
Genome Biology 2007, 8(Suppl 1):S4

Review
Retroviral enhancer detection insertions in zebrafish combined
with comparative genomics reveal genomic regulatory blocks - 
a fundamental feature of vertebrate genomes
Hiroshi Kikuta*†, David Fredman*‡, Silke Rinkwitz*, Boris Lenhard*‡

and Thomas S Becker*

*Sars Centre for Marine Molecular Biology, University of Bergen, Thormoehlensgate, 5008 Bergen, Norway. †Present address: Division of
Molecular and Developmental Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan. ‡Computational Biology
Unit, University of Bergen, Thormoehlensgate, 5008 Bergen, Norway.

Correspondence: Boris Lenhard. E-mail: Boris.Lenhard@bccs.uib.no. Thomas S Becker. E-mail: Tom.Becker@sars.uib.no

Abstract

A large-scale enhancer detection screen was performed in the zebrafish using a retroviral vector
carrying a basal promoter and a fluorescent protein reporter cassette. Analysis of insertional
hotspots uncovered areas around developmental regulatory genes in which an insertion results in
the same global expression pattern, irrespective of exact position. These areas coincide with
vertebrate chromosomal segments containing identical gene order; a phenomenon known as
conserved synteny and thought to be a vestige of evolution. Genomic comparative studies have
found large numbers of highly conserved noncoding elements (HCNEs) spanning these and other
loci. HCNEs are thought to act as transcriptional enhancers based on the finding that many of
those that have been tested direct tissue specific expression in transient or transgenic assays.
Although gene order in hox and other gene clusters has long been known to be conserved
because of shared regulatory sequences or overlapping transcriptional units, the chromosomal
areas found through insertional hotspots contain only one or a few developmental regulatory
genes as well as phylogenetically unrelated genes. We have termed these regions genomic
regulatory blocks (GRBs), and show that they underlie the phenomenon of conserved synteny
through all sequenced vertebrate genomes. After teleost whole genome duplication, a subset of
GRBs were retained in two copies, underwent degenerative changes compared with tetrapod loci
that exist as single copy, and that therefore can be viewed as representing the ancestral form. We
discuss these findings in light of evolution of vertebrate chromosomal architecture and the
identification of human disease mutations.

Published: 31 October 2007

Genome Biology 2007, 8(Suppl 1):S4 (doi:10.1186/gb-2007-8-S1-S4)

The electronic version of this article is the complete one and can be
found online at http://genomebiology.com/2007/8/S1/S4

© 2007 BioMed Central Ltd 

Introduction
Insertional mutagenesis screening in zebrafish is a powerful

technique because the inserted transgene allows immediate

isolation of the target sequence and thus identification of the

mutated gene [1] (for review [2,3]). Several efficient inser-

tional agents are now available for the zebrafish and make it

the model organism of choice for transgenic manipulation at

the genome level [2]. With the genome sequences of many

species available, multiple insertions can be mapped to

chromosomal neighborhoods, and fine resolution of geno-

mic architecture has become possible. In addition to the ever

increasing collection of protein coding and RNA genes, gene

expression patterns, and mutant phenotypes, comparative

genomics has recently shed light on noncoding elements and

vertebrate genome evolution. The availability of both

efficient insertional technologies in zebrafish and mouse and

finished genome sequences has expedited genetic screens

significantly; they have made possible assays of gene regula-



tion in the context of defined chromosomal areas in the

living embryo [4].

Comparative studies using cross-species genome alignments

have identified a large number of noncoding elements,

exceeding - in total length - the amount of sequence coding

for protein [5,6]. These sequences are candidate regulatory

regions that direct gene expression, and a number of them

have been tested by transgenic or transient assays [6-10]

using fluorescent proteins, which allow live visualization of

gene activity [11]. Recently, Ellingsen and coworkers [12]

devised a retrovirus-based insertional system using yellow

fluorescent protein (YFP) under the control of the zebrafish

gata2 promoter. More than 15,000 insertions were screened,

and more than 1,000 transgenic lines have been established;

thus far, 340 of these integrations have been mapped to the

zebrafish genome [12] (Rinkwitz S, et al., unpublished data).

In essence, this approach allows visualization of cis

regulatory information at the insertion position as YFP

expression. We review here a number of insertional hotspots

across the loci of well known developmental regulatory

genes, including some in which the inserted vector assumes

the expression pattern of a neighboring gene rather than the

one into which the insertion occurred, and we demonstrate -

with the help of comparative genomics - that these areas

identify a feature common to all vertebrate genomes [13].

These so-called genomic regulatory blocks (GRBs) are

protected from evolutionary breakpoints, can be identified

through establishing minimal conserved human/teleost

conserved synteny, and are a useful tool for explaining

human genetic disease resulting from position effect

mutations.

Insertional screens in zebrafish
Although both mouse and zebrafish, among vertebrates,

have been used for insertional screens [1,14,15], the latter to

date is the only vertebrate species in which large numbers of

random insertions have been made to generate transgenic

lines that mimic expression patterns driven by endogenous

enhancers [2,12]. Both transposons and viral vectors have

been used as insertional agents, the main difference being

that although transposon vectors are much easier to handle,

they yield lower numbers of insertions per germline [16,17].

However, transposons are now being used by many

laboratories, they are excellent vehicles for transgenesis [18],

and will be vital for the large-scale testing of vertebrate cis

regulatory elements.

