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Identification of functional genetic variation associated with increased susceptibility to complex diseases can elucidate
genes and underlying biochemical mechanisms linked to disease onset and progression. For genes linked to genetic
diseases, most identified causal mutations alter an encoded protein sequence. Technological advances for measuring
RNA abundance suggest that a significant number of undiscovered causal mutations may alter the regulation of gene
transcription. However, it remains a challenge to separate causal genetic variations from linked neutral variations.
Here we present an in silico driven approach to identify possible genetic variation in regulatory sequences. The
approach combines phylogenetic footprinting and transcription factor binding site prediction to identify variation in
candidate cis-regulatory elements. The bioinformatics approach has been tested on a set of SNPs that are reported to
have a regulatory function, as well as background SNPs. In the absence of additional information about an analyzed
gene, the poor specificity of binding site prediction is prohibitive to its application. However, when additional data is
available that can give guidance on which transcription factor is involved in the regulation of the gene, the in silico
binding site prediction improves the selection of candidate regulatory polymorphisms for further analyses. The
bioinformatics software generated for the analysis has been implemented as a Web-based application system entitled
RAVEN (regulatory analysis of variation in enhancers). The RAVEN system is available at http://www.cisreg.ca for all
researchers interested in the detection and characterization of regulatory sequence variation.
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Introduction

Medical genetics research has produced a continuous
stream of successes in which functional defects in genes have
been linked to disease phenotypes. Such advances can lead to
improved diagnostics, therapies, and therapeutics. While
most discovered genetic defects create missense or nonsense
substitutions in protein-coding sequences, there remain
disease-associated genes for which there is no difference in
protein-coding information between individuals of different
phenotypes. Examples of the latter include CD36 type II
deficiency [1], phenotypic variances in plasma Dopamine-
beta-hydroxylase [2], and serum angiotensin I converting
enzyme levels [3]. Since there is no change in the encoded
proteins, some of these genes may be aberrantly expressed as
a result of genetic changes in key regulatory sequences
affecting the binding of transcription factors and thereby the
rate of transcription.

There are few confirmed examples of regulatory genetic
variants with a pronounced impact on disease. A common
TA-repeat polymorphism in the cis-regulatory TATA box of
the UGT1A1 gene causes Gilbert syndrome in homozygous
humans [4]. The variation has pharmacokinetic consequen-
ces: the reduced expression of the protein leads to altered
glucuronidation of several drugs. Another example is a
noncoding sequence variant of the a-globin gene cluster,
which has been shown to generate a new transcriptional

promoter by creating a novel functional binding site for
GATA-1 [5]. The mutation was detected in Melanesian
patients with a variant type of the inherited blood disorder
a-thalassemia, in which patients have reduced expression of
a-globin genes and anemia. Other examples of regulatory
genetic variations include two mutations in HNF-1 binding
sites in the promoter of the alpha fetoprotein, causing
hereditary persistence of the protein which is otherwise only
expressed in the fetus [6]. Usually, however, the effect of
genetic variation on gene transcription is less pronounced, or
merely associated with increased disease risk [7–11]. Several
groups have compiled lists of regulatory sequence variations
associated with allele-specific expression patterns [12–14].
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Large-scale genomics studies have demonstrated that
allele-specific differences in gene expression are common
(reviewed in [15]), and that a portion of the differences can be
attributed to genetic variation in noncoding regulatory
regions [16–18]. The high frequency of observed allelic
expression differences in mice [19] has been supported by
similar rates observed with human samples [20,21]. Genome-
wide mappings of expression levels in model organisms have
revealed significantly higher fractions of polymorphisms
close to genes for which altered mRNA expression levels
between individuals have been linked to the locus of the same
gene (self-linkage) compared to genes with no self-linkage
[22,23]. While numerous studies have identified genes with
allelic differences in regulation, it is still a challenge to
separate causal genetic variations from linked neutral
variations.

Computational methods to distinguish functional varia-
tions from neutral variations could prove useful to direct
limited laboratory resources to sites most likely to exhibit a
phenotypic effect. The identification of potential transcrip-
tion factor binding sites (TFBSs) in DNA is fundamental to
regulatory analysis. A traditional bioinformatics approach to
predict TFBSs is through the application of binding site
profile models known as position-specific weight matrices
(PWMs) [24]. Such matrix models assign a score to each
candidate binding sequence. In many cases, the models
accurately predict in vitro binding properties of the
corresponding transcription factors [25]. However, the low
specificity of these models precludes their use for the
detection of in vivo biologically relevant sites in the absence
of additional information [26]. One type of additional
information that is readily available is the evolutionary
conservation of functional noncoding genomic sequence.
This is the underlying principle behind phylogenetic foot-
printing, which can be used to eliminate regions less likely to
contain cis-acting regulatory sites and thereby increase the
specificity of predictions generated with position-specific
weight matrices [27–29]. Restricting the search for genetic
variation to predicted TFBSs in conserved regions can be
expected to increase the likelihood of identifying functional
variants. Such predictions are interesting if the putative TFBS
is consistent with the biology of the associated disease.

Here we present an in silico driven approach to selecting
genetic variation likely to influence gene regulation. We
combine phylogenetic footprinting with detection of effects
of genetic variation on putative TFBSs to identify variation
with the potential to alter gene regulation. We test our in
silico approach on genes with documented regulatory genetic
variation and compare the results to a large set of back-
ground SNPs, to evaluate the enrichment of regulatory SNPs
by our selection method. We introduce RAVEN (regulatory
analysis of variation in enhancers), a Web interface to our
application, that enables the scientific community to apply
our approach to their genes of interest.

