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Abstract

When a message is sent over a channel errors can occur due to noise during the
transmission. So it is very important to know the error correction and detection
capability of the code, which is used to encode the message.

There are different types of channels in terms of the memory. In this work
we consider channels without memory. Depending on the symbol probability,
the channels are symmetric or non-symmetric. The properties of the both types
of channels are discussed. For symmetric channels we present codes which are
good and proper for error detection. Necessary conditions for codes to be good
for error detection are derived and it is shown that large codes are proper for
error detection.

For the non-symmetric channels some optimal binary and ternary codes
which can correct up to t errors and detect all unidirectional errors are con-
structed. The method includes a generalized lower bound for the length of a
code over arbitrary alphabet size. First we make this generalization and then
we give a method which is used for the construction.

A generalization of the Bose-Lin codes, a class of codes detecting asymmetric
errors is made and the minimum weight of an undetected error is determined.
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Chapter 1

Introduction

In recent years, there has been an increasing demand for efficient and reliable
digital data transmission and storage systems. The demand has been acceler-
ated by the emergence of large-scale, high-speed data networks for the exchange,
processing and storage of digital information in many spheres. To design such
systems a merging of communications and computer technology is required. A
major concern of the system designer is the control of errors so that the data
can be reliably reproduced. There are many books and papers devoted to the
error-free data transmission. This introduction follows parts of [19], [23], [3],
[29], as well as an Internet encyclopedia.

1.1 Applications of symmetric and asymmetric

channels

Error-control codes play a central role in communication systems, providing
the ability to protect digital data against errors. The well-developed theory of
error-control codes has found applications in many different areas: data stor-
age, multiple-access communications, synchronization, intentional interference,
secret sharing and authentication. A conventional error-control code is designed
to provide the entire message with the best possible error protection.

Error-control codes are used to send information via a communication chan-
nel. The channel is usually modelled as a triple consisting of an input alphabet,
an output alphabet and for each pair (i, o) of input and output elements, a
transition probability p(i, o). Semantically, the transition probability is the
probability that the symbol o is received given that i was transmitted over the

3



4 Introduction

channel.

Error-detection codes are used in all sorts of digital communication appli-
cations to enable the receiver of a message transmitted over a noisy channel to
determine whether the message has been corrupted during the transmission.

In coding theory, an idealized model of a communication channel that sends
bits is called a binary symmetric channel. It can transmit only one of two
symbols (usually called 0 and 1). (A non-binary channel is capable of trans-
mitting more that two symbols). The probability of a 1 becoming a 0, and of
0 becoming a 1 are assumed to be the same. In this case we say that we have
symmetric errors. The channel is often used by theorists because it is one of the
simplest noisy channels to analyze. Many problems in communication theory
can be reduced to a binary symmetric channel. On the other hand, being able
to transmit effectively over binary symmetric channel can give rise to solutions
also for more complicated channels.

Most classes of codes have been designed for use on symmetric channels.
However, in certain applications, such as optical communications, the error
probability from 1 to 0 is significantly higher than the error probability from 0
to 1. These applications can be modeled by an asymmetric channel, on which
only 1 → 0 transitions can occur (asymmetric errors).

One such example in [29] is the photon communication systems, in which
photons are used to transmit the information. Due to energy losses in the chan-
nel a photon may not be received. Since the number of received photons does
not exceed the number of transmitted photons, the photon channel is an asym-
metric channel.

Further, some other memory systems behave like an unidirectional channel,
on which, even though both 1 → 0 and 0 → 1 errors are possible, all errors
within the message are of the same type (increasing or decreasing) when sending
a certain message (unidirectional errors).

In this work we consider both symmetric and non-symmetric channels. The
codes which are used to encode the message, sent over these channels, are
called respectively symmetric and non-symmetric codes. We investigate which
symmetric codes are good and proper for error detection and give some necessary
conditions for this. We also construct some optimal codes which can correct up



Outline 5

to t errors and detect all unidirectional errors. We have made a generalization
of the Bose-Lin codes, a class of codes detecting asymmetric errors.

1.2 Outline

Since we work with symmetric and non-symmetric channels it is needed to give
some basic definitions and theorems for both channels. The next chapter is
divided into two parts. In the first part we give some basic knowledge on sym-
metric codes, which can be linear and non-linear. Some of the properties of
linear codes are properties also for the non-linear codes, but this is not always
the case. This is discussed in the chapter. The second part is devoted to the
non-symmetric channels. From the codes which are used on these channels we
present t-EC-AUED codes and generalized Bose-Lin codes and some basic no-
tations and definitions are given.

We focus on the error detection capability of q-ary symmetric codes. For the
error detection, codes can be good and proper for error detection. In Chapter
3 necessary conditions for codes to be good for error detection are presented.
Usually to determine whether a code is good for error detection is a very hard
computational problem. Using these conditions it is sometimes much more eas-
ier to see if the code is good or not for error detection. Parts of this chapter
have been presented at the following conferences:

¦ 2005 IEEE International Symposium on Information Theory, Australia,
September 2005, [15],

¦ Annual Workshop of Coding Theory and Applications, Bulgaria, Decem-
ber 2005, [25].

It is usually very difficult to determine whether a code is proper for error
detection, too. But large codes are proper. In Chapter 4 we discuss how large.
The computations are for q-ary symmetric codes. The conditions which we de-
rive when a code is proper or not depend just on the length of the code and the
alphabet size. Parts of this chapter have been presented at the

¦ 2006 IEEE Information Theory Workshop, China, October 2006, [27].

In Chapter 5 we present a function S(m,n), which is the number of sequences
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of length m and weight n. Some very important properties of this function are
derived and they are later used in Chapter 7. Some of the properties of S(m,n)
are published in:

¦ IEEE Transactions on Information Theory, vol. 53, pp. 1188-1193, March
2007, [28].

Another type of channels are the non-symmetric channels which are pre-
sented in this work. In Chapter 6 we construct some binary and ternary codes
which are able to correct up to t errors and detect all unidirectional errors. But
first we give a generalized lower bound for the length of such codes and using it
we construct some optimal codes. The method of construction is described and
the codes are presented (as matrices). Parts of this chapter have been presented
at the following conferences:

¦ Fourth International Workshop on Optimal Codes and Related Topics,
Bulgaria, June 2005, [16],

¦ 2006 International Symposium on Information Theory and its Applica-
tions, Korea, October 2006, [26].

Some other class of codes which is used when we consider non-symmetric
channels are the codes presented by Bose and Lin. This class of codes can de-
tect binary asymmetric errors. Based on this class we make a generalization
to arbitrary alphabet size. We call the codes generalized Bose-Lin codes. The
description of these codes is given in Chapter 7. The case when we have an un-
detectable error is discussed and the minimum weight of an undetectable error
is determined. We take a closer look at the function which presents the maxi-
mum weight of the detected errors. Parts of this chapter have been presented
at the

¦ Fourth International Workshop on Optimal Codes and Related Topics,
Bulgaria, June 2005, [17]

and have been published in the following journal:

¦ IEEE Transactions on Information Theory, vol. 53, pp. 1188-1193, March
2007, [28].
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Finally in Chapter 8 we make a summary of what we have done and discuss
some open problems.
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Chapter 2

Basics on Error-Control
Channels

As it was mentioned in the introduction, channels can be divided into channels
without memory and channels with memory. In this thesis we work just with
channels without memory. These channels can be symmetric or non-symmetric
(asymmetric and unidirectional) depending on the symbol transition probabil-
ity.

2.1 Symmetric channel

The main problem when a message is transmitted over a channel is that some
errors may have occurred during the transmission because of noise. The basic
idea is to have a redundancy which is used to detect and, for some applications,
to correct the errors. First the information should be encoded, then sent through
the channel and then decoded by the receiver. We first focus on the encoding.
Let Fq = {0, 1, ..., q − 1}. The message will be encoded into vectors of symbols
from Fq. Suppose that we have a set L of M possible messages which can be
sent. An (n,M ; q) code is a subset of the set F n

q , containing M vectors with
length n, where F n

q is the set of all vectors of length n with symbols from Fq.
An encoding is one-to-one function from L to the code. The elements of the
code are called codewords.

9



10 Basics on Error-Control Channels

2.1.1 Basic terms

Definition 2.1.1 The Hamming weight wH(x) of a vector x ∈ F n
q is the

number of non-zero positions in x, that is

wH(x) = #{i | 1 ≤ i ≤ n and xi 6= 0}.

Definition 2.1.2 The Hamming distance dH(x,y) between two vectors x,y ∈
F n

q is the number of the positions where they differ, that is

dH(x,y) = #{i | 1 ≤ i ≤ n and xi 6= yi}.

It follows that

dH(x,y) = wH(x− y).

When a vector x is sent and e errors have occurred during the transmission,
then the received vector y will differ from x in e positions. So, d(x,y) = e.

Let C be an (n, M ; q) code, then

Definition 2.1.3 The minimum distance of a code C is

dmin(C) = min{dH(x,y) | x,y ∈ C,x 6= y}.

An (n,M ; q) code with minimum distance dmin is also called an (n,M, dmin; q)
code. Very often instead of dmin we just write only d, so the code will be denoted
as (n,M, d; q) code.

Distance and weight distribution

Definition 2.1.4 Let C be an (n, M ; q) code and

Ai = Ai(C) =
1

M
#{(x,y) | x,y ∈ C and dH(x,y) = i}.

The sequence A0, A1, ..., An is called the distance distribution of C and

AC(z) =
n∑

i=0

Aiz
i

is the distance distribution function of C.
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Note that, if the minimum distance of the code C is dmin, then A0 = 1;
Ai = 0, for 0 < i < dmin and Admin

> 0.

Definition 2.1.5 Let C be an (n,M ; q) code and denote by Aw
i the number of

codewords with weight i, that is

Aw
i = Aw

i (C) = #{x ∈ C | wH(x) = i}.

The sequence Aw
0 , Aw

1 , ..., Aw
n is called the weight distribution of C and

Aw
C(z) =

n∑
i=0

Aw
i zi

is the weight distribution function of C.

Error detection

Error detection is the ability to detect errors which are made due to noise dur-
ing a transmission from the transmitter to the receiver.

Suppose that x ∈ C is sent over a noisy channel and the received vector
y ∈ F n

q differs from x in e positions which means that e errors have occurred
(dH(x,y) = e). Let the minimum distance of the code C be dmin. This means
that any two different codewords from C differ in at least dmin positions. So if
we have dmin − 1 or fewer errors, the received vector will be not a codeword.
Then the receiver detects that the received vector y is not a codeword and the
errors are detected. Hence:

Theorem 2.1.1 A code C with minimum distance dmin is capable of detecting
dmin − 1 or fewer errors. [23]

So a code with minimum distance dmin guarantees detection of all dmin − 1
or fewer errors. It is also capable of detecting a large fraction of dmin or more
errors. In fact, an (n,M ; q) code is capable of detecting qn−M errors. From all
qn possible vectors, there are M vectors that are identical to the M codewords.
We are sending a codeword x. If we receive a vector y ∈ F n

q , not identical
to a codeword, we have an error. There are exactly qn − M vectors that are
not identical to the codewords of an (n,M ; q) code. So these qn − M errors
are detectable. But if the vector y is identical to any of the codewords, but
different from the sent one x, the transmitted codeword x is altered into an-
other codeword y. In this case the decoder accepts the received vector y as
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the transmitted codeword and performs an incorrect decoding. Such an error
is called an undetectable error. Therefore there are M − 1 undetectable errors.

Let C be used only for error detection on a discrete memoryless channel
with q inputs and q outputs. Any transmitted symbol has a probability 1−p of

being received correctly and a probability
p

q − 1
of being transformed into each

of the other q− 1 symbols, where p is the transition probability of the channel.
The probability that the decoder will fail to detect errors can be computed from
the distance distribution of C. Let Pue(C) be the probability of an undetected
error. Then

Pue(C) =
n∑

i=1

Ai

(
p

q − 1

)i

(1− p)n−i. (2.1)

To compute the probability of undetected error is equivalent to compute
the distance distribution of the code, which is known only for a few classes of
codes and it is known to be a hard computational problem. An easier problem
is to find some bounds on Pue(C). Even if the probability of undetected error is
known, a criterion is needed to decide if the code is suitable for error detection.
The following criteria were introduced in [21].

Definition 2.1.6 If

Pue(C, p) ≤ Pue

(
q − 1

q

)
=

M − 1

qn

for all p ∈
[
0,

q − 1

q

]
, then C is good for error detection.

Definition 2.1.7 If Pue(C, p) is an increasing function in p ∈
[
0,

q − 1

q

]
, the

code is proper for error detection.

Definition 2.1.8 The code C is bad for error detection if

Pue(C, p) >
M − 1

qn

for some p ∈
[
0,

q − 1

q

]
.
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Definition 2.1.9 The code C is ugly for error detection if

Pue(C, p) ≥ M

qn

for some p ∈
[
0,

q − 1

q

]
.

Clearly, being ugly is a stronger condition than not bad. We note that most
codes are either good or ugly, but a code may be neither.

To determine whether a code is good, proper, bad or ugly for error detection,
using the definitions above, it is equivalent to compute the distance distribution
and the probability of undetected error, which is, as it was said before, a very
hard computational problem for most of the codes. In the next chapter we
derive some conditions which show if the code is good or not for error detection
and the conditions depend just on the size, the minimum distance of the code
and a lower bound on Ad. In Chapter 4 we discuss proper codes.

Error correction

Another question is how many errors a code is able to correct if it is used for
random-error correction. Error correction has the additional feature that en-
ables localization of the errors and correcting them.

Let C has minimum distance dmin, which is even or odd, so:

2t + 1 ≤ dmin ≤ 2t + 2

for some integer positive t.

Let x, z ∈ C and y ∈ F n
q . Again x is the transmitted codeword and y is the

received vector. The Hamming distance among x, y and z satisfies the triangle
inequality:

dH(x,y) + dH(y, z) ≥ dH(x, z). (2.2)

Suppose that t′ errors have occurred during the transmission, so:

dH(x,y) = t′. (2.3)

Since the minimum distance of the code is dmin it follows that

dH(x, z) ≥ dmin ≥ 2t + 1. (2.4)
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If t′ ≤ t, then d(y, z) > t, using (2.2), (2.3), (2.4).

This inequality says that if t or fewer errors occur during the transmission,
then the received vector y is closer (in Hamming distance) to the sent codeword
x than to any other codeword in C. Which means that y will be decoded into
x, which is the actual transmitted codeword. The decoding will be correct and
the errors will be corrected.

Theorem 2.1.2 A code with minimum distance dmin guarantees correction of
t = b(dmin − 1)/2c or fewer errors. The parameter t is called the random-
error-correction capability of the code and the code is t-error-correcting
code. [23]

The code is not capable of correcting all l errors, l > t, for there is at least
one case in which l errors result in a received vector that is closer to an incorrect
codeword than to the transmitted codeword. Usually a code with random-error-
correcting capability t is capable of correcting qn/M errors, including those with
t or fewer errors.

2.1.2 Linear codes

The symmetric codes can be divided into two in terms of the vector set. They
can be linear or non-linear. For linear codes Fq is identical to the Galois field
GF (q), so F n

q is a vector space, where q is some prime power. The most impor-
tant codes for a symmetric channel are the linear codes.

Definition 2.1.10 A linear code is a k-dimensional subspace of the vector
space F n

q .

The code is denoted by [n, k; q], where n is the length of the codewords, k is
the dimension of the code and q is the alphabet size. If the minimum distance
of the code is dmin, the code can be denoted also as [n, k, dmin; q] or [n, k, d; q].
If q = 2 we just write [n, k], [n, k, dmin] or [n, k, d] code, if the minimum distance
is known. For a linear code the size of the code is M = qk.

It is obvious that for linear codes we have

Ai = Aw
i and AC(z) = Aw

C(z).

So for convenience, when we consider linear codes we drop w in the notations
for weight distribution and weight distribution function and we can use just one



Symmetric channel 15

of the terms: distance or weight distribution and distance or weight distribution
function. So in the formula for the probability of undetected error Pue(C, p)
instead of distance distribution we can use the weight distribution.