Both retroviruses and transposons have distinct integration

preferences (for review [19]). The retroviral vector used in

our screen, namely the Moloney mouse leukemia virus

(MLV), has been extensively tested for integration prefer-

ence by identifying 903 nonselected insertion sites in human

HeLa cells (because at the time only the human genome

sequence was sufficiently annotated to allow unequivocal

mapping of integrations) [20]. Wu and coworkers [20]

found a significant bias of MLV to insert near to trans-

cription start sites, but no obvious hotspots for integrations.

The insertion preference for MLV in the zebrafish genome

was recently found to be similar to that in the human

genome (Burgess SM, personal communication). For the

first round of mapping, using zebrafish genome release zv4,

we were able to map 35 out of 95 insertions unambiguously

[12]. With the release of zv6 (March 2006) we were able to

map 95% of insertions or more.

In our screen, we tested an estimated 15,000 insertions in

the zebrafish genome and found several loci that were

markedly enriched for insertions; we found five insertions in

a 159 kilobase (kb) interval upstream of sox11b [4,12]

(Rinkwitz S, et al., unpublished data), as compared with

about 1.5 expected (1,600 megabases/15,000 insertions is

about 1 insertion/100 kb). Likewise, we found four

insertions in an interval of 150 kb around fgf8, and nine

insertions in a 50 kb area around id1 [13], the latter number

being 18 times greater than expected by chance. Thus, MLV

has a distinct insertion preference [20], and insertion

hotspots are found with high numbers of insertions, even

when applying the stringent criteria proposed by Wu and

coworkers [21].

Although they skew the overall outcome of an enhancer

detection screen, hotspots allow us to assay how expression

patterns change with respect to exact insertion position. In

the cases listed above, all but one insertion (far upstream of

fgf8) took on the global expression pattern of the

developmental regulatory gene [13], suggesting that in these

cases exact insertion position within a chromosomal domain

is not critical for the (global) gene expression pattern,

although detailed differences in expression were not

assayed. Furthermore, there was a number of cases in which

an insertion with a specific pattern had occurred into a gene

neighboring the gene with that same pattern, and the gene

into which the insertion had occurred exhibited a different

pattern of expression, for example in the neighborhood of

pax6.2 and rx3 [13]. There are different ways to determine

which gene in the area is the target gene. In the simplest

scenario, there is a single gene in the midst of a gene desert,

and there is a good agreement between the transcriptional

pattern of this gene, as determined by in situ hybridization,

with the enhancer detection pattern, such as in the case of

sox11b or id1. In other cases, the expression patterns of all

genes in the area were determined by in situ hybridization,

and only one - that of the developmental regulator - agreed

with the pattern of the transgene, whereas neighboring genes

often had near ubiquitous expression patterns. Examples of

these are pax6.2, fgf8, and rx3, mentioned above.

Both the analysis of hotspots and the cases of insertions into

neighboring genes paint a picture that is substantially

different from what has been reported from the large-scale
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Drosophila enhancer detection screens (for instance [22]),

namely that it is the nearest gene relative to where the

insertion has landed whose expression pattern is mimicked.

Instead, there appear to be substantial numbers of large

chromosomal segments around developmental regulatory

genes in the zebrafish (and, by extension, vertebrate)

genome. Enhancer detection insertions into such segments

exhibit expression patterns resembling that of the regulatory

gene, often independent of precise insertion location [12,13].

All of the loci listed above turn out to have extended regions

containing highly conserved noncoding elements (HCNEs)

as well as extensive conserved synteny around them. To

explain the above findings, we should like to turn first to

knowledge gained about the chromosomal architecture of

vertebrate genomes through recent comparative genomic

analyses, multispecies alignments, and transgenesis with

individual regulatory elements.

Genome-wide discovery of highly conserved
noncoding elements
Detection of HCNEs in vertebrate genomes is relatively

straightforward compared with procedures required to detect

other known functional elements. To detect them with high

reliability, one requires at least two aligned genomic

sequences from suitably distant species and a reasonably

complete set of transcribed or coding parts of the sequence in

at least one of them. At the time of this writing, whole genome

alignments are available for a collection of 17 vertebrate

species [23], which allows the extraction of highly conserved

regions by different methods, from the simple sliding window

approach to more sophisticated ones [24]. The transcriptome

coverage of the human and mouse genomes is becoming deep,

and their annotation allows for simple separation of

transcribed from nontranscribed, or coding from noncoding

sequences. Transcriptomes of other organisms are not as

complete, but they can be used in combination with the more

complete ones to ensure that there is as thorough filtering of

coding regions as possible. There are several web-based tools

that can be used for HCNE extraction, including the following:

the ECR browser, which can be used to extract HCNEs from

whole genome or user-submitted alignments; the UCSC

browser, which provides the PhastCons tracks that can be

filtered against transcript; and the Table browser, which

allows detection of elements overlapping coding sequence.

Methods for large-scale extraction of HCNEs were

summarized by Bejerano and coworkers [25].

In 2004 and 2005 several groups reported their analyses of

genome-wide distribution of conserved noncoding elements

[5,6,26,27]. The current terminological confusion about

those elements dating from that period resulted in a number

of similar terms and an alphabet soup of abbreviations,

which we summarize in Table 1. The first of the studies [26]

looked at noncoding regions with extreme conservation

(≥200 identical base pairs [bp]) between human and mouse.

