are done. On crude oil production vessels the 

tank work is performed both during shutdowns and periodically after tanks are 

offloaded during ordinary activity, and in the present study tank work was considered 

as a third mode of operation. A flow diagram showing the included modes of 

operations and the corresponding papers is given in figure 1.  

 

                     
Figure 1 Flow diagram showing the included modes of operations and the corresponding papers. Tank 

work (bold) in paper I includes both cleaning of a cargo tank and a drain water seal tank and 

maintenance work in cargo tanks. Biological monitoring of tank workers in paper III and IV includes 

only tank workers maintaining cargo tanks. 
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3.1.2.1 Workers from the crude oil production vessel (paper I, III and IV) 

Measurements of benzene in air during ordinary activity, shut down and tank 

work. The individual exposure to benzene during ordinary activity, during a brief 

shutdown and cleaning of a drain water seal tank was assessed for workers from three 

of a total of six work shifts over a three week period in March 2004. The air 

measurements performed on 13 tank workers in July 2004 and April 2005 were also 

included in the analysis.  

The workers included in the study on the production vessel, were divided into four job 

categories. Process operators survey the production process via computers in a central 

control room, but also have practical tasks such as sampling and analysing oil and the 

water produced, fault-finding and repairing. The deck workers are in the marine 

department and are responsible for maintaining the vessel, such as the deck, tanks and 

hull. The mechanics repair, replace, adjust and align components of various types of 

machinery and equipment such as compressors, turbines and pumps. The contract 

workers are employed by contractors and perform jobs for a limited period of time, 

such as surface treatment, isolation and tank maintenance. Administrative personnel, 

catering personnel and workers from the department of electricity and instruments 

were not included in the study. For each sampling period for ordinary activity and 

during shut down, all eligible process operators (n = 8), deck workers (n = 12) and 

mechanics (n = 10) entering the processing area on the first day of sampling were 

invited to participate. All the workers agreed to participate. Contract workers (n = 4) 

were only included during the shutdown.  

Biological monitoring of workers maintaining cargo tanks. The study performed on 

tank maintenance personnel (paper III and IV) included 13 men performing 

maintenance work in cargo tanks containing residues of crude oil and nine referents 

(three women) with shift schedules matching those of the tank workers. Referents 

were recruited from the catering section on the same vessel. Maintenance work in the 

tanks (5000–7800 m3) included tank inspection, scaffold building and welding (picture 

2 and 3 in appendix 1). The workers used half-mask air-purifying respirators with a 



 35

combination filter containing both a particle and an organic gas filter. However, the 

use of the respirators varied between the workers and the workers replaced the filter 

with varying frequency.  

3.1.2.2 Workers from the fixed platform (paper II) 

Biological monitoring of process operators during ordinary activity. The study 

performed on the fixed platform included 12 process operators during ordinary activity 

(8 men and 4 women) and nine referents (6 men and 3 women) with shift schedules 

matching those of the process operators (figure 1). The referents were mainly recruited 

from the catering section on the same installation. Preliminary exposure assessment 

during normal operation had identified some work tasks for process operators that 

were expected to be associated with relatively high, short-term exposure to 

hydrocarbons. These were inspection and work in the flotation area, sampling and 

analysis of crude oil and produced water, and sending and receiving pipeline cleaning 

pigs. The workers used half-mask air-purifying respirators with a combination filter 

only during work in the flotation area. Typical tasks performed during ordinary 

activity is given in picture 4 in appendix 1. 

3.1.3 Individual exposure to airborne benzene (paper I-IV) 

3.1.3.1 Sampling strategy for air measurements 

In all studies (paper I-IV) the individual benzene exposure of the workers was 

monitored using organic vapour passive dosimetry badges (3M 3500®, St.Paul, MN, 

USA). The badges were worn in the breathing zone over a full work shift on three 

consecutive work days (paper II-IV). In paper I the selected workers carried the 

dosimeter badges on three consecutive days for ordinary activity and two consecutive 

days during a brief shutdown. The personal exposure to benzene was not measured for 

referents, as they were assumed not to be exposed to benzene above the background 

level in the indoor environment.  

The tasks performed during the sampling period were recorded using a personal log 

filled in daily by each worker (paper I and II). An example of the log is given in 
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appendix 4. For tank workers (paper III and IV) the time spent in tank was 

systematically logged and used as a surrogate measure of hydrocarbon exposure. 

3.1.3.2 Method of analysis 

After sampling, the badges were stored in a freezer (–20°C) until they were transported 

to X-lab in Bergen, Norway, for analysis. The benzene was desorbed in CS2 and 

analysed quantitatively and qualitatively by gas chromatography with mass 

spectrometry.101 In paper II the samples were also analyzed for toluene, ethylbenzene 

and xylene by the same method as for benzene. The level of detection was 0.001 ppm.  

3.1.4 Biological monitoring of benzene and its’ relation to effects on the immune 
system (paper II-IV) 

3.1.4.1 Sampling strategy  

The study period for all workers comprised three consecutive work shifts. The study 

protocol for both tank workers and process operators is given in figure 2. Each subject 

provided three samples of blood and urine. Blood and urine samples were obtained 

from the referents on the same days following the same time protocol.  
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Figure 2 Study protocol for the biological monitoring of process operators during ordinary activity on 

a fixed platform (A) and tank workers during maintenance work on a crude oil production vessel (B). 

The white and grey boxes indicate 12 hour intervals, where grey boxes indicate work shifts (12 hours) 

and white boxes indicate periods of rest (12 hour). The hatched boxes indicate monitoring of benzene 

in the workers breathing zone (full shift). The arrows indicate the time of collection of the blood and 

urine samples, where  is pre-shift sample,  is post-shift sample, and  is pre-next shift sample.   

 

For the process operators on the fixed platform (Figure 1 A) the first sample was 

collected in the morning at the heliport before departure to the oil production facility 

(pre-shift), and was considered baseline measurement. Due to extended work shifts 

(0700-1900 or 1900-0700) and work periods of 14 consecutive days, it has been 

speculated that the benzene might accumulate during the work period. We therefore 

collected the second sample immediately after the work shift on the 13th  work shift of 

the offshore work period (post-shift) and a third sample was collected prior to the 

following work shift (pre-next shift).  

The first sample for the tank workers (Figure 1 B) was collected in the morning before 

the workers entered the tank (pre-shift) and was considered a baseline measurement. 
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The second sample was collected at the end of the work shift on the third day of tank 

work (post-shift), and a third sample was collected in the morning on the following 

day (pre–next shift).   

Since benzene has a short half-life in blood, 8,18 the workers were asked to come 

directly to the hospital on the installation after changing from work overalls. Further, 

the workers were asked to refrain from smoking before the blood sample was 

collected.  

All participants completed a self-administered questionnaire including questions on 

age, sex and whether they were current smokers during the study period (Appendix 5). 

Smoking was prohibited on the production vessel, but the living quarters had a limited 

number of designated smoking rooms. Since alcohol consumption is completely 

banned on offshore oil and gas installations, no participant consumed alcohol during 

the study period. During the study period, all subjects lived on the installation and 

were exposed to the same environment in the living areas and had similar work 

schedules and diet. The referents spent the whole work period inside the living 

quarters. 

3.1.4.2 Biomarkers of benzene exposure (paper II-IV) 

Blood samples for determining unmetabolized benzene were collected by venipuncture 

into Venoject II® (Terumo, Leuven, Belgium) tubes (hard plastic) with heparin, and 

the urine samples for determination of unmetabolized benzene were collected in glass 

bottles (Pyrex®, Barloworld Scientific, Staffordshire, UK) with polypropylene 

stoppers. The samples were stored at 4°C until they were transported to the 

Biomonitoring Laboratory at the Finnish Institute of Occupational Health in Helsinki, 

Finland. Upon arrival to the laboratory within 4–7 days after sample collection, the 

samples were immediately put into vapour-tight vials and kept at 4°C until analysis. 
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3.1.4.3 Biomonitoring of effects on immune parameters (paper IV) 

Blood samples for determining peripheral blood lymphocytes (total lymphocytes, 

lymphocytes in subpopulations CD3, CD4, CD8, CD19, CD56 and CD4/CD8 ratio) 

were collected by venipuncture into Vacutainers containing EDTA. The blood samples 

for determining the serum concentration of immunoglobulins (IgG, IgA, IgM and IgE) 

and complement factors C3 and C4 were collected into Vacutainer serum separation 

tubes. The samples were kept at room temperature and transported to Haukeland 

University Hospital in Bergen, Norway, for analysis within three days after sampling.  

3.1.4.4 Method of analysis 

Benzene in blood (paper II-IV). The concentration of benzene in blood was analysed 

by a head-space sampler (Perkin Elmer Headspace sampler HS40, Weellesley, MA, 

USA) and a gas chromatograph (Perkin Elmer Autosystem Gas Chromatograph) using 

photoionization detection according to the method described by Pekari and co-

workers.8,102 The samples with benzene levels at or above 5 nmol/l were analysed by 

multi-head space extraction as described by Ettre and Jones.103 The quantifications 

were based on an external standard method. The level of quantification was 1 nmol/l. 

Benzene in urine (paper II-IV). The urinary level of benzene was analysed using a 

solid phase micro-extraction–gas chromatograph–iontrap method (SPME-GC-Iontrap-

method). The urine sample (500 µl) was transferred to a vial of 2.0 ml containing 100 

µl of internal standard chlorobenzene. The sample was injected by a solid-phase 

microextraction fibre (polydimethylsiloxane, 100 µm) in an autosampler (Varian 8200 

CX autosampler, Palo Alto, CA, USA), separated and analysed using a gas 

chromatograph (Varian Saturn 3400 CX) and a mass spectrometer (Varian Saturn 

2000). In SPME mode the absorption time was 20 minutes and desorption time 1 min.  

The GC conditions used were as follows: HP-5MS-column (30 m x 0.25 mm, 0.25 µm 

film thickness, Agilent Technologies, Palo Alto, CA, USA); helium carrier gas at a 

flow rate of 5 ml/min. A Varian injector liner (0.8 mm i.d.) was used with the injector 

temperature of 250 °C and splitless injection mode. The MS transferline and source 

temperatures were 180 °C and 140 °C, respectively. GC oven temperature was 
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programmed from 40 °C (3 min initial hold) to 100 °C at 10 °C/min, and then to 200 

°C at 30 °C/min (final temperature, 1 min hold). Ions 50+, 77+ and 78+ were selected 

for quantifying benzene. The quantifications were based on an internal standard 

method. The level of quantification was 1 nmol/l. 

Immune parameters (paper IV). Serum concentrations of the immunoglobulins IgM, 

IgA and IgG and the complement factors were quantified in a Behring nephelometer 

using monospecific antisera (Behringwerke AG, Germany) using specific antibodies. 

Serum IgE was determined with Pharmacia UniCAP 1000 System (Pharmacia 

Diagnostics AB, Uppsala, Sweden). 

Total lymphocyte count was performed using the ADVIA® 120 Hematology System 

(Bayer AG, Bayer Healthcare, Tarrytown, NY, USA). For assessing the 

subpopulations of lymphocytes, blood was processed for flow-cytometric 

immunophenotyping, erythrocytes were lysed by hypotonic treatment before 

leukocytes were immunostained with either fluorescein isothiocyanate–conjugated or 

phycoerythrin-conjugated mouse monoclonal antibodies against defined CD antigens. 

Antibodies were obtained from Becton Dickinson (Palo Alto, CA, USA). Cell analysis 

was performed on a Coulter Epics XL flow cytometer (Coulter Electronics Ltd, Luton, 

UK). 

3.1.5 Statistical analysis 

The estimates of individual exposure levels to benzene (paper I-IV), toluene, 

ethylbenzene and xylene (paper II) and concentration of benzene in blood and urin 

were given both as arithmetic mean, geometric mean and range (minimum and 

maximum). The distribution of all these variables was tested for normality using the 

Shapiro-Wilk test. All variables had a skewed distribution and were therefore log-

transformed (ln) before comparing subgroups (t-test and ANOVA). Concentrations of 

individual measuments of benzene below the level of detection were replaced with 

values equal to the level of detection divided by 2 (paper I and II). Blood and urinary 

benzene concentrations below the level of quantification and individual benzene 
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exposure for referents were replaced by values equal to the level of quantification 

divided by 2 (papers II-IV).104 

The associations between benzene exposure in the work environment and benzene 

concentration in biological media were estimated using Pearson’s correlation 

coefficient. The associations between change in benzene exposure in the work 

environment and change in benzene concentration in biological media were also 

adjusted for the corresponding baseline concentrations by including the baseline 

concentration as a covariate in regression analyses. Further, these associations were 

also adjusted for gender, age and smoking by including each of these in separate 

multiple regression analyses. 

Pearson’s correlation coefficient was also used for estimating the association between 

the change in immune parameters for the various time points and the exposure 

measurements. A few of the immune parameters deviated significantly from normality, 

and Spearman’s rank correlation coefficient was used for these. We also performed 

multiple regression analysis including the baseline value of the variable in question as 

a covariate. The associations between the exposure measurements and the various 

immune parameters were adjusted for sex, age and current smoking by including these 

in separate multiple regression analyses.  

Tests were considered significant at the level of 0.05. We performed all analysis using 

SPSS 14.0.1 (SPSS Inc., Chicago, IL, USA). 

3.2 Risk of hematopoietic malignancies in a historical cohort of 

offshore workers 

3.2.1 Study population and study design 

A historical cohort study of the cancer incidence in Norway’s offshore petroleum 

industry was performed. Statistics Norway established the cohort using the 

information from the Norwegian Registry of Employers and Employees, which is 

owned by the Norwegian Labour and Welfare Organisation. All employers in Norway 
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are required to register their employees with a personal identification number, 

industrial classification codes International Standard Industrial Classification (ISIC) or 

Classification of Economic Activities in the European Union (NACE), county of work 

and the first and last date of all their engagements. The Registry requires that all 

engagements with mean of four hours of work per week, provided that the engagement 

lasts for at least six weeks, must be registered. By July 31, 2004, the Registry included 

a total of 1,961,711 workers contributing with 2,126,699 work engagements.74 

The Norwegian Registry of Employers and Employees was established in 1978, 

became operational in 1983 and contains employment from 1981 and onwards. Since 

the Cancer registry included, at time of study, only cases until 2003, we used the 

employments from 1981 until 2003. Norway’s petroleum industry has been operating 

offshore since the early 1970s and therefore the cohort does not include all workers 

who were engaged during the period 1970-1980. Still, many of these workers might be 

included in the cohort with possible new engangements registered after 1981. This 

means that some of these early subjects might have had a longer engagement offshore 

than registered in our cohort.  

The criteria we used for the cohort of petroleum workers were workers registered with 

one of the following offshore-related industrial classification codes: ISIC 22 

(extraction of crude oil and natural gas), ISIC 5032 (oil drilling), NACE 11100 

(extraction of crude oil and natural gas) and NACE 11200 (service activities incidental 

to oil and gas extraction excluding surveying), or having Norway’s continental shelf 

(North Sea) as the work location. 

Based on the workers’ location of work (onshore or offshore) and the industrial 

classification codes for their first registered engagement in the offshore-related 

petroleum industry, we categorized the petroleum workers into the five job categories 

1) upstream operator offshore, 2) drilling and well maintenance offshore, 3) catering 

offshore, 4) others offshore and 5) petroleum workers onshore.  

The category “upstream operator offshore” contained workers registered with the 

NACE and ISIC code “extraction of crude oil and natural gas”. These workers mainly 
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work in the production and processing unit. This includes job categories such as 

process technicians, laboratory engineers, control operators and other job groups 

involved in the production process including stabilization, separation and fractionation 

of the crude oil, natural gas and natural gas liquids. The category “drilling and well 

maintenance offshore” includes the ISIC code 50230 (oil drilling) and NACE code 

11200 (service activities incidental to oil and gas extraction excluding surveying). 

NACE code 11200 comprises activities such as drilling of wells and installation, 

disassembling and maintenance of drilling towers at site on contract and includes job 

groups such as drill floor crew, derrick employees, mud loggers and engineers, shale 

shaker operators and well service crew. The category “catering offshore” includes job 

groups such as catering crew, chefs and housekeeping personnel. The category “others 

offshore” includes miscellaneous industrial codes and comprises activities contracted 

out to oil field service companies, such as construction and maintenance personnel and 

logistics. Finally, “petroleum workers onshore” contains workers registered with an 

offshore-related engagement without being registered with the North Sea as the 

location of work. This job category contains workers involved in administering, 

planning and coordinating the activities offshore. 

We drew up to six referents per petroleum worker at random from the general working 

population, using the same Norwegian Registry of Employers and Employees and the 

same year of the first engagement of the corresponding petroleum worker. We 

matched the referents to the petroleum worker by gender, age and community of 

residence. The crude historical cohort included 71,018 workers from the petroleum 

industry (“at risk”) and 424,584 referents. We excluded subjects from the cohort if 

they had had a cancer diagnosis before entering into the cohort (n = 3784) and 

referents if they had had an earlier engagement in the petroleum industry before they 

were drawn as referents (n = 29,004).  We allowed subjects to serve as referents for 

more than one “subject at risk”. The final cohort included 27,919 offshore workers 

(89% men) distributed on the four offshore job categories comprising 332,063 person-

years.  
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Statistics Norway established and linked the cohort to the Cancer Registry of Norway 

in April 2006, including all cases of cancer reported up to December 31, 2003 with 

information on the date of diagnosis and the diagnosis (location, morphology and 

histology). The cancer cases were coded according to a modified version of the 

International Classification of Diseases (ICD-7, three-digit codes). The Cancer 

Registry of Norway is a population-based registry that has systematically collected 

notifications on cancer since 1952. The registry is for practical purposes complete 

from 1953. The Cancer Registry of Norway is based on reporting from multiple 

sources, such as physicians, pathology laboratories and death certificates from 

Statistics Norway mentioning cancer or cancer-related illnesses, ensuring a high 

degree of accuracy and completeness. A description of the data sources in respect to 

completeness, data quality and stability, is given in the report Cancer in Norway 

2004.105 Statistics Norway also linked the cohort to the Norwegian Cause of Death 

Registry and the Norwegian Education Registry, including the variable highest 

completed education, ranging from 1 (elementary school) to 6 (PhD degree).  

3.2.2 Statistical analysis 

We estimated the rate ratios comparing the various working categories with the 

general working population using the Cox proportional hazard regression model. The 

subjects were censored at the end of follow-up (December 31, 2003), the date of death 

or date of diagnosis of another type of cancer than the one being studied, whichever 

occurred first. We checked the proportional hazards assumption for overall cancer and 

all hematopoietic malignancies by comparing the estimated –ln-ln survivor curves for 

the different groups being investigated. There was no marked deviation from the 

proportional hazards assumption. We performed multivariate analysis including the 

independent covariates age, gender, year of first engagement and educational level. 

We also performed subanalysis including the engagements during the first 5 years only 

(1981–1985) and including the remaining 18 years (1986–2003). 

We performed all analysis using SPSS 14.0.1 (SPSS Inc., Chicago, IL, USA). 
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3.3 Ethical considerations 

We conducted the study with the approval of the Western Norway Regional 

Committee for Medical Research Ethics, the Norwegian Data Inspectorate/the 

Norwegian Social Science Data Services and the Directorate for Health and Social 

Affairs. The Ministry of Health and Care Services gave permission to establish a 

biobank and to transfer the biological material abroad for analysis.  

Informed written consent was obtained from all participants included in the study 

“Biological monitoring of benzene exposure and effects on the immune system” 

(appendix 3). All subjects were informed about their own results, both in personal 

letters, in written reports and/or in oral presentations at their work site.  

In the historical cohort study, Rikstrygdeverket (now merged into the Norwegian 

Labour and Welfare Organisation) gave us permission to use the Norwegian Registry 

of Employers and Employees, the Cancer Registry of Norway provided data, and 

Statistics Norway (Ministry of Finance) approved the use of information from the 

Norwegian Cause of Death Registry and the Norwegian Education Registry. 
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4. SUMMARY OF RESULTS 

4.1 Benzene exposure on a crude oil production vessel (paper I)  

The personal exposure to benzene was assessed for 42 workers on a production vessel 

in the Norwegian sector of the North Sea. The arithmetic and geometric mean of 

benzene exposure for all measurements (n=139) was 0.427 ppm and 0.018 ppm, 

respectively. Twenty-five measurements (18%) were below the limit of detection 

(0.001 ppm), while 10 samples (7.2%) exceeded the occupational exposure limit of 0.6 

ppm. The geometric mean exposure was 0.004 ppm (95% CI 0.003–0.006) during 

ordinary operation, 0.010 ppm (95% CI 0.005–0.020) during shutdown and 0.282 ppm 

(95% CI 0.163–0.488) during tank work. Workers performing annual cleaning and 

maintenance of tanks containing crude oil or residues of crude oil had higher levels of 

exposure than workers performing other tasks, including work near open hydrocarbon-

transport systems (all P < 0.001). The job categories explained only 5.3% of the 

variance in exposure, whereas grouping by mode of operation explained 53.8% of the 

variance and grouping by task 68.0%.  

4.2 Biological monitoring of benzene exposure for process 

operators during ordinary activity in the upstream petroleum 

industry (paper II) 

The exposure to benzene and related aromatics and the uptake of benzene were 

assessed among 12 crude oil process operators during ordinary activity and among 9 

referents. Process operators’ arithmetic mean exposure over the three-day study period 

was 0.042 ppm (range <0.001-0.688 ppm ) for benzene, 0.05 ppm toluene, 0.02 ppm 

for ethylbenzene and 0.03 ppm for xylene. Full-shift personal exposure was 

significantly higher when flotation work was done during the shift compared to when 

other tasks were carried out. Work in the flotation area was associated with a short-

term (6-15 min) arithmetic mean exposure to benzene of 1.056 ppm (range 0.092-

2.326 ppm). The concentrations of benzene in blood and urine were not different 

between operators and referents at any of the time points. However, when adjusting for 
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being a current smoker in regression analyses there were significant associations 

between benzene exposure and post-shift concentration of benzene in blood (P=0.01) 

and urine (P=0.03), respectively. 

4.3 Biological monitoring of benzene exposure during 

maintenance work in crude oil cargo tanks (paper III) 

The association between the individual concentration of benzene in the breathing zone 

and the concentration of benzene in blood and urine was analysed among 13 workers 

maintaining crude oil cargo tanks and nine referents. The individual geometric mean 

benzene exposure in the breathing zone of the ten workers performing tank work over 

three consecutive days was 0.15 ppm (range 0.01–0.62 ppm). The tank workers’ post-

shift geometric mean benzene concentrations were 12.3 nmol/l in blood and 27.0 

nmol/l in urine versus 0.7 nmol/l benzene in both blood and urine among the referents. 

Benzene in the work atmosphere was highly correlated with the internal concentration 

of benzene both in post-shift blood (r = 0.87, P < 0.001) and post-shift urine (r = 0.90, 

P < 0.001), indicating that the varying use of respirators observed did not explain 

much of the variability in absorbed benzene. 

4.4 Acute suppression of serum IgM and IgA in tank workers 

exposed to benzene (paper IV) 

The associations between benzene exposure and alterations of proteins and cells of the 

immune system was investigated among 13 tank workers maintaining cargo tanks 

containing crude oil residues and nine unexposed referents (catering section). The 

geometric mean benzene concentration in blood post-shift was 12.3 nmol/l among tank 

workers versus 0.7 nmol/l among the referents. The tank workers declined (versus 

referents) in IgM from baseline to post-shift (t-test, P=0.04) and in IgA from baseline 

to pre–next shift (t-test, P=0.01). The tank workers also declined in CD4 T cells from 

baseline to post-shift (t-test, P=0.04). The benzene concentration in blood post-shift 

correlated markedly with the variation in the pre-next shift suppression of IgM  
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(r=–0.52, P=0.040) and IgA (r=–0.54, P=0.031). The groups did not differ 

significantly in change in IgG, IgE or lymphocytes in the subpopulations of CD3, 

CD4, CD8, CD19, CD56 and CD4/CD8 ratio or in the complement factors C3 and C4.  

4.5 Increased risk of hematopoietic malignancies in Norwegian 

offshore workers (paper V) 

The Norwegian Registry for employers and employees was used to establish a cohort 

of 27,919 offshore workers in four job categories and 366,114 referents matched on 

age, gender and community. After linking to the Cancer Registry of Norway we found 

that workers in the job category “upstream operator offshore”, who potentially have 

the highest exposure to crude oil and other products containing benzene among the 

four groups, had an excess risk of hematopoietic malignancies (RR 1.90, 95% CI  

1.19-3.02). The risk was also significantly increased for the subgroups of acute 

myelogenous leukemia (RR 2.89, 95% CI 1.25-6.67) and multiple myeloma (RR 2.49, 

95% CI 1.21-5.13). The risk ratios were highest for the workers with their first 

registered engagement in the offshore petroleum industry before 1986. No increased 

risk was found for the other job categories, and no differences were found for overall 

cancer (all sites). Further, no increased risk was found for lung cancer or upper 

respiratory organs among the “upstream operator offshore” workers, arguing against 

smoking being the cause of the increased risk of hematopoietic malignancies. 

Although we can not exclude a possible contribution of other specific or combined 

exposures, occupational exposure to benzene is still the most likely causative agent for 

this increased risk. 
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5.  DISCUSSION 

5.1 Main findings 

5.1.1 Air measurements of benzene 

5.1.1.1 Ordinary activity (paper I and II)  

During ordinary activity full-shift benzene exposure levels measured in the workers 

breathing zone were low for workers on the crude oil production vessel (paper I) and 

for process operators at the fixed oil- and gas installation (paper II). The exposure 

varied considerably, with some measurements being higher than the Norwegian 

occupational exposure limit of 0.6 ppm for a 12-hour shift. 

The low mean exposure to benzene measured during ordinary activity is in accordance 

with previous studies in the offshore petroleum industry.80,81,83 Steinsvåg and co-

workers83 pooled full shift measurements (12 hours) of benzene exposure sampled in 

processing- and drilling area of 12 installations on the Norwegian continental shelf in 

the period 1994-2003 (n=367). They reported arithmetic and geometric mean exposure 

of 0.037 and 0.0067 ppm benzene, ranging from below level of detection to 2.6 ppm. 

A retrospective exposure assessment of benzene in the Australian petroleum industry 

suggested a mean exposure of 0.02 ppm for the job group “upstream operators 

offshore”.81 In the conventional oil and gas sector of the upstream petroleum industry 

in Canada, 198 personal long-term samples from the years 1985 to 1996 were within 

the range of <0.001–2.431 ppm, with an arithmetic mean of 0.064 ppm and a 

geometric mean of 0.011 ppm.80 The present study confirms that although relatively 

high short-term exposure to benzene occurs, the fullshift benzene exposure levels 

during ordinary activity are low.  

5.1.1.2 Short shut down (paper I) 

In contrast to ordinary activity, when the processes take place in closed systems which 

are opened only for shorter periods, it is expected that the benzene exposure is higher 

during shutdowns where the processing equipment is opened for cleaning and 
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maintenance. In the present study the exposure differed by a factor of 2.5 between the 

two modes of operation. The maintenance work during the short shutdown in the 

present study included opening of hydrocarbon-transport system for visual inspection, 

but did not include entering separators, tanks or vessels containing crude oil residues, 

which is done during ordinary shutdowns. The exposure level might therefore be fairly 

representative for high activity rather than for a real shutdown, which probably would 

have shown even higher levels of exposure. 

5.1.1.3 Tank work (paper I) 

Cleaning of tank was associated with markedly higher benzene exposure than both 

ordinary activity and shut down, with a geometric mean of 4.42 ppm (range 1.14 to 

16.75 ppm). Exposure was highest while cleaning the drain water seal tank, implying 

vacuum pumping of a mixture of water, crude oil and other mixtures of hydrocarbons 

from the deck. Because of the mandatory use of half-mask respirators during cleaning, 

the actual personal exposure was probably lower, although little is known about the 

effectiveness of such protective equipment during tank work. Further, we also know 

little about the actual use of this protective equipment. In another study benzene 

exposure during cleaning of crude oil vessels was comparatively high, ranging from 

non detectable to 5.8 ppm when averaged over the duration of the whole task.84 In a 

retrospective exposure assessment for benzene in the petroleum industry in Australia, 

Glass and co-workers81 estimated an exposure level of 2.01 ppm benzene during 

cleaning of crude tanks. Finally, Runion78 have summarized common operational 

exposure data from the petroleum industry in the United States (n = 124) and reported 

that personal short-term benzene exposure levels during gauging of crude storage 

tanks ranged from <0.032 to 160 mg/m3 (<0.01 - 50 ppm benzene). The present study 

confirms that the benzene exposure during cleaning of tanks containing residues of 

crude oil is markedly above the Norwegian occupational exposure limit of benzene. 

The use of proper respiratory protection is imperative for this type of work.  
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5.1.1.3 Determinants of exposure on the production vessel (paper I) 

To identify which of the determinants job categories, operation modes and tasks that 

contributed most to the exposure to benzene, the benzene exposure was assessed by 

grouping the measurements according to these determinants.  

The task performed was a major determinant of exposure; grouping the measurements 

according to the task performed explained 68% of the variation. Cleaning of tanks 

containing residues of crude oil showed the highest level, with a geometric mean of 

4.42 ppm, more than seven times the Norwegian occupational exposure limit offshore 

of 0.6 ppm. The measurements taken during maintenance work in cleaned tanks had a 

geometric mean of 0.15 ppm, about 13 times higher than the exposure during work 

near open hydrocarbon-transport systems and 74 times higher than the exposure 

measured during other tasks.  

The mode of operation, which partly overlaps with the categories of the task 

performed, explained 54% of the variation in exposure. The explained variation was 

mainly caused by the high exposure found among tank workers compared to the other 

operation modes. 

The job categories explained only 5% of the variance in the exposure level on the 

crude oil production vessel. This indicates that job category is a poor determinant of 

exposure, probably due to the fact that workers from the different departments often 

work in teams on a range of activities that are associated with large variation in the 

day-to-day exposure to benzene.  

5.1.2 Biological monitoring of benzene exposure 

5.1.2.1 Ordinary activity on a fixed oil- and gas installation (paper II)  

With respect to ordinary activity, the concentration of benzene in blood or urine was 

not significantly different between the process operators and referents at any of the 

time points. Further, no association between benzene in the breathing zone and 

concentration of benzene in blood and urine immediately after work hours (post-shift) 
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or prior to the following work shift (pre–next shift) was found. However, when 

adjusting for being a current smoker in a multiple linear regression there were 

significant associations between benzene exposure on the third day of sampling and 

post-shift concentration of benzene in blood and urine. Benzene exposure and being a 

current smoker explained 87.1% and 79.1% of the variances in benzene concentration 

in blood and urine, respectively. Hence, although there was no difference in internal 

concentration of benzene between process operators and referents, there was an 

indication of benzene uptake within the range of exposures representative for ordinary 

activity on the installation.  

5.1.2.2 Maintenance work in crude oil cargo tanks (paper III) 

Despite a relatively low mean benzene exposure in the work environment of 0.23 ppm 

(38% of the Norwegian occupational exposure limit for a 12-hour shift) averaged over 

the three-day study period and use of respirators to a varying degree, the tank workers 

maintaining crude oil cargo tanks had a significantly higher benzene concentration in 

both blood and urine than the referents at all time points. Both the benzene exposure in 

the workers breathing zone and time spent in the cargo tank were highly correlated 

with the internal concentration of benzene in blood and urine.  

The internal concentration of benzene was higher than expected at the measured 

exposure levels. German Research Foundation71 has investigated the relationship 

between the concentration of benzene in the workplace air and in blood when not 

using personal protective equipment. These relationships, called exposure equivalents 

for carcinogenic substances (EKA values), allow the determination of the body burden 

resulting from uptake of the substance exclusively by inhalation. According to these 

EKA values, exposure to 0.3 ppm benzene in the breathing zone corresponds to a 

benzene concentration post-shift of 0.9 µg per liter of blood, which is about 11.5 nmol 

benzene per litre of blood. The group of tank workers in the present study absorbed a 

similar amount of benzene after being exposed to only 50% of the corresponding 

exposure level – that is, a geometric mean exposure of 0.15 ppm caused a geometric 

mean benzene concentration in blood of 12.3 nmol/l. The corresponding arithmetic 
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value for the mean exposure of 0.23 ppm was a benzene concentration in blood of 17.3 

nmol/l. Thus, despite using respiratory protective equipment, the tank workers 

absorbed more benzene than expected. Several factors might explain the increased 

absorption of benzene:   

i) Extended work hours 

Most standards for chemical exposure in the work environment, including 

occupational exposure limits and biological action limits, apply to workers with a 

conventional schedule of eight hours per day five days per week rather than 12 hour 

work days. Although the mean time period the tank workers spent in the tank on the 

third day of study corresponded only to 44% of the total work shift of 12 hours, the 

extended work schedule may have contributed to the increased absorption.  

ii) Physical strain  

Physical strain, as experienced by the tank workers, increases uptake of organic 

solvents mainly due to increased pulmonary ventilation and blood flow.9,19,25,26  Hence, 

uptake of benzene might be severely underestimated when based exclusively on time-

weighted average values of benzene exposure.  

iii) Smoking 

Finally, although smoking was prohibited in the oil and gas production areas, the 

living quarters had a limited number of designated smoking rooms. The increased 

level in tank workers might have been caused by more smokers in the exposed group 

(three current smokers) as compared to referents (one current smoker). Nevertheless, 

adjusting for current smoking and the baseline level of benzene did not materially 

change the reported correlations between the exposure measures for benzene. It should 

be noted, however, that the number of subjects in this study was not sufficient for 

evaluating differences in benzene exposure among current smokers and referents. 

The most likely explanation of the increased uptake is probably the extended work 

hours and physical strain. 
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5.1.3 Acute alterations of immunesystem among tank workers (IV) 

The tank workers’ relatively low benzene exposure (paper III) correlated significantly 

with suppression of serum IgM, IgA and CD4 T cell concentrations. Tank workers had 

a significantly lower IgM at baseline than referents, and the tank workers’ IgM further 

declined to post-shift compared to referents. Whereas the referents’ IgA increased non-

significantly and was restored in the pre–next shift sample, the tank workers’ IgA 

declined from baseline to pre–next shift. Also the tank workers` total CD4 T cells 

declined from baseline to post-shift. The suppression of all these immune parameters 

was highly correlated with benzene exposure in the working environment, benzene in 

blood and urine and/or time spent in the tank. The groups did not differ significantly in 

IgG and IgE, complement factors 3 and 4, other subgroups of lymphocytes or 

CD4/CD8 ratio. 

The published literature provides no major support for a toxic effect of benzene on 

immunoglobulin production. Suppression of IgA and IgG, accompanied by an 

increased level of IgM, has been reported in painters occupationally exposed to 

benzene, toluene and xylene,39 whereas another cohort of painters exposed to organic 

solvents, including benzene, had significantly lower IgM than referents.40 Further, 

Bogadi-Sare and co-workers44 found no differences in IgA, IgM or IgG between 

benzene-exposed shoe workers and controls, but reported a significant association 

between IgG and benzene exposure in the working environment.  

In the present study, changes in concentrations of IgM and IgA took place during a 

shorter time interval than the half-lives of the immunoglobulins, which are reported to 

be approximately 5 and 6 days for IgM and IgA, respectively.106 One explanation for 

the changes might therefore be enhanced extravasation, maybe owing to receptor-

mediated transport, as concentrations of IgG were unchanged. Another explanation 

might be that benzene impairs or inhibits B-cells from being activated, causing an 

immediate lowering of the immunoglobuline production.  

The reduction in CD4 T cells we reported is even more difficult to interpret. 

Subpopulations of lymphocytes are suggested to be the most sensitive target cell for 
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the immunotoxic effect of benzene in human studies.33,44,45 In the present study the 

change in total CD4 T cells was significantly correlated with the exposure to benzene. 

However, although the tank workers total circulating CD4 T cells declined 

significantly from baseline to post-shift as compared to referents, the mean CD4 T 

cells did not significantly differ between the two groups at any of the measured time 

points. Our results are inconclusive regarding whether benzene exposure or 

maintenance work in crude oil tanks have an immunosuppressive effect on CD4 T 

cells.  

In addition to being a known source of benzene exposure,66 smoking has been reported 

to influence lymphocyte subpopulations.107,108 A synergistic effect of smoking on 

solvents’ immunosuppressive effect has been suggested.39,43 Biro and co-workers45 

reported a significant correlation between smoking and the level of several lymphocyte 

subsets. However, adjusting for current smoking did not materially change any of the 

reported associations that we found. 

