
Analogical Reuse of Object-
Oriented Analysis Models

Solveig Bjørnestad

Dissertation for the degree Doctor Rerum Politicarum (dr. polit.)

University of Bergen

2008

ISBN 978-82-308-0574-9
Bergen, Norway 2008

Printed by Allkopi Ph: +47 55 54 49 40

Analogical Reuse of Object-
Oriented Analysis Models

Solveig Bjørnestad

Dissertation for the degree Doctor Rerum Politicarum (dr. polit.)

at the University of Bergen

Department of Information Science and Media Studies

The faculty of Social Science

2008

Acknowledgments

This dissertation is the result of my work within the ROSA (Reuse of Object-oriented Spe-

cifications through Analogy) project. Several people have been part of this project over the

years, but I will particularly thank my colleague and supervisor Bjørnar Tessem. He has been

an important inspirator and we have shared many discussions over the topics covered in this

thesis.

I will also like to thank my other colleagues at the department for supporting me. Par-

ticularly I want to mention Jon-Helge Knudsen who has given me valuable advice related to

the statistical tests. My thanks also go to Weiqin Chen, Richard E. Moe, and Andreas L.

Opdahl who have read and commented versions of the thesis and given valuable feedback.

Mike Spector, a friend and previous colleague, is thanked because he at a critical point of time

stepped in and made me move on.

Finally I would like to thank my children and my mother, for all support over these

years, and last, but not least, Finn who have tolerated all my ups and downs over the last

hectic period of writing.

SOLVEIG BJØRNESTAD

The University of Bergen

December 2007

iii

iv

Analogical Reuse of Object-Oriented Analysis Models

Solveig Bjørnestad

Software reuse involves using again software artifacts that have been successfully built before.
To be successful with software reuse, techniques for reuse must be integrated into both the
information system development process and the programming environment. If potential reuse
can be identified early in an information system development process, the gain in development
time can be substantial. Techniques to automatically identify reuse candidates incorporated in
software development tools would increase the benefits for software development even more.

In this dissertation the incorporation of reuse techniques based on analogical reasoning
(AR) in tools for software development is proposed. These techniques use information about
the structure and semantics of a model from the analysis of a software system to try to identify
potential analogous models.

Analogical reasoning is typically described as consisting of a set of phases. Although
other AR phases are equally important, the focus of this thesis is on the retrieval and mapping
phases of AR. The proposed approach is demonstrated using OOram role models. OOram is
an object-oriented modelling notation resembling UML sequence diagrams. OOram models
were chosen because they focus entirely on the analysis of a problem and does not take into
consideration what objects will play the various roles in the system. The findings in this thesis
are applicable also for such models.

A user creates a role model during the analysis of a new project. To prevent too much
detailed work at this stage, it would be advantageous if a tool could support the process by
identifying reusable candidates from a software development repository. The proposed ap-
proach implements support for a tool that can search a repository for models that are analog-
ous to the model being created. The user must then evaluate the identified models to see if
they are suitable within the project.

AR is used to identify similar cases from different problem domains. A similarity model
for OOram role models that uses a combination of structural and semantic information about
the models to identify similarities is proposed. At the time the ROSA project was initiated, this
was a natural choice.

The requirements of the similarity model are that it is able to distinguish potentially
useful models from the ones that cannot be reused. In the approach suggested in this thesis,
each named component in the model repository is linked to a word meaning in a term space.
This term space is modelled after WordNet, an electronic, lexical database.

During retrieval, information about structure and semantics of the models is used. All
new role models are given a structure description before they are stored in the repository.
This information is, during retrieval, used as an index. Semantic similarity among models is
during retrieval found by identifying distance in the semantic network. An upper bound for
the semantic similarity between a target model and each of the base models in the repository
is identified, and this result is combined with a structural similarity, based on the structure
descriptions, to form a retrieval similarity.

During the mapping phase, the most promising base models after retrieval are compared
to the target model. Mapping between a target and each of the retrieved base models is done
using a genetic algorithm that tries to optimize the mapping between the two models based
on their structure and semantics, resulting in a mapping similarity. The balance between
semantics and structure in the similarity model is vital both during retrieval and mapping.

Experiments are described in which analogies are identified between a target model and
the models in a repository containing 133 models. In this context a good analogy for a role
model is a role model for which we calculate a high mapping similarity. This implies that
the models have similar structure, and roles that are positioned at comparable positions in the
structures have similar semantics.

In 21 of 24 cases, the model with the highest mapping similarity is identified from
among the top 30 ranked models during retrieval. Experiments also show that if considering
the 5 highest ranked models according to mapping similarity in each of the 24 cases, more than
85 % of them will be localized among the top 30 ranked models after retrieval. The findings
reported show that the suggested approach is viable, although further studies are necessary.
The top ranked model may prove not to be the best analogy after further analysis. The user
must evaluate the mappings.

vi

Contents

Acknowledgments iii

Abstract v

List of Tables xii

List of Figures xv

Acronyms xvii

Chapter 1 Introduction 1

1.1 Motivation . 1

1.2 The ROSA Approach to Software Reuse . 3

1.2.1 Choice of Analysis Models . 5

1.2.2 Use of Analogical Reasoning Techniques 6

1.2.3 Semantics . 7

1.2.4 Retrieval of Analogous Candidates 8

1.2.5 Mapping of Base and Target Models 8

1.2.6 Scenario for Use of the ROSA Tool Prototype 9

1.2.7 Discussion . 11

1.3 Problem Description . 11

1.4 Research Design . 13

1.5 Overview of the Thesis . 17

1.6 Contributions . 18

vii

Chapter 2 Software Reuse 19

2.1 The Problems of Reuse . 20

2.2 The technical dimension of reuse . 22

2.2.1 Reuse of code . 22

2.2.2 Reuse of Software Artifacts from Analysis and Design 24

2.2.3 Techniques Applied to Software Reuse 33

2.3 The Process Dimension of Reuse . 37

2.4 Conclusion . 40

Chapter 3 Intelligent Approaches to Software Reuse 43

3.1 Analogical Reasoning . 44

3.1.1 Analogical problem solving . 44

3.1.2 Structural mapping and systematicity 46

3.1.3 Pragmatic approaches . 47

3.2 Analogical Reuse During Analysis and Design 48

3.2.1 Reuse of Artifacts during Analysis 49

3.2.2 Reuse of Artifacts from Design . 51

3.3 Case-based reasoning . 53

3.4 Case-based Reasoning and Software Reuse 54

3.4.1 AI-based Reuse System (AIRS) . 54

3.4.2 CAESAR . 55

3.4.3 Software Design Support . 55

3.5 Genetic Algorithms . 56

3.5.1 Natural Genetics . 56

3.5.2 Computational Genetics . 56

3.6 Genetic Algorithms and Reuse . 58

3.7 Discussion . 59

Chapter 4 Use of WordNet in ROSA 61

4.1 The WordNet Lexical Database . 61

4.2 Semantics in ROSA . 63

viii

4.2.1 Semantic Requirements of the ROSA Analogy Machine 63

4.2.2 The Semantics in OOram models 64

4.2.3 Example Role Models . 66

4.2.4 Discussion . 69

4.3 Solving Semantic Similarity Problems in ROSA 70

4.3.1 Naming Ambiguity in Software Development 71

4.3.2 Choice of Vocabulary . 72

4.3.3 Use of Word Collocations . 74

4.3.4 Filling the Term Space . 76

4.3.5 Related Work . 77

4.4 Discussion . 78

Chapter 5 The ROSA Similarity Model 79

5.1 Previous Software Component Similarity Models 80

5.1.1 The AIRS System . 80

5.1.2 Analogical Similarity of Objects—Conceptual Modelling 81

5.1.3 Systematic Software Reuse Through Analogical Reasoning 82

5.1.4 REBOOT . 83

5.2 Structural and Semantic Similarity in ROSA 85

5.2.1 Structure Descriptions . 85

5.2.2 Similarity During the Retrieval Phase 86

5.2.3 Similarity During the Mapping Phase 91

5.3 The Semantic Similarity Model . 94

5.3.1 Comparison of Synsets . 95

5.3.2 Similarity Models . 95

5.3.3 Adjustment for Possibility of Error in Sense Selection 99

5.3.4 Test of Semantic Similarity Models 100

5.3.5 Collocation of Terms . 102

5.4 Example . 103

5.4.1 Structural retrieval . 103

5.4.2 Semantic retrieval . 104

ix

5.4.3 Similarity during mapping . 107

5.5 Modifications of the Structural Similarity Model 107

5.6 Discussion . 109

Chapter 6 Prototype for the ROSA Case Tool 113

6.1 The Repository Model . 114

6.2 The Structure of the Term Space . 116

6.2.1 Simple Solution . 116

6.2.2 Extension to Permit Role Names that are Collocations 117

6.3 The Creation of the Term Space . 119

6.4 Reading OOram Role Models . 121

6.5 Model for OOram Components . 121

6.6 Determine Structure Descriptions . 122

6.7 Find Analogies . 124

6.8 User Interface for Analogy Search . 126

Chapter 7 Experiments 127

7.1 Preparations . 127

7.1.1 Content of the Term Space . 128

7.1.2 Content of the Model Part of the Repository 128

7.1.3 Test of Semantic Similarity Models 130

7.1.4 Tuning Parameters for the Genetic Algorithm 130

7.2 The Experiments . 132

7.2.1 Test Similarity Models on Real OOram Models 135

7.2.2 Map a Target Model onto Itself . 137

7.2.3 Compare Two Identical Runs . 137

7.2.4 The Importance of Modifiers . 138

7.2.5 Distinguish Between One and Many Ports in OOram 140

7.2.6 Adjust for Error in Sense Selection During Retrieval 143

7.2.7 Increase Weight on Structural Similarity During Retrieval 145

7.2.8 Increase Weight on Semantics During Retrieval 148

x

7.2.9 Punish Large Base Models during Semantic Retrieval 151

7.2.10 Remove Synthesized Models from Repository 154

7.2.11 Use of GA Fitness Function to Rank Analogies during Mapping . . . 157

7.3 Discussion . 159

7.4 Validity Evaluation . 163

7.4.1 Conclusion Validity . 163

7.4.2 Internal Validity . 164

7.4.3 Construct Validity . 165

7.4.4 External Validity . 165

Chapter 8 Summary and Conclusions 167

8.1 Summary . 167

8.1.1 Q 1: What kind of information is relevant 168

8.1.2 Q 2: How can we use this information for Retrieval and Mapping . . 169

8.1.3 Q 3: How can we balance information in identification of analogies . 170

8.1.4 Conclusion . 171

8.2 Future Work . 172

8.2.1 Evaluation of the Analogies . 173

8.2.2 Transfer of Information from the Analogy 173

8.2.3 Improvements and Extensions . 174

Bibliography 179

Appendices 188

Appendix A The OOram Methodology 189

Appendix B The WordNet Lexical Database 195

B.1 Nouns . 196

B.2 Modifiers . 197

B.2.1 Adjectives . 198

B.2.2 Adverbs . 199

B.3 Verbs . 200

xi

B.3.1 Lexical and semantic relations . 201

B.3.2 Polysemy . 202

B.4 Design of the WordNet Database . 202

B.4.1 Morphology . 203

Appendix C The DTD for OOram Models 205

C.1 The Initial DTD . 205

C.2 The Introduction of Modifiers . 206

Appendix D Example XML OOram Role Model 209

Appendix E Prolog Version of WordNet 213

E.1 Senses . 213

E.2 Hypernyms . 214

E.3 Glosses . 214

Appendix F Role Model Overview 215

xii

List of Tables

5.1 Matrix graph representation for the library sub-model 91

5.2 A semantic graph example for the role models in figure 1.4 using the semantic

similarity model in equation 5.8 . 92

5.3 Calculated similarity values between wt and wb in figure 5.3 (a) using the

different similarity models, where |lev(wt)−lev(wb)| = 1 102

5.4 Calculated similarity values between wt and wb under different circumstances

when |lev(wt)−lev(wb)| = 2 as in figure 5.3 (b) 102

5.5 Structure indexes for the models in the example 103

5.6 The role models compared with information on the role names used, the Word-

Net hierarhies where the word meanings of the names belong, and the synset

levels in these hierarchies. 105

5.7 The highest semantic similarity values found for each role in the target model

when it is compared to all roles in the base model according to the different

similarity models. 106

5.8 The final mappings between the two models using the semantic similarity

model in 5.8 . 107

5.9 Matrix graph representation for the library sub-model when MANY ports are

taken into consideration . 108

7.1 The outer limits of the genetic algorithm parameters tested 131

7.2 Overview of the experiments that have been performed 134

7.3 Chosen parameters for genetic algorithm and semantic similarity model . . . 135

7.4 Analysis of using multiplicity information with the Wilcoxon test 141

7.5 Results from the experiment . 146

xiii

7.6 Testing for the alternative method giving higher values 146

7.7 Effect of reducing weight of structural similarity 149

7.8 Results from using the sign test for median on the punishment data 153

7.9 Results when synthesized models are removed 156

7.10 Result when the 5 best analogies are considered 156

7.11 The 4 cases where one of the synthesized models is the best analogy 156

7.12 Results from using the fitness function to calculate the mapping similarity . . 158

7.13 The effect of reducing weight on structural similarity belief 159

7.14 Aggregated properties of all models and target models 165

B.1 List of 25 unique beginners for WordNet nouns 197

B.2 Relations coded in WordNet . 203

F.1 Overview of the role models used as targets in the experiments 215

F.2 Overview of role models used in the experiments 216

xiv

List of Figures

1.1 The OOram role model Request library card 5

1.2 The ROSA Tool with the target model displayed 10

1.3 The ROSA Tool after the search has been performed 11

1.4 The ROSA Tool after selection of a potential analogy 12

4.1 An OOram model for a library example where a borrower lends books (This

model is named Library sub0 in Table F.2) 67

4.2 An OOram model for a wholesaler example where a customer buys items

(This model is named Wholesaler Sub1b in Table F.2) 67

4.3 The structure of the two role models . 69

5.1 Structure abstractions (Tessem and Bjørnestad, 1997) 86

5.2 Example of an isomorphism from the example graphs 92

5.3 Trees with the nodes representing the word meaning of the target (wt) and

base (wb) and their closest common ancestor (wp) 96

5.4 Similarity model in equation 5.7: Each plot lev(wt) = i, where 1 ≤ i ≤ 10,

has lev(wp) = 1 and increasing difference between wt and wb. 101

5.5 Similarity model in equation 5.8: Each plot lev(wt) = i, where 1 ≤ i ≤ 10,

has lev(wp) = 1, increasing differences between wt and wb and k = 0.15. . . 101

5.6 Excerpts of WordNet hierarchies for word meanings representing the role

names used in the example . 104

5.7 WordNet hierarchy for nouns in this example 110

6.1 The top level repository structure . 115

6.2 The ROSATerm Space . 117

xv

6.3 The modified ROSA Term Space . 118

6.4 Term Space Construction Classes . 119

6.5 The Design for the Builder Pattern . 122

6.6 The OOram Component Hierarchy . 123

6.7 The Structure Identification Sub-system . 124

6.8 Classes Responsible for Identifying and Storing Analogies 125

7.1 Fraction of best analogies found pr. models mapped 136

7.2 Term space hierarchy related to library assistant 139

7.3 Fraction of best analogies found at position x after retrieval 142

7.4 Fraction of 10 best analogies found relative to rank after retrieval 147

7.5 Fraction of 5 best analogies found relative to rank after retrieval 147

7.6 Comparison of situations with the 5 and 10 best analogies 148

7.7 Fraction of 10 best analogies found relative to position after retrieval 149

7.8 Effect of reducing weight on structure during retrieval of 5 best analogies . . 150

7.9 Comparing the results for the 5 and 10 best analogies 150

7.10 Comparison of effect of increase of structural and semantic weight for 5 best

analogies . 151

7.11 Method m1 plotted against m2 and m3 respectively 154

7.12 Fraction of 10 best analogous models found with and without the synthesized

models . 157

7.13 Mapping of models from different application domain 160

7.14 Mapping of models with unequal structure 161

A.1 The OOram role model Request library card. 190

A.2 Relationships among object, role, type, and class in OOram (from Reenskaug

et al. (1996)) . 192

B.1 The 11 noun hierarchies in WordNet . 198

xvi

Acronyms

ACME Analogical Constraint Mapping Engine
AI Artificial Intelligence
AIR Advisor for Intelligent Reuse
ANN Artificial Neural Nets
AR Analogical Reasoning
COM Component Object Model—from Microsoft.
CBR Case Based Reasoning
CBSE Component-Based Software Engineering
CORBA Common Object Request Broker Architecture
COTS Commercial Of-The-Shelf software
DFD Data Flow Diagram
DTD Document Type Definition
ERD Eentity Relationship Diagram
IDE Integrated Development Environment
IDL Integrated Definition Language
GA Genetic Algorithms
GUI Graphical User Interface
IC Integrated Circuit
IR Information Retrieval
IS Information System
NN Neural Net
ODBMS Object-oriented Database Management Systems
OO Object Orientation
OMG Object Managing Group
OOram Object Oriented role analysis modeling
ROSA Reuse of Object-oriented Specifications through Analogy
SE Software Engineering
SME Structure Mapping Engine
STL The Standard Template Library—has become a standard for C++
UML The Unified Modeling Language—industry-standard from OMG
XML eXstensible Markup Language

xviii

Chapter 1

Introduction

The problem of software reuse has received much attention during the last few decades, see for

example Johnson and Foote (1988), Biggerstaff and Richter (1989), Rosson and Carrol (1990),

Maiden and Sutcliffe (1992), Tracz (1994b), and Heumesser and Houdek (2003). Main incent-

ives for this effort have been increasing software development expenses, delayed delivery, and

unsatisfactory software quality. Software developers who want to create software products of

high quality in a cost effective way must somehow build upon previous experience and work.

Suggested solutions have been concerned with technical, process-oriented or organizational

aspects of reuse.

This chapter starts by motivating my interest in software reuse, and goes on to give an

outline and scope of the ROSA project where analogical reasoning is applied to support reuse

of analysis models. A scenario is given to indicate how the envisioned tool support for reuse

by analogy can be realized. There follows a discussion of the research problem, a description

of the research design and an overview of the thesis and the outline of research contributions.

In this thesis, software reuse in general, refers to reuse of any type of asset or artifact from the

software development process that can be reused either as is or in a modified form. The term

software artifact is used to represent any such component.

1.1 Motivation

The earliest attempts of software reuse focused on language constructs and construction of

libraries of general, reusable functions. Such attempts were successful within narrow domains

1

2

such as graphics and mathematics. In many other domains, less specific and formal, a sim-

ilar approach turned out to be much more difficult. Solutions were searched for elsewhere,

and object-oriented languages and software frameworks were among the suggested solutions.

However, although valuable contributions, they were not the solution of the software crises.

Tracz (1988) claimed that software reuse had not evolved far beyond its most rudiment-

ary forms of subroutine, or class, libraries and brute-force modification. While at that time

claiming that artificial intelligence (AI) had not contributed to software reuse, Tracz (1994a)

argued that “software reuse is the common ground where AI and software engineering will

meet”. This was attributed to the strength of AI within knowledge acquisition and representa-

tion experience. When trying to reuse artifacts from earlier stages of the software development

process, i.e., prior to coding, AI is considered particularly important.

It has long been realized that software reuse must be planned, and that it must be in-

tegrated into the software development process itself. Schmidt (1999) stated that although

opportunistic reuse takes place when software developers cut and paste code previously de-

veloped by themselves or by others within a small group, this type of reuse does not scale

up for large projects and widespread use. This field has received increased interest in recent

years, e.g., Conradi (1996), Lam, Jones, and Britton (1998), Sutcliffe (2000), Frakes (2002),

and Sherif, Appan, and Lin (2006). The goal is to achieve systematic software reuse, and this

requires both organizational and technical changes.

Large scale reuse can only be achieved if a systematic reuse process is established. This

includes reuse from early phases such as requirements engineering in addition to code reuse

(Lam et al., 1998). Organizations that develop applications within one domain may have a

particularly good reuse potential. It is easy to accept that models can be reusable within a

given domain, because many of the components may be similar, and often the way that these

components are interconnected will also be the same. However, a lot may also be gained by

applying reuse across domains. Sutcliffe (2000) gives an example of how generic domain

models can be reused as templates across domains. The use of analysis patterns is another

area where analysis reuse can be accomplished across domains (Fowler, 1997).

It is important both to make available reusable assets, create incentives in the organiza-

tion to make use of them, and make available and motivate people to use tools that can help

3

reuse to take place. To develop domain models for any given domain is a demanding and time

consuming task. One of the suggested ways of creating domain models is by studying existing

systems and extracting the domain knowledge from them (Neighbors, 1989).

In recent years, focus has shifted more and more towards component-based develop-

ment. Several definitions exist of what a component is, but an often-used definition is that of

Szyperski et al. (2002), where a component is a unit of composition deployed independently of

the product. One effect of this shift is that the developer has less control over the architecture

and design of a new system because so many design decisions are already taken by component

developers. The developer’s design decisions are now shifted more in direction of selecting

the right components, in contrast to a situation where you design your own components from

scratch. In this last situation, Wallnau, Hissam, and Seacord (2002) claim that decisions about

the design of the components’ interfaces are more important.

If available components do not exactly match the requirements for the system, these

requirements, according to Conradi (1996), may have to be modified or relaxed. To make

software design less tedious when reusable components are involved, it will be advantageous

to identify the reuse potential prior to the design stage. Thus previous successful designs can

be taken into use as reusable components. Cechich and Piattini (2007) suggest an approach of

identifying candidate components where functionality evaluation drive the analysis to exclude

candidate components so that the best alternative remains.

1.2 The ROSA Approach to Software Reuse

The ROSA (Reuse of Object-oriented Specifications through Analogy) project was initiated by

Tessem and Bjørnestad in 1994 and ran at the Department for Information Science at Univer-

sity of Bergen through 2006 (Tessem, Bjørnestad, Tornes, and Steine-Eriksen, 1994; Tessem

and Bjørnestad, 1997). So far the project has produced four Master theses (Tornes, 1995;

Steine-Eriksen, 1995; Ul-Haq, 1997; Midttun, 1998) and one PhD thesis (Ellingsen, 1997a).

Several of these projects have studied the use of individual techniques for used for mapping

in isolated projects. The overall goal of the project was to study how identification of reuse

candidates could be done early in a software project, as this may reduce the project’s use of

resources, and result in a product of higher quality. A components that have been tested in

4

other contexts than the one it was developed for, will have a higher quality. Several techniques

within artificial intelligence has been applied, i.e., artificial neural nets (ANN), the structure

mapping engine, and genetic algorithms.

We look at the reuse potential during the analysis phase of a software development pro-

ject. Identifying reuse opportunities during this stage will have the potential to increase reuse

during later stages of the process as both software architecture and implementation details

may be reused. This is in line with e.g., Sutcliffe (2000) and others that work on reuse of

requirements and domain analysis.

Artifacts produced during software analysis and design are typically requirements and

models of various types. The types of models depend on the software development methodo-

logy used. To be able to reuse such models, their most generic properties should be identified.

This will make it easier to find the best reuse candidates among which the developer can then

choose.

According to Maiden (1992), evidence has been established that experienced software

developers use analogies when solving new problems, while novices are mostly concerned

with the programming constructs of the programming language itself. We suggest the incor-

poration of analogical reasoning, AR, as an integral part of the software development tools.

The software developer may be aided through the process of creating software artifacts by

getting suggestions of potentially reusable artifacts from previous projects. Thus, it is a goal

to identify the best analogies for analysis models. The motivation is that analogies may turn

out to be reusable, and that part of its solution may be reused in the new project.

Midttun (1998) implemented a prototype repository under my supervision, with an re-

trieval algorithm based on simple role name similarity during retrieval. This is discussed

further in chapter 6. This algorithm could, however, not give a good semantic similarity

measure. This model is replaced by the semantic similarity model described in this thesis,

where role names can be picked from the whole vocabulary of an native English speaking per-

son. The mapping phase is covered in addition to retrieval, and a genetic algorithm (Tessem,

1998b) is used during the mapping phase to identify good mappings. This new implement-

ation is described later in this thesis. The repository contains far more models, and a large

set of experiments have been executed. This set includes experiments that vary the amount of

5

information that is stored about the reusable artifacts, i.e., OOram role models.

1.2.1 Choice of Analysis Models

OOram (Object-oriented role analysis modelling) models Reenskaug, Wold, and Lehne (1996)

have been applied in this study. Appendix A gives an overview of OOram in general, with

particular emphasis on the analysis phase. ROSA supports OOram role models in a simple

form. Each role model consists of a set of roles, with one role being the stimulus role that

initiates the activity in the model. A role can be connected to, or knows about, one or several

other roles. A role may be able to send any one of a given set of messages to the other roles

that it is aware of. An example role model is given in figure 1.1. Here the role borrower,

marked with a dashed line, is the stimulus role. The small circles represents ports indication

whether the role knows about a single (simple circle) or several (double circle) occurrences of

the role at the other end of the path.

Figure 1.1: The OOram role model Request library card

OOram role models are chosen as examples of reusable components for two reasons.

First, their intended use is to describe components during the analysis phase. Second, only the

roles objects play are described, thus permitting the developer to delay considerations of what

concrete classes will be used to fulfill a particular responsibility until the design phase. Activ-

ities performed during analysis are supposed to be directed towards the application domain,

and it is an advantage to use a method that enforces this focus. Role models describe roles that

communicate with each other, so it is not primarily a static description. They do not, however,

show the message sequence as in Unified Modelling Language (UML) sequence diagrams.

The diagram in UML 2 that resembles the OOram role models the most, are communication

6

diagrams like sequence diagrams. These may, among other things, be used for modelling us-

age scenarios. A usage scenario is a description of a potential way a system is used (Ambler,

2004). The UML sequence diagrams does not, however, capture cardinality information on

communication among the classes like the OOram models do for roles.

For reuse of software development artifacts to be possible, a large repository of such

artifacts must be available. The repository should support traceability among components,

implying that if a potentially reusable component is identified during analysis, it should be

possible to study relevant artifacts from later phases to see if there is a real option for reuse.

The ultimate goal is to reuse as much as possible of the relevant artifacts from later phases as

well.

To be able to study this approach, techniques for knowledge representation, analogical

reasoning techniques for retrieval and matching of analogical cases, as well as general tech-

niques used in software development tools, including repository organization, browsing, and

user interfaces, must be considered.

The choice of object-oriented modelling technique is not important, and the AR tech-

niques proposed can most likely be used with any major object-oriented methodology. OOram

was selected due to its focus on roles rather than classes. Today I might have chosen UML as

the supported modelling technique, due to its much larger user community.

1.2.2 Use of Analogical Reasoning Techniques

Various techniques from AI, and particularly AR, have been tested within the ROSA project to

evaluate their applicability for reuse of object-oriented specifications. Theory from AR, e.g.,

Gentner (1983), advocates that structural similarities is used to identify analogies. This theory

is used as the foundation for the current approach. However, a methodology for using AR

in software reuse must be fine-tuned with respect to what information is actually present in

the repository of reusable components and what part of this information that is most likely to

identify analogies that can be reused (section 3.1 discusses AR in more detail).

Thagard (1988) proposes a more pragmatic approach to analogical reasoning. He sug-

gests that one should take into consideration how well the computational account of analogy

corresponds to the experimental facts of human thinking, i.e., to identify what is the goal of

7

using analogies. This implies trying to identify what is the purpose of using analogical reas-

oning and to try to use it in a way that fulfils that goal. I suggest a hybrid approach where

a similarity measure is based on similarity of both structural and semantic information. How

these similarity measures are to be balanced will thus be a question of analysis.

When a software developer performs analysis for a new project, he should have the

option of using AR at any point in the process to automatically identify components from

previous projects similar enough to be reused, in part or in whole. The system should give

an estimate of the closeness of the match, so as to indicate the amount of work needed for

modifications. The developer should be given access to all artifacts from both design and

implementation of the project of choice so that he can realistically make his selection.

AR consists of 4-5 phases, where the first two are typically retrieval and mapping. Much

research in AR focus on the mapping phase, where a potential reuse candidate is selected, and

the system analyze whether it is actually a good analogy. However, for reuse to be successful,

both retrieval and mapping should be given automated tool support. I propose an approach

that, during the mapping phase, needs to analyze as few models as possible, and still ensure

that the best possible matches are included in the selected set of models. This requires that

the retrieval phase, although it uses a different and more imprecise approach for identifying

reuse candidates than the mapping phase, will rank the models such that the best analogies are

included among the top ranked models.

If potentially reusable artifacts are identified early in the process, I assume that artifacts

from later phases may also be reusable. As I do not perform experiments where expert users

identify the best analogies for a given role model, I assume that the best analogies are the

ones that get the best mapping similarity. This assumption should be tested. In the following

I briefly describe my approach of handling semantics and structure.

1.2.3 Semantics

To support analogical retrieval based on semantic information in role models, the repository

has been extended with lexical content modelled after WordNet (Fellbaum, 1998c). WordNet

contains all words of a person with English as his first language with these terms interconnec-

ted through various relations. This makes it possible to identify synonyms, specializations, as

8

well as generalizations. All the roles in the models are named using terms from WordNet. If a

phrase selected as role name does not exist (typical special collocations often used in models

of various kinds), ROSA has been implemented to determine the semantic similarity without

inserting additional terms, while still using WordNet relations to identify similarities.

1.2.4 Retrieval of Analogous Candidates

Much research within AR has focused on the mapping of properties from one situation or

problem to another. One assumes that candidate analogies have already been identified. The

mapping is but one phase of the process, however, while retrieval of potential candidates for

analogy is another that must be carried out prior to mapping. In research within AR, the

retrieval phase has been given less emphasis. Using AR to help identify reusable software

artifacts, requires sharp focus on both these phases. Output from the retrieval phase, in the

form of candidate models, is used to identify the best analogies during mapping.

Retrieval of potentially analogous models should be fast and result in the best candidates

being identified. The best match should be among the highest ranked models because if the

user has to inspect too many models, AR may not be worthwhile doing. To avoid an exhaust-

ive analogical mapping of all role models, each of which can be arbitrarily complex, structural

information about the models is calculated before a model is stored in the repository after

its creation. My approach to retrieval based on structure and semantics is described in sec-

tion 5.2.2. Since analogies are based on structural relationships, this information is searched to

find structural similarity during retrieval. Experiments performed by Tessem (1998a)on syn-

thetic OOram models indicate that retrieval should be based on a combination of a structural

and semantic similarity.

1.2.5 Mapping of Base and Target Models

In the context of the ROSA project, several methodologies have been tried out for use during

mapping, e.g., Ul-Haq (1997) tested the structure-mapping engine, SME, originally described

by Falkenhainer (1988); Falkenhainer et al. (1989), Ellingsen (1997a) studied the use of ar-

tificial neural networks, and Tessem (1998b) tested the use of genetic algorithms. All these

experiments were performed as stand-alone test applications with synthetic data. The tech-

9

nique that seemed most promising among these and that is selected for my project, is based

on genetic algorithms. The implementation uses GAlib (Wall, 1996). Section 5.2.3 describes

how genetic algorithms are used to optimize the mapping between two models based on both

structure and semantics.

1.2.6 Scenario for Use of the ROSA Tool Prototype

To illustrate how a software developer might utilize analogical reasoning, a prototype of the

ROSA Tool has been developed. It shows how an AR facility can be used to identify analogies

to a role model, and browse through the resulting set of models to evaluate the suggested

models. Being a prototype, the tool does not include an editor for OOram models, although

a model editor should be part of a ROSA Tool for it to be useful for a developer. Instead, all

the OOram models used in the experiments were created using the Taskon OOram tool. These

models were saved as gif-images with a name unique to each model. Thus the OOram role

model editor can be simulated in combination with the AR facility both during search and

when the evaluation of the results after the AR mapping has been performed.

Figure 1.2 shows the ROSA Tool after the user has selected an OOram target model. The

user writes the name of the model for which he wants to see analogies1. If a model with that

name exists, it is displayed in a target model window frame.

The user may modify one parameter for the analogy machine, i.e., a lower threshold for

the probability of a base model being analogous to the target model after retrieval with a value

between 0 and 1. A value of 0 means that all models in the repository will be included in

the resulting list of analogies no matter how bad the mapping similarity is, and 1 implies that

only identical models are retrieved. A systems developer does not necessarily have knowledge

about AR, and the system has a default value of 0.6. If left unchanged, only base models with

a probability of being analogous above 0.6 will be transferred to the mapping phase. In the

example shown, however, the value has been changed to 0.0. All models in the repository are

thus mapped to the target model.

When the analogy mapping is completed, the model names are displayed in the middle,

right frame (see figure 1.3). The models are ranked according to their mapping similarity. The

1In a fully developed system a graphical editor would be used to draw the model.

10

Figure 1.2: The ROSA Tool with the target model displayed

number of models present in the repository is displayed, and in this case there are 133 models.

The user can now select a model or browse through the list. In figure 1.4 the user has

selected a model that is displayed in the lower, left frame. The mapping similarity and the

selected mappings between roles in the two models are displayed in the lower, right frame.

A support tool should let the user analyze further the properties of the suggested model

to evaluate what parts of the previous project can be reused. If the tool had the functionality

of the Tascon OOram tool, the scenario description, all attributes, methods, their parameters

possibly with types, can thus be inspected. If the chosen base model has been synthesized,

i.e., combined with other models in the project it belongs to, these models may in turn be

inspected, and also, further design and implementation information may be analyzed to see

how good the match is. However, these activities belong to later phases of AR, e.g., transfer.

This, however, lies outside the scope of the ROSA project, and is not supported by the current

prototype.

11

Figure 1.3: The ROSA Tool after the search has been performed

1.2.7 Discussion

This section presented an overview of the ROSA project. Previous experiments in the project

have all been concerned with isolated aspects of the system, i.e., part of the repository or a

technique used to identify analogies, using synthetic data, while my project intends to bring

these aspects together.

In this thesis, OOram role models are used as examples of analysis artifacts. I believe,

however, that the described techniques can be applied to any type of model that can be conver-

ted into a directed graph, and where the nodes in this graph have semantic information related

to them. In the following chapters the problems that are the focus of this work, as well as the

approaches chosen to solve them, will be discussed.

1.3 Problem Description

As mentioned above, I am interested in what properties of the analysis models that are import-

ant for identifying reuse candidates with as little effort as possible. I want to study if AR can

12

Figure 1.4: The ROSA Tool after selection of a potential analogy

be used to identify reusable software development artifacts from early software development

phases. Also, to be able to identify the candidates in an efficient way, I investigate how a re-

pository of such components should be organized and how similarity can be measured during

the retrieval and mapping phases of artificial AR.

The overall research question is stated as follows:

MAIN RESEARCH QUESTION: Is analogical reasoning a viable approach to identifying po-

tentially reusable artifacts from early phases of the software development life cycle?

If potentially reusable artifacts, e.g. analysis models, are identified early in the process, arti-

facts from later phases may also be reusable. If so, reuse of analysis models paves the way

for more extensive reuse in later in the process. The artifacts in question in this thesis are

OOram role models. Due to lack of experiments involving expert users examining models

to determine whether they are analogous or not, the thesis investigates the retrieval phase of

artificial AR in particular, assuming that models with a high rank after analogy mapping are

good analogies. The aim is to perform analogical retrieval and mapping where good analogies

also get a good rank after retrieval. The above question is therefore operationalized to make it

better suited for experimentation:

13

OPERATIONALIZED RESEARCH QUESTION: Is analogical reasoning a viable approach to

retrieving potentially reusable OOram role models from a test bed of models?

The experiments performed address this operationalized research question. To make it even

more concrete three sub-questions that can either be analyzed conceptually or tested experi-

mentally, are stated. These are formulated in such a way that their combined answers address

the above research question.

Q 1 What kind of information is relevant to identify analogies between role models?

Q 2 How can we use this information to realize both retrieval and mapping of analogies?

Q 3 How can we balance this information in the identification of analogies?

1.4 Research Design

Based on the research questions given above, I here outline the steps taken to define analysis

and experiments. The main research question as given above is so general that it can, at best,

be answered indirectly. The operationalized research question is more directly focused on the

set of experiments that are preformed. To be even more direct, the experiments are directed

towards the set of sub-questions that I have outlined.

To be able to answer these more detailed questions, analysis and experiments have been

performed in a given sequence. They are ordered so that approaches and algorithms can be

selected and parameters tuned before the final tests are performed. Answers to sub-questions

may then be incorporated into the overall solution in order to give better overall results and a

potentially more precise answer to the overall question. The following list outlines how the

research questions will be addressed.

(Q 1) According to analogical reasoning, structural similarities are more important than sur-

face similarities, i.e., names, for identifying analogies. However, Thagard (1988) claims

that one should look at structural, semantic and pragmatic approaches. The repository

must contain information about the structure of the models as well as a means to identify

semantic similarities. In addition to the models’ structure, the repository should contain

14

information about the semantics of the models. The use of WordNet as a model for

structuring the semantics of a term space for the repository is discussed in section 4.3.

In section 4.3.3, I discuss how a systems developer can pick a name for an OOram arti-

fact, even if the name does not exist in the repository. I assume that all single, ordinary

words exist in the repository. The problem may occur when a compound phrase, or

collocation, is required. In section 5.3.5, I discuss what this implies for the semantic

similarity model, and section 6.2.2 covers the implications for the design of the reposit-

ory. In chapter 7, the proposed solution is tested.

To find out if inclusion of multiplicity information on the model ports improves the

results of the mapping phase, an experiment that compares two situations; one with and

one without such information. Multiplicity information is not used during retrieval, so

it may only have an effect on the ease with which the genetic algorithm identifies a

better mapping, and thereby on the rank of the base models in terms of their mapping

similarity values. These experiments are discussed in section 7.2.5.

(Q 2) A semantic similarity model capable of identifying similarities among models in a large

set of role models must be identified. A requirement is that it should be efficient during

both retrieval and mapping. This is discussed in chapter 5.

1. Two semantic similarity models are evaluated to see how they behave under dif-

ferent circumstances before one model is selected for the repository. Such experi-

ments are discussed in section 5.3.4.

2. These similarity models are tested on a set of role models. Experiments using

the two similarity models were set up to fine-tune important parameters for the

algorithms used. These experiments are described in section 7.2.1.

The system must handle problems with polysemy (same word with different meanings)

and synonymy (different words with same meaning) without putting too much strain on

the software developer and without spending too much time developing or enhancing

the semantic database. These problems are discussed in section 4.3. To find out whether

the lexical database is sufficient to identify semantic similarities, controlled experiments

15

when it comes to use of synonyms and words that are semantically closely related, are

needed. Experiments of this type are described in section 7.2.

To find out whether structural information of role models and names of roles are enough

to identify analogous role models, I perform a set of tests where 24 different target

models are used. The target models have been selected so they vary both in terms of

application domain and size, the smallest difference being that one single role has a

different word meaning. For all these experiments, the repository contain the same set

of models. When describing the specific experiments, I will comment on the differences

that exist between the specific target models (see chapter 7).

To find out how many models should be mapped to be able to identify the model with

the highest mapping similarity (which should be the best candidate for an analogy), I

carry out a set of experiments with different target models to see what rank the model

with highest mapping similarity has after retrieval. This requires that tests must keep all

base models also for the mapping phase in order to get all models’ mapping similarity.

See experiments in sections 7.2.1 and 7.2.5, where I analyze at what position the best

analogy for 24 cases are found after retrieval.

A target model can be mapped to a model that is a synthesized model containing the

target model itself (or a model analogous to the target model). If an analogy is found in

such a situation, the extra information that this model contains might prove reusable, so

it is important that these models are also retrieved. On the other hand, due to the way

semantic retrieval is performed, large models might get a high score even though the

mapping similarity turns out to be small. There could exist different situations where

1. all roles of both target and base models are mapped,

2. all roles of the target model are mapped,

3. all roles of the base model are mapped, and

4. there are roles in both the target and base models that are not mapped.

Experiments are performed where different types of penalties are given in the above-

mentioned situations, and the results are analyzed based on how good the results are.

Such experiments are discussed in section 7.2.9.

16

(Q 3) The analogical reasoning process should be efficient with high recall and precision ra-

tios. Efficiency can be increased by reducing the number of base models sent to the

mapping phase, which is the most expensive part of the process. To achieve this, it

would be useful to identify a retrieval similarity value below which there will be no

good analogies. If this is difficult, the user should be able to set such a value based on

experience. This value represents the default lower threshold.

More interesting than the precise mapping similarities are the ranking of the models.

The models that are found to be the best analogs after mapping, should preferably also

be given a high rank after retrieval. The user should be presented with a list of models

ranked according to decreasing mapping similarity.

Tests performed by Tessem indicate an equal weighting between structural and semantic

similarity, and I take this as a starting point. It is important, however, to point out that

Tessem’s tests were not performed on role models, and that semantic similarity in his

case was defined as having identical name.

Since the structural positions of roles in a role model are not taken into account during

retrieval, the semantic distance between any two role meanings may have less import-

ance during this phase. The reason is that the role in the base model with the highest

semantic similarity is chosen without consideration for its structural position. Another

point is that this phase should be as quick as possible, and there should not be added

more complexity to the algorithms than necessary.

To decide whether structure and semantic similarity should be given equal weight, ex-

periments using varying weights are set up. Such experiments are done on a set of target

models. Description of such experiments is given in sections 7.2.7 and 7.2.8.

The results are presented in the following chapters. My approach to organizing the

semantic information is described in section 4.3, the similarity model is discussed in chapter 5,

and the ROSA prototype in chapter 6. In chapter 7, I discuss the environment and preparations

for the experiments, the experiments themselves and their findings.

17

1.5 Overview of the Thesis

The rest of the thesis is organized as follows.

• Chapter 2 describes research within different fields of software reuse.

• Chapter 3 presents AI approaches, such as analogical reasoning (AR), case based reas-

oning and genetic algorithms, and discusses how these techniques have been applied for

reuse of software components, particularly from within analysis and design.

The results are then presented in the remaining chapters through analysis and a descrip-

tion of the experiments that have been performed, together with suggestions as to where to go

from here.

• Chapter 4 presents work on organizing semantic knowledge using the lexical database

WordNet and describes my approach to integrate linguistic information in the descrip-

tion of OOram components. The intention is to see if this structure can be used in

software development, and possibly during reuse of such components. The chosen ap-

proach is then compared to related work.

• A similarity model for the ROSA project is presented in chapter 5. This model will

be used to find analogies, and experiments using this model may reveal that modifica-

tions are needed. The chapter also presents my approach to combine the structural and

semantic information in the retrieval and mapping phases of AR.

• The new, extended version of the ROSA’s prototype, and some aspects of design and

implementation, are presented in chapter 6.

• Chapter 7 presents the experiments that have been conducted and their results.

• Finally, conclusions and ideas for further work are given in chapter 8.

The thesis includes the following appendixes

• A presentation of the OOram methodology is presented in appendix A.

• Appendix B describes the WordNet lexical database that is used to model the semantic

information of the role models.

• The DTD for OOram role models is shown in appendix C.

• Example role models in XML format using this DTD is given in appendix D.

18

• An explanation of the Prolog files from WordNet that are used in the experiments is

presented in appendix E.

• Finally, a list of the role models that are used in the experiments is given in appendix F.

For each model there is information about its number of roles and the structure descrip-

tions that are stored for that particular model.

1.6 Contributions

The contributions of this thesis can be identified within the following areas.

• Analogical reasoning used in a practical attempt to identify analogical OOram models,

where the approach covers both the retrieval and mapping phases of AR.

• A semantic similarity model developed to identify similarity between OOram models

using WordNet to model the semantics. The overall similarity model is based on both

structural and semantic similarity.

• Experiments in which the relationships between structure and semantics are analyzed to

optimize search.

The use of WordNet is particularly important as it secures the availability of a com-

prehensive term space developed by expert lexicographers. If the role models are created in

cooperation with domain experts one can to a certain degree rely on the fact that terms from

the domain have been applied in the models. If not exactly the same term has been used for

a specific phenomenon in different models by different people, one would assume that the

chosen terms will have at least some semantic similarity.

In this research experiments with several semantic similarity models during retrieval,

have been undertaken. It turns out that a fairly simple similarity model based on WordNet

gives a sufficiently good result. The more complex algorithms studied have given significantly

better results. This indicates a pragmatic approach of choosing a simpler similarity model and

using the saved time to map more models instead is fruitful.

Chapter 2

Software Reuse

The idea of software reuse can be traced back to McIllroy (1976) who says he “would like to

see the study of software components become a dignified branch of software engineering 1.”

Moreover, he would like to see “standard catalogues of routines classified by precision, robust-

ness, time-space requirements and binding time of parameters.” This idea was later picked up

by Cox (1987), who envisioned that the use of object-oriented technology would allow us to

buy software IC’s off the shelf much the same way we buy hardware IC’s. While this vision

has not yet been attained, a lot of effort has been put into developing components, techniques,

and tools to allow us to move in that direction. The closest we have come to this is the use of

commercial off-the-shelf (COTS) software, that are built to be assembled into applications.

Deutch (1989) has defined software reuse as the utilization of an existing software com-

ponent in an environment or for a purpose other than that for which it was originally intended,

usually by changing some aspect of it and/or by using it as a component together with other

components. In this thesis the emphasis is put on components that are not what you would

typically call software components such as classes or module, but rather on artifacts from

analysis.

Software artifacts that have been reused within different contexts are likely to be more

robust and have higher quality than artifacts used only once. Each time they are reused, they

are tested within a slightly new context, and yet undiscovered errors may be detected. Thus

1The term component, as used here and in Biggerstaff and Richter (1989), means any kind of software artifact.
This is different from what is meant in component-based development: “A software component is a physical
packaging of executable software with a well-defined and published interface”(Kobryn, 2000).

19

20

the reuse intensity of software artifacts can be considered a quality indicator.

The discussion of software reuse may be split along three important dimensions.

• technology, i.e., what technologies are available to support reuse—including the soft-

ware artifacts we reuse and the techniques we apply (section 2.2),

• the process we apply when we either develop new software or reuse existing artifacts,

i.e., how are the techniques incorporated in the software process itself (section 2.3), and

• the organization we try to build to enable and support this process; incentives and a

culture for reuse are required.

Attempts have been made to incorporate aspects of all these dimensions into a methodology

with accompanying tools. Some early attempts of such incorporation are the REBOOT (Ri-

bot, Bongard, and Villermain, 1994) and STARS (Software Technology Adaptable Reliable

Systems) (Creps, Prieto-Diaz, Davis, Simos, Collins, and Wickman, 1993) projects. A very

different approach is described by McCarey, Cinnéide, and Kushmerick (2005) for use within

agile software development projects. They propose to use an agent to recommend components

from a repository. As there is little documentation or other support material produced in agile

projects, the Rascel (Recommender agent for agile reuse) tracks the usage histories of a group

of developers, under the assumption that the users are likely to use again components that they

have previously been using.

In this chapter, reuse is discussed along the first two dimensions listed above2. While

the technical dimension is the main focus of this thesis, I also illustrate how the suggested

techniques can be incorporated in a software development tool. The organizational dimension,

however, is completely left out, although this omission does not imply that it is considered

unimportant. First, however, I look at what has been described as the reuse problems.

2.1 The Problems of Reuse

Although the types of software artifacts that can be reused may vary, the problems we face

when trying to reuse them are similar. Four problems related to reuse in general are identified

by Biggerstaff and Richter (1989). They are to:

2A previous version of this chapter can be found in Bjørnestad (2001).

21

1. find components

2. understand components

3. modify components

4. compose components

Of these, they consider the understanding problem to be the most fundamental. It is important

that the user acquires a mental model of the part to be reused, and assisting tools should

therefore be offered.

One main problem when it comes to reuse of code components is that they must be

general enough to be used in slightly different contexts, yet specific enough to apply effectively

to the design tasks at hand. This problem has to do with how the components, e.g., classes,

are designed. To find the components most suitable for solving a particular problem, we must

study what are the best criteria to describe the components.

Gall, Jazayeri, and Klösh (1995) draw problems from the experience made with software

reuse. One of these problems can be categorized within the technology domain, namely, what

is the unit of reusability, i.e., what is the right component, and how to build it? Their answer

to this question is mainly directed towards the software development process, and I shall

therefore delay the discussion of it until then. They also emphasize, however, as have many

others, that software has to be designed for reuse. For reuse to be successful, the techniques

chosen must be fully integrated within the software development process.

Within the organizational dimension, several problems have been listed. For example,

Zand et al. (1999) emphasize that for people to be willing to reuse software artifacts, the

available artifacts must have a certain degree of credibility, i.e., how do we assess the reliability

of a reuse approach? So far, not many experience reports have been published, and Tracz

claims that if such projects fail, they are not likely to be reported. A study of the barriers,

both personal and organizational, of adoption of a reuse program, is presented by Sherif and

Vinze (2002). They present a series of propositions that try to explain what is the cause of

such barriers.

Of the problems listed above, I will focus on the first two, namely finding and under-

standing components. As mentioned elsewhere, however, the software process must be taken

seriously, and it should be made feasible to integrate the techniques that are developed into a

22

software development tool.

2.2 The technical dimension of reuse

This dimension can be seen in terms of the software artifacts we reuse, and the technologies

we use to achieve software reuse. The two main categories of approaches to reuse will guide

which types of components will be reused: 1) Constructive approaches that focus on structur-

ing new artifacts, or applications, from existing components. 2) Generative approaches using a

high-level specification language to automatically generate an application, either by inference

rules, transformational rules, or other types of formalizations Biggerstaff and Richter (1989).

The discussion in this thesis, however, will focus entirely on the constructive approaches.

These approaches have also received the most attention thus far.

Throughout the last decades, software reuse has become more and more emphasized,

and a shift can be seen from a predominant focus on reuse of code towards reuse of artifacts

from earlier phases of the software development cycle. The types of reusable software artifacts

reported in the literature range from code fragments and simple, well-defined functions in the

early days, through the use of class libraries, to the current situation where there is no limit to

what can be reused, at least in principle.

Efforts reported concerning reuse of code are discussed in section 2.2.1. Thereafter,

reuse of software artifacts from analysis and design is discussed in section 2.2.2, and the

techniques applied to enhance reuse are discussed in section 2.2.3.

2.2.1 Reuse of code

During the early history of software reuse, the main focus was reuse of code. Third-generation

languages had built-in constructs for writing functions or operations as abstractions over basic

program statements. Libraries of simple functions were built, particularly within domains such

as mathematics and graphics, where a clearer understanding of the domain existed. Here, each

function has one clear, logical meaning in the application domain, and it is easy to separate

it out in one short, simple function with a simple interface. The programmer was thus freed

from low-level details of coding and could concentrate on an increasingly higher level of

23

abstraction. At the same time it did not require a great investment of time to understand the

functions. In many other domains there is not always such a clear understanding of how to

split the functionality into separate units or components, and there is often a much greater

variability in required interface to other components.

The code produced and the problems solved have become increasingly more complex

over the years. At the same time we have seen a move towards increased use of data encapsu-

lation or information hiding. There is a development via abstract data types, object-oriented

classes and class libraries, to frameworks (Johnson and Foote, 1988), the use of design pat-

terns (Gamma, Helm, Johnson, and Vlissides, 1995), and software components (Brown and

Wallnau, 1998; Kobryn, 2000). The sequence of this listing goes towards more and more

complex artifacts where increasingly more design knowledge is captured. The key point is to

make software artifacts as self-contained as possible in order to ease their combination with

other components. However, this is not as simple as was originally envisioned. Classes that

are not designed to work together will probably not do so, except in the simplest cases (Berlin,

1990). The last three of these technologies will be discussed in the next section, as I consider

them to be more reuse of design.

The more complex a component is, the more design information has been made part

of it. By this I mean information about how the component is designed to work together

with other components i.e., what role it plays in an application. According to Johnson and

Foote (1988), frameworks are examples of such design. Whitehurst (1995) refers to reuse of

frameworks as systemic reuse. I discuss frameworks in the next section.

Object orientation, more than any other programming approach, supports data abstrac-

tion, encapsulation, and information hiding. Reuse is made possible through the definition

and modification of classes. Modifications can safely be made because the information be-

longing to an object, the object’s knowledge, is encapsulated within this object rather than

distributed throughout the system, and the side effects of changes are thus minimized. A class

is an atomic entity that describes the common set of behaviour among a set of objects. Objects

are instantiated from existing classes, and new classes are created, through subclassing, as

specializations of existing classes.

Programming in Java, Smalltalk, or other languages where rich class libraries are avail-

24

able, requires the programmer to have a good understanding of the class library. The user

must know where to look for candidate classes for reuse, and what the responsibilities of

the individual classes are. The Smalltalk-80 class hierarchy contains hundreds of classes and

thousands of methods. Accordning to Rosson and Carrol (1990) this can be quite confusing

for a programmer not familiar with Smalltalk, and it may take several years before a program-

mer becomes fluent in using the library. The Java library3 contains 2098 classes organized in

135 packages of differing size and complexity as well as 625 interfaces. The number of meth-

ods is close to 20,000, although use of polymorphism makes the number of unique method

names much lower. To give an indication of this, the library contains 267 versions of the

toString() method. For each new version, the complexity increases as new packages,

classes and methods are added for solving new problems. Another complicating issue is that

when some methods and even classes are replaced by others, they are not removed from the

library, but merely marked as deprecated. One could say that the bigger the reuse potential, the

bigger the problem of understanding. In the cases where an application framework is avail-

able, the user must understand the design philosophy behind the framework, or the design and

architectural patterns, if used, instead of every single class in the system.

To overcome the finding problem in agile development, McCarey, Cinnéide, and Kush-

merick (2005) propose the use of a recommender system. The motivation is twofold: 1)

Recommend software components that the developer is interested in. 2) Recommend useful

components that the developer may not be aware of. The components that they refer to are

Java methods. An recommender agent tracks usage stories of a group of developers. Re-

commendations are made using a collaborative filtering approach with use of content-based

filtering to order the recommendations.

2.2.2 Reuse of Software Artifacts from Analysis and Design

The motivation for identifying potential reuse prior to the implementation phase is that when a

design has been completed, available code components may be unsuitable. Small differences

in design decisions may determine whether reuse of a specific class is possible or not. The

alternatives that exist in the cases where incompatible design choices have been made, are

3Java 2 platform, standard edition version 1.4.2

25

either to re-design or to code from scratch. Tracz (1994a) stresses that it is becoming more

and more apparent that one needs to reuse more than just code to gain increased benefits from

reuse. In order to achieve an order of magnitude improvement in software productivity, Tracz

(1995) claims that one must reuse products from the software development life cycle other

than just code.

Application Frameworks

Experience has shown that, although “an intellectually seductive idea” (Tracz, 1994b), it is

more difficult than first envisioned to combine components from different vendors. Such prob-

lems can be caused by differences in abstraction mechanisms, granularity, and component in-

terfaces which make the components incompatible. The idea of an application framework was

introduced as a mechanism to enhance reuse. Johnson and Foote (1988) define a framework is

a set of abstract classes that are designed to act together as a skeleton for an application or

part of an application. Frameworks support reuse at a higher level of granularity, and reuse of

a framework is really reuse of architecture and design.

Each abstract class in a framework solves a specific part of the overall task at hand.

For each application, the abstract classes of the framework must be replaced with concrete

realizations of the abstract class. A framework can be seen as a main architectural type of

construct to support reuse.

A framework is typically designed to solve a particular set of problems, e.g., graphical

user interfaces (GUI) or simulators for a group of related problems. One example of a GUI

framework is the Model-View-Controller framework (MVC) (Krasner and Pope, 1987) built

into the Smalltalk-80 system. Due to its success, the MVC is now widely used within GUI

programming. Frameworks are believed to have a greater potential for reuse than general-

purpose class hierarchies. However, although successful within specific domains, e.g., GUI,

frameworks do not seem, so far, to have been as successful as anticipated.

Frameworks are typically described as being either horizontal, solving one type of prob-

lem across application domains, for example, representing the GUI or distributed commu-

nication, or vertical, built for applications within a domain, e.g., health care systems Booch

(1994). The most widely used frameworks today belong to the first group. Frameworks for

26

more narrow domains have also been proposed, for example for the financial domain (Birrer

and Eggenschwiler, 1993). Research has been conducted both in the organization of such

frameworks and in methodologies for creating frameworks. An example of this is found in

Riehle (1999). In his work, Riehle discusses the problems of designing, using, and learning

frameworks.

Design Patterns

Because software reuse has been less successful than many people had hoped for, new ap-

proaches have been taken to reach the goals to get more reliable and cost-effective software

systems. One of the most predominant of these is design patterns (Gamma et al., 1995) or,

rather, pattern languages Berczuk (1994). A design pattern can be defined as a solution to a

recurrent problem within a context. Fowler, however, defines a pattern as “an idea that has

been useful in one practical context and will probably be useful in others” Fowler (1997). He

uses such a loose definition to stay close to the underlying motivation of patterns, without

adding too many restrictive amendments. An important point is that successful solutions are

described in a form so that they can be reused.

The application of patterns within software engineering was inspired by an architect,

Christopher Alexander, who had the notion that ordinary people could design their own homes

by the use of architectural patterns that where written to solve particular problems within a

greater context of building houses Alexander et al. (1977). He wrote his patterns as parts of a

pattern language. In the early 1990s Alexander’s ideas were picked up in the object-oriented

community, and they were presented at OOPSLA workshops on software architecture.

The solutions the patterns prescribe have typically been developed and evolved over

time, and will not be the first solutions we choose for new problem we encounter. Such

evolution has typically happened to increase reuse and flexibility in the software. A rule of

thumb says that the solution should have been used in at least three different contexts for us to

call it a pattern. This leads to another point that needs to be stressed, and that is that patterns

are identified through practice. They cannot be invented. An idea stems from a project, and

if is proven through practice that is useful in other settings as well, it can be formulated as a

pattern. Schmidt (1995) claims that

27

patterns aid the development of reusable components and frameworks by ex-

pressing the structure and collaboration of participants in a software architecture

at a higher level than source code or object-oriented design models that focus on

individual objects and classes.

A pattern should have four essential parts: a statement of the context where the pattern is

useful, the problem that the pattern addresses, the forces that play in forming a solution, and

the solution that resolves those forces. It is important that a pattern has a name, as this enriches

the vocabulary of development, and when developers that are familiar with patterns use these

names, there will be less sources of misunderstanding among them.

While the patterns published by Gamma et al. (1995), where relatively low-level design

patterns, it has since then emerged a great variety of patterns and attempts to write pattern

languages. A patterns handbook was published by Rising (1998). This was an attempt to

collect all the, at that time, known design patterns published elsewhere by others. Her mo-

tivation was for these patterns to be more widely known and used. Since then patterns have

emerged within more specific areas such as enterprize application architectures Fowler (2003).

The previously mentioned MVC framework has been described in patterns form Buschmann,

Meunier, Rohnert, Sommerlad, and Stal (1996), and these patterns are now also built into the

Java API. Patterns have become popular and people have described patterns within other areas

than design, e.g., analysis (see below). This has led to using the term software patterns to

cover all these different types of patterns.

Analysis Patterns

As a natural consequence of the maturing field of design patterns, work on analysis patterns

was presented by Fowler (1997). He describes patterns from conceptual business models that

provide key abstractions from domains such as trading, measurement, accounting, and organ-

izational relationships. Fowler stresses that such patterns are based on conceptual modelling

that are linked to interfaces (types) and not to implementations (classes). In addition, Fowler

also describes what he calls support patterns which show how analysis patterns fit into an in-

formation systems architecture. Simple analysis models are more likely to result in solutions

that are easy to maintain and reuse.

28

Another important point that Fowler (1997) makes is that it is not always clear when

domains are the same or different. He uses the example of health care models that he found

appropriate to describe financial analysis within a manufacturing company. Problems of dia-

gnosis and treatment could be used to understand the causes of high-level financial indicators.

He suspects that there are a few highly generic process models that can be used across tradi-

tional boundaries of system development and business engineering. This, he says, raises some

serious questions about the promised development of vertical class libraries for industry sec-

tor, and that perhaps the solution is that the true business frameworks will be organized along

abstract conceptual processes instead of along traditional business lines.

Problem Frames

While a design pattern looks inwards towards the solution of a problem, Jackson (2001) has

defined a problem frame as something that looks outwards towards the world where the prob-

lem has been identified. A problem frame thus “defines the shape of a problem by capturing

the characteristics and interconnections of the parts of the world it is concerned with, and the

concerns and difficulties that are likely to arise”. Like a design pattern a problem frame de-

scribes a recurring situation, and like a design pattern language it provides a taxonomy that

can be used during the analysis. If a part of a problem is identified with a recognized problem

frame, experience associated with that problem frame can be taken advantage of.

Problem frames are intended to be used during analysis. They may help you to structure

and analyze your problems as a collection of interacting subproblems. Although different

real-world problems are very different and need different solutions, they may contain sub-

problems that are similar and that may have similar solutions. These sub-problems can be

classified into classes of problems, that may be used to solve similar problems later on. These

simple subproblems are captured in problem frames, and they appear, according to Jackson

(2005) as ingredients or aspects of realistic problems. Each problem frame constitutes what

we might call a problem pattern. Jackson resembles these with analysis patterns (Fowler,

1997).

29

Components

Another approach is the development and use of software components (Brown and Wallnau,

1998; Herzum and Sims, 2000). A component, according to component-based development,

may be defined as a unit of code that implements one or more clearly defined services as

defined by a set of published interfaces. A component can be defined as having the following

properties (Szyperski et al., 2002): 1) is a unit of independent deployment; 2) is a unit of third-

party composition; 3) has no (externally) observable state. Herzum and Sims (2000) add the

requirement that a component has a well-defined, clean interface or set of interfaces that are

accessible at run-time. This implies that a regular Java class is not a component. Also, they

claim that a component must be of a medium-sized to very large granularity, i.e., a JavaBean

or ActiveX control is not a component.

Herzum and Sims also require that a component can be easily combined and composed

with other components to provide useful functionality. Only through collaboration can an

individual component achieve its usefulness. Further, they list four essential characteristics of

a software component model: the component, the component socket (where the component is

plugged in), the ability of components to cooperate with other components, and the user of the

component.

The last point emphasizes that some components are intended to be used by designers,

while other components are intended for end-users, and knowledge about who the user is will

tell you what skills to expect from the user. To a developer, an example component might be

one that manage addresses. Such a component is called an enterprize distributed component.

To an end-user like a business analyst, on the other hand, a payroll system might be considered

a component. A component like a payroll system is called a system-level component.

In recent years, the idea of components has over-shadowed much of the interest in

object-oriented libraries and frameworks. Components have been seen as a way to imple-

ment Cox’s vision of software IC’s (Cox, 1987). One of the success stories of components is

the use of Visual Basic components. Fowler (1997) states that the reason for this success is

that all the components are based on one common framework—the Visual Basic environment.

Within other types of information systems such a common environment may not exist. Other

types of software components include Enterprise Java Beans, and Microsoft’s COM and .NET

30

technologies. Components may include libraries, objects (such as COM or CORBA compon-

ents), class frameworks, etc. The growth of a component industry is seen, for example, within

the Java community.

Popular IDE’s can be populated with components which the developer can use to build

his application. Components can be plugged into application frameworks that depend on the

components features and not on their state. If components are built using design patterns to

help developers to understand how they can and should be used, there is greater possibility

of success. The terms component-based development and service-oriented architecture has,

according to Tracz (2004) to some extent replaced reuse of software.

In the call for papers to The First International Workshop on Engineering Component

Based Systems (ECBS04), it is stated that “Component-based Software Engineering (CBSE)

is concerned with the development of software intensive systems from reusable parts (com-

ponents), the development of such reusable parts, and with the maintenance and improvement

of systems by means of component replacement and customization.” This is an indication of

an increased maturity in the field of reuse.

Domain Analysis

One of the reportedly most successful areas of software reuse is domain analysis (Tracz,

1994b). If a domain analysis has been performed within a specific application domain, it

can be assumed that this domain is better understood, and the knowledge gained can be reused

in applications developed within that domain. Neighbors (1989) has defined domain analysis

as “the activity of identifying the objects and operations of a class of similar systems in a

particular problem domain”. When studying a domain, commonalities within the domain,

rather than knowledge specific to one application, are in focus (Lung and Urban, 1995a). The

analysis performed can therefore be used to build other applications within the same problem

domain. Typically, the approaches suggested for domain analysis share the purposes to 1)

manage identification, 2) capture and evolve domain knowledge, and 3) make this information

reusable for creating new systems within the same application domain.

Domain analysis can be viewed as an expansion of conventional requirements analysis.

The main advantage it provides is flexibility (Lung et al., 2007). It is time consuming, and

31

it is typically suited for domains that are well understood. Arango (1994) describes domain

analysis methods. According to him, an object-oriented view considers domain analysis to be

modelling of the real-world actors, objects, and operations, as opposed to program and data

structures that will be the subjects of object-oriented design.

Effort towards construction and reuse of requirement specifications was initiated by the

ESPRIT Nature project. According to Maiden and Sutcliffe (1994) domain knowledge is built

into tools in the form of domain abstractions. These abstractions represent the fundamental

behaviour, structure, and functions of a domain class. Domain knowledge describes generic

types of systems as well as specific applications (Maiden and Sutcliffe, 1992). Sutcliffe (2000)

discusses this domain knowledge theory and how it can be used to generate reusable generic

models. For such models to be reusable there should be design rationale connected to them.

Lung and Urban (1995a) discuss the classification of domain models that can be used to

find analogies between domain models, particularly when trying to model a domain that is not

so well understood. They use a classification scheme that combines hierarchical and faceted

classification (see section on Classification on page 36).

Another way to summarize the knowledge captured within domain modelling is de-

scribed by Fowler (1997) in terms of analysis patterns. This was discussed in a previous

section.

Poulin (1999) even claims that the problem of domain analysis has been solved. He also

states that, without domain analysis, an organization cannot hope for more than about 20 %

reuse of the total amount of software development.

More recently, Frakes (2002) uses the term domain engineering to denote the process of

“analyzing a domain, recording important information about the domain in domain models,

creating reusable assets, and using the domain models and assets to create new systems in

the domain. It has two phases: domain analysis and domain implementation.”. One could

say that this description includes both the understanding and the attempt to turn the captured

understanding into reusable assets.

32

Requirements

When analyzing a problem and extracting requirements for a new system, several iterations

may be necessary before the system is complete. This is particularly true if the system is

within a domain that is unknown to the analysis team, or if the users of the system have little

experience in formulating their requirements for the future system. If reusable requirements

could be identified, these could be reviewed, and the users or the analysis team might discover

shortcomings in their original specification which could be adjusted accordingly. If all, or parts

of, the requirements are very similar, it might be that (part of) the design and implementation

could also be reused.

Lam, Jones, and Britton (1998) suggest the use of an operational reuse model to help

understanding of the process for managing requirements reuse. They also say that such reuse

is most valuable within specific domains and that work on domain modelling is important.

Heumesser and Houdek (2003) report on work at DaimlerCrysler where they recycle

requirements from one car model to the next. In this way not only the specification fragments

can be reused, but also the test specifications that were written for the original one as well as

the underlying experience. Requirements are split into categories based on whether they are

dependent or independent on a particular car model.

For each functionality they describe all the requirements in the model-independent part.

While doing this, they use only abstract interfaces and parameters to avoid the dependent

information. The model-dependent information is supplied through the use of wrappers, which

offers instantiation information for all the interfaces and parameters that were identified.

Heumesser and Houdek (2003) describe three different levels of reusability of require-

ments: 1) Domain requirements that can be considered stable in a given environment, 2)

Functionality requirements that deal with functionality of the system under development, and

3) model-specific requirements that are specific for a given car model. Requirements at the

first level can be reused as black-box components. Requirements at the second level are sim-

ilar from model to model, but not identical. The MVC design pattern is used to split the user

interface aspects from the processing aspects, and to separate out what part of the processing

requirements that are part of the general functionality that are reusable, and those that are part

of the model-specific ones. The model-specific requirements, on the other hand, are seen as

33

less reusable.

2.2.3 Techniques Applied to Software Reuse

Research and development relevant to software reuse has been conducted within a diverse

set of areas, including how we build reusable artifacts, and what techniques and other means

can be used within software development environments. A technique can, according to Basili

(1989), in this context be defined as a basic technology for constructing or assessing software,

e.g., reading or testing.

Language constructs

Efforts have been made to develop languages with constructs important to reuse, e.g., in-

formation hiding, inheritance, polymorphism, and interfaces. In Java, if a programmer writes

implementations towards an interface instead of a class, he is free to substitute one class for

another as long as the classes implement the same interface. Meyer (1987) has introduced

language constructs to enhance reuse and reliability, such as pre- and postconditions built into

the code itself, in Eiffel. Meyer (1992) claims that these constructs make the language more

suitable as a design language.

Use of language constructs to enhance reuse seems to be somewhat restricted, though. If

these were the only types of techniques to be used, we would be restricted to reusing software

code. So, although it is not irrelevant, it is not sufficient. In this thesis I do not discuss reuse

based on such techniques.

Software developed for distributed programming needs some standard way of commu-

nication. Components need a protocol described through an interface. IDLs (Interface Defin-

ition Languages), are developed for CORBA (Common Object Request Broker Architecture),

for example, and WSDL (Web Services Definition Languages) are defined for web services.

The separate construct called an interface in Java specifies what messages an object imple-

menting that interface will understand. The implementation of these methods is the respons-

ibility of the classes that implement the interface. This is an important feature that underlies

today’s component-based development (Kobryn, 2000).

Whitehurst (1995) discusses a set of language-level constructs that support reuse. These

34

are relational extensions, called “associations”, which are designed to allow the relationships

found in design patterns, frameworks, and abstract architectures to be represented explicitly.

Design of class hierarchies or libraries

A trend towards open source and public domain code has given people access to large class

libraries, e.g., Java Swing and C++ STL libraries. The widespread use of such libraries has

increased testing and thus acceptance of these libraries. Commercial libraries also exist, and

these libraries are heavily used. When such libraries have wider applicability, the belief in-

creases that the investment will pay off.

A class library is not static. It will necessarily change during its lifetime. Such changes

will not be only additions. There must be an ongoing attempt to monitor the library devel-

opment to prevent the relationships between the components to break, or to be too complex

after modifications have been made. Problems have been reported when a class hierarchy

gets too deep. A deep hierarchy increases the understanding problem. This has been the case

particularly with the Smalltalk library as all classes are organized in one hierarchy.

A technique called refactoring has been suggested by Fowler (1999). The idea is that

whenever a modification to existing code is necessary, simplifications should be initiated be-

fore or during the required modifications. This technique has advice for how and when modi-

fications should be performed to both method and class structure. Existing IDE’s, such as

IntelliJ, NetBeans, and Eclipse, all support a subset of the refactorings that Fowler suggested.

It has been pointed out that, to avoid subclasses that only need part of their super-classes’

behavior, subclassing should always be made as pure specialization. Otherwise, classes are

much more difficult to reuse due to their size and complexity. The understanding problem

also increases, as it is more difficult to see what part of the definition is actually required.

Such problems emphasize that standards are used when classes are designed. A design tool

that could aid in the reorganization of the class hierarchy based on special rules of what was a

good subclassing practice—following the standards—would be useful.

Software libraries are often organized according to a hierarchical scheme, e.g., a class

hierarchy. They usually use single inheritance. When using languages that allow multiple

inheritance, the classes do not form such a hierarchical structure, and this may lead to several

35

types of problems. For example, if an attribute or method is inherited from two different

ancestors, a decision must be made as to what occurrence to use in the subclass. When defining

relationships among components, it is often not clear what is the correct classification, as we

can think about several dimensions of the collections of components.

Repository organization

A software repository is a database that is designed to store the types of items that software

developers need when they are developing new applications. The artifacts can be of any kind,

depending on the repository at hand, such as objects and components, patterns and frame-

works, test cases, and information about the same. Such information can amount to when they

were created, goals and functionality, where they are used, and so on.

Historically, software artifacts, i.e., code, have been kept in a regular file system, and it

has not been of high priority to maintain and organize the self-developed code. A repository

may contain projects with all the components that are developed during the project’s lifetime.

A repository should not be part of any project in particular, as its content should be something

created of things developed in the various projects. Such a framework should be an integral

part of a CASE tool.

Retrieval

Suggestions to use techniques from information retrieval (IR) Baeza-Yates and Ribeiro-Neto

(1999) for enhancing reuse have been put forward. Other approaches have suggested the use

of intelligent browsing to identify reusable components (Pintado and Tsichritzis, 1988). A

system might accept a description of an artifact with a certain set of properties or facets (see

section on Classification below). Based on this description, the repository is searched for

the best match. Such a search might either result in an artifact that completely matches the

description, or in one or more artifacts with a partial match. The user should then be able to

select the artifact that resembles the requirement the most, and perform any needed action to

adjust the artifact to better suit the current needs.

When designing an application, it would be useful to have a tool that, based on a descrip-

tion of its components, would search the repository for components that match the description.

36

The search should preferably start while the description is being made, so that the system de-

veloper avoids unnecessary work. This would be a more or less intelligent browser or retrieval

tool. Techniques from AI may be used to retrieve reusable components (see section on Tech-

niques from AI on the current page).

Classification

Above, I discussed the design of class hierarchies, and the problems that relate to use of mul-

tiple inheritance. From a reuse perspective, it can be useful to be able to describe components

along different dimensions.

Faceted classification has been suggested as a means to describe reusable artifacts so

they can be more easily identified. It was originally proposed by Vickery (1960) as a tech-

nique to organize library information, to help people who may be interested in searching for

different types of information about books and journals, for example author, title, topic, or

genre. Prieto-Dı́az (1985) suggests that it be used for software components in order to ease

reuse, and it has been applied in several projects, e.g., the REBOOT project (Sørumgård,

Sindre, and Stokke, 1992, 1993) for classification of software components. Lung and Urban

use faceted classification to classify domain models (Lung and Urban, 1995a,b). However,

Tracz (1994b) lists faceted classification as one of the areas where reuse has not been very

successful.

Techniques from AI

The AI techniques used for reuse have a wide range, for example

• knowledge representation and cognitive graphs used to represent knowledge (Borgida

et al., 1985),

• retrieval based on heuristics, maybe combined with indexes (Lee and Harandi, 1993),

• artificial neural nets (ANN) used for identification of similarity between a problem at

hand and previously developed examples (Merkl et al., 1994),

• genetic algorithms used to find components with specific properties (Tessem, 1998b),

• case based reasoning (CBR) to identify previous cases that are similar to the current

case (Fouqué and Matwin, 1993; Maguire et al., 1995), and

37

• analogical reasoning (AR) to identify reusable base problems based on a current target

problem (Lung and Urban, 1993; Chaiyasut, Shanks, and Swatman, 1995; Maiden and

Sutcliffe, 1996; Spanoudakis and Constantopoulos, 1996a),

• content-based and collaborative filtering used in a recommender system (McCarey, Cinnéide,

and Kushmerick, 2005).

AR has been used to identify reusable problems or artifacts across domains, while in CBR the

goal is to identify similar cases within the same domain. In chapter 3 I present in more detail

the use of analogical reasoning (section 3.2), case-based reasoning (section 3.4), and genetic

algorithms (section 3.6) within the field of software reuse.

2.3 The Process Dimension of Reuse

Software reuse is still mostly associated with reuse of code. As analysis and design are more

general, artifacts from these stages are likely to turn out subject to reuse more frequently. This

requires that reuse is integrated in the software development process itself, and that all types

of software artifacts from previous projects are available from a CASE tool repository. It also

requires that the software development process used be adjusted to take advantage of reusable

assets of different types.

Existing IDEs like IntelliJ IDEA from JetBrains, Eclipse, NetBeans, SUNTMONE Stu-

dio, Smalltalk-80, and Eclipse contain a browser—a software tool for searching through a col-

lection of existing categories of object classes, search utilities, and a repository. In Smalltalk-

80 the classes are organized in categories, while in Java they are organized in packages. All

the environments have several ways to help the user search and reuse classes, as well as identi-

fying classes and methods.

IBM has integrated Rational RoseTMwith the IBM software, e.g., IBM WebSphere.

Users can create analysis and design models in Rational RoseTM, export code to WebSphere,

and then reverse engineer the code. Such a solution may permit models from analysis and

design to be stored in the same, or adjacent, database as the classes and packages. This could

permit the search options to be made on components from the analysis and design phases of a

project, and thus permit reuse on a much wider scale. A problem may occur, however, when

38

the user does not really know what to search for. Since tools such as those mentioned above

started to emerge, the amount of available code in the program libraries has exploded, but to

learn the structure of the libraries has not become any easier.

Although IDEs are becoming better tools to develop software, they are still a long way

from some of the visions that have been put forward. A CASE tool should support design

with and for reuse (see e.g. the REBOOT project (Fagerhus and Karlsson, 1992)). Basili

(1989) describes an experience factory containing all types of knowledge about the process

and components that relate to the the software projects. When looked upon as a component

factory, the following aspects are important.

An overview, according to Basili, of how an experience factory may be used, is given

below:

• During requirements definition the analyst negotiates with the customer, uses the factory

to see what already exists, and negotiates the requirements based upon this knowledge.

The more component information is added to the factory, the more knowledge is made

available for reuse.

• During specification and design, the requirements will be turned into a system design

and specification for the required components. Components that can be well specified,

can be turned over to the experience factory, and orders will be filled for components.

• During integration and evaluation, the task is to integrate the components into its own

specified design. The components may be returned to the factory for later reuse.

This is a simple description of the process. It does not really explain how the reusable

components are actually identified. It is assumed that the analyst knows the component fact-

ory. It is important that the selected techniques to search for and to identify reusable com-

ponents are able to do so precisely and effectively. A hidden problem exists, however. If the

factory has been developed by several people with different backgrounds, it is likely that they

have used different terminology and that their focuses have been different. When the analyst

no longer knows the content of the factory, he will have problems finding what he is looking

for, or rather, he will have problems formulating his queries in a way that will be successful.

This is one of the problems addressed by this thesis.

39

Tracz (1994a) argues: “Integrated CASE tools, when they get here, have the potential

to enhance software reuse. . . . They will facilitate the traceability of requirements to design

and code, along with the other artifacts associated with software development.” It should be

possible to know which components from any phase in the development cycle contribute to

fulfilling which requirement. Previous reports of unsuccessful reuse of requirements, see e.g.

Lewis (1990), may have been a result of tools that are not good enough. CASE tools should

incorporate support for maintenance, testing, domain-specific modeling, project management,

and quality assurance (Forte and Norman, 1992).

Maintenance of the reuse repository is also a problem. For a repository to be, and

remain, useful, we cannot merely add components to it. Components must be documented

better if they are expected to be used in later projects, and they may have to be rewritten to be

more generic to enhance their reuse potential. Information about how the components have

previously been used, may be useful in situations where they are considered for reuse. The

addition of new artifacts may require modifications of relationships among existing ones as

well. Traceability of change should be supported, as this reduces the problems of maintenance.

It also makes the system’s components more reusable over its lifetime (Parnas, 1994).

While Herzum and Sims (2000) state that we have not reached the stage where we can

build applications by assembling, adapting, and wiring together existing components into a

variety of configurations simply because the components does not exist yet, Wallnau, His-

sam, and Seacord (2002) claim that today, software development is to a great extent done by

integrating components developed by others into a framework. I will not argue one way or

the other, but only stress that for reuse of components to take place, the needed components

must be available. To the extent that the components are available, this is another important

argument for integrating reuse in the software development process.

A component-based software engineering (CBSE) process, which relies on reuse, has

emerged. This relies on a large base of reusable software components and some integrating

framework for these components Sommerville (2004). A CBSE process, according to Som-

merville (2004), should consist of the following steps:

• Outline systems requirement—the user requirements are done in outline rather than in

detail, and the stakeholders are encouraged to be as flexible as possible when defining

40

their requirements.

• Identify candidate components—search for suitable components, select and validate the

appropriate ones. This activity is unique to CBSE. Components may be found in a local

database or from trusted suppliers.

• Modify requirements according to discovered components—this is done in cooperation

with the stakeholders if suitable components are not found. Users may be willing to

slightly modify their requirements if it results in cheaper software or earlier delivery.

• Architectural design—during this stage you decide on a component model if it has not

already been done during component search. The high-level architecture is determined,

and decisions about distribution and control are made.

• Identify candidate components—reiterate over the component identification as some of

the components previously chosen may turn out to be unsuitable. This may in turn lead

to new requirement changes, so the process is in nature iterative.

• Compose components to create system—if the components have not been written for the

current application, adaptors must often be written to reconcile the different component

interfaces.

2.4 Conclusion

This chapter has tried to give an overview of the reuse problems, along with some suggested

solutions. Of the problems related to reuse that are listed, finding and understanding compon-

ents are the most difficult ones. In this discussion, I have covered a rather wide area, primarily

to indicate the diversity of both the types of software artifacts that can be reused as well as the

various techniques that have been suggested used to increase reuse.

There has been a move towards the reuse of artifacts from earlier phases in software de-

velopment. At the same time the available code in libraries has moved from function, through

modules, classes, frameworks, to components in the sense that Cox (1987) envisioned then.

They have thus become more complex and important design knowledge are built into them,

e.g., they may play specific roles in a framework or design pattern.

41

My focus is reuse of artifacts from analysis and design, and in particular the reuse of

analysis models. If tools and techniques exist to support such reuse, the reuse potential could

be recognized early on in the development phase, and the lower level components used in

previous projects will also be available for reuse.

I have discussed reuse of requirement specifications, domain analysis, problem frames

and analysis patterns in this chapter. These are all examples of assets from the analysis phase

that may be reused. As a matter of fact, many of these techniques were proposed for the

purpose of making available knowledge that will help in the development of future systems.

However, while these techniques help in the understanding of the domain and possibly also

the components that are a result of the analysis as well as the sharing of this understanding,

they do not help with the problem of finding the right artifact to reuse.

The identification of reusable components is a main problem in software reuse, and if

techniques and tools were available that could help the developer do this, this would make

a great impact. If a component-based approach for software development is used, the user

requirements may be described in analysis models, and a search for similar models may be

performed. The identification of such models may in turn lead to the reuse of software com-

ponents.

In the next chapter I discuss the main focus of this project, namely the use of analogical

reasoning, case-based reasoning, and genetic algorithms to help solve problems related to

reuse of software artifacts.

42

Chapter 3

Intelligent Approaches to Software Reuse

Section 2.2.3 gave an overview of techniques from AI that have been applied for reuse or

software assets. In this chapter some of these AI techniques that are relevant for my approach

to software reuse are discussed, and an outline of how they have previously been applied in

relation to software reuse is given. In section 3.1, problem solving through analogical reas-

oning (AR) and approaches to computerize such attempts are discussed. Next, in section 3.2,

examples of how AR has been used within the area of reuse of artifacts from early stages of

software development are presented.

The use of case-based reasoning (CBR) in software reuse is discussed in section 3.4.

The main difference between CBR and AR is that while AR tries to identify similarities across

application domains, CBR does the same within an application domain. The reasons for in-

cluding a discussion of CBR in this chapter are that it is similar to AR in goal, although the

similarity search is restricted to one domain, and that within CBR much work has been put

into the retrieval phase, and this work may turn out to be useful also within AR.

Genetic algorithms (GA) are used to find optimal solutions when the search space is

huge and when an exhaustive search would take an unrealistically amount of time. Section 3.5

discusses genetic algorithms in general, and in section 3.6 I present an approach to apply GA

for the analogical reasoning in software reuse. Finally, section 3.7 discusses how the theory

presented in this chapter influences my research.

43

44

3.1 Analogical Reasoning

Analogical problem solving is important for how humans solve problems. Transfer of concepts

and relations from one domain to another lies at the bottom of both common-sense reasoning,

learning, and complex problem solving. Contributions to the field of AR stem from research

directions such as psychology, cognitive science and AI. Because AR has been used in so

many different contexts and manners, AR is also a problem-solving strategy that is difficult

to fully understand and formalize. Some theories that model specialized aspects of AR have

emerged. General and complete theories, if at all possible to develop, are, however, yet to be

seen. In this section I give an overview of some theories.

3.1.1 Analogical problem solving

Analogical problem solving can briefly be described as an attempt to reuse and adapt a prob-

lem solution in a new situation, maybe within a completely different domain. Similar prop-

erties between the two situations are identified, and knowledge that is not mapped may then

be transferred from the first (base) situation to the new (target) situation. For a more compre-

hensive overview of early work within the field of computational approaches to AR, see (Hall,

1989). In the following I describe attempts to computerize analogy and to give a computational

model for the concept.

Early use of analogy in computer systems includes work by Evans (1968) on geometric

intelligence test problems, and Kling (1971) on theorem proving. Carbonell (1983a) intro-

duces the term transformational analogy. This is based on the idea that one can transform the

solution of a previous design problem to a new one by a limited set of transformation rules. In

derivational analogy Carbonell (1983b) adds knowledge about the decision steps performed

in the production of the previous solution. The purpose is to help to choose the transforma-

tion steps in the search for a solution to the new problem. Winston (1980, 1982) describes a

system that learns new principles based on a precedent story and an exercise that matches this

precedent. The exercise describes a general situation, and the precedent describes a specializ-

ation. The two are matched, and a feature of the precedent is reformulated as a more general

principle in the terms of the exercise. Later work has focused on more general approaches,

45

and structure mapping is discussed in section 3.1.2, pragmatic approaches in section 3.1.3,

and case-based reasoning in section 3.3.

The steps that are involved in computational models for analogical problem solving vary

among the authors, partly due to different focus of the work and detail. Kedar-Cabelli (1988)

describes the 5 following steps:

1. Retrieval—from a target case, search the knowledge base for a base case that resembles

the target and has a reusable solution.

2. Mapping—match attributes, relations, causal chains from the base case to the target

case.

3. Justification—ensure that the derived properties, obtained from matching, are in fact

valid. If not, correct or modify.

4. Transfer—consider if any unmapped parts of the source may be reused in the target.

5. Learning—accept useful computed properties of the target and add those to the know-

ledge base (Evans, 1968), derive general knowledge from the base and target solu-

tions (Carbonell, 1983a; Winston, 1982), or improve the target solution by using ad-

ditional analogies (Burstein, 1988).

The most difficult of the five steps described above seems to be retrieval of base cases.

The process should ensure that the retrieved cases are relevant and can be mapped to the target

case. Many systems developed so far lack support for this step, and they expect the user to

supply an analog base case. The most promising methods seem to involve indexing by com-

mon generalizations, negative associations (reasons for wrong classification), prototypes and

important differences between cases. Such techniques are described by Kolodner et al. (1985),

Simpson Jr (1985), and further improved by Bareiss, Porter, and Wier (1988); Porter, Bareiss,

and Holte (1990). These ideas will be elaborated in section 3.3 on case-based reasoning.

Search for common abstractions is the most common approach to the mapping step.

Important contributions include work by Gentner (1983) on the systematicity principle, and

work on goal-oriented mapping, by e.g., Thagard (1988). These contributions are discussed in

sections 3.1.2 and 3.1.3. Justification will typically be a manual task, as it is the human user

that must decide whether the analogy is valid or not.

46

3.1.2 Structural mapping and systematicity

Gentner (1983) introduces the concept of structural mapping and the principle of systematicity.

Structure mapping theory focuses on the mapping phase and not on retrieval of a potential

analog case. Several systems have been built using algorithms based on this theory, e.g., the

Structure Mapping Engine by (Falkenhainer et al., 1989). Gentner addresses the problem of

concept learning by analogy. The atom is used as an example. How can we learn more about

the atom, given the analogy “The atom is like our solar system”? By using this question, we

assume that previous knowledge about the solar system is present.

The basic intuition of structure mapping of analogies is that a system of relations among

objects or concepts, known to hold in one problem domain—the base domain—also holds in

some other domain—the target domain. Gentner’s work has shown that people, when trying

to find analogies to a given problem, tend to map interrelationships among the facts rather than

surface similarities. This implies that objects from the base problem do not necessarily have to

resemble objects from the target problem. For example, given the analogy mentioned above,

what parts of the atom are mapped as analogous to the sun? According to Gentner’s theory,

the sun’s surface attributes such as hot, yellow, and massive will not be mapped. Higher-

order causal relations such as “Sun attracts planet” and “Planet orbits sun” are more likely to

be mapped to identical relations in the target, i.e., “Nucleus attracts electron” and “Electron

orbits nucleus”. As can be seen from this example, the nucleus of the atom is mapped as

analogous to the sun.

The method for finding analogies described above is often termed the systematicity prin-

ciple. It states that we should prefer to map causal networks of relations over independent and

unrelated relations. By preferring causal networks, we constrain the number of possible map-

pings between base and target for any analogy.

Although recognized as important, Gentner’s work has received a fair amount of cri-

ticism (Holland, Holyoak, Nisbett, and Thagard, 1986; Kedar-Cabelli, 1988), e.g., that the

structure mapping theory assumes that all causal relations describing the base are candidates

for mapping. It is certainly difficult to distinguish the relevant causal relations from the irrel-

evant.

47

3.1.3 Pragmatic approaches

Thagard (1988) presents two criteria for evaluating computational approaches to analogy.

First, how well does a computational account of analogy correspond to the experimental facts

of human thinking? Second, how powerful is the computational approach: What tasks does it

perform, and how efficiently does it perform them?

According to Thagard, computational approaches to analogy are often organized along

four general dimensions: representation, retrieval, exploitation, and learning. Note that this

model is somewhat different from the one described by Kedar-Cabelli (1988) presented above.

Along each of these dimensions we can distinguish between syntactic, semantic and pragmatic

approaches. Syntax deals with the properties that symbols have due to their form. Semantics

is concerned with the relations of symbols to the world, and finally pragmatics deals with

the use of symbols. Once a representation is constructed, it can be stored in memory, but

in order to be used in an analogy, it must first be retrieved. There are several approaches to

retrieval: Either providing an analogue explicitly, indexing by common features, goals and

failures, problem-directed spreading activation, or undirected spreading activation.

Depending on problem complexity, one or several of these approaches can prove to be

fruitful. Thagard concludes that indexing and spreading activation, described in (Holland

et al., 1986), provide the most plausible kinds of mechanisms for finding potentially relevant

analogues. Ideally, these kinds of retrieval should be combined.

When a potential analogue has been retrieved, it must somehow be exploited. There is

much discussion on how the mapping process should be performed. Thagard presents some

alternatives: Syntactic comparison using relational structures (structure mapping (Gentner,

1983)), loose pragmatic comparison using elements of problem solutions, tight pragmatic

comparison using pre-represented ingredients, or integrated syntactic, semantic, and prag-

matic comparison using multiple constraints (Thagard, 1988).

The pragmatic approaches pay more attention to the goals of the user of the analogy

when attempting to determine what parts of the analogy to use. An analogy should only be

accepted if it supports problem solving. An integration of syntactic, semantic and pragmatic

techniques will make powerful cross-domain analogies possible.

48

3.2 Analogical Reuse During Analysis and Design

During the 1990s, there was an increased interest in the use of AR for reuse of software

artifacts, and particularly within reuse of specifications. In this thesis, I focus on attempts

to use AR, and to some extent CBR, within reuse of software artifacts from early phases of

software development, i.e., analysis and design. This includes, among others,

• Maiden (1992), Maiden and Sutcliffe (1992, 1993, 1994, 1996) — analogical specifica-

tion reuse during requirements analysis and analogical reuse of domain analysis.

• Lung and Urban (1993, 1995a,b) — combine classification of domain models with the

requirements set by AR to aid the reuse of domain models.

• Spanoudakis and Constantopoulos (1992, 1996b) — present a computational model to

find similarity between specifications for AR.

• Bellinzona, Fugini, and Pernici (1994) — reuse of specifications.

• Cunningham, Finn, and Slattery (1993) — knowledge engineering requirements in de-

rivational analogy.

• Lee (1992) — bottom-up, case-based approach to domain analysis.

• Lee and Harandi (1993) — retrieval for software design reuse, and Harandi (1993) —

the role of analogy in software reuse.

• Whitehurst (1995)— the understanding and application of AR in relation to software

development process; systematic software reuse in the domain of system architecture or

framework, i.e., design reuse. Language extensions to make reuse easier.

• Jeng and Cheng (1993, 1994, 1995) — a formal approach to reuse more general com-

ponents and specification mapping.

• Fernandez (1998) — describes building systems using analysis patterns by finding ana-

logies between the applications.

• Chiang and Neubart (1999) — constructing reusable specifications.

Some of these approaches will be categorized and discussed below.

49

3.2.1 Reuse of Artifacts during Analysis

This section covers attempts to reuse specifications, requirements, domain models, and ana-

lysis patterns. The terms may be used slightly different by different authors, but I will try to

clarify this whenever needed.

The Advisor for Intelligent Reuse (AIR)

Maiden and Sutcliffe (1994) use AR in a tool called a domain matcher, that is a hybrid com-

putational mechanism for AR between a requirement specification and one or more domain

abstractions. They use techniques similar to SME (Falkenhainer et al., 1989). The domain

matcher integrates structure mapping algorithms and heuristic-based reasoning with domain

semantics to infer consistent fact-pair and object-pair mappings with abstractions. It consists

of four parts: a match controller, structure matcher, rule-based matcher, and domain discrim-

inator (Maiden and Sutcliffe, 1994). When a requirement specification has been matched to

an object system model, the result is a quantitative measure of similarity and two sets of local

mappings describing object-pairs and fact-pairs with object system.

The domain matcher is supported by an intelligent dialogue manager which explains

retrieved domain abstractions to requirements engineers. A problem classifier uses mappings

inferred by the domain matcher to detect incompleteness, over-specialization, inconsistencies,

and noise in the requirement specification. The problem classifier is integrated with a cooper-

ative tool for explaining complex problem situations to requirements engineers.

Classifying Domain Models in Support of Analogical Reuse

Lung and Urban (1993) integrate domain analysis in an analogical approach to software reuse.

They stress that reuse cannot occur without domain analysis, and that the requirements of AR

should be part of the standard products of the domain analysis process. Their analogy-based

domain analysis methodology consists of the following steps:

1. Identify the requirements and features needed by AR.

2. Incorporate additional constraints, i.e., object behaviour and system dynamics, into the

mapping to reveal a higher level of analogy to identify differences between base and

50

target systems and detect potential evolution of the problem domain.

3. Define steps and identify products of the domain analysis method to meet the require-

ments of analogy analysis. Networks of causal relations are derived from the diagrams

produced in step 2. Constraints on causal relations adopted in this approach include

goals, object behaviour, and system dynamics.

4. Perform domain analysis and generalize models into a reusable form for future devel-

opment and analysis. A generalized model is used as an interface for mapping across

domains.

5. Evaluate the process and products with domain experts. The domain will evolve and the

model may be extended.

When the domain at hand is poorly understood, a model could be compared to a well-

defined domain (Lung and Urban, 1995a). For this to be a viable approach, domain models

must be classified. Lung and Urban present a hybrid classification scheme based on hier-

archical and faceted classification, i.e., it consists of a hierarchy of facets, where each facet

describes a key aspect of the software (see Classification on page 36). Different components

could typically be classified into several sub-categories. A faceted classification scheme is

thus more flexible than a hierarchical one when it comes to describing such a situation. It

may be difficult, however, to decide what facets to choose for the components during domain

analysis. They propose a hierarchy containing three layers, each representing a separate level

of abstraction with a set of unique facets: 1) the application domain, 2) the main functions and

relation types of the domain, and 3) the application.

Facets in layer one are used as classifiers, e.g., the application domain facet ensures that

applications within the same domain are grouped and retrieved together during the analogy

phase. Facets in layer two bridge the gap between the generic domain abstractions and features

in specific application domains. The function facet is used to describe key functions of the

system. Another facet in this layer, the relation class, depicts semantic relations between

critical objects and is used during the analogous problem solving. Facets in layer three, general

software attributes, are used to bridge the gap between the domain and a specific application

or a set of design alternatives. Two analogous domains with different complexity levels may

51

need different design approaches. In cases where a domain contains a set of sub-domains, an

iterative process can be applied to examine and select appropriate facets.

Elaborating Analogies from Conceptual Models

(Spanoudakis and Constantopoulos, 1992) focus on the problem of “defining a quantitative

similarity relation between descriptions of software artifacts so as to promote their analogical

reuse”. They present a generic method for computing similarity between object-oriented qual-

itative descriptions. They emphasize efficiency and usability, and do not only model human

cognition.

Their specifications are written in the Telos Language. Analogies are elaborated by func-

tions that measure conceptual distances between objects with respect to semantic modelling

abstractions. Their similarity model is discussed in section 5.1.2.

3.2.2 Reuse of Artifacts from Design

This section describes creation and reuse of artifacts from design.

Automated Acquisition and Refinement of Reusable Software Design Components

Lee (1992) presents a framework for a hybrid software design environment that supports reuse

of design schemes or cases contained in a knowledge base. A design schema is an abstrac-

tion of a family of software designs for a particular application domain, while a design case

represents the design of one single application.

The focus is on acquisition and refinement of design schemes, and this is implemented

in a prototype called CAReT (Component Acquisition and Refinement Tool). It contains an

analogy-based retriever that first attempts to retrieve design schemes that are most similar to

the new design case. If no applicable schema is found, the cases are searched.

There are two main functions: initial design schema acquisition and subsequent design

schema improvement. Both use a common underlying derivation mechanism. The corres-

pondence of features is established using domain knowledge, if available. The features are

examined to determine common patterns of operations and objects. Common features are

52

then abstracted. If domain knowledge is not available, a similarity metric is used to compute

the degree of closeness among features.

When design cases are searched, the retrieved cases are ranked, and chosen are those

belonging to the same design family as the new design case. If the case retention threshold

is exceeded, the new design case is used together with other cases from within the same

design family to derive a schema; otherwise it is stored along with other cases in the same

design family. If case retrieval fails or no case is deemed suitable, i.e., its design family is

unknown to the system, then a domain dictionary is created for the new design case. This

mechanism automates domain analysis by identifying the basic objects and operations for

a domain-specific design schema, i.e., a domain model for applications within that design

family.

Design schema derivation has six stages: 1) mapping and abstraction of objects and at-

tributes, 2) mapping and abstraction of operations, 3) validation of design schema, 4) creation

of refinement and specialization rules, 5) cataloguing of design schema rules, and 6) cata-

loguing of object and attribute mappings.

Systemic Reuse of System Architecture

Whitehurst (1995) uses AR to support software reuse of system architecture in the form of

software frameworks. The approach is based on a general mechanism for building reusable

software by refactoring object-oriented designs to remove inter-object dependencies. An inter-

object coupling is removed by extracting it into an association with the role-specific behaviour.

This keeps object class specifications small and focuses on intrinsic characteristics. At the

same time, a mechanism is provided whereby objects may be composed into frameworks,

which represent prototypical application architectures. Finally, this approach utilizes an aug-

mented object-oriented class hierarchy as its knowledge base.

During system design, an automated assistant monitors the progress, and attempts to

form analogies between the system under development and known system frameworks. If

a framework is accepted, the user is provided with candidate objects with partially mapped

concepts and role-based behaviour, based upon the analogical relationships. The presented

objects are modified to fit new application requirements.

53

Whitehurst introduces language-level constructs for reuse support that are relational ex-

tensions, called associations, that let relationships found in design patterns, frameworks, and

abstract architectures be represented explicitly. He argues that by refactoring class relation-

ships into roles, the classes become more reusable.

The methodology uses a knowledge-based repository for creating, organizing, and man-

aging reusable software artifacts. A modified Structure Mapping algorithm is used to re-

cognize analogical relationships between partial systemic specifications and existing system

frameworks. Whitehurst’s similarity model is presented in section 5.1.3.

The reuse agent knows about applications based on the particular framework, so the use

of the framework in those applications can serve as a prototype for the new application. A

framework is the main architecture of the program, and the developer must supply individual

objects compliant with the requirements of the framework to specialize it to a particular ap-

plication domain. The approach taken in those applications to provide the framework with

ancillary objects can also be reused in the new application.

3.3 Case-based reasoning

Case-based reasoning has been given several definitions. One definition is the use of solutions

to old exemplar problems in the search for solutions to new problems within a specific domain.

It differs from AR in that its reuse is domain specific. AR occurs in transfer of solutions from

one domain to another. The boundaries between the two approaches are vague, however. One

particular property of case-based reasoning is the domain-specific knowledge, which helps the

system in search for candidate solutions to the problem at hand.

Theory from case-based reasoning may contribute to the retrieval phase of the analogy

process. Most case-based systems use some kind of indexing to describe cases. This is con-

sidered the only efficient way to retrieve relevant cases, e.g., Kolodner (1983) or Ashley

(1988)).

The PROTOS (Bareiss, Porter, and Wier, 1988) system supports search for relevant

cases, and it also classifies cases into categories. It uses four kinds of indexes:

1. positive reminder — a relation from an attribute to a particular category or exemplar —

54

a case

2. censor — a reminder that weakens an association from a particular attribute to a cat-

egory

3. exemplar link — a connection from an exemplar to its category

4. difference link—a link that explains important differences between categories

The system has the possibility to learn categories and their prototypes, as well as indices and

their strengths (Porter, Bareiss, