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Abstract

A new estimator, called the convolution estimator, is examined for the density
estimation of the responses in a nonlinear regression model, and for the marginal
density of nonlinear time series. Asymptotic properties are established and it is
found that the convolution estimator has a better rate. Simulations indicate that
the proposed estimator outperforms the well-known kernel density estimator in
many finite sample cases.

Based on the same convolution idea, an estimator for nonparametric regres-
sion is proposed. Both asymptotic analysis and simulation results show that this
estimator has an overall better asymptotic bias property than standard nonpara-
metric regression estimators.

An iterative algorithm for estimation of the unknown functions in an additive
model for a panel of time series observations is proposed. Some asymptotic
properties are given, and simulations indicate that the proposed algorithm works
well.
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INTRODUCTION

The following sections will briefly introduce nonparametric smoothing methods,
and a short section will introduce panel data models, which is the other topic of
this thesis. Further, this thesis consist of four papers, and short summaries will
be given during the introduction, thereafter, the papers are presented.

1 Nonparametric smoothing

Statistics is the science that deals with the collection, summarization, presen-
tation and interpretation of data. The existence of high speed computing has
made it easy to look at data in ways that were once impossible. One area is
that of nonparametric density and regression function estimation, or also called
smoothing methods.

In nonparametric smoothing the aim is to avoid assumptions on the para-
metric form of a density function or regression function, and let the data speak
for themselves and find a function that describes the available data well. This
is in contrast to parametric modelling, where a specific model with parameters
is assumed to generate the data in question. In this case, it can be easy to do
inference and great gains in efficiency are possible, however, only if the model
is (almost) true. If the assumed model is incorrect, inferences can be useless,
leading to misleading interpretations of the data.

Nonparametric smoothing provides a simple way to find structures in data sets
without imposing a parametric model, the only assumption is that the density or
regression function in question is a smooth curve.

2 Kernel density estimation

The literature concerning nonparametric smoothing, which include kernel density
estimation, is vast. Over the last three decades, nonparametric smoothing has
been one of the most active areas of statistical reasearh. Estimating probability
density functions can be considered the simplest data smoothing situation and
the following section will describe kernel density estimation briefly. Only a few
references are mentioned here, but several of the books referred to give excellent
overviews of the large amount of literature in this field.

The problem of estimating the probability density function of a sample of
univariate and independent observations, X, ..., X,,, having common density f,
is often encountered. A classical method will be to use a histogram, but an
improvement of the histogram method is kernel density estimation, which first
appeared in a report by Fix & Hodges (1951). Books on density estimation are
for example Hérdle (1990), Wand & Jones (1995) and Simonoff (1996).
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Figure 1: Kernel density estimate

The formula for the univariate kernel density estimator is,

),

fo) = =3 K (1)

where K is a function, called kernel function, satisfying f K(x)dx =1, and h is
a positive number called the bandwidth or smoothing parameter. Usually K is
taken to be a nonnegative symmetric and unimodal probability density function,
this ensures that the estimate f(xz) is also a density.

Figure 1 shows how the kernel density estimator behaves in practice. For each
observation X; the scaled kernel function, here Gaussian, is centered. The value
of the kernel estimate is the average of the n kernel ordinates at that point. In
regions where there are many observations, this will produce a relatively large
value, as expected, and the opposite will occur in regions with few observations.
For the sake of clarity, only four observations are used here, but this number is
far to small to actually estimate a density reasonably well.

To use the kernel density estimator, one has to choose a kernel and the band-
width. It is well known that different choices of the kernel function will not have
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Figure 2: Kernel density estimates with different bandwidhts (solid line - true
function, dashed line - the estimated density)

a large influence of the estimator’s performance. The bandwidth choice however,
is crucial. As figure 2 shows, a large bandwidth will produce an oversmoothed
density (lower graph), but a small bandwidth produces a wiggly estimate (upper
graph). How to optimally choose the bandwidth will be considered later.

2.1 Properties of the kernel density estimtor

The analysis of the performance of the kernel density estimator is usually based
on the size of its mean squared error (MSE), that is,

A~

MSE(f(x)) = E[f(2) = f(2)] = Var[f(@)] + [E(f(z) = f@)]*.  (2)

The variance and bias decompostion makes it easy to interpret the estimators
performance. The MSE is a pointwise measure, a global measure is the mean
integrated squared error (MISE),

MISE(f(z)) = E| / (f(x) - f(x))da). (3)
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Since the MSE and MISE depends on the bandwidth, A, in a complicated
way, an approximation of the leading terms in the bias and variance must be
calculated. These approximations show in a simple way how the bandwidth
actually influence the performance of the estimator, they can be used to obtain
rate of convergence of the kernel density estimator, and the approximations can
also be used to derive optimal bandwidth choices.

To develop the approximations, the following assumptions is made:

1. The density f has a second derivative f” which is continous, square inte-
grable and monotone.

2. The bandwidth h satisfies lim,,_,..h = 0 and lim,,_,..nh = oco.

3. The kernel function K is a bounded density function with [ 2K (z)dz =0
and [ 2*K(z)dz < co.

Simple calculations, see e.g. chapter 2 in Hérdle (1990), yield

B(f(0) = 1(0) + 302" (@) [ 2K s +olh?) (@)

and

~

Var(f(z)) = (nh) ™' f(z) /KQ(Z)dZ +o((nh) ™). (5)

These two expressions give the MSE of the kernel density estimator,

MSE(f(2)) = (nh) ™ f(x) / K(2)dz + h' (@)’ / 2K ()]
+0((nh)_1) + 0(h4). (6)

From the MSE, to reduce the bias, one should let ~ get smaller and smaller, but
this will increase the variance, since it is proportional to (nh)~!. This is known
as the bias-variance trade-off. Increasing the number of observations, n, clearly
reduces the variance. Observe that the bias is proportional to f”(z), thus the
bias is large when the curvature of f(x) is large. R

Note that the kernel density estimator is consistent, since MSE(f(x)) con-
verges to zero, if h — 0 and nh — oo, that is

~

f(z) = f(). (7)

Since the MISE can be written,

MISE(f (x)) = / MSE(f(2))dz, (8)



we obtain

MISE(f(x)) = %[ / 22K (2)dz)? / f(x)2dz 4 (nh)™ / K(2)%dz +

o((nh)™") +o(h*).  (9)

Minimizing the asymptotic MISE, the so-called A-MISE, obtained by ingoring
the higher order terms in (9), with respect to the bandwidth parameter h, results
in a bandwidth called the asymptotic optimal bandwidth. This is given by,

R(K)
pa(K)2R(f")n

where 12(K) = [22°K(2)dz and R(f) = [ f(x)?*dz. However, this bandwidth
depends on an uknown parameter f f"(z)?dz. In the next section we will intro-
duce methods that handle this problem. Observe that this bandwidth gives the
rate of convergence of f(z), substitute h,, in the A-MISE gives,

hopt = | Ve, (10)

A 5
A-MISE(f(2)) = 7 [ua(K)* R(K)*R(f DIRE (11)
In other words, the convergence speed of the A-MISE of the kernel density esti-
mator is (nh)~'/2 = n=%/>, which is slower then the typical rate of convergence of
n~1/2, for parametric models. The asymptotic MSE and MISE were studied by
Rosenblatt (1956), Parzen (1962) and Watson & Leadbetter (1963).

2.2 Bandwidth selection

The choice of the bandwidth A is a main problem in kernel density estimation.
Various methods exist, and here just a few methods will be mentioned. See the
aforementioned books for details and other methods.

One simple bandwidth rule is based on the asymptotic optimal bandwidth in
equation (10). By assuming that f is a Gaussian density with standard deviation
o, then

R(f") = 0.21207°. (12)

Thus we can estimate R(f”) by using an estimator 7, the sample standard es-
timator, for o. Further, if K is a Gaussian kernel, then we obtain the normal
reference bandwidth, see for example Bickel & Doksum (1977) and Silverman
(1986).

Ropt & 1.06601/5, (13)

This bandwidth can be a good choice if the data are nearly Gaussian distributed.
However, it may oversmooth the estimate if the data are not nearly Gaussian
distributed.



Other bandwidth selectors include methods based on cross-validation ideas;
least squares cross-validation, introduced by Rudemo (1982) and Bowman (1984);
maximum likelihood cross-validation, see Habema et al. (1974) and Duin (1976)
and biased cross-validation; introduced by Scott & Terrell (1987).

The normal reference bandwidth was obtained by assuming f to be a Gaus-
sian density, and thus we are able to estimate R(f”). Another approach is to
estimate R(f") directly, and plug-in this estimate in the formula for the asymp-
totically optimal bandwidth. Thus these bandwidths methods are known as Plug-
In mehtods. A good implementation of this method is proposed by Sheather &
Jones (1991). This bandwidth selector is also used in several of the simulation
experiments conducted in this thesis.

2.3 Modifications of the kernel density estimator

Many authors have proposed adjustments and improvements to the kernel density
estimator, and a few will be mentioned here. One difficulty with the estimator
is that, while it gives good estimates for many different density shapes, it can be
inadequate for other shapes. Particulary since just a single smoothing parameter,
the bandwidth, is used over the entire real line. Thus the idea of using variable
bandwidths was proposed by Victor (1976) and Breiman et al. (1977).

If the random sample has a density, f, that is difficult to estimate then another
possibility is to apply a transformation of the data to obtain a new sample with
a density, g, more easily estimated using the standard kernel density estimator.
Then backtransform this estimated density, g, to obtain the density in question,
f. This estimator is called transformation kernel density estimator, and were
studied by Wand et al. (1991) and Yang & Marron (1999).

Hjort & Glad (1995), Efron & Tibshirani (1996) and Glad (1998) have studied
the possibility of parametrically guided nonparametric density and regression
estimation.

In many situations the density in question will have a bounded support. When
using the kernel density estimator it will spread point masses smoothly around
the observed data points, and some of those near the boundary of the support
are distributed outside the support of the density. As a result, the kernel density
estimator underestimates the density in boundary regions. Two approaches which
deals with this problem is, using boundary kernels, which are weight functions
only used within the boundary region; see Gasser & Miiller (1979) and Gasser
et al. (1985), and the reflection method; see Schuster (1985) and Hall & Wehrly
(1991).

Several authors have studied the use of higher order kernels to improve the
asymptotic bias; see e.g. Marron & Wand (1992), for a quantification of the
practical gain in density estimation. To define a higher order kernel, let

pi(K) = / 2 K(2)dz
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be the jth moment of the kernel K. Then we say that K is a kth — order kernel
if
po(K) =1, p;(K)=0forj=1,...,k—1, and pux(K) # 0.

However, the estimation by higher order kernels implies two disadvantages. First,
we have to assume that the unknown density is more than twice differentiable in
x, and second, the kernel must be negative in some intervals, thus the density
estimate also might become negative in some intervals.

2.4 Functionals and root n consistent density estimators

As presented above, ususally the kernel density estimator has a convergence rate
of (nh)~'/2. However, functionals of densities may have a parametric rate of
convergence n~'/2. This includes smooth functionals of densities, where appro-
priate estimators for the density are plugged into the functional, see e.g.; Hall
& Marron (1987), Birge & Massart (1995) and Efromovich & Samarov (2000).
For continous-time processes root n consistent kernel-type density estimators also
exists, see for example; Castellana & Leadbetter (1986), Blanke & Bosq (1997)
and Veretennikov (1999).

Frees (1994) introduces density estimation for functions of observations and
showed that independent and identical distributed random variables can be es-
timated at the parametric rate n~'/2. This result generalizes to convolution
densities f * {(y) = [ f(y — x)l(z)dz. In the paper Saavedra & Cao (1999),
the authors introduce a convolution-kernel estimator for the marginal density
of a moving average process, Y; = X; — 60X, ; when 0 is unknown, and proves
that this estimator, for an appropriate choice of bandwidth, is n!/?-consistent.
Schick & Wefelmeyer (2004a) introduces a slight simplified variant of this esti-
mator, which also has the root n consistent property. However, these papers are
quite technical, and only limited simulation experiments are performed. Further,
Schick & Wefelmeyer (2004b) shows that the density of a sum of independent
random variables can be estimated by the convolution of kernel estimators for
the marginal densities, and that this estimator is root n consistent as well.

2.5 Dependent data

In many situations the observed sample X1, ..., X,, is not independent, e.g. in a
time series setting. Assuming that the dependence in the data is weak enough,
so-called short-range dependence, the dependence will not affect the leading term
of the MISE approximation, see e.g. Gyorfi et al. (1990), and also the book by
Fan & Yao (2003), which examines nonparametric time series methods. Thus,
the kernel density estimator is often used to analyse dependent data. However,
the results obtained need to be viewed with some caution, since dependencies
in the data are certain to have some effect on the performance of the kernel



estimator, since it usually represents loss of information. Note that if the data
is long-range dependent, this leads to a worse rate of convergence of the kernel
density estimator.

2.6 Summary: Paper A and B

In paper A, “A convolution estimator for the density of nonlinear regression ob-
servations”, we introduce a density estimator for the responses in a regression
model

where {X;} and {e;} consist of indpendent and identical distributed random
variables with {e;} independent of {X;} and the function m(-) is unknown. The
density of Y; is of interest. It can of course be estimated by the standard kernel
density estimator. But by using the idea of convolution, as explained in section
2.4, we introduce a new density estimator, called the convolution estimator. This
estimator has better asymptotic properties than the kernel density estimator,
that is, the variance of the estimator has leading terms n~! instead of the stan-
dard (nh)~!. In this sense it leads to a parametric rate of convergence of the
convolution estimator. Several simulation experiments have been performed, and
the convolution estimator behaves better in several cases.

Paper B, “A convolution density estimator for nonlinear time series: Simula-
tions and some preliminary analysis”, uses the same idea as in paper A, but in
this case the model is an autoregressive process,

Xt = m(Xt_l) + €, (15)

thus the observed X;-s are dependent. Here the marginal density of X is of in-
terest. Several simulation experiments are performed, and they indicate that the
convolution estimator has a better performance than the kernel density estimator.

3 Nonparametric regression

In regression curve fitting, the aim is to find a relationship between variables X
and Y. Assume we have n independent observations of {X;, Y;}, the regression
model is

where {e;} consist of i.i.d. random variables with {e;} independent of { X;}. Thus
E(Y|X = x) = m(x) and due to independence between X; and e¢;, Var(Y|X =
r) = Var(e;) = o2.

Nonparametric regression can also be studied in a fixed design. This is the
case when the design consists of ordered non-random numbers z1, ..., x,,, however,
there is not a big difference between this case and the case we study, so-called
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random design. Nonparametric regression estimators have been treated in several
books, e.g. Hirdle (1990), Wand & Jones (1995) and Fan & Gijbels (1996).

3.1 Common estimators

For estimating the regression function at a given point z, we weight the observa-
tions Y; depending on the distance between X; to . Thus, we use the estimator

m(x) =n""> Wiz X1, ..., X))V, (17)

i=1

where Wj,(-) is weight function depending on the smoothing parameter or band-
widht h and the sample X, ...X,, of explanatory variables. The weights W,(+)
depend on the technique used.

The three most common estimators are the local polynomial estimator; see
Stone (1977), Cleveland (1979), Miiller (1987) and Fan (1992), the Nadaraya-
Watson estimator; see Nadaraya (1964) and Watson (1964) and the Gasser-Miiller
estimator; see Gasser & Miiller (1979).

The local polynomial estimator, m(x;p, h), at a point = with p degrees of
polynomial fit, is obtained by fitting the polynomial

o+ Oi(w =) + o 4 Bp(x =)

to the (X;, Y;) using weighted least squares with kernel weights Kj,(z — X;). The
value of m(x;p, h) is the height of the fit 3, where 3 = (0o, ..., 3,)7 minimises

n

D Y= Bo— o = Bolw — XKz — X5).

i=1

Assuming invertibility of XWX, standard weighted least squares theory gives
the solution

B=XIW,X,) 'XIW,Y, (18)
where Y = (Y7, ...,Y,,)T is the vector of responses,
1 .’L'—Xl (.’L'—Xl)p
Xo=1: : :
1 z—X, ... (z—X,)P

is an n x (p + 1) matrix and
W, = diag[Kp(x — X1), ..., Kp(x — X,,)] (19)

is an n x n diagonal matrix of weights. Since the estimator of m(x) is the intercept
By we obtain
m(z;p h) = e (X; W X,) ' X, W, Y, (20)

9



where e; is the (p+ 1) x 1 vector having 1 in the first entry and zeros elsewhere.
Choosing p = 1 we obtain the so-called local linear estimator. If we choose p =0
we get the Nadaraya-Watson estimator,

_ E:’L:I Ky(r — X3)Y;

me(.T; h) = 2?21 Kh<;L’ — XZ) . (21)

The Gasser-Miiller estimator is

n s

v (w3 h) = Z Yy Kp(z — u)du, (22)

i=1 si—1

where s; = (X + Xpit1)), so = 0, s, = 1. Here (X}, Y)y), i = 1,...,n, denote
the (X;,Y;) ordered with respect to the X; values. This estimator is intended for
the fixed design case.

3.2 Asymptotic properties

The performance of the different estimators are again studied by examining the
MSE. We need the following conditions,

1. The regression function m(x) has a bounded and continous second deriva-
tive.

2. The kernel function K is a bounded density function with [ 2K (z)dz = 0
and [ 2*K(z)dz < co.

3. The marginal density fx of the explanatory variable X is continous.

If h — 0, and nh — oo, calculations give the following bias and variance for
the different estimators, see e.g. Wand & Jones (1995) and Hérdle (1990). For
the local linear estimator,

Bias(m/(z;1,h)) = %th”(x) /ZZK(Z)dZ + o(h?), (23)
Var(m(x;1,h)) = #;(:c) / K?*(z)dz + o((nh)™1). (24)

For the Nadaraya-Watson estimator

Bias(ryw (z;h)) = (%m”(x) + %)W/fl((z)dz + o(h?), (25)

Var(myw(z;h)) = #}i@/fﬁ(z)dz +o((nh)™).  (26)
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And last, for the Gasser-Miiller estimator,

Bias(mg (z; b)) = %th"(:c) / 22K (2)dz + o(h?), (27)
Var(mgu(z; b)) = % /KQ(Z)dZ +o((nh)™h). (28)

Observe that the estimators have different leading terms in the variance and bias.
However, the variance for the Gasser-Miiller estimator is 1.5 times larger than
the others. The bias for the Nadaraya-Watson estimator is a more complicated
expression than the others, but note that the bias in all cases depends on m” (),
thus when the curvature of the function m(z) is large, the estimators will have a
large bias.

Note that the local linear estimator has more appealing properties than the
other two estimators. These two estimators have boundary effects, as for the
kernel density estimator, that is, bias of order O(h) instead of O(h?) at the
boundary. This is not the case for the local linear estimator, which automatically
correct for this boundary bias. Again, the bias converge with the order h%, the
variance has convergence rate (nh)~! and the A-MISE optimal bandwidth is of
order n~'/° which implies that the MSE, from equation (2), and MISE, equation
(3), has convergence rate n~*/°.

As for the kernel density estimtor, similar modifcations of the nonparametric
regression estimators can be used to improve the performance of the estimates
asymptotically.

3.3 Bandwidth selection

The basic idea of choosing the smoothing parameter is the same as for density
estimation; the bandwidth should be choosen to minimise an error measure, usu-
ally the MISE. Again, the methods can basically be classified into two categories:
cross-validation methods and plug-in methods.

For the Nadaraya-Watson estimator, Hérdle & Marron (1985) applied the
ideas of least squares cross-validation, and Gasser et al. (1991) and Hérdle et al.
(1992) proposed bandwidth selectors with better asymptotic properties and prac-
tical performance. A simple direct plug-in idea for local linear regression with at-
tractice theoretical and practical properties is proposed by Ruppert et al. (1995).
This bandwidth is used in some parts of this thesis.

There exists several other bandwidth selectors; see e.g. the books by Wand
& Jones (1995), Hérdle (1990) and Fan & Gijbels (1996) for further references.

3.4 Dependent data

As under kernel density estimation, if the data satisfies certain mixing conditions
or short-range dependence, the nonparametric regression estimators behaves al-

11



most as for independent data. If the data do not fulfill these conditions, the
variance of the estimator can be affected. The general strategy is then to in-
crease the bandwidth, to reduce variance. Chapter 5 and 6 in Fan & Yao (2003)
gives results for nonparametric kernel density and regression estimators used with
dependent data under mixing conditions.

3.5 Multivariate nonparametric regression

In a multivariate regression problem we want to study the relationship between
the response variable Y and the vector of covariates X = (X7, ..., X4)7 via

m(x) = E(Y|X = x), (29)

where x = (21, ...,74)" and m(x) = m(z, ..., 74). It is straigthforward to general-
ize the univariate smoothing techniques, see e.g. Fan & Gijbels (1996). However,
the main problem is that the sparseness of data in higher-dimensional space makes
regression estimation difficult unless the sample size is very large. This is known
as the curse of dimensionality. Thus these smoothing techniques are not usually
applied with d larger than three. Several approaches have been proposed to han-
dle the curse of dimensionality problem, and one approach, additive modelling,
will be introduced in the next section.

3.6 Additive models and backfitting

Additive models are widely used in applied statistics and econometrics, see e.g.
the monograph by Hastie & Tibshirani (1990). The setup is as in the section
above, but now the regression function m(x) is modelled additively, that is,

d
m(x) = Z m;(x;). (30)

To ensure identifiability, mq, ..., my are required to satisfy
Usually an intercept term is added, E(Y') = «, thus the model becomes

d
Y:a+2mj(xj)+e, (32)
j=1

where E(e) = 0, Var(e) = 02 and e is independent of the vector of covariates X.

Estimation of the unknown functions my,...,my is done by the backfitting
algorithm, introduced by Breiman & Friedman (1985) and Buja et al. (1989).
Note first, that if the additive model, (32), is correct then

BY —a = my(X;)|Xe] = me(Xy), k=1,...d. (33)
J#k

12



This relationship suggest an iterative procedure for the estimation of the unknown
functions. Thus for a known constant o and given functions m;, j # k, the func-
tion my can be estimated by a univariate regression fit based on the observations
(X},Y:),i=1,...,n, where X} is the ith observation of the kth additive variable.
Denote the univariate smoother of m; by Si. The algorithm works as follows:

Step 1. Initialization: & =n~'> " | Y;, 1y, =m) for k=1,...,d.
Step 2. Find new transformations: For k =1, ..., d:

J#k

centre the estimator to obtain 7} =y —n " Z (X},
i=1

and &" =a+n"" ) m(X}).
Step 3. Repeat step 2 until convergence.