The exposure surrogate “time spent in the tank” correlated slightly higher with the 

change in both IgM and IgA than did the various direct measures of benzene exposure. 

The time spent in the tank explained 20% and 43%, respectively, of the variation in the 

suppression of the immune parameters. Given the complexity of the tank atmosphere, 

we cannot exclude that combined exposure or specific exposure to other compounds in 

the tank atmosphere might have caused the reported alterations of the immune system, 

such as polycyclic aromatic hydrocarbons109,110 and ionizing radiation.111 Further, the 

high work load might have influenced the concentrations of the immunoglobulins in 

tank workers. A significant decrease in serum IgM, IgA and IgG have been reported in 

men participating in a 5-7 days military training course involving strenuous 

exercise.112 

The clinical significance of the acute alterations on the immune parameters IgM, IgA 

and CD4 T helper cells for the tank workers’ health is not known. Peripheral blood is 

not the primary target organ for benzene’s toxicity, and measuring the level of immune 

parameters in serum after a given exposure is not an optimal measure for decreased 
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immunocompetence. All subjects had individual values within the clinically normal 

range, and the values of tank workers and referents overlapped considerably. Further, 

the immune system is a compensatory system likely to have reserve capacity, and few 

quantitative data have been published on how much the studied immune parameters 

might change before the risk of disease increases.113 However, whereas a single 

depression of these immune parameters at these levels hardly represents any 

deficiency, we can not preclude that such repeated depressions over longer periods of 

time, together with co-exposure to other carcinogenic agents and irritants, might 

represent a health risk.  

5.1.4 Increased risk of acute myelogenous leukemia and multiple myeloma in 

offshore workers exposed to crude oil 

Although offshore workers probably have been exposed to relatively low levels of 

benzene during ordinary activity, offshore workers in Norway’s offshore petroleum 

industry had a significantly increased risk of developing acute myelogenous leukemia 

and multiple myeloma compared to the general working population. The risk was 

elevated among upstream operators and workers involved in drilling operations. These 

workers are assumed to have a potential for high exposure to benzene through contact 

with either different phases of crude oil, drilling mud containing aromatic 

hydrocarbons and other products containing benzene. Given the established 

association between benzene exposure and hematopoietic malignancies,46,47 benzene 

exposure probably caused the increased risk of acute myelogenous leukemia and 

multiple myeloma observed. 

A controversial issue is what levels of exposure benzene poses an increased risk of 

developing hematopoietic malignancies.34,98,114,115 Information about past exposure to 

benzene in Norway’s offshore petroleum industry is scarce,83 and no good exposure 

estimates exist for the various job categories. The published data on benzene exposure 

in the petroleum industry indicate that the exposure has been relatively low during 

ordinary activity,80,81,83, paper I and II but that workers have experienced relatively high 
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levels of benzene whenever the processing system was opened for cleaning and 

maintenance of vessels, separators and tanks.78,84, paper I 

The association between benzene exposure and the development of specific subtypes 

of leukemia is still unclear. In our study the risk was highest for acute myelogenous 

leukemia. The elevated risk of acute lymphatic leukemia was based on only two cases 

in the exposed groups and therefore not statistically significant. The most recent meta-

analysis of benzene exposure and leukemia subtypes includes nine cohorts and 13 

case–control studies from several industries. This study found a high and significant 

risk of acute myelogenous leukemia, with a positive dose–response relationship across 

study designs.47 The risk for developing chronic lymphocytic leukemia was increased 

in the case–control studies but not in the cohort studies. The data for chronic 

myelogenous leukemia and acute lymphocytic leukemia were sparse and inconclusive. 

Our results on acute myelogenous leukemia were in accordance with previous studies, 

but the association between benzene exposure and multiple myeloma is a contentious 

issue.49,51,52 A meta-analysis of 22 cohort mortality studies consisting of 250,000 

petroleum workers, mainly from refinery and distribution, concluded that petroleum 

workers do not have an increased risk of multiple myeloma as a result of their 

exposure to benzene, benzene-containing liquids or other petroleum products in their 

work environment.53 In contrast, a more recent meta-analysis comprising seven cohort 

studies focusing on benzene-exposed workers, including refinery workers, reported a 

significant excess in the relative risk of multiple myeloma in relation to benzene 

exposure (relative risk 2.13, 95% CI = 1.31–3.46).54 Our findings provide further 

evidence of such a relationship. 

The risk of acute myelogenous leukemia and multiple myeloma was highest among the 

workers who had their first registered engagement in the offshore petroleum industry 

at the beginning of the study period. One explanation might be that the follow-up time 

for workers starting later was too short to detect any increased risk. Several authors 

have discussed the temporal variation of the risk of developing leukemia after 

exposure to benzene. Finkelstein116 and Silver and co-workers117 reported that the 
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increased risk in the Pliofilm-cohort declined after 10 years since first exposure, and 

Glass and co-workers115 reported a similar pattern in the Health Watch cohort from the 

Australian petroleum industry. This indicates that the follow-up period might have 

been sufficient also for the workers who, in our study, started from 1986 until the early 

1990s. A plausible explanation for the increased risk associated with working in the 

first period only might be a general improvement of the working environment 

offshore, including reduced benzene exposure, due to regulations and other initiatives 

in the 1990s. Nevertheless, such a reduction in exposure levels of benzene has not 

been documented. 

Of the “upstream operators”, 49% had started in the petroleum industry before 1986. 

In the category “drilling and well maintenance”, 68% of the workers started from 1991 

to 2003, possibly because oil companies started to contract out operations such as 

drilling and well maintenance to drilling contractors from the early 1990s and 

onwards. We therefore assume that the category “upstream operator” in the beginning 

of the study period also includes workers involved in the drilling process itself. 

Further, upstream operators and the drilling personnel have potentially been exposed 

to benzene through contact with the various phases of crude oil and through contact 

with drilling mud and other products containing benzene, respectively.  

Cigarette smoke is a known source of benzene exposure66 and active and passive 

smoking are associated with risk of acute myelogenous leukemia118,119. We do not 

have data on smoking in our study. However, the risk estimates were adjusted for level 

of education, which is sometimes used as a surrogate measure of social class and 

smoking.120,121 Further, the workers in “upstream operator offshore” and “drilling and 

well maintenance” did not have a higher risk of cancer of the lung and bronchus than 

the referents. This might indicate that smoking did not contribute substantially to the 

increased risk of hematopoietic malignancies among these workers.  

Given the complexity of the exposure to crude oil and to other agents at offshore work 

sites, other factors might have contributed to the increased risk of hematopoietic 

malignancies. Ionizing radiation have been shown to cause both acute myelogenous 
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leukemia122,123 and multiple myeloma.49,50 Some petroleum workers are potentially 

exposed to ionizing radiation during non-destructive testing (NDT) of welding seams, 

well-logging and contact with produced water, crude oil and sediments emitting low-

level ionizing radiation. However, measurements of published individual radiation 

doses are scarce in the petroleum industry. In a retrospective exposure assessment in 

the Norwegian petroleum industry it was reported that the annual arithmetic mean dose 

in 2005 were 0.14 mSv for the NDT-operators and below detection for the loggers, 

well below present recommended annual limit values of 1 mSv.83 From naturally 

occurring radioactive materials in the oil and gas industry, Hamlat and co-workers124  

have estimated maximal effective doses ranging from 0.04 to 0.60 mSv for normal 

activities and from 0.08 to 1.20 mSv during revision stops. An association between 

hematopoietic malignancies and other chemical substances, such as formaldehyde125  

and diesel exhaust50 have also been suggested. However, although we cannot exclude a 

possible contribution of other types of specific or combined exposure, occupational 

exposure to benzene is the most likely candidate for the increased risk. 
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5.2 Methodological considerations  

5.2.1 Benzene exposure and its’ effects on the immune system (I-IV) 

5.2.1.1 Study design  

Previous studies of the effect of benzene on the hematological system among workers 

occupationally exposed to benzene have used a cross-sectional design, reporting group 

differences in immune parameters at one time point only. A prospective design makes 

it possible to assess the temporal relationship between potential causal factors and the 

outcome of interest. In this thesis the investigation of possible associations between 

benzene exposure and acute effects on the immune system was performed during a 

three day period by assessing the immune parameters before and after cessation of 

benzene exposure.  

In comparative studies it is important to make exposed and reference groups similar 

with respect to the known sources of variation. We used unexposed referents from the 

catering section, matched on gender, age and work schedule. Due to a limited number 

of eligible subjects we had to enroll three unexposed process operators located in the 

central control room as referents (3 of 17 referents).  However, all referents had similar 

living conditions, shift schedules and diet as the exposed group.  

The study group was small, and it could be questioned whether the size was adequate 

to detect differences in immune function parameters between the groups. Nevertheless, 

despite the small sample size we found strong and statistically significant associations 

between benzene exposure and the suppression of IgM, IgA and CD4 T cells.  Still, 

although the number of cases is inherent in the statistical tests performed, the low 

number of individuals should call for precaution in the interpretation of the results.  

 5.2.1.2 Exposure assessment  

Most studies on the effect of benzene on the hematological system have not 

characterized the exposure in any detail. In the present study the exposure is measured 

both by benzene in the breathing zone over a full shift and by internal concentrations 
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of benzene in both blood and urine. In addition, the time spent in tank was logged and 

used as a surrogate measure for hydrocarbon exposure and tank work.  

Passive dosimeter badges was chosen because they are easy to administrate and do not 

need pumps that could obstruct the workers. The producer of the badges recommends 

sampling times less than 12 hours, as was the full work shift in the present study. 

Teoretically some analyte could have been lost due to desorption. However, 

considering the low exposure levels and that the mean sampling time for paper I and II 

were 9.9 hours (range 43-931 minutes) and 11 hours (range 450-730 minutes), 

respectively, the sampling time should not affect the measurements significantly. 

5.2.1.3 Sources of variation 

The levels of biomarkers of exposure and immune parameters as a response to external 

exposure have intrinsically variabilities both within and between individuals. The 

variability is caused by biological factors such as genetic polymorphisms, adipose 

tissue, sex and age, and environmental influences such as routes of exposure, physical 

activity, smoking, alcohol consumption and diet. Our study was designed to minimize 

the effect of this intrinsic variability by collecting the biological samples before and 

after exposure, and from both tank workers and referents simultaneously. During the 

study period, all subjects lived on board the production vessel and were isolated from 

their social network on shore. Thus, possible benzene exposure due to hobbies and 

second jobs did not influence the results. Further, no alcohol was consumed, again 

reducing the variability caused by factors other than chemical exposure. 

5.2.1.4 Generalization of the results  

One of the aims of this study was to characterize benzene exposure in Norways 

offshore petroleum industry. Originally five of the largest oil companies operating on 

Norway’s continental shelf were invited to participate in the study. While only one of 

the invited oil companies accepted the invitation, the second participating production 

company took the initiative themselves to be included in the project. Hence, the 

present study was restricted to workers employed at one crude oil production vessel 
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and one fixed oil-and gas platform. The results might therefore not be representative 

for other installations in the offshore petroleum industry. Nevertheless, we have no 

reason to believe that the present working environment differs much between the 

installations offshore, although the exposure level will be influenced by factors such as 

benzene content of the crude oil and natural gas produced, technical design of the 

work area and measures taken to reduce exposure such as the degree of open vs. closed 

processing system.  

5.2.1.5 Logistical challenges during the study 

It is important to highlight the logistic constraints for systematic collection of data at 

such offshore installations not easy to access. The need for helicopter transport, the 

unpredictability in planning of tasks and the priorities for personnel due to the limited 

number of beds offshore might partly explain the reason for not getting access to the 

other oil companies and the general lack of published exposure data from the offshore 

petroleum industry.  

When the companies themselves monitors benzene exposure in the working 

environment on offshore installations it is to comply with the regulations under the 

Working Environment Act or to ensure that control measures are effective. More effort 

should be made to strengthen the co-operation between the petroleum industry and 

researchers to optimize the assessment of representative exposure to hazardous 

chemicals in a more scientific manner. This would enable publication of measurements 

and possible associated health effects for the benefit of the workers and the society. 

Since the number of helicopter flights to the vessel per week is limited, the time 

between venipuncture and analysis was longer than desired.  However, the time till 

analysis was not longer than the limit set by the laboratory, and the specimens from 

exposed subjects were included in the same shipment as those from referents. 
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5.2.2 The historical cohort study 

5.2.2.1 Study design 

In 1998 the Cancer Registry of Norway established a cohort of 28 000 past and present 

offshore workers to be used in prospective study on occupational cancer among 

workers in the upstream petroleum industry from 1998 and onwards.126 Due to a 

shorter latency of hematopoietic malignancies as compared to solid tumors and our 

assumption of a higher exposure to crude oil and benzene in the early period of 

Norway’s petroleum industry, it is plausible that some workers who were at risk in the 

70ies and 80ies had developed this cancer before 1998 and therefore not included in 

this study. We therefore decided to perform a historical prospective study including 

also the period before 1998. 

Prospective studies are generally very inefficient for studying rare diseases. However, 

although acute myelogenous leukemia and multiple myeloma are relatively rare, we 

were able to show a significantly increased risk for these malignancies among 

“upstream operators offshore”.  The elevated risk of acute lymphatic leukemia was 

based on only two cases in the exposed groups, and was therefore not statistically 

significant. Hence, the data do not allow us to draw any conclusions with respect to 

this subtype of leukemia.  

5.2.2.2 Bias and possible confounding factors 

The healthy worker effect is a bias that might occur in occupational mortality studies 

comparing the working population of interest with general populations that include 

unemployed subjects. This has been shown for mortality risks for both chronic 

diseases and cancer. 127 In addition to using a prospective design, we drew our 

referents from the general working population and from the same registry as the 

subjects “at risk”, hence reducing this possible healthy worker effect.  

Nevertheless, all offshore workers are required to meet rigorous standards of health 

and fitness for work, leaving a potential for a limited healthy-hiring effect. Most 

studies performed in the petroleum industry have reported that the overall mortality of 
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causes and overall cancer incidence among these workers is significantly lower than in 

the general population.89,94,96,99 We matched the subjects and referents for level of 

education and place of residence, thereby reducing a potential bias due to culture, 

ethnicity, lifestyle and/or regional environmental pollution, as discussed by Leonard 

and co-workers.127 The Cancer Registry of Norway is the source for cases of cancer 

among both petroleum workers and referents, thereby avoiding classification bias of 

the outcome. 

5.2.2.3 Heterogenous job categories and potential for misclassification  

A major limitation of our study is the lack of good exposure estimates for the job 

categories included. We have assumed that the surrogate measure of benzene, “contact 

with crude oil or drilling mud”, was highest in the groups of “upstream operators 

offshore” and “drilling and well maintenance”. Further, the workers were grouped into 

job categories based on the industrial classification codes for their first registered 

engagement in the offshore-related petroleum industry. However, the registered 

industrial code is dependent on whether, when and how the employer register the 

employees. Further, the workers have presumably migrated between the different job 

categories in the given study period. Hence, the job categories used in the analysis of 

risk of hematopoietic malignancies are heterogenous with respect to exposure. Given 

the lack of detailed information on occupation, job tasks and description of the 

occupational exposure in the groups studied, exposure was probably highly, but non-

differentially misclassified in this prospective study. Such nonspecific exposure 

indicators might have caused a marked underestimation of the risk for the individuals 

with substantial exposure. 

5.3 Recommendations for preventive measures 

5.3.1 Control of exposure to benzene in the work atmosphere 

Benzene is a carcinogenic agent, and there is no evidence for a threshold above which 

benzene exerts its’ effects. Exposure to benzene must therefore be eliminated or 

reduced as much as possible. However, substitution is not possible with respect to 
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benzene as a natural component of crude oil and natural gas. One should focus on the 

task performed rather than job categories when enforcing control measures.  

For ordinary process activities offshore, appropriate local exhaust ventilation at the 

point of origin of benzene and other aromatics should be provided, and cabinets for 

processes such as sampling of crude oil and condensate should be constructed.  It is 

recommended that the effectiveness of the equipment used in operations such as 

flotation work, handling of pipeline cleaning pigs and during vacuuming oil 

contaminated water during cleaning of tanks and separators, should be assessed to 

limit the duration of exposure. The operators should be involved in discussions on best 

practice with respect to reducing exposure using the existing equipment or to find 

effective measures to limiting the duration of exposure. 

Today most processing systems offshore are located in open air, indicating a good 

general ventilation of the workplace by dilution. However, this does not apply to the 

mud handling systems including shale shaker and slurrification unit in the drilling 

module, but in recent years there have been considerably improvements in ventilation 

of these areas on most rigs.76  

5.3.2 The use of respiratory protection during tank work 

Before entering tanks, separators or vessels containing residues of crude oil and 

condensate from natural gas, the exposure to benzene is often measured using detector 

tubes or direct reading instruments selective for benzene to decide on the level of 

protective respiratory equipment. However, in addition to stressing the limitations of 

using detector tubes for accurate measurement of benzene exposure, Durand and co- 

workers84 found that the measurements made prior to entry of process vessels  were 

not predictive of actual exposure during work. Hence, the consistency between the 

selected respiratory protection and the actual benzene exposure measured during 

process vessel cleaning was weak. The workers maintaining the cargo tanks in the 

present study used air-purifying half mask respirators. We do not have data on the 

proportion of time the individual workers wore respirators, but some workers seemed 

to be more conscientious than others. However, the correlation between the personal 
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benzene exposure and the amount of benzene absorbed was very high, indicating that 

the use of respirators to varying degrees did not explain much of the variability in 

absorbed benzene. Further, the tank workers’ relatively low benzene exposure 

correlated significantly with suppression of serum IgM, IgA and CD4 T cell 

concentrations. 

The oil companies and contractors should introduce compulsory use of respirators 

during cleaning and maintenance of tanks, separators and process vessels, also at 

levels below the Norwegian occupational exposure limit offshore of 0.6 ppm benzene. 

In addition, procedures should be implemented with respect to selection of respirators 

and changes of cartridges in the air-purifying respirators. To help minimise worker 

exposure to benzene and other chemical agents in the tank atmosphere, the workers 

performing tank work should be trained in the use, maintenance and not at least have 

knowledge about the limitations of respiratory protection. The routines aught to be 

verified by evaluation of the uptake of benzene. 