Results

Defining the Differences in TFBS Scores between Alleles
for Various Mutation Types
Stormo and colleagues have shown that PWM representa-

tions of TFBSs gives scores that are proportional to the
binding energy between the DNA sequence and the protein
[30] (see Figure S1A and S1B for a demonstration of two
examples where this holds true). This implies that matrix
models of TFBSs can be used to estimate the effect on the
transcription factor binding affinity of genetic variation in a
regulatory region. Our in silico prediction tool identifies
polymorphisms for which the assigned score to a TFBS model
differs between the two allelic sequences. To define the
expected ranges of allelic differences in TFBS scores for
various types of mutations, we generated panels of simulated
binding sites based on the distribution of bases at each
position of the TFBS frequency matrices in the JASPAR
database [31], representing wild-type TFBS sequences. We
then inserted mutations into the generated sequences to
produce a collection of synthetic regulatory sequence
variants. Various types of mutations, including 1–5 bp
substitutions, 1 bp insertions, and 1 bp deletions were
introduced into the generated sequences; see Methods for a
detailed description of the mutation classes. For every
generated sequence, we computed a TFBS score delta by
comparing the TFBS score for the wild-type allele (the
sequence generated from the frequency matrix of the TFBS)
with the one obtained for the mutated allele. For an
explanation of the scoring system and its scale, see [24]. The
box plot in Figure 1 shows that the majority of the simple 1
bp substitutions gives score deltas below four, and mutation
of additional bases gives higher score deltas. Insertion and
deletion polymorphisms behave similarly to each other, with
approximately the same median value of the score deltas as
for the 1 bp substitutions, but with a higher value of the third
quartile and more outliers.

Analysis of Differences in TFBS Scores between Alleles of
Documented Regulatory and Background SNPs
To assess the applicability of the approach to real

sequences, we tested the PWM models of TFBSs on instances
of genetic variation shown experimentally to affect the
regulation of their corresponding genes. We compiled a list
of 104 examples of experimentally verified regulatory 1 bp
substitution polymorphisms. For comparison, we also com-
piled a list of 4,000 background 1 bp substitutions from
dbSNP with a minor allele frequency exceeding 0.05. We
tested all SNPs for overlap with the TFBS models in the
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Author Summary

DNA sequence variations (polymorphisms) that affect the expression
levels of genes play important roles in the pathogenesis of many
complex diseases. Compared with genetic variations that alter the
amino acid sequences of encoded proteins, which are relatively easy
to identify, sequence variants that affect the regulation of genes are
difficult to pinpoint among the large amount of nonfunctional
polymorphisms located in the vicinity of genes. Computational
methods to distinguish functional from neutral variations could
therefore prove useful to direct limited laboratory resources to sites
most likely to exhibit a phenotypic effect. In this paper we present a
Web-based tool for the identification of genetic variation in
potential transcription factor binding sites. This tool can be used
by any scientist interested in the characterization of regulatory
polymorphisms. Using experimentally verified regulatory polymor-
phisms and background data collected from the literature, we
evaluate the method’s capacity to identify regulatory genetic
variation, and we discuss the limitations of its application.

In Silico Exploration of Regulatory Variation



JASPAR database, and recorded the score deltas that fulfilled
the criteria described in Methods. We then calculated the
fractions of SNPs that were retained for various TFBS score
delta thresholds. Figure 2 shows the fractions of retained
regulatory and background SNPs for the score delta thresh-
olds of 1 unit increments between one and nine.

From Figure 2, it is apparent that the difference in the
distributions of score deltas between the regulatory SNPs
(rSNPs) and the background data is very small (median score
deltas for the SNPs that overlap with a TFBS according to the
search criteria are 4.8 and 4.9 for the regulatory and
background SNPs respectively). When we restricted the
search to TFBS models with a minimum specificity of ten
bits (72 out of the 123 models in JASPAR fulfilled this more
selective criterion), the fraction of retained SNPs decreased
to approximately 75% for low TFBS score deltas. However,
there was still no significant enrichment of rSNPs (unpub-
lished data). These results indicate that the application of
PWM models of TFBSs alone does not enrich for rSNPs.

Phylogenetic Footprinting Enriches for Regulatory SNPs
We tested the application of phylogenetic footprinting to

assess the method’s capacity to enrich for bona fide rSNPs.
The underlying principle behind phylogenetic footprinting is
that functional noncoding elements are more likely to be
evolutionarily conserved than nonfunctional surrounding
sequence. Restricting the search for regulatory genetic
variation to conserved regions is thus likely to increase the
enrichment of functional sites. We therefore tested how often

the upstream fraction of our experimentally verified regu-
latory polymorphisms was located within conserved genomic
regions. Conservation of the rSNP positions was quantified
using the phastCons scores [32] available at the UCSC genome
browser from alignments between the May 2004 release of the
human genome and chimp, mouse, rat, dog, chicken, fugu,
and zebrafish. We performed similar testing for 26,044
background SNPs from dbSNP that are located within 10 kb
upstream of human genes with known mouse orthologs.
Figure 3 shows that the SNPs with documented effect on gene
regulation are more frequently located within evolutionarily
conserved sequences relative to background SNPs. For
example, when using a phastCons score threshold of 0.4 to
define conserved regions, approximately 28% of the rSNPs
were retained compared to only 9% of the background SNPs.
Significant differences in the frequency of SNPs that fall
within conserved regions for the rSNP dataset and the
background set were observed for all phastCons score
thresholds above 0.1 (Figure 3).
Genomic regions close to the transcription start sites (TSS)