The idea behind this algorithm is to carry out a fit, calculate partial residu-
als from that fit, and refit again. That is why the iteration scheme is called
backfitting. The starting functions m{, ..., mJ can be obtained in various ways,
for example, from a linear regression fit of Y on the covariates Xj.

However, this backfitting algorithm does not reach the oracle efficiency bound,
i.e. the additive components are not estimated with the same asymptotic bias and
variance as if the other components were known. Mammen et al. (1999) defined
a new backfitting-type estimator, called smooth backfitting, that overcome this
shortcoming, and also has a number of other tractable properties. Here the
estimator is simply the projection of the data on the additive space of interest.

3.7 Other methods

Besides the already mentioned estimators for nonparametric regression, there
exist several other methods to estimate a relationship between a response Y and
a covariate X, they include wavelet and spline smoothing.

In local polynomial modelling, the estimator models the unknown regression
function m locally by a few parameters and uses the bandwidth to control the
complexity of the modelling. But it is also possible to model the function globally
with a large amount of unknown parameters. Wavelet and spline expansion can be
used for such modelling. Wavelet transforms have received great deal of attention
in e.g. applied mathematics and signal analysis. For references to these methods;
see chapter 2 in Fan & Gijbels (1996).
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3.8 Summary: Paper C

In this paper, “A new convolution estimator for nonparametric regression”, we
present a new type of estimator for standard nonparametric regression. The
estimator is introduced by recognizing that the standard estimators presented
here, do not take into account the extra information contained in the regression
relationship

Y, = m(X;) + e;. (34)

Again we use the idea of convolution, and by analysing the asymptotic properties
of this new estimator, that we have called “the convolution estimator”, we find
that its asymptotic bias is smaller than for standard methods. We also prove
asymptotic normality. Some simulation experiments have been performed, and
in several cases, the convolution estimator outperforms the standard methods.

An adjusted kernel function is also introduced, and by using this kernel in
our convolution estimator, it seems that the estimator gives even better results.
However, more theoretical work has to be done here.

4 Panel data models

Data sets that combine time series and cross sections are common in several fields,
especially in economics. An example of such a data set can be time series obser-
vations of income, expenditure etc. for several firms simultanously. Usually the
number of individuals, here firms, are very large, but the number of observations
for each individual are moderate or small. Panel data sets contain more infor-
mation than just time series or cross sectional data alone, since it is for example
possible to model cross-sectional heterogeneity. Thus the analysis of panel data
is the subject of one of the most active areas of research in econometrics. Several
books have been written on the analysis of panel data; see e.g. Hsiao (1986),
Baltagi (2001) og Arrellano (2003). The following presentation is mainly taken
from Greene (2003) chapter 13, and I refer to this book for further details.

4.1 General model

The basic framework for panel data analysis is a regression model of the form
Yit = Q5 -+ Yt -+ ,6/Xl't -+ €it, 1= 1, ., n and t = 1, ceey 777 (35)

where x;; contains K regressors, «; is constant over time, ¢, and it is the individual
effect for the cross-sectional unit ¢ and ~, is the time effect. ¢; is the error term
corresponding to individ ¢ at time {.

The time effect is sometimes not included, and if we take the «;’s to be the
same across all units, then ordinary least squares provides consistent and efficient
estimates of a and 3. Otherwise, there are two frameworks used to generalize

14



the model: the fixed effects approach takes «; to be a group specific constant
that needs to be estimated or the random effects, that specifies that «; is a group
specific disturbance.

4.2 Fixed effects

A common formulation of the model assumes that differences across units can
be captured in differences in the constant term. Thus each «; is an unknown
parameter to be estimated. Let y; and X; be the T observations for the 7th unit,
€; is the T' x 1 vector of disturbances, and i is a 7" x 1 column of ones, then

Collecting all terms we can write,
y = Da + X3 + €, (37)

where y is a nT x 1 vector, D is a nT" x n matrix of dummy variables indicating
units, ¢ is a n X 1 vector, X is a nT x K matrix, 3 is a K x 1 vector and € is a
nT' x 1 vector.

This model is known as the least squares dummy variable model (LSDV), and
ordinary least squares can be used to estimate 3, and the a. The time specific
effect can easily be included.

4.3 Random effects

In some settings it might be appropriate to view the individual specific terms as
randomly distributed across cross-sectional units, for example if we believe that
the sampled cross-sectional units are drawn from a large population. Consider a
reformulation of the model,

yir = o+ 8% + u; + €, (38)

where there are K regressors in addition to the constant term. The w; is the
random error term characterizing the ith observation and is constant through
time. By making assumptions on the error terms w; and ¢; it is possible to
estimate 3 by using generalized least squares (GLS) or feasible generalized least
squares (FGLS).

4.4 Other models

Missing data are common in panel data sets, and panels where the unit sizes differ
across units are called unbalanced panels. In this case we have )" | T; observa-
tions instead of nT. However, analysing an unbalanced panel in the fixed effects
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model is fairly straightforward. Panel data models can handle heteroscedasticity,
which appears when the error terms in the model have variances which are not
constant across observations. And models that handle autocorrelated error terms
have also been proposed.

Panel data models are well suited for examining dynamic effects,

Yir = a; + 8%t + 0y -1 + €ir. (39)

But substantial complications arise in estimation of this model. The problem is
that the lagged dependent variable is correlated with the disturbances, even if
it is assumed that €; is not itself autocorrelated. However, General Method of
Moments (GMM) estimators have been constructed to handle this problem.

4.5 Nonparametric panel data models

In the panel data setting, most models proposed and examined are linear para-
metric models, as introduced above. Very little literature exist on nonlinear or
nonparametric panel data models, see Arellano & Honoré (2001) for a review of
recent work on nonlinear panel data models and Ullah & Roy (1998) for a review
of nonparametric models. See also Hjellvik et al. (2004) for a recently proposed
nonparametric model.

One example of a nonparametric panel data model is a pooled Nadaraya-
Watson kernel estimation. Here the model is

i =m(xy) +uy, i=1,.n, t=1,..,T (40)

where x;; is a vector of K regressors, m(z;) = E(yu|zi), E(ui|xy) = 0, Var(u|x,) =
0?(x;) and (y;, ¥4 ) are assumed to be i.i.d. The nonparametric estimate of m(z),
the conditional mean at a point x, is the smoothed average of y values which cor-
respond to the x;; values in a small interval of x, i.e. the Nadaraya-Watson
estimator, which were introduced earlier.

4.6 Summary: Paper D

In this paper, “Nonparametric additive models for panels of time series”’, we in-
troduce a general additive model for the panel of observations {y;}, i =1,...,n,
t=1,...,T, where 7 represents individuals and ¢ time. The model is

p
Yit = Z my(3,) + 1+ i + €, (41)
j=1
where {x{t}, J =1,...,p, is a set of explanatory variables, 7, and \; are temporary

and individual effects, respectively, and €; are error terms. The functions m;,
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7 =1,...,p are unknown, and the task is to estimate them. We have chosen to
use backfitting, as introduced in Mammen et al. (1999).
An iterative algorithm has been proposed, and both simulation experiments

and a real data study indicates that this algorithm estimates the additive func-
tions well.
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A convolution estimator for the density of
nonlinear regression observations

Bard Stgve Dag Tjgstheim

Department of Mathematics
University of Bergen
Johannes Brunsgate 12
5008 Bergen
Norway

Abstract

We present a convolution estimator for the density of the responses in
a standard regression model. The rate of convergence for the variance of
this estimator is examined and found to be of order n~!. We also derive
the bias of the new estimator and conduct simulation experiments to check
the finite sample properties. The proposed estimator performs better than
the kernel density estimator for well behaved noise densities.

Some key words: Convolution, Kernel function, Mean squared error, Nonparametric
density estimation, Regression.

1 Introduction

There exists a vast literature on the problem of estimating an unknown density function
f(x) from a given sample Xi, Xs,..., X,, of independent and identically distributed
random variables, see e.g.; the books by Hiardle (1990), Wand & Jones (1995) and
Simonoff (1996). The most used method is kernel density estimation where f(z) is

estimated by
f*(m)Z%;K(x_hXi), 1)

with K being a kernel function and h the bandwidth. It is well known that the asymp-
totic bias and variance of this estimator are of the order h? and (nh)~!, respectively.
In this paper we consider the standard nonlinear regression model,

Y; = g(Xi) + e, (2)

where g is unknown and where {X;} and {e;} consist of independent and identically
distributed random variables with {e;} independent of {X;}. Denote the density of Y;



by fy(+), this being the density of interest, and the densities of X; and ¢;, fx(:) and
fe(+), respectively. For given observations of (X;,Y;) a standard method of estimating
the density of Y; is using the already mentioned kernel density estimator on {Y;}. This
estimator does not require the relationship (2) to hold, and if one is able to construct
an estimator which takes this relationship into account, one should think that it would
be possible to make an improvement. This idea was introduced in Stgve & Tjgstheim
(2005b) for nonparametric estimation of g. For that case, the asymptotic bias and
variance were of the same order as the standard nonparametric regression estimators,
but an asymptotic bias improvement was obtained. However, in the case of density
estimation in equation (2), it will be seen that we manage to obtain a better convergence
rate for the variance and often better bias properties, although asymptotically, the order
of the bias is the same as for the kernel density estimator.

Other authors have also studied this convolution idea; Frees (1994) introduced den-
sity estimation for a symmetric function YV = ¢(Xi,...,X;,) of m > 1 independent
and identically distributed variables. The density can be estimated at the rate n=1/2,
in contrast to the standard nonparametric rate of (nh)*l/ 2 if this density and the
conditional density of Y given X; are sufficiently smooth. This result generalizes to
non- identically distributed random variables, and in particular to convoluted densities
[*l(y) = [ f(y—=2)l(xz)dz. Saavedra & Cao (2000) introduced this type of convolution-
kernel estimator for the marginal density of a moving average process Y; = X; — 0.X;_1
when 6 is known, and proved that this estimator, for an appropriate choice of band-
width, is n'/?-consistent. The case when 6 is unknown is examined in Saavedra & Cao
(1999b), and an analogous result is obtained, but in this case both # and the innova-
tions X; have to be estimated. Further, Schick & Wefelmeyer (2004a) introduced a
slightly simplified variant of this estimator and proved a stronger result of asymptotic
normality. In Schick & Wefelmeyer (2004b) it is shown that the density of a sum of
independent random variables can be estimated by the convolution of kernel estimators
for the marginal densities, and that this estimator is n!/2-consistent as well.

Note that we assume that the function g(-) and the error terms e; are not known,
and thus has to be estimated. This is in contradistinction to the models examined
in Frees (1994) and Schick & Wefelmeyer (2004b), where the authors assume that the
function ¢ is known.

Our proposed estimator is presented in section 2, its asymptotic behaviour is exam-
ined in section 3, and some simulation results and a real data set are located in section
4. Some conclusions are given in section 5.

2 The estimator

From equation (2) using that g(X;) and e; are independent, we get

/fey g(u)) fx (u)du (3)

where f, is the density of the residuals. This motivates an estimator of the density fy
given by the functional in (3), which can be written as

fy(y) =E[fe(y — 9(X))]. (4)
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Assume we have observations (X71,Y71,),...,(X,,Y,) of (X,Y). We introduce esti-
mators of g, e, f. and an estimate of the expectation in (4), thus

fr(y) =E[fi (v - 3(X))]. (5)

In this paper, g is the Nadaraya-Watson estimator, see e.g. Hérdle (1990), with band-
width hpr, and kernel function K:f:v,%(X ) = (1/hg) KNV ((z — X;)/hg),
ZZ 1 KNW (X) .

z,hp

g9(x) =

Other nonparametric regression estimators, such as the local linear estimator, see Fan
& Gijbels (1996) page 20, for g can also be choosen. The estimate for e; is

The estimate fZ of the density of e; is by the kernel estimator with bandwidth Ap and

kernel function K(-),
e Z K( o ) (8)

Thus the final density estimator for fy is, using (5),

%ifg(y—g(&)):%[n_l ZK( G

3 Asymptotic properties

Asymptotic analysis of nonparametric estimators is usually based on the asymptotic bias
and variance of the estimator. In this section we discuss these asymptotic properties of
the estimator (9). The following assumptions are made, and a few others are introduced
later when needed,

1. The kernel function K is a bounded non-negative, two times differentiable, sym-
metric function that integrates to 1, and hence the derivative K’ satisfies

/ K'(2)dz=0 and / 22K'(2)dz = 0.

2. The function g is differentiable and its inverse exists.

3. The density fx has compact support S(X), is continous and two times differen-
tiable on the support.

4. lim,,_ochp = 0 and lim,,_,,onhp = oo.



Condition 1 is standard in nonparametric estimation, and observe that if the kernel
function is the standard normal distribution, this condition is automatically fulfilled.
Condition 2 is introduced to obtain simple expressions. We think it can be relaxed.
Condition 3 is also standard, and the compact support is introduced for the sake of
simplicity. It can probably be removed at the cost of lengthier arguments. Condition 4
is standard.

To study the mean squared error (MSE) of the estimator, it is useful to decompose
the difference between the estimator and the true density in the following manner,

fr(@) = fr(@) = fr(@) — fr(@) + fr (@) — fr(@), (10)
where

Frio) =13 [ﬁzK(#)] (1)

=1 =2

that is, the proposed estimator with g(-) and e; for j = 1, ..., n, known. We first consider
this “estimator”. Recall that the MSE can be decomposed as follows,

MSE(fy (2)) = E[(fy(2) = fy(2))’] = var(fy (2)) + [E(fy (2)) = fy(@)]*.  (12)

To ease notation, we now set hp = h. Consider the bias term first. Since X; and e; are
independent for all ¢ and 7,

B () = ot B[ D Y k(G
n(n —1)h == h
— %E[K(Lﬁ)_e)} (13)

Further, by a change of variable, the convolution property and Taylor expansion, we
get

e e e N A
_ / / K(w)fx(0)fo(z — g(v) — hw)dvodw

h2
— [ Ky (o~ hupde = fr(a) + 5 o) [ oK)+ 00,

Thus the bias can be written,

B(fy (2)) — fria) = 5 F@) [ wPK(w)duw + O(h) (14

This is in fact equal to the bias of the standard kernel density estimator, see e.g. Wand
& Jones (1995) page 20.



The variance term can be decomposed into several covariance terms; see a similar

argument in Saavedra & Cao (2000),

n

Var(fy(x)) = mvar[ZiK(%ﬂ

n n n n

: szkzlz(;((w(f) PRSI ALT
- n2(n—11)2h2 R e ).

+(n—1)(n — 2)var (K (* 9<)]§1)—e2))

+(n = 1)(n — 2)(n — 3)eov (K (*= 9()21) — ) K (2= 9()21) —%))

+2(n = 1)(n — 2)(n — 3)eov (K (*— 9(’20 ey (P 9(223) —ay)
= 1) 2)(n — Bov (1 (T2 g7 29 Z 2y

+(n —1)(n — 2)cov (K(m — 9()21) —o k(2 9(?22) - 61))

+2(n — 1)(n — 2)cov (K(”C — 9(221) ey g (1S g(}}(;l) - 62))

+2(n — 1)(n — 2)cov (K(:C — 9()21) —y k(P g()liz) - 61))

+(n - 1><n—2><n—3><n—4>cov(K(w—9<?21> —62),K(m—g<)23> —eay)
+(n —1)(n — 2)cov (K(x — 9()21) —o k(- g()]?) - 62))

= 1)~ 2)(n — 3)cov (i (L ITNZ ) o2 oE) Z )

= 1)~ 2)(n — Beov(K(FTITLZA) g m 9 Zeayy)

Each variance and covariance term can be studied using

var(X) = B(X?) — (E(X))?,
cov(X,Y) = E(XY) — E(X)E(Y).

By independence the terms (18), (20), (23), (24), (25) and (26) are equal to zero, and

we just have to examine the remaining terms.
Equation (15) is

var (K(—x —9(X) —en



Consider the first term. By change of variables, convolution and Taylor expansion,

E(KQ( X1 _61 //K2 Fx () (w)dvdu
= h/ K2(2)fx () fe(z — g(v) — hz)dvdz = /K2 ) fy (x — zh)dz

2,2
h*z "

:h/K2 (v (@) — hefi @) + = fi )] dz + O(?)

= hfy(z /K2 dz+ f{} /22K2(z)dz+0(h4).
The second term in the variance expression is, using exactly the same techniques,

[E<K(%ﬂ_el))r - [h[fy(x)-{—}gf}'ﬂ(x)/ZQK(Z)dZ+O(h2)]]2.

In total,

(n — 1)var (K(%))

— = D[nfy(@) [ K2z~ 1) + 00, (29)
The second term, (16), is,

var(K(x —9()21) - 62)> _ E(KQ(x —9(X1) - 62)> B [E(K(w —9(X1) - 62))]2_

This is equal to term (15), thus,

(n—1)(n —2)var <K(%ﬂ_62))

= (1= D0 = 2) [0y (o) [ Kz - 1R @)+ O], (30)

The third term, equation (17), is

COV(K(m - Q(Xl) - 62)’K(~T - g(Xl) - 63)>

h h
_ E(K(w - 9()21) — oy (2 9()21) - 63))
(e (I B 1 ()

Further, by change of variables and Taylor expansion,

E<K($ - 9()21) — ez)K(ﬂ: — g()}il) — 63))
///K m - - “1 (x - 9(2) - UQ)fX(U)fe(ul)fe(UQ)dUdludUZ
= h? ///K 21) K (22) fx (v) fe(x — g(v) — z1h) fe(x — g(v) — 2z2h)dvdz1d2y

/fX (0) 2 (2 — g(v))dv + O(h?)|.




As before,

e S )

2
= [ @)+ 5 @) [ PREE+ o] = 1 o)+ Ok

In total this gives,

(n—1)(n—-2)(n - 3)cov(K(x — 9()21) - 62)’K(m ~ 9()21) - 63)>

— (=D = 2)(n = [ [ x0)f(o - g)dv - K fp )+ OWY]. @)
The fifth term, equation (19), is

cov<K(x_g()21)_62),K(x_g()23)_62)). (32)

Using the assumption that the inverse of g(-) exists we obtain

E(K(:U —9()21) — 62)K(ﬂ: — g()}(Lg) - 62))
= [ o EFLDZ) e (I ) o (wdudodu
= h? // K(z1)K(z2)fx(v)lx(g(v) + h(z1 — 22)) fe(z — g(v) — hz1)

xr(g(0) + hz1 - 22))dudeadzy = [ r(g0) fx(0)1. (2 — 9(0)) L (9(0))dv + O()

where (g7!) = and fx(g7!) = Ix. Note that

rv) = (g7 ) =

9 (971 (v))
and g~ (g(v)) = v, thus )
") = g
and
Ix(9(v) = fx (97 (g(v)) = fx(v).

As before,

E<K($ - g()}il) - 62))E(K(~T - g()éfi) - €1)> _ h2f32/(.%') + O(h4)
In total,

(n = 1)~ 2~ Beow (5e (L LT 62),K(”” )
—(n—1)(n hQ/fX fe ) o R (x )+O(h4)]. (33)
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The seventh term, equation (21), is

We have

cov (K(x_g(Xl) —y (29X %)), (34)

E<K($ —9(X1) — g (2 —9()21) - 62))

— ///K(éC - g(}:) “ K (2= g(;:) —) Fx (W) £ (u) fo(w)dvdudw

= h2 /// K(21)K(22)fx () fe(z — g(v) — hz1) fo(z — g(v) — hzo)dvdzidzs

As before,

In total,

:hQ/fX(U)fe(x_Q(U))fe(x_Q(U))dv+0(h4)-

E(K(m —g(X1) — 61))E<K(x —g(X1) — 62)>

h
= h%fE(x) + O(n*).

2(n—1)(n — 2)COV(K(x —9(X) - 61)7[((35 —9(X1) — 62)>
2

The eigth term, equation (22), is

h h
=200~ D(n - D[ [ fx()f (o - g0))dv
12 f () + O(hY)]. (35)
COV<K(x_g();;1)_61)7K(x_g()22)_€1))' (36)

This is equal to the fifth term, (19), so in total,

2(”—1)(n—2)cov(K( 9(X1) - ) K(x_g(XQ)—€1)>

h
2(n —1)( h2 / fX fe
—h2fy( ) + 0<h4>} . (37)
Adding all the expressions stemming from (15)-(26), we get the total variance,
var (fy (z)) = —/fx
fX fe 2 2
n — 1 / o 1fY(35)
— K2 )dz+ O 1)7'h?).
n(n 1 / 2+ 0((n—1)""h?) (38)
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Observe that from this expression the variance of fy () has leading terms of order n~!,
this in contrast to the kernel density estimator which has leading terms (nh)~!, see e.g.
Wand & Jones (1995) page 21.

Thus the MSE for fy (z) becomes,

MSE(fy(2)) = E|(fy(2) - fr(2))*] = %h“ ;;(x)Q[/wQK(w)dwf
g [ @) - o) do
| [ BOfE—gw)
I / () dv
1

+7)hfy(x)/K2(z)dz+O((n— 1)7112) + O(°). (39)

n(n —1

R )

If h is of order n~'/* it follows trivially that the MSE is of order O(n ).

Note that there are bias reducing techniques, using e.g. a higher order kernel, see
Wand & Jones (1995) page 32, so that the bias can be reduced to O(h%) or O(h®), say,
while still keeping the variance at O(n~!). This means that there would be a wider
choice of bandwidths for which the MSE is of order n~1.

~ We next study the properties of the other term in equation (10), that is, fy(m) —
fy(z). Here some additional assumptions are introduced. Before we list them, let
Ix,v(z,y) denote the joint distribution of (X,Y) and define m(z) = [yf(z,y)dy:

5. E|Y|® < o0 and sup, [ |y|*f(z,y)dy < oo, s > 2.

6. m is continous on S(X).