5.3.3 Medical surveillance of tank workers 

Cleaning and maintaining tanks, separators etc. are episodic activities. Many tank 

workers are employed by small companies specializing in cleaning or maintaining oil 

tanks or separators onshore and offshore. Tank work is physically demanding, and 

workload is one factor shown to increase the uptake and to modify the distribution and 

biotransformation of organic solvents. Since the use of time-weighted average 

exposure data probably underestimates the actual exposure during heavy work load 

and that health effects of high episodic benzene exposure are not known, these tasks 

should be considered independently during assessment of exposure rather than just 

being included in the workers’ cumulative benzene exposure.  

To assure that the exposure to benzene is controlled, biological monitoring of benzene 

exposure should be implemented during long lasting work in tanks and separators 

containing crude oil and other petroleum products known to contain benzene. The 

frequency of sampling for biological monitoring will depend on the results obtained, 

as recommended in the general requirements for the performance of procedures for 
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measurements of chemical agents in general.128 The authorities should consider 

establishing a Norwegian biological exposure limit for benzene. 

5.4 Further research 

5.4.1 Acute suppression of immune system  

At this stage we can not give any explanation for the reported alterations of proteins 

and cells of the immune system among tank workers exposed to benzene. Studies on a 

larger number of subjects are warranted to explore the mechanisms of these effects. 

Further research should explore alterations in the different immune parameters over a 

longer time-span, including relevant cytokins as effect parameters. In addition to the 

change in total number of the immune parameters under study, the function of these 

circulating proteins and cells should be investigated.  

Since the use of unmetabolized benzene as a biomarker might underestimate the 

potential for a toxic effect of low benzene exposure due to an increased production of 

toxic metabolites,30 metabolites such as t,t-muconic acid and S-phenylmercapturic acid 

should be included in exposure assessment for the subjects under study. 

5.4.2 Increased risk of acute myelogenous leukemia and multiple myeloma 

We found a significantly higher risk of hematopoietic malignancies compared to the 

general working population in Norway. From the present study one can not conclude 

on the relation between the specific occupational exposures offshore and the increased 

risk of subtypes of leukemia and multiple myeloma. There is a general lack of 

evidence of such associations in the scientific literature. Few studies have ascertained 

information about specific exposures when increased risks are reported for different 

types of industries. This makes it difficult to enforce actions for reducing the actual 

risks. Further, given the lack of detailed information on occupation, job tasks and 

exposure in the groups studied, exposure was probably highly non-differentially 

misclassified in this prospective study. This means that the risk for the individuals with 

substantial exposure might have been markedly underestimated. To investigate the 

causative agents for the increased risk that we found in this cohort, to improve the 
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estimates of the association between the various types of exposure and the risk of the 

subtypes of hematopoietic malignancies, and to contribute with new knowledge on the 

association between the specific agents and the risk of different subtypes of leukaemia, 

a case-control study nested within this cohort should be performed.  
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6. CONCLUSIONS 

Although relatively high short term peak exposure to benzene occurs during ordinary 

activity for several job categories on a crude oil production vessel and for process 

operators on a fixed oil- and gas installation, the full-shift mean exposure is low. 

Although process operators on the fixed oil- and gas installation had a low 

concentration of benzene in biological media, the biological uptake was significantly 

related to the benzene exposure.  

Despite low benzene exposure in this work atmosphere and the use of personal 

protective equipment, tank workers maintaining crude oil cargo tanks had a significant 

uptake of benzene that was highly correlated with the personal benzene exposure and 

the time spent in the tank. The internal concentration of benzene was higher than 

expected at the measured exposure levels. This finding is probably due to an extended 

work schedule and high work load.  

The same tank workers showed a significant decline in serum IgM and IgA that was 

highly correlated with time spent in the tank, benzene exposure in the working 

environment and benzene concentration in blood and urine. Although less consistent, 

the results also indicate an alteration in CD4 T cells. However, given the complexity of 

the tank atmosphere we can not exclude that the combined exposure or specific 

exposure to other compounds in the tank atmosphere might have caused the reported 

alterations of proteins and cells of the immune system.  

Workers in Norway’s offshore petroleum industry exposed to crude oil and other 

hydrocarbons had a significantly increased risk of developing acute myelogenous 

leukemia and multiple myeloma. The workers employed before 1986 had the highest 

risk. Although we cannot exclude a possible contribution of other types of specific or 

combined exposure, occupational exposure to benzene is the most likely candidate for 

the increased risk.  
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Abstract 

 

Objectives: The aim was to describe the personal exposure to benzene on a typical crude oil 

production vessel and to identify factors influencing the exposure level. 

 

Methods: The study population included process operators, deck workers, mechanics and 

contractors on a production vessel in the Norwegian sector of the North Sea. The personal 

exposure to benzene during ordinary activity, during a short shutdown and during tank work 

was monitored using organic vapour passive dosimeter badges (3M�3500). Information on 

the tasks performed on the day of sampling was recorded. Exposure was assessed by grouping 

the measurements according to job category, mode of operation and the tasks performed on 

the sampling day. Univariate analysis of variance was used to test the differences between the 

groups. 

 

Results: Forty-two workers participated in the exposure assessment, comprising a total of 139 

measurements. The arithmetic and geometric mean of benzene exposure for all measurements 

was 0.43 and 0.02 p.p.m., respectively. Twenty-five measurements (18%) were below the 

limit of detection (0.001 p.p.m.), while ten samples (7%) exceeded the occupational exposure 

limit of 0.6 p.p.m. The geometric mean exposure was 0.004 p.p.m. (95% CI 0.003–0.006) 

during ordinary activity, 0.01 p.p.m. (95% CI 0.005–0.02) during shutdown and 0.28 p.p.m. 

(95% CI 0.16– 0.49) during tank work. Workers performing annual cleaning and maintenance 

http://dx.doi.org/10.1093/annhyg/mei065


of tanks containing crude oil or residues of crude oil had higher levels of exposure than 

workers performing other tasks, including work near open hydrocarbon-transport systems (all 

P < 0.001). However, because of the mandatory use of respirators, the actual personal benzene 

exposure was lower. The job categories explained only 5% of the variance in exposure, 

whereas grouping by mode of operation explained 54% of the variance and grouping by task 

68%. 

 

Conclusion: The results show that, although benzene exposure during ordinary and high 

activity seems to be low in the processing area on the production vessel, cleaning of tanks and 

performing maintenance work in a cleaned tank have a potential for high exposure. 
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ABSTRACT 

 

The objective of this study was to characterize the exposure to benzene and related aromatics 

during ordinary activity for crude oil process operators, and to investigate whether there is an 

uptake of benzene at these exposure levels. The study was performed on a fixed, integrated oil- 

and gas production facility located on Norway’s continental shelf. The study population 

included 12 process operators and nine referents. Personal exposure to benzene, toluene, 

ethylbenzene and xylene was measured during three consecutive 12 hours work shifts by 

organic vapour passive dosimeter badges.  Blood and urine were sampled before departure to 

the production facility (pre-shift), immediately after the work shift on the 13th  day of the work 

period (post-shift) and immediately before the following work shift (pre-next shift). 

Supplementary measurements of hydrocarbons during short-term tasks were done by active 

sampling using Tenax tubes. Process operators’ arithmetic mean exposure over the three-day 

study period was 0.042 ppm (range <0.001-0.688 ppm ) for benzene, 0.05 ppm toluene, 0.02 

ppm for ethylbenzene and 0.03 ppm for xylene. Full-shift personal exposure was significantly 

higher when flotation work was done during the shift compared to when other tasks were 

carried out. Work in the flotation area was associated with a short-term (6-15 min) arithmetic 

mean exposure to benzene of 1.056 ppm (range 0.092-2.326 ppm). The concentrations of 

benzene in blood and urine were not different between operators and referents at any of the 

time points. When adjusting for being a current smoker in regression analyses there were 

significant associations between benzene exposure and post-shift concentration of benzene in 

blood (P=0.01) and urine (P=0.03), respectively. Although relatively high short-term exposure 

to benzene occurs during ordinary activity for offshore process operators, the full-shift mean 

exposure is low. There is some evidence for benzene uptake within this range of exposure.  
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INTRODUCTION 

 

Process operators in the petroleum industry on offshore installations are potentially exposed to 

a mixture of hydrocarbons from crude oil, condensate from natural gas production and 

produced water. During ordinary operation the processes take place in closed systems which 

are opened only for shorter periods for purposes such as sampling of crude oil and produced 

water, maintenance work, inspection and cleaning of pipelines and process equipment.  

 

The upstream hydrocarbons include aromatics like benzene, toluene, ethylbenzene and xylene. 

Although benzene is a known carcinogenic (IARC, 1987, Schnatter et al., 2005) and 

hematotoxic agent (Lan et al., 2004), data on past and present exposure of benzene in the 

upstream petroleum industry is not extensive. Some authors have summarized common 

occupational exposure data from oil companies performed to document compliance with 

recommended limit values, and have concluded that long-term mean benzene exposure is low 

for process operators (Runion, 1988; Verma et al., 2000; Steinsvåg et al., 2006). During 

routine offshore oil and gas production, full-shift mean exposures to toluene, ethylbenzene and 

xylene as well as to benzene, are also reported to be low compared to occupational exposure 

limits (HSE, 1999). However, the wide ranges of exposure values show that for some workers 

the exposure might be high also during ordinary activity (Verma et al., 2000; Steinsvåg et al., 

2006). Previous exposure studies during ordinary activity have not provided data for specific 

tasks expected to be associated with short-term exposures to hydrocarbons (Gardner, 2003), 

and they have not examined whether such exposures explain some of the variability in full-shift 

exposure levels.  

 

Full-shift benzene exposure for operators on a floating crude oil production vessel was lower 

during ordinary activity than during maintenance work in a cleaned crude oil tank (Kirkeleit et 

al., 2006a). However, despite relatively low benzene exposure also during maintenance work 

in the oil tanks (arithmetic mean 0.23 ppm) the workers had a significantly higher benzene 

concentration in blood and urine and acute reduction in circulating IgM, IgA and CD4 T cells 

compared to referents (Kirkeleit et al., 2006b,c). The internal concentration of benzene was 

higher than expected at the measured exposure levels, which might be related to the physically 

demanding 12 hours work shifts for tank workers and insufficient use of respiratory protective 

equipment (Kirkeleit et al., 2006b). Thus, benzene was absorbed and had biological effects 
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even at exposures below the recommended limit value of 0.6 ppm, and possibly within the 

range of exposure levels representative for ordinary activity.  

 

The objective of this study was to characterize the exposure to benzene and related aromatics 

during ordinary activity for crude oil process operators and to investigate the relationship 

between the individual concentrations of benzene in the breathing zone and the concentrations 

of unmetabolized benzene in blood and urine in these workers. 

 

 

METHODS 

 

Study site 

The study was performed in October 2005 during ordinary activity on a fixed, integrated oil- 

and gas production facility located on Norway’s continental shelf. Process operators work 12 

hours shifts, and survey the upstream processes comprising a closed system of separators and 

treaters where the effluent is separated into gas, oil, water and solid waste. This surveillance is 

done via computers in the control room and by inspection in the process areas. They also have 

practical tasks such as sampling and analysis of oil and produced water, fault-finding and 

repairing.  

 

Sampling strategy  

Study population. The study population originally included 10 process operators (7 men and 3 

women) potentially exposed to benzene in the processing area and 9 referents (6 men and 3 

women) not expected to be exposed to benzene above the background concentration in the 

indoor environment. During the study period there was an unexpected relocation of two 

process workers from the cellar deck where exposure was expected to be relatively high. Two 

new process operators were enrolled during study period to account for this relocation. Thus, 

the total number of process operators is twelve. Seven of the referents were recruited from the 

catering section on the same facility, while two referents were process operators located in the 

central control room. All process workers who were eligible at the selected day or night shifts 

and catering personnel with a shift schedule matching that of the process operators were invited 

to participate. All invited workers participated. 
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The participants completed a self-administered questionnaire including questions on age, sex 

and whether they were current smokers during the study period. In addition, the process 

operators maintained a logbook where they recorded their job tasks and use of personal 

protective equipment during the respective shifts. 

 

Informed written consent was obtained from all participants. All subjects were informed about 

their own results. The study protocol was approved by the Western Norway Regional 

Committee for Medical Research Ethics and the Norwegian Social Science Data Services. The 

Ministry of Health and Care Services gave permission to establish a biobank and to transfer the 

biological material abroad for analysis. 

 

Personal full-shift exposure to airborne hydrocarbons. The process operators (n=12) were 

monitored for personal exposure to benzene, toluene, ethylbenzene and xylene during three 

consecutive day or night shifts (the 11th, 12th and 13th day of the two weeks offshore period), 

each of 12 hours (0700-1900 or 1900-0700) by organic vapour passive dosimeter badges 

(3MTM 3500) attached to the worker's collar. Prior to laboratory analysis visual inspection of 

the sampling badges resulted in rejection of one dosimeter due to splashes with oil 

contaminated water. The arithmetic mean sampling time for the remaining 35 measurements 

was 657 minutes (range 450 - 730 minutes)  

 

Biological monitoring. The original 10 process operators monitored for full-shift personal 

exposure to airborne hydrocarbons also provided three samples of blood and urine for analysis 

of benzene. The first sample was collected in the morning at the heliport before departure to the 

oil production facility (pre-shift), and was considered baseline measurement. The second 

sample was collected immediately after the work shift on the 13th  day of the offshore work 

period (post-shift) and a third sample was collected immediately before shift on the following 

day (pre-next shift). The two process operators enrolled during the study period only provided 

two urine samples (post-shift and pre-next shift). Blood and urine samples were obtained from 

the nine referents on the same days following the same protocol. Due to practical problems, we 

failed to collect  the pre-next shift blood sample from one of the referents. Except for the two 

process operators enrolled into the study later than the others, all the participants provided 

urine samples pre-shift, post-shift and pre–next shift.  
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Exposure measurements during specific work tasks 

In a separate set of exposure measurements personal sampling of hydrocarbons during specific 

tasks was done by tenax tubes connected to pumps (Casella-EEx) at a flow rate of 0.05-0.1 l 

min-1. The tenax tubes were attached to the worker’s collar, and the sampling time (Arithmetic 

mean 16.4 min, range 3-76 min) was dependent on the duration of the task. 

 

Preliminary exposure assessment had identified four work tasks expected to be associated with 

relatively high, short-term exposure to hydrocarbons; 1) inspection and work on the flotation 

package, 2) sampling and analysis of crude oil, condensate and produced water, 3) sending and 

receiving pipeline cleaning pigs and 4) jetting of separators. In order to make short-term 

exposure measurements the operators informed the researcher before these work tasks were 

done during the study period. Jetting of separators was not performed during this period. 

 

Inspection and work on the flotation package. One stage of the separation process of oil and 

water takes place in the flotation package where oil is skimmed off the upper layer of the two-

phase water-oil mixture. Under normal conditions the process operators do not have to inspect 

the flotation package. During the study period flotation was inspected twice per shift since the 

content of oil in the produced water was exceeding the limit set by the authorities. The operator 

opens the trapdoors and when necessary they adjust the separation level. At times they also use 

a swab to push the oil phase over the separation edge.  

 

Sampling and analysis of petroleum streams (crude oil, condensate and produced water). 

During the night shift crude oil is sampled through a short-cut loop, and brought to the 

laboratory for analysis of water content and specific weight. During day shifts condensate and 

produced water are manually sampled on small bottles from taps in the production process, and 

then produced water is analysed for oil content in the laboratory. 

 

Sending and receiving pipeline cleaning pigs. Sending or receiving pig is normally done at 

least once per third night shift by the process operators. When sending the cleaning pig the 

trapdoor to the pipeline lock is opened and the pressure equalised before the operators push the 

pig into the lock. To clean for oil and wax the cleaning pig is left within the lock for about 24 

hours before the trapdoor opening, pressure relief and manual pulling of the cleaning pig out of 

the lock. Thick oil and wax are removed by manual shovelling. 
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Other tasks with possible short-term exposure. Prior to maintenance work on the processing 

equipment, which is done by the mechanics, the process operators might have to open, change 

and close blind flanges and valves which implies a risk of hydrocarbon exposure 

 
 
Laboratory analysis  

The dosimeter badges and the tenax tubes were stored at -4oC before transport to X-lab AS in 

Bergen, for analysis. The collected hydrocarbons on the dosimeter badges were desorbed by 

CS2, while the tenax tubes were thermically desorbed. Benzene, toluene, ethylbenzene and 

xylene, including o-, m- and p-xylene, were analysed quantitatively and qualitatively by gas 

chromatography with mass spectrometry (NIOSH, 2003).  The levels of detection were 0.001 

ppm for benzene and 0.01 for toluene, ethylbenzene and xylene.  

 

Methods for sampling, storage, transport and analysis of blood and urine samples are described 

in detail by Kirkeleit et al. (2006b). In short, the concentration of benzene in blood was 

analyzed by a head-space sampler (Perkin Elmer Headspace sampler HS40) and a gas 

chromatograph (Perkin Elmer Autosystem Gas Chromatograph) using photoionization 

detection according to the method described by Pekari et al. (1989;1992).  The urinary 

concentration of benzene was analyzed using a solid-phase microextraction–gas 

chromatograph–mass spectrometer/ion-trap detection method (SPME-GC-MS/ITD method). 

The limit of quantification for benzene in both blood and urine were 1 nmol/l. 

 

Occupational exposure limits 

The recommended Norwegian occupational exposure limits are averaged over an eight hour 

work day. In the guidelines to the Activity Regulations, the Norwegian Petroleum Directorate 

recommends a safety factor of 0.6 to correct for a 12 hour shift, which is relevant for the 

offshore installations. Thus the recommended occupational exposure limits corrected for 12 

hours shifts are 0.6 ppm for benzene, 15 ppm for toluene and xylene and 3 ppm for 

ethylbenzene. Short-term occupational exposure limits (for periods up to 15 min) are 3 ppm for 

benzene, 37.5 ppm for toluene and xylene and 10 ppm for ethylbenzene. 
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Statistical analysis 

Personal exposure to benzene, toluene, ethylbenzene and xylene is given as arithmetic mean 

(standard deviation), geometric mean and range (minimum and maximum). Results from full 

shift exposure measurements were grouped according to the logbook recordings of work task 

expected to be associated with short-term exposure to aromatic hydrocarbons. Differences in 

the various exposure measures between work tasks and between the process operators and 

referents were analyzed using t-tests. Pearson’s correlation coefficient was calculated for 

studying relationships between the different exposure measures at the various time points. The 

associations between personal benzene exposure in the workplace air and benzene 

concentration in biological media were also adjusted for the corresponding baseline 

concentrations by including the baseline concentrations as covariates in regression analyses. 