of genes are generally more conserved between species than
genomic regions far away from genes. Since research on
regulatory genetic variation traditionally has been focused on
the proximal promoter regions, and since the background
SNPs were relatively evenly distributed in the region from 10
kb upstream of the TSS to the TSS, there was an over-
representation of SNPs within the proximal promoter in the
set of rSNPs compared with the background SNPs. To
evaluate if this bias affected the enrichment of rSNPs in
conserved regions relative the background, we compared the
distributions of phastCons scores in the two datasets for SNPs
located at different distances from the TSS. We binned all
SNPs located from 10 kb to 2 kb upstream of the TSS, all
SNPs located from 2 kb to 500 bases upstream of the TSS, all
SNPs located from 500 bases upstream of the TSS to the TSS,
and all SNPs from 100 bases upstream of the TSS to the TSS.
The four bins contained 8, 20, 76, and 23 rSNPs, respectively.
Due to the relatively low number of available rSNPs,
separation of SNPs into smaller intervals was unpractical.
Figure 4 shows that for SNPs located from 10 kb to 2 kb

upstream, as well as 2 kb to 500 bases upstream of the TSS of
the respective genes, there was no significant difference
between the phastCons scores for the regulatory and back-

Figure 1. Impact on TFBS Score of Mutations Inserted into Synthesized

TFBS Sequences

The boxes correspond to score deltas for (from left to right) 1 bp
substitutions, 2 bp substitutions at adjacent positions, two randomly
placed 1 bp substitutions, 3 bp substitutions both in adjacent and at
random positions, four randomly placed base pair substitutions, five
randomly placed substitutions, one randomly placed 1 bp insertion, and
one randomly placed 1 bp deletion.
doi:10.1371/journal.pcbi.0040005.g001

Figure 2. Fractions of Regulatory and Background SNPs Overlapping

Predicted TFBSs

SNPs were analyzed using all transcription factors in the JASPAR
database, and using TFBS score delta thresholds between one and nine.
doi:10.1371/journal.pcbi.0040005.g002
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ground SNPs. However, for SNPs in the interval from 500 bp
upstream to the TSS as well as for the full dataset, the
phastCons score values were significantly higher for the
regulatory than for the background SNPs (p-values 0.001 and
0.0002, respectively). Also in the interval closest to the TSS
the phastCons score, values were higher for the regulatory
than for the background SNPs, but the difference was not
statistically significant. In the intervals closest to the TSS, the
bias in location closer to the TSS for rSNPs is small or
eliminated (in the interval from �500 bp to the TSS the

median distances to the TSS were 168 bp and 237 bp for the
regulatory and background SNPs respectively, and in the
interval from 100 bp upstream to the TSS the median
distance for both datasets was 51 bases). This suggests that the
higher fraction of rSNPs in conserved regions relative to the
background is not simply an effect of the rSNPs being located
closer to the TSS than the background SNPs.

TFBS Analysis Combined with Phylogenetic Footprinting
Does Not Provide Additional Enrichment of Regulatory
SNPs
Although the TFBS analysis alone did not provide enrich-

ment of rSNPs relative to the background, we tested if the
intersection of TFBS analysis and phylogenetic footprinting
could increase the enrichment given by phylogenetic foot-
printing alone. We counted the number of regulatory and
background SNPs that both affected predicted TFBSs and
were located in conserved regions (predicted rSNP ), for
phastCons score thresholds 0.1 to 0.9 and for TFBS score
delta thresholds between one and nine. We also counted the
number of predicted rSNPs based on phylogenetic foot-
printing alone. Figure 5 shows the sensitivity (fraction of
predicted rSNPs) versus 1—specificity (fraction of non-
predicted background SNPs) for the different thresholds,
where the curves correspond to different TFBS score delta
thresholds. When the relative TFBS score threshold for the
best matching allele was set to 80% (the left panel), there was
virtually no difference in performance between phylogenetic
footprinting alone and when TFBS score delta thresholds of
less than five was applied, and for larger score delta
thresholds the sensitivity was very low. Also when the relative
TFBS score threshold for the best matching allele is increased
to 90% (the right panel), the application of TFBS analysis
provides no enrichment compared with phylogenetic foot-

Figure 3. Fractions of Regulatory and Background SNPs in Evolutionary

Conserved Regions

SNPs were given the mean phastCons scores from multiple alignments of
human, chimp, mouse, rat, dog, chicken, fugu, and zebrafish in windows
of 21 bp centered at the SNPs. The fractions of SNPs located within
conserved regions were calculated for mean phastCons score thresholds
between 0.1 and 0.9. For every threshold a Fisher’s exact test was
performed to test if there was a significantly different frequency of
successes in the regulatory versus the background SNP sets; p-values are
indicated above each pair of bars.
doi:10.1371/journal.pcbi.0040005.g003

Figure 4. Distributions of Mean phastCons Scores for SNPs located at Different Distances from the TSS

SNPs were given the mean phastCons scores from multiple alignments of human, chimp, mouse, rat, dog, chicken, fugu, and zebrafish in windows of 21
bp centered at the SNPs. For every interval a student’s T-test was performed to check if there were significant differences in the distributions of
phastCons values for the regulatory and background SNPs; the p-values from these tests are indicated above each pair of boxes.
doi:10.1371/journal.pcbi.0040005.g004
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printing alone. Variations in particularly high scoring TFBS
fail to disrupt sites, thus rSNP predictions for higher scoring
TFBS candidates (Figure 5, right panel) are less predictive
than those for predicted sites of lower initial scores (Figure 5,
left panel).