The investigators retrieved 481 segments, which they

divided into two categories: transcribed ultraconserved

regions (type I UCR; mostly in 3’ untranslated region of

protein coding genes) and nontranscribed ultraconserved

regions (type II UCR; intronic and intergenic). For type II

UCRs they demonstrated a high tendency to co-localize with

genes for developmental transcription factors. The latter has

been observed by other research groups as well. By using a

lower conservation threshold between human and mouse, as

well as additional evidence for conservation in fish (fugu),

Sandelin and coworkers [5] retrieved 3,583 conserved non-

coding elements, which enabled them to paint a clear picture

of genomic organization of those elements - especially the

tendency for clusters of HCNEs to span megabase-size

regions centered on their target genes. The same was shown

by Woolfe and coworkers [6] by using 1,373 regions

extracted from a direct comparison of the genomes of

human and fish. The same report also provided the first

systematic experimental evidence of enhancer activity for a

subset of these elements in zebrafish (see below).

Over-representation analysis of gene ontology terms or

protein domains associated with genes that co-localize with

clusters of HCNEs exhibits a high enrichment for genes that

encode transcription factors involved in embryonic

development and tissue differentiation. A smaller but

possibly important group of genes spanned by clusters of

HCNEs are the nontranscription factor genes involved in

neuronal specialization and growth, including axon guidance

[28], or, for instance, genes in the hedgehog or fgf pathways

[6]. Because embryonic development and axonal guidance

are probably among the processes with the most complex

spatiotemporal pattern of gene activity, it seems plausible

that the genes controlling them should have a large set of

regulatory inputs necessary for achieving the appropriate

complexity and precision.

Recognition and testing of individual highly
conserved noncoding elements
There is mounting evidence for the regulatory role of

HCNEs. Soon after their genome wide discovery, it was

realized that a significant number of previously characterized

developmental enhancers overlap with HCNEs. Generally,

there are several methods to test cis regulatory activity of

HCNEs, and they do so at different levels of fidelity. For

instance, the transient method devised by Muller and co-

workers [29] (in which a plasmid carrying the HCNE plus

basal promoter-reporter gene is injected into fertilized eggs

and regulatory activity assayed 1 day later) is rapid, but in

some cases it leads to identification of expression domains

not seen with the endogenous gene (for example [6]). A

more advanced but more time consuming approach is to

generate transgenes in zebrafish, mice, or Xenopus [7,10,30],

and these are probably the methods of choice for future

large-scale approaches to evaluating HCNE function.
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Göttgens and coworkers [31] reported the discovery of

enhancers that are highly conserved between human and

mouse, and some in chicken. One of those enhancers was

situated 23 kb upstream of the mouse Scl gene and was

shown to drive neural expression of a reporter gene in a

transgenic Xenopus assay.

Bagheri-Fam and coworkers [32] identified several such

elements conserved between human and fugu near the SOX9

gene, of which they considered at least three candidate

enhancers. These are often broken off from their target

genes in the translocation breakpoints present in patients

with campomelic dysplasia, which is a skeletal malformation

syndrome with XY sex reversal - clearly a developmental

disorder (see below).

By studying conserved noncoding elements in a gene desert

next to the DACH/Dach gene, Nobrega and coworkers [33]

were the first to show that a functional long-range enhancer

can reside more than a megabase away from its target gene.

Milewski and coworkers [34] isolated two HCNEs upstream

of the mouse Pax3 gene as enhancers driving Pax3

expression in neural crest. Pax3 itself is expressed in a

number of other embryonic structures, indicating that non-

neural crest regulatory inputs are located elsewhere in the

regulatory sequence. Interestingly, the investigators charac-

terized an apparently functional Tead2 binding site, which is

immediately adjacent to one of the HCNEs, but is not itself

highly conserved across mammals. This again begs the

question of whether the conservation is essential for the

transcription factor binding properties of those enhancers.

Kimura-Yoshida and coworkers [35] convincingly demon-

strated that separate, evolutionarily conserved enhancers of

the fugu otx2 gene drive spatiotemporally distinct

subdomains of otx2 expression during head specification in

mouse and zebrafish. This was a convincing demonstration

that different HCNEs serve as separate regulatory inputs for

the target gene(s), implying that the genes with the highest

number of HCNEs were those with most complex spatio-

temporal expression patterns. It is therefore not surprising

that those genes include transcription factors involved in the

acquisition of unique neuronal identities. Similarly, Uemura

and coworkers [10] demonstrated that, near the zebrafish

isl1 and the mouse Isl1 genes, there are separate enhancers

that specify expression of the gene in sensory versus motor

neuron populations. Furthermore, these enhancers (more

than 300 kb away from the coding region in human and

mouse) diversified in their specificities between mammals

and teleosts. Inoue and coworkers [9] tested individual

HCNEs around the zebrafish fgf8 gene and could assign

specific expression patterns to most of them.

Woolfe and coworkers [6] were the first to test a subset of

HCNEs in the light of their genome-wide organization.