Generator matrix

Since a linear code C is a k-dimensional subspace of F n
q , the vector space can

be presented in terms of k vectors g1,g2, ...,gk as a basis and then C is the set
of all possible linear combinations of these vectors.

Definition 2.1.11 A generator matrix G of the code C is a k × n matrix
whose rows g1,g2, ...,gk are a basis.

Dual code

The space of all vectors which are orthogonal to all the codewords of the linear
code C form a new linear code. Since the ground field is finite it is possible for
all the codewords in a code to be orthogonal to themselves.

Definition 2.1.12 If C is an [n, k; q] code, then the dual code C⊥ of C is an
[n, n− k; q] code defined by:

C⊥ = {v ∈ F n
q | v · x = 0, ∀x ∈ C},

where

x · y = x1y1 + x2y2 + ... + xnyn ∈ Fq,

for all x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn).

Parity-check matrix

Definition 2.1.13 A parity-check matrix H of a code C is an (n− k)× n
matrix of rank n− k which is a generator matrix of the dual code.

Note that GH t = 0, where H t is the transposed of H.

Systematic code

Definition 2.1.14 A code C is called systematic if the generator matrix has
the form G = (Ik|P ), where Ik is a k×k identity matrix and P is some k×(n−k)
matrix.
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Since (Ik|P )(−P t|In−k)
t = −P + P = 0, H = (−P t|In−k) is a parity-check

matrix of C.

Equivalent codes

Definition 2.1.15 If G is any matrix with entries in a field Fq, then replacing
any row of G by (a) its sum with another row, or (b) its scalar multiple with
any non-zero element of Fq, is called an elementary row operation. If G
is any matrix with entries in a field Fq then (a) swapping any two columns, or
(b) replacing any column of G by its scalar multiple with any non-zero element
of Fq, is called a simple column operation.

Definition 2.1.16 If G is a generator matrix for a linear code C and C ′ is the
linear code with generator matrix G′, where G′ is any matrix obtained from G
by elementary row operations or simple column operations, then we say that the
codes C and C ′ are equivalent.

If C and C ′ are equivalent linear codes then Ai(C) = Ai(C
′). For the study

of the weight distribution, we may therefore, without loss of generality assume
that the code is systematic.

2.1.3 Non-linear codes

Linear codes satisfy the property that any sum of codewords gives again a code-
word. But not every code is linear. We have many more non-linear codes than
linear ones.

When we have a linear code we have a linear vector space with a basis and
to describe the code we need only k codewords, since linear combinations of
these k codewords span the k-dimensional subspace. However with a non-linear
code we need to list all the codewords, that is M . This is part of the motivation
for working with linear codes instead of non-linear codes.

On the other hand, the main problem with linear codes is that the number
of codewords for a given code length is restricted. One cannot just add a new
vector which is at the appropriate distance from all the other codewords, one
has also to check the sum of this vector with all codewords in the code for
the minimum distance property. The best non-linear codes for a given length
usually have more codewords than their linear counterparts. Thus information
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can be sent more quickly or stored more compactly using non-linear codes.

It turns out that many properties of non-linear codes are very similar to
those of linear codes.

Let Fq = {0, 1, ...q − 1}, where q is some positive number and let M be the
set of all possible messages which can be sent.

Definition 2.1.17 A non-linear (n,M ; q) code is a subset of F n
q , containing

M vectors with length n.

For non-linear codes the weight and the distance distribution are not neces-
sary the same. We may have that:

Ai 6= Aw
i and AC(z) 6= Aw

C(z).

The necessary conditions for codes to be good for error detection, which are
given in the next chapter, are valid for linear and non-linear codes.

2.2 Non-symmetric channels

As it was mentioned in the introduction there are other channels than the sym-
metric channels. Examples are the asymmetric and the unidirectional channels.

Let Fq = {0, 1, 2, ..., q − 1} for q ≥ 2.

Definition 2.2.1 The q-ary asymmetric channel is the channel on which
the only transitions that can occur are x → y, where 0 ≤ y ≤ x ≤ q − 1.

If all y ≤ x are possible as a received symbol, we call the channel complete.
As an example of a noncomplete channel is the channel introduced by Ahlswede
and Aydinian [2], on which when x is sent only 0 and x can be received. In
this work we assume that the channel is complete, when we considering an
asymmetric channel.

Definition 2.2.2 The q-ary unidirectional channel is the channel on which
all errors within a codeword are of the same type (all increasing or all decreas-
ing).

The codes, which are used to encode the message, sent over these channels,
are called q-ary asymmetric codes and q-ary unidirectional codes, respectively.
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Parameters of the non-symmetric code

Let C be a code over F n
q . Let x,y ∈ F n

q and let N(x,y) denote the number
of positions i where xi > yi. If N(y,x) = 0 the vector x is said to cover the
vector y (x > y). If x ≥ y or y ≥ x the vectors x and y are said to be ordered,
otherwise they are unordered. The Hamming distance dH(x,y) between x and
y is the sum of N(x,y) and N(y,x):

dH(x,y) = N(x,y) + N(y,x) = #{i | xi 6= yi}.

Equivalent codes

Two non-symmetric codes can also be equivalent. We say that two codes are
called equivalent if they differ only in the order of the coordinates. Hence
equivalent codes have the same parameters n, M and dmin.

Types of errors, error correction and error detection

There are three different types of errors: symmetric, asymmetric and unidirec-
tional errors. When a codeword x ∈ C is sent and a vector y ∈ F n

q is received,
we say that x has suffered t asymmetric errors if x covers y and dH(x,y) = t,
that x has suffered t unidirectional errors if x covers y or is covered by y and
dH(x,y) = t, and that x has suffered t symmetric errors if dH(x,y) = t. [29]

In [29] are constructed three kinds of spheres, with which help are explained
the error correction and detection capabilities of the code. Let the spheres have
a radius t and x ∈ F n

q :

SSy(x, t) = {y ∈ F n
q |dH(x,y) ≤ t},

SU(x, t) = {y ∈ F n
q |dH(x,y) ≤ t and (x ≤ y or y ≥ x)},

SAs(x, t) = {y ∈ F n
q |dH(x,y) ≤ t and x ≥ y}.

Each sphere SX(x,y) contains the vectors that can be received when a
codeword x is sent suffering t or fewer errors of type X (X=Sy(mmetric),
X=As(ymmetric) or X=U(nidirectional), respectively). Hence

Definition 2.2.3 A code C can correct up to t errors of type X if the spheres
SX(x, t) are disjoint for any two distinct codewords. [29]

Definition 2.2.4 A code C can detect up to t errors of type X if the sphere
SX(x, t) does not contain codewords different from x for all x ∈ C. [29]
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From the error detection point of view, the asymmetric and the unidirec-
tional codes are equivalent, that is, a code capable of detecting up to t asym-
metric errors is also capable of detecting t unidirectional errors.

Necessary and sufficient conditions for correcting and detecting errors of
each of the three types are known [29]. However, sometimes a combination
of correction and detection is required or even correction and/or detection of
errors of different type. In this work in Chapter 6 we will discuss codes which
are able to correct up to t symmetric errors and detect all unidirectional errors.
Such a code is called a t-EC-AUED code.

2.2.1 t-EC-AUED codes

Binary t-EC-AUED codes, in particular for t = 1, have been extensively stud-
ied. We construct some optimal binary and ternary t-EC-AUED codes for t ≥ 1.

A characterization when a code is a t-EC-AUED code is known, [9]:

Theorem 2.2.1 A code C is a t-EC-AUED code if and only if N(x,y) ≥ t+1
and N(y,x) ≥ t + 1, for all distinct x,y ∈ C.

There are many papers describing constructions of t-EC-AUED codes (see
e.g. [3]). Let A(n, t) denote the maximal size of a t-EC-AUED code of length
n. We give a brief survey of bounds on the number of codewords in a binary
t-EC-AUED code:

¦ Lower bounds:

Graham and Sloan [18]: A(n, t) ≥
(

n
bn/2c

)

(q + 1)t
, t > 1, where q is the smallest prime

power not smaller than n.

Bose and Rao [9]: A(n, 1) ≥
(

n
bn/2c

)

(n + 1)
.

¦ Upper bounds:

Lin and Bose [22]: A(n, 1) ≤ 2

n

(
n

bn/2c
)
.

Zhang and Xia [30]: A(n, t) ≤
(t + 1)

(
n

dn/2e
)

Ω(n, t)
, 0 ≤ t ≤ n, where Ω(n, t) =

∑t
i=0

∑i
j=max(0,2i−t)

(
n−2i

t−2i+j

)(
2i
j

)
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Let nq(a, t + 1) denote the length of the shortest t-EC-AUED code of size a
over F n

q . We call a t-EC-AUED code of length nq(a, t + 1) and size a optimal.

Böinck and van Tilborg gave a Plotkin type lower bound for the length of a
binary t-EC-AUED code [4]:

n2(a, t + 1) ≥
⌈(

4− 2

da/2e
)

(t + 1)

⌉
.

In Chapter 6 we make a generalization of this bound and using it and some
lemmas, which we will present, we construct some optimal binary and ternary
t-EC-AUED codes.

We remark that for t = 0 it has been shown by de Bruijn et al. [10] that for
given n the largest 0-EC-AUED code of length n is the code of all S(n, dn(q −
1)/2e) codewords of weight dn(q−1)/2e), where the function S(x, y) is presented
in Chapter 5 and denotes the number of vectors with length x and weight y.
There is no simple formula for S(n, dn(q − 1)/2e) in general, for q = 2 it is
S(n, dn/2e) =

(
n

dn/2e
)
. For larger q the size of the codes is discused in Chapter

6.

2.2.2 Generalized Bose-Lin codes

We have an undetected error if a codeword is sent and another codeword, dif-
ferent from the sent one, is received. Bose and Lin [7] introduced a class of
systematic binary codes for detection of asymmetric errors. The probability of
undetected error for these codes was determined in [20]. The class of codes is
conjectured to contain the best possible systematic binary codes for error de-
tection, but this has not been verified.

The only known systematic codes for detecting q-ary asymmetric errors for
arbitrary q are the codes introduced by Bose and Pradhan [8] and the codes
introduced by Bose, Elmougy, and Tallini [5], [12]. For q = 2, both these classes
of codes are subclasses of the Bose-Lin codes.

In Chapter 7 we introduce a more general class of q-ary systematic error
detecting codes. The codes by Bose and Pradhan [8] and the codes by Bose,
Elmougy, and Tallini [5], [12] are subclasses. For q = 2, our class of codes
coincides exactly with the Bose-Lin codes. Therefore, we call our class of codes
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Generalized Bose Lin Codes (GBL codes). Since the binary codes are conjec-
tured to contain the best possible systematic codes, this may be the case also
for the GBL codes.

The undetectable errors for GBL codes are characterized. The undetectable
errors of minimum weight are explicitly described. Chapter 7 follows parts of
the presentation in [20]. Some of the generalization is more or less straight
forward, in other parts, the generalization presents new problems.
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Chapter 3

Necessary Conditions for Codes
to be Good for Error Detection

This and the next chapter are devoted to the symmetric channel. In this chapter
we present bounds on the length of codes to be good for error detection on a
q-ary symmetric channel. The purpose is to show that, for given κ and d, there
exists a value µ(d, κ) such that if n ≥ µ(d, κ) and C is an (n,M, d; q) code such
that Ad ≥ A, where ln A = ln M − κ, then C is not good for error detection.
Further, we give approximations of µ(d, κ).

3.1 Existence of µ(d, κ)

The probability of undetected error for C on a symmetric channel with symbol
error probability p is given by (see e.g. [19]) and it was presented as (2.1) in
Chapter 2. Define

P⊥
ue(C, p) =

1

M

n∑
i=0

Ai(1−Qp)i − (1− p)n, (3.1)

where Q = q/(q − 1).

If C is linear,

Pue(C
⊥, p) = P⊥

ue(C, p). (3.2)

Recall that C is good if Pue(C, p) ≤ (M − 1)q−n for all p ∈ (0, (q − 1)/q), C
is bad (for error detection) if Pue(C, p) > (M−1)q−n for some p ∈ (0, (q−1)/q),
and C is ugly if Pue(C, p) ≥ Mq−n for some p ∈ (0, (q − 1)/q).

23
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Lemma 3.1.1 Let C be an (n,M ; q) code and suppose that P⊥
ue(C, p) ≥ 1/M

for some p ∈ (0, (q − 1)/q). Define π by

1−Qp =
π

(q − 1)(1− π)
.

Then Pue(C, π) ≥ Mq−n.

Proof: We have

1− p =
1

q(1− π)

and so

0 ≤ MP⊥
ue(C, p)− 1

=
n∑

i=1

Ai(1−Qp)i −M(1− p)n

= (1− π)−n

{
n∑

i=1

Ai

(
π

q − 1

)i

(1− π)n−i −Mq−n

}

= (1− π)−n{Pue(C, π)−Mq−n}.

Hence Pue(C, π) ≥ Mq−n. 2

Since π ∈ (0, (q − 1)/q), we immediately get the following corollary.

Corollary 3.1.1 If C is an (n,M ; q) code and P⊥
ue(C, p) ≥ 1/M for some p ∈

(0, (q − 1)/q), then C is ugly.

Corollary 3.1.2 If C is linear, then C is ugly if and only if C⊥ is ugly.

Proof: The if part follows directly from (3.2) and Corollary 3.1.1. Since C⊥⊥ =
C we get the if and only if. 2

Remark 3.1 For q = 2, Corollary 3.1.2 is Theorem 3.4.2, part 1 in [19]. The
proof for general q given above is a generalization of the proof for q = 2 given
in [19].

Remark 3.2 It is not the case, for linear codes, that C bad implies that C⊥ is
bad.
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We want to find sufficient conditions for a code to be ugly. For a linear code,
a general lower bound on Ad is q − 1, and for a non-linear code a general lower
bound on Ad is 2/M . Now, let A be some positive number. We will consider
(n,M, d; q) codes for which Ad ≥ A. In the rest of the chapter we also use the
notation

κ = ln(M/A) = ln M − ln A.

By definition,

P⊥
ue(C, p) ≥ 1

M
+

A

M
(1−Qp)d − (1− p)n.

Hence, if
A

M
(1−Qp)d ≥ (1− p)n, (3.3)

then P⊥
ue(C, p) ≥ 1

M
. Taking logarithms in (3.3), we get the equivalent condition

−κ + d ln(1−Qp) ≥ n ln(1− p).

Combining this with Corollary 3.1.1, we get the following lemma.

Lemma 3.1.2 If C is an (n,M, d; q) code and

n ≥ h(p) =
d ln(1−Qp)− κ

ln(1− p)
,

then C is ugly.

Any choice of p, 0 < p < (q − 1)/q now gives a proof of the existence of a
µ(d, κ) such that if n ≥ µ(d, κ) and C is an (n,M, d; q) code with Ad ≥ A, then
C is ugly for error detection. To get the strongest result from the lemma, we
want to find the p that minimizes h(p). We can not find a closed formula for
this, but we consider approximations.

We will use the notations

f(p) =
ln(1−Qp)

ln(1− p)
, and g(p) =

−1

ln(1− p)
.