Consider the estimator fy (z) in (9). By substituting for €;, Taylor expanding K (-)
around (z — g(X;) — e;)/h and using the mean value theorem, we obtain,

" 1 1 L — (X)) — €
fﬂm):;z[m;;“%ﬂ

i=1




Thus,

1 1 12— 9(Xi) — ey 9(X;) — g(X;)
n & {(n—l)hjZ[K( T A —
—I—K/(x g()}fl) - e]) 9(X;) ;g(XZ)H

i=1 =2

Let us first examine the second term in the Taylor expansion above. We observe that
for ¢ = j it is zero. For ¢ # j, if we denote by F;, the common empirical distibution
function of X; and Xj,

5 2 [ 2 (63%) (%)) - (X)) ]
=1

=2

< h SSUD,, e5(x) maes(x) (9(72) — g(x2) — (G(21 //dF x1)dF, (22)

1 N 2 -
< ﬁSUleeS(X)(g(xl) —g(z1))” + SupmleS(X),xgeS(X)‘Q g(x1) — g(a1))

X (g(w2) — g(x2))| +supg,es(x) (g(x2) — 9(902))2- (42)

Using a uniform convergence result for the Nadarya-Watson estimator and making use
of assumptions 5 and 6, see Mack & Silverman (1982),

subyecsoli@) = o(a)l = Op([=—tog(7-)]"), (43)

and a well-known result from order in probability, we obtain that the order of the term
in question is

Or (—tos(5)) (44)

where hp is defined in (6). Using the same argument as when evaluating (42) it will
also be seen that the mean of the absolute value and the standard deviation of this term
is of the order given in (44). (See below for the existence of these quantities under the
assumption inf,cg(x) fx(z) > 0.)

There is a potential to improve on (44), since the evalution is quite crude. An
alternative would be to try to evaluate the order of the second order term directly, as
will be done presently for the first order term using the convolution property, and then
include a third order term which can be evaluated (crudely) as above, resulting in a

term O <[ 108 hR]?’/ > For the crude estimate (44) to be of order O(\/—) we must
have

hgh® = O(n™Y?7¢) for some € > 0. (45)
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Further, let ut examine the first term of the Taylor expansion of fy(z) — fy(x).
If this is of larger order than (44), this will be the contributing term. We start by
examining the expectation of this term. For the expectation of this term to exist we
need the existence of E(g(X;)—g(X;)), but using the definition of the Nadaraya-Watson
estimator, this exists if the density function fx is such that inf,cg(x) fx(x) > 0. This
is assumed in the following. We again note that the expectation disappears for ¢ = j,
and for i # j we have, using independence, for the first part of the first order term

< n_thZK, —g(X _ej) (g(Xj);g(Xj)D

=1 j=2

// K'(% _u)(E(?J(m))—9(:62))fe(u)fx($1)fX($2)dUdm1dx2' (46)

Now Taylor expandlng and using a convolution argument, we obtain

3 ][] K EGE) - glea) flo — glan) = b (@) fx (wa)drdindes
=5 [ K ®) - o) i o~ b fx(w)dndes =
~fipla) [aK @)t [ (B@) - glo2) fx @)z

5 ) [ Gaa [ ([E@) - go) fx e + 00, @)

Observe that since the kernel is symmetric, [ 22K'(z1)dz; = 0, so there is no term of
order O(h3). The whole term is of order O(h?) through the dependence on E(j(z2) —

9(x2)).

Examining the second part of the first order term in (41), by similar arguments

—E( n_thZK/ —y( i_ej).(g(Xi);g(Xi))>

~ [an ez [ (B@@) - glen) e - gon) fxlode + OGY. (49)

In total, the terms (47) and (48) are of order h%, but can be reduced by higher order
kernels.

Further, we examine the variance of the first order term in (41). The condition
infyeg(x) fx(z) > 0 again guarantees the existence of this variance. The calculations

are similar to the calculations where we found the variance of fy(z). The variance in
question is,

var( —l)hQZZ [K/ x— )_6])(9(X¢)—§(Xi)+§(Xj)_g(Xj))]>
= 13 2

= i D2 3D eon R 0  ) +505) - ()

n
i=1 j=2 k=1 [=2



The evaluation of these terms can be found in the appendix. It turns out that they
are of order O(h*/n), thus they will only contribute higher order effects to the overall
variance of fy (z).

In total the bias of fy (z) will consists of the terms (14), (47) and (48). This is of
order h?, as for the kernel density estimator, but as we will see in the next section, a
bias improvement may actually occur in some cases. If the bandwidth condition (45) is
fulfilled, the total variance has a leading term given by equation (38), i.e. O(n™1); it is
in fact the rate of the variance for a parametric estimation problem.

This result may seem striking. However, observe that the density of Y is expressed
as a smooth function of the densities of X and e. This suggests that the density of Y
can be estimated by plugging in estimators of the unknown densities and the unknown
function g, in the functional. By the plug-in principle we can expect that this estimator
converges at the parametric rate, even though the estimators being plugged in have a
slower rate of convergence. Some references for smooth functionals of densities are e.g;
Hall & Marron (1987), Birgé & Massart (1995) and Efromovich & Samarov (2000). In
these cases the parametric convergence rate n~1/2 for the estimatated functionals are
obtained.

4 Evaluating the convolution estimator

To evaluate the finite sample properties of the proposed estimator, (9), we use simulation
experiments to compare the convolution estimates with the estimates from the classical
kernel estimator in (1).

To avoid looking at separate sets of points, the comparisons are based on the mean
integrated squared error (MISE) of the two estimators. The MISE for the convolution
estimator is

MISE() = B[ [ T el (50)

and likewise for the kernel density estimator. We have used 100 simulated realizations
with sample sizes from 100 to 5000 of the model (2), with different choices of the function
g(-) and distributions of X and e. The value of MISE is approximated as an average
of the ISE (integrated squared error) of the 100 realizations, and ISE is estimated by
numerical integration. If the true density fy is not known analytically, we have based
our comparisons on an estimated kernel density computed from 1 000 000 generated
observations of (X;,Y;), using this as the “true” density.

The choice of bandwidth in non-parametric estimation has a considerable impact
on the accuracy of the estimator. The bandwidth, hp, used in the kernel density esti-
mation in our simulation study, is the Solve-the-Equation Plug-in Apparoach proposed
in Sheather & Jones (1991), and is the same for all the (n — 1) density estimations in
equation (9). For ease of computation the bandwidth for the kernel smoothing of g is
the rule-of-thumb, see e.g. Hirdle (1990) page 91, 1.06 min(é, R/1.34)n~'/, where R
is the interquartile range, & is the variance of all observations X1, ..., X,;. Thus we may
actually obtain better results using a more optimal bandwidth for the non-parametric
regression.

The following models are considered:
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=z, X ~N(1,1), e ~N(0,0.1).
=z, X ~N(1,1), e ~N(0,1).

=3z, X ~N(1,1), e ~N(0,1).

= (0.5 +4e ")z, X ~U[-2,2], e ~N(0,1).
=z, X ~N(1,1), e ~ Double exponential(0, 1).
z) =z, X ~N(L 1), e~ Yo 3N(EE 2) + 570 AN(Z, o).

=22 X ~U[0,2], e ~ (exp(1) — 1).

(z)
(z)
(z)
(z)
5. g(z) = 2% X ~UJ0,2], e ~N(0,1).
(z)
(z)
(z)
(z)

9. g(z
10. g(z) =22, X ~U[0,2], e ~ (3N(=3/2,1/2) + 1N(3/2,1/2)).

Models 1-4 are linear models, with error terms that can be encountered in practice,
and models 5 and 6 are non-linear with normally distributed error terms. Models 7-
10 are rather unusual and difficult, and seldom met in practice, but we would like to
see how the estimator performs in some extreme cases. In most cases of the examples
the compactness assumption on fx is not fulfilled. Actually, we do not believe that
this assumption is necessary, and we wanted to check performances in cases where it
is violated. The second parameter given for the normal distributions is the standard
deviation.

The simulation results are given in table 1. In some simulations only 30 realizations
are performed, and those are marked. The table shows the percentage change by using
the convolution estimator compared with the kernel density estimator. For the MISE,
this change is calculated by

MISE(f;) — MISE(fy)
MISE(fy)

- 100, (51)

for the squared bias

[Ave(fy — fy)]? — [Ave(fy — fy)]’

[Ave(fy — fy)]? o (52)
where
Lk 100 ,
[Ave(fy — fy)]* = EZ 00 Z — fy(z;)]7, (53)

and similarly for the convolution estimator. In (53) k denotes the number of gridpoints
for which the estimators are calculated, usually k = 500. Thus f*(z;) is the calculated
kernel estimate for the ith realization in gridpoint x;. Further, fy(x;) denotes the true
density in gridpoint ;.
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The variance change is calculated as

var(fy) — vér(fy)

) - 100, (54)
where ) | | 2
var(f) = 13 (55 (30 (@) - Avel i 2))°) | (55)
j=1 i=1

and similarly for the convolution estimator. Here Ave{f; (x;)} denotes the average of
all 100 (or 30) kernel estimates in gridpoint z;.

A minus sign in the table, thus indicates that the kernel density estimator performs
better than the convolution estimator.

In many cases the MISE is smallest for the convolution estimator, however, in cases
where the variance of the error terms is relatively small, especially for model 1, the
kernel density estimator is best. This is not unexpected, since the convolution effect
will not be large here. In fact, the estimates obtained by the convolution estimator in
this model are extremely wiggly and almost useless, thus we obtain the extreme results
in table 1.

In the non-linear models 5 and 6 with normally distributed error terms, the convolu-
tion estimator is clearly better. But introducing asymmetric and multimodal distribu-
tions on the error terms, as in model 8, 9 and 10, the convolution estimator deteriorates.
In model 8, the error distribution is difficult to estimate, but the distributions fy and
fx is of much smoother form. Hence the kernel density estimator could be expected to
be better. Figure 1 shows one simulation of sample size 500 from this model. In the
upper plot, the simulated X; and Y; is given as points, and the estimated g is given as
the solid line. Three bands can be discerned in the scatter diagram and the regression
estimator is poor. The plot in the middle shows the estimated error terms, ;. There are
clear indications of multimodality. In the lower plot, the “true” density is given as the
thick solid line, the kernel density estimate is given as the solid line and the convolution
estimate as the dashed line. The convolution estimator have several modes and thus
behaves worse than the kernel density estimator. Similar problems occurs for model 9.
These results corresponds to analogous results found in Saavedra & Cao (1999a) for the
estimation of the marginal density in a moving average process.

The variance for the convolution estimator is smaller for many simulations, and
when the sample size increases, the improvements are also increasing. The squared bias
is smallest almost for all cases for the convolution estimator. This is somewhat suprising
since from the asymptotic analysis it is of the same order as the kernel estimator. Figure
2 shows the estimated variance and bias for the two estimators from the simulations
for model 2 with sample size 100. The upper plot shows that the variance for the
convolution estimator is smallest, as expected. The bias for the kernel density estimator
is,

o h? "

B(f() ~ frla) =& Y(x)/sz(w)dw—i-O(hz)’ (56)

and it behaves as we would expect, since it is proportional to the second derivative of
the density in question, here a normal distribution with mean equal to one. The bias
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for the convolution estimator behaves quite differently, and overall it is considerably
smaller. This difference can in fact be explained by the following reasoning.

Since fx and f. are normal distributions, it also means that the true fy will be
normal with mean equal to one and variance equal to two. From this information it
is possible to calculate the exact expressions for the bias of the convolution estimator
and compare it to the observed bias in figure 2. The bias of the convolution estimator
consists of three terms, (14), (47) and (48). Equation (14) is now

B(fv@) ~ fre) = ) [wn e
2 T — 2
= % wQK(w)dw[— 4;% exp{—1/4(z — 1)2}(1 — (167173)} (57)

This expression is identical to the bias for the kernel density estimator.
In equation (47) and (48), the bias of the Nadaraya-Watson estimator of g(z) is a
part of the expression. This bias is well-known and is

E(j(x)) — g(z) = b* (%g"(x) + %) / u?K (u)du. (58)

Since [w?K(u)du = 1, g(x) = = and fx is a normal distribution, this expression will
be equal to —2(x — 1)h2. Inserting this in equation (47) and again using the fact that
fx is normal with mean and variance equal to one gives, for the leading term in (47),

—fi(x) / 211 K'(21)dz / (—2(z2 — 1)R? exp(—(z2 — 1)%/2))dzs.  (59)

1
V2T
Observe that the last integral above is equal to zero. Thus we have no contribution to
the bias from this expression.

Further, equation (48) yields,

h2/z2K/(z2)dzz/((—2(331—1)(%exp(—(x—x1)2/2))\/12_ﬁexp(—(x1—1)2/2))dx1.
(60)

If we choose to use a Gaussian kernel function with mean zero and variance one, then
[ 22K'(z2)dz is equal to minus one. Thus, the total bias of the convolution estimator
will in this case be

) 2 xTr — 2
E(fy(z)) — fy(=) = Y [ - 4\15 exp{~1/4(z —1)*}(1 - (16\/1E) )]

2

—(z — 1) 2 1 2

—hz/ —2(x1 — 1 (7@( —(r—=x 2 exp(—(xr; —1)7/2))dxy. (61
(=261 = )= exp(—(o = 1)*/2) = exp(—(r1 = 1)°/2))dr. (61)
This expression is plotted in figure 3, with a reasonable choice for the bandwidth,
h = 0.3. And taking the different scaling into account, this graph is comparable to the
empirical bias from figure 2. Similar explanations are possible for the other models,
although some problems arise in the computation in the cases where the true density is
not known.
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Model Sample size Squared bias Variance = MISE

1 100 61.5 %  -665.0 % -504.7 %
1 500 799 % -464.7% -346.4 %
1 5000 (30)  -6388 %  -265.9 % -314.4 %
2 100 792 % 235 % 34 %
2 500 97.7 % 482 % 592 %
2 5000 (30) 97.8 % 778 % 819 %
3 100 934 %  -1160% -802%
3 500 93.1 % 406 % -13.9%
3 5000 (30) 43.7 % 159%  19.6 %
1 100 62.1 % 191% 275 %
4 500 68.2 % 16%  17.7%
4 5000 80.3 % 219% 325 %
5 100 94.6 % 280 % 349 %
5 500 83.9 % 424 % 509 %
5 5000 79.4 % 60.2%  64.4 %
6 100 87.6 % 42% 155 %
6 500 83.4 % 333% 449 %
6 5000 (30) 79.1 % 622 %  64.3 %
7 100 975 % 25.0 % 3712 %
7 500 96.4 % 315 % 434 %
7 5000 86.8 % 475 % 559 %
8 100 185 % 7% -31%
8 500 136 %  -130.3% -96.9 %
8 5000 545 %  -319.4% -259.6 %
9 100 91% 37.9%  -91%
9 500 58.1 % -33.2%  -0.8%
9 5000 57.5 % 385 % -20.1%
10 100 493%  -1563% -255%
10 500 231%  -149% -169%
10 5000 70.1 % 58%  2.0%

Table 1: Percentage improvements in estimations using the convolution density
estimator compared with the kernel density estimator. 100 realizations (in some
cases 30, as indicated). The MISE, squared bias and variance are explained in
formula (51), (52), (54), and below. A minus sign indicates that the kernel density
estimator performs best.
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Figure 1: Upper plot: The estimated g function (solid line) and the simulated
points (X;, Y;) from one simulation of sample size 500 from model 8. Middle plot:
The corresponding estimated e;. Lower plot: The “true” density fy (thick solid
line) and the estimated densities (dashed line - convolution estimator, solid line
- kernel density estimator).
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convolution estimator, solid line - kernel density estimator).
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Figure 3: The theoretical bias of the convolution estimator in model 2.

Sample size Squared bias Variance MISE

100 92.6 % 36.7 % 49.8%
500 89.2 % 58.9 % 66.2 %
5000 85.8 % 709 % 743 %

Table 2: Percentage improvements in estimations using convolution density esti-
mator with local linear estimator, compared with kernel density estimator. Model
2.

As suggested in section 2, other nonparametric regression estimators may be used
to estimate g(z). In table 2, results from simulations from model 2, using the local
linear estimator for estimating g(x) are given. These results are in most cases better
than the corresponding results using the Nadaraya-Watson estimator, given in table 1.

A real data set has been studied for completeness. The data is the motorcycle data
set, from Hérdle (1990) page 70. The X-values represent time after a simulated impact
with motorcycles and the response variable Y is the head acceleration of a post human
test object. The density of the response Y has been estimated by the kernel density
estimator, where the bandwidth is the rule-of-thumb given in Hérdle (1990), and the
convolution estimator. The estimated densities are given in figure 4. It seems that
the convolution estimator smooths more than the kernel density estimator, but both
estimators seem to give reasonable results.

5 Conclusions
The proposed convolution density estimator seems to outperform the usual kernel es-

timator in many situations, especially if the error term density function is smooth and
has a relatively large variance. We believe that the cases where it does not perform so
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Figure 4: The estimated densities of a real data set (solid line - kernel and dashed
line - convolution)

well are of less practical importance.

One should expect that if the g-function is more correctly estimated, then a better
density estimate will be obtained. Thus using e.g. local polynomial regression may
improve the density estimation. Also, by selecting the bandwidth parameters in the
convolution estimator more correctly, by e.g. a cross-validation technique, we could
possibly improve the estimates even more. We also believe that this estimator can
be used in a more general time-series setting, X; = g(Xy—1) + e, where the marginal
density of the process X; is of interest. Some simulation experiments indicate that the
convolution estimator will outperform the kernel density estimator, and that the order
of the variance of the convolution estimator will also be n~! in this situation, see Stgve
& Tjpstheim (2005a).
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Appendix

The variance in (49) can be classified to the following (see also Saavedra & Cao (2000)):

m [(n — 1)var (K’(%ﬂ_el) (9(X1) = g9(X1) +9(X1 ) - Q(Xl))> (62)
= 1)(n — 2pvar (K (C ISR (40x0) - 5 1 5() - 9(22) ) (69)

(n —1)(n —2)(n — 3)cov (K’ T 9()21) — 2 (g(X1) — §(X1) + 3(Xa) — 9(X2))
(T g()}il) —) (9(X1) = §(X1) + 5(Xs) — 9(X3)) ) (64)

+2(n 1)~ 2)(n — Bpeov (K(Z-IEDZ2) (0x1) — 5(x3) + (%) — 9(2)
KT () - 5(x) + (1) - (X)) (65)

+(n = 1)(n = 2)(n — 3)oov (K’ (= 9()21) ) (g(X1) — §(X1) + §(Xa) — 9(X2))
K (PTID = (00) — 5(s) + 5(X2) — 0(X2) ) (66)

+(n—1)(n — 2)cov (K’ T 9()21) — Y (g(X1) — §(X1) + 3(Xa) — 9(X2))

r—9(X2) —er

h

20— 1) — 2oy (K (“ITVZ ) (60x0) — ) +5(51) - g(x2)
KPS (4x,) - () + (1) - (X)) (69

+(n—1)(n —2)(n — 3)(n — 4)cov (K’ T 9()21) ) (g(X1) — §(X0) + §(X2) — g(X2))
K (PTID = (0y)  5(s) + 5(X0) — 9(X0) ) (70)

= 1)~ 2eov (K (TITVZ ) () - 5(x1) + 3(01) — g(x)
R(EITDZ) (4(0x) — g06a) +5(0Xe) — (62))) (1)

+(n —1)(n — 2)(n — 3)cov (K’ T 9()21) — ) (g(X1) — §(X1) + 3(X1) — 9(X1))

T —g(Xa) —e3



The terms (70), (71) and (72) are neglible by independence, and the terms (62),
(68) and (69) are automatically zero. Hence we study the remaining six terms, using

var(X) = E(X?) — (E(X))2 and cov(X,Y) = E(XY) — E(X)E(Y).
Looking at the term (63),

(n— 1)~ 2pvar (K ("X =2 () 5(31) 4 5(0%) - g()))

=(n—1)(n—-2)var(U). (74)

Starting by examining E(U?), using the same techniques as when deriving (47) and
(48), and since [ z(K’(z))zdz = 0, we obtain,

B?) ~ [[[ K (== )= 2 (g(0) - 5(0) + §(w) — g(w))?]
1) (o) fxw)dudocu = // K'(GPE[(a0) = 3(0) + () = g(w)’]
X fx(v) fx(w)fe(x — g(v) — zh)dvdwdz = h ///K

<E[(g(v) — §(v) + §(w) — g(w))*] fx (v) fx (w) fe(z — g(v))dvdwdz + O(A®).  (75)

Next, using the same technique,

~i| [[[xe — () + §(w) — g(w)]

X fx () fx () fol — g(v))dvdwdz] o). (76)

Thus the leading term of (63) will be O((n — 1)(n — 2)h*), since the expectation in the
term (76) is the bias of the Nadarya-Watson estimator, which is O(h?), see e.g. Hirdle
(1990) page 135.

Examining the term (64)

(n—1)(n — 2)(n — 3)cov [K’(”” —9

Calculating E(UV'), by conditioning, substituting, Taylor expanding, and since [ K'(z)dz

23



0, we obtain,

sv)~ [[[[ [ 5 EEEZ (g0 - B(30) + B W) - 9())

<k (T ()~ B(5(0) + B(a(0) — ola)
X fe(u) e(y)fX(’U fx(w)fx(a)dudydvdwda

)
_h/////KK ) (9(0) — B(3(0)) + B(3(w)) — g(w))

% (9(0) = B(3(v)) + E(3(a)) — 9(@)) fx (v) Fx (w) fx (@)
X fe(z — (v) - zlh)fe(x — g(v) — 22h)dvdwdadzdze

g(v
2 / / / / / K'( ~E(5(v)) + B(3(w)) — g(w))

% (9(v) — B(3(v)) +E( (@) = 9(a)) fx(v) fxx (w) fx (@)
212
x (fe(z = g(v)) — 21hfi(z — g(v)) + ifé’(w —g(v)) + O(h%)
X (fe(z — g(v)) — zahfl(x — g(v)) + %thé (z — g(v)) + O(h?))dvdwdadzidz,

2
=it [[[] [k eek ) (s0) - EGw) + B@w) - o(w))

% (9(0) = B(3(v) + E(3(@)) - 9(@)) £x (v) Fx (w) fx (@)
xfi(z — g(v)) fL(z — g(v))dvdwdadzidzs + O(K?).  (78)

Further,

_h///K () (5(0) +E(5(w)) - g(w))

< fx(v)fx(w) f ( 9(v))dvdwdzy + O(h°), (79)

~ ot [[[ ok ) (s0) - B(30) +E(30) - 9(a)

X fx(v) fx(a)fi(z — g(v))dvdadz + O(h?). (80)

and

In total, the leading term of (64) is O((n — 1)(n — 2)(n — 3)h®), again using the order
of the bias of the Nadaraya-Watson estimator.
Examining the term (65),

20— 1)(n — 2)(n ~ B)eov [ K/ (Z-ITVZL) (4x,) — 5(x1) + 5(X2) — g(22).