Availability of Additional Functional Information About
the Gene Improves Regulatory SNP Discovery

Sometimes additional knowledge is available for the gene
in which regulatory polymorphisms are searched, for example
a researcher may know a set of transcription factors likely to
be involved in the regulation of the gene in the context of the
studied disease. When this type of information is available, it
is possible to reduce the number of false positive TFBS
predictions, since predictions of SNPs affecting the ‘‘wrong’’
transcription factor can be eliminated.

We analyzed a dataset of genes in which known TFBSs have
been disrupted either by naturally occurring SNPs or by
mutagenesis experiments. In this set, the transcription factors
involved in the regulation of the corresponding genes had
been determined experimentally. We searched a region from
�3,000 bp toþ500 bp relative to the TSS of every gene in the
dataset for potential rSNPs affecting a binding site for the
transcription factor associated with the gene. Table 1 shows
that 12 of the 20 rSNPs with ‘‘prior knowledge’’ overlapped
and affected a predicted binding site for the verified
transcription factor, and in eight of these cases the rSNPs
were located in genomic regions with a phastCons score
above 0.4. Consistent with previous observations about the
unusual predictive properties of an Sp1 binding profile [27],
in two cases the Sp1 profile predicted decreased binding
affinity toward a mutation in contrast to the published
observation of increased affinity.

The analyzed regions (3,000 bp upstream to 500 bp
downstream of the TSS of the analyzed genes) contained
between four and 43 SNPs in addition to the analyzed rSNP.
When the regions were analyzed with all PWMs in JASPAR
with information content higher than 10 bits, between two
and 32 (mean value 13) SNPs were predicted to affect a TFBS,
and between zero and 11 of these were also located in
conserved regions (mean value three). When the regions were
analyzed with the PWM corresponding to the verified TFBS,
the number of SNPs affecting predicted TFBS (in addition to
the rSNP) was between zero and eight, with mean value one.
Between zero and two of these were also located in conserved
regions (mean value 0.3). This analysis indicates that when
information regarding candidate transcription factors in-
volved in the regulation of a gene is available, specificity is
increased.
We also compared the score deltas obtained from analyzing

the regulatory polymorphisms with known affected TFBS to
the score deltas obtained when analyzing the larger data set
used in Figure 2. When analyzing the regulatory polymor-
phisms with prior knowledge with all PWMs from the JASPAR
database, the results were similar to those obtained for the
larger set and the background. However, when the regulatory
polymorphisms were analyzed with the PWMs for the
respective verified TFBSs, the score delta was higher (Figure
6). In the analyses using all PWMs, we selected the mean score
delta over all matches between the analyzed PWMs and the
SNP, whereas in the analysis with the PWM of the verified
transcription factor we used the PWM match giving the
largest score delta for that particular PWM. This may have
caused the lack of overlap between the interquartile ranges of
score deltas in the ‘‘all’’ and ‘‘prior knowledge’’ analyses in
Figure 6.

Figure 5. Combination of TFBS Analysis and Phylogenetic Footprinting

Sensitivity of the predictions is plotted versus 1-specificity for phastCons score thresholds of 0, 0.1, 0.2, etc., up to 0.9. The whole range of values is only
shown for the red curve; for the other curves, values for phastCons score thresholds 0 and 0.1 are outside the area covered by the plot. The curves
correspond to different TFBS score delta thresholds. In the left panel, the relative TFBS score threshold for the best matching allele was 80%, in the right
panel the relative TFBS score threshold for the best matching allele was 90%.
doi:10.1371/journal.pcbi.0040005.g005
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The RAVEN Application
To facilitate efficient analyses of the type presented in this

paper, computational methods and newly implemented
algorithms were developed as an integrated framework for
rSNP analysis. The framework includes all the components
for the location and extraction of data from genome and SNP
databases, pattern detection, phylogenetic footprinting, and
SNP effect estimation. To facilitate user access, we developed
a flexible Web application that enables researchers to easily
detect potential regulatory gene variation in their gene of
interest (http://www.cisreg.ca). The organizational schema of
the Web application is shown in Figure 7. The progression
through analysis in RAVEN is event-driven, i.e., designed for a
number of different application scenarios using different
subcomponents of the system, and in different order. The
components are:

Sequence selection and gene mapping. Genes are located
directly using keywords/identifiers (Figure 7A). The search
engine is based on GeneLynx [33] and returns a list of human
genes (Figure 7B). Upon selection of a gene from the list, the
program displays the genomic location of the human
sequence, with cDNAs that map to it (Figure 7C). The user
selects the genomic coordinates for retrieval.