Then

h(p) = d f(p) + κ g(p). (3.4)
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The function f(p) is increasing on (0; (q − 1)/q), it approaches the value Q
when p → 0+, and it approaches infinity when p → (q − 1)/q−. Moreover,

f ′(p) =
−Q(1− p) ln(1− p) + (1−Qp) ln(1−Qp)

(1− p)(1−Qp) ln(1− p)2
,

and

f ′′(p) =
f1(p)

−(1− p)2(1−Qp)2(ln(1− p))3
,

where

f1(p) = Q2(1− p)2(ln(1− p))2 + 2Q(1− p)(1−Qp) ln(1− p)

−2(1−Qp)2 ln(1−Qp)− (1−Qp)2 ln(1− p) ln(1−Qp) > 0

for all p ∈ (0; (q − 1)/q). Hence f is convex on (0; (q − 1)/q). Similarly, the
function g(p) is decreasing on (0; (q−1)/q), it approaches infinity when p → 0+,
and it takes the value −1/ ln q for p = (q − 1)/q. Moreover,

g′(p) =
−1

(1− p) ln(1− p)2
=

−(1−Qp)

(1− p)(1−Qp) ln(1− p)2
,

g′′(p) =
−(2 + ln(1− p))

(1− p)2(ln(1− p))3
> 0

for all p ∈ (0; (q − 1)/q), and so g(p) is also convex on (0; (q − 1)/q). This
implies that the combined function h(p) is also convex on (0; (q − 1)/q) since
κ > 0, and it takes its minimum somewhere in (0; (q − 1)/q). We denote this
minimum by µ(d, κ).

From Corollary 3.1.1 and Lemma 3.1.2 we get the following necessary con-
dition for a code to be good.

Corollary 3.1.3 If C is good for error detection, then n < µ(d, κ).

We next consider d ≥ κ and κ ≥ d separately. In particular, we find
approximations for µ(d, κ) when d À k or k À d. We denote by pm the value
of p where h(p) has its minimum; this minimum is by definition µ(d, κ).
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3.2 On µ(d, κ) when d ≥ κ

In this section, we let κ = αd, where α is a parameter, 0 ≤ α ≤ 1. Then

h(p) = d
ln(1−Qp)− α

ln(1− p)

and

h′(p)

d
=

−Q(1− p) ln(1− p) + (1−Qp) ln(1−Qp)

(1− p)(1−Qp) ln(1− p)2

− α

(1− p) ln(1− p)2
.

In particular h′(p) = 0 if (and only if)

α =
−Q(1− p) ln(1− p) + (1−Qp) ln(1−Qp)

1−Qp
. (3.5)

We want to solve this for p in terms of α. There is no closed form of this
solution. However, we can find good approximations. For α → 0+, we see that
p → 0 and h(p) → Q. We will first study this important case in more details.
We note that α → 0+ implies that d → ∞. The parameter κ may also grow,
but then at a slower rate (since d/κ → 0).

Theorem 3.2.1 Let

y =

√
α

2Q(Q− 1)
.

There exist numbers ai and bi for i = 1, 2, . . . such that, for any r ≥ 0,

pm =
r∑

i=1

aiy
i + O(yr+1),

and

µ(d, αd) = dQ

{
1 + 2(Q− 1)

r∑
i=1

biy
i + O(yr+1)

}

when y → 0 (that is α → 0). The first few ai and bi are given by the following
table:

a1 = 2,

a2 = −(8Q + 2)/3,

a3 = (26Q2 + 22Q− 1)/9,



28 Necessary Conditions for Codes to be Good for Error Detection

a4 = −(368Q3 + 708Q2 − 12Q + 8)/135,

a5 = (1252Q4 + 4600Q3 + 480Q2 + 100Q− 23)/540,

a6 = −(15424Q5 + 98192Q4 + 33568Q3 + 3328Q2 − 1600Q + 304)/8505,

a7 = (449608Q6 + 4667496Q5 + 3382044Q4 + 368432Q3 − 168006Q2

+67866Q− 11237)/340200,

a8 = −(23104Q7 + 375664Q6 + 483984Q5 + 89744Q4 − 25840Q3 + 16272Q2

−5648Q + 832)/25515,

a9 = (43153232Q8 + 1068845248Q7 + 2220153152Q6 + 728346016Q5

−119425048Q4 + 112747312Q3 − 61064752Q2 + 18694504Q

−2482411)/73483200,

b1 = 1,

b2 = (2Q− 1)/3,

b3 = (2Q2 − 2Q− 1)/18,

b4 = −2(Q− 2)(2Q− 1)(Q + 1)/135,

b5 = (4Q4 − 8Q3 − 48Q2 + 52Q− 23)/1080,

b6 = (16Q5 − 40Q4 + 352Q3 − 488Q2 + 464Q− 152)/8505,

b7 = −(1112Q6 − 3336Q5 + 22116Q4 − 38672Q3 + 61806Q2

−43026Q + 11237)/680400,

b8 = (16Q7 − 56Q6 + 552Q5 − 1240Q4 + 3128Q3 − 3480Q2

+1912Q− 416)/25515,

b9 = −(9136Q8 − 36544Q7 + 1853248Q6 − 5431840Q5 + 21387736Q4

−33765040Q3 + 29284048Q2 − 13300744Q + 2482411)/146966400.

Proof: First we note that α = 2Q(Q− 1)y2 and so

h(p) = d
ln(1−Qp)− 2Q(Q− 1)y2

ln(1− p)
,

and

h′(p) = d
H(p, y)

(1− p)(1−Qp)(ln(1− p))2
,

where

H(p, y) = −Q(1− p) ln(1− p) + (1−Qp) ln(1−Qp)− 2Q(Q− 1)y2(1−Qp).

Hence h′(p) = 0 if H(p, y) = 0. Taking the Taylor expansion of H(
∑

aiy
i, y)

we get

H
(∑

aiy
i, y

)
=

a2
1 − 4

4
y2 +

a1

6
(Qa2

1 + a2
1 + 6a2 + 12Q)y3 + · · ·



On µ(d, κ) when d ≥ κ 29

All coefficients for i ≤ r should be zero. In particular, the coefficient of y2

shows that a2
1 = 4. Since a1y

2 is the dominating term in the expression for p
when y is small and p > 0, we must have a1 > 0 and so a1 = 2. Next the
coefficient of y3 shows that a2 = −(16Q + 4)/6. In general, we get equations in
the ai which can be used to determine the ai recursively. The recursions seems
to be quite complicated in general and we have not found an explicit general
expression for ai. Substituting the expression for p into h(p) and taking Taylor
expansion, we get the expression for µ(d, κ). 2

Remark 3.3 We do not know when the infinite series
∑∞

i=1 aiy
i and

∑∞
i=1 biy

i

converge (we believe that they always do, but it may depend on q).

Assuming that κα → 0 and taking the first three terms of approximation,
we get

µ(d, κ) ≈ dQ +
√

2dκQ(Q− 1) +
2Q− 1

3
κ, (3.6)

(the other terms go to zero with y).

Because of the big O term in Theorem 3.2.1, we do not know if the approxi-
mation is smaller or larger than the exact value. Only for approximations larger
than µ(d, κ) we can be sure that the corresponding code is ugly. We will call
such approximations upper approximations.

By definition, h(p) is an upper approximation for any p. One way to get
a good upper approximation is to choose for p a good approximation for pm.
For example, taking the first term in the approximation for pm, that is, p =√

2α/(Q(Q− 1)), we get

µ(d, κ) ≤ h
(√

2α/(Q(Q− 1))
)

. (3.7)

Example 3.2.1 Consider q = 2, A = 1 (valid for all linear codes), d = 1000
and M = 4. Then κ = 2 ln 2 and α ≈ 0.001386. Solving h′(p) = 0 numeri-
cally, we get p ≈ 0.0352540 and µ(1000, 2 ln 2) ≈ 2075.8565430. Taking one,
two, three, and four terms respectively in the expression for µ(1000, 2 ln 2) in
Theorem 3.2.1, as well as the bound (3.7), we get the following approximations:

no. of terms value
1 2000
2 2074.4659482
3 = (3.6) 2075.8522426
4 2075.8565439

(3.7) 2075.9808954
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We have computed the integers dµ(d, κ)e, d(3.6)e, and d(3.7)e for a number
of different values of d. When d is large then these values differ by at most one,
and when d decreases the difference between the values increases slowly.

The approximation (3.6) is good for α ≈ 0. When α > 0, the terms after
the third term do not go to zero. However, the approximation in Theorem
3.2.1 may still be quite good. We have made some numeric computations that
illustrate this. We use the following notations:

η(α) =
µ(d, αd)

d
and νr(α) = Q + 2Q(Q− 1)

r∑
i=1

biy
i (3.8)

From the table in Theorem 3.2.1, we see that b2 > 0 for all Q (remember
that Q = q/(q − 1) ∈ (1, 2]). Further, b3 > 0 for q = 2 and q = 3, but b3 < 0
for q ≥ 4. Finally, b4 = 0 for q = 2 and b4 > 0 for q > 2. Hence, for all α > 0

for q = 2, ν2(α) < ν3(α) = ν4(α),
for q = 3, ν2(α) < ν3(α) < ν4(α),
for q ≥ 4, ν3(α) < min{ν2(α), ν4(α)}.

A simple calculation shows that for q ≥ 4 we have ν4(α) > ν2(α) if and only
if

α > ωq
def
=

1352(2Q2 − 2Q− 1)2Q(Q− 1)

2 · 182(Q− 2)2(2Q− 1)2(Q + 1)2
.

When q increases, the value of ωq increases from ω4 ≈ 0.023 to ω9 ≈ 0.378
and then decreases and approaches zero when q →∞.

Example 3.2.2 In this example we consider q = 2. For all values of α we have
computed, ν2(α) < η(α) < ν3(α). Some examples are given in the following
table.

α η(α) ν2(α)− η(α) ν3(α)− η(α)
10−6 2.00200100008 −8.33 · 10−11 1.28 · 10−17

10−3 2.06424818804 −2.63 · 10−6 3.95 · 10−10

0.1 2.73505913571 −2.60 · 10−3 3.16 · 10−5

1 5.07687209474 −7.68 · 10−2 6.46 · 10−3

10 20.16721044856 −1.84 7.93 · 10−1

We see that ν3(α) gives a quite good upper approximation to η(α) for all α ≤ 1
and even for larger values of α.
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Example 3.2.3 Now, consider q = 10. We have ω10 ≈ 0.37435. For all values
of α we have computed, ν3(α) < η(α) < min{ν2(α), ν4(α)}. Some examples are
given in the following table.

α η(α) ν2(α)− η(α) ν3(α)− η(α) ν4(α)− η(α)
10−6 1.11160842243 8.41 · 10−11 −1.37 · 10−13 2.21 · 10−16

10−3 1.12722947097 2.53 · 10−6 −1.31 · 10−7 6.63 · 10−9

0.1 1.30724978395 1.74 · 10−3 −9.26 · 10−4 4.50 · 10−4

0.37435 1.55839493272 9.26 · 10−3 −1.00 · 10−2 9.26 · 10−3

1 1.98651890138 2.89 · 10−2 −5.53 · 10−2 8.23 · 10−2

10 6.50984287366 2.47 · 10−1 −2.42 11.345

Also for q = 10, we get good upper approximations even for α = 10.

3.3 On µ(d, k) when κ ≥ d

In this section, we let d = βκ, where β is a parameter, 0 ≤ β ≤ 1. Then

h(p) = κ
β ln(1−Qp)− 1

ln(1− p)

and

h′(p)

κ
= β

(−Q(1− p) ln(1− p) + (1−Qp) ln(1−Qp))

(1− p)(1−Qp) ln(1− p)2

= − 1

(1− p) ln(1− p)2
.

In particular h′(p) = 0 if (and only if)

β =
1−Qp

−Q(1− p) ln(1− p) + (1−Qp) ln(1−Qp)
. (3.9)

We want to solve this for p in terms of β, but again there is no closed form
of this solution. We first consider approximations for β → 0+. This implies
that κ → ∞; d may also increase, but then at a slower rate. For β → 0+, we
see that pm → 1/Q (that is, 1−Qpm → 0) and h(pm) → κ/ ln q.

Theorem 3.3.1 Let

λ = ln q and Λ = ln(βλ/(q − 1)).
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There exist polynomials Ai(x) and Bi(x) for i = 0, 1, 2, . . . such that, for any
r ≥ 0,

1−Qpm =
λ

q − 1

r∑
i=1

Ai(Λ)βi + O(βr+1(ln β)deg Ar+1),

and

µ(βκ, κ) =
κ

λ

{
r∑

i=0

Bi(Λ)βi + O(βr+1(ln β)deg Br+1)

}

for β → 0. The first few Ai(x) and Bi(x) are given by the following table:

A1(x) = x + λ− 1,

A2(x) = (2x2 + (4λ− 2)x + 2λ2 − 3λ)/2,

A3(x) = (6x3 + 3(6λ− 1)x2 + 3(6λ2 − 5λ− 2)x + 6λ3 − 11λ2 + 3)/6,

A4(x) = (12x4 + (48λ + 4)x3 + (72λ2 − 24λ− 30)x2

+(48λ3 − 52λ2 − 30λ + 12)x− 25λ3 + 12λ4 + 12λ + 2)/12,

A5(x) = (120x5 + (600λ + 170)x4 + (1200λ2 + 80λ− 460)x3

+(1200λ3 − 580λ2 − 990λ)x2

+(600λ4 − 770λ3 − 520λ2 + 300λ + 220)x

+120λ5 − 274λ4 + 175λ2 + 70λ− 50)/120,

A6(x) = (120x6 + (720λ + 324)x5 + (1800λ2 + 720λ− 520)x4

+(2400λ3 + 40λ2 − 1900λ− 460)x3

+(1800λ4 − 1110λ3 − 2140λ2 − 90λ + 660)x2

+(720λ5 − 1044λ4 − 770λ3 + 530λ2 + 720λ− 80)x

+120λ6 − 294λ5 + 225λ3 + 135λ2 − 110λ− 44)/120,

A7(x) = (5040x7 + (35280λ + 20916)x6 + (105840λ2 + 72576λ− 16968)x5

+(176400λ3 + 78540λ2 − 109410λ− 55650)x4

+(176400λ4 − 7980λ3 − 208040λ2 − 88620λ + 45360)x3

+(105840λ5 − 77868λ4 − 159810λ3 − 11970λ2 + 102060λ + 15960)x2

+(35280λ6 − 56196λ5 − 43848λ4 + 33810λ3 + 61950λ2 − 2100λ

−16296)x + 5040λ7 − 13068λ6 + 11368λ4 + 8715λ3 − 6580λ2

−7266λ + 1638)/5040,

B0(x) = 1,

B1(x) = −(x− 1),

B2(x) = −(2x + λ− 2)/2,

B3(x) = ((3λ− 6)x + 2λ2 − 6λ + 6)/6,
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B4(x) = −(12x2 + (4λ2 + 12λ− 12)x + 3λ3 + λ2 − 6λ)/12,

B5(x) = −(60x3 + (120λ− 30)x2 − (15λ3 − 115λ2 + 90λ + 60)x

−12λ4 + 50λ3 − 75λ2 + 30)/60,

B6(x) = −(360x4 + (1080λ− 180)x3 + (1440λ2 − 1440λ)x2

+(72λ4 + 780λ3 − 1950λ2 + 1260λ− 540)x

+60λ5 + 86λ4 − 645λ3 + 930λ2 − 720λ + 360)/360,

B7(x) = −(2520x5 + (10080λ− 420)x4 + (17640λ2 − 13020λ)x3

+(15120λ3 − 26460λ2 + 11340λ− 5040)x2

−(420λ5 − 6958λ4 + 19005λ3 − 16170λ2 + 6300λ− 1680)x

−360λ6 + 1764λ5 − 5292λ4 + 6720λ3 − 2835λ2

−840λ + 1260)/2520.

Proof: Let η = q − 1 and π = 1 − Qp. Then 1 − p = (1 + ηπ)/q and
Q(1− p) = (1 + ηπ)/η. Hence

h′(p) = κ
G(π, β)

(1− p)(1−Qp) ln(1− p)2
,

where

G(π, β) = −β
1 + ηπ

η
ln

(1 + ηπ

q

)
+ βπ ln π − π.

Therefore, h′(p) = 0 if and only if G(π, β) = 0.

If π → 0+, then ln((1 + ηπ)/q) → − ln q and π ln π → 0.

Hence, for small π,

0 =
G(π, β)

π
≈ ln q

η
− π

β
.

Therefore, π ≈ βλ/η. We write π = βλ(1 + y)/η (where y will depend on
β). Then

ln π = Λ + ln(1 + y).