Using the transient plasmid assay reported by Muller and

coworkers [29], they studied the enhancer activity a set of 25

HCNEs around four genes already known to be regulated by

this kind of element (SOX21, PAX6, HLXB9, and SHH); 23

exhibited enhancer activity, although some of them in areas

where the respective regulatory gene is not expressed. Their

general conclusion was also that separate HCNEs drive

spatiotemporally distinct (but often overlapping) compo-
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Table 1

Vertebrate HCNE terminology disambiguation

Abbreviation Term Early reference Definition

UCR Ultraconserved region [26] ≥200 bp 100% conserved between human and mouse
[5] Nontranscribed, ≥50 bp ≥95% conserved between human and mouse, and at 

least partially aligned to fugu

UCE Ultraconserved element [89] ≥100 bp 100% conserved between human and mouse

CNS Conserved noncoding sequence [90] Nongenic, human:mouse, >100 bp and with ≥70% identity

CNE Conserved noncoding element [6] Nontranscribed, >100 bp human:fugu alignments with MegaBlast

HCNR Highly conserved noncoding region [7] Visual inspection of mouse:Xenopus:zebrafish alignments
[91] Same as [5]

HCNE Highly conserved noncoding element [28] Windows ≥50 bp that do not overlap coding regions and for which the 
probability of being under purifying selection, given the conservation score,  
is ≥95%

CNC Conserved noncoding region (?) [38]

CNG Conserved nongenic sequence [92] Nontranscribed, human:mouse BLAST with an e-value < 10-20 and 
similarity ≥98%

HCE Highly conserved element [46] UCE from Bejerano et al. [26] + UCR from Sandelin et al. [5] + UCR from 
Sandelin et al. [5] + CNE from Woolfe et al. [6]



nents of the overall expression pattern of the target gene. A

similar approach was used by Shin and coworkers [36], who

drew similar conclusions. Likewise, a large number of

HCNEs from the vertebrate iroquois clusters were tested in

zebrafish and Xenopus, and the majority of them were

shown to act as specific enhancers [7]. The largest scale

functional screen undertaken thus far is that reported by

Pennacchio and coworkers [37], who tested 167 HCNEs in a

mouse transgenic enhancer assay. Seventy-five (43%) of the

tested elements exhibited enhancer activity in a wide

spectrum of embryonic structures, and most were expressed

in parts of the developing nervous system.

Turnover of long-range regulatory elements
Even though they exhibit extraordinary levels of conser-

vation, the HCNEs also undergo evolutionary divergence as

a result of accumulation of mutations whose extent, for the

most part, corresponds to the evolutionary distance of the

organisms in a canonical tree of life [24]. Drake and

coworkers [38] investigated the intraspecies and inter-

species variation in HCNEs and demonstrated that they are

undergoing purifying selection - indicating the functional

importance of conserving their sequence - rather than the

alternative explanation of being mutational cold spots.

However, HCNEs do change over evolutionary time. For

instance, in the case of id1 mentioned above, only two

HCNEs could be discerned when human and zebrafish

genomes were compared, whereas multiple elements were

found when comparing two teleost genomes (see [13]). Thus,

regulatory elements tend to become ‘invisible’, yet they

retain function with increasing evolutionary distance [30].

There are a couple of interesting cases dealing with two

specific branches in the tree of life that have recently been

observed.

The first of these cases is the increased divergence in teleosts

relative to other vertebrates. Teleosts (bony fish) appear to

exhibit greater divergence of HCNEs from those of tetrapod

vertebrates than does the more distant elephant shark,

which (at the time of writing) is the only cartilaginous fish

with sequenced genome, albeit at low coverage [1.4×], and is

an outgroup species to all other vertebrates with sequenced

genomes [39,40]. A possible explanation is the fact that

teleosts underwent an additional whole genome duplication

early in the lineage [41-43]. Many of the HCNE arrays and

the associated target genes survived in two copies [13].

The second case is that of the increased divergence in

hominids versus other mammals. Human and chimpanzee

were recently shown to have undergone accelerated evolution

at a subset of their HCNEs [44]. The subset was enriched for

genes involved in neuronal cell adhesion, probably reflecting

the accelerated evolution of regulatory elements responsible

for the differentiation of hominid specific brain circuitry

involved in human-specific cognitive traits.

One would expect to see little sequence variation within

species inside UCRs, given their high conservation. This was

indeed observed; Bejerano and coworkers [26] reported that

the regions in question are devoid of validated single

nucleotide polymorphisms. On the other hand, there is some

striking evidence to the contrary. Chen and colleagues [45]

reported an analysis of a small set of single nucleotide

polymorphisms found in the ultraconserved regions by

Bejerano and coworkers [26], which by their classification

are 100% identical between human and mouse across 200

bp or more. They also demonstrated a surprising number of

fixed differences between human and chimpanzee in those

regions. It appears, at least in those cases, that there exists

only a weak purifying selection of those elements - weaker

than that on essential protein-coding sequences - which

seemingly contradicts the high observed level of conser-

vation between human and rodents. Another unexpected

result was the demonstration by Fisher and coworkers [30]

that two equivalent regions of a genomic sequence in human

and zebrafish are both able to act as an enhancer in zebrafish,

even though sequence level similarity was lost. (It should be

noted that the RET gene, the apparent target of the

nonconserved enhancer region from the report by Fisher and

coworkers [30], encodes a tyrosine kinase, which does not

correspond to the molecular function of ‘typical’ target genes

of HCNE arrays [developmental transcription factors, micro-

RNAs, morphogens, and neuronal connection regulators]).

Thus, although many more genes than the loci enriched for

HCNEs [5] have specific expression patterns (and, by

extension, specific regulatory elements), in many the

sequence similarity is not discernible over large evolutionary

distances, such as that between human and teleost.

This leads to the following questions. First, are there many

more genes whose loci are spanned by arrays of long range

enhancers, but that have diverged beyond the ability of

sequence alignment programs to match them? Second, is the

need to conserve regulatory function the only mechanism (or

indeed even a significant one) underlying the strong

evolutionary pressure to keep these genes conserved?

Distance of highly conserved noncoding
elements to the genes they regulate
An interesting study conducted by Sun and coworkers [46]

showed that the spacing between HCNEs in mammals is

much more conserved than the spacing between other

genomic elements. From the study, it is not obvious whether

this is the consequence of the existence of other functional,

nonconserved elements between the HCNEs (which might

be in a transition toward the state of nonconserved, but

functionally equivalent to those described by Fisher and

coworkers [30] for the RET gene) or, alternatively, that the

distance from the target gene(s) itself is a functional

determinant with purifying selection acting upon it. The

latter mechanism has also previously been suggested to
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account for the observation that many HCNE arrays

correspond to transposon-free regions (TFRs) in mammalian

genomes [47], but Sun and coworkers show that the

relationship between conservation of spacing between HCNEs

and TFRs is far from straightforward.

Sun and coworkers also demonstrated that the spacing

conservation between humans and nonmammalian verte-

brates exhibited a bimodal distribution, in which one subset

of HCNE spacings was also highly conserved, whereas the

other peak of the distribution corresponded more to the ratio

of total genome size of the nonmammal species to the human

genome. In the cases studied by Kikuta and coworkers [13]

there appear to exist cases of both types of HCNE arrays; the

‘conserved size’ ones between human and zebrafish appear to

contain most of the protein coding genes, whereas in some

cases, in which the bystander genes (see below) in zebrafish

were lost (as in one copy of the OTP HCNE array), there has

been a significant contraction of the corresponding HCNE

array size. Additionally, some regions corresponding to TFRs in

mammals as well as teleosts were found in zebrafish to tolerate

viral insertions with no apparent phenotypic effect [13].

Mechanism of enhancer activity of highly
conserved noncoding elements
We still have no adequate explanation for the mechanism by

which HCNEs act as enhancers, and of the origin of the

evolutionary pressure for keeping them conserved across

large phylogenetic distances. A typical view of an enhancer is

as a DNA region that contains one or more context-specific

transcription factor binding sites. However, virtually all

known vertebrate transcription factors have degenerate

binding specificities, and bind stretches of 5 to (in extreme

cases) 30 bp. Clusters of binding sites (cis regulatory

modules) are never as long as the longest HCNEs, and the

binding sites in them are practically never so tightly strung

together as not to allow for any sequence variability between

them. A genome-wide study of the transcription factor

binding site content of HCNEs [48] showed that the

sequence signatures are indeed associated with tissue-

specific signatures in a statistically significant manner;

however, the specificity and sensitivity of their models is still

largely inadequate for functional characterization of

individual candidate enhancers.

Other biological mechanisms are emerging for the action of

individual enhancers. For example, a HCNE from the Dlx5-

Dlx6 bigene cluster was recently shown to be transcribed

into a noncoding RNA (Evf-2). Evf-2 functions as a

transcriptional co-activator of the Dlx2 gene, suggesting a

mechanism for regulatory crosstalk of different Dlx clusters

[49]. However, the evidence for the transcription of other

HCNEs is rather scarce, and it is probable that the Evf-2

mechanism is but one of a number of mechanisms whereby

HCNEs regulate their target genes.

Likewise, the evolutionary origin of HCNEs does not appear

to be exclusively of one kind. Bejerano and coworkers [50]

presented the case of one HCNE that originated from a short

interspersed repeat element (SINE) at the base of the

tetrapod lineage. One copy of that element was shown to

serve as enhancer for the ISL1 gene, whereas several others

encode alternatively spliced exons of several other genes.

However, most other HCNEs are present in only one copy

per haploid tetrapod genome [5,6], making their relation-

ship with repeats and transposable elements either very

ancient or very unlikely. A recent report of the existence of

parallel sets of HCNEs in the Caenorhabditis genus might

suggest that those elements occurred early in the evolu-

tionary history of Metazoa (or even earlier) and continue to

co-evolve with their target genes and, in the case of GRBs,

functionally unrelated bystander genes in the GRBs. Whole-

genome duplication was shown to be an evolutionary avenue

for bystander genes to escape the lock-in into the GRB. It

remains to be seen whether this opportunity was used

frequently in the evolution of metazoan genomes, as well as

whether tandem duplications of individual chromosomal

loci offer the same escape mechanism to bystander genes.

Gene complexes and tandem duplications of
regulatory genes
In contrast to single regulatory genes with extended regula-

tory regions, some genome regions encompass two or more

phylogenetically related developmental regulatory genes

within relatively short distances of each other. In contrast to

the GRBs described above, these clustered genes have long

been thought to be kept together because sequences

essential for their proper (co-)regulation are harbored

within their compact intergenic regions or outside of these

clusters. The best researched among these complexes are the

Hox clusters. Mammalian genomes contain four Hox

clusters (A, B, C, and D) that originated from a single

ancestral cluster in chordates through two rounds of whole

genome duplication [51,52]. An extra round of genome

duplication in the teleost lineage created a total of eight hox

clusters in zebrafish [53,54], one of which has been reduced

to a single micro-RNA by loss of all of its Hox genes after

duplication [55]. The 11 genes in the human HoxA cluster

span only about 109 kb, densely populated by protein coding

and gene regulatory sequences.