Further, these associations were also adjusted for gender, age and for being a current smoker by 

including each of these in separate multiple regression analyses. 

 

All the exposure measurements and the biomarkers of benzene exposure had a skewed 

distribution and were therefore log-transformed before statistical analysis (ln). Blood and 

urinary benzene concentrations and benzene exposure below the limit of quantification and 

benzene exposure for referents were replaced by values equal to the limit of quantification 

divided by 2 (Hornung and Reed, 1990). The data were analysed using SPSS version 14.0.1 for 

Windows.  

 

 

RESULTS 
 
General characteristics of the study population 

The mean age (standard deviation) of the process operators (n = 12) and referents (n = 9) was 

42.3 (SD 12.8) and 44.9 (SD 10.7) years, respectively. Three process operators and four 

referents reported being current smokers. Personal half-mask with filter for organic vapour 

(brown) was always used by the operators during work and inspection of the flotation process, 

but not during other work tasks. 

 

Personal full-shift exposure to benzene and related aromatics 

Process operators’ arithmetic mean benzene exposure over the three-day study period was 

0.042 ppm (range <0.001-0.688 ppm) (Table 1), which is about 7 % of the Norwegian 
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occupational exposure limit of 0.6 ppm over a 12-hour work shift. The arithmetic mean 

exposure for toluene (0.05 ppm), ethylbenzene (0.02 ppm) and xylene (0.03 ppm) were even 

lower compared to the corresponding recommended limit values (Table 1). Significant 

correlations were found between the exposure to benzene and toluene (r=0.72, P<0.001), 

ethylbenzene (r=0.41, P=0.015) and xylene (r=0.70, P<0.001), respectively.  

 

There was no significant difference in exposure level between the three consecutive sampling 

days. For benzene exposure the arithmetic mean for the first day of sampling was 0.07 ppm 

(range <0.001-0.69 ppm), for the second day 0.04 (<0.001-0.40 ppm) and for the third day 0.02 

ppm (<0.001-0.09 ppm).  

 

Personal exposure to benzene, toluene, ethylbenzene and xylene was significantly higher when 

flotation work was done during the shift compared to when sampling of crude oil and produced 

water (P<0.001) or when other tasks (P<0.001) were carried out (Table 1). There was no 

difference in exposure levels when the work shift included sampling of crude oil or produced 

water compared to when other tasks apart from flotation work were done (Table 1). Analogous 

results were found for exposure to toluene, ethylbenzene and xylene (Table 1) 

 

Benzene concentration in blood and urine 

The concentration of benzene in blood or urine was not significantly different between the 

process operators and referents at any of the time points (Table 2). This result was found also 

among the non-smokers. The arithmetic mean concentration of benzene in blood post-shift was 

1.8 nmol/l for both groups. The arithmetic mean concentration of benzene in urine post-shift 

was 3.9 nmol/l for process operators versus 1.6 nmol/l for referents.  

 

When studying the associations between airborne benzene exposure and the concentration of 

benzene in blood and urine, referents were assigned exposure values equal to the level of 

detection for benzene in air divided by two. The benzene exposure on the third day of sampling 

was not correlated with the internal concentration of benzene immediately after work hours 

(post-shift) or prior to the following work shift (pre–next shift), neither in blood (post-shift 

r = 0.05, P = 0.83; pre–next shift r = -0.75, P = 0.77) nor in urine (post-shift r = 0.04, P = 0.87; 

pre-next shift r = -0.19, P = 0.43). When including only none-smokers in the correlation 

analyses, there was a significant association between benzene exposure on the third day of 
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sampling and post-shift concentration of benzene in blood (r=0.65, P=0.021). When adjusting 

for being a current smoker in a multiple linear regression there were significant associations 

between benzene exposure on the third day of sampling and post-shift concentration of benzene 

in blood (P=0.01) and urine (P=0.03), respectively. These models explained 87.1% and 79.1% 

of the variances in benzene concentration in blood and urine, respectively. Adjusting for other 

potential confounders such as age, gender and baseline concentrations of benzene in blood or 

urine did not materially change the associations between benzene exposure and internal post-

shift or pre-next shift benzene concentrations.                    

 

Short-term exposure during specific work tasks 

Work on the flotation package was associated with a short-term arithmetic mean exposure to 

benzene of 1.056 ppm (range 0.092-2.326 ppm), which is about 35% of the recommended 

Norwegian short-term occupational exposure limit of 3.0 ppm for periods up to 15 minutes 

(Table 3). Insignificantly lower levels of benzene were measured during work with pipeline 

cleaning pigs (Arithmetic mean 0.322 ppm) and when opening process equipment (0.237 ppm). 

The apparent variability in short-term benzene exposure was higher during flotation work 

compared to when other short-term tasks were done (Figure 1). The arithmetic mean sampling 

time for work in the flotation package was 9 min (range 6-15 min), for sampling of petroleum 

streams 19 min (3-40 min), for pipeline cleaning operations 28 min (4-76 min) and for opening 

of process equipment 12 min (8-16 min). 

 

Benzene exposure during sampling of crude oil, condensate and produced water (0.021 ppm) 

was significantly lower and had a low variability compared to other short-term tasks (Table 3, 

Figure 1). Differences in exposure levels between the different work tasks followed a similar 

pattern for toluene, ethylbenzene and xylene, respectively (Table 3). 
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DISCUSSION 

 

During ordinary activity for offshore process operators full-shift exposure to benzene and 

related aromatic hydrocarbons was generally low compared to recommended Norwegian 

occupational limits. Work in the flotation area was associated with relatively high short-term 

exposure to benzene which contributed considerably to the full-shift exposure. Although there 

was no difference in internal concentration of benzene between process operators and referents, 

there was an indication of benzene uptake within the range of exposures representative for 

ordinary activity on the installation.  

 

In the present study the low mean exposure to benzene experienced by the process operators at 

the fixed oil and gas producing installation is in accordance with previous studies during 

ordinary activity in the offshore petroleum industry (Kirkeleit et al., 2006a,b;Steinsvåg et al., 

2006;Glass et al., 2000).  At a floating production vessel, the arithmetic and geometric mean 

benzene exposure during ordinary activity of process operators was 0.02 ppm and 0.004 ppm, 

respectively (Kirkeleit et al., 2006a).  Steinsvåg et al. (2006) pooled personal full shift 

measurements of benzene exposure in processing- and drilling area from 12 installations on the 

Norwegian continental shelf in the period 1994-2003 (n=367). In their study the benzene 

exposure ranged from below the level of detection to 2.6 ppm, with arithmetic and geometric 

means of 0.037 and 0.0067 ppm, respectively. A retrospective exposure assessment of benzene 

in the Australian petroleum industry suggested an exposure of 0.02 ppm for the job group 

“upstream operator offshore” (Glass et al., 2000). In the conventional oil and gas sector of the 

upstream petroleum industry in Canada, 198 personal long-term samples from the years 1985 

to 1996 were within the range of <0.001–2.431 ppm, with an arithmetic mean of 0.064 ppm 

and a geometric mean of 0.011 ppm (Verma et al., 2000).  

 

In the present study the six full-shift samples with highest benzene exposure included short-

lasting work in the flotation area which was carried out by two of the totally twelve process 

operators. The supplementary short-term measurements indicated high exposure variability for 

benzene during this task, probably due to many factors such as actual work done, position of 

the operator, duration of open trapdoors and temperature and composition of the oil/water 

mixture. Similar flotation package systems have been used on several production platforms 

constructed during the first period of production on Norway’s continental shelf, but are now 
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found only on a smaller number of installations. Sampling and analysis of crude oil and 

produced water did not appear to contribute significantly to full-shift exposure, and short-term 

measurements indicated low exposure levels within a narrow range for this task. On this 

installation the partly automated system for sampling of crude oil probably contributed to the 

low exposure during this task. On most offshore installations sampling of crude oil is mainly a 

manual task which may result in higher exposures than presently shown. Sending and receiving 

cleaning pig was associated with higher short-term exposure. However, this task was not 

performed during the three consecutive days of full-shift sampling. When compared to the 

respective recommended occupational limit values the exposure to toluene, ethylbenzene and 

xylene was relatively lower than for benzene, indicating a low health risk for these 

hydrocarbons.  

 

Smoking is a major respiratory source of benzene uptake (Darrall et al., 1998). In the present 

study there was no difference in internal benzene concentration between process operators and 

referents, but when adjusting for being a current smoker there was an association between 

benzene in the breathing zone and benzene in blood or urine, respectively. Although smoking 

was prohibited in the oil and gas production areas, the living quarters had a limited number of 

designated smoking rooms. These present results indicate that even at the relatively low 

exposure levels during ordinary activity there seems to be an uptake of benzene from the work 

environment. However, due to the time-dependent elimination of internal benzene, the time-lag 

between short-term exposures and biological sampling at the end of the work shift might have 

contributed to a reduced impact of such exposures on the benzene uptake.  

 

Relatively few workers were included in the study, and recruitment of more workers would 

have strengthened the indicated association between benzene exposure and internal 

concentration of benzene. The present results with strongly overlapping ranges of exposure 

between exposed and referents seems to be dependent on both being a current smoker and 

exposure to benzene in the work environment. Kirkeleit et al. (2006b) showed a significant 

relationship, independent of smoking, between benzene exposure and internal benzene for 

crude oil tank workers at a geometric mean of 0.15 ppm (range 0.01-0.62 ppm), which is three 

times higher than presently reported. The arithmetic mean of the post-shift concentration of 

benzene in blood (17.3 nmol/l ) and urine (59.3 nmol/l) of tank workers (Kirkeleit et al., 

2006b) was also considerably higher than for process operators in the present study. However, 
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tank work should be considered as a specific task, quite different from ordinary process work 

offshore. 

 

In conclusion, although relatively high short-term exposure to benzene occurs during ordinary 

activity for offshore process operators, the full-shift mean exposure is low. There is some 

evidence for benzene uptake within this range of exposure.  
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Figure 1 Short-term personal benzene exposure grouped by work tasks on an oil- and gas 

production facility.  
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Abstract

We investigated the association between the individual concentrations of benzene in the breathing zone and the concentrations
of benzene in the blood and urine among workers maintaining crude oil cargo tanks. Benzene exposure was measured during three
consecutive 12 h work days among 13 tank workers and 9 unexposed referents (catering section). Blood and urine samples were
collected pre-shift on the first day, post-shift on the third day, and pre-next shift on the following morning. The workers used half-
mask air-purifying respirators, but not all workers used these systematically. The individual geometric mean benzene exposure in
the breathing zone of tank workers over 3 days was 0.15 ppm (range 0.01–0.62 ppm). The tank workers’ post-shift geometric mean
benzene concentrations were 12.3 nmol/l in blood and 27.0 nmol/l in urine versus 0.7 nmol/l for both blood and urine among the
referents. Benzene in the work atmosphere was highly correlated with the internal concentration of benzene both in post-shift blood
(r = 0.87, P < 0.001) and post-shift urine (r = 0.90, P < 0.001), indicating that the varying use of respirators did not explain much of
the variability in absorbed benzene. The results showed that, despite low benzene exposure in this work atmosphere and the use of

personal protective equipment to a varying degree, the tank workers had a significant uptake of benzene that correlated highly with
benzene exposure. The internal concentration of benzene was higher than expected considering the measured individual benzene
exposure, probably due to an extended work schedule of 12 h and physical strain during tank work. Control measures should be
improved for processes, which impose a potential for increased absorption of benzene upon the workers.
© 2006 Elsevier Ireland Ltd. All rights reserved.

xtended
Keywords: Benzene; Crude oil; Biological monitoring; Tank work; E

1. Introduction
Benzene, a known carcinogenic [1,2] and hemato-
toxic agent [3], is a natural component of crude oil.
Thus, benzene exposure is a potential hazard in the

∗ Corresponding author. Tel.: +47 55 58 61 65;
fax: +47 55 58 61 05.

E-mail address: Jorunn.Kirkeleit@isf.uib.no (J. Kirkeleit).

0009-2797/$ – see front matter © 2006 Elsevier Ireland Ltd. All rights reserv
doi:10.1016/j.cbi.2006.08.017
work shift

petroleum industry. During ordinary operation, most of
the processes on an oil production facility are confined
in closed systems, and the overall exposure to benzene is
low [4,5]. However, whenever the processing system is
opened there might be potential for high benzene expo-
sure. In a previous study [5], we reported that cleaning

and maintaining tanks containing residues of crude oil
is associated with individual benzene exposure rang-
ing from 0.004 to 16.8 ppm, with a geometric mean of
0.28 ppm. Similar concentrations of individual benzene

ed.

mailto:Jorunn.Kirkeleit@isf.uib.no
dx.doi.org/10.1016/j.cbi.2006.08.017


logical

e
g

i
i
z
e
o
b
u
b
b
t

t
t
o
d
a
T
m
a
e
5
e
l
o
r
f
t
t
w
i
h
m
p
f
o
n

r
b
u
t
i

2

2

t

J. Kirkeleit et al. / Chemico-Bio

xposure have been reported during cleaning [6] and
auging the content [7] of crude oil vessels.

During occupational exposure to benzene, the most
mportant route of uptake is inhalation. Reports [8–10]
ndicate that humans absorb 30–52% of the inhaled ben-
ene, depending on the benzene concentration, length of
xposure and pulmonary ventilation. Traces of unmetab-
lized benzene, reported to be about 0.1% of absorbed
enzene in humans [11], is eliminated unchanged in the
rine. Benzene in urine has been recommended as a
iomarker of choice at air concentrations below 1 ppm
enzene because it is a non-invasive, specific and sensi-
ive method [12–14].

Crude oil production vessels store crude oil in cargo
anks before offloading and transport onshore. Cargo
anks are prone to degradation by corrosion and are peri-
dically emptied for internal inspection of the walls to
etect pitting, general corrosion and cracks. If such dam-
ge is found, the tank must be repaired to avoid leaks.
ank work offshore has several characteristics that may
odify the uptake of benzene both through inhalation

nd dermal exposure. While most standards for chemical
xposure in the work environment assume 8 h work days
days a week, Norwegian offshore workers have in gen-
ral 12 h shifts 7 days a week for 2 weeks with 28 days of
eave between the tours. In addition, the physical strain
f tank work presumably increases the uptake through all
outes and might modify the distribution and biotrans-
ormation of hydrocarbons [15–18]. Further, although
he use of half-mask air-purifying respirators with a car-
ridge for organic solvents is mandatory during tank
ork, their efficiency of protection under high workload

s questioned. However, given this potential chemical
azard, benzene has previously not been biologically
onitored among offshore tank workers. This might

artly be due to logistic constraints, such as the need
or helicopter transport, the unpredictability in planning
f tasks and the priorities for personnel due to the limited
umber of beds offshore.

The objective of this study was to investigate the
elationship between the individual concentrations of
enzene in the breathing zone and the concentrations of
nmetabolized benzene in blood and urine both before, at
he end of the 12 h work shift and on the following morn-
ng among workers maintaining crude oil cargo tanks.

. Methods
.1. Study population

The study was performed in July 2004 during inspec-
ion of one cargo tank and in April 2005 during repa-
Interactions 164 (2006) 60–67 61

ration of two cargo tanks on a crude oil production
vessel located on Norway’s continental shelf. The main-
tenance work in the cargo tanks (volume 5000–7800 m3)
included tank inspection, scaffold-building and weld-
ing. The study population aimed at including 13 men
performing tank work, and 9 referents not expected to
be exposed to benzene. Referents were mainly recruited
from the catering section on the same vessel. All work-
ers who planned to perform tank work in the given study
periods and all catering personnel with a shift schedule
matching those of tank workers were invited to par-
ticipate. No subject declined. Before the study period,
the length of stay of the participants on the produc-
tion vessel varied from 1 to 15 days. In that period they
only performed ordinary jobs with minor benzene expo-
sure. In a previous study on the same production vessel
we reported an arithmetic and geometric mean benzene
exposure of 0.02 and 0.004 ppm, respectively, during
ordinary activity [5].

Before the maintenance work started, the tanks were
cleaned with hot oil and water and purged with inert
gases and fresh air. The tanks were ventilated with fresh
air as long as work was in progress. The workers used
half-mask air-purifying respirators with a combination
filter containing both a particle and an organic gas fil-
ter. However, the use of the respirators varied between
the workers and the workers replaced the filter with
varying frequency. The use of respirators was not sys-
tematically recorded. The participants completed a self-
administered questionnaire including questions on age,
gender and whether they were current smokers during the
study period. Smoking was prohibited on the production
vessel, but the living quarters had a limited number of
designated smoking rooms. Since alcohol consumption
is completely banned on offshore oil and gas installa-
tions, no participant consumed alcohol during the study
period.

Informed written consent was obtained from all par-
ticipants. All subjects were informed about their own
results. The study protocol was approved by the West-
ern Norway Regional Committee for Medical Research
Ethics and the Norwegian Social Science Data Services.
The Ministry of Health and Care Services gave permis-
sion to establish a biobank and to transfer the biological
material abroad for analysis.

2.2. Monitoring of individual exposure to benzene
The study period for all workers comprised three con-
secutive work shifts. All tank workers were monitored
for individual benzene exposure by using organic vapor
passive dosimetry badges (3M 3500®). The badges were
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worn in the breathing zone over a full work shift of
12 h on the three consecutive day shifts. The individual
exposure to benzene was not measured for referents as
they were assumed not to be exposed to benzene above
the background concentration in the indoor environment.
The time spent in the tank was systematically logged and
used as a surrogate measure of hydrocarbon exposure.

After sampling, the badges were stored in a freezer
(−20 ◦C) until they were transported to X-Lab in Bergen,
Norway, for analysis. X-Lab is accredited through the
intercalibration test of the Norwegian Institute of Occu-
pational Health in Oslo, Norway. Benzene was desorbed
in carbon disulfide (CS2) and analysed quantitatively and
qualitatively by gas chromatography with mass spec-
trometry [19]. The limit of detection was 0.001 ppm.