Hence, if Γ(y) = G(π, β) we get

Γ(y) =
β

η

{
−(1 + βλ(1 + y)) ln(1 + βλ(1 + y)) + (1 + βλ(1 + y))λ

+βλ(1 + y)(Λ + ln(1 + y))− λ(1 + y)
}

.
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We now write y =
∑r

i=1 αi(Λ)βi +O(βr+1). Formally treating Λ as if it were
a constant, we can take the Taylor expansion of Γ(y) in terms of β and we get
an expansion of the form

∑∞
i=1 ciβ

i, where the ci are polynomials of Λ. Since
these polynomials ci must be identically zero, we get equations to determine
the polynomials Ai(x). Substituting the series of pm into h(p) and taking the
Taylor expansion, we get the series of µ(βκ, κ). 2

Remark 3.4 To formally justify that we treat Λ as if it were a constant, we
should prove that Λ is algebraically independent of the other quantities involved,
that is, there is no non-trivial polynomial equation in Λ with coefficients ex-
pressed as rational functions of the remaining quantities. We have not done
this, but it highly likely that it is true.

Remark 3.5 Note that Λ → −∞ when β → 0+.

As to convergence, the situation is similar to Theorem 3.2.1.

Assuming that dβ ln β → 0 and taking the first two terms of the approxi-
mation we get

µ(d, κ) ≈ κ

ln q
− d

ln q

(
ln

(
d ln q

κ(q − 1)

)
− 1

)
, (3.10)

(the other terms go to zero with β).

Again because of the big O term in Theorem 3.3.1, we do not know if the
approximation is smaller or larger than the exact value, but we have shown that
the approximation is good when β → 0.

Taking a good approximation for pm and inserting this into h(p) we get good
upper approximations. For example, taking the first term in the approximation
for 1−Qpm, that is, 1−Qp = λβ/(q − 1), then we get

µ(βκ, κ) ≤ h

(
q − 1− β ln q

q

)
(3.11)

Example 3.3.1 Consider q = 2, d = 2, A = 1, and M = 21000. Then
κ = 1000 ln 2 and β ≈ 0.002885. Solving h′(p) = 0 numerically, we get
p ≈ 0.4990185 and µ(2, 1000 ln 2) ≈ 1020.8737393. Taking one, two, three, and
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four terms respectively in the expression for µ(2, 1000 ln 2) in Theorem 3.3.1, as
well as the bound (3.11), we get the following approximations:

no. of terms value
1 1000
2 = (3.10) 1020.8169587
3 1020.8741384
4 1020.8737363

(3.11) 1021.219184

We have made numeric calculations for a number of β > 0. The terms after
the second do not go to zero, but we may still get good approximations. We
take two, three and four terms of the approximation. Here the notations are
the following:

σ(β) =
µ(βκ, κ)

κ
and ξr(β) =

1

ln q

r∑
i=0

Bi(Λ)βi (3.12)

Simple calculations show that

B1(Λ) ≥ 0 if and only if β ≤ e(q − 1)

ln(q)
,

where as usual e = exp(1),

B2(Λ) ≥ 0 if and only if β ≤ e(q − 1)√
q ln(q)

,

and B3(Λ) ≥ 0 if and only if q ≤ 31 and

q − 1√
q ln(q)

exp(−Ωq) ≤ β ≤ q − 1√
q ln(q)

exp(Ωq)

where Ωq =
√

1− (ln(q))2

12
.

Example 3.3.2 Consider q = 2. We have B1(Λ) ≥ 0 for β ≤ 3.9217, B2(Λ) ≥
0 for β ≤ 2.7730, and B3(Λ) ≥ 0 for 0.3829 ≤ β ≤ 2.7175. For all the values

of β we have computed, ξ1(β) < σ(β). For β
<∼ 0.686 we have ξ2(β) > σ(β).

For β
>∼ 0.0859 we have ξ3(β) > σ(β). Some selected values are given in the

following table as an illustration.



36 Necessary Conditions for Codes to be Good for Error Detection

β σ(β) ξ1(β)− σ(β) ξ2(β)− σ(β) ξ3(β)− σ(β)
10−6 1.4427169439 −2.14 · 10−11 1.37 · 10−16 −1.11 · 10−21

10−3 1.4546436900 −1.14 · 10−5 3.38 · 10−8 −1.15 · 10−10

10−1 2.0167210449 −4.47 · 10−2 3.25 · 10−3 4.83 · 10−5

0.5 3.5174115967 −5.89 · 10−1 2.88 · 10−2 6.96 · 10−2

1 5.0768720947 −1.66 −1.91 · 10−1 5.01 · 10−1

We note that

η(α) =
µ(d, αd)

d
=

µ(κ/α, κ)

κ/α
= ασ(1/α).

Therefore, we can compare the approximations given for η(α) and σ(β). For
example, for α = 1, the best upper approximation we got for η(1) has an error
of 6.46 · 10−3 whereas the best upper approximation of σ(1) has an error of
5.01 · 10−1. Even for α = 2.5 we get a better upper approximation using the best
upper approximation to η(2.5). However, for α = 3, the upper approximation
of 3σ(1/3) is better.

Example 3.3.3 For q = 10 the situation is similar to q = 2 and we give some
select values without further comments.

β σ(β) ξ1(β)− σ(β) ξ2(β)− σ(β) ξ3(β)− σ(β)
10−6 0.4343015082 −6.53 · 10−12 4.26 · 10−17 −3.54 · 10−22

10−3 0.4383243187 −3.52 · 10−6 1.08 · 10−8 −3.94 · 10−11

10−1 0.6509842874 −1.41 · 10−2 1.21 · 10−3 −4.61 · 10−5

0.5 1.2842347128 −1.86 · 10−1 2.06 · 10−2 1.35 · 10−2

1 1.9865189014 −5.26 · 10−1 4.18 · 10−4 1.12 · 10−1

3.4 The redundancy of linear codes

For a linear [n, k] code, ρ = n−k is its redundancy, and the relation n ≥ µ(d, κ)
is of course equivalent to ρ ≥ µ(d, κ) − k. When A is relatively large, then
µ(d, κ)−k is relatively small. In this section, we consider this situation in some
details when β → 0+, that is, k À d.

We assume that d is fixed, n = µ = µ(d, κ) and A = γnδ for some fixed
positive γ and δ ≤ d. Then

κ = k ln q − ln γ − δ ln µ < kλ. (3.13)

Combining (3.13) and Theorem 3.3.1 (for r = 1) we get

µ = k − δ ln µ

λ
− ln γ

λ
+ (1− Λ)

d

λ
+ O(β ln β), (3.14)
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since κβ2 ln β = dβ ln β and d is fixed. In equation (3.14), µ appears both
on the left hand side and on the right hand side (both explicit and implicit
in Λ). However, the right hand side only contains ln µ so by bootstrapping
we can show that µ ≈ k and κ → ∞. We get β ln β = d

κ
(ln d − ln κ) and so

O(β ln β) = O( d
κ

ln κ) = O(ln k/k). We note that 1− Λ > 0 for κ > λd
e(q−1)

and

1− Λ = ln κ + O(1)

and so

1 <
µ

k
< 1 +

d ln κ

λk
+ O

(
ln k

k2

)

and

0 ≤ ln µ− ln k ≤ O

(
ln k

k

)
,

that is, ln µ = ln k + O
(

ln k
k

)
. Substituting this in (3.13) and (3.14) and simpli-

fying, we get the following theorem.

Theorem 3.4.1 Let C be a linear [n, k] code with minimum distance d. As-
sume that Ad ≥ γnδ, where δ ≤ d and γ is some fixed positive number. If the
redundancy ρ = n− k of the code satisfies

ρ ≥ d− δ

ln q
ln k +

1

ln q
(d + d ln(q − 1)− ln γ − d ln d) + O

(
ln k

k

)
, (3.15)

then the code is ugly for error detection.

Remark 3.6 When δ = d, then the bound on the redundancy is a fixed number
(it does not grow with k). Note also that Ad ≤

(
n
d

) ≤ nd/d!. Hence

− ln γ ≥ ln d! ≈ d ln d− d +
1

2
ln(2πd)

(by Stirling’s formula) when δ = d. Therefore, the right hand side of (3.15) is
lower bounded by

1

ln q

{
d ln(q − 1) +

1

2
ln(2πd)

}
.

Example 3.4.1 Let C be a [ν, ζ] code with minimum distance dC ≥ 2. Let
H is a parity-check matrix for C. Let Ct be the [tν, (t − 1)ν + ζ] code with
parity-check matrix Ht = H|H| · · · |H (repeated t > 1 times). The minimum
distance of Ct is clearly 2, and it is easy to find a lower bound on A2: first
choose j such that 1 ≤ j ≤ ν (this can be done in ν ways); next choose a
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pair (u, v) where 0 ≤ u < v < t (this can be done in t(t − 1)/2 ways); finally
choose a ∈ GF (q) \ {0} (this can be done in q − 1 ways). In all, there are
(q − 1)νt(t − 1)/2 possible choices of j, u, v, a. Let xi, i = 0, 1 . . . tν − 1 be the
columns of Ht. For each choice of j, u, v, a we have

axuν+j + (−a)xvν+j = 0

(since xuν+j = xvν+j). Hence

A2 ≥ A = (q − 1)νt(t− 1)/2 =
(q − 1)(1− 1/t)

2ν
n2.

The redundancy of Ct is ν − ζ. We note that

− ln γ = ln 2 + ln ν − ln(q − 1)− ln(1− 1/t).

By Theorem 3.4.1, if t →∞ and

ν − ζ ≥ 1

ln q

{
2 + ln(q − 1)− ln 2 + ln ν − ln(1− 1/t) + O

(
ln t

t

)}
,

then Ct is ugly. Since ln(1− 1/t) ≈ 1/t = o((ln t)/t) we can conclude that if

ν − ζ >
1

ln q
{2 + ln(q − 1)− ln 2 + ln ν} , (3.16)

then Ct is ugly for t sufficiently large.

As an example, let C be the binary extended l error correcting BCH code of
length ν = 2m (where l ≥ 2). For this code, ν− ζ ≥ 2m and the right hand side
of (3.16) simplifies to m− 1 + 2/ ln 2 ≈ m + 1.9. Hence, (3.16) is satisfied for
all m ≥ 3 and so Ct is ugly for t sufficiently large.



Chapter 4

Large Codes are Proper for
Error Detection

It is simple to show that large codes are proper for error detection. In this
chapter we discuss how large is large. Using some known lemmas and theorems
for proper codes we give a lower bound for the size of the code to be proper for
error detection.

4.1 Some known results

The probability of undetected error is given by (2.1), as it was presented in
Chapter 2.

Define

Ai(C,x) = # {c ∈ C|dH(c,x) = i} ,

so using this notation we can rewrite the distance distribution as:

Ai(C) =
1

M

∑
x∈C

Ai(C,x).

We see that

Ai(F
n
q ,x) =

(
n

i

)
(q − 1)i (4.1)

for all x ∈ F n
q and 0 ≤ i ≤ n. In particular,

Ai(F
n
q ) =

(
n

i

)
(q − 1)i

39
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and so

Pue(F
n
q , p) = 1− (1− p)n.

This is clearly an increasing function on [0, 1] and so F n
q is proper. Hence

there exists a bound B(q, n) ≤ qn such that if M ≥ B(q, n), then any (n,M ; q)
code is proper. The goal of this chapter is to give non-trivial bounds on B(q, n).

Our main tools to obtain an upper bound are two known results which we
refer here as Lemmas 4.1.1 and 4.1.2.

Lemma 4.1.1 Let C be a code of length n over F n
q . If

l∑
i=1

l(i)
n(i)

Ai(C) ≥ q

l−1∑
i=1

(l − 1)(i)

n(i)

Ai(C), (4.2)

for l = 2, 3, . . . , n, where

m(i) = m(m− 1)...(m− i + 1),

then C is proper.

This lemma is essentially due to Dodunekova and Dodunekov [11]. They
considered only linear codes (over finite fields), however, their proof carries over
to the more general situation we consider here. For completeness we give the
proof:

Proof: First we define the functions Λl(p):

Λl(p) =
n∑

j=l

(
n

j

)( qp

q − 1

)j(
1− qp

q − 1

)n−j

.
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Then we have

dΛl(p)

dp
=

n∑

j=l

(
n

j

){
j

(
qp

q − 1

)j−1
q

q − 1

(
1− qp

q − 1

)n−j

+

(
qp

q − 1

)j

(n− j)

(
1− qp

q − 1

)n−j−1 ( −q

q − 1

)}

=
q

q − 1

n∑

j=l

(
n

j

)
j

(
qp

q − 1

)j−1 (
1− qp

q − 1

)n−j

− q

q − 1

n∑

j=l+1

(
n

j − 1

)
(n− j + 1)

(
qp

q − 1

)j−1 (
1− qp

q − 1

)n−j

=
q

q − 1

(
n

l

)
l
( qp

q − 1

)l−1(
1− qp

q − 1

)n−l

+
q

q − 1

n∑

j=l+1

{(
n

j

)
j −

(
n

j − 1

)
(n− j + 1)

}

·
(

qp

q − 1

)j−1 (
1− qp

q − 1

)n−j

Since
(

n
j

)
j =

(
n

j−1

)
(n− j + 1) we get

dΛl(p)

dp
=

ql

q − 1

(
n

l

)( qp

q − 1

)l−1(
1− qp

q − 1

)n−l

> 0

for all p ∈ (0, q−1
q

). Hence, the functions Λl(p) are increasing. Next, rewriting

the expression for Pue(C, p) we get:

Pue(C, p) =
n∑

i=1

Ai(C)
( p

q − 1

)i( p

q − 1
+ 1− qp

q − 1

)n−i

=
n∑

i=1

Ai(C)
( p

q − 1

)i

·
n−i∑
j=0

(
n− i

j

)( p

q − 1

)j(
1− qp

q − 1

)n−i−j
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Now we set l = i + j to get

Pue(C, p) =
n∑

l=1

( p

q − 1

)l(
1− qp

q − 1

)n−l

·
l∑

i=1

(
n− i

l − i

)
Ai(C)

=
n∑

l=1

1

ql
(

n
l

)
{

Λl(p)− Λl+1(p)
}
·

l∑
i=1

(
n− i

l − i

)
Ai(C)

=
A1(C)

qn
{Λ1(p)− Λ2(p)}

+
n∑

l=2

{
q−lΛl(p) ·

l∑
i=1

(
n−i
l−i

)
(

n
l

) Ai(C)− q−lΛl+1(p) ·
l∑

i=1

(
n−i
l−i

)
(

n
l

) Ai(C)
}

=
A1(C)

qn
{Λ1(p)− Λ2(p)}

+
n∑

l=2

{
q−lΛl(p) ·

l∑
i=1

(
n−i
l−i

)
(

n
l

) Ai(C)

−q−l+1Λl(p) ·
l−1∑
i=1

(
n−i

l−i−1

)
(

n
l−1

) Ai(C)
}

=
A1(C)

qn
{Λ1(p)− Λ2(p)}

+
n∑

l=2

q−lΛl(p) ·
{ l∑

i=1

(
n−i
l−i

)
(

n
l

) Ai(C)− q

l−1∑
i=1

(
n−i

l−i−1

)
(

n
l−1

) Ai(C)
}

=
A1(C)

qn
{Λ1(p)− Λ2(p)}

+
n∑

l=2

q−lΛl(p) ·
{ l∑

i=1

l(i)
n(i)

Ai(C)− q

l−1∑
i=1

(l − 1)(i)

n(i)

Ai(C)
}

.

Under the conditions of the lemma, all terms in this sum are increasing
functions in p. 2

The second result we use is the following lemma.

Lemma 4.1.2 Let C1 be an (n,M1; q) code and C2 an (n,M2; q) code such that
C1 and C2 are disjoint and C1 ∪ C2 = F n

q . Then

M2Ai(C2) = M1Ai(C1) + (M2 −M1)

(
n

i

)
(q − 1)i
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for 0 ≤ i ≤ n.