K/(%?’)—el)( (X3) — 9(X3) + g(X1) —g(Xl))}
)

=2(n—1)(n —2)(n — 3)cov(U, V).(81)
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We have

sy~ [[[[ [ 5 S0 () - Blae) + Baw) - g(w)

<K (E I ) (4(0) — Bi(g(a)) + EG0)) - 90)
Xfe( )fe(y)f ( )fX( ) ( )dUdyd’wada

_h/////K 21) 2K (22) (9(v) — B(G(v)) + E(G(w)) — g(w))

(9(a) —E(3(a)) + E(G(v)) — g(v)) fx (v) fx (w)fx(a)
x fo(z — g(v)) fL(z — g(v))dvdwdadzidzs + O(hY), (82)

~ B2 / / / 2K (21) (9(v) — B(3(v)) + E@G(w)) — g(w))

x fx(v) fx(w)fi(z — g(v))dvdwdz; + O(h°), (83)
and
~ o [[[ e (5(0)) + F(3()) — 9(0)
x fx(a )fx( )fe ( g(a))dadbdzs + O(h®). (84)

The above calculations give that the order of the term (65) is O((n—1)(n—2)(n—3)h%).
Examining the term (73),

20— 1)(n — 2)(n ~ B)eov [ K/ (TITL =) (4x) — 5(x5) + (1) — g(x2).

K’(%ﬂ_egﬂ (X1) = §(X1) + §(Xa) - 9(X3))|
)

=2(n—1)(n —2)(n — 3)cov(U, V).(85)
As before,

BUV) ~nt [[[[ [k )ak @) - BGe) + EGw) - gw)

x (9(w) = E(g(w)) +E(g(b)) — 9(b)) fx (v) fx (w) fx (b)
X fi(z — g(w)) fli(z — g(v))dvdwdz1dzodb + O(h%).  (86)

~ B2 / / / 2K (21) (9(v) — B(3(v)) + B@G(w)) — g(w))

x fx(v) fx (W) fi(z — g(v))dvdwdz; + O(h®). (87)

~ B2 / / / K (25)(9(a) — E(3(a) + E(3(0)) — g(b)

x fx(a)fx () fi(z — g(a))dadbdzy + O(R®). (88)

Further,

and
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Thus the term (73) is of order O((n — 1)(n — 2)(n — 3)h%).
Examining the term (66),

%) (9(X1) = §(X1) + §(X2) — g(Xa)),

K/(%M)( (X5) — 9(X5) + 9(X2) — g(Xz))}
)

=2(n—1)(n —2)(n — 3)cov(U, V).(89)

2(n —1)(n — 2)(n — 3)cov [K'(

We have

E(UV) / / / / K/ (FE T (g(0) - B(G(0) + E(G(w) - g(w))

xK'(%Mg(a) ~ B(3(a)) + Bg(w))  g(u)
X fe(u) fx (v) fx (w) fx (a)dudvdwda. (90)
Introducing (g7 !) = r and fx(g7!) = lx as in the derivation of (33), and noting that

r’(g(v)) = —gg:;g:;)z (91)
and
Ix(9(v) = fx(v), (92)

we obtain by using [ K'(z)dz =0,
V)~ [[[[ K (o) - B@) + Baw) - g(w) K'(=2)
X [g<g‘1(9(v) + h(z1 — 22))> - E(é(g‘1 v) + h(z1 — 22) )
2))

FE((w)) — g(w)] folw — g(v) = 210) fx (0) fxc ()l (9(0) + hz1 — 2

x1(g(v) + h(z1 — 22))dzrdvdwdzs = h* ////K’ 21)

x (g(v ) ( ( ) + ( (w)) = K'(z

~—

x(9
+z122f0 (@ — (U))T(g(v " (9(v)) pdvdwdzidzs + O(R?

e / / / / K'(z) 3(0)) + E(G(w)) — g(w)) K'(2)

x [g(g_l(g(v) + h(21 — 22))) — E<g(g 1(g(v) + h(z1 — 22)))
(

Xfx(v)fx(w){ - z1zz%fx(v)fé(:c — g(v)) + 22122 g




Moreover,

—h///K o) (5(v)) + E(G(w)) — g(w))

X fx () fx(w)f! ( g(v))dvdwdz; + O(h®). (94)

~ 2 / / / K (23)(9(a) — B(3(a)) + E(3(0)) — g(b)

x fx(a)fx () fi(z — g(a))dadbdzs + O(R®). (95)

Thus the term (66) is of order O((n — 1)(n — 2)(n — 3)h%).
Finally, examining the term (67),

and

(n = 1)(n — 2eov(K(TIEVZ2) (40x,) — 50x1) +300) — 9().
K (EIED T (g 0) () + (1) — g(X0) )

= (n—1)(n —2)cov(U,V).  (96)

Starting with E(UV),

BUV) h////K (1)K (22) (9(v) — B(G(v)) + E(G(w)) — g(w))

E(g
x (9(w) = E(g(w)) + E(g(v)) = 9(v)) fx (v) fx (w)
x fi(z = g(v)) fL(z — g(v))dvdwdzidzs + O(K?). (97)

~ 2 / / / 2K (21) (9(v) — B(3(v)) + E@G(w)) — g(w))

X fx () fx(w)fi(z — g(v))dvdwdz + O(h?). (98)

~ R / / / 2K (29) (9(w) — B(G(w)) + EG(v)) — g(v)

x fx(w) fx () fi(z — g(v))dvdwdzs + O(R®). (99)

Thus, the leading term of (67) is O((n — 1)(n — 2)h®).
All of these calculations give us that the leading terms of the variance from equation
(49) will be of order O(h*/n).

As before,

and
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A convolution density estimator for nonlinear
time series: Simulations and some preliminary
analysis

Bard Steve Dag Tjgstheim
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Abstract

We present a convolution estimator of the marginal density for a non-
linear time series. Some simulations have been performed, and the results
seem to be better than corresponding results for the standard kernel den-
sity estimator. Some results concerning the asymptotic bias and variance
of the proposed estimator are presented. They imply that the order of the
asymptotic variance is n=1!.

Some key words: Convolution, Kernel function, Mean squared error, Nonparametric
density estimation, Time series.

1 Introduction

There exists a vast literature which considers the problem of estimating an unknown
density function f(z) from a given sample X7, Xo, ..., X, of independent and identically
distributed random variables, see, e.g., the books by Héardle (1990), Wand & Jones
(1995) and Simonoff (1996). The commonly used method is the kernel density estimator

1 " x—Xi
fa) = —> K(=——),
i=1

where K is a kernel function and & is the bandwidth.

Often the independence assumption is violated, e.g. in a time-series setting, and
early references on kernel density estimation for dependent data are Roussas (1969) and
Rosenblatt (1970). For further references, see Gyorfi et al. (1990) chapter 4 and Fan &
Yao (2003) chapter 5.

(1)



In Saavedra & Cao (19995) the authors introduced a convolution-kernel estimator
for the marginal density of a moving average process, Y; = X; — 60X;_1, when 6 is
unknown. This estimator is proved to have a parametric rate of convergence, n~ /2.
Schick & Wefelmeyer (2004) introduced a slightly simplified variant of this estimator,
and proved an even stronger result of asymptotic normality. Further, in Miiller et al.
(2005) a similar density estimator is introduced for the innovation density in nonlinear
parametric autoregressive models. This article is related to these papers, but we focus
on nonparametric density estimation in a more general nonlinear time series situation,

X = g(Xi—1) + e, (2)

where ¢ is an unknown function and {e;} is a sequence of zero-mean, independent and
identically distributed random variables. The process {X;} is stationary; thus all the
marginal densities are the same. Denote this common density by fx, and this is density
we want to estimate. If one is able to construct an estimator of the marginal density
making explicit use of the extra information contained in (2), then possibly one could
improve on the kernel density estimator. In Stgve & Tjgstheim (2005) we used this idea
in a nonlinear regression model, Y; = ¢g(X;) + e;, where the density of the responses
Y; is of interest. There the asymptotic variance of the proposed density estimator was
shown to be of order n~!. As we will argue in this paper, the density estimator for a
nonlinear time series will also have this property. Note that since the function g(-) and
the error terms {e;} are unknown, they both have to be estimated.

The proposed estimator, “the convolution density estimator”, is presented in section
2, a preliminary (and incomplete) analysis of its asymptotic behaviour is given in section
3 and some simulation results are located in section 4. A short conclusion is presented
in section 5.

2 The estimator

From equation (2) and since g(X;—1) and e; are independent, we get

fx() = / fo(@ - g(w) fx (w)du = B[f.(z - g(X))], 3)

where f. is the density of the residuals. This motivates an improved estimation of the
marginal density fx by the above functional. Assume we have Xy, ..., X,, observations
of the process {X;}. We can estimate g in (2), by e.g the Nadaraya-Watson estimator,
see Hérdle (1990) page 127, with bandwidth hg, and kernel function KéV}YZ(XZ) =

(1/hr) KNV (2 — Xi) /),

i) = i1 KO (Xi) X
Do K (Xa)

The estimate for e; is
€ =X; — g(Xi-1). (5)

2



Next we estimate f. by the kernel estimator with bandwidth Ap and kernel function
K()J

The final density estimator for fx is then

n

Falo) = 230 p (= 9x0) =+ Y- [ LR(EEIIEG)] @)
i=1

i=1 j=

3 Asymptotic properties

The asymptotic analysis of the estimator in equation (7) will be based on examining
the asymptotic bias and variance. The analysis will be closely related to that in Stgve
& Tjestheim (2005). Thus the basic assumptions are the same:

1. The kernel function K is a bounded non-negative, two times differentiable, sym-
metric function that integrates to 1, and satisfies

/ K'(z)dz=0 and / 22K'(2)dz = 0.

2. The function g is differentiable and its inverse exists.

3. The density fx has compact support S(X), is continous and two times differen-
tiable on the support.

4. lim,_.ohp = 0 and lim,_,,,nhp = oco.

Since the main difference from the model in Stgve & Tjgstheim (2005) is that we now
have dependencies in the observations, we introduce:

5. {et, X;} is a strictly stationary process and mixing in a sense to be specified in
the sequel.

The idea is to analyse the properties of the estimator as in Stgve & Tjgstheim (2005),
and by using the mixing, we will argue that the asymptotic properties in this case are
essentially as in the independent case. We only outline the derivations. More work is
needed to make this complete.

To study the moments of the estimator, it is useful to decompose the difference
between the estimator and the true density in the following manner,

fx (@) = fx(x) = fx(2) — fx (@) + fx(2) - fx(2), (8)

where

3



is the “estimator” with g(-) and e; for j = 2,...,n, known. We start by examining fx(x).
Note that to ease notation, we set hp = h in the following.
Consider the bias term first, i.e. we consider

E(fx(x)) = [ZZK (== _ef)]. (10)

n—l
i=1 j=2

Using that the time series {X;} is strict stationary and mixing we can use standard
techniques to prove that the terms in the bias when ¢ and j are far apart and n tends
to infinity, will be neglible. Actually we can write (10) as,

n—l [ZZK ej)}

i=1 j=2
= K
(n—1) n(n—1)h 2;// )
X[ (v, u) = fx(0) fe(u) + fx (v) fe(u)]dvdu. (11)

We must examine equation (11) in two steps. Using stationarity and the mixing-type
condition | £, (v, u) = fx (v) fe(u)] < C]a|‘2*]‘ where |a| < 1, we obtain in the first step,

‘ (n—1 hZZ//K )[ Xe('U u) — fx(v) fe(u)|dvdu

=1 j=2

& z—g(v) —u -
< cm ; //K(fﬂ(n B/ ldedu.  (12)

Moreover,

mzm ~ Rl = = Z "t

Z\ar“+ Zkra\“ = 0(=77): (13)

since the two series in (13) both converge. (For i < j the term corresponding to (12) is
in fact zero due to independence.)
The second part in (11) gives,

n(n—1 hZZ//K g(};u )fX( ) fe(u)dvdu

- _// K m_g(v L) fx (v) fe(u)dvdu
- / K (w)fx ) fe(z = g(v) — hw)dvduw

2
— fx(o) + 5 fi (o) [P Kl + O(hY) (14)



The total bias can be written, putting (n — 1) = n,

B(fx(@) ~ fx(o) = 5 f4(@) [w?K(ldw+ 0 +0(1). (19

the same as the bias in Stgve & Tjgstheim (2005), except for the last term.
The variance term can be decomposed into several covariance terms,

var(fx(x)) = e zhzvar[ZZK 6]’)}

=1 j=2

n—lQhQZZ ;COV( ()}fi)—ej)’K($—g()}fk)—€l))_ (16)

i=1 j=2 k=1

We must consider all combinations of ¢, j, k£ and [. By using mixing properties as
above, it will be seen that only independent terms will contribute to the leading term
of this variance expression. Here only some of all combinations will be examined. The
remaining terms can be treated similarly.

First, examine i = j = k = [. As we will see, this term will not contribute to
the overall variance, but is included to demonstrate the techniques. The corresponding
term in (16) becomes,

1 el xr — X@ — €5
W20 — 1202 ;Var(K((_ Q(h ) ))

B2 o) (e Ay )

_ n—1
~ n2(n —1)2h2

Consider the first term. By change of variables and Taylor expansion,
X _
E(KQ( —9(Xy) 61 / K2 )fxe(v w)dvdu

= h/ Kz(z)fxﬁ(v,x —g(v) — hz)dvdz =

h{;/)[z(z(z)ﬁxﬁ(v,m<— ))dvdz — h j(/, 2K2(2 *ﬁxe(” xg(v>;v)))dvdz

// 2K2 fX(e(U ;(U)L)q( )))dvdz—i—o(hQ)}.

The second term in the variance expression is, using exactly the same techniques,

[E(K(%) 2: h| /fxﬁ(v,x—g(v))dv

_// 2K (2 er('U x(v))g@)))dvdz—i-o(hz)]r

(/he »m)+omw.




In total,

n—1
o n_ll - Zvar(K((:C_g()h(i) _€i))

1 / K?(2) fx,e(v,z — g(v))dvdz + O(h?)]. (18)

nQ(n — 1)h?

The next combination we study is k = i # j = [ and the covariance term in (16)
will be

n—12h2 ZZW( ()ffi)_ej)>

=1 j=2
J#i
= 4n2(n _1 1)2h2 ZZ [E(KQ(x - g(ifl) - ej)) _ [E(K(CE — g(ifl) - ej))]Q}. (19)
i=1 j=2
J#i

Here X; and e; are dependent when ¢ > j and independent when i < j. As for the bias
analysis, we use mixing and in total we get

(nz(n 1(1 57,2 [hfx(x /K2 — W2 f%(z) + O(h%)], (20)

as for the indpendent case in Stgve & Tjgstheim (2005).
In the following combination, ¢ = [ # j # k, there will be three summation indexes.
We can write

g(X;) —e; z—g(Xp) —e
e 3 Yoo (s((I ) ()

=1 j=2 k=2
i#j#k

Xi — €5 z — g(X — €;
- n_ﬂ}ﬂzzz{ h) VK ( g(hk) )

i=1 j=2 k=2

i#£j#k
_E(K(x_g():;l)_6]))E(K(x_g();;k)_el))] (21)
Define
QXivey) = K (TITD = (22)

h
By writing out the summation over k above we can write the covariance as, note still
that ¢ # 7,

2h2 [ZZCOV (Xi,€5), Q(Xg,ei))

=1 j=2
Z#J
—|—ZZCOV(Q(Xi,ej),Q(Xg,ei)) +..+ ZZCOV (Xi,€5), Q(Xn,ei))]. (23)
i=1 j=2 i=1 j=2
i#j i#]



We can study each of the above terms. Asymptotically these terms will have the same
order, thus we study one term for a fixed k,

m{ZZCW (o e7). QX )

=1 ]#2
1#]
= e - T D 2 E(Q(Xi,¢/)Q(Xx, 1)) ~ E(Q(Xi, ;) B(Q(Xi,e) | (24)
i=1 j=2
i#]

Again, we can use mixing techniques. Note that dependence will always occur between
X; and e;, thus we must use a joint distribution here. Since k is fixed, the dependence
between X and the other variables will vanish due to mixing when ¢ and j becomes
large. Thus the first part of (24) can be written, (suppressing the k-dependence)

n2(n —1)2h2 ZZE (Xi, €))Q(Xk, €1))

i=1 j=2
i#£]
] n—wm?%%////ff Sl
i#£]

) (e 01,01, w,12) = Fxe(v1,u2) fx (w) ()

+fX,e(U1,U2)fX(w)fe(u1))dvduldu2dw. (25)

We next introduce a mixing-type condition on f)ié{e,x,e(vl, ur, w, u2)— fxe(vi, u2) fx(w)fe(ur),

‘ n—12h222////K = ol _ul)[((“’”_g(z)—w)

=1 j=2
i#j

X ( )é]e X, e(vl? uy,w U2) fX e(vla u2)fX(w)fe(u1))dvduldUde‘

e 3 [ R e

i=1 j=2
i#£]
o 1 " l 1
li—3| ~ _ l_ -
X |ag|" I dvduy dugdw n 1) ;2(1 n)\az] O(n(n — 1)2), (26)
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where |as| < 1 implies that the last sum converges. Consider the remaining part of

(25),
e [ et

Xfe Ul fx( )fxe(vl,ug)dvldwduldug

:(n_yll—ﬂh? ////K21 (z2)fe(x — g(v1) — 21h)

XfX )fX e(vlgx - g( ) - zzh)dvldwdzld,zQ
= % [// fx(w)fe(z = g(v1)) fxe(v1, 2 — g(w))dvrdw + O(h?)]. (27)

As before, the term (27) is of lower order than the term (26). Thus the term (26) will
not contribute to the covariance.

The last part of (24) can also be studied using mixing techniques, and again, just
the indpendent part will contribute. Using result from Stgve & Tjgstheim (2005), we
can write

E(Q(X1,€2))E(Q(X3,e1)) = h* fx (z) + O(h*). (28)

Using the fact that k£ = 2,...,n, and since the order of the terms (27) and (28) will be
the same for any k, the total covariance from (21) will be,

w) fe(z — g(v1)) fx.e(v1, @ — g(w))dvrdw
—f%(x) + O(h?)]. (29)

The term, j = k # i # [, can be analysed as above. Thus, it can be shown that

9(Xi) —¢; r—g(X;)—e
n—lQhQ; Zz ?;COV( f%ff((fl))
l;fj#l
- m[}ﬁ // fX(UQ)fE(x - Q(Ul))fX@(Ul,% - g(vg))dvldvg

~h2f% (@) +O(Y)].  (30)

Similarly, for the term, i # k # j = [,

Xi — €5 z—g(X — €5
o 3 Do ()

i=1 j=2 k=2
i#jFk

B 1 2 f;%(v)fe(x—g(v)) 71242 4
el e U TR D

and for the term i = k # j # [,



2(n—1) thZ Z Zcov( ();i)_ej)’K(x—g(fi)—el))

i=1 j=2 [=2
i#jF#

1
NCEDE [n? /fX(v)ff(m —g(v))dv — R*f3 () + O(RY)].  (32)
The terms from the remaining combinations of 4, j, k and [, in the covariance (16)

will not contribute to the overall variance of f x (), since they are of higher order. Thus
the variance from (16) can be written, adding all combinations that contribute,

var(fx(x)) = v)f2 (w — g(v))dv

+% // fx(v2) fe(x — g(v1)) fx.e(v1,2 — g(v2))dviduy
n—1/fX fe —o) —ifi(x)

+n(n_1) /K )z +O((n— 1782, (33)

which corresponds to the variance found in Stgve & Tjgstheim (2005), except for the
term with a joint distribution for e and X. However, the variance will reduce correctly
to the independent case since X and e are independent and by using a convolution
argument;

(e = g fx ) fole — gloa)dordey = —— 2 (34

Thus the variance in the independent case is,

fe ,I—g( ))
n—l/fX fe 10, 2 )
2 —172
+n(n_1) /K 2)dz + 0 ((n —1)71h2), (35)

Observe that from expression (33) the variance of fx (z) has leading terms of order
n~1, this in contrast to the kernel density estimator which has leading terms (nh)™1,
see e.g. Wand & Jones (1995) page 21.

As in Stgve & Tjgstheim (2005), we next study the properties of the other term
in equation (8), that is, fx(z) — fx(z). Consider the estimator fx(z) in (7). By
substituting for €;, Taylor expanding of K(-) around (xz — g(X;) — e;)/h and using the
mean value theorem, we obtain,



1 1 r = §(Xi) = X; +9(Xj-1) ! 1
:EZ{(n—l)h K( )}:EZ[(n—l)h

R e
X(g(Xi) - g(Xj—l) Zg(Xj—l) B g(Xz))
+0P((g( z) g(X]—l) "}tg(Xj—l) B g(Xz))Q)]] (36)
Thus,
fa) = F@) = -3 [(n—lnh 3 e )
g9(Xj-1) —9(Xj-1) = g9(Xi) —ej . g(Xi) — 9(X)
ALY | - j—1 R ) 1 - ]]
+Zl |:(n_11)h ZQO ((g(Xz) B g(Xj—l) Zg(Xj—l) B g(Xz))Q)} (37)
i= j=

As in Stgve & Tjgstheim (2005) under appropriate regularity conditions, we can
show that the second order term in the Taylor expansion above is of higher order under
the conditions stated there. Thus we focus on the expectation and variance of the first
order term. The following condition guarantees the existence of these moments;

6. inf eq(x)fx () > 0, where S(X) is the compact support of the density fx.