2.3. Biological monitoring

2.3.1. Sampling of biological specimens
Each subject provided three samples of blood and

urine. The first sample was collected in the morn-
ing (07:00–09:00) before the workers entered the tank
(pre-shift) and was considered baseline measurement.
The second sample was collected immediately after
the work shift (18:00–21:00) on the third day of tank
work (post-shift), and a third sample was collected in
the morning (07:00–09:00) of the following day (pre-
next shift). Blood and urine samples were obtained
from the referents on the same days following the same
time protocol. Since benzene has a short half-life in
blood [9,20], the workers were asked to come directly
to the hospital for collection of biological samples
after changing from work overalls. Further, the workers
were asked not to smoke before the blood sample was
collected.

Blood samples for determination of unmetabolized
benzene were collected by venipuncture into Venoject
II® tubes (hard plastic) with heparin, and the urine sam-
ples for determination of unmetabolized benzene were
collected in glass bottles (PYREX®) with polypropene
stoppers. The samples were stored at 4 ◦C until they
were transported overnight to the Biomonitoring Labo-
ratory of the Finnish Institute of Occupational Health in
Helsinki, Finland. Upon arrival at the laboratory within
4–7 days after sampling, the samples were immediately
put into vapor-tight vials and kept at 4 ◦C until analysis.

2.3.2. Methods of analysis of biological specimens

Benzene in blood: The concentrations of benzene in

blood was analysed by a head-space sampler (Perkin-
Elmer Headspace sampler HS40) and a gas chromato-
graph (Perkin-Elmer Autosystem Gas Chromatograph)
Interactions 164 (2006) 60–67

using photoionization detection according to the method
described by Pekari et al. [9,21]. The samples with ben-
zene concentrations at or above 5 nmol/l were analysed
by multi-head space extraction as described by Ettre and
Jones [22]. The quantifications were based on an exter-
nal standard method. The limit of quantification was
1 nmol/l.

Benzene in urine: The urinary concentration of
benzene was analysed using a solid-phase microex-
traction–gas chromatograph–mass spectrometer/ion-
trap detection method (SPME–GC–MS/ITD method). A
total of 500 �l of urine was transferred to a vial of 2.0 ml
containing 100 �l of an internal standard solution of
chlorobenzene. The sample was injected by a solid-phase
microextraction fiber (polydimethylsiloxane, 100 �m) in
an autosampler (Varian 8200 CX autosampler), sepa-
rated and analysed by a gas chromatograph (GC; Varian
Saturn 3400 CX) and a mass spectrometer (MS; Varian
Saturn 2000). In SPME mode the absorption time was
20 min and desorption time 1 min.

The GC conditions used were as follows: HP-5MS-
column (30 m by 0.25 mm, 0.25 �m film thickness, J&W
Scientific); helium carrier gas at flow rate of 1 ml/min.
A Varian injector liner (0.8 mm internal diameter) was
used with the injector temperature of 250 ◦C and splitless
injection mode. The MS transfer line and source tem-
peratures were 180 and 140 ◦C, respectively. GC oven
temperature was programmed from 40 ◦C (3 min ini-
tial hold) to 100 ◦C at 10 ◦C/min and then to 200 ◦C at
30 ◦C/min (final temperature, 1 min hold). Ions 77+ and
78+ were selected for quantifying benzene. The calcu-
lations were based on an internal standard method. The
limit of quantification was 1 nmol/l.

2.4. Occupational exposure limits

The recommended Norwegian occupational exposure
limit for benzene is 1 ppm averaged over an 8 h work-
day. In the guidelines to the Activities Regulations, the
Norwegian Petroleum Directorate recommends a safety
factor of 0.6 to correct the standard for a 12 h shift. Thus,
the occupational exposure limit for benzene is 0.6 ppm
over a 12 h workday. Finland’s biological action limit is
50 nmol benzene per liter of blood post-shift.

2.5. Statistical analysis

The results from both study periods were analysed

together. The individual benzene exposure is given as
arithmetic mean and geometric mean, 95% confidence
interval (95% CI) of the geometric mean and range
(minimum and maximum). Differences in the various
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xposure measures between the tank workers and refer-
nts were analysed using t-tests.

When analysing the associations between ben-
ene exposure in the work environment and benzene
oncentration in biological media, the exposure mea-
ured in air on the day of sampling the post-shift sample
third day) was chosen. Pearson’s correlation coefficient
as calculated for studying relationships between the
ifferent exposure measures at the various time points.
ll the analyses were performed with each worker

ontributing with one observation only. The distribution
f all continuous variables was tested for normality
sing the Shapiro–Wilk test. All the exposure measure-
ents and the biomarkers of benzene exposure had a

kewed distribution and were therefore log-transformed
efore statistical analysis (ln). The associations between
enzene exposure in the work environment and benzene
oncentration in biological media were also adjusted for
he corresponding baseline concentrations by including
he baseline concentrations as covariates in regression
nalyses. Further, these associations were also adjusted
or gender, age and smoking by including each of these
n separate multiple regression analyses.

Blood and urinary benzene concentrations below the
evel of quantification and benzene exposure for referents
ere replaced by values equal to the level of quantifica-

ion divided by 2 [23]. The data were analysed using
PSS Version 14.0.1 for Windows.

. Results

.1. General characteristics of the study population

Only 10 of the 13 tank workers worked in the tank
uring the 3-day study period. The three other workers
erformed other tasks with only minor benzene exposure
nd were excluded from the descriptive statistics and in
he comparison of the tank workers and referents. How-
ver, all 13 workers and the 9 referents were included in
he study of associations.

The mean ages (standard deviation) of the tank work-
rs (n = 10) and referents (n = 9) were 37.5 (7.7) and 47.2
6.3) years, respectively. All tank workers were men;
hree referents were women. The referents included one
rocess operator from the central control room due to few
atering personnel. Three tank workers and one referent
eported being current smokers.
.2. Individual exposure to benzene

Each of the 10 workers participating in the mainte-
ance work in the cargo tank was measured daily during
Interactions 164 (2006) 60–67 63

the study period of three work shifts, leading to a total of
30 individual air measurements. After visual inspection
of the dosimetry badges, four badges were rejected due
to contamination and cutting. The rejection was done
before analysis of the dosimeters. The mean sampling
time for the remaining 26 measurements was 597 min
(range 224–931 min). Due to practical problems, we
failed to collect one of the blood samples post-shift and a
total of five blood samples pre-next shift. All the partic-
ipants provided urine samples both pre-shift, post-shift
and pre-next shift.

Tank workers’ mean benzene exposure over the 3-day
study period (26 measurements) was 0.23 ppm for arith-
metic mean (range 0.014–0.615 ppm) and 0.15 ppm for
geometric mean (95% CI 0.10, 0.23), respectively, corre-
sponding to 38 and 25% of the Norwegian occupational
exposure limit of 0.6 ppm over a 12 h work shift. The
exposure decreased over the study period, with a geomet-
ric mean (95% CI) of 0.22 ppm (0.10, 0.46) the first day,
0.16 ppm (0.07, 0.37) the second day and 0.11 ppm (0.05,
0.25) the third day. The tank workers’ mean time peri-
ods spent in the tank the first, second and third day were
217, 292 and 316 min, respectively. This corresponds to
30–44% of the total work shift of 12 h.

3.3. Benzene concentration in blood and urine

The concentrations of benzene in blood and urine
were all significantly higher among tank workers than
among referents at all time points, including the pre-shift
sample (Table 1). The geometric mean concentration
of benzene in blood post-shift was 12.3 nmol/l in tank
workers versus 0.7 nmol/l in the referents. The geomet-
ric mean concentration of benzene in urine post-shift
was 27.0 nmol/l in tank workers versus 0.7 nmol/l in the
referents.

The individual benzene exposure on the third day of
sampling was highly correlated with the internal concen-
tration of benzene in blood (post-shift r = 0.87, P < 0.001;
pre-next shift r = 0.70, P = 0.002) and urine (post-shift
r = 0.90, P < 0.001; pre-next shift r = 0.94, P < 0.001).
The variation in benzene exposure explained 79 and
87%, respectively, of the variation in blood benzene post-
shift and urinary benzene pre-next shift (Figs. 1 and 2).
Referents were assigned exposure values equal to the
limit of detection for benzene in air divided by 2. Imput-
ing the values for these workers might introduce error
in the estimates. When the referents were excluded in

the analysis, leaving only the 13 exposed workers, the
corresponding correlation coefficients were weaker both
for blood (post-shift r = 0.65, P = 0.02; pre-next shift
r = 0.15, not significant) and urine (post-shift r = 0.60,
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Table 1
Comparison between tank workers and referents in mean concentration of benzene in blood (nmol/l) and benzene in urine (nmol/l) pre-shift, post-shift
and pre-next shift on a crude oil production vessel

Marker of benzene exposure Group n AM GM 95% CI of GM Range (min–max) <LOQ P

Blood, pre-shift Tank workers 10 1.7 1.4 0.9, 2.2 0.5–3.0 2 0.03
Referents 9 0.9 0.9 0.7, 1.0 0.5–1.0 2

Blood, post-shift Tank workers 9 17.3 12.3 5.7, 26.4 2.0–38.0 0 <0.001
Referents 9 0.8 0.7 0.5, 1.0 0.5–1.0 4

Blood, pre-next shift Tank workers 10 4.3 3.0 1.6, 5.4 1.0–18.0 0 0.002
Referents 6 0.8 0.7 0.5, 1.1 0.5–1.0 3

Urine, pre-shift Tank workers 10 12.3 6.9 2.8, 16.9 1.0–28.0 0 0.03
Referents 9 3.4 1.8 0.7, 4.6 0.5–10.0 3

Urine, post-shift Tank workers 10 59.3 27.0 11.2, 65.2 3.0–333 0 <0.001
Referents 9 0.8 0.7 0.4, 1.1 0.5–2.0 7

36.0 11.3, 114 1.0–197 0 <0.001
0.5 – 0.5 8

<LOQ: number of samples below the limit of quantification
Urine, pre-next shift Tank workers 10 70.5
Referents 9 0.5

AM: arithmetic mean, GM: geometric mean, CI: confidence interval,

P = 0.03; pre-next shift r = 0.75, P = 0.003). The time
spent in the tank on the third day of study was highly
and positively correlated with the benzene concentration
in both post-shift blood (r = 0.87, P < 0.001) and urine
(r = 0.80, P < 0.001), explaining 75 and 64% of the vari-
ation in blood and urine, respectively.

Adjusting for the baseline concentration of benzene
in blood strengthened the reported associations between

benzene in air and blood, but did not materially change
the associations with benzene in urine (data not shown).
Further, adjusting for potential confounders such as gen-
der, age and current smoking did not materially change

Fig. 1. Association between benzene in the breathing zone on the third
day of study and benzene in blood post-shift (r2 = 0.79, P < 0.001; solid
line (—) with filled circles (�)) and pre-next shift (r2 = 0.46, P = 0.002;
dotted line (- - -) with empty circles (©)) among exposed workers and
referents on a crude oil production vessel. The concentrations are given
in log scale.

Fig. 2. Association between benzene in the breathing zone on the third
day and urine post-shift (r2 = 0.81, P < 0.001; solid line (—) with filled

circles (�)) and pre-next shift (r2 = 0.87, P < 0.001; dotted line (- - -)
with empty circles (©)) among exposed workers and referents on a
crude oil production vessel. The concentrations are given in log scale.

the reported correlation coefficients between the expo-
sure measures for benzene.

4. Discussion

Despite a relatively low geometric mean benzene
exposure in the work environment of 0.15 ppm among
tank workers over the 3-day study period and use of
respirators to a varying degree, the tank workers had a

significantly higher benzene concentration in both blood
and urine than the referents at all time points. Both
the benzene exposure in the workers breathing zone
and time spent in the cargo tank were highly correlated
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ith the internal concentration of benzene in blood and
rine.

German Research Foundation [24] has investigated
he relationship between the concentration of benzene
n the workplace air and in blood when not using per-
onal protective equipment. These relationships, called
xposure equivalents for carcinogenic substances (EKA
alues), allow the determination of the body burden
esulting from uptake of the substance exclusively by
nhalation. According to these EKA values, exposure
o 0.3 ppm benzene in the breathing zone corresponds
o a benzene concentration post-shift of 0.9 �g per liter
f blood, which is about 11.5 nmol benzene per litre of
lood. The tank workers in the present study absorbed a
imilar amount of benzene after being exposed to only
0% of the corresponding exposure level – that is, a
eometric mean exposure of 0.15 ppm caused a ben-
ene concentration in blood of 12.3 nmol/l. Thus, despite
sing respiratory protective equipment, the tank workers
bsorbed more benzene than expected.

Several factors can explain the increased absorption
f benzene. Most standards for chemical exposure in the
ork environment, including occupational exposure lim-

ts and biological action limits, apply to workers with a
onventional schedule of 8 h per day 5 days per week
ather than 12 h work days. Although the tank work-
rs mean time period spent in the tank on the third day
f study corresponded only to 44% of the total work
hift of 12 h, the extended work schedule most likely
ontributed to the increased absorption. The heavy work-
oad of the tank workers might also have caused the
ncreased absorption of benzene due to increased pul-

onary ventilation and blood flow [15–18]. While Zim-
er et al. [17] reported that physical activity of 50 and

5 W, respectively, lead to a significant increase of the
lood concentrations by mean factors of 1.2 and 1.9 for
range of hydrocarbon solvent mixtures, Nadeau et al.

18] reported that even light work load intensity might
ead to a 2.5–4-fold higher absorbed dose of toluene.
bsorption of benzene through the skin by direct contact
ith crude oil residues [25] or vapor [26,27], or an altered
ptake or modification of the benzene metabolism due
o the combined exposure or specific exposure to other
ompounds [28,29], are probably of only minor impor-
ance.

We do not have data on the proportion of time the
ndividual workers wore respirators, but some workers
eemed to be more conscientious than others in using a

espirator. However, the correlation between the indi-
idual benzene exposure and the amount of benzene
bsorbed was very high, indicating that the varying
egree of respirator use did not explain much of the
Interactions 164 (2006) 60–67 65

variability in absorbed benzene. The efficiency of the
half-mask respirator for organic solvents is affected by
several factors, such as the fitting of the respirator face
piece [30,31] and the frequency of cartridge exchange
[32].

The correlation coefficients between benzene in the
work atmosphere and benzene in urine post-shift and
pre–next shift were 0.90 and 0.94, respectively. This
finding complements previous studies on exposure to
benzene concentrations below 1 ppm, in which correla-
tion coefficients between benzene concentrations in air
and benzene in urine post-shift have been reported to be
0.38–0.98 [13,33–36]. Interestingly, Kivisto et al. [36]
reported a correlation coefficient as high as 0.97 among
coke workers, but this correlation no longer existed when
using only samples at or below 1 ppm benzene. The
best correlations in the above-mentioned studies were
found among non-smokers. In our study, adjusting for
current smoking did not materially change the reported
correlations between the exposure measures for benzene.
However, the number of subjects was not high enough to
evaluate differences in benzene exposure among current
smokers and referents.

Most guidelines on biological monitoring recom-
mend that the urinary concentration of unmetabolized
benzene or its metabolites be monitored in samples col-
lected at the end of the work shift. However, in our
study the correlation coefficient between benzene in the
breathing zone and urine increased from post-shift to pre-
next shift, whereas the opposite was true for benzene in
blood. This indicates that the urine sampled could be
collected pre-shift on the following morning. However,
disturbances such as exposure after the work hours can
change the exposure estimation significantly, and post-
shift sampling is probably more reliable for estimating
exposure at low exposure concentrations.

The results showed that, despite low benzene expo-
sure in this work atmosphere and the use of personal
protective equipment, the workers had significant uptake
of benzene that was highly correlated with the individ-
ual benzene exposure and the time spent in the tank.
The internal concentration of benzene was higher than
expected at the measured exposure levels, and is proba-
bly due to an extended work schedule of 12 h and high
work load during tank work. Control measures should
be improved for processes which impose a potential for
increased absorption of benzene for tank workers.
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Eli Hollund and co-workers (X-Lab, Norway) for per-
forming the analysis on benzene in the work atmosphere
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in blood and urine.
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Abstract 

We investigated associations between benzene exposure and alterations of proteins and cells 

of the immune system among workers maintaining cargo tanks containing crude oil residues. 

Individual exposure to benzene, benzene in blood and urine, peripheral blood lymphocytes 

(total lymphocytes, lymphocytes in subpopulations CD3, CD4, CD8, CD19, CD56 and  

D4/CD8 ratio), complement factors C3 and C4 and serum concentration of immunoglobulins 

(IgG, IgA, IgM and IgE) were analysed among 13 tank workers and nine unexposed referents 

(catering section). Benzene exposure was measured during three consecutive 12-h work days. 

Blood and urine samples were collected preshift on the first day (baseline), post-shift on the 

third day, and pre–next shift on the following morning. The time spent in the cargo tank was 

logged. The individual geometric mean benzene exposure in the breathing zone of tank 

workers over 3 days was 0.15 p.p.m. (range 0.01–0.62 p.p.m.) (n ¼ 26). The geometric mean 

benzene concentration in blood post-shift was 12.3 nmol/l among tank workers versus 0.7 

nmol/l among the referents. Tank workers showed a decline (versus referents) in IgM from 

baseline to post-shift (t-test, P ¼ 0.04) and IgA from baseline to pre–next shift (t-test, P ¼ 

0.01). They also showed a decline in CD4 T cells from baseline to post-shift (t-test, P ¼ 0.04). 

Suppression correlated with benzene exposure, benzene concentrations in blood and urine and 

time spent in the tank. The groups did not differ significantly in the change in other immune 

parameters. The clinical significance is unknown and warrants further studies. 
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ABSTRACT 

 

Background  We performed a historical cohort study to investigate whether workers employed in 

the Norwegian upstream petroleum industry offshore, exposed to crude oil and other products 

containing benzene, have a higher risk of developing hematopoietic malignancies compared to the 

general working population.  

 

Method  We used the Norwegian Registry for employers and employees, and included all subjects 

registered with offshore-related industrial classification codes or with the location of work being the 

North Sea in the period 1981 to 2003. Up to six referents per petroleum worker were drawn from the 

general working population, matched by gender, age and community of residence. The cohort 

comprised 27 919 offshore workers distributed on four job categories offshore and 366 114 referents, 

and was linked to the Cancer Registry of Norway, the Registry for education and the Registry of 

causes of mortality.  

 

Results  Workers in the job category “upstream operator offshore”, who have the potentially highest 

exposure, had an excess risk of hematopoietic malignancies (RR 1.90, 95% CI  1.19-3.02). This was  

ascribed to increased risks of acute myelogenous leukemia (RR 2.89, 95% CI 1.25-6.67) and 

multiple myeloma (RR 2.49, 95% CI 1.21-5.13). Risk ratios were highest for the workers with their 

first registered engagement in the offshore petroleum industry before 1986. No increased risk was 

found for the other job categories, and no differences were found for overall cancer (all sites).  