For q = 2, this lemma is essentially due to Fu, Kløve and Wei [14]. Their
proof can be generalized to arbitrary q. However, a simpler proof (which also
applies to a more general situation) was given by Abdel-Ghaffar [1]. For com-
pleteness we give his proof slightly modified.

Using (4.1), for any x ∈ F n
q we get

(
n

i

)
(q − 1)i = Ai(C1,x) + Ai(C2,x).

Summing over all x1 ∈ C1 we get

M1

(
n

i

)
(q − 1)i = M1Ai(C1) +

∑
x1∈C1

Ai(C2,x1). (4.3)

Similarly,

M2

(
n

i

)
(q − 1)i = M2Ai(C2) +

∑
x2∈C2

Ai(C1,x2). (4.4)

Since
∑

x1∈C1

Ai(C2,x1) = #{(x1,x2) | x1 ∈ C1,x2 ∈ C2, dH(x1,x2) = i}

=
∑

x2∈C2

Ai(C1,x2),

the lemma follows by subtracting (4.3) from (4.4). 2

From Lemma 4.1.2 we immediately get the following corollary.

Corollary 4.1.1 For C1 and C2 as in Lemma 4.1.2 we have

M2Pue(C2, p) = M1Pue(C1, p) + (M2 −M1)(1− (1− p)n).

4.2 Upper bounds on B(q, n)

From Corollary 4.1.1 we see that if M2 ≥ M1 and C1 is proper, then C2 is
proper. However, C2 may well be proper even if C1 is not (assuming M2 ≥ M1).
Let

β(q, n) =
−(qn− n + q) + s

2(qn− n− q)
,
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where
s =

√
(qn− n + q)2 + 4n(q − 1)(qn− n− q)qn.

Our main explicit result is, in fact, the following lemma.

Lemma 4.2.1 For C1 and C2 as in Lemma 4.1.2, if

M1 ≤ β(q, n),

then C2 is proper.

We note that if M2 ≥ qn − β(q, n), then

M1 ≤ β(q, n).

Hence from the lemma we get the following equivalent result.

Theorem 4.2.1 For q ≥ 2 and n ≥ 3 we have

B(q, n) ≤ qn − β(q, n);

that is, any q-ary code of size at least qn − β(q, n) is proper.

Proof of Lemma 4.2.1: For the proof, we simplify the notations a little and
let Ai = Ai(C1) and M = M1. It is easy to verify that

β(q, n) < qn/2

for n ≥ 3, and so
M2 −M1 = qn − 2M > 0.

Combining Lemmas 4.1.1 and 4.1.2, a sufficient condition for C2 to be proper
is

l∑
i=1

l(i)
n(i)

{MAi + (qn − 2M)

(
n

i

)
(q − 1)i}

≥ q

l−1∑
i=1

(l − 1)(i)

n(i)

{MAi + (qn − 2M)

(
n

i

)
(q − 1)i}

We also note that

l∑
i=1

l(i)
n(i)

(
n

i

)
(q − 1)i =

l∑
i=1

(
l

i

)
(q − 1)i = ql − 1
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for 2 ≤ l ≤ n. Hence, the sufficient condition for C2 to be proper can be written
as:

M

l∑
i=1

l(i)
n(i)

Ai + (qn − 2M)(ql − 1)

≥ qM

l−1∑
i=1

(l − 1)(i)

n(i)

Ai + (qn − 2M)q(ql−1 − 1) (4.5)

for 2 ≤ l ≤ n. Omitting the term for i = l in the sum on the left hand side
and rearranging, we get the following stronger sufficient condition for C2 to be
proper (stronger in the sense that if (4.6) is satisfied, then (4.5) is satisfied):

(qn − 2M)(q − 1) ≥ M

l−1∑
i=1

(l − 1)(i)

n(i)

(
q − l

l − i

)
Ai (4.6)

for 2 ≤ l ≤ n. Since

(l − 1)(i)

n(i)

(
q − l

l − i

)
=

1

n

(l − 1)(i−1)

(n− 1)(i−1)

(ql − qi− l)

≤ 1

n
(ql − q − l),

we get

l−1∑
i=1

(l − 1)(i)

n(i)

(
q − l

l − i

)
Ai ≤ 1

n
(ql − l − q)

l−1∑
i=1

Ai

≤ 1

n
(ql − l − q)(M − 1) (4.7)

Combining (4.7) with (4.6), we see that a yet stronger sufficient condition
for C2 to be proper is

(qn − 2M)(q − 1) ≥ 1

n
(ql − l − q)M(M − 1) (4.8)

for 2 ≤ l ≤ n. The strongest condition is imposed for l = n and this condition
is

(qn − 2M)(q − 1) ≥ 1

n
(qn− n− q)M(M − 1).

This is equivalent to
M ≤ β(q, n).
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This completes the proof of Lemma 4.2.1 and Theorem 4.2.1. 2

Using different estimates, we can obtain a stronger bound than Theorem
4.2.1; this bound is not explicit, however, but needs some computation. We
refer to it as the algorithmic bound. In (4.6), the terms in the sum are non-
positive for q − l/(l − i) < 0, that is i > l(q − 1)/q. If we omit these terms, we
get the stronger conditions

(qn − 2M)(q − 1) ≥ M

bl(q−1)/qc∑
i=1

(l − 1)(i)

n(i)

(
q − l

l − i

)
Ai (4.9)

for 2 ≤ l ≤ n. We note that the condition for l+1 is stronger than the condition
for l since

(l)(i)

(
q − l+1

l+1−i

)

(l − 1)(i)

(
q − l

l−i

) =
l(ql + q − qi− l − 1)

(l + 1− i)(ql − qi− l)
≥ 1

for i ≤ l(q − 1)/q. Hence, the strongest condition is the condition for l = n,
namely

(qn − 2M)(q − 1) ≥ M

bn(q−1)/qc∑
i=1

1

n
(q(n− i)− n)Ai. (4.10)

We have Ai ≤
(

n
i

)
(q− 1)i. We can use this bound on Ai, but must take into

account that
∑n

i=1 Ai = M − 1. Let

Mm =
m∑

i=1

(
n

i

)
(q − 1)i.

Assume that M > Mr−1 where r < bn(q − 1)/qc, and let

S =
r−1∑
i=1

(q(n− i)− n)

(
n

i

)
(q − 1)i + (q(n− r)− n)(M − 1−Mr−1).



Upper bounds on B(q, n) 47

Then

S ≥
r−1∑
i=1

(q(n− i)− n)

(
n

i

)
(q − 1)i + (q(n− r)− n)

bn(q−1)/qc∑
i=1

Ai

−(q(n− r)− n)
r−1∑
i=1

(
n

i

)
(q − 1)i

=
r−1∑
i=1

q(r − i)

(
n

i

)
(q − 1)i + (q(n− r)− n)

bn(q−1)/qc∑
i=1

Ai

=

bn(q−1)/qc∑
i=1

(q(n− i)− n)Ai +
r−1∑
i=1

q(r − i)
((

n

i

)
(q − 1)i − Ai

)

+

bn(q−1)/qc∑
i=r+1

q(i− r)Ai

≥
bn(q−1)/qc∑

i=1

(q(n− i)− n)Ai.

Hence, by (4.10) we get the following stronger sufficient condition for C2 to
be proper:

(qn − 2M)(q − 1) ≥ M

n

r−1∑
i=1

(q(n− i)− n)

(
n

i

)
(q − 1)i

+
M

n
(q(n− r)− n)(M − 1−Mr−1).

Solving this inequality, we get a maximal value which we denote by βr(q, n).
Provided βr(q, n) > Mr−1 (this was a requirement for the derivation above) we
have

B(q, n) ≤ qn − βr(q, n).

In particular, β1(q, n) = β(q, n). We know that we can use r determined by
Mr−1 < βr(q, n) ≤ Mr. Usually, this βr(q, n) is maximal.

We illustrate the procedure by some numerical examples.
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For q = 3 and n = 20, we get the following values:

r Mr−1 βr(3, 20)
1 0 61395.65
2 40 64045.19
3 800 67033.73
4 9920 70002.06
5 87440 69030.75

From Mr−1 < βr(q, n) ≤ Mr, it follows that r = 4.

For q = 3 and n = 21, we get the following values:

r Mr−1 βr(3, 21)
1 0 106136.11
2 42 110468.15
3 882 115339.98
4 11522 120392.84
5 107282 121081.17
6 758450 91120.30

From Mr−1 < βr(q, n) ≤ Mr, it follows that r = 5.

For q = 3 and n = 30, we get the following values:

r Mr−1 βr(3, 30)
1 0 14721667.41
2 60 15125073.74
3 1800 15563519.44
4 34280 16041435.64
5 472760 16551735.16
6 5032952 16953441.99
7 43034552 16027100.38

From Mr−1 < βr(q, n) ≤ Mr, it follows that r = 6.
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For q = 4 and n = 25, we get the following values:

r Mr−1 βr(4, 25)
1 0 34486676.40
2 75 35501204.40
3 2775 36610795.63
4 64875 37829286.84
5 1089525 39141074.74
6 14000115 40100659.55
7 143106015 36183958.73

From Mr−1 < βr(q, n) ≤ Mr, it follows that r = 6.

4.3 A lower bound on B(q, n)

A lower bound on B(q, n) is obtained by giving an explicit code which is not
proper. Let

γ(2, n) = 2b(n+3)/2c

γ(q, n) = qb(n+2)/2c for q ≥ 3.

In [13], Fu and Kløve showed that a result that implies that

B(2, n) ≥ 2n − γ(2, n)

for n ≥ 7 (the paper considered good binary linear codes, and codes that are
not good are also not proper). The construction from [13] can be generalized
to arbitrary q to show the following result.

Theorem 4.3.1 For q ≥ 2 and n ≥ 4 we have

B(q, n) > qn − γ(q, n).

Proof: Let C1 be the (n, qk; q) code

{(x,0) ∈ F n
q | x ∈ F k

q }.

It is easy to see that

Ai =

(
k

i

)
(q − 1)i
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for all i. Hence,

Pue(C1, p) =
k∑

i=1

(
k

i

)
pi(1− p)k−i(1− p)n−k

= (1− p)n−k − (1− p)n.

Therefore, if f(p) = (qn − qk)Pue(C2, p), Corollary 4.1.1 shows that

f(p) = qk((1− p)n−k − (1− p)n) + (qn − 2qk)(1− (1− p)n)

= qn − 2qk + qk(1− p)n−k − (qn − qk)(1− p)n.

Hence,

f ′(p) = −(n− k)qk(1− p)n−k−1 + n(qn − qk)(1− p)n−1,

and so

f ′
(q − 1

q

)
= −(n− k)q2k+1−n + n(qn − qk)q−n+1 < 0

if
−qk(n− k) + n(qn−k − 1) < 0. (4.11)

Let k = (n + α)/2 (where α = 1, 2, 3). Then (4.11) is equivalent to

q(n−α)/2
(
n− qα n− α

2

)
− n < 0.

For α = 3 and q ≥ 2 we have

n− qα n− α

2
≤ n− 23n− 3

2
≤ 0 for n ≥ 4.

For α = 2 and q ≥ 2 we have

n− qα n− α

2
≤ n− 22n− 2

2
≤ 0 for n ≥ 4.

For α = 1 and q ≥ 3 we have

n− qα n− α

2
≤ n− 3

n− 1

2
≤ 0 for n ≥ 3.

Hence, f ′
(

q−1
q

)
< 0 for q = 2, k = b(n + 3)/3c, and n ≥ 4; and also for

q ≥ 3, k = b(n + 2)/3c, and n ≥ 4. This completes the proof. 2
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We note that

β(q, n) ≈ − qn− n + q

2(qn− n− q)
+ qn/2

√
qn− n

qn− n− q
.

As a numerical example, for q = 3 and n = 20, we get

β(3, 20) = 61395.6455950 . . .

whereas the approximation above is 61395.6455923.

On the other hand, γ(q, n) is also of the order qn/2 (e.g. for q ≥ 3 and n
odd, γ(q, n) = qn/2√q). Hence, B(q, n) = qn − qn/2ω(q, n), where

√
qn− n

qn− n− q

<∼ ω(q, n) ≤ q

for q ≥ 3 or n even (for q = 2 and n odd, our upper bound is 2
√

2). Moreover,
the algorithmic bound improves the lower bound on ω(q, n).
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Chapter 5

The Function S(m,n)

5.1 Computing S(m,n)

For x = (x0, x1, . . . , xk−1) ∈ F k
q , let

w(x) =
k−1∑
i=0

xi, the weight of x.

For integers m ≥ 0, S(m,n) is defined by

S(m,n) = #{x ∈ Fm
q | w(x) = n}.

Note that for S(m,n) = 0 for n < 0. A sequence x such that w(x) = n is
known as a composition of n. Compositions have been studied by a number of
people, starting with MacMahon, see [24].

For q = 2 we get S(m, n) =
(

m
n

)
. Explicit expressions for S(m,n) for general

q seems to be complicated. However, we can find a number of useful results on
S(m, n).

Lemma 5.1.1 For all m ≥ 0 and n ≥ 0 we have

S(m,n) =
∑

(m0,m1,...,mq−1)∑
mi=m and

∑
imi=n

m!

m0!m1! · · ·mq−1!
. (5.1)

Proof: Using generating functions, we see that

∞∑
n=0

S(m,n)xn = (1 + x + · · ·+ xq−1)m,

53
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a relation given by MacMahon [24, p.151] (in a different notation).

Hence, (5.1) follows by the multinomial theorem. 2

For each term in (5.1) we have

q−1∑
i=0

imi =

q−1∑
i=1

imi ≤ (q − 1)

q−1∑
i=1

mi ≤ (q − 1)m.

Hence, if n > (q−1)m, the sum is empty and we get the following corollary.

Corollary 1 For m ≥ 0 and n > (q − 1)m we have

S(m,n) = 0. (5.2)

We also have a symmetry.

Corollary 2 If m ≥ 0 and 0 ≤ n ≤ (q − 1)m, then

S(m,n) = S(m, (q − 1)m− n). (5.3)

Proof: Let (m0,m1, . . . , mq−1) satisfy
∑

mi = m and
∑

imi = n, and let
m′

i = mq−1−i for 0 ≤ i ≤ q − 1. Then
∑

m′
i = m and

∑
im′

i =
∑

(q − 1− i)mi = (q − 1)
∑

mi −
∑

imi = (q − 1)m− n.

Since m′
0!m

′
1! · · ·m′

q−1! = m0!m1! · · ·mq−1!, this means that for each term in
the sum (5.1) for S(m,n), there is an equal corresponding term in the sum for
S(m, (q − 1)m− n). 2

For actual computation of S(m,n), a recursion is usually more convenient.
This recursion will also be used to obtain further results.

Lemma 5.1.2

S(0, 0) = 1 and S(0, n) = 0 for n > 0.

Further, for m ≥ 1 we have

S(m,n) =

q−1∑
j=0

S(m− 1, n− j). (5.4)
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Proof: By definition, S(m,n) is the number of (x1, x2, · · · xm) such that x1 +
x2 + · · ·+xm = n and where 0 ≤ xi ≤ q−1. The number of these where xm = j
is therefore S(m− 1, n− j). Summing for all j we get (5.4). 2

For integers l ≥ 0, a, b where a ≤ b (one or both may be negative) we have
the following well known sum.

b∑
j=a

(
l + j

l

)
=

(
l + b + 1

l + 1

)
−

(
l + a

l + 1

)
. (5.5)

An easy induction using (5.5) and (5.4) shows that

S(m,n) =

(
m + n− 1

m− 1

)
for m ≥ 1 and 0 ≤ n ≤ q − 1. (5.6)

Combining (5.4) and (5.6) we get the following result.

Lemma 5.1.3 If m ≥ 2 and 0 ≤ n1 < n2 ≤ (q − 1)m/2, then

S(m,n1) < S(m,n2).

Proof: It is sufficient to prove the result for n2 = n1 + 1; the general result
then follows immediately by induction. We write n1 = n and n2 = n + 1 and
prove the result by induction. For m = 2, (5.6) shows that

S(2, n) = n + 1 < n + 2 = S(2, n + 1) for 0 ≤ n < (q − 1).

For m > 2, (5.4) implies that

S(m,n + 1)− S(m,n) =

q−1∑
j=0

S(m− 1, n + 1− j)−
q−1∑
j=0

S(m− 1, n− j)

= S(m− 1, n + 1)− S(m− 1, n− q + 1).

To complete the induction, we consider two cases.

Case I: n + 1 ≤ (q − 1)(m− 1)/2. Then

S(m− 1, n− q + 1) < S(m− 1, n + 1)

by the induction hypothesis.
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Case II: (q − 1)(m− 1)/2 < n + 1 ≤ (q − 1)m/2. Then

(m− 1)(q − 1)− n− 1 < (q − 1)(m− 1)/2.

Further 2n + 1 < 2n + 2 ≤ (q − 1)m and so

n− q + 1 < (q − 1)(m− 1)− n− 1.

Hence

S(m− 1, n− q + 1) < S(m− 1, (m− 1)(q − 1)− n− 1)

= S(m− 1, n + 1).

2

Another very useful result that follows from (5.4) and (5.5) is the following.

Lemma 5.1.4 For m ≥ 1, b ≥ 0, and 0 ≤ l ≤ m−1, there exist integers Am,b,l

such that

S(m,n) =
m−1∑

l=0

Am,b,l

(
n− bq + l

l

)
(5.7)

for b(q − 1) < n ≤ (b + 1)(q − 1). For b = 0 we have

Am,0,l = 0 for l < m− 1 and Am,0,m−1 = 1. (5.8)

For b ≥ 1 we have

Am,b,0 =
m−2∑
j=0

Am−1,b−1,j

(
q − b + j + 1

j + 1

)
−

m−2∑
j=0

Am−1,b,j

(
j − b + 1

j + 1

)
,

and

Am,b,l = Am−1,b,l−1 − Am−1,b−1,l−1 (5.9)

for 1 ≤ l ≤ m− 1.

Proof: First we note that Corollary 1 implies that we have Am,b,l = 0 for all l
when b ≥ m. We prove the lemma by induction. For b = 0 we have (5.8) which
follows immediately from (5.6). This also completes the proof for m = 1. For
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the induction step, let m ≥ 2 and b ≥ 1 and suppose (5.7) is true for smaller
values of the parameters. By (5.4) we get

S(m,n) =

b(q−1)∑
j=n−q+1

S(m− 1, j) +
n∑

j=b(q−1)+1

S(m− 1, j)

=

b(q−1)∑
j=n−q+1

m−2∑

l=0

Am−1,b−1,l

(
j − (b− 1)q + l

l

)

+
n∑

j=b(q−1)+1

m−2∑

l=0

Am−1,b,l

(
j − bq + l

l

)

=
m−2∑

l=0

Am−1,b−1,l

b(q−1)∑
j=n−q+1

(
j − (b− 1)q + l

l

)

+
m−2∑

l=0

Am−1,b,l

n∑

j=b(q−1)+1

(
j − bq + l

l

)

=
m−2∑

l=0

Am−1,b−1,l

{(
b(q − 1)− (b− 1)q + l + 1

l + 1

)

−
(

n− q − (b− 1)q + l + 1

l + 1

)}

+
m−2∑

l=0

Am−1,b,l

{(
n− bq + l + 1

l + 1

)

−
(

b(q − 1)− bq + l + 1

l + 1

)}

=
m−2∑

l=0

{
Am−1,b−1,l

(−b + q + l + 1

l + 1

)

−Am−1,b,l

(−b + l + 1

l + 1

)}

+
m−2∑

l=0

(Am−1,b,l − Am−1,b−1,l)

(
n− bq + l + 1

l + 1

)
.

This proves the lemma. Note that we have used that
(−b+l+1

l+1

)
= 0 for

l + 1− b ≥ 0, that is, l ≥ b− 1. 2

Next we determine Am,b,l explicitly for b = 1 and b = 2.
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Corollary 3 For b = 1 < m we have

Am,1,l =

(
q + m− l − 2

m− l − 1

)
for 0 ≤ l < m− 1,

Am,1,m−1 = −(m− 1).

Proof: We use Lemma 5.1.4. For l = 0 we get

Am,1,0 =
m−2∑
j=0

Am−1,0,j

(
q + j

j + 1

)
=

(
q + m− 2

m− 1

)
.

For 1 ≤ l < m− 1 we get Am,1,l = Am−1,1,l−1, and so by induction,

Am,1,l = Am−l,1,0 =

(
q + m− l − 2

m− l − 1

)
.

Finally, for l = m − 1 we get Am,1,m−1 = Am−1,1,m−2 − 1. Since A1,1,0 = 0,
we get Am,1,m−1 = −(m− 1) by induction. 2

Corollary 4 For b = 2 < m we have

Am,2,l =
m−l−1∑

i=2

i−2∑
j=0

(
q + i− j − 2

i− j − 1

)(
q − 1 + j

j + 1

)

−
m−l−1∑

i=2

(i− 1)

(
q + i− 2

i

)
− l

(
q + m− l − 2

m− l − 1

)

for 0 ≤ l < m− 1,

Am,2,m−1 =

(
m− 1

2

)
.

Proof: We use Lemma 5.1.4. For l = 0 we get

Am,2,0 =
m−2∑
j=0

Am−1,1,j

(
q − 1 + j

j + 1

)
+ Am−1,2,0.

By induction

Am,2,0 =
m−1∑
i=2

i−1∑
j=0

Ai,1,j

(
q − 1 + j

j + 1

)

=
m−1∑
i=2

i−2∑
j=0

(
q + i− j − 2

i− j − 1

)(
q − 1 + j

j + 1

)
−

m−1∑
i=2

(i− 1)

(
q + i− 2

i

)
.
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For 0 < l < m− 1, we get

Am,2,l = Am−1,2,l−1 − Am−1,1,l−1.

By induction we get

Am,2,l = Am−l,2,0 −
l∑

j=1

Am−j,1,l−j = Am−l,2,0 − l

(
q + m− l − 2

m− l − 1

)
.

Finally,

Am,2,m−1 = Am−1,2,m−2 − Am−1,1,m−2 = Am−1,2,m−2 + (m− 2).

By induction, Am,2,m−1 =
(

m−1
2

)
. 2

Similar explicit expressions may be found for b = 3, 4, . . .; they become in-
creasingly complicated.
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Chapter 6

t-EC-AUED Codes

This chapter and Chapter 7 are devoted to the non-symmetric channels. Here
we will present t-EC-AUED codes. Böinck and van Tilborg gave a bound on
the length of binary t-EC-AUED codes. In this chapter a generalization of
this bound to arbitrary alphabet size is given. This generalized Böinck - van
Tilborg bound, combined with constructions, is used to determine the length
of some optimal binary and ternary t-EC-AUED codes. As it was mentioned in
Chapter 2, the size of optimal 0-EC-AUED codes is the value of the function
S(n, dn(q−1)/2e), the function S(m, n) was presented in Chapter 5. So we will
make computations for t > 0, but for completeness, we give also the codes for
t = 0.

6.1 A generalized Böinck-van Tilborg bound

In this chapter the expression t + 1 occurs on many places, so we find it conve-

nient to use the notation T
def
= t + 1.

The lower bound which was derived by Böinck and van Tilborg for the length
of a binary t-EC-AUED codes, rewritten in our notations is:

n2(a, T ) ≥
⌈(

4− 2

da/2e
)

T

⌉
. (6.1)

In this section we generalize Böinck - van Tilborg bound to non-binary codes.
Let

f(m0,m1, . . . , mq−1) =
∑

0≤i<j≤(q−1)

mimj,
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S1 = m0 + m1 + ... + mq−1 =

q−1∑
i=0

mi,

S2 = m2
0 + m2

1 + ... + m2
q−1 =

q−1∑
i=0

m2
i .

Then S2
1 = S2 + 2f(m0,m1, . . . ,mq−1) and so

f(m0, m1, ..,mq−1) =
1

2
(S2

1 − S2).

Let λ(a) be the maximum of f(m0,m1, .., mq−1) over (m0, m1, . . . ,mq−1),
where m0,m1, ...,mq−1 are non-negative integers such that S1 = a.

Lemma 6.1.1 If C is an (T − 1)-EC-AUED code of length n and size a, then

n ≥ a(a− 1)T

λ(a)
.

Proof: Consider
∑

x,y∈C
x6=y

N(x,y). Since C is a (T−1)-EC-AUED code, N(x,y) ≥
T for all distinct x,y ∈ C, and so

∑
x,y∈C
x6=y

N(x,y) ≥ a(a− 1)T. (6.2)

Let ml,i be the number of codewords x such that xl = i. Then,

∑
x,y∈C
x6=y

N(x,y) =
n∑

l=1

∑
0≤i<j≤q−1

ml,i ml,j

=
n∑

l=1

f(m0,l,m1,l, . . . , mq−1,l)

≤ nλ(a).

Combining this with (6.2), the lemma follows. 2

Next we find an explicit expression for λ(a). We note that if the mi were
real numbers, then the maximum of f(m0,m1, . . . ,mq−1) would be obtained for
mi = a/(q − 1) for all i. For non-negative integers mi let the maximum be
obtained for

(m0,m1, . . . , mq−1) = (µ0, µ1, . . . , µq−1).
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Because of the symmetry we may assume that

µ0 ≤ µ1 ≤ · · · ≤ µq−1.

Further, by assumption,
q−1∑
i=0

µi = a.

In particular, µq−1 ≥ 1. Let

m0 = µ0 + 1,

mq−1 = µq−1 − 1,

mi = µi for 1 ≤ i ≤ q − 2.

Then

0 ≤ 2f(µ0, µ1, . . . , µq−1)− 2f(m0,m1, . . . ,mq−1)

= (a2 − µ2
0 − µ2

1 − · · · − µ2
q−1)− (a2 −m2

0 −m2
1 − · · · −m2

q−1)

= −µ2
0 − µ2

q−1 + (µ0 + 1)2 + (µq−1 + 1)2

= 2µ0 − 2µq−1 + 2.

Hence, µq−1 ≤ µ0 + 1. This implies that if a = αq +β, where 0 ≤ β ≤ q− 1,
then

µi = α for 0 ≤ i < q − β,
µi = α + 1 for q − β ≤ i < q − 1.

Hence

λ(a) =
1

2

{
a2 − (q − β)α2 − β(α + 1)2

}

=
a(a− α)− (a− αq)(1 + α)

2
.

Combining this with Lemma 6.1.1, we get the following bound.

Theorem 6.1.1 For a ≥ 2 and T ≥ 1 we have

nq(a, T ) ≥ GBTq(a, T ),

where

GBTq(a, T ) =

⌈
2a(a− 1)T

a(a− α)− (a− αq)(α + 1)

⌉

and α = ba/qc.
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For q = 2, this is exactly the bound (6.1).

Since

GBTq(qµ + (q − 1), T ) = GBTq(qµ + q, T ),

an immediate corollary of the theorem is:

Corollary 6.1.1 A q-ary (T − 1)-EC-AUED code of length

n < GBTq(qµ + q, T )

has size a ≤ qµ + (q − 2).

6.2 A method to determine or estimate nq(a, T )

It appears that in many cases, the Böinck - van Tilborg bound and also its
generalization is best possible, that is, we have equality in Theorem 6.1.1. In
[16], we developed a method to prove this in the binary case and in [26] in
the ternary case, using an efficient construction method. For a given a, the
construction is recursive and requires a computer search for some small values
of T to start the recursion. The validity of the recursion is based on two lemmas
involving the generalized Böinck - van Tilborg bound. We state and prove them
next.

Lemma 6.2.1 For all a > 0, T1 ≥ 0, and T2 ≥ 0, we have

nq(a, T1 + T2) ≤ nq(a, T1) + nq(a, T2).

Proof: We represent a code of size a and length n by an (a× n) matrix with
the codewords as the rows. Let C1 be a (T1 − 1)-EC-AUED code of size a and
length nq(a, T1) and C2 a (T2−1)-EC-AUED code of size a and length nq(a, T2).
Let C = C1|C2 (matrix concatenation). This is an asymmetric code of size a
and length

n = nq(a, T1) + nq(a, T2).

Let (x|x′) and (y|y′) be distinct codewords of C, where x,x′ ∈ C1 and
y,y′ ∈ C2. Then

N((x|x′), (y|y′)) = N(x,y) + N(x′,y′) ≥ T1 + T2.

Hence, C is an (T1 + T2− 1)-EC-AUED code of length nq(a, T1) + nq(a, T2).
This proves the lemma. 2
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Lemma 6.2.2 If
nq(a, T1) = GBTq(a, T1),

nq(a, T2) = GBTq(a, T2),

and
GBTq(a, T1) + GBTq(a, T2) = GBTq(a, T1 + T2),

then
nq(a, T1 + T2) = GBTq(a, T1 + T2).

Proof: Let C1, C2 and C be defined as in the proof of the previous lemma.
Then, by Theorem 6.1.1, Lemma 6.2.1, and the given conditions, we get

GBTq(a, T1 + T2) ≤ nq(a, T1 + T2)

≤ nq(a, T1) + nq(a, T2)

= GBTq(a, T1) + GBTq(a, T2)

= GBTq(a, T1 + T2).

In particular, nq(a, T1 + T2) = GBTq(a, T1 + T2). 2

6.3 Optimal binary (T − 1)-EC-AUED codes

To determine n2(a, T ) we only need to consider a even (by Corollary 6.1.1).

In [6] optimal codes of size a = 2µ are constructed for µ = 1, 2, 3 by a more
direct, but less efficient, method. The size of the codes and the bounds on n
are the following:

a = 2 for 2T ≤ n < 3T,

a = 4 for 3T < n <
10

3
T,

a = 6 for
10

3
T ≤ n <

7

2
T.

We construct optimal codes for µ = 4, 5, 6, 7 by a combination of a computer
search and the use of Lemmas 6.2.1, 6.2.2, and Corollary 6.1.1 (for q = 2).

When we are considering binary codes we will use the notation

BT (2µ, T ) =

⌈(
4− 2

µ

)
T

⌉

for the Böinck-van Tilborg bound.
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Theorem 6.3.1 For T ≡ 2 (mod 4), we have
⌈

7

2
T

⌉
≤ n2(8, T ) ≤

⌈
7

2
T

⌉
+ 1

and

n2(8, T ) =

⌈
7

2
T

⌉
,

otherwise.

Proof: For a = 8 we have BT (8, T ) = d7
2
T e, hence n2(8, T ) ≥

⌈
7

2
T

⌉
.

For T = 1, BT (8, 1) = 4. According to de Bruijn et al., [10], the size of an
optimal 1-EC-AUED code of length 4 is

(
4
2

)
= 6. So there is no 1-EC-AUED

code of length 4 and size 8. A computer search shows that n1(8, 1) = 5, which
is 1 above the bound.

A computer search shows that for T = 2 there is no code meeting the bound
BT (8, 2) and the length of the best code is 1 above the bound, so n2(8, 2) = 8.

Matrices showing this are:

C1 =




00011
00101
00110
01001
01010
01100
10001
10010




, C2 =




00000111
00011001
00101010
01001100
01110000
10010010
10100100
11000001




.

For T = 3, 4, 5, there are codes with length n2(8, T ) = d7
2
T e. Matrices

showing this are:

C3 =




00000011111
00011100011
00101101100
01010110100
01101010001
01110001010
10011011000
10100110010




, C4 =




00000001111111
00011110000111
00101110111000
01110011001001
10110101010010
11000111100100
11011000011100
11101000100011




,
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C5 =




000000000111111111
000011111000001111
000101111011110000
011010011100110001
011011100111000010
101100011101000110
101101100100011001
110110001010011010




.

A computer search shows that there is no codes meeting the bound for T = 6.
The best code is with length 1 above the bound. So n2(8, 6) = 22 and one of
the possibilities to obtain C6 is a concatenation of C1 and C5.

Using BT (8, T ) + BT (8, 4) = BT (8, T + 4) for all T and Lemma 6.2.2 it
follows that the recursion which we will use to obtained codes for all T is
CT = C4|CT−4. For all T 6≡ 2 (mod 4) the length of the codes is exactly
BT (8, T ) and for T ≡ 2 (mod 4) the length is bounded by BT (8, T ) and
BT (8, T ) + 1.

Note that the fact n2(8, T ) = n2(7, T ) follows from Corollary 6.1.1. 2

Theorem 6.3.2 For T ≥ 2 we have

n2(10, T ) =

⌈
18

5
T

⌉
.

Proof: For size 10 we use the same method. We have BT (10, T ) = d18
5
T e,

hence n2(10, T ) ≥ ⌈
18
5
T

⌉
. We use that

BT (10, T ) + BT (10, 5) = BT (10, T + 5).

The recursion which we will use to obtain codes for all T is CT = C5|CT−5.
We have to note that according to de Bruijn et al., [10], the size of the optimal
1-EC-AUED code of length 4, (since BT (10, 1) = 4), is 6. So there is no code
meeting the bound for T = 1. A computer search shows that the length of the
best code is 1 above the bound, so n2(10, 1) = 5 and the code is presented with
the following matrix :
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C1 =




00011
00101
00110
01001
01010
01100
10001
10010
10100
11000




.

For all other T ≥ 2 there are codes meeting the bound. The codes CT for
T = 2, 3, 4, 5, needed to start the recursion, are:

C2 =




00001111
00110011
00111100
01010101
01011010
01100110
01101001
10010110
10011001
10100101




, C3 =




00000011111
00011100011
00101101100
01010110100
01101010001
01110001010
10011011000
10100110010
10110000101
11000101001




,

C4 =




000000001111111
000011110000111
000101110111000
001110011001001
010110101010010
011000111100100
011011000011100
011101000100011
100111001100100
101001011010010




, C5 =




000000000111111111
000011111000001111
000101111011110000
011010011100110001
011011100111000010
101100011101000110
101101100100011001
110110001010011010
110110100001100101
111001010010101100




.

If we use the recursion to obtain C6 = C1|C5 the code is with length 1 above
the bound, since the length of C1 is 1 above the bound. However there is code
meeting exactly the bound, namely C6 = C3|C3.
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This proves the theorem. The fact n2(10, T ) = n2(9, T ) follows from Corol-
lary 6.1.1. 2

Theorem 6.3.3 For T ≡ 3 (mod 6), we have

⌈
11

3
T

⌉
≤ n2(12, T ) ≤

⌈
11

3
T

⌉
+ 1

and

n2(12, T ) =

⌈
11

3
T

⌉
,

otherwise.

Proof: For size 12 we have BT (12, T ) = d11
3
T e, hence n2(12, T ) ≥ d11

3
T e.

For T = 1, BT (12, 1) = 4. According to de Bruijn et al., [10], the optimal
1-EC-AUED code of length 4 has size 6. So there is no 1-EC-AUED codes of
size 12 and length 4. A computer search shows that the best code is with length
n2(12, 1) = 6. The matrix showing this is:

C1 =




000011
000101
000110
001001
001010
001100
010001
010010
010100
011000
100001
100010




.

Computations have shown that n2(12, 2) = d11
3
T e but for T = 3 there are

no codes which meeting this bound. The length is 1 above the bound. For
T = 4, 5, 6, 7, 8 we have codes meeting exactly the bound. Matrices showing
this for T = 2, 3, 4, 5, 6, 7, 8 are:
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C2 =




00001111
00110011
00111100
01010101
01011010
01100110
01101001
10010110
10011001
10100101
10101010
11000011




, C3 =




000000011111
001111100000
010001100011
010010101100
010101010100
011010010001
011100001010
100011000101
100100100110
100110011000
101000101001
101001010010




,

C4 =




000000001111111
000011110000111
000101110111000
001110011001001
010110101010010
011000111100100
011011000011100
011101000100011
100111001100100
101001011010010
101010100101010
101100100010101




, C5 =




0000000000111111111
0000011111000001111
0000101111011110000
0011010011100110001
0011011100111000010
0101100011101000110
0101101100100011001
0110110001010011010
0110110100001100101
0111001010010101100
1001110010011001001
1001111000000110110




,

C6 =




0000000000011111111111
0000011111100000011111
0000101111101111100000
0011110001110001100011
0011110110010110001100
0111001001111010010100
1011011010001001111000
1100110010111100010001
1101001100110100101010
1101100101000011011001
1110010101001101000110
1110101010000010100111




,
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C7 =




00000000000001111111111111
00000011111110000000111111
00000101111110111111000000
00111010001111000111000011
00111010110011111000001100
01011100011101001001110100
01011111000010010110111000
01101101100101110000010011
10101111001000101001101001
10110101110001000110100101
11010110100100100011001110
11101000111000001110011010




, C8 = C2|C6.

Since BT (12, T ) + BT (12, 6) = BT (12, T + 6), the recursion which we will
use to obtain codes for all T is CT = C6|CT−6.

The best code for T = 9 is C9 = C3|C6, which has length 1 above the bound.
So for all T ≡ 3 (mod 6) the length of the codes is bounded by BT (12, T ) and
BT (12, T ) + 1. For the rest T 6≡ 3 (mod 6), the length of the codes is exactly
BT (12, T ). This proves the theorem.

Again from Corollary 6.1.1 it follows that BT (12, T ) = BT (11, T ). 2

Theorem 6.3.4 For T ≥ 2 we have

n2(14, T ) =

⌈
26

7
T

⌉
.

Proof: For size 14 we have BT (14, T ) = d26
7
T e, hence n2(14, T ) ≥ d26

7
T e.

For T = 1, BT (14, 1) = 4. According again to de Bruijn et al., [10], the size
of the optimal 1-EC-AUED code of length 4 is 6, so there is no 1-EC-AUED
code of length 4 and size 14. A computer search shows that the best code is
with length n2(14, 1) = 6 and the matrix showing this is:
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C1 =




000011
000101
000110
001001
001010
001100
010001
010010
010100
011000
100001
100010
100100
101000




.

Since BT (14, T )+BT (14, 7) = BT (14, T+7), we need codes for T from 2 to 8
to start the recursion, which is CT = C7|CT−7. The codes for T = 2, 3, 4, 5, 6, 7, 8
are presented below:

C2 =




00001111
00110011
00111100
01010101
01011010
01100110
01101001
10010110
10011001
10100101
10101010
11000011
11001100
11110000




, C3 =




000000111111
001111000011
010011001101
010011110010
011101010100
011110101000
100111011000
101011100100
101100001101
101100110010
110101100001
110110000110
111001001010
111010010001




,
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C4 =




000000001111111
000011110000111
000101110111000
001110011001001
010110101010010
011000111100100
011011000011100
011101000100011
100111001100100
101001011010010
101010100101010
101100100010101
110001101001001
110010010110001




, C5 =




0000000000111111111
0000011111000001111
0000101111011110000
0011010011100110001
0011011100111000010
0101100011101000110
0101101100100011001
0110110001010011010
0110110100001100101
0111001010010101100
1001110010011001001
1001111000000110110
1010100110100101010
1010101001110000101




,

C6 =




00000000000011111111111
00000011111100000011111
00000101111101111100000
00011110001110001100011
00011110110010110001100
00111001001111010010100
01011011010001001111000
01100110010111100010001
01101001100110100101010
01101100101000011011001
01110010101001101000110
01110101010000010100111
10011101100001100010011
10100111100010001110100




,
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C7 =




00000000000001111111111111
00000011111110000000111111
00000101111110111111000000
00111010001111000111000011
00111010110011111000001100
01011100011101001001110100
01011111000010010110111000
10011101100101110000010011
10101111001000101001101001
11001110110000001110000111
11100011100101010011100100
11100100010111100100101010
11110000111000010101011001
11110001001010101010010110




, C8 = C4|C4.

This proves the theorem for all T > 1.

From Corollary 6.1.1 we have BT (14, T ) = BT (13, T ). 2

6.4 Optimal ternary (T − 1)-EC-AUED codes

In this section we use the method described above for q = 3.

Theorem 6.4.1 For T ≥ 1 we have

n3(3, T ) = 2T,
n3(4, T ) =

⌈
12
5
T

⌉
,

n3(5, T ) = n3(6, T ) =
⌈

5
2
T

⌉
.

Proof: We first give the proof and the construction of the codes for a = 6.
We have GBT3(6, T ) =

⌈
5
2
T

⌉
. Hence, GBT3(6, T )+GBT3(6, 2) = GBT3(6, T +

2). Codes showing the stated result for T = 1 and T = 2 are

C1 =




200
020
002
100
010
001




, C2 =




12200
21020
20102
02012
00221
11111




.
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As shown in the proofs of Lemmas 6.2.1 and 6.2.2, codes CT that prove the
result for general T are obtained by the recursion CT = C2|CT−2.

Note that the fact n3(5, T ) = n3(6, T ) follows from Corollary 6.1.1.

For a = 3, we only need one matrix to start the recursion CT = C1|CT−1:

C1 =




02
11
20


 .

For a = 4, we need 5 matrices to start the recursion CT = C5|CT−5:

C1 =




001
020
110
200


 , C2 =




00022
01101
10110
22000


 ,

C3 =




00000122
00111011
02022000
11200001


 , C5 =




000000022222
001111101111
120012210001
212220000010


 ,

C4 = C2|C2.

2

We finally consider a = 7, 8, 9.

Theorem 6.4.2 We have

⌈21

8
T

⌉
≤ n3(7, T ) ≤

⌈8

3
T

⌉

for all T ≥ 1.

Proof: For a = 7, we have GBTq(7, T ) = d21
8
T e. We do not know if this

bound can be met in all cases. Computations have shown that it is met for
T ≤ 7. Codes proving this are the following.
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C1 =




012
021
102
111
120
201
210




, C3 =




00001222
00122011
02110102
11010211
12201001
20210020
21101110




.

Further, let

C2 = C1|C1, CT = C3|CT−3 for T = 4, 5, 6, 7.

For T = 8 the best code we have found so far is C4|C4 whose length is one
above the bound. If there exists a code C8 meeting the bound for T = 8, the
recursive construction CT = C8|CT−8 gives codes meeting the bound for all T .
However, if this is not the case, we still can use a recursive construction to get
estimates. We note that d21

8
T e = d8

3
T e for 1 ≤ T ≤ 7, and the construction

CT = C3|CT−3 gives a code of length d8
3
T e for all T . 2

Theorem 6.4.3 We have
⌈8

3
T

⌉
≤ n3(8, T ) ≤ n3(9, T ) ≤

⌈8

3
T

⌉
+ 1

for T ≡ 1 (mod 3), and

n3(8, T ) = n3(9, T ) =
⌈8

3
T

⌉

otherwise.

Proof: For a = 9 the bound is GBT3(9, T ) = d8
3
T e. There are no codes meeting

the bound for T = 1, the bound is 3, but the shortest code has length 4:

C1 =




0002
0011
0020
0101
0110
0200
1001
1010
1100




.
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For T = 2 and T = 3, there are codes meeting the bound:

C2 =




000022
001111
020201
022010
110011
112200
200210
202001
221100




, C3 =




00002222
01111112
02220002
10120121
11202011
12011201
20210210
21022100
22101020




.

Since GBT3(9, T )+GBT3(9, 3) = GBT3(9, T +3), the recursive construction
is CT = C3|CT−3. A computer search shows that there is no code for T = 4
which meet the bound. The best code is with length 1 above the bound. One
of the possibilities to obtain C4 is C2|C2.

So for T ≡ 1(mod 3) the length of the codes is bounded by GBT3(9, T ) and
GBT3(9, T ) + 1 and for the rest T , which are not equivalent to 1(mod 3) the
length of the codes is exactly GBT3(9, T ). 2
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Chapter 7

Bose-Lin Codes

Bose and Lin introduced a class of systematic codes for detection of binary
asymmetric errors. In this chapter, we describe a generalization to q-ary asym-
metric error detecting codes. For these codes, the possible undetectable errors
are characterized and the undetectable errors of minimum weight are deter-
mined.

7.1 Notations and definitions

For x = (x0, x1, . . . , xk−1) ∈ F k
q , let

w(x) =
k−1∑
i=0

xi, the weight of x,

u(x) =
k−1∑
i=0

(q − 1− xi), the coweight of x.

Clearly, w(x) + u(x) = k(q − 1).

For non-negative integers a and s, where a < qs, let

〈a〉s = (as−1, as−2, . . . , a0) ∈ F s
q ,

where

a =
s−1∑
i=0

aiq
i, ai ∈ Fq,

79



80 Bose-Lin Codes

that is, 〈a〉s is essentially the q-ary expansion of a. Define

w(a) = w(〈a〉s) =
s−1∑
i=0

ai.

For example, if q = 5 and k = 6, then

w((1, 3, 1, 0, 2, 4)) = 11 and u((1, 3, 1, 0, 2, 4)) = 13.

Further, 〈33〉4 = (0, 1, 1, 3) and w(33) = 5.

For two sequences x and y, y ⊆ x denotes that x covers y, that is, yi ≤ xi

for all i.

For integers a and n, let [a]n denote the (least non-negative) residue of a
modulo n.

For integers m ≥ 0 and n ≥ 0, S(m,n) denote the number of sequences in
Fm

q of weight n. A discussion of expressions for and computation of S(m,n)
was given in Chapter 5.

7.2 Generalized Bose-Lin codes

The Bose-Lin codes are systematic codes determined by four (integral) param-
eters, q ≥ 2 (symbol alphabet size), k (number of information symbols), r
(number of check symbols), and ω where 0 ≤ ω ≤ r. We use the notations
ρ = r − ω, σ = S(ω, b(q − 1)ω/2c), θ = qρ, and µ = σθ. Finally, let

{bω,0,bω,1, . . . ,bω,σ−1},

be the set of sequences in F ω
q of weight b(q − 1)ω/2c.

A codeword is a sequence in F k+r
q . It consists of an information sequence

x with k information symbols concatenated by a check sequence c(x) with r
check symbols. Let u = u(x), the coweight of x. The check sequence, which
depends only on u modulo µ, that is, the integer [u]µ, will be determined as
follows. Express [u]µ as

[u]µ = αθ + [u]θ,
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where 0 ≤ [u]θ < θ. Since [u]µ < µ = σθ, we get 0 ≤ α < σ. The check sequence
is defined by c(x) = c1(x)|c2(x) where | denotes concatenation,

c1(x) = bω,α

(a sequence of length ω and weight b(q − 1)ω/2c), and

c2(x) = 〈[u]θ〉ρ
(the q-ary expansion of the residue of u modulo θ).

For q = 2 (and ω even) we get the Bose-Lin codes [7]. For ω = 0 (and general
q) we get the Bose-Pradhan codes [8]; actually, Bose and Pradhan considered
the codes with the smallest possible value of r, namely

r = dlogq((q − 1)k + 1)e.

For ω = 2 (and general q) we get the codes studied by Bose, Elmougy, and
Tallini [5], [12].

Our main results are the following theorems.

Theorem 7.2.1 Let C be the GBL-code with parameters q, k, r, ω. A codeword
x|c(x) ∈ C can be transformed to the codeword y|c(y) 6= x|c(x) by transmission
over a complete q-ASC if and only if

y ⊂ x and 〈λ〉ρ ⊆ 〈[u(x)]θ〉ρ,

where λ = [u(x)− u(y)]µ.

Proof: The sent codeword is x|c1(x)|c2(x) and the received codeword is y|c1(y)|c2(y),
where x 6= y. Looking at each part, we see that this is possible if and only if

y ⊂ x, (7.1)

c1(y) ⊆ c1(x), (7.2)

and
c2(y) ⊆ c2(x). (7.3)

Since w(c1(y)) = w(c1(x)) = b(q − 1)ω/2c, (7.2) is possible if and only if

c1(y) = c1(x). (7.4)
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Further, by definition, c2(x) is the q-ary expansion of u(x) modulo θ and
c2(y) is the q-ary expansion of u(y) modulo θ. Also, we note that if y ⊂ x,
then u(y) > u(x). Hence, suppose that (7.1), (7.3), and (7.4) are satisfied, and
let

u = u(x) (7.5)

and

jµ− λ = u(y)− u(x), (7.6)

where j ≥ 1 and 0 ≤ λ < µ. Note that λ = [u(x)− u(y)]µ. Let

[u]µ = αθ + [u]θ and [u + jµ− λ]µ = βθ + [u + jµ− λ]θ.

Since [u + (jµ− λ)]µ = [u− λ]µ and [u + (jµ− λ)]θ = [u− λ]θ, we get from
the definition of the code that

c1(x) = bω,α c2(x) = 〈[u]θ〉ρ,
c1(y) = bω,β c2(y) = 〈[u− λ]θ〉ρ.

Hence, (7.4) is satisfied if and only if bω,α = bω,β, that is, if and only if

β = α, (7.7)

and (7.3) is satisfied if and only if

〈[u− λ]θ〉ρ ⊆ 〈[u]θ〉ρ. (7.8)

We consider (7.8) in more details. First we note that since α = β, we must
have λ < θ. Next, we see that (7.8) states that the q-ary expansion of [u]θ
covers the q-ary expansion of [u− λ]θ. This implies in particular that the q-ary
expansion of λ must be covered by the q-ary expansion of [u]θ. In particular, we
must have λ ≤ [u]θ. On the other hand, if λ ≤ [u]θ, then (7.7) is satisfied; further
(7.8) is satisfied exactly when 〈λ〉ρ ⊆ 〈[u]θ〉ρ. We also note that 〈λ〉ρ ⊆ 〈[u]θ〉ρ
implies that λ ≤ [u]θ. This completes the proof of the theorem. 2

Remark 7.1 For a non-complete q-ASC, the ”only if” part of the theorem is
still true, but the ”if” part may not be true. A simple example to illustrate this
is given by the code with parameters q = 3, k = 2, r = 1, ω = 0. For this code,
both (222) and (201) are codewords. For a complete channel the first can clearly
be transformed into the second. However, for a channel where for example 2
can not be changed to 1, this is not the case.
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Theorem 7.2.2 Let C be the GBL-code with parameters q, k, r, ω, and assume
that the transmission is over a complete q-ASC. The code C detects all errors
of weight up to

(σ − 1)θ + (q − 1)ρ,

but there are undetectable errors of weight

(σ − 1)θ + (q − 1)ρ + 1.

Undetectable errors of this minimal weight occur exactly for codewords of coweight
tθ − δ for t ≥ 1 and 1 ≤ δ ≤ q. For such codewords, an error is undetectable if
the weight of the error to the information part is

µ− θ − ε + δ

where 1 ≤ δ ≤ ε ≤ q and the last ρ symbols of the check part, namely

(q − 1, q − 1, . . . , q − 1, q − δ),

are changed to
(0, 0, . . . , 0, q − ε).

Proof: We use the notations introduced in the proof of Theorem 7.2.1. From
the proof of Theorem 7.2.1, we see that the weight of the undetectable error
considered is

w(x|c(x))− w(y|c(y))

= w(x)− w(y) + w(c2(x))− w(c2(y))

= w(x)− w(y) + w(〈[u]θ〉ρ)− w(〈[u− λ)]θ〉ρ)
= u(y)− u(x) + w(〈[u]θ〉ρ)− w(〈[u− λ)]θ〉ρ)
= jµ− λ + w(〈λ〉ρ)
= jµ− λ + w(λ).

Suppose that

λ =

ρ−1∑
i=0

aiq
i, and λ′ =

ρ−1∑
i=0

a′iq
i,

where ai, a
′
i ∈ Fq and 〈λ〉ρ ⊆ 〈λ′〉ρ, that is, ai ≤ a′i for all i. Then

(λ′ − w(λ′))− (λ− w(λ)) =

ρ−1∑
i=0

(a′i − ai)(q
i − 1) ≥ 0. (7.9)



84 Bose-Lin Codes

We note that 〈θ−1〉ρ = (q−1, q−1, . . . , q−1). Hence w(〈θ−1〉ρ) = (q−1)ρ
and 〈[u]θ〉ρ ⊆ 〈θ − 1〉ρ. By (7.9), if also 〈λ〉ρ ⊆ 〈[u]θ〉ρ, then

λ− w(λ) ≤ [u]θ − w([u]θ) ≤ θ − 1− (q − 1)ρ. (7.10)

Therefore, the weight of an undetectable error is lower bounded as follows:

jµ− (λ− w(λ)) ≥ µ− θ + 1 + (q − 1)ρ = (σ − 1)θ + (q − 1)ρ + 1.

Consider the undetectable errors of minimal weight. We see that we get
equality in (7.9) if and only if a′i = ai for all i ≥ 1. Hence we have equality in
both places in (7.10) if and only if

j = 1, λ = θ − ε, and [u]θ = θ − δ,

where 1 ≤ δ ≤ ε ≤ q. This proves Theorem 7.2.2. 2

A natural question is: given q and r, which value of ω maximizes

A(q, r, ω) = (σ − 1)θ + (q − 1)ρ.

For q = 2 it was shown by a simple proof in [20] that the maximum is ob-
tained for ω = 4 when r ≥ 5. For q ≥ 3 it seems to be much more complicated to
answer the question. Numerical computations indicate that for q ≥ 3, the max-
imum is obtained for ω = 2. The computations show that A(q, r, 2) > A(q, r, ω)
for 3 ≤ q ≤ 7 and ω ≤ 100. We give some computations in the table below for
the first few value of ω and for 3 ≤ q ≤ 7. The function S(m,n) which we use
was discussed in more details in Chapter 5.

Lemma 5.1.4 can be used to compute S(ω, b(q − 1)ω/2c) for ω = 1, 2, . . ..
Note that b(q − 1)ω/2c = ((q − 1)ω − 1)/2 when ω is odd and q is even, and
b(q − 1)ω/2c = (q − 1)ω/2 otherwise. The first few values are given by the
following table.

ω S(ω, (q − 1)ω/2) S(ω, ((q − 1)ω − 1)/2)
1 1 1
2 q −
3 (3q2 + 1)/4 3q2/4
4 (2q3 + q)/3 −
5 (115q4 + 50q2 + 27)/192 (115q4 + 20q2)/192
6 (11q5 + 5q3 + 4q)/20 −
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Using this table we compute the value of the function S(ω, b(q−1)ω/2c) for
ω = 1, 2, ..., 6. Then we compute

A(q, r, ω) = (σ − 1)θ + (q − 1)ρ

= (S(ω, b(q − 1)ω/2c)− 1) qr−ω + (q − 1)(r − ω).

In the table below are given the first few values of A(q, r, ω), r ≥ ω for
3 ≤ q ≤ 7 and 1 ≤ ω ≤ 6.

q \ ω 1 2 3
3 2(r − 1) 2 · 3r−2 + 2(r − 2) 6 · 3r−3 + 2(r − 3)
4 3(r − 1) 3 · 4r−2 + 3(r − 2) 11 · 4r−3 + 3(r − 3)
5 4(r − 1) 4 · 5r−2 + 4(r − 2) 18 · 5r−3 + 4(r − 3)
6 5(r − 1) 5 · 6r−2 + 5(r − 2) 26 · 6r−3 + 5(r − 3)
7 6(r − 1) 6 · 7r−2 + 6(r − 2) 36 · 7r−3 + 6(r − 3)

q \ ω 4 5 6
3 18 · 3r−4 + 2(r − 4) 50 · 3r−5 + 2(r − 5) 281 · 3r−6 + 2(r − 6)
4 43 · 4r−4 + 3(r − 4) 154 · 4r−5 + 3(r − 5) 579 · 4r−6 + 3(r − 6)
5 72 · 5r−4 + 4(r − 4) 380 · 5r−5 + 4(r − 5) 1750 · 5r−6 + 4(r − 6)
6 145 · 6r−4 + 5(r − 4) 779 · 6r−5 + 5(r − 5) 4331 · 6r−6 + 5(r − 6)
7 230 · 7r−4 + 6(r − 4) 1450 · 7r−5 + 6(r − 5) 9330 · 7r−6 + 6(r − 6)

Theorem 7.2.3 Let q ≥ 3. We have A(q, r, 2) > A(q, r, 1) for r ≥ 3. For
3 ≤ ω ≤ 6 we have A(q, r, ω − 1) > A(q, r, ω) for r ≥ ω.

Proof: By definition,

A(q, r, ω) = (σ − 1)θ + (q − 1)ρ

= (S(ω, b(q − 1)ω/2c)− 1)qr−ω + (q − 1)(r − ω).

In particular

A(q, r, 1) = (q − 1)(r − 1),

A(q, r, 2) = (q − 1)qr−2 + (q − 1)(r − 2),

A(q, r, 3) ≤ (3q2 − 3)qr−3/4 + (q − 1)(r − 3).

Hence

A(q, r, 2)− A(q, r, 1) = (q − 1)qr−2 − (q − 1) ≥ 0
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for r ≥ 2. Similarly,

A(q, r, 2)− A(q, r, 3)

≥ ((q2 − q)− (3q2 − 3)/4)qr−3 + (q − 1)

= (q − 1)(q − 3)qr−3/4 + (q − 1) > 0

for r ≥ 3,

A(q, r, 3)− A(q, r, 4)

≥ (q(3q2/4− 1)− ((2q3 + q)/3− 1))qr−4 + (q − 1)

= (q3 − 16q + 12)qr−4/12 + (q − 1) > 0

for r ≥ 4,

A(q, r, 4)− A(q, r, 5)

≥ (q − 1)(13q3 + 13q2 + 27q − 165)qr−5/192 + (q − 1) > 0

for r ≥ 5,

A(q, r, 5)− A(q, r, 6)

≥ (47q5 − 140q3 − 1152q + 960)qr−6/960 + (q − 1) > 0

for r ≥ 6. 2

This shows that for ω ≤ 6, the maximum is obtained for ω = 2 and that for
ω ≥ 2, the value of A(q, r, ω) decreases with ω. We conjecture that this is true
also for ω > 6.

7.3 The probability of undetected error

The probability of undetected error depends on the channel model as well as
the code and the probability distribution of the sent arrays. For q = 2, the
asymmetric channel was considered and the probability of undetected error was
determined (assuming that errors are independent and the transition probability
is the same for all symbols). For q > 2 there are more than one possible
asymmetric channel and we consider a general model. We assume that the
errors are independent. In a particular position, if the sent symbol is a, then
the received symbol is b with probability π(b|a). For any asymmetric model
we have π(b|a) = 0 for b > a. Further,

∑a
b=0 π(b|a) = 1. Independent errors
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mean that if a = (a1, a2, . . . , an) is sent, then b = (b1, b2, . . . , bn) is received
with probability

π(b|a) =
n∏

i=1

π(bi|ai).

If P (x) denotes the probability distribution of the information arrays, and
P (x, π) is the probability that we get an undetected error when x is encoded and
transmitted, then the probability of undetected error for the code is P (C, π) =∑

x∈F k
q

P (x)P (x, π).

We note that if x and x′ are equivalent (that is, x′ is a permuted version of
x), then c(x′) = c(x) and P (x′, π) = P (x, π). Hence, if we let

v(x) = (v0, v1, . . . , vq−1),

where vj = #{i | xi = j}, then P (x, π) only depends on v = v(x) and π; we
denote it by Π(v, π). With this notation,

P (C, π) =
∑
v

Π(v, π)
∑

x∈Fk
q

v(x)=v

P (x).

From Theorem 7.2.1 we immediately get the following explicit expression for
Π(v, π).

Theorem 7.3.1 For any given v = (v0, v1, . . . , vq−1), let

x = (

v0︷ ︸︸ ︷
0, 0, . . . , 0,

v1︷ ︸︸ ︷
1, 1, . . . , 1, . . . ,

vq−1︷ ︸︸ ︷
q − 1, q − 1, . . . , q − 1)

and u = u(x) =
∑q−1

j=0(q − 1− j)vj. Then

Π(v, π) =
∑

λ
〈λ〉ρ⊆〈[u]θ〉ρ

∑
j≥1

∑
y⊂x

u(y)=jµ−λ+u(x)

π(y|x).
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Chapter 8

Summary and some open
problems

This work is based on symmetric and non-symmetric channels and the capabil-
ity of the codes, using over these channels, to correct and/or detect errors.

For symmetric codes we considered codes which can detect errors. The er-
ror detection is very important for the correct transmission of a message. If we
use the definitions for a code to be good or proper for error detection, given
in Chapter 2, the problem to determine if the code is good or proper by using
the probability of undetected error, is equivalent to determine the weight or
distance distribution of the code. But this is very hard problem to consider and
the weight/distance distribution is known only for few codes. So we derived
necessary conditions for codes to be good for error detection. The conditions
depend on the minimum distance dmin, the size M of the code and a lower bound
A of Ad. When we have these values, we can consider a function h(p), which
is a function in terms of the symbol probability. The condition says that if the
length of the code is greater than this function h(p), then the code is ugly for
error detection. We think that this is easier way to determine if the code is good
or not good for error detection than to consider the probability of undetected
error Pue(C, p). We gave some examples to show how good our approximation is.

To determine if a code is proper for error detection is again a very hard com-
putational problem because again it depends on the probability of undetected
error Pue(C, p), which means on weight/distance distribution of the code, if we
use the definition for proper code in Chapter 2. Large codes are proper and here
we determined how large is large. We proved that any q-ary code of size at least
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qn − β(q, n), where β(q, n) is a function depending on the length of the code
n and the alphabet size q, is proper. Again this method is much more easier
to determine if the code is proper or not than to consider the weight/distance
distribution and the probability of undetected error Pue(C, p).

We presented a function S(m,n), which is the number of sequences of length
m and weight n. Some very usefull properties of this function were derived.
With the help of this properties a theorem for generalized Bose-Lin codes was
proven.

The error correction capability of a code is also very important during the
transmission. We constructed some binary and ternary codes which can correct
up to t symmetric errors and detect all unidirectional errors. Our codes are
optimal in terms of the the shortest length of a code to be t-EC-AUED code.
A generalization GBTq(n, T ) for arbitrary alphabet size q is made of the lower
bound of the length of a (T − 1)-EC-AUED code, which is used during the
construction. In many cases it appears that n = GBTq(n, T ) and in some other
cases the length is 1 above the bound.

Bose and Lin introduced a class of symmetric binary codes which can detect
binary asymmetric errors. In this work based on this class of codes we derived
a class of generalized Bose-Lin codes for arbitrary alphabet size q. The class is
described. We also gave a result which says when there are undetectable errors
and the minimum weight of the undetected error is found. We considered the
maximum weight of the detected errors and we concluded that the function
which presents the maximum weight of the detected errors is getting its maxi-
mum when ω = 2, where 0 ≤ ω ≤ r and r is the number of check symbols. We
showed this for ω ≤ 6 and we conjectured that this is true for ω > 6.

The first open problem, which we leave for a future work, is to prove that
the maximum weight of the detected errors, using generalized Bose-Lin codes,
is maximal when the number of the check symbols are 2 or more. We have
proven this for ω ≤ 6, where 0 ≤ ω ≤ r and r is the number of check symbols.
The problem is to prove it for ω > 6.

Another open problem is to construct more (T − 1)-EC-AUED codes with
bigger parameters - alphabet size, length and size. The case for the ternary
(T − 1)-EC-AUED codes of size 7 is still open. It is not determined if there is
or not a code such that n3(7, 8) = 21.
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As it was mentioned earlier, we showed that all large codes are proper for
error detection and we gave bounds on how large. The first problem is to
find better bounds on the size of code to be proper. Interesting questions
are what is happen with the codes which are not so large and when they are
proper. Is it possible to find some other conditions for these codes which show
if they are proper or not for error detection, excluding the condition using the
weight/distance distribution and the probability of undetected error Pue(C, p)?
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