The expectation can be written

n - S, (38)

Note that this disappears for : = j—1. Using a conditioning and a convolution argument,
as in Stgve & Tjgstheim (2005) and mixing arguments as for the expectation of fx, the

10



first part of (38) is

1 "= —g(XG) —ej G(Xjo1) — 9(Xjm1)
i S At

~fi@) [ 2K Gt [ (©() - ga) @) (39)
5@ [ 2K [ (B(3) - o) fx(e)dan +O02). (40)

Examining the second part by similar arguments,

1 " & L= Xi — €4 ~Xi — X@'
_E(m;z;[(( g(h) ). 3 )hg( )y
=1 j=

/ZzK/(Zz)d@/(E(Q(m)) —g(x1)) fo(z — g(a1)) fx (z1)dzr  (41)

5 [ ARGz [ (Ba@) - o) (- glon) x(ar)der + OR). (12)

Note that since the kernel is symmetric, [ 22K’(2)dz = 0. In total, the bias of fx ()
will be the sum of (15), (39) and (41) and is given by

2
% %(w)/sz(w)dw (43)
—f&(x)/le'(Zl)dzl/(E(é(xz)) — g(x2)) fx (w2)dws (44)
+ [ 22k (e2)dzn [ (BG) - 9(00) (o — glan)) o). (45)

The whole term will be of order O(h?) through the dependence on E(g(xz;)) — g(x),
i = 1,2, which is of the same order as the Nadaraya-Watson estimator. The bias
expression (43)-(45) is identical to the bias obtained for the convolution estimator in
Stegve & Tjgstheim (2005), expect that there the density of interest is fy, as explained
in the introduction.

Further, examining the variance of the first order term in the Taylor expansion,
these calculations are similar to the calculations where we found the variance of f(z).
The variance in question is,

1 " - T —g(X;) —e;
var<7n(n_1)h2izlj22[](( g(h) i

x(9(X3) = §(X0) + 9(X;1) = 9(X;1))] ) = m 2200

i=1 j=2 k=1 [=2

ceov [i/ (P I 00— 5(x0) 4+ 5(X1) — 9(X5).
K/(%)(Q(Xk) = 9(Xk) + 9(Xi1) — 9(X171))]- (46)
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As before, this covariance can be decomposed into several variance and covariance terms.
Based on the results in Stgve & Tjgstheim (2005) and using mixing assumptions, the
terms arising from this covariance will be O(h*/n). Thus, it will only contribute higher
order effects to the variance of fy (). In total the variance will be O(n~1), and given
by expression (33).

4 Simulation study

To evaluate the proposed estimator, (7), in finite samples, we compare the estimates
obtained with the estimates from the classical kernel estimator in (1).
The comparisons are based on the mean integrated squared error (MISE) of the two

estimators. That is,
o

A~

(f = f)*(z)dz], (47)

and likewise for the kernel density estimator. We have generated 500 simulated re-
alizations with sample size 500 of the process {X;}. The estimated MISE, MISE, is
approximated as an average of the integrated squared error (ISE) of the 500 realizations,
and the ISE is estimated by numerical integration. If the true marginal density is not
known, we have based our comparisons on an estimated density computed from 1 000
000 generated observations. The results are given as the percentage change by using
the convolution estimator compared with the kernel density estimator. For the MISE,
this change is calculated by

MISE(f) :E[/

—00

MISE(f}) — MISE(fx)
MISE(f%)

- 100. (48)

Note that instead of using the MISE error measure we could have choosen a measure
which is dependent on where the observations are located, for example by introducing a
nonnegative weight function. This could have been used for weighting down observations
at the boundaries.

The choice of bandwidth in nonparametric estimation has a considerable impact of
the accuracy of the estimator. The bandwidth used in the kernel density estimation in
our simulation study, is the Solve-the-Equation Plug-in bandwidth proposed in Sheather
& Jones (1991). This bandwidth has also been used in the estimation of the density, fe, if
nothing else is stated. The bandwidth for the kernel smoothing of g is the rule-of-thumb,
see e.g. Hirdle (1990), 1.06 min(6, R/1.34)n~'/5, where R is the interquartile range,
0 is the empirical variance of all observations X7i,...,X,. This bandwidth selection
is usually used as a rule-of-thumb in density estimation, but we have chosen it here
for computational purposes. Thus we may actually obtain better results using a more
refined bandwidth for the nonparametric time series regression.

We first examine the autoregressive model,

X =0Xi1 + ey, (49)

where e; ~ N(0,0?). Here the true marginal density of X is N (0, %) Table 1 shows
the estimated MISE for the ordinary kernel density estimator and the new estimator for
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various choices of ¢ and o. The convolution estimator has the smallest MISE in all cases,
thus it seems that we improve the density estimate. Observe that the results are best
for negative autocorrelations. This was also observed in Saavedra & Cao (1999a), for
the estimation of the marginal density of a MA(1) process, and Hart (1984) noted that
a negative correlation in an autoregressive process makes a “balanced” sample, that is,
the observations are more likely to be symmetric about the mean than an independent
sample.

Parameters Convolution Kernel Improvement in %
p=08,0=2 1.88-107° 2.76-1073 31.9
p=08,0=1 3.48-107% 5.14-1073 32.3
¢»=050=2 8.36-107* 1.59.1073 47.4
p=05,0=1 1.79-10* 3.28-1073 45.4
$=02,0=2 982-107* 1.47-1073 33.2
p=02,0=1 2.04-107% 3.01-1073 32.2

¢p=-05,0=2 425-107* 1.18-1073 64.0
¢p=-05,0=1 798-107* 2.75-1073 71.0

Table 1: The estimated MISE for an AR(1) process

For a further examination of the estimator, several other densities for the error
term e; has been used, see table 2. Five of the densities proposed by Marron & Wand
(1992) have been selected. These densities typify many different challenges to curve
estimation. The first three densities represent challenges that can arise for unimodal
densities. The separated bimodal density is mildly multimodal, while the discrete comb
is strongly multimodal.

Density

(1) Skewed unimodal %N(O,71) +INGE D) +EN(ED)
(2) Strongly skewed ST ANGBIR) - 1], (D))

(3) Kurtotic unimodal ZN(0,1) + $N(0, &)

(4) Separated bimodal IN(-3 D+ INE D)

(5) Discrete comb S ZN(1215 2y 4 S0 LN L)

Table 2: Normal mixture densities used in the simulation study

Since the true marginal density is not known analytically in these cases, we estimate
it both by kernel density estimation, with bandwidth choosen to be the rule-of-thumb,
and the proposed convolution estimator. The rule-of-thumb bandwidth has here been
used for estimating the error distributions as well. The convolution estimator is more
computer intensive, thus just 100 000 generated observations are used to estimate the
true distribution here. Only the results using the kernel density estimator is given, see
table 3. However, we get the same conclusions in both cases.
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Density and parameter Convolution Kernel Improvement in %

(1), 9=0.38 3.12-1073 350-1073 10.9
(1), ¢ =0.2 2.12-1073  2.80-1073 32.1
(2), =038 4.19-1073  3.22.1073 -30.1
(2),9=0.2 1.03-1072  6.19-1073 _66.4
(3), ¢ =0.8 5.32-1073  4.57-1073 _16.4
(3), 9 =0.2 1.46-10"2  8.06- 1073 81.1
(4), ¢ =0.8 2.02-107% 1.61-1073 -25.5
(4), ¢ =0.2 421-107% 2.58-1073 63.2
(5), 6 =0.8 1521073 1.66- 1073 8.4

(5), » =02 5.23-107%  2.93.1073 785

Table 3: The estimated MISE for an AR(1) process with different error term
densities, with true density estimated by the kernel method

The table 3 shows that for the skewed unimodal density, the convolution-type esti-
mator is better. But for the strongly skewed and kurtotic unimodal the kernel density
seems to be more accurate for a sample size of 500. For the separated bimodal density,
the kernel estimator is better. Since we have a bimodal error density, the scatter dia-
gram will consist of two clusters of points, thus the kernel regression function g is poorly
estimated and creates large error terms, and a bad density estimate. Note that such
time series are not often met in practice. We are introducing it here to demonstrate
the limitations of our method. Observe further the perhaps surprising outcome under
discrete comb with ¢ = 0.8, that the convolution estimator is better. Observe also that
for low values of ¢ the convolution estimator tends to be less accurate then for high
values of ¢. This seems to be because the error terms, e;, increase and give a poorer
convolution effect.

We next study the exponential AR model, which is

X =(a+ beiﬁ/ngl)Xt_1 + e, (50)

where a, b and ~ are constants, with |a| < 1, v > 0 and e; ~ N(0,02). Table 4
upper part shows the estimated MISE for the ordinary kernel density estimator and the
convolution estimator for several choices of the parameters. Since the true density fx
is not known, it has been estimated by the kernel density estimator, using 1 000 000
samples from the specific model, and the rule-of-thumb as the bandwidth. As above,
the convolution estimator has also been used to estimate the true distribution, using 100
000 generated observations. Both scenarios gave equal conclusions, see table 4 upper
and lower part.

The convolution estimator has the lowest estimated MISE, except when the expo-
nential AR process has a large b parameter, that is, it is almost an exploding process.
Then it is difficult to estimate g close to the origin.

The next simulation is a logistic AR process, given as

Xp = 01X 1 40X, 1 [(14 e BXK=1200) "1 _05] 4ep, 65 > 0. (51)

14



Parameters Convolution Kernel Improvement in %

a=08b=02v=50=1 233-10% 268-1073 13.1
a=04,b=06,v=05,0=2 552-107* 1.02-1073 45.9
a=05b=4v=1,0=1 3.21-1072  2.95.1072 -8.8
a=080=02v=50=1 256-107% 3.15-1073 18.7
a=04,b=06,v=0506=2 557-100* 1.03-1073 45.9
a=05b=4v=1,0=1 3.09-1072  2.85.1072 -8.4

Table 4: The estimated MISE for an exponential AR model, (upper part: true
density estimated by the kernel method, lower part: true density estimated by
the convolution estimator)

The simulations are performed as above, 500 simulated realizations with a sample size
of 500. The error term in all simulations is normally distributed with mean equal to
zero and variance equal to one. The results are given in table 5, and in all cases the
convolution estimator is better than the kernel density estimator.

Parameters Convolution Kernel Improvement in %
01 =05,0,=05,03=1,0,=1 1.28-107% 2.13-10°° 39.8
01 =01,60,=05,03=1,0,=1 1.39-107% 1.87-1073 25.4
0, =—-02,0,=-08,05=4,0,=1 125-10% 1.79-1073 30.3

Table 5: The estimated MISE for a logistic AR model, with true density estimated
by the kernel method

To show how the proposed estimator’s bias and variance behave, the last simulation
is from an AR(1) model with parameter ¢ = 0.8, and normally distributed error terms
with mean zero and variance one. Here 100 realizations with sample size equal to 500 is
simulated. Based on this simulation, the MISE, and also the squared bias and variance
of both the kernel density estimator and the convolution estimator is estimated. The
squared bias and variance are calculated as in Stgve & Tjgstheim (2005). The results
are given in table 6, and the convolution estimator is clearly better. In figure 1 the bias
and variance of both estimators is plotted. As expected, the variance of the convolution
estimator is smallest, the dotted line in the upper plot. The bias of the kernel density
estimator behaves as we could expect, the solid line in the lower plot, since from the
well-known bias formula, see e.g. Hérdle (1990) page 56, the bias is proportional to
the second derivative of the density in question. The bias of the convolution estimator
is harder to interpret, dotted line in lower plot, but if one looks at the bias formula,
(43)-(45), more closely, it is possible to explain its behaviour as in Stgve & Tjgstheim
(2005), section 4.

15



6e-04

varold
4e-04
|

2e-04

0e+00
|

-10 -5 0 5 10

gridpoints

-0.002 0.000 0.002
1

biasold

-0.006

-10 -5 0 5 10

gridpoints

Figure 1: The estimated variance (upper plot) and bias (lower plot) of both the
kernel density estimator (solid line) and the convolution estimator (dotted line)
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Estimator  Squared bias  Variance MISE

Convolution 1.20-107° 1.33-107* 2.67-107°
Kernel 586-107% 1.53-107* 3.15-103

Table 6: The estimated squared bias, variance and MISE for an AR(1) model

5 Conclusions

The proposed convolution density estimator seems to outperform the usual kernel esti-
mator in many situations, especially if the error term density function is smooth, and
the g function is relatively easy to estimate. The degree of autocorrelation may also
account for the behaviour of the estimator.

One should expect that if the g function is more correctly estimated, then a better
density estimate will be obtained. Thus using e.g. local polynomial regression may
improve the density estimation, as observed in Stgve & Tjgstheim (2005). Also, by
selecting the bandwidth parameters in the convolution estimator more correctly, by e.g.
a cross-validation technique, this could improve the estimate.

The preliminary analysis of the estimator’s asymptotic performance with an asymp-
totic variance of order n~! is supported by the simulation experiments. However, a more
detailed mathematical analysis is needed to put this on a firm theoretical basis.
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A New Convolution Estimator for
Nonparametric Regression

Bard Stgve and Dag Tjgstheim
University of Bergen

Abstract: We present a convolution smoother for nonparametric regression.
Its asymptotic behaviour is examined, and its asymptotic bias is found to be
smaller than standard kernel estimators, such as Nadaraya-Watson and local
linear regression. Some simulation studies have been performed. Asymptotic
normality for the proposed estimator is proved.

1. Introduction.

There are many nonparametric estimators of the conditional mean E(Y|X = x)
for independent identically distributed observations (X;,Y;), i = 1,...,n, with a
joint density f(,-), and a marginal density f(-) of X;. The three most common

are the local polynomial estimator; see [26], [2], [19] and [4], the Nadaraya-Watson
estimator; see [20] and [28] and the Gasser-Miiller estimator; see [9]. In the case

where {X;} and {¢;} consist of i.i.d. random variables with {¢;} independent of
{X;}, E(Y|X = z) = m(x). Neither of the three above mentioned estimators require
a regression relationship like (1.1) to work, and one might think that if one was
able to construct an estimator of m(x) making explicit use of the extra information
contained in (1.1), then possibly one could improve on the standard nonparametric
regression estimators. This is the basic idea of this paper, and it leads to what
we have called “the convolution estimator”. We will show that this new estimator
generally has a smaller asymptotic bias than the standard estimators, and also that
in a number of finite sample experiments it gives better results, although in many
cases these improvements are not dramatic.

Before we define the new estimator, let us briefly mention that several authors
have proposed adjustments and improvements of the kernel estimators. Both the
Gasser-Miiller and Nadaraya-Watson estimator have a large order bias when esti-
mating a curve in its boundary region. Thus the idea of boundary kernels, which are
weight functions that are used only within the boundary region, were introduced
and studied by [9] and [10]. Another approach has been the reflection method;
see [23] and [12]. In the papers [10], [3] and [11] the possibility of parametrically
guided nonparametric density and regression estimation are examined. Several au-
thors have studied the use of higher order kernels to improve the asymptotic bias;
see e.g. [18] for a quantification of the practical gain, in density estimation.

A brief summary of the paper is as follows: In section 2 the estimator is intro-
duced, and its asymptotic behaviour is examined and discussed in sections 3, 4 and
5. In section 6 some simulation results are given. Section 7 introduces a variant of
the new estimator, and finally, section 8 gives some concluding remarks.

AMS 2000 subject classifications: Primary 62G08; secondary 62G20
Keywords and phrases: convolution, kernel function, mean squared error, nonparametric esti-
mation
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2. The estimator.

The regression function of interest is

d
m(a) = B[ = ) = LD [, 2.1)
Under the assumption that the equation (1.1) holds, f(y|x) can be written
fylz) = fe(y — m(x)), (22)

where f. is the density of e. Inserting this into (2.1) gives the convolution integral
equation

m(z) = / yfely — m(z))dy, (2.3)

where both m(x) and f, are unknown. However, m(z) may be replaced by a stan-
dard estimator m(z), e.g. the local linear estimator, and f. can be estimated using
a kernel estimate of f: with ¢ = Y; — m(X;). Based on the relation (2.3), the
proposed estimator is

m(z) = /yfe(y —m(z))dy
=n Z / yKnp, (y — m(z) = Y +m(X;))dy, (2.4)

where m(z) is, as mentioned, a nonparametric regression estimator and Ky, (-) =
K(-/hp)/hp, where K is a kernel function. We have choosen the local linear esti-
mator, that is, the local polynomial estimator of degree 1, with bandwidth hr and
kernel function K% (-),

s {32(r) = si(e)(r - Xa)P K (2 - XG)YG
= a(@)s0(@) — 51(@)? B
where .
$r() =n"'> (2= X)) Kf (v - Xi), r=0,1,2, (2.6)

i=1
and KI () = K*(-/hg)/hg, see e.g. [7]. The expression f;(y —m(z)) in (2.4) is
the kernel density estimator with bandwidth equal to hp,

n ~

oy —mia)) = - > k(2 7

with € = Y; — m(X;), see e.g. [27] page 11. Observe that the new estimator is
computationally more demanding than standard methods.

It is also possible to iterate the estimator (2.4) using a previous estimate of m(x)
as input for the next iteration. Set mg equal to the local linear estimator for the
regression curve. Then the convolution estimator is,

i (x) = / yFeo (y — 1o ) dy, (2.8)
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where ¢ = Y; — m(X;). Iterating further gives, for j = 1,2, ...
iyia(e) = [ ufrly = iy (), (29)

where again ég =Y, — 7m;(X;). Note that in this estimator = can only be equal
to the observed z; for ¢ = 1,...,n, because we update ég at each iteration. One
would perhaps believe that this “iterated convolution estimator” will give better
results than the convolution estimator. However, this is not the case, unless one
uses a special type of kernel function in the estimation of fgj. This special kernel is

introduced, and some simulation results are given in section 7.

3. Intuitive discussion of bias reduction.

Asymptotic analysis of nonparametric estimators is usually based on the asymptotic
bias and variance of the estimator. It is well known that the Gasser-Miiller estimator
has an asymptotic variance 1.5 times that of the Nadaraya-Watson estimator, but
its asymptotic bias is superior; see [17] and [1]. The local polynomial estimator of
order one and higher has been examined by several authors, and has been found
to have better properties than the above mentioned estimators. In particular, it
provides automatic boundary bias correction; see [4], [6], [5] and [15]. For a more
complete discussion of the different estimators and comparisons, see the books [27],
[25], [7], [8] and references therein.

We now discuss the asymptotic properties of the estimator (2.4). In the sequel,
the bandwidth h refers to both hp and hg, since most of the time we assume that
these two bandwidths are equal. Standard conditions on the kernels, the random
variables and the regression function are assumed to be fulfilled, see e.g. [27] page
120.

The relation (2.4) can be written as

) =3 [ (T 5.)

By a simple substitution and using assumptions on K (-), (3.1) gives

Z é. (3.2)

m(z) = m(x) +

SN

Further,

é = Yi = m(Xi) = Vi = m(Xs) +m(X;) = n(Xy)

Substituting (3.3) in (3.2), we obtain
m(z) — m(x) = m(x) — m(z) — %Z[M(Xz) —m(X;)] + % . €. (3.4)

From this relation it is possible to find the asymptotic bias of m(z).
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Let us recall the asymptotic bias formula for the local linear estimator (e.g. [27]
page 124). With a slight abuse of notation,

As.Bias(m(z)) = E(r(z) — m(z)) ~ %m”(m)/zQK(z)dz. (3.5)

Since
E(m(X;) — m(X;)) = E[E(m(X;)) — m(X;)|X]
~5( m”(Xi)/ZQK( ), (3.6)
we obtain
R 2 2 7

B( > o) - m(X0) ~ g [ #E@ [m' e )

Further,

Hence the asymptotic bias of m(z) is

As.Bias(rh(x)) ~ As.Bias(m(z)) — % / 2K (2)dz / m"(y)f(y)dy

= % /Z2K(z)dz[/ (m”(m) _ m”(y)f(y))dy]. (3.9)

Let us consider the following special cases:

1. m”(z) = constant (i.e. m(z) = a + bx + cx?). The bias of /m(x) is of higher
order and improvement of the bias can be expected.

2. m”(z) = 0 (linear case). The bias is of higher order, both for 7 (z) and m(z),
and it is uncertain whether improvement is obtained.

3. x close to maximum and minimum values (peaks and valleys). If /() — m(z)
has maxima at these points even though the bias correction in (3.9) is x-
independent, visually the reduction will be large in these points (cf. figure 2,
which is explained in more detail in section 6).

Observe, however, that if one has a curve with several peaks and valleys it may
be difficult to gain any bias reduction. This is because the integral [ m”(y)f(y)dy
can be equal to zero in this case. Thus the bias reduction gained in some places
(e.g. in a peak) will be balanced by an increased bias other places (e.g. in a valley).

As mentioned before, performing iterations of the estimator in equation (2.9)
will not give any improved bias effect. In this case, the equation (3.2) will be

Myea(a) = ye) + 232l (3.10)

For j = 1, the same argument as above gives
As.Bias(rz(z)) = As.Bias(1m1(z)), (3.11)

and further
As.Bias(rij41(x)) = As.Bias (1 (z)). (3.12)
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However, we introduce a special kernel in section 7, such that a bias reduction may
occur at each iteration.

Another possible improvement suggested by a referee, is that instead of (3.2)
one could think about localized corrections where the average over all residuals is
replaced by a locally weighted average of residuals in the neighborhood of x only.
This could alleviate some of the disadvantages that are associated with the current
global adjustment, and should be a part of further research.

4. Distributional properties.

By (3.4)

—E[Z(m(Xi) —m(Xz'))H +%Z€i- (4.1)
We have )
m(z) — E(m(z)) = Op(ﬁ) (4.2)
and

%g ~0,(7). (43)

If we can show that the convergence in probability of the remaining terms in (4.1)
is of higher order, then the asymptotic distribution of m(z) — E(ri(x)) is the same
as m(z) — E(m(x)), but with a different asymptotic bias.