  

Conclusion  Workers exposed to crude oil and other hydrocarbons on the Norwegian shelf had a 

significantly increased risk of developing acute myelogenous leukemia and also multiple myeloma, 

most likely caused by their occupational exposure to benzene.  
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INTRODUCTION 

 

Benzene is a known leukemogenic agent.1-4 Despite extensive research on benzene exposure and its 

association with leukemia, there are still questions on the health risk of benzene at low exposure 

levels and on the relation between exposure and the various subtypes of leukemia.4  

 

Benzene is a natural component of crude oil and natural gas. Thus, benzene exposure is a potential 

hazard in the petroleum industry. Studies of workers in the petroleum industry have reported an 

increased risk of leukemia,5-8 while the risk of multiple myeloma has been debated.9,10 These studies 

included workers employed in oil refinery operations, distribution and consumption of oil products, 

and only to a limited degree upstream operations such as drilling and maintenance of oil wells and 

production of crude oil, natural gas, and natural gas liquids (NGL). Workers in the upstream 

petroleum segment offshore, who in addition to being potentially exposed to crude oil and natural 

gas, have also been reported to be exposed to benzene as a component of diesel-based drilling mud 

and laboratory chemicals.11,12  

 

We wanted to study whether workers employed in the Norwegian upstream petroleum industry 

offshore exposed to crude oil and other products containing benzene have a higher risk of developing 

hematopoietic malignancies compared to the general working population in Norway. We wanted 

particularly to focus on the differences in risk according to the subtypes of leukemia. 
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METHODS 

 

Study population and study design 

 

We performed a historical cohort study of the cancer incidence in the Norwegian upstream 

petroleum industry. The cohort was established using the information from the Norwegian Registry 

for employers and employees (NREE). NREE is owned by the National Insurance Administration 

(Rikstrygdeverket), and is a registry where all employers are obliged to register their employees with 

a personal identification number, industrial classification code (International Standard Industrial  

Classification; ISIC and NACE), county of work and start and stop date of all their engagements. 

There is no minimum requirement of employment duration for inclusion in the registry.  

 

The Norwegian petroleum industry has been in operation offshore since the early 70ies. The NREE 

registry was established in 1978, and became operational in 1983 containing employments from 

1981 and onwards until 2003. Hence, subjects included in the cohort might have had engagements 

also before 1981, but these engagements are not included in our data. The inclusion criteria for the 

cohort of the petroleum workers was that the workers were registered with one of the following 

offshore-related industrial classification codes: ISIC 22 (Extraction of crude oil and natural gas), 

ISIC 5032 (oil drilling), NACE 11 100 (Extraction of crude oil and natural gas) and NACE 11 200 

(Service activities incidental to oil and gas extraction), or having the Norwegian continental shelf 

(North Sea) as the location of work. 

 

Based on the workers location of work (onshore/offshore) and the industrial classification codes of 

their first registered engagement in the offshore-related petroleum industry, the petroleum workers 

were categorized into the five job categories 1) upstream operator offshore, 2) drilling and well 

maintenance offshore, 3) catering offshore, 4) others offshore, and 5) petroleum workers onshore.  

The category “upstream operator offshore” contained solely workers registered with the NACE and 

ISIC-code Extraction of crude oil and natural gas. These workers mainly work in the production and 

process section. This includes job categories such as process technicians, laboratory engineers, 

control operators and other job groups involved in the production process including stabilization, 

separation and fractionation of the crude oil, natural gas, and natural gas liquids (NGL). The 

category “drilling and well maintenance offshore” includes the ISIC-code 50 230 (Oil drilling) and 

NACE-code 11 200 (Service activities incidental to oil and gas extraction excluding surveying). The 

latter code consists merely of activities such as drilling of wells and installation, disassembling and 
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maintenance of drilling towers at site on contract, and includes job groups such as drill floor crew, 

derrick employees, mud loggers- and engineers, shale shaker operators and well service crew. The 

category “catering offshore” includes job groups such as catering crew, chefs and house keeping 

personnel. The category “others offshore” includes miscellaneous industrial codes and consists of 

activities contracted out to oil field service companies, such as construction- and maintenance 

personnel and logistics. Finally, “petroleum workers onshore” contains workers registered with an 

offshore-related engagement without being registered with the North Sea as the location of work. 

This job category contains workers involved in the administration, planning and coordination of the 

activities offshore.  

 

Up to six referents per petroleum worker were drawn at random from the general working 

population, using the same registry and the same year of the first engagement of the corresponding 

petroleum worker. The referents were matched to the petroleum worker by gender, age and 

community of residence. The crude historical cohort included 71 018 workers from the petroleum 

industry (“at risk”) and 424 584 referents. Subjects were excluded from the cohort if they had had a 

cancer diagnosis before entering into the cohort (n = 3784) and referents were excluded if they had 

an earlier engagement in the petroleum industry prior the time they were drawn as referents even if 

they at this time of inclusion had a “non-exposed” engagement (n = 29004). Subjects were allowed 

to serve as referents for more than one “subject at risk”.  

 

The final cohort comprised 27 919 offshore workers distributed on the four job categories offshore, 

contributing with 332 063 person-years (table 1). About 89% of the offshore workers were men. The 

oil drilling section comprised only 4.6% women, while the corresponding percentage in the catering 

section was 49.1%. Forty-nine percent of the subjects in the category “upstream operator” started in 

the petroleum industry before 1986. In the category “drilling and well maintenance” as much as 

67.8% of the workers started in the period 1991-2003, possibly due to oil companies starting to 

contract out operations such as drilling and well maintenance to drilling contractors from the early 

90ies and onwards. We therefore assume that the category “upstream operator” in the beginning of 

the study period also includes workers involved in the drilling process itself. Further, while upstream 

operators have had a potential for exposure to benzene through their contact with the different phases 

of crude oil, the drilling personnel have had a potential exposure to benzene through contact with 

drilling mud and other products containing benzene. Therefore, with respect to hematopoietic 

malignancies, the workers in “upstream operator offshore” and “drilling and well maintenance” were 

also analyzed as one group. 
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The total cohort was linked to the Cancer Registry of Norway in April 2006, including all cases of 

cancer reported up to December 31, 2003 with the information on date of diagnosis and diagnosis 

(localisation, morphology and histology). The cancers were coded according to a modified version of 

ICD-7 (3 digit code, International Classification of Diseases, ICD-7). The Cancer Registry is based 

on reporting from multiple sources, such as physicians, pathology laboratories and death certificates 

from Statistics Norway where cancer or cancer related illnesses are mentioned, ensuring a high 

degree of accuracy and completeness (ref). The cohort was also linked to the Registry of causes of 

mortality and the Registry for education including the variable highest completed education, ranging 

from 1 (elementary school) to 6 (PhD-degree). The establishment of the cohort and the linking to the 

different registries were performed at the Statistics Norway. 

 

Statistical analyses 

 

Rate ratios comparing the various working categories with the general working population were 

estimated using the Cox proportional hazard regression model. Subjects were censored at end of 

follow up (December 31, 2003), at date of death or date of diagnosis of another type of cancer than 

the one under study, whichever occurring first.  

 

The proportional hazards assumption was checked for overall cancer and all hematopoietic 

malignancies by comparing the estimated –ln-ln S curves for the different groups being investigated. 

No marked deviation from the PH-assumption was indicated. Multivariate analyses were performed, 

including the independent covariates age, gender, year of first engagement and educational level. We 

also performed sub-analyses including the engagements during the first 5 years only (1981 – 1985) 

and one including the remaining 18 years (1986 – 2003). 

 

All analyses were performed using SPSS 14.0.1 (SPSS Inc., Illinois, US). 

 

Ethical considerations 

 

The study was conducted with the approval of the Western Norway Regional Committee for Medical 

Research Ethics, the Data Inspectorate and the Directorate for Health and Social Affairs. The 

National Insurance Administration gave us the permission to use the NREE, the Cancer Registry of 

Norway provided the data from the Cancer Register, and Statistics Norway, administratively placed 
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under the Ministry of Finance, approved the use of information from the Registry of causes of 

mortality and the Registry for highest completed education. 

 

 

RESULTS 

 

Workers in the job category “upstream operator offshore” had an excess risk of hematopoietic 

malignancies (RR 1.90), while a non-significant increase was found among workers in the category 

“drilling and well maintenance” (Table 2). No increased risk of hematopoietic malignancies was 

found in the other job categories. Differentiating between the subtypes of hematopoietic 

malignancies, the category “upstream operators” had an increased risk of acute myelogenous 

leukemia (RR 2.89) and multiple myeloma (RR 2.49) (Table 3). The risk was also increased for these 

subtypes in the job category “drilling and well maintenance”, but the number of cases was low. 

When combining these two job categories, the risks were at the same levels.  No increased risk of 

either acute myelogenous leukemia or multiple myeloma was found in the other job categories 

offshore.  

 

For both acute myelogenous leukemia and multiple myeloma, the risk ratios were highest for the 

workers with their first registered engagement in the offshore petroleum industry before 1986 (Table 

4). “Upstream operators” who started in the petroleum industry before 1986 had a risk of 3.26 of 

developing acute myelogenous leukemia, while the corresponding risk was 2.85 for multiple 

myeloma. The same trend was not seen for the job category “drilling and well maintenance“.  

 

The incidence of overall cancer (all sites) among the offshore workers did not differ significantly 

from the general working population in any of the job categories. However, there were excess risks 

of cancer in upper respiratory organs among the workers in the catering section (95% CI 1.65 – 

6.81), cancer in the oesophagus in the job categories “upstream operator offshore” (95% CI 1.03 – 

8.00) and “other workers offshore” (95% CI 1.06 – 6.63), cancer in the lung and bronchus among 

“other workers offshore” (95% CI 1.07 – 2.00), cancer in pleura among “petroleum workers 

onshore” (95% CI 1.35 – 5.36), and prostate cancer in the job category “other workers offshore” 

(95% CI 1.05 – 1.84). The petroleum workers onshore showed a reduced risk of malignant 

melanoma as compared to referents (95% CI 0.65-0.98).  
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DISCUSSION 

 

Offshore workers exposed to crude oil and other benzene-containing products on the Norwegian 

shelf during the period 1981 - 2003 had a significantly higher risk of developing hematopoietic 

malignancies – particularly multiple myeloma and acute myelogenous leukemia, than the general 

working population. The increased risk was found among upstream operators and workers involved 

in drilling operations, the workers assumed to have potential for high exposure to benzene through 

their contact with either different phases of crude oil, drilling mud containing aromatic hydrocarbons 

and other products containing benzene. Given the established association between benzene exposure 

and hematopoietic malignancies,1,4 benzene is likely to be the cause of the observed increased risk of 

acute myelogenous leukemia and multiple myeloma in this study.  

 

A question of controversy is at which level of exposure benzene presents an increased risk of 

developing hematopoietic malignancies and to what extent peak and high short-term exposures 

increases the risk. 2,3,5,13 Information about past exposure of benzene in the Norwegian offshore 

petroleum industry is scarce,11 and no good exposure estimates for the different job categories exist. 

The published data on benzene exposure in the petroleum industry indicate that the exposure has 

been relatively low during ordinary activity,11,14-16 but that workers at times have experienced 

relatively high levels of benzene whenever the processing system was opened during cleaning and 

maintenance of vessels, separators and tanks.16-19  

 

The association between benzene exposure and development of specific subtypes of leukemia is still 

unclear. In the present study the risk was highest for acute myelogenous leukaemia. The risk of acute 

lymphatic leukemia was also elevated, but based only on two cases in the exposed groups and 

therefore not statistically significant. The most recent meta-analysis of benzene-exposure and 

leukemia subtypes including nine cohorts and 13 case-control studies from several industries, found 

a high and significant risk of acute myeloid leukemia with a positive dose response relationship 

across study designs.4 The risk for developing chronic lymphocytic leukemia was increased in the 

case-control studies, but not in the cohort studies. The data for chronic myeloid leukemia and acute 

lymphocytic leukemia were sparse and inconclusive.  

 

While our results on acute myelogenous leukemia were in line with previous studies, the association 

between benzene exposure and multiple myeloma is a contentious issue.9,10,20 In a meta-analysis of 

22 cohort mortality studies consisting of 250 000 petroleum workers, mainly from the refinery and 
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distribution segment it was concluded that petroleum workers are not at an increased risk of multiple 

myeloma as a result of their exposure to benzene, benzene-containing liquids, or other petroleum 

products in their work environment.21 On the other hand, in a more recent meta-analysis including 

seven cohort studies focusing on benzene-exposed workers, including refinery workers, a significant 

excess in the relative risk (RR) of multiple myeloma in relation to benzene exposure (RR 2.13, 95% 

CI = 1.31-3.46) was reported.22 The findings in the present study give further strong evidence of such 

a relationship. 

 

We found that the risk of acute myelogenous leukemia and multiple myeloma was highest for those 

having had their first registered engagement in the offshore petroleum industry in the beginning of 

the study period. One explanation might be that the follow-up time was too short to detect any 

increased risk for workers starting in the industry later on. Several authors have discussed the 

temporal variation of the risk of developing leukemia after an exposure to benzene. Finkelstein23 and 

Silver et al.24 reported that the increase risk in the Pliofilm-cohort2 declined after 10 years since first 

exposure, and Glass et al.13 reported a similar pattern in the Health Watch cohort from the Australian 

petroleum industry. This indicates that the follow-up period might have been sufficient for the 

workers who, in the present study, started during the period 1986 up to the early 1990’s. Further, 

sensitivity to benzene’s toxic effects differs among individuals, explained partly by polymorphisms 

in enzymes involved in the metabolism of benzene, particularly the cytochrome P450 2E1.25 Half of 

the “upstream operators” started in the industry before 1986, and one could speculate that the 

workers who entered this early and who developed acute myelogenous leukemia and multiple 

myeloma were the subjects most susceptible, leaving a group of less susceptible workers for the rest 

of the follow-up period. Nevertheless, the most plausible explanation of the increased risk for work 

in the first period is likely related to a general improvement of the work environment offshore, 

including reduced benzene exposure, due to regulations and other initiatives in the 90ies.  

 

Cigarette smoke is a known source of benzene exposure,26,27 and both active and passive smoking 

has been associated with risk of acute myelogenic leukemia.28,29 We do not have data on smoking in 

the present study. However, the risk estimates were adjusting for the level of education, that is 

sometimes used as a surrogate measure of social class and smoking.30,31 Further, the workers in the 

job categories “upstream operators offshore” and “drilling and well maintenance” did not have an 

increased risk of cancer in lung and bronchus as compared to the referents. This might indicate that 

smoking have not contributed substantially to the increased risk of hematopoietic malignancies 

among these workers. 
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Given the complexity of the exposure both to crude oil and other agents at the offshore work site 

offshore we can not exclude that other possible leukemogenic factors might have contributed to the 

increased risk of hematopoietic malignancies. Petroleum workers are potentially exposed to ionizing 

radiation due to operations such as non-destructive testing (NDT) of welding seams, well-logging 

and contact with sediments emitting low-level ionizing radiation. Ionizing radiation have been shown 

to cause both acute myelogenous leukemia32 and multiple myeloma.20,33 However, the reported 

levels are well below present recommended annual limit values.11,34  

 

It has been shown that the healthy worker effect is a bias in occupational mortality studies when 

comparing the working population of interest with general populations which includes people not at 

work. This has been shown for mortality risks for both chronic diseases and cancer,35 and is 

explained both by selection bias, classification bias and confounding effects.36 In addition to using a 

prospective cohort design, the referents in our study were drawn from the general working 

population and from the same registry as the subjects “at risk”, hence reducing this healthy worker 

effect to a certain degree. Nevertheless, all offshore workers are required to meet rigorous standards 

of health and fitness for work still leaving a potential for a limited healthy-hiring effect. The subjects 

and referents were matched on level of education and place of residence, thereby reducing a potential 

bias due to culture, ethnicity, lifestyle and/or regional environmental pollution, as discussed in 

Leonard et al.35 Finally, the Cancer Registry is the source for cases of cancer for both petroleum 

workers and referents thereby avoiding classification bias of the outcome. 

 

Studies of workers in the downstream petroleum industry, such as transporters, refiners, retailers, and 

consumers, have reported an increased risk of both prostate cancer, kidney cancer, melanoma, 

mesothelioma, gall bladder and hematopoietic malignancies.37-39 Although we found an excess risk 

of cancer in upper respiratory organs, oesophagus, lung and bronchus and prostate cancer among 

some of the job categories offshore, the overall cancer incidence did not differ between the cohorts 

of petroleum workers offshore, petroleum workers onshore and the general working population. 

Nevertheless, the relatively short follow up time does not allow us to conclude on the risk of these 

solid cancer types.    

 

In conclusion, workers exposed to crude oil and other hydrocarbons on the Norwegian shelf during 

the period 1981 - 2003 had a significantly increased risk of developing acute myelogenous leukemia 

and multiple myeloma. Although we can not exclude a possible contribution of other specific or 
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combined exposures, occupational exposure to benzene is still the most likely causative agent for the 

increased risk. In the lack of exposure measurements and detailed information on job tasks in the 

groups studied a likely high non-differential misclassification of exposure has taken place in this 

prospective study. This means that the risk for the individuals with substantial exposure might have 

been markedly underestimated. To achieve better estimates of the association between the various 

exposures and the risk of the subtypes of hematopoietic malignancies in this large cohort, a case-

control study nested within the cohort will be performed. 
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Picture 1.  Crude oil production vessel (top) and a fixed oil- and gas installation 

(bottom) comprising a drilling unit (left), processing unit and living accommodation 

(middle) and a gas processing and export unit (right).



 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

           (photo: PGS Production) 
    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

            (photo: PGS Production) 
 
 
 
Picture 2.  The photos show inspection of cargo tanks containing crude oil residues on 

a crude oil production vessel.  



 

 

 

                    
        (photo: PGS Production) 

 

                    
        (photo: Jorunn Kirkeleit) 

 

Picture 3.  The photos show workers performing scaffold building (top) and welding 

(bottom) in cargo tanks containing crude oil residues on a crude oil production vessel. 



     
 

       
                        (photo: Jorunn Kirkeleit) 

 

Picture 4.  The photos show a process operator inspecting the flotation package (top 

left), a process operator receiving a pipeline cleaning pig (top right), a process operator 

sampling crude oil for analysis (bottom left) and a deck worker turning blind flanges 

(bottom right). 
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UNIVERSITETET I BERGEN                         Appendix 2
Institutt for samfunnsmedisinske fag 
Seksjon for arbeidsmedisin 

Gateadresse: Postadresse: Telefon: Telefaks: 
Kalfarveien 31 5018  BERGEN 55 58 61 00 55 58 61 05 

………………………                Bergen, 17.06.2004 

FORESPØRSEL OM Å DELTA I PROSJEKTET ”GIR EKSPONERING FOR BENZEN PÅ 
NORSK SOKKEL ØKT RISIKO FOR Å UTVIKLE LEUKEMI?” 

Kjemikalieforskriften § 6 stiller krav til at arbeidsgiver skal kartlegge og dokumentere 
forekomsten av kjemikalier og vurdere enhver risiko for arbeidstakernes helse og sikkerhet 
forbundet med disse. Seksjon for arbeidsmedisin har satt igang et prosjekt for å studere 
eksponering for benzen på norsk sokkel og dets helseeffekter. Vi håper at …………………… 
ønsker å delta i prosjektet. 

Prosjektet finansieres av Norges forskningsråd, men vi mangler midler til dekning av 
analysekostnader. Vi søker med dette om at …………………… dekker analysekostnadene for 20 
arbeidstakere. I tillegg kommer helikoptertransport og forpleining under selve prøvetakingen.  

På grunn av prosjektets progresjon ønskes tilbakemelding innen 8. juli 2004. 
_________________________________________________________________________________

Kjemikalieforskriften § 6 stiller krav til at arbeidsgiver skal kartlegge og dokumentere forekomsten av 
kjemikalier og vurdere enhver risiko for arbeidstakernes helse og sikkerhet forbundet med disse. 
Risikovurderingen skal blant annet særlig ta hensyn til kjemikalienes farlige egenskaper, 
eksponeringens type, nivå, varighet, hyppighet og eksponeringsveier, samt grenseverdier og 
administrative normer. Benzene er et kreftfremkallende stoff som er en naturlig bestanddel av råolje.
I forskriftens kapittel III, § 16 står det at grenseverdien for benzen ikke skal overskrides. Hudopptaket 
for benzen kan imidlertid være betydelig for enkelte arbeidsoperasjoner, noe som ikke vil avdekkes ved 
måling av benzen i arbeidstakerens pustesone. 

Seksjon for arbeidsmedisin har igangsatt et prosjekt for å studere eksponering for benzen på norsk 
sokkel og dets helseeffekter. Som vi sa i brev av 15.12.2003 er det viktig for prosjektets relevans at det 
utgår fra petroleumsindustrien selv, og at vi håper at Deres selskap vil delta. For å få et representativt 
utvalg håper vi å inkludere 100 arbeidstakere i prosjektet, fordelt på de største aktørene som opererer på 
norsk sokkel. 

Hensikten med prosjektet er å karakterisere eksponeringen for benzen på norsk sokkel, og å undersøke 
om vi finner benzen og dets stoffskifteprodukter i blod og urin hos arbeidstakere som jobber på norsk 
sokkel. Vi vil også undersøke om det er en sammenheng mellom eksponering for benzen og skadelige 
blodforandringer som kan være forstadier til utvikling av kreft. Prosjektet vil også gi økt kunnskap om 
biomonitorering av benzen, slik at metoden kan benyttes som et supplement til tradisjonell prøvetaking 
av benzen i arbeidsluft på norsk sokkel. Videre vil resultater fra prosjektet si noe om behovet for 
ytterligere tiltak for å redusere eksponeringen offshore.   

De biologiske prøvene vil avidentifiseres før de sendes til analyselaboratoriet ved Finnish Institute of 
Occupational Health i Finland (FIOH), som vil utføre analysene mhp. markører for eksponering. Finnish 



Institute of Occuaptional Health har arbeidet med biologisk monitorering av benzen i nærmere 30 år og 
har følgelig svært god kompetanse på området. Dr. Kaija Pekari (se vedlagte referanseliste) er involvert 
i planleggingen av prøvetakingsprotokollen. Blodprøver vil også sendes til Haukeland Universitets-
sykehus, Bergen, for analyse av blodparametre. Analysene av luftmålingene vil utføres av X-lab, 
Bergen.

Innsamlede opplysninger og prøvesvar vil bli oppbevart og behandlet konfidensielt. Ved prosjektslutt vil 
datamaterialet anonymiseres. Ved prosjektslutt vil det bli utarbeidet en egen rapport for hvert av de 
involverte oljeselskapene. I rapporten vil vi gi en vurdering av dine ansattes eksponering for benzen på 
installasjonen(e) og eventuelle tidlige effekter. Rapporten vil kun inneholde anonymiserte data slik at 
enkeltpersoner ikke kan identifiseres. Rapporten vil danne grunnlag for at du som arbeidsgiver kan følge 
opp og forbedre det kjemiske arbeidsmiljøet ved Deres installasjoner. I tillegg vil det bli utarbeidet en 
rapport som gir en samlet vurdering av eksponeringen for alle de involverte oljeselskapene. Rapporten 
vil selvsagt kun inneholde anonymiserte data både mhp. installasjon og oljeselskap. Prosjektet er klarert 
av Etisk komité og det er meldt til Personvernombudet for forskning, NSD. 

Prosjektet finansieres av Norges Forskningsråd. Vi mangler imidlertid midler til å dekke analyse-
kostnader. Vi foreslår derfor at de involverte oljeselskapene dekker analysekostnadene for 20 
arbeidstakere hver. I tillegg kommer helikoptertransport og forpleining under selve prøvetakingen.
Analysekostnadene per arbeidstaker som inkluderes i prosjektet er som følger: 

EKSPONERINGSMARKØR ANTALL KOSTNAD 
PR. PRØVE 

TOTAL
KOSTNAD 

Benzen i arbeidsatmosfære  3 prøver 1000,- 3000,-
Benzen i blod 750,-* 2250,-
Benzen i urin 750,-* 2250,-
Stoffskifteproduktet S-fenylmerkaptursyre i urin 0,-** 0,-
Stoffskifteproduktet t,t-mukonsyre i urin 

3 prøver 
- før arbeidsskift (kontroll) 
- etter arbeidsskift 
- før neste arbeidsskift 750,-* 2250,-

TOTALE KOSTNADER PR. ARBEIDSTAKER 9750,-
*  = 89 Euro (subsidiert på grunn av at det er et forskningsprosjekt og samarbeidsprosjekt) ** = samarbeid med Finnish 
Institute of Occupational Health 

Det vil opprettes en egen referansegruppe for prosjektet, med en representant fra hvert selskap. Vi ber 
om tilbakemelding på hvem som vil representere Deres selskap i denne gruppen. På grunn av prosjektets 
progresjon ønskes tilbakemelding på både dekning av analysekostnader og representant i referanse-
gruppen innen 30. juli 2004.

Om dere skulle ha behov for mer informasjon, kan du kontakte Bente E. Moen på telefon 55 58 61 12 
eller e-post Bente.Moen@isf.uib.no, eller Jorunn Kirkeleit på telefon 55 58 61 65/952 00 221 eller på
e-post Jorunn.Kirkeleit@isf.uib.no.

Vennlig hilsen 

Bente E. Moen      Jorunn Kirkeleit 
Prosjektleder og lege      Stipendiat og utførende 

Vedlegg: 1.   Prosjektbeskrivelse 
2. Prøvetakingsprotokoll 
3. Informasjon til arbeidstaker og samtykkeskjema 
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UNIVERSITETET I BERGEN                          Appendix 3
Institutt for samfunnsmedisinske fag 
Seksjon for arbeidsmedisin 

Gateadresse: Postadresse: Telefon: Telefaks: 
Kalfarveien 31 5018  BERGEN 55 58 61 00 55 58 61 05 

TIL ANSATTE VED ………………….. 

FORESPØRSEL OM Å DELTA I PROSJEKTET ”GIR EKSPONERING FOR BENZEN PÅ NORSK 
SOKKEL ØKT RISIKO FOR Å UTVIKLE LEUKEMI?” 

Benzene er et kreftfremkallende stoff som er en naturlig bestanddel av råolje. Seksjon for 
arbeidsmedisin har igangsatt et prosjekt for å studere eksponering for benzen på norsk sokkel og dets 
helseeffekter, og spør deg med dette om du vil delta i prosjektet. Prosjektet finansieres av Norges 
Forskningsråd. I tillegg vil det bli søkt om midler til prøvetaking og analyser fra de involverte 
oljeselskapene. Dette er frie midler som er gitt, eller vil gis, uten bindinger. Prosjektet avsluttes høsten 
2006.

Hensikten med prosjektet er å karakterisere eksponeringen for benzen på norsk sokkel, og å 
undersøke om vi finner benzen og dets stoffskifteprodukter i blod og urin hos arbeidstakere som jobber 
på norsk sokkel. Vi vil også undersøke om det er en sammenheng mellom eksponering for benzen og 
skadelige blodforandringer som kan være forstadier til utvikling av kreft. Arbeidstakeren avleverer en 
urin- og blodprøve (“nullprøve”) før avgang til, eller like etter ankomst til, installasjonen. Den andre og 
tredje prøven, både urin og blod, avleveres ved arbeidsperiodens slutt eller etter en gitt arbeidsoperasjon 
(en etter et arbeidsskift og en den påfølgende morgen). Prøvene vil avidentifiseres før de fryses ned og 
sendes/bringes til analyselaboratoriet ved Finnish Institute of Occupational Health, Finland. Det vil også 
sendes blodprøver til Haukeland Universitetssykehus, Bergen, for analyse av blodparametre.  

Deltakelse i programmet er frivillig. Du kan også trekke deg og/eller tilbakekalle samtykket uten 
å oppgi årsak. Dersom du trekker deg vil personidentifiserbare opplysninger om deg slettes. Hvis du 
ønsker det, vil du motta kopi av dine resultater. Dersom vi finner at nivået av markører for eksponering 
er for høyt, eller om blodverdiene skulle indikere en tidlig effekt på det bloddannende system, vil vi 
sørge for at du vil få tilbud om oppfølging. Det understrekes at ingen andre enn prosjektmedarbeidere 
med taushetsplikt får tilgang til dine data, med mindre du ønsker det annerledes. Innsamlede 
opplysninger og prøvesvar vil bli oppbevart og behandlet konfidensielt. Ved prosjektslutt vil 
datamaterialet anonymiseres.  

Prosjektet utføres i samarbeid med din arbeidsgiver. Det vil bli utarbeidet en rapport fra 
undersøkelsen som blir oversendt din arbeidsgiver. Rapporten vil kun inneholde avidentifiserte data slik 
at enkeltpersoner ikke kan identifiseres. Rapporten vil danne grunnlag for din arbeidsgivers oppfølging 
og forbedring av ditt kjemiske arbeidsmiljø. Prosjektet er klarert av Regional komité for medisinsk 
forskningsetikk Vest-Norge og det er meldt til Personvernombudet for forskning, NSD. 

Om du skulle ha behov for mer informasjon, eller om du skulle ha betenkeligheter rundt 
prosjektet eller dine resultater, kan du kontakte Jorunn Kirkeleit på telefon 55 58 61 65/952 00 221 eller 
på e-post: Jorunn.Kirkeleit@isf.uib.no.

Vennlig hilsen 

Bente E. Moen      Jorunn Kirkeleit 
Prosjektleder, lege      Stipendiat (utførende) 



SAMTYKKESKJEMA DEL A: ARBEIDSTAKER 

Jeg har lest informasjonsbrevet om prosjektet ”Gir eksponering for benzen på norsk sokkel økt risiko for 
utvikling av leukemi?”, og har også fått det forklart muntlig. Jeg samtykker i å delta i prosjektet under 
følgende forutsetninger: 

1. Urinprøven vil kun analyseres for: 
- Benzen, toluen og xylen 
- stoffskifteproduktet fenylmekaptursyre 
- stoffskifteproduktet trans,trans-mukonsyre 

2. Blodprøven vil kun analyseres for: 
- Benzen, toluen og xylen 
- blodbilde (hematologiske parametre som antall hvite og røde blodlegemer, blodplater, 

hemoglobinverdi, hematokrittverdi m.v.)  
- generelle antistoffer 
- perifert proteinbilde 
- genetisk variasjon for enzymer involvert i nedbrytning av benzen 
- analyse av genuttrykk relatert til benzeneksponering og/eller leukemi 

3. Prøveresultatene vil bli sendt til prosjektleder ved Seksjon for arbeidsmedisin, Universitetet i 
Bergen. Videre tilgang til prøveresultatene vil begrenses til det følgende:  

Individuelle resultater Gruppe resultater Mottaker av resultatene 

Ikke anonymisert Avidentifisert, 
men anonymisert 

for mottaker

Anonymisert

Arbeidstaker  X   
Prosjektmedarbeidere ved Seksjon for arbeidsmedisin 
som har undertegnet taushetserklæring 

X   

Analyselaboratoriet ved Haukeland 
Universitetssykehus 

X   

Analyselaboratoriet Departement of Industrial Hygiene 
and Occupational Toxicology, Finnish Institute of 
Occupational Health 

 X  

Arbeidsgiver   X 

4. Jeg ønsker / ønsker ikke å få mine egne resultater og få disse forklart for meg. 

5. Jeg kan til enhver tid trekke meg fra prosjektet og tilbakekalle samtykke. Prøven(e) min(e) vil da bli 
destruert i henhold til Biobanklovens § 14. Likedan kan jeg kreve at helse- og personopplysninger, 
som er innsamlet sammen med prøven(e) eller som er fremkommet ved analyse eller undersøkelse 
av materialet, slettes eller utleveres. Anledningen til å tilbakekalle et slikt samtykke eller å kreve 
destruksjon, sletting eller  utlevering er imidlertid begrenset av Biobanklovens § 14.

Arbeidstakerens signatur _______________________________ Dato _________________ 

SAMTYKKESKJEMA DEL B: PROSJEKTLEDER 

Jeg samtykker i å overholde de ovenfor nevnte forutsetninger beskrevet i samtykkeskjemaets del A. 

Bente E. Moen (prosjektleder) ___________________________________ Dato _______________

Jorunn Kirkeleit (utførende)     ___________________________________ Dato _______________ 
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NAVN:   __________________________________ 
PERSON ID:   _____________   
DOSIMETER ID:   _____________ 
DATO:   _____________

Hvilke prøver (av for eks råolje, produsert vann, gass, annet) er tatt, hvor lang 
tid tok hver prøve og hvor mange prøver er tatt i løpet av skiftet? 

Har du sjekket flotasjonsanlegget i dag? Hvor mange og hvor mange ganger?

Hvilke hovedarbeidsoppgaver har du hatt i ditt område i løpet av dagen 
(avstengningsplaner, avblødninger, ventiljobber og lignende). 

Hvor stor del av dagen har du vært inne? 
 1. i LQ/SKR 
 2. på lab 

Hvor stor del av dagen har du vært på kjellerdekket? 

Har du brukt noe personlig verneutstyr, og eventuelt når (åndedrettsvern, 
hansker)?

Har det hendt uforutsatte hendelser i løpet av dagen, som har gjort at du har 
vært i kontakt med gass, råolje, spillolje, diesel etc.)? 

Har du vært eksponert for andre kjemikalier i løpet av skiftet (avfetting, spray-
bokser), skriv produktnavn. 

REGISTRERINGSSKJEMA

DRIFTSPERSONELL PÅ ………………………………………………

  Appendix 4
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Appendix 5 

SPØRRESKJEMA 

PERSONALIA   
Etternavn, fornavn  
Kontaktadresse  

Telefon
Kjønn  
Fødselsdato  
ARBEIDSHISTORIE
2.1 Nåværende arbeidsgiver 

2.2 Nåværende arbeidssted  

2.3 Hvilkent yrke/tittel har du på dette arbeidsstedet?  
2.4 Hvor lenge har du praktisert i dette yrket i ditt liv?  
Hvilke andre yrker har du hatt?  Og hvor?   
   
   
   
RØYKEVANER 
3.1  Hvor lenge er du vanligvis daglig i røykfylt rom? Antall hele timer: 
3.2  Røyker du selv?  

             Sigaretter daglig? 
             Sigarer/sigarillos daglig? 
             Pipe daglig? 
             Aldri røykt daglig 

Ja    Nei  
Ja    Nei  
Ja    Nei  
(Sett kryss) 

3.3  Hvis du har røykt daglig tidligere, hvor lenge er det siden du sluttet?  
Antall år: 

3. 4  Hvis du røyker daglig nå eller har røykt tidligere:  
            Hvor mange sigaretter røyker eller røykte du  vanligvis daglig? Antall sigaretter: 
            Hvor gammel var du da du begynte å røyke daglig? Alder i år: 
            Hvor mange år til sammen har du røykt daglig? Antall år: 
4. KAFFE/TE/ALKOHOL 

4.1  Hvor mange kopper kaffe/te drikker du daglig? 
Antall kopper daglig: 
Kaffi:
Te:       

4.2  Nyter du alkohol i friperiodene dine? Ja     Nei  
5. BRUK AV MEDISINER 
Med medisiner mener vi alle slags medisiner, både: 
 med og uten resept, naturmedisin, vitaminer og mineraler 
 medisin som svelges, inhaleres eller injiseres, stikkpiller, salver, kremer eller dråper. 
5.1  Bruker du medisiner fast? Hvis ja, hvilke? 

5.2  Har du tatt medisiner de tre siste døgn før prøvetakingen 
       av blod og urin? Hvis ja, hvilke og hvor mye? 

Har du tidligere gjennomgått behandling for kreft (stråling, 
cellegift, m.v.). Hvis ja, hvilken behandling og når? 





Erratum 
 

In paper II “Biological monitoring of benzene exposure for process operators during 

ordinary activity in the upstream petroleum industry”, in the Results , page 10,    

paragraph 1 (line 1),  the pearson’s correlation coefficient for the association between 

the benzene exposure on the third day of sampling and the internal concentration of 

benzene in blood pre-next shift should be r = - 0.08, not - 0.75.  

 

In paper IV “Acute suppression of serum IgM and IgA in tank workers exposed to 

benzene, in the Discussion, page 696, second column, third paragraph, the references 

numbered [5,11] should have been numbered [6,12].  
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