Result view is the central screen of the RAVEN application.
The result view contains a full control panel for changing
analysis parameters and accessing other parts of the
application. The results themselves can be viewed in one of
two modes. (1) Graphical mode, in which all the submitted
data and features detected by subsequent analysis are
displayed as tracks in a genome browser-like view (Figure
7D). Genomic coordinates, SNPs from major SNP databases
(currently dbSNP [34] and HGVbase [35]), conserved se-
quence segments, repeat sequences, the conservation profile,
reference transcripts, and relative coordinates are displayed
by default. The remaining tracks appear only after the
corresponding data submission (user SNPs) or data selection
(TFBS models) is made. (2) Table view, which appears when

there are TFBSs in the window affected by SNPs, with a
simple tabular list of SNPs affecting potential TFBS, positions
of the SNPs and corresponding affected TFBSs, and the
scores for the matches between both alleles of the SNP and
the affected TFBS (Figure 7E). From the result view it is
possible to switch to the other application components and
to change the selections made previously.
Select transcription factor binding profiles. To search for

potential TFBSs affected by SNPs, the user can choose a
subset of eukaryotic profiles from the JASPAR database [31]
(Figure 7F). The algorithm used for transcription factor
search and phylogenetic footprinting of the hits is described
in [28].
Upload user SNPs. Users can upload private sequence

variation data to be analyzed for potential impact on TFBSs
(Figure 7G). The uploaded SNPs are shown as separate tracks
in Result View after uploading.

Discussion

Identification of functional genetic variation associated
with increased susceptibility to complex diseases is crucial for
elucidating the biochemical mechanisms of disease and for
pinpointing therapeutic targets [36]. Here we have intro-
duced an in silico approach to the identification of candidate
regulatory genetic variation in the human genome. A product
of the research is the RAVEN system, which should be
considered an exploratory tool for pinpointing candidate
polymorphisms in transcription factor binding sites, facilitat-
ing further analyses of the polymorphism in vitro and in vivo.
Transcription factor binding profiles are appropriate for

the study of genetic variation in binding sites. It was shown
previously that scores obtained from PWM representations of
TFBSs are proportional to the binding energy for the
protein–DNA interaction [30]. This binding profile property
makes the models suitable for ranking potential binding sites
on two or more alleles. Providing additional support for the
use of PWM binding profiles to predict altered TFBS is a
recent study of binding affinities for the MAX A and MAX B
transcription factors. Maerkl and Quake used a high-
throughput microfluidic platform—capable of detecting low
affinity transient binding events—to estimate the binding
affinity between the two proteins and their respective target
DNA sequences [37]. Their results show that MAX A and MAX
B PWMs tend to overestimate differences in free binding
energies between an optimal target sequence and sequence
variants differing by three or more bp. However, most
predictions for two bp deviations were correct, supporting
the use of PWMs for assessing the impact of SNPs on
consensus and near-consensus binding sites.
Due to the availability of data, a focus in the study of

regulatory variation has been placed on the study of SNPs.
The analysis of synthetic TFBSs with inserted mutations
defines the expected ranges of score deltas between alleles for
various mutation types. Interestingly, the median value of the
score deltas for insertion and deletion mutations falls
between the median value for one-base substitutions and
that for two-base substitutions. This simulation indicates that,
at the median, insertions and deletions are only slightly more
disruptive of TFBSs than are one base substitutions, but
perhaps importantly they have the capacity to generate more
severe effects—as shown by the outliers in Figure 2. There-

Figure 6. Distributions of TFBS Score Delta Values for Background SNPs,

Regulatory SNPs, and Regulatory SNPs for Which the Affected TFBS Is

Known

In the three leftmost boxes the average score delta for all matches to any
PWMs in the JASPAR database was collected for every SNP. In the
rightmost box the score delta for the PWM corresponding to the verified
PWM was collected for every SNP.
doi:10.1371/journal.pcbi.0040005.g006
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fore it may be appropriate, as new data sources emerge, to
prioritize research on indels, as these sequence variations
apparently have the potential to more severely alter a
regulatory element.

Phylogenetic footprinting is useful for the selection of
functional regulatory elements. The application of phyloge-
netic footprinting alone gives an enrichment of the exper-
imentally verified regulatory variations versus the
background SNPs, as shown in Figures 3 and 4. This is in
agreement with previous reports suggesting that evolutionary
conserved TFBS are more likely to be functional in vivo than
are nonconserved sites [27]. Since nearly all SNPs both in the
regulatory and background datasets affected a predicted
binding site when no a priori selections of transcription
factors were made, the combination of phylogenetic foot-
printing and TFBS analysis gave about the same enrichment
of rSNPs as the phylogenetic footprinting alone, as shown in
Figure 5.

A priori information about candidate transcription factors
improves the identification of regulatory variations. The high
number of SNPs results in a significant number of false
predictions from our in silico method, even when TFBS
analysis is combined with phylogenetic footprinting. To
generate more meaningful predictions of TFBSs affected by
polymorphisms, additional information relevant for the
studied gene and in the clinical context must be incorpo-
rated. We have shown that when the transcription factor
involved in the regulation of a particular gene is known, the
number of SNPs that affect a potential TFBS in the region
from 3,000 bases upstream to 500 bases downstream of the
TSS is decreased from 13 to one. When also applying a
conservation threshold (phastCons score above 0.4), the
numbers are three and 0.3 (Table 1). This is encouraging
and suggests that our in silico method can help pinpoint true
rSNPs when additional information can guide the user in
selecting candidate transcription factors. Suggestive prior
data to motivate directed analysis for candidate binding sites
for specific transcription factors can be derived from many
sources. In addition to the scientific literature, candidate
transcription factors can be selected based on associated
Gene Ontology [38] terms in common with a target gene.
High throughput proteomics initiatives such as the Human
Protein Atlas program [39] can highlight transcription factors
expressed in the tissues relevant for the target gene and the
studied disease. Well designed expression profiling experi-
ments can highlight genes likely to be regulated by a key
transcription factor. For instance, Wang et al. focused their
analysis on candidate rSNPs in putative binding sites for
NFE2L2 based on genes observed (in microarray studies) to
be induced by chemical compounds known to act via an
NFE2L2-dependent mechanism [40]. Such prior knowledge is
important in the search for regulatory polymorphisms.

In silico analysis of regulatory variation has been the focus
of several recent efforts. Stepanova et al. compiled a

collection of potential rSNPs in the upstream region of
human genes [41]. The authors analyzed 72,824 SNPs in the
regions from �2,000 bp to the transcription start site of
17,677 human genes using TFBS matrix models from the
Transfac database [42], and identified SNPs affecting poten-
tial binding sites. Since Stepanova and colleagues used
relative TFBS score delta thresholds, which are not generally
comparable to our absolute score delta thresholds, we cannot
directly compare the fraction of retained SNPs in the
background SNP set in Figure 2 with their results. However,
their fraction of retained SNPs (14,127 out of 72,824) does not
contradict our results for the absolute TFBS score delta
threshold of 5–6 (Figure 2). Zhao et al. presented a database
called PromoLign that contains pre-computed SNP analyses
of the 10 kb sequence upstream of more than 6,400 human–
mouse orthologous gene pairs [43]. SNPs were assessed for
overlap with potential TFBSs and with sequences conserved
between human and mouse. RAVEN expands on the
functions of PromoLign by enabling users to explore
regulatory elements outside of the 59 upstream proximal
promoter, analyzing user-supplied SNPs and by using
phastCons scores from multiple alignments for phylogenetic
footprinting. One important feature of the RAVEN Web
application is that the user is not restricted to regulatory
polymorphisms around one annotated TSS, but can choose to
study any region on the same chromosome as a defined
mRNA sequence by selecting the appropriate start and end
coordinates relative to the gene. Montgomery et al. intro-
duced a predictive method for the detection of rSNPs based
on a support vector machine trained on 22 properties of
regions containing rSNPs [44]. Many properties were found
to be poor predictors of rSNPs, including PWM scores. In
fact, the distance from the transcription start site was found
to be the property that gave the best enrichment of rSNPs.
This observation, however, may be more reflective of an
ascertainment bias as more researchers have studied candi-
date rSNPs in the immediate promoter regions. No online
tool was provided for researcher use, although the underlying
software is accessible online for advanced bioinformaticians.

Conclusion
We have presented a computational method and a flexible,

user-oriented Internet based tool for prediction of genetic
variation with a potential to affect the regulation of the
corresponding genes. In the absence of information about
which transcription factor regulates a gene, our sequenced-
based in silico analysis does not provide enough selectivity
between polymorphisms with a documented impact on
transcriptional regulation and background SNPs. However,
if such prior information is available, we have demonstrated
that our Web-based tool can aid experimental researchers in
prioritizing which SNPs are most likely to affect the biological
function of genomic regulatory elements.

Figure 7. Overview of the RAVEN Web Interface

(A) The search page.
(B) The search results page where a list of genes corresponding to the search query is displayed.
(C) The reference sequence selection page where the genomic location of the selected human sequence and cDNAs that map to it is displayed.
(D) The graphical results view.
(E) Table view of SNPs predicted to affect TFBSs.
(F) Selection of TFBS profiles from the JASPAR database. (G) Upload of private SNP sequences.
doi:10.1371/journal.pcbi.0040005.g007
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Methods

Datasets. Synthetic SNP set. Panels of simulated binding sites for
transcription factors were generated from the distributions of bases
at each position of all the TFBS frequency matrices available in the
JASPAR database (123 matrices) [31]. A random base was inserted
before and after the generated motif so that the sequences were nþ2
bp long, where n is the length of the TFBS model. The insertion of
extra bases before and after the motif enables the TFBS to shift one
base in the mutated sequence if that would give a better match
between the TFBS model and the sequence. Mutations of different
types were introduced into the synthesized sequences: 1 bp
substitutions, 2 bp substitutions at adjacent positions, two randomly
placed 1 bp substitutions, 3 bp substitutions both in adjacent and at
random positions, four randomly placed base pair substitutions, five
randomly placed substitutions, one randomly placed 1 bp insertion,
and one randomly placed 1 bp deletion. In case of insertion
mutations, the random base after the site was removed so that the
alleles are of same length and also of the same length as the other
sequences of the corresponding site, i.e., nþ2 bp. In case of deletion
mutation, an extra random base was introduced in the end of the
deleted allele so that both alleles were of length nþ2 bp. Ten synthetic
TFBS sequences were generated from each TFBS model (123 models),
and ten mutants of each type were created for each generated wild-
type sequence. This makes a total of 123 3 10 3 9 3 10 sequences ¼
98,400 sequences.

Regulatory SNP set. We searched the literature for variations with a
documented regulatory role. All single base variations will be referred
to as SNPs, although the frequency of the variations may be rare or
unknown. The criteria for selecting SNPs to this set was that they
should show allele-specific binding to nuclear extracts or tran-
scription factors in vitro using electrophoretic mobility shift assays,
and that the SNPs should show evidence of allele-specific tran-
scription rates in reporter gene assays. We also used SNPs from
previous collections of regulatory polymorphisms in human: 22 SNPs
were taken from a collection created by Rockman and Wray [12], 17
were taken from the collection created by Buckland et al. [14], and 39
SNPs were extracted from the ORegAnno data base [13]. We did not
require that the transcription factor affected by a particular SNP
should be defined. rSNPs that were selected for in vitro studies based
on the fact that they were located in evolutionarily conserved regions
would have resulted in a bias in the phylogenetic footprinting
analysis, and we have therefore not included such examples in our
dataset. We limited the set to SNPs located in the regions from 10 kb
upstream to the transcription start sites of human genes with
available human–mouse orthologs (ortholog mapping was performed
as in [45]). In total, 104 one-base substitution polymorphisms were
collected. PubMed accession numbers and other details about the
rSNP data set are shown in Dataset S1.

Regulatory SNPs with known affected transcription factor binding site. To
generate a collection of regulatory polymorphisms for which the
involved transcription factor has been experimentally determined,
we mined the literature for examples of human TFBSs containing
regulatory variation, either naturally occurring or generated in
mutagenesis experiments. We applied the same inclusion criteria as
for the rSNP set above, but only polymorphisms affecting binding
sites for transcription factors for which there are PWMs available in
JASPAR were included. The sequences for the regulatory variations
with known affected TFBSs are provided in Dataset S2.

Background SNP sets. For background SNPs we downloaded from
dbSNP those SNPs located in the upstream regions of human genes
with a known mouse ortholog. We included SNPs in the regions
stretching from�10 kb to the TSS (ortholog mappings and definitions
of TSSs were determined as in [45]), unless a region is truncated by
upstream genes in which case a smaller region was used. Only validated
SNPs with minor allele frequency greater than 0.05 (in all populations)
were included in the set. The dbSNP125 version of the database was
used, in which SNP positions are calculated on the NCBI35 version of
the human genome assembly. The total background SNP dataset used
for the phylogenetic footprinting analysis contains 26,044 SNPs. For
the analysis of overlap between SNPs and TFBSs, we used a subset of
the total background dataset (4,000 SNPs), in which SNPs were selected
randomly from the total background set. The background SNP
datasets are available in Dataset S3 (26,044 SNPs) and Dataset S4
(4,000 SNPs). Defining the background SNPs as nonfunctional is a
necessary simplification. As the background SNPs are taken from
dbSNP without any functional analysis prior to inclusion, it is likely
that the background dataset contains SNPs that have a regulatory
function and hence the false positive predictions on the background
set might include some true positive predictions. However, given the

absence of a dataset with experimentally verified neutral SNPs in
proximal promoter regions and the reasonable expectation that any
true positives would be rare, the background SNP set is the only
suitable dataset to which the rSNPs can be compared.

Saturation mutagenesis data used in Figure S1. Data was obtained from
a saturation mutagenesis experiment of the heat shock element of the
human HSP70.1 gene promoter [46]. The authors systematically
mutated every base in the motif to all other base variants. A total of
55 sequences were tested covering 18 bases (i.e., 54 mutations plus
wild-type). For every sequence, the relative free energy of the DNA–
protein interaction (relative to the wild-type sequence) was measured
by gel shift densitometry. From this analysis we compiled a list of
sequence variants with corresponding relative free energies. We also
used data from a saturation mutagenesis experiment in the Mnt
repressor of the Salmonella phage P22 [30]. The authors mutated
nine positions in the Mnt repressor and measured the relative free
energy for every mutant sequence (relative to the wild-type
sequence). From their analysis we again compiled a list of sequence
variants with corresponding relative free binding energies. In the
study of the Mnt repressor, the authors also presented a frequency
matrix for the Mnt repressor that we used for scoring the sequences.
The sequences used in the analysis of saturation mutagenesis
experiments are shown in Dataset S5.

Analysis. Analysis of synthetic mutated TFBS sequences. The mutated
and wild-type versions of the synthetic TFBS sequences were scored
with the PWM used to generate a particular wild-type sequence, using
perl scripts based on the TFBS framework [47]. The best possible
match between the TFBS model (the model that was used to generate
the wild-type sequence) and the DNA was collected for each
sequence. A score delta was then calculated as the absolute value of
the difference between the score delta for the wild-type sequence and
the mutated sequence. To collect the score delta for a wild-type and
mutated sequence pair we required that the relative score for the best
matching allele should be at least 80% of the maximum score for the
respective TFBS [24].

TFBS analysis of documented regulatory SNPs and the background SNPs.
PWMs corresponding to all TFBSs in the JASPAR data base were used
to score both alleles of the SNPs in the background and rSNP
datasets. Scoring was performed as above, but with two modifications.
(1) We required a predicted binding site to be located at the same
position in the sequence for both alleles of a SNP. This is the same
methodology as is used in the Web interface to our application. (2) If
several matches were obtained between a SNP and a particular TFBS
model (fulfilling the requirement that the highest-scoring allele
should give a score of at least 80% of the of the maximum score for
the respective TFBS), we collected the hit that gave the largest score
delta between the sequence variants since we wanted to calculate the
fraction of retained SNPs for different TFBS score deltas. Sometimes
a SNP overlapped potential binding sites for more than one TFBS
model. To calculate the fraction of retained SNPs for various TFBS
score delta thresholds we collected, for each SNP, the maximum
score delta over all TFBS models (rather than the score delta for the
TFBS model that gave the largest absolute score for the best matching
allele). We measured the fraction of retained SNPs in respective
datasets for the absolute TFBS score delta thresholds in one-unit
increments from one to nine.

Phylogenetic footprinting analysis of regulatory SNPs and the background
SNPs. We used the phastCons scores from multiple alignments of
eight vertebrate genomes available in the UCSC genome browser (the
May 2004 release) to perform phylogenetic footprinting. SNPs were
assigned the mean phastCons score in a window of 21 bases (ten bases
upstream and downstream of the SNP). Several other window sizes
were tested, from one to 41 bp, but the 21 bp window gave the best
enrichment of rSNPs.

Analysis of regulatory SNPs with known affected TFBS. The examples of
regulatory variation from the literature for which the affected TFBS
are known were analyzed using the Web interface to our application
(RAVEN, see description below). The following parameters were used
for the analysis: the phastCons threshold for sequence conservation
between species was 0.4. The threshold for a match between the top-
scoring allele of a variation and a TFBS model was 80%. The absolute
score difference between the two alleles of a variation was required to
be greater than 1.5 [24]. The TFBS analysis of the different SNP
datasets shown in Figure 6 were performed as above, but with the
exception that the average score delta from all PWMs that fulfilled
the search criteria for a particular SNP was collected instead of
collecting only the PWM that gave the largest score delta.

Correlation analysis of relative free energy ofmutated binding sites versus TFBS
score delta for Figure S1. The mutated and wild-type sequences in the
saturation mutagenesis experiments were scored with the PWMs
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corresponding to position frequency matrices for the respective
transcription factors [24]. A score delta was computed for every
sequence variant by subtracting the absolute score for the wild-type
sequence from the score for the mutated sequence. For each sequence
the optimalmatch between the TFBSmodel and the analyzed sequence
was used, with the requirement that the motif should overlap the
mutated base. The score deltas for all the sequence variants were then
correlated to the experimental relative free binding energies.

The position frequency matrix for the heat shock element was
taken from Transfac [42]. The matrix has Transfac accession number
M00146 and is defined by:

HSE ¼

24 0 38 36 7 13 6 5 0 6
4 0 1 1 14 2 4 4 45 7
12 45 2 2 9 21 6 5 0 21
5 0 4 6 15 8 29 31 0 11

2
664

3
775

For the analysis of mutated versions of the Salmonella phage P22 Mnt
repressor, we used a published position frequency matrix [30]. The
matrix is defined by:

The frequency matrices were transformed into weight matrixes
using the TFBS bioinformatics programming framework [47].
Functions from the same framework were also used for searching
sequences for putative binding sites. Analyses of the correlation of
TFBS score deltas and relative free binding energy for the sequence
variants were performed in R [48].

The RAVEN Web application. The application is implemented in
object-oriented Perl (Conway, 1999) with extensive use of Bioperl [49]
and TFBS [47] bioinformatics programming frameworks. The system
consists of several database components, an application engine layer,
and a Web interface layer. It is deployed on a dual-CPU Linux/i686
server.

Data. The dbSNP [34] sequence data was downloaded from NCBI
ftp site (ftp://ftp.ncbi.nlm.nih.gov/). Genomic sequence data with the
positions of repeat sequences, mappings of cDNAs and dbSNP SNPs
to the genome, as well as phastCons scores, were obtained from the
UCSC Genome Informatics repository (http://genome.ucsc.edu/) [50].
HGVbase (http://www.hgvbase.org/) [35] data was obtained directly
from the master database at Karolinska Institutet.

Supporting Information

Figure S1. Correlation between Relative Free Energies and TFBS
Score Deltas of Mutated Binding Sites

Two published saturation mutagenesis experiments demonstrate, as
previously shown by Stormo and colleagues [30], how PWM
representations of TFBSs can be used to estimate the effect of
genetic variation in a regulatory region on the binding affinity of the
corresponding transcription factor. Positions in the heat shock
element in the human HSP70.1 gene [46] and in the Mnt repressor of

the Salmonella phage P22 [30] were systematically mutated, followed
by in vitro determination of the relative free energy of binding
between the proteins and the sequence variants. The sequence
variants were here scored with the PWM for the corresponding
transcription factors, and score deltas (i.e., the difference in assigned
scores by the PWM) between the wild-type allele and the different
mutated alleles were collected. The TFBS score deltas for a) HSE and
b) Mnt repressor are plotted against the published differences in
relative free energy. In both examples, the relative free energy is
significantly correlated with the score delta (r2 ¼ 0.73, p-value ¼
2.2e�16 for HSE, and r2¼ 0.61, p-value ¼ 7.571e�07 for Mnt).

Found at 10.1371/journal.pcbi.0040005.sg001 (296 KB PDF).

Dataset S1. rSNPs

Found at 10.1371/journal.pcbi.0040005.sd001 (18 KB TDS).

Dataset S2. Prior Knowledge rSNPs

Found at 10.1371/journal.pcbi.0040005.sd002 (30 KB DOC).

Dataset S3. The 26,044 Background SNPs

Found at 10.1371/journal.pcbi.0040005.sd003 (3.8 MB TDS).

Dataset S4. The 4,000 Background SNPs

Found at 10.1371/journal.pcbi.0040005.sd004 (5.8 MB TDS).

Dataset S5. Saturation Mutagenesis Data

Found at 10.1371/journal.pcbi.0040005.sd005 (5.95 KB TDS).
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