Although this is not necessary, we do our formal calculations as if all expectations
exist. Let us consider again

B 3 ((X0) = m(X0)]* = B[z 3 (0(¥) — m(X,)’]
B[ D7 (R = m(X0) ((X,) — m(X;)] (4.4
z,i];é:jl
Further
E(i(X;) —m(X,)) = E[E(m(X;) — m(X)|X,)?] = o(1) (4.5)
Thus .
E[% 37 ((X:) = m(X))] = o(n™h). (4.6)
i=1

Let us examine the second term in (4.4). By independence,
E[(m(X;) — m(X3)) (m(X;) — m(X;))]
[E[(7(X0) = m(X0)) ((X;) = m(X;)) [ X, X,] |

E
~ [ El0(@) = m(@) ((y) - m(u)] @) () dads. (4.7)
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The expectation in the above integral satisifies
E[( (fv) m(x )( (y) —m(y))] = E[m(z)m(y)]
—m(z)E[m(y) ()] — m(y)E[m(z) — m(z)] — m(z)m(y). (4.8)

Let us examine the term E[m(x)m(y)]. By a conditioning argument and by inde-
pendence, we obtain

PN o {82(2) = S1(2) (@ — Xi)}KF (x — X))Yi
Bl(@yn)]) = B[ Z 52(@)i0E) — (o)

2"2{82 —51(y)y — ])}KhR( Xj)Yj] n—1

52(9)30(y) — 41(y)? ~ —5—E((2))E(m(y))

o Y{8(2) — 81(2)(x — Xi)}KE (2 — X5)
+E [n ; [82(2)50(x) — 81(x)?][82(y)S0(y) — 81(y)?

1

]
K= X){52(0) — 31(0)(y — X0)} ] (4.9)
From [27] p. 123, asymptotically

R Rt [ 2 KT (2)dzf(x) 4+ op(h!) [ even,
sil@) ~ { RIFL [ZTIKE(2)dz f' () + op(h'HY) 1 odd.

Therefore the order of the denominator in (4.9) is

W / 2K ()22 2 (0) 12 (y) + op(hY). (4.10)
The only term contributing to the last term of the numerator in (4.9) is
1 L LY —X;
—3 % Z K KX - HY?, (4.11)

since all the other terms are of higher order.
Further, by a simple substitution, Taylor expansion, using the equation (4.10)
and since

4a(2)inly) = W / 2K (2)d2) (@) f () + op (), (4.12)

we obtain that the last term in (4.9) becomes asymptotically,

M S IR C i
E Y O M ) )
- nhf(x)f(y)/” K* () KM (=——) fxy(z — zh,v)d=d
_ 1 L/y—- -
nhf(y)K2 ( A JE(Y?|X = 2), (4.13)
where KI'(w = [K(2)K(z +w)dz.
Writing

+m(y)E[m(z) —m(x)] + Elm(y) — m(y)|E[m(z) — m(z)], (4.14)
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the equation (4.8) becomes

E[(m(z) — m(z)) (m(y) — m(y))] ~

(1 = DE[(y) — m(y)]E[n(r) - m()
+nh]1c(y)K2L(y hx)E(Y2|X:a:). (4.15)

Inserting this in (4.7), gives by substitution
E[(m(X;) —m(X3)) (m(X;) — m(X;))] ~

(1= 2) [ Bliny) ~ mu)Elin(z) - m(z)|f(z) fo)dady
o | KA
(- 1><h>[/ 2REOUP [ ' (0)f

/K2 dz/ (Y3X = 2)f(2)dz. (4.16)

E(Y?X = z)f(z)dzdy

Clearly the first term in (4.16) can be identified with the squared expectation in
the decomposition

Bl Y ((X0) — m(X0)]* = Var[5 3 (X)) = m(X)]
HEG Yol —mxa)]’ (@)

The term

/K2 dz/ (V2|X = z)f(z)dz =

E/KQ (2)dz[o? +/m2(:c)f(x)dx] (4.18)

can be identified with the variance. We have

% Z[m(Xi) - m(X;)] - E(% Zm(Xi) —m(X;)) ~ OP(%). (4.19)

From the equation (4.1), it follows that 7 (z) — E(/:(z)) has the same asymptotic
normal distribution as m(x) — E(m(x)), i.e. the asymptotic variance is the same for
the estimators m(z) and m(z), but

As.Bias(m(z)) = As.Bias(m(z)) — % /ZQK(z)dz/m"(y)f(y)dy. (4.20)

5. Total squared error.

We would like to compare the asymptotic total squared error, i.e.

E[ > (i(X:) — m(X;))"] against E[Z(m(Xi)—m(Xi))Q]. (5.1)

i=1
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From the equation (3.4)

Further,

j=1
P[0 ()~ mO)]* 4 2 - m(X)] 6
7j=1 Jj=1
-3 ~ () Yt 5 3 S (53)
j=1 k=1 j=1k=1

This implies

n

S (X)) —m(X)P =

i=1

S

1
n

Z[ﬁ%(Xi) —m(X;)”

— LIS () = mx)) + %quek. (5.4)
j=1k=1

i=1

Taking expectation in (5.4) gives us the total squared error of m(z). Thus the
order of the different terms is

n

E[% Z[m(xi) —m(Xi)]*] ~ / [Var(m(x)) + Bias® (m(x))] f(z)dz
= O(n_lh +h'),  (5.5)

from the decomposition, (4.17), and the calculated bias and variance

B[ (Y ((x) - m(x)]?] = ott) (5.6)

n
=1
and at last .
B[L o (5.7)
[TLQ Z ejek} = n . .
Jj=1k=1
This means that if E[2 Y7 | (m(X;) — m(X;))] # 0 asymptotically, then

E[Y " (m(X,) = m(X:)"] < B[ (m(X:) - m(X.))"] (5.8)

i=1 i=1

i.e. the total asymptotic squared error of /m(z) is smaller than m(z).
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6. Simulation study.

We compare the estimator (2.4) with the local linear estimator in several situations.
The comparisons are based on the mean squared error (MSE) of the estimators.
For m(z) the MSE is, if it exists,

MSE (r(x)) = E[{r(z) — m(x)}Q] (6.1)
In the simulations we use the empirical mean squared error
. 1 <&
MSE(m) = — n(X;) — m(X;)}> 2
SB(7) = — S {i(X:) — m(X.)}, (62)

i=1

and likewise for the local linear estimator.

We have simulated between 100 and 500 realizations of sample size 100 to 10
000 of (X;,Y;), and calculated the empirical MSE (6.2). The bandwidth choice
in the kernel density estimation for f. is the Solve-the-Equation Plug-in approach
proposed in [24], while the bandwidth used in the local linear estimator is the Direct
Plug-In methodology described in [22], if nothing else is stated. Gaussian kernels are
always used, both in the regression estimation of m(z) and the density estimation
of fe. The integration in the estimator (2.4) is calculated using the trapezoidal rule
between [2min(Y;), 2 max(Y;)], when min(Y;) < 0 and max(Y;) > 0. We consider
the case where observations of (X;,Y;) are independent.

Our first simulation experiment is based on the model Y; = X f + €;, where ¢; are
i.i.d normal with expectation 0 and variance 0.1 and X; is uniformly distributed

n [—2,2]. A hundred realizations each with sample size 500 have been simulated,
and the convolution and local linear estimators have been used to estimate the
regression curves. In this case, the estimated MSE for the local linear estimator
is: 2.301 - 1072 and for the convolution estimator: 1.986 - 10~3. Thus we obtain
an improvement of 13.690%. Figure 1 shows the estimated variance and bias of
the two estimators. The upper figure displays the estimated variance; here there
is no difference between the two estimators. The lower figure shows the estimated
bias. The dashed line is the estimated bias for the convolution estimator. This is
clearly smaller than for the local linear estimator; thus our predictions that the
improvement occurs in the bias is supported. The results are similar for the other
simulation experiments. See table 1 with sample size equal to 100, 1000 and 5000.
In these cases the improvement is also considerable.

Table 1: The estimated MSE for a parabola using the convolution estimator

Sample size Local linear Convolution type Improvement in %

100 9.086 - 103 7.997-1073 11.985
500 2.301-1073 1.986 - 1073 13.690
1000 1.321-1073 1.120- 1073 15.216
5000 3.489-10~* 2.957-10~* 15.248

The next simulation is based on the same model, except that the interval is now
[-0.5,0.5]. Only one realization with 500 sample points has been simulated, and
the estimated lines are given in figure 2. The solid line is the true function, the
non-filled points are the local linear estimates and the black points are the convo-
lution estimates. These results clearly indicate that the asymptotic bias formula in
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Table 2: The estimated MSE for a parabola using the convolution estimator and
the Nadaraya-Watson estimator with a fourth order kernel

Sample size Nadaraya-Watson Convolution type Improvement in %

100 2.448 1072 1.002- 1072 59.069
500 5.839-1073 2.175-1073 62.750
1000 3.396-1073 1.243- 1073 63.398
5000 1.020-1073 2.978 - 10~* 70.804

Table 3: The estimated MSE for a straight line using the convolution estimator

Sample size Local linear Convolution type Improvement in %

100 5.675-1073 5.653- 1073 0.388
500 1.240-1073 1.246 - 1073 -0.484
1000 5.627-1074 5.630- 1074 -0.053
5000 1.009- 104 1.098 - 1074 -8.821

equation (3.9) is reasonable. For each estimated local linear point, the estimated
convolution point is below by a fixed amount, but the visual impression is that the
convolution estimator does much better at the bottom points of the parabola.

As mentioned in the introduction, a common bias reduction technique in non-
parametric estimation is the use of higher order kernels, see e.g. [27] page 32. Thus
we have included a comparison between the Nadaraya-Watson estimator with a
fourth order kernel and the proposed convolution estimator. The fourth order ker-
nel used is K4(z) = 0.5(3—22)¢(x), where ¢(x) is the standard normal distribution.
The bandwidth used in the Nadaraya-Watson estimator is the same as for the above
local linear estimator. It is thus not optimal in this situation, but other choices of
the bandwidth has been examined without a large impact on the results. Again
we perform simulations for the parabola model on the interval [—2,2]. The results
from the simulations are given in table 2. The convolution estimator clearly out-
performs the fourth order kernel method when comparing the MSE. Figure 3 may
explain these results. Here the bias and variance of both estimator are plotted for
the simulations with sample size 500. The bias of both estimators, the lower plot,
seems to be reasonably equal. But the variance, the upper plot, for the fourth order
kernel method is much larger, the solid line, than the variance for the convolution
estimator, the dashed line. This behaviour of the fourth order kernel method is not
unexpected, see e.g. [25] page 60.

The last simulation experiment in this section is based on a straight line re-
gression, Y; = a + bX; + ¢, with a = 1, b = 1, € as before, and X; uniformly
distributed on [0, 2]. From this model, 100 realizations of sample size 100 to 5000
have been simulated. The integration in the estimator is now performed on the
interval [—2max(Y;), 2max(Y;)]. The results given in table 3 for the convolution
estimator, indicate that the convolution estimator is almost as good as the local
linear estimator. We cannot expect the convolution estimator to do better here,
since m”(z) is zero if m(z) is a straight line, thus no bias improvement occurs in
the formula (3.9).
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Figure 1: The estimated variance (top) and bias for the parabola experiment
(dashed line - convolution estimator, solid line - local linear estimator)
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Figure 2: The solid true line, the estimated local linear points (non-filled) and the
estimated convolution points (black) from one realization for the parabola model
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Figure 3: The estimated variance (top) and bias for the parabola experiment
(dashed line - convolution estimator, solid line - Nadaraya-Watson estimator with
fourth order kernel)
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7. A special kernel variant.

Let us consider equation (2.4) again. With a substitution we obtain,
ile) = [ufily =iy = [ fe)tz+me) [ @

If [ fe(z)dz > 1, the estimator 7(z) will clearly be closer to the true function
than m(z) in locations where the function has a large curvature due to the bias
formula (3.5). Of course one could adjust with an estimate m” (x) of m”(x), but
this increases the variance. Instead we have chosen to introduce a kernel function
with the property

/K(z)dz > 1. (7.2)

This could be considered as an alternative to allowing the kernel to be negative,
which is a known device for reducing bias, as seen in section 6 for the higher order
kernel used there.

In this case, it may pay to perform iterations, as equation 2.9 suggests. However,
m(x) will also be larger than m(x) in absolute value in locations where m”(z) = 0,
and this is not desirable. The following simulation experiments should therefore
just be considered as a part of a preliminary investigation where at least some
promising results are obtained, but where more work is needed to find a more
optimal procedure. In these experiments we have chosen the kernel K such that
Ik fg(z)dz = 1.001, a very modest overestimation indeed, and clearly other choices
can be examined.

Two regression functions have been studied: from [14] chapter 5,
my(z) = sin®(27a3) (7.3)
and from [21]
ma(z) = sin(2z) 4 2 exp(—1622). (7.4)

See figure 4 for these curves. The observations have been generated by simulating
X, as uniformly distributed on an interval [0, 1] for mq(z) and [—2,2] for ma(z).
The response observations have been generated through

where ¢; are i.i.d normal with expectation 0 and variance 0.1. Here 100 realizations
of sample size 100 to 10 000 of (X;,Y;) have been simulated. Since both functions
have at least one peak and one valley, we may not expect to get much bias reduction.
The estimated MSE, using the convolution estimator with the adusted kernel (7.2),
is shown in table 4 for m;. As expected, the results show only a very modest
improvement. The results for mo were similar.

In table 5 and 6, the iterated convolution estimator (2.9) with the adjustment
(7.2) has been used with ¢ = 10 iterations, for the regression of mi(x) and ma(z).
Again 100 realizations have been simulated with different sample size, and the MSE
has been estimated. Here the normal reference bandwidth selector, see e.g. [14] page
91, has been used for the selection of the bandwidth in the density estimation.

Both tables show that the iterated convolution type estimator performes better
than the local linear estimator. The results also indicate that performing iterations
improves the first order convolution estimator 7721 (z). Clearly, one cannot improve



B. Stpve et al./A Convolution Estimator 15

-10 -05 00 05 10 15 20

Figure 4: The curve mi(x) at the top, ma(z) at the bottom

Table 4: The estimated MSE for m4 (x)

Sample size Local linear Convolution type Improvement in %

100 1.442-1072 1.445 - 1072 -0.208
500 4.071-1073 4.049-1073 0.540
1000 2.382-1073 2.374-1073 0.336
5000 6.766 - 10~4 6.723-1074 0.636
10 000 4.028 -10~* 3.988-1074 0.993

Table 5: The estimated MSE for m4(x), using the iteration estimator m,(x) with
1 =10

Sample size Local linear Iterated convolution type Improvement in %

100 1.438 1072 1.434-102 0.278
500 4.292-1073 4.235-1073 1.328
1000 2.464-1073 2.387-1073 3.125
5000 6.648 - 104 6.319-10~4 4.949

Table 6: The estimated MSE for ms(x), using the iteration estimator m;(x) with
1 =10

Sample size Local linear Iterated convolution type Improvement in %

100 1.773-1072 1.741- 1072 1.801
500 4.669 - 1073 4.531-1073 2.956
1000 2.696- 1073 2.576-1073 4.451

5000 7.245-1074 6.887-104 4.941
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Table 7: The estimated MSE for m;(x) on the interval [0.55,0.7] using the iterated
convolution estimator with ¢ = 10

Sample size Local linear Iterated convolution type Improvement in %

100 1.373-1072 1.373- 1072 0

500 3.273-1073 3.127-1073 4.461
1000 2.241-1073 2.058-1073 8.166
5000 4.766 - 104 4.205-10~4 11.771

Table 8: The estimated MSE for m4 () on the interval [0.85,0.95] using the iterated
convolution estimator with ¢ = 10

Sample size Local linear Iterated convolution type Improvement in %

100 3.621-1077 3.414-1072 5.717
500 1.005 - 1072 8.802-1073 12.418
1000 5.740-107° 4.849-107° 15.523
5000 1.653-10~° 1.229-10° 25.650

the estimates indefinitely. The improvement will be smaller and smaller, and at
the same time there will be more and more higher order terms which may lead
to trouble unless n is increased. It remains an important task to carry out more
detailed calculations and to find a good stopping criterion. Possibly some cross-
validation type criterion can be used, but this is left for future research.

The point of the adjustment (7.2) is to improve results in peaks and valleys. To
check this, simulations with 100 realizations with sample sizes from 100 to 5000
have been performed for m; (z) and ma(z). However, the MSE has been calculated
only for specific intervals, which contain the peaks and valleys of the curves.

In table 7 and 8, the results from simulations of mi(x) are given, using the
iterated convolution estimator, with ¢ = 10 and adjusted with (7.2). The intervals
considered are [0.55,0.7], where the curve has a peak, and [0.85,0.95], which is a
valley. The curve has not a very large curvature on the interval [0.55,0.7], thus the
results in the table 7 show a modest improvement. However, the table 8 shows that
the new estimator is much better when estimating on the parts of the function with
high curvature. Similar results were obtained for ma(z).

The above results show that the proposed estimator is better in estimating parts
of functions with high curvature, and in some cases this improvement is substantial.
This is in contrast to the modest improvement we obtained when we compared the
MSE of the whole curve.

A real data set with peaks and valleys has been examined for completeness.
We use the motorcycle data set from [13], page 70, where the X-values represent
time after a simulated impact with motorcycles and the response variable Y is
the head acceleration of a post mortem human test object. Figure 5 shows the
results, together with the data points. The upper graphs show the result from the
local linear estimator (solid line) and the estimator in equation (2.4) (dashed line)
with the adjusted kernel (7.2). These two estimators give approximately the same
result. However, the lower graphs are different. Here the dashed line is the iteration
estimator from (2.9), using 50 iterations and adjusted kernel, the solid line is as
above. Again the convolution estimator is lower in valleys and higher in peaks
compared to the local linear estimator.
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Figure 5: Nonparametric regression of the motorcycle data set: The data is given as
points in both plots. Upper plot: solid line - local linear estimate, dashed line - con-
volution estimator with special kernel. Lower plot: solid line - local linear estimate,
dashed line - iterated convolution estimator with special kernel (50 iterations).
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8. Concluding remarks.

In this paper we have introduced a convolution estimator for nonparametric regres-
sion. Its asymptotic bias is proved to be smaller than standard kernel methods.
The bias reduction will be large in cases where the function of interest has only one
maximum (i.e. a peak) or one minimum (i.e. a valley).

Since the convolution estimator has two bandwidths, their choice is important.
This has not been studied in this paper, and one might believe that the bias reduc-
tion can be larger if one is able to choose more optimal bandwidths.

An adjusted kernel has also been introduced and simulation results indicate that
by using this kernel, even more bias reduction can be achieved. However, more
theoretical analysis is needed here.
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1 Introduction.

There is already a substantial literature on nonlinear models and nonparametric meth-
ods in a regression and time series setting. But almost without exception these devel-
opments have been limited to univariate or multivariate models of moderate dimen-
sions. Very little has been done for panels, where the dimension, often corresponding
to a number of individuals, typically is very large, but where the number of obser-
vations for each individual may be small or moderate. One would expect that the
practical need for nonlinear models will be no less in a panel situation, but a sys-
tematic theoretical foundation has been lacking. It is the aim of this paper to start
establishing such a theory. The emphasis will be on a nonparametric approach, in
particular on additive models. Extending existing methodology to the panel situation
is by no means trivial (actually also in the linear case of interrelated time series in a
panel there are many unsolved problems; see e.g. Hjellvik and Tjgstheim (1999), Fu
et al. (2002), Wooldridge (2005a) and Chang (2004)).

To be more specific, let {Y#} i =1,...,n; t=1,...,T, be stochastic variables
representing observations on a set of n individuals over 7' time periods. A rather
general additive model for the panel {Y} will be given by

p
(1.1) Y=Y mi(XE) 4+ A+

J=1

Here {X}t}, j=1,...,p,is a set of explanatory variables (time lagged values of Y
may be included among them), {n;} and {\;} are temporary and individual effects,
respectively, not captured by the explanatory variables, and {%} are error terms. The
functions {m;, j = 1,...,p} are unknown, and it is our task to estimate them. In
the linear case m;(z) = «a;z for some unknown parameters o, and our model reduces
to the more familiar time series panel regression model treated in many papers and
in the books by Hsiao (1986), Matyas and Sevestre (1992), Baltagi (1995), Arellano
(2003) and Arellano and Honoré (2001).

One of the difficulties arising in trying to establish an estimation theory for (1.1)
is that the asymptotics can be imagined in several ways. We may let n — oo, T" — o0
or both. Another problem is the presence of the individual effects A; and/or temporal
effects n;.

There are several ways of approaching the problem of estimating m;. We have
chosen to use backfitting (Hastie and Tibshirani 1990) to take advantage of the recent
developments in this area in Opsomer and Ruppert (1997) and Mammen et al. (1999).
In particular, we will rely heavily on the smoothed backfitting approach, the theory
of which is introduced in Mammen et al. (1999), and where a simplified version with
several applications is given in Nielsen and Sperlich (2005). An alternative would have



been to use marginal integration (Newey 1994, Tjgstheim and Auestad 1994, Linton
and Nielsen 1995). The latter method only works for low dimensional covariates and
for well behaved designs. But in case of deviations from the additive model (1.1)
it is fairly robust and can be extended to include interaction terms (Sperlich et al.
2002). Other recent contributions to nonlinear and non/semiparametric modeling of
panels are given in Hjellvik et al. (2004), Fan and Li (2004), Racine and Li (2004),
Wooldridge (2005b), Baltagi and Li (2002) and Honoré and Lewbel (2002).

It will be seen that we do not at all manage to obtain a complete theory, and open
problems will be pointed out as we proceed. An overview of the paper is as follows. In
Section 2 we discuss Nadaraya-Watson smoothing in model (1.1). This will be done
for models with and without individual effects (A; # 0 or A; = 0, respectively) and for
two asymptotic settings. In the first asymptotic approach we fix T" and let n — oco. In
the second setting we let T" — oo and n — oo. Nadaraya-Watson smoothing in this
model can be easily introduced and leads to an intuitive clear asymptotic theory. The
more complicated theory for local linear smoothing will be developed in Section 3.
Simulations and a real data example are presented in Section 4. The paper concludes
in Section 5. Proofs are deferred to Section 6.

2 Local constant smoothing of panels of time

series.