The temporal and spatial collinear activation of the hox

genes along the body axis of the developing embryo was for a

long time seen as the primary force maintaining their

chromosomal order during evolution [56,57]. However, the

precise mechanisms keeping hox genes together are still

unclear, and several instances of ‘broken’ hox clusters have

recently been described in invertebrate genomes [58-60]. In

the fruit fly Drosophila melanogaster, hox gene regulation

can function outside of the context of an intact gene complex

[61]. Thus, there appears to be no absolute requirement for
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hox cluster continuity in invertebrates, and it was recently

suggested that although evolutionary breakups within fly

hox clusters can be demonstrated, the extremely compact

intergenic regions between the genes make these breakups

exceedingly rare [62]. In vertebrates the identification of a

global control region far upstream of the mouse HoxD

cluster, which controls transcription of six genes (namely

Lnp, Evx2, and Hoxd13 to Hoxd10) in the developing digits

and central nervous system, may provide an explanation for

Hox cluster maintenance [63]. Sharing of enhancers also has

an important role in ensuring overlapping activity of genes

[64,65]. In contrast to the long-range control elements

outside clusters that form ‘regulatory landscapes’ [66],

enhancers within the Hox cluster appear to act on the gene

closest by in a competitive manner [67,68]. Zebrafish

hoxb3a and hoxb4a share an exon with a 5’ adjacent master

promoter that controls a 37 kb transcription unit including

all exons of both genes [8] and further the micro-RNA

miR-10b [69]. These structural features and regulatory

mechanisms appear poised to ensure overlapping expression

and tissue specific activity of both hox genes as well as the

micro-RNA gene and further contribute to the maintenance

of precisely clustered gene order.

The basis of conserved synteny in hox clusters is likely to be

complicated, with no single explanation for cluster mainte-

nance. Rather, a number of different evolutionary con-

straints, such as proximity of genes to each other, sharing of

exon sequences, and global control regions, appear to act

simultaneously on these enigmatic gene clusters. Never-

theless, that hox clusters are actively kept together can be

gleaned from their divergence in gene content after teleost

whole genome duplication, or even breakup, as has recently

been reported for a parahox cluster as well [70].

Gene clusters and bigene arrays probably resulted from

tandem duplication events during evolution. In these events,

short segments of the chromosomes were duplicated by

unequal crossing over during meiosis, causing not only

protein coding sequences but also transcription factor

binding sites to be present twice. Newly duplicated genes

and related regulatory sequences are free to evolve, and they

may acquire a selective function (subfunctionalization;

retrograde evolution theory) or they may take on a new task

(neofunctionalization; patchwork evolution theory) [71],

giving rise to morphologic diversity in vertebrates [72].

Increasing the number of target genes for transcription

factors by gene duplication played a key role in establishing

regulatory networks [73]. Bigene arrays are pairs of

structurally highly similar genes that resulted from tandem

duplication and that are located in close proximity to each

other, as is observed for members of the Dlx [74,75], Zic

[76], Hmx [77], and Myf [78] gene families. These genes are

often co-expressed at specific sites in the developing embryo

and may also act redundantly. The tandem duplication of a

single ancestral Dlx gene probably occurred in early

chordates, because a single bigene cluster was identified in

the urochordate Ciona intestinalis [79]. Genome duplica-

tions in the vertebrate lineage have then led to three bigene

clusters, Dlx1-Dlx2, Dlx3-Dlx7 (Dlx7 later renamed to Dlx4),

and Dlx5-Dlx6, in the mammalian genome [80]. In zebra-

fish, because of a further genome duplication followed by

gene loss events, two clusters (dlx1a/2a and dlx5a/6a) and a

further three single genes (dlx2b, dlx3b, dlx4a) have thus far

been described. Fundamental structural and regulatory

principles became obvious by analyzing the mouse Dlx3-

Dlx7 bigene cluster [81]. Despite some differential expres-

sion, Dlx3 and Dlx7 are both co-expressed in the visceral

arches and the developing limbs. Five conserved noncoding

sequences (>80% human-mouse identity) were identified

within the 17 kb intergenic sequence. That some of these

enhancers are shared and require clustering of the genes was

shown in transgenic Dlx3-lacZ mice, in which visceral arch

expression of Dlx3 was lost when sequences distant from the

gene (close to Dlx7) are missing [81,82].

Long-range gene regulation and synteny
Other than gene clusters, areas that are spanned by multiple

HCNEs often contain only a single developmental regulatory

gene, the target gene, and also frequently contain additional

genes, whose molecular function and expression pattern are

unrelated to those of the presumed target gene. This would

imply that they somehow do not respond to the enhancers in

their vicinity, even when they are physically closer to them

than the target gene is. Limited functional evidence for this

arrangement exists. For instance, a sonic hedgehog

regulatory element whose mutation causes pre-axial poly-

dactyly has been shown to reside in an intron of the

functionally unrelated neighboring gene LMBR1 [83]. This is

further corroborated by the analysis of zebrafish enhancer

detection insertion sites [13], in which a number of enhancer

detection insertions often gave the expression of a target

gene of a GRB, even though their integration sites were

inside or beyond genes with unrelated function and expres-

sion patterns. The need to preserve the integrity of GRBs is

indicated by, thus far, a few human position effect mutations

(see below), but it is expected that their numbers will rise,

given the common occurrence of GRBs in all vertebrate

genomes (Table 2).

Genomic regulatory blocks: vertebrate
chromosomes are subdivided into functional
segments
It was noted early that the HCNEs cluster around and within

their target genes, but it is not unusual for the cluster to spill

into the introns of neighboring genes and beyond [5,28]. In

many instances the neighboring genes have expression

patterns that are less specific than those of the gene

apparently targeted by the HCNE cluster. Those neighboring

genes are kept in synteny with the target genes much more
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often than can be expected to occur at random. Indeed, in

the case of HCNEs conserved across all vertebrates, it has

been shown that the longest conserved synteny blocks (with

the notable exception of very large genes) are almost all

defined by clusters of HCNEs, and contain the presumptive

target gene as well as the surrounding genes they inhabit. If
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Table 2

Developmental regulatory genes with assigned human disease

Number 
Conserved gene of 
orderhs/dr/tn neighboring Chromosome 

Conserved gene (distance in genes kept locus 
Target gene Disease/syndrome (OMIM) order hs/gg human genome) (hs/gg-hs/dr) human Ref.

PTCH Nevoid basal cell carcinoma 2.5 Mb; gene desert 1.6 MB 8/5 9q22.3 [93]
(#109400), medulloblastoma 
(#155255), basal cell carcinoma 
(#605462), holoprosencephaly-7 
(#610828)

WT1a Wilms tumor (#194070), Deny-Drash >4 Mb 3 Mb/0.4 Mb >16/9/1 11p13 [94]
syndrome (#194080)

MAF (position effect) Cataract (#610202) >3.5 Mb; gene desert; 2.5 Mb 5/2 16q23 [95]
WWOX bystander

CHD7 Charge syndrome (#214800) >2 Mb; gene desert 0.8 Mb 2/1 8q12.1 [96]

DLX5/DLX6 Ectrodactyly; split hand/foot >2 Mb; gene desert; 1.5 Mb 4/2 7q22 [97]
(position effect) malformation 1 (%183600) shfm1 bystander

SOX9a (position effect) Campomelic dysplasia (#114290) >6 Mb; gene desert ? >8/0 17q24.3 [98]

FOXC1/FOXQ1/FOXF2 Glaucoma; Rieger’s anomaly >2 Mb GMDS 1 Mb 2/2 6p25.3 [99]
(position effect) (#601631) bystander

FOXC2/FOXF1/FOXL1 Lymphedema distiachis syndrome >3 Mb; gene desert 0.5 Mb 8/1 16q24.1 [100]
(#153400)

FOXL2 (position effect) Blepharophimosis, ptosis, and 1 Mb; gene desert; 0.7 Mb 3/3 3q22.3 [101]
epicanthus inversus PK3CB bystander
(BPES; #110100)

GLI3 (position effect) Greig cephalopolysyndactyly 4 Mb 0.4 Mb 2/0 7p14.1 [102]
syndrome (GCPS; #175700)

PITX2 Rieger syndrome, type 1 >4 Mb; gene desert 2 Mb 8/2 4q25 [103]
(RIEG1; #180500)

POU3F4 Deafness 3, conductive, with stapes 10 Mb (including DACH2) 2 Mb 8/3 xq21.1 [85]
(position effect) fixation (DFN3; #304400)

SIX3/SIX2 Holoprosencephaly 2 (#157170) >3 Mb 2 Mb 9/6 2p21 [104]

SHHa Holoprosencephaly 3 (#142945), >2 Mb 1/1.5 Mb 7/4/3 7q36.3 [83]
(position effect) preaxial polydactyly 2 (#174500)

TWIST Saethre-Chotzen syndrome 8 Mb (including sp8 and sp4); 2 Mb >20/3 7p21 [105]
(#101400) gene desert

SALL1a Townes-Brocks syndrome (#107480) >8 Mb; gene desert 1.5/0.1 Mb 18/3/0 16q12.1 [106]

SOX2 Microphthalmia (MCOPS3; #206900) 8 Mb; gene desert 2.5 Mb >20/2 3q26.33 [86]

PAX6a (position effect) Aniridia, type II (AN2; #106210) >4 Mb 1 Mb 18/1/3 11p13 [107]

SOX3 Mental Retardation, X-linked (#300123) 4 Mb 2 Mb ?/3 Xq27.1 [108]

SHOX (position effect) Langer mesomelic dyplasia (#248700) 3 Mb 2 Mb 6/5 Xp22.33 [109]

Provided is a list of developmental regulatory genes known to harbor human disease mutations. These genes retain extended regions of conserved
synteny around them. Length of conserved gene or highly conserved noncoding element (HCNE) order was estimated through alignments between
human and chicken (hs/gg) genomes, or through alignment between human and teleost genomes (either zebrafish [dr] or tetraodon [tn]). Those loci in
which position effect mutations have been found are indicated in the left-most column. The size of these loci suggests that position effect mutations
should eventually be found in all of them (see text for further detail). aTarget genes retained in duplicate in teleost genomes. Mb, megabases.



those genes are indeed functionally unrelated to the target

gene, then the only reason for maintaining synteny is that

the HCNEs they harbor must remain within the reach of

their target genes.

Kikuta and coworkers [13] used the whole genome

duplication event in teleosts to show that this is indeed the

case, by clearly demonstrating several cases in which there

was a separation of the HCNE cluster from the gene that

contains it after the duplication of the locus. In these cases

the HCNEs, without exception, remained next to one of the

two duplicates of the target gene, whereas the neighboring

gene survived in one copy or sometimes ‘broke free’ from the

synteny with the target gene by chromosomal rearrangement

and lost its HCNEs. (Figure 1).

Therefore, the chromosomes of vertebrates contain

territories of long-range regulation defined by HCNEs that

we termed ‘genomic regulatory blocks’ (GRBs). These GRBs

contain ‘target genes’ (genes that respond to long-range

regulation by the conserved elements) and ‘bystander genes’,

which are functionally unrelated, frequently broadly

expressed, and kept in synteny by the HCNEs contained in

their introns or beyond. Interestingly, the whole genome

duplication in teleosts appears to have opened a way for

some of the bystander genes to escape the synteny with the

target gene (for an example, see Figure 2). In addition, as

mentioned above, the teleost genome duplication appears

also to have relaxed the sequence conservation requirements

of HCNEs. In many cases regulatory elements, although still

functional [30], have mutated beyond recognition, and only

the conserved order of coding sequence indicates that these

regions are under purifying selection. It remains to be seen

whether there is any evidence that this mechanism was also

at work in previous whole-genome duplications in Metazoa

and thus helped shape the evolution of animal body plan.

The possible future application of genomic
regulatory blocks in the study of human disease
Many of the target genes of GRBs are known to be involved

in different types of cancer or genetic malformations. A

number of examples are listed in Table 2. Although bona

fide position effect mutations in humans have been found

only in a subset of these disease loci (for instance, MAF,

SOX9, POU3F4, SHH, PAX6, and possibly DLX5/DLX6),

Table 2 shows that the probable regulatory domains of these

disease genes, as estimated through determining minimal
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Figure 1
Human GRB encompassing PAX6 and bystander genes (middle track) and the two duplicated zebrafish loci. The human locus spans >1 megabase (Mb)
and contains the PAX6 target gene (in red) and five bystander genes (green). Highly conserved noncoding elements (HCNEs) conserved from human to
zebrafish are denoted as blue ovals. Note that some HCNEs are conserved in both zebrafish loci, but that most are only conserved in one locus, leading
to subfunctionalization. Bystander genes are usually conserved in one copy only. In the upper part of the figure, two insertions in zebrafish pax6 genomic
regulatory blocks (GRBs) take on the correct expression pattern of the orthologs, although CLGY825 is 120 kb downstream of pax6.1, next to the
bystander zcsl3, whereas CLGY954 is inserted inside the bystander gene elp4, downstream of pax6.2. Note also the complementarity of reporter
expression. Although pax6.1 is strong in diencephalon and hindbrain, pax6.2 retains stronger expression in retina, pineal, and spinal cord. For more
details, see Kikuta and coworkers [13].



conserved gene order by human-chicken and human-teleost

alignments, are very large. For 20 disease genes, the

combined length of conserved gene order (and the extent of

the underlying regulatory domains) covers 33 megabases

when comparing human and teleost genomes, which is

equivalent to 1% of the human genome. The same charac-

teristic is evident for genes in which position effect

breakpoints have been identified. Many loci of this list

contain large gene deserts inhabited by multiple HCNEs,

and it appears probable that position effect mutations will

eventually be found in most if not all of them. Virtually all of

the human position effect mutations found in these regions

thus far are chromosomal rearrangements rather than point

mutations [84-88], with the notable exception of a long-

range enhancer of the human SHH gene [83]. Ahituv and

coworkers [84] identified more than 2,100 blocks of

conserved synteny between human and chick. They found

that slightly less than half of the human genome aligns with

the chicken genome, and 25% with the frog genome,

suggesting that large parts of the vertebrate genome are

located in GRBs. These authors also noted a strong tendency

of gene deserts to be located in blocks of conserved synteny.

A few lesions in bystander genes have already been identi-

fied and recognized as position effect mutations in the

human genome (see Table 2). The year 2007 has already

seen the publication of a large number of whole genome

association studies of common single nucleotide poly-

morphisms with common diseases, such as prostate cancer,

type 2 diabetes, obesity, and heart disease. It will be

interesting to see the extent to which the concept of GRBs

will aid in the identification of the underlying genetic

defects. The existence of GRBs around key regulatory target

genes that are active during vertebrate embryogenesis, and

possibly into adulthood, suggests that the identification of

human position effect mutations has only just begun.

Conclusion
Much of what has been known for three decades as ‘junk

DNA’ can now be seen as containing precisely ordered

collinear regulatory elements around their target genes. The

fact that whole chromosomal segments have been preserved

over hundreds of millions of years throughout all vertebrates

suggests that selective pressure has acted upon them and

that their architecture is probably important in shaping the

vertebrate body plan. Only after the whole genome

duplication that occurred in the teleost lineage about 250

million years ago could the order into which genomic

regulatory blocks have evolved in the tetrapods degenerate

to a degree without a loss of fitness. 
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Figure 2
The fate of duplicated teleost GRBs. If the target gene (red) is retained in both copies, then the two loci/genomic regulatory blocks (GRBs) undergo
degenerative changes. This occurs either through chromosomal breaks (left), removing the bystander gene, which may land elsewhere in the genome and
which loses the highly conserved noncoding elements (HCNEs); or by loss, through neutral evolution, of the bystander gene and some HCNEs (which
are both retained in the intact other copy of the GRB).
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