We will start by looking at model (1.1) when there are no individual effects {\;}
present. The presence of the temporary effects {7} means that the time series of the
panels will be interrelated (but not necessarily intercorrelated), even conditionally
on the explanatory variables. A linear version similar to this case was considered in
Hjellvik and Tjgstheim (1999) and Fu et al. (2002), and as in those publications we
first put the emphasis on asymptotics for the case n — oo with T fixed. As mentioned,
this is a situation which frequently occurs for panels

2.1 Definition of local constant smoothers and asymptotics
for n — oo and T fixed.

We consider the following model

p
(2.1) YE=N " mi (X 4+ (=1, mt=1,...T),

J=1



where one observes Y and covariables XI" with j = 1,...,p. In particular, we
think of the case where partially the covariables X}t are lagged observations Y7 (for
j <P/, say) and where the other covariable X! (p’ < j < p) are external covariables.
The variables 7, ...,nr are constants that are unknown. They model the influence
of some additional external variables onto the development of the time series Y.
Typically they could be considered as nuissance parameters. For the error variables
' we assume that

(A1) We assume that (Y!, X! el), ..., (Y™, X" &) are i.i.d., where Y = (Y :1 <
t<T), X =(Xl:1<j<pl<t<T)ande = (":1<t<T7)
Given (X7*:1<j<p 1<s<t;6%:1<s<t—1), the variable £ has
conditional mean 0, and conditional variance o2 and they have a conditional
absolute moment of order 5/2 that is uniformly (in ¢ and ¢) bounded by a
constant.

We could treat more complicated data generating processes. In particular, one
could allow for conditional heteroscedasticity and one could allow for weak conditional
dependence of e't, ..., ™. We do not treat such general cases mostly for simplicity of
notation. Essentially, for the proof of our results we only need asymptotic normality of
VaTh S S Kz — X" for a kernel Kj,(u) = h™' K (uh™") with bandwidth h
and rates of convergence for terms (Tn)~' Y"1 Zthl gn(X")e™ for certain sequences
of functions g,. Clearly, this could be studied in a much more general set up. Fur-
thermore, one could treat non i.i.d. X’ In fact, we only make use of some ergodicity
properties of the covariable vectors that are needed to get asymptotic formulas for
bias and variance expressions.

We will discuss asymptotics of a backfitting estimator in an asymptotic framework
where

(A2) T is fixed and n — oo.

This covers a large class of applications where one observes a large number of individ-
ual time series for a moderate number of time points. We will comment on the case
T — 00, n — oo in the next subsection.

For identifiability of m; we use the following norming conditions

(A3) It holds that

T
> Emi(X)h) = 0.
t=1



We make the following smoothness assumptions on the density of the covariables
and the regression functions my, ..., my:

(A4) We assume that X has a density on [0,1]?. The conditional density of X%
given that X lies in [0, 1]? is denoted by ff. We assume that f* has continuous
partial derivatives of order one and that it is bounded from below (on [0, 1]7).
The regression functions m; have continuous second derivatives on [0, 1].

We restrict the smoothness conditions here on the interval [0, 1]? because we will
consider estimation of my, ...,m, only on compact intervals [ay, b1], ..., [a,, by], respec-
tively. For simplicity of notation we put a; =...=a,=0and b; =... =b, = 1.

We use the following additional notation. The one and two dimensional marginals
of f* are denoted by fj(x;) or f},(z;,vx), respectively. Furthermore, we put f(z) =
Sy @), firg) = o fiag) and fie(g, @) = Yo, [z, 2). We denote by
N the number of covariables X% in [0,1]P for 1 <i <n, 1 <t < T. The number N;
is the number for fixed ¢. By the law of large numbers we have that in probability
N/n — d,N,/n — dy where d, = P(X* € [0,1]?) and d = 3/, d;.

In our smoothing estimates we use bandwidths A(1),...,h(p) that are of order
n~1/%. This is motivated by our smoothness conditions. Furthermore, we assume the
following conditions for the smoothing kernel K.

(A5) The bandwidths a(1), ..., h(p) fulfill n*/5h(j) — ¢; for some constants ci, . . . , c,.
The kernel K is non-negative, Lipschitz continuous, symmetric around 0 and
has compact support ([—1, 1], say).

We now define our estimates my, ..., m, of my,..., m,. For the performance of our
estimates we need that the kernel K integrates to one over the interval [0, 1]. This is
achieved by the following modification of a convolution kernel

_ Epluzv) if 1
Kh(U,U) = fol Kp(w—v) dw I u,v e [07 ]7
0 else
Our estimators my, ..., My, M1, . . ., r are defined as minimizer of a smoothed least

squares criterion. They minimize the following criterion function

2.2) S [ Y st -

i=1 t=1

Kpy(ur, X1 - oo Ky (up, X2 duy . .. duy,

under the constraints

ot



for 7 = 1,...,p. The criterion function (2.2) is a smoothed version of a sum of squared
residuals. Smoothing is done with respect to the covariables X', ..., X", but not
with respect to t. Smoothing with respect to t could be easily included by minimizing

S [ ) -

=1 t=1

Ky (u, X715 o Ky (up, X2 )duy - . duy,

where 7J, are smoothing weights depending on a ”bandwidth” g and fulfilling Zle 7, =
1 for t = 1,...,T. In particular, such an approach could be used in an asymptotic
setting with T" — oo. We do not follow this approach and in the following we only
will discuss the partially smoothed version (2.2).

Definition (2.2) is very similar to the definition of a backfitting estimate in an
additive model in Mammen et al. (1999). As there, one gets by simple arguments
using derivatives of the criterion function (2.2) that the estimates fulfill for 0 < z; <1

(2:3) M) = myla;)— Y Ntﬁ ;)

1] i(5)
(2.4) o= - Z/ﬁlj(%)ﬁ(%) dey (t=1,...,T),

where m;, 1, are the following "marginal” estimates

(2.5) my(z;) = N‘lzZMX“E[O,l]p)
Ky (j, XY™/ fi(25),
o= N XM elo 1)y

i=1

The functions f;, j/’;k, f} are kernel density estimates based on the covariables:

n T
files) = N72Y 0D HX € 0,1 Ky (. X)),

i=1 t=1

n T
finlaj ) = N7 Y 1(X* € [0,1])
=1 t=1
Ky (5, X3') Kngry (r, X3),
filws) = N7UYOLXT € [0, 1) Kag (a, X1).

i=1



The following theorem describes the asymptotic behavior of myq, ...

, Ty

A uni-

form approximation of the estimates is stated. This immediately implies asymptotic
normality of the estimates (see Corollary 1). Furthermore, it can be used to construct

uniform confidence bands. We will not state such a result here. It could be done along

the lines of the treatment of standard classical nonparametric regression models.

Theorem 1 Assume (A1) - (A5). Put v,; = —c3% [ m(x;) fi(x;)de; [’ K (u)du

and define 5%, 1, ..., 3, as the minimizers of

T

/Mp > B, t) = B = Bi(x1) — ... = By(y)]? fla,t) d

where the minimization runs over constants 3*, ..., 81 and functions 31, . . .

R with [ B;(z;)f;i(x;) dz; = 0 and where B(z,t) is defined as

Then the following uniform expansion holds

76])

sup [ () = [ (1) = s + 17 B3(3)]| = opln ™),

zj€lhj,1—h;]
T T
. ds ~ ds -
mzm—;gnﬁ 25 2 E )+ 0, (n2?).
Here
n T N
(2.6) () = N7 O X" € [0, 1) Ky (xj, X))/ fi(x) -

:[0,1] —

Note that 7713-4 is defined as m;, but with Y replaced by €. It is easy to check under

our conditions that n?/>m

34 has an asymptotic zero mean normal limit. Furthermore,

Bj(x;) is a deterministic function. This shows that m; has the following asymptotic

limit.

Corollary 1 Under conditions (A1) - (A5) for xy, ..., x, € (0,1) the following con-

vergence in distribution holds

7%1(371) - m1(£171) 51(1’1) — Tn, 01(1’1)
n?/? : — N : S
My (Tp) — mp(2p) Bp(p) — Ynp 0
where vi(x;) = [ K(uw)*du o?[f;(x;)e;]

Up(Tp)



According to Theorem 1 in general the parameter 7, is only estimated with an
order of n=%/°. This is caused by a bias of the estimate that is of this order. We
conjecture that the stochastic part of 7, is of parametric order n='/2. As in other
semiparametric problems use of smoothed likelihood functions leads to an estimate

1/2

of the parametric component that does not achieve an n™"/* rate. Estimates of the

parametric component with n~—'/2

rate can be achieved by application of a two step
procedure where an unsmoothed likelihood is used for the parametric component and

a smoothed likelihood for the nonparametric part.

We now shortly comment on the numerical calculation of our estimate. Equations
(2.3) and (2.4) suggest an iterative calculation of the estimates. Application of (2.3)
for j = 1,...,p can be used for an update of m;. In each application one plugs the
current values of m; (I # j) and of 7y (t = 1,...,T) into the right hand side of (2.3).
Afterwards one applies (2.4) for updates of 7, for t = 1,...,T. Again this is done by
using the actual values of m; (j = 1,...,p) on the right hand side of the equation.
Let us call these iterative values ﬁzﬁa} and ﬁla} where a is the number of cycles of the
algorithm that have been applied. The starting values are denoted by ﬁlg-o] and ﬁio].
Convergence of this algorithm is stated in the next theorem.

Theorem 2 Suppose that (A1) - (A5) hold. Then there exists constants ¢ > 0 and
0 < v <1 such that with probability tending to one

/ [l (@) — i (2)pi(a;) duy < AR for j=1,...,p.

and

~la]

2
= <R for t=1,...,T,

where

P T
R=1+ 3" [l a,) doy + So(G?
7=1 t=1

Our estimates only use response variables in the smoothing if the corresponding
covariables lie in [0, 1]P. All other responses are thrown away and are not used in the
construction of the estimate. In particular if p is large a relatively large portion of the
observations may be lost. Clearly, one can use an arbitrarily large but fixed compact
set to weaken this effect. Asymptotically, this could be more carefully analyzed by
using sets that, depending on the sample size, converge to the whole space. Such an
analysis would be technically very involved because one has to take care on the tail
behavior of the covariables and of the regression functions. Another way out could be
based on semiparametric modifications of the estimate. This could be done by fitting
a constant value for m;(z;) with z; outside [0, 1] (or more generally to fit a parametric
shape outside [0, 1]). Then no observations are lost in the calculation of the estimate.
We do not pursue the discussion of this estimate here.



2.2 Asymptotics with T' — oo, n — oc.

The mathematical arguments of the last section make essential use of the assumption
that T' is fixed. In some applications of panels of time series this assumption may
not be justified. We now discuss asymptotics for the estimates m; of the last section
for the case that 7" — oo. Again, the estimates are defined as minimizers of (2.2)
and they fulfill equations (2.3), (2.4) by the same arguments as in Section 2.1. By
plugging (2.4) into (2.3) we get

(2.7) mi(x;) = mj(z;) Z/m f]l (@, @) dx

15 fi(x;)
—l—ZZNt/ml Ulf( )dul
=1 t=1 ()
where
n T R
mi(a;) = NS UXT € [0, 1) Ky, XY™ =Y/ fi(x),
=1 t=1
Yyt = ot z": 1(X" € [0,1]P)Y™.
i=1
With mi(z) = (M, (z1),...,my(z,))", m(z) = (My(x1),...,my(x,))" this can be
rewritten as
(2) fife) = mia) + [ Ha.y) ily) dy

where H (x,y) is a p X p matrix with off diagonal entries

5 Fulzim) | < Ntflt(?/l)f;(xj)
Hy(z,y) = ==+ =

and diagonal elements

. LN F () fi(y)
Hjj(xay) = ; Nﬁ(l’]) .

For (2.8) we use the following short hand notation
(2.9) m = m+ Hin .

The operator H is related to the operator S that has appeared in the proof of Theorems
1 and 2. The operator S consists in an iterative application of orthogonal projections
(or more precisely of orthogonal projections that depend on n but converge to fixed

9



orthogonal projections). This was the central argument to show that the operator
norm of S is strictly smaller than 1. If the operator norm of H would be strictly
smaller than 1 then iterative application of (2.9) would give

im it
r=0

and we could treat asymptotics for m as in the last section. Unfortunately we are not
aware of an argument that implies that the norm of H is bounded away from 1 (with
probability tending to one for n large enough). However, there exists a simple idea in
the theory of integral equations how the integral equation can be modified to achieve
an integral operator norm smaller than one, see Luchka (1965). This idea has also
been used in Linton and Mammen (2005). It will be our main tool to carry over the
results of the last section to the case where 7" — oo. For a detailed discussion see the
proof of Theorem 3. We will assume that the operator H converges to a deterministic
operator H, see (A4’). Let us denote the eigenvalues of H by |A1| > [Aa] > |Ag] > .. ..
Put r = max{j : |\;| < 1} and denote by 7 the projection onto the space L of
eigenfunctions of Ay, ..., A\, (in the space Ly([0,1]?)). Then we can write

mo=m+ H(I — )+ Hri.
This gives
(2.10) m = (I — Hr) 'm + R,
where R = (I — ﬁw)_lﬁ(_f — ).

In the proof of the following theorem we will argue that H~H implies that
R~R=(I—-Hr) "H(I - 7).

We will then use that R has operator norm (largest absolute eigenvalue) strictly less
than 1. To see this statement note that (I — Hnm)™! coincides on L with I, that
H(I —7) maps all functions into L and that H (I — ) has operator norm strictly less
than 1 by construction of the space L. Iterative application of (2.10) now gives

(2.11) =Y R'(I-Hnr)"
r=0

with probability tending to one. This expansion is the main tool in the proof of the
following theorem.

We now state the assumptions of the following theorem. Instead of (A2) we use

(A2’) It holds that n,T — 0.

Instead of (A4) we will assume:

10



(A4’) There exist p x p matrices H(x,y) for z,y € [0, 1]” with

sup |H(z,y) — H(x,y)| = 0,((logn)~"/%).

m7y

The matrices H(z,y) are Lipschitz continuous for
z,y € [0, 1.

We are now in the position to state an expansion for m.

Theorem 3 Assume (A1), (A2°), (A3), (A}’) and (A5). Suppose additionally that
there exist bounded functions iy, 1, ..., py, , (r =1,2) such that for 1 < j <p

(2.12) sup }m (z5) — ui,j(:ﬂj) 2/5/13](%)’:017(”72/5)7
z;€[0,1]
where
n T
mP(z;) = N7 Y X €[0,1]7)Knlw;, X1 Z{ml (X}
=1 t=1 =1
1 — ~
N L(X™ € [0, 17)my(X[") }/ fi(a;).-
r=1

Then the following uniform expansion holds:

sup | ig(ay) — {mda) + > R = Hr) ] ()

x;€[0,1] r—0

+n~2 [R(1 = Hr)™i2] () } | = 0,(n™??),

where

n

mia) = NTUSOST L € [0, 1) Ky, X[ — £/ ()

i=1 t=1

and pf = (pk o, ... oph )7k =1,2.... Furthermore [ ]; denotes the j-element.

Note that m = m? + mP, by definition with (2.11) we get
m =m* +m?
with .
=Y R(I-Hr)"'m?
r=0
and

= Z ﬁ"([ — ﬁw)*lﬁzB
r=0

11



Under the assumptions of the theorem m®?

—m is asymptotically equivalent to the
bias of m, and M represents the stochastic part up to terms that are asymptotically
negligible. The proof of the theorem is based on two facts. Firstly, m* is asymptoti-
cally equivalent to the first term of its asymptotic expansion, i.e. to m“. Secondly, in
the expansion of m? the random operator ET(I 7 7)~! can be (partially) replaced by

B can be replaced

the deterministic operator R"(I —Hn)~! and the random function m
by the deterministic functions p! and p? . The bias cannot be so nicely interpreted
as in Theorem 1. An interpretation of m? as least square additive fit to a function
that is nonadditive is in general not available. This requires additional assumptions
on the distribution of the covariables. In particular, we cannot assume that the X%
are stationary. This would exclude the case that X is a lagged observation (Lagged
observations cannot be stationary in our model, unless the parameters 7, are con-
stant). Also a check of the assumption (2.12) would require additional assumptions
on the distribution of the covariables. We do not want to specify such assumptions

here. Asymptotic normality of m; can be easily followed from Theorem 3.

2.3 Inclusion of individual effects into the model

In a more general model individual effects are included. The model then becomes

p
(2.13) Y = > T my (X0 e A+ e

J=1

Here Ay, ..., \, are constants that are unknown. For identifiability, we assume Y | N*\; =
0, where N* is the number of covariables X* that lie in [0,1]? for fixed 7 and for

t =1,...,7. . In a first attempt one can again fit a model (2.13) by minimizing

a smoothed least squares criterion. The estimates my, ..., M, M1, ..., 71, Xl, o ,Xn
now are defined as minimizers of

(2.14) 3 / [y — Z i (u) — T — N2 Ky (un, X3 -

i=1 t=1

Ky (U, X2F) duy - ...+ duy,

under the constraints

3

==

Il
—

i
T n

N mixhy = o

i=1 =1

By taking derivatives one gets that the estimates fulfill linear equations that are similar
to (2.3), (2.4). By plugging the formulas of 7j; and J; into the expression for m,; one

12



can show that m = (My,...,m,)" fulfills the following integral equation (compare

(2.8))
() = m*(2) + / (, y)iily) dy

where
n T
mi(z;) = NS X € [0, 1)Ky, X)) YT Y = Y" Y]
i=1 71::1
)_/23 — 121 th )th
t=1
Hy(z,y) = MJr T Ntﬁ(yl)ﬁ(xj)Jr y Niﬁ(gl)ﬁ(xj) for j #1,
fj(xj) = Nfi(z)) o Nfilz))
] Ntfl(yl f xj a szl yl f(xj)
.. —
#(9) tzl ij (z5) ; x]) ’
T
fi(z;) = Z (X" € [0, 1)) Ky (X} — ;).

Under appropriate conditions one can proceed for the discussion of m;(z;) as in
the last section. For the ”stochastic”term of m;(x;) one now gets

n T
NN N X € [0, 1) K, XJ)[e" — &' — & + ]

i=1 t=1
with an obvious definition of &*.

Compared with fn]A (see Theorem 3) this now contains the additional term &°.
Clearly, & is not independent of X;t in case that the covariables contain lagged
observations and for T small it is not asymptotically negligible (as is always the case
for £). A more careful analysis shows that mj‘ only has asymptotic mean 0 if 7" grows
fast enough and appropriate mixing conditions apply (or if all covariables are external

variables).

3 Local linear estimates.

The local constant estimates m; have a complicated bias, see Theorem 1 and Corollary.
The bias of m; depends on the shape of the other regression functions m; (I # j).
This complicates the statistical inference based on m;. This disadvantage is known
from backfitting estimates of additive models. There it can be avoided by using local
linear instead of local constant smoothing. The same holds true for panels of time
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series. We will discuss this in this section. We will only do it for the setting of section
2.1 (i.e. T constant, no individual effects). Local linear estimates

~

~ ~ ~1 g~
My, ooy My, My, M -5 1T
are defined as minimizers of

t XZt_uJA] N ~2
(3.1) ZZ/Y Zm] u;) ) m (uj) — )

i=1 t=1

Kh(1)<U17X1it) et Kh(p)(up, Xp ) duy-...- dup.

Again, My, ...,m, are estimates of my,...,m,. The estimates m',..., m? fit the
local slope and can be used as estimates of the derivatives m, ..., m;. By differentia-
tion of the left hand side of (3.1) (w.r.t. m;(u;), M’ (u;) and 7;) one gets the following
linear equations for the estimates

Vo) () = Tt (22f)) = (g§)>

mj(xj) m (xj 7,0 xj)
Z/S ) ml Z ) d i (Vg(f )
- l,j l’l] SL’[,.TJ Ty — Nt t )
l#£7 .Tl = ‘/;]0
N N &
~ ~ t 7.t
e = M — N, ZWO(UJ)m]O“LJ) du;j — N, Z/VOJl(UJ)m](UJ) du,
Jj=1 Jj=1

where

1 n
- NZ (X" € [0,1]7) Kng)(x;, XI)

(oo oy MO el
G = ) RGP )
T D0 DU € 01 K o, X7

Sij(r,z5) =

it 1 h() X — 2]
Kh(l)(xl,Xz ) ( h(j)q[XJz:t —xj] h(j)lh(l)l[Xftl—xl][X;t _ ] )

Viales) = 5 21X € 01) Ko o X5,

Vig(z;) = —Z L(X™ € [0, 1]7) K (a5, X)) () X — ).

We now state asymptotic normality of the local linear estimate.
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Theorem 4 Under conditions (A1) - (A5) the following convergence in distribution
holds

T/fll(ZL'l) —ml(xl) +Vn,1 51(1‘1) ’Ul(ZL‘l) 0
n?/? : - N AN :
My (zp) — mp(Tp) + Vi Op () 0 - Up(@p)
where vj(x;) is defined as in Corollary 1 and where

51

9i(z5) = ¢ / w? K (u) dulmf(z;) — / i (x;)p;(x;) dw,],

and vy ; = [ m;(z;)Kn(zj,u;) fi(u;) dujdz;. Furthermore it holds that

T
~ ds _
== D e o).

s=1

Note that the nonparametric bias term in the estimation of 7, does not depend
on t. This can be explained by the following heuristics. For a full dimensional local
linear fit of the regression function m(z,t) = n + my(x1) + ... + my(x,) one gets a
bias term for the estimation of an additive component m; that only depends on the
second derivative of m; but that does not depend on the density f;. In particular,
it does not depend on t. Therefore 7; has only a nonparametric bias that does not
depend on t and that could be removed by norming.

4 Simulations and a real data application.

In this section we carry out a simulation study and use a real data set to see how one of
the proposed estimation procedures behaves. The estimation algorithm in equations
(2.3)-(2.5) has been implemented. In the implementation however, we do not use the
interval [0, 1], but take N = nT and N; = T'. The convergence criterion we use in the
simulations is: if for all j =1,....,p

SR () — il ()2

s < 0.0001
>_m; (x5)]? + 0.0001

(4.1)

then stop. Here k indicates the number of iterations performed. This convergence
criterion is taken from Nielsen and Sperlich (2005). The Gaussian kernel has been
used in the nonparametric estimate of m(x;) and in the density estimates. Using
a compact kernel (cf.A5) produces similar results. The bandwidths used in these
estimations are the “rule-of-thumb” bandwidth selector, see e.g. Hérdle (1990) page
91. This bandwidth choice may not be optimal, especially for dependent data, thus
another choice of bandwidth may improve the final estimates, as will be seen in our
last simulation example.
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4.1 Simulation study.

The first simulations are similar to the set-up in Nielsen and Sperlich (2005), although
there the authors only used cross-section data. We consider the model

p
(42) Yit = Z m](x;t) -+ M -+ Git,

j=1

with m;(2}) = sin(rz¥) and € ~ N(0,1). In the simulation, we first draw variables
zji-t, jg=1..,p, t =1.,T, for i fixed, from N(0,1) with given correlation pj,
j # k for each combination of covariables. That is, for each ¢, the variables z?t are
correlated with zi'. This drawing of variables is repeated for all i = 1,...,n. Then a
transformation is made, x? =25 arctan(zjt) /7. Thus the variables are projected into
the interval [—1.25,1.25].

In the first simulation, 100 realizations with n = 100, T'= 10, p = 4, n; = 0 for all
t and p; = 0.1 for all j # £ is carried out. One example of the estimated functions
m;(x;) and m;(z;) are given as dashed and thin solid lines, respectively, in figure 1.
The thick solid lines are the true functions. The estimated functions are quite close
to the true lines, observe also that the iterated functions, m;(z;) is more accurate
than the first estimate m;(z;), as expected. The standard deviations of m;(z;) are
estimated based on the 100 realizations in eleven different points, and + one standard
deviation are plotted in the figures as vertical dashed lines at each point. As expected,
the standard deviations are quite large at both boundaries for all components, but
are reasonably small at interior points. The average and the standard deviation of
the estimated 7); are given in table 1 upper part.

Using Corollary 1, we can construct confidence intervals of m(z;). Assuming that
the bias of m(z;) is of negligible size compared with the variance, we set (;(z;) —
Ynds -y B1(x4) — Yna in Corallary 1 equal to zero. Further we assume c? =1 for all j,
this correspons to the coefficent in the “rule-of-thumb” bandwidth used (cf. Héardle
(1990) page 91). Then the confidence intervals for all j components are equal to

N Zay2i (1) Za205 ()"
(4.3) [y () — L2 TZQ/; iy () + L 722/5] I

where z,/; is a quantile in the standard normal distribution and

(4.4 vl = [ Kufdua® o)

Observe that we also have to estimate o. This is done by calculating the empirical
standard deviation of the estimated €, given by

p
(4.5) et =Y = " m(X)) = A
j=1
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t 1 2 3 4 5 6 7 8 9 10

i 0 0 0 0 0 0 0 0 0 0

~

E(m) -0.005 0.010 -0.023 -0.001 0.013 -0.006 0.028 -0.002 0.003 -0.017
SD(m:) 0.099 0.102 0.100 0.102 0.094 0.105 0.111 0.119 0.097 0.095

m 5 4 3 2 1 0 2 3 4 6

~

E(m) -5.001 -4.013 -3.029 -1.989 -1.006 -0.017 2.004 3.003 3.985 5.983
SD(m;) 0.122  0.130 0.109 0.133 0.116 0.095 0.107 0.117 0.124 0.119

Table 1: The estimated 7;-s for the first model

-05
-05

-1.0
-1.0

T T T T T f T T
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 05 1.0

10

05

-05

-1.0

T T T T T T
-10 -05 0.0 05 1.0 -10  -05 0.0 05 1.0

Figure 1: The estimated functions in the first simulation (m; and ms - upper plots,
ms and my - lower plots)

One realization of the 100 simulated realizations above, has been choosen, and the
confidence intervals for o = 0.05 have been plotted for all four components in figure 2.
The confidence intervals in this figure are a bit wider than + two standard deviations
in figure 1.

The second simulation is identical to the first, except that the correlation, p;, = 0.7
for all j # k. One example of the estimated functions m;(z;) and m;(z;) are again
given as dashed and thin solid lines, respectively, in figure 3. In this case the initial
estimates m;(x;) do not work at all, whereas the iterated estimates work well. This is
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Figure 2: The estimated functions and confidence intervals (m; and my - upper plots,
mg and my - lower plots)

expected because of the increased correlation p;;. Again, £ one standard deviation of
m;(x;) is given in the figure as the dashed vertical lines in eleven points. The average
and standard deviations of the estimated 7; were similar to those in table 1.

In the last simulation for this model non-zero values of n; were allowed, as given
in the lower part of table 1. Now pj; is 0.1. One example of the estimated functions
with standard errors are given in figure 4, and the average and standard deviations
for the estimated 7;-s in the lower part of table 1.

Next, we look at a panel of time series. The time series lag dependence is taken
from Fan and Yao (2003) page 356. Now,

2

(4.6) Xt — mesz:tfj) +n + eit’

with

(4.7) my (XY =4X, /(1 +0.8X2 ),
(4.8) ma(X32) = exp{3(X;—2 — 2)}/[1 + exp{3(Xi_» — 2)}].

In the first simulation, we ran 100 realizations with n = 200, T" = 10, n, = 0 for
all ¢t and e uniform on [—1,1]. An example of the estimated m;(z;) functions are
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Figure 3: The estimated functions in the second simulation (m; and ms - upper plots,

mg and my - lower plots)

t 1 2 3 4 5 6 7 8 9 10
" 0 0 0 0 0 0 0 0 0 0
BE@,) 0017 0018 0024 0.024 0018 0.026 0.022 0.024 0.020 0.019
SD(@,) 0.047 0.040 0.045 0.046 0.041 0.043 0.047 0.044 0.038 0.040
m 5 4 -3 2 1 0 2 3 4 6
BE(,) -4.980 -3.994 -2.994 -1.996 -0.998 0.007 2.005 2.994 4.002 6.007
SD(m,) 0.323 0337 0.329 0325 0.333 0.332 0.307 0.349 0.317 0.322

Table 2: The estimated 7;-s for the second model

given in figure 5 as the dashed lines, and they give a good approximation to the true

functions, thick solid lines. Again, m;(z;) are given as thin solid lines. Note that the

additive components can only be identified up to a constant, thus the true lines in

this figure and figure 6 are the re-centered versions of the functions mj;, i.e. m; —m;,

plotted against X;t_j , where m; indicates averaging. The standard deviations of the

estimated components are plotted in the figure. The average of the estimated 7, and

their standard deviations are given in the upper part of table 2.

The last simulation is identical to the above, except that n; is now non-zero, as
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Figure 4: The estimated functions in the third simulation(m; and ms - upper plots,
mg and my - lower plots)

given in the lower part of table 2. This introduces a quite strong relationship between
the time series, especially at the ends. In figure 6 an example of the estimates of the
components is given. Now the estimated functions, the dashed lines, deteriorates in
quality. Standard deviations of the estimated components are much larger and not
included. The estimated 7, however, are quite good, with relatively small standard
deviations, see the lower part of table 2. Since the estimates in figure 6 are quite wiggly,
one might believe that a larger bandwidth in the estimates of m;(z;) may improve
the estimates. And indeed that is the case. In figure 7 the estimated components are
given, based on one realization as above, but now using a bandwidth 1.5 times larger.

4.2 Application to a real data set.

The estimation procedure is also used on a real data set. When using the algorithm
on real data, one has to consider the assumptions on which it is based. Thus the
following questions must be adressed:

1. Is Y explained by an additive model?
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Figure 5: The estimated functions in the second model, first simulation

2. If the norming condition on the expectation of m;(x;) is not fulfilled, what
happens to the estimates?

3. What about the ergodicity type conditions for our covariates? Are the covariates
stationary?

Since convergence of the algorithm rests on these assumptions, one may expect some
problems when using the algorithm in practice. Also the number of observations may
be an issue.

The real data set is from Baltagi et al. (2000). They estimate a dynamic demand
model for cigarettes based on panel data from 46 American states over the period
1963-1992. The estimated equation is

(4.9) InY" = a + B InY" ! + BoIn Xy + B3In Xy + Ban X} + u”,

where i = 1, ..., 46 denotes the ith state and t = 1, ..., 29 denotes the tth year. Y% is
real per capita sales of cigarettes, X2 is the average retail price of a pack of cigarettes
measured in real terms, X2 is real per capita disposable income and Xi denotes the
minimum real price of cigarettes in any neighboring state. The disturbance term is
specified as

(4.10) u' = N\ +n + €
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Figure 6: The estimated functions in the second model, last simulation

as before. Baltagi et al. (2000) use different techniques to estimate the unknown [-s
and also in some cases \; and 7;. We assume that the model is

(4.11) Y™ = my(InY"™ ) + mo(InX2) + ma(In X)) 4+ my(In X3 + 1, + €,

and we would like to estimate the unknown m; and 7, for all j and ¢. The presence
of a A\;-term would require a large T as indicated in section 2.3.

Since both the response InY® and all the log-transformed covariates exhibit a trend
in ¢, they are not stationary. We therefore de-trend our observations as follows,

(4.12) Yt =InY" — gy(t)

where gy (1) is a nonparamtric estimator based on all observations of InY'*. Likewise
the different log-transformed covariates were de-trended using

(4.13) X=X — gx, (1).

The detrended Y* observations are plotted against the different covariates, X}fj in
figure 8. Clearly the first covariate (the lagged variable), in the upper plot, is linear.
The other covariates do not display strong nonlinearities. But, nevertheless, these
detrended observations are then used as input to the implemented algorithm.
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Figure 7: The estimated functions in the second model, last simulation, with a larger
bandwidth

Since we have rather few observations and some nonstationarity present, we relax
our convergence criteria.

The estimated functions m; are given in figure 9. Here the thick solid lines cor-
responds to the estimated linear model, ordinary least squares with time-effects, in
Baltagi et al. (2000). The estimated m;(z;) and m;(x;) are again given as dashed
and thin solid lines, respectively. As could be expected from figure 8, the estimated
components using our algorithm only displays weak nonlinearities and the m;(z;) esti-
mates are also quite close to the estimated linear model. The initial m;(z;) estimates
seem rather unstable in this situation and it is encouraging that the m;(z;) estimates
do better in this respect.

The confidence intervals from equation (4.3), for « = 0.05, have been plotted in
eleven points in figure 9 for all components. As before, the intervals are quite small
at interior points, but fairly wide at the boundaries.

The detrending of the responses, InY#, implies that the estimated 7, should be
close to zero, since gy (f) can be thought of as an adjusted 7, for all . And the
estimation gives that the interval [min(7;), max(7;)] is equal to [—0.033,0.025].
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Figure 8: The detrended observations

5 Summary.

The greatest part of the literature examining panels of time series considers parametric
models. In this paper we have introduced iterative nonparametric estimators for
additive nonlinear panel data models. The estimators presented are based on the
smoothed backfitting approach of Mammen et al. (1999) for estimating in additive
regression models.

The asymptotic behaviour of the proposed estimators has been studied, mainly
in the case where the number of individuals goes to infinity and the time periods
are fixed. The presence of individual effects and/or temporal effects complicates the
analysis.

Several simulation experiments are done, and they indicate that the proposed es-
timators perform well. A real data set is also studied, with a reasonable result.
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Figure 9: The estimated components in the real data set

6 Proofs.

Proof of Theorems 1 and 2. We proceed similarly as in the proofs of Theorems 1
- 4 in Mammen et al. (1999). We now define the space of additive functions

H = {m:m(z,t) =mi(xr) + ... +my(z,) + mo(t)
with m; € Lao(f;) (1<j<p)}.

For j = 1,...,p we consider the following operator Qz;j :'H — H. For a function
m(z,t) = my(z1) + ... + my(z,) + mo(t) the operator does not change m, for r # j
and it replaces m; by

d N ft JHE Fiulay, z)
Z:N fa(%‘) ;/mz(m) Fiz) o

Note that for the index j equation (2.3) can be rewritten as

(6.1) (@, t) = m(x,t) + Gy, 1),
where m(xz,t) = my(x1) + ... +my(z,) + 1 and m(x, t) = my(z1) + ... +my(xp) + 1.
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Furthermore (2.4) can be rewritten as
(6.2) (e, t) = m(w, t) + vom(z, 1)

where for a function m(z,t) = my(x1) + ... + my(x,) + me(t) the function r(z,t) =
Pom(z,t) is defined as ry(z1) + ... + rp(x,) + ro(t) with r;(z;) = m;(z;) and

wt) ==Y [ )

The algorithm studied in Theorem 2 is based on iterative application of the operator
S = @Zo{ﬁ\p, e ,{ﬁ\l. We compare this operator with S = 19, . . .19 where v, is defined
as {ﬁ\j but with f;k, j/’;, j/? and N/N; replaced by fji, f;, f; or d/d,, respectively. This
operator does not depend on n and it can be easily checked that v; is the orthogonal
projection in H C Ly(f) onto the orthogonal complement of H; = {m € H : m(z,t) =
mj(xz;) for a function m; with [ m;(x;)fi(z;) de; =0 (if j #0) or m(x,t) = my(t)
for a function m,; with Zthl dimo(t) =0 (if j = 0)}. The operator S consists in an
iterative application of orthogonal projections. As in Mammen et al. (1999) this can
be used to show that the operator norm

p=sup{||[S(fo+ ...+ f)ll2: fi €Hy, fo+ ..+ folla <1}

is strictly less than 1. Here || ||z is the norm of the space Ls(f). Furthermore using
uniform consistency or f;; and f; we get that

poi= sw{lS(fo+...+ fll2: f; € M,
| fo+ ...+ folla <1} = p+0,(1),

where H7 is defined as H; but with the restriction [ m;(z;) f;(x;) dz; = 0 replaced
by fmj(xj)fj(:cj) dr; = 0 for 1 < j < p and with Z;‘.le dymg(t) = 0 replaced by
Z;F:l Nymo(t) = 0 for j = 0. (Compare Lemma 2 in Mammen et al. (1999)). In
particular, for a p’ with p’ < 1 we get that

(6.3) p<i

with probability tending to one. By iterative application of (6.1) and (6.2) (or equiv-
alently (2.3) and (2.4) we get that (with probability tending to one)

oo
m=Y 57
a=0

with 7 = Q/b\o@//)\p .oy + ... + YoiTg + g, where (in abuse of notation) m;(z,t) =

m;(x;) and mo(z,t) = 1, see also Lemma 3 in Mammen et al. (1999).

For the proof of Theorem 2 one now uses that ml*+l = Sl + 7 and therefore
mlatll =5~ 557 4 Sa+imlol Because of (6.3) this shows Theorem 2. For the proof
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of Theorem 1 one decomposes m into m = m* + m?, where m* was defined in (2.6).
Put now 77 = gty . .. hoiit} + ...+ mi (for j = A, B). Then we have i = m4 + m?
with M/ = 3°°° 8% (for j = A, B). The term " is now analyzed as in Lemma
4 in Mammen et al. (1999). The basic fact that was used there was that an integral
operator that is applied to a local average of ¢’ (as is m?) leads to a global average

172 and therefore of lower order than n=2/>. We

of '. A global average is of order n~
now give a more detailed discussion of this argument. The basic step is to show that

for1 <j.k<d

LT (o
Lo, ) xk)ﬁlA(xj)dxj = op(n~?).

0 fk(xk)

Similarly as in Lemma 4 in Mammen et al. (1999) equation (6.4) implies that also

(6.4) sup

0<z<1

iterative applications of the integral operator are of order op(n~2/°). This gives that
(6.5) i (a) — ;) = op(n~2%).

For (6.5) it remains to check (6.4). For the proof we use that

T
A
ert L /f] 5),

t=1

where

(6.6) () = N7 (X € [0, 1) Ky (7, X[

i=1

Using assumption (A1) we get that

sup ’?jAt(x])} = Op(log(n)l/Qn_Z/E’).
0<z,;<1

By application of (A1) and standard smoothing theory we get that

sup
0<z<1

liﬁ’li(xj’xk)ﬁﬁ xj)dw; — i E[fk(xj’fk)] ?A z;)dz;| = op(n~%°).
o Ry Z/ ELf; ()| B[ fu(zi)] )| = orln )

Claim (6.4) now follows from

~

/1 Ez[fj,k(l’jafk)]
Elfi(x))E[ fr(x)]

where

jt(x] dr; = N~ Z (X" e )gh(X;t)Eit = op(n™?/?),

u;) = 1 ?\[Ek@]’fk)] Ky(x;,u;)dx;.
) /OE[fj(xj)]E[fk(wk)] L

For the statement of Theorem 2 it remains to prove that

(6.7) o P (2;) = [ = Yy + 10 2°8i(x)]| = 0p(n ).
zj€lhg,1—h;
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For a proof of (6.7) one can apply Theorem 3 in Mammen et al. (1999) with «,, ;(z;) =
my(x;) + mf(x;) [ Kngy(xg, u)(u — x;) du [[ Kpg)(z;,v) do]™'. The conditions of
Theorem 3 can be verified as in the proof of Theorem 4 in Mammen et al. (1999).

Proof of Corollary 1. It can be easily checked that the conditional distribution of
?’]At(x])/ﬁ(x]) (see (6.6)), given (X;*:1<j<pl<s<t,1<i<ne®:1<s<
t—1,1 < i < mn), has a limiting distribution that is nonrandom and that therefore does
not depend on the conditioning set. This implies that m(z;) = t i t(xj)/fj ()
converges in distribution to the convolution of these limiting distributions. The corol-
lary then follows by application of (6.7).

Proof of Theorem 3. Theorem 3 can be proved by similar arguments as Theorem
1. As noted in the discussion of Section 2.2 we have that

p =Bl = sup{[[Rf]]2: / 1f(@)* do <1} < 1.

We will show that
(6.8) A, = ||R — R| = 0,(1).

This immediately implies that p = ||§H < p with probability tending to one for
p<p <L

Furthermore we will prove that

(6.9) § = max{||Rf|l: /||f(u)||2 du <1,} = 0,(1),
(6.10) A, = max{|[(B—R)f /Hf 2 du <1,
z € [0, 1]}

where [|g]/coc = max,eopr [|g(2)|| and where [|g(x)|| is the Euclidean norm of R”.

We will use these properties of R to show that uniformly in z

(6.11) > Rmf(z) =

r=0 r=0

(n72°)

NE
=

where fi(x) = piy, + =217 ()

(6.12) iﬁ’" ZR’" ) + 0y(1),

(6.13) mA(x) = m?(x) + 0,(n"2/%).



These claims imply the theorem, see also the discussion after the statement of the
theorem.

We start with a proof of (6.11). Note first that

|| ZR’" — 1)l
< S 7 m® = piallee = 0,(n)

and, by assumption,
(7 = 1) [loo = 0p(n*/7).

By application of (6.9) we get

HZRT — tn) [l oo

< | = pialloo + 1RO R (0 = 1)l
=0

< op(n~?) I|ZRT — ) |l2

= op(n’2/5).

This shows (6.11). For the proof of (6.12) we apply a telescope argument. We get
that with probability tending to one

I Z — Rl

||R’“(R R)R™™* 1|
0

r(p) " Al palla = 0p(1).

“2
>_A

Mg

<

i
o
Bl
f

]2

i
o

We now come to the proof of (6.13). Note that
= Z R'(I — Hr) 'in?
r=0

We will show

(6.14) (I — Hr) ' =l = o0,(n%%),

(6.15) IR(I — Hr) "'t = 0,(n%?),

(6.16) 1Y R(I—Hr) 'l = 0,(n~%?).
r=1
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Clearly, these claims imply (6.13). Claim (6.16) immediately follows from (6.15)
with help of (6.8) and (6.9). Because of (6.14) for claim (6.15) it suffices to show

(6.17) IR0 = 0,(n2%).

We start by showing

(6.18) I1H (I — 7)m?||oe = 0,(n?).

Because of ||m4|s = O,(v/Iogn n=%° and (A4’) this would follow from

1H (I = mym?|oe = 0p(n*%).

It can be easily checked that the left hand side is of order O,(n=*/2y/logn). Note
that global average of ' are taken in H(I — m)m“. This shows (6.18). So for (6.15)
it remains to check (6.17). For this consider the following expansion

(I—Hr)' = [(I-Hm)I-A)"

= Y A'(I-Hr)™!,
r=0
A = (I—Hr) Y(H - H)r,
where claim (6.17) follows from (A4’) and

(6.19) max{[(1 — Hm) " flloc : [ flloc < 1} = O(1).

We now give a proof of (6.19). Denote the eigenfunction of H with eigenvalue \;
by e;. For a function f = Zj’;l v;€; we have

) r—1
(6.20) (I—Hm) ' f = yei+ Y vl —X) e
j=r j=1
r—1
= [+ pll=(1=X) e
j=1
Suppose that ||f||oc < 1. Then || f|l2 < 1 and we get
r—1
I = Hm) " flloe < Iflloe+ Z%‘[l = (1 =) ejllee

r—1
1+ Zvj RODSE
1

IN

< gf?ﬁfe[o,m le; ()1l
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Claim (6.17) now follows from

r—1
Z’V? <|lfoll <1
j=1

and

(6.21) max llej(x)]| = O(1).

1<j<r—1,2€[0,1]7

For the proof of (6.21) note that e;(x) is a continuous function. This follows from
continuity of H and the inequality

lej(z) —e; ()l < (Al /[H(%Z) — H(y, 2)]e;(2) d=|

< Wl [ 1 2) = )] d=

We now come to the proof of (6.14). With similar arguments as above it can easily
be checked that

(I — Hr) Yimg — (I — Hr) g |os = 0p(n~2/5).

So it suffices to show

(6.22) (I — Hr) " s — miual|oo = 0p(n~2/%).

It holds that (see (6.20))

(1= 1) =1 fw) = [ 30 -2)7 -1

ej(y)e;(x)f(y) dy.

So (6.22) follows by standard smoothing arguments because [(I — Hr)™! — I|ma
is a global (weighted) average of ¢;.

We now come to the proofs of (6.8) - (6.10). Claim (6.8) immediately follows from
(6.10). For claim (6.10) it suffices to show

(6.23) max{[|(H — H)(I =) flloo : [ fll2 < 1} = 0,(1).

This can be seen by a similar treatment of the matrices (I — Hx)~! and (I — Hr)
as above. Claim (6.23) follows immediately from (A4’).
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It remains to show (6.9). This claim follows from (6.10) and

max{|R S|l : | f? < 1}
< max{ max / IRy, )| dafV2 (£ £ < 1)

€[0,1]7

< (e [ [ IR P do)'”
mGOl]P

< R

< max Ry, )l

< +00

Proof of Theorem 4. The proofs follows along the same lines of the proofs of
Theorems 1 and 2. Compare also the proofs of Theorems 1’ - 4’ in Mammen et al.

(1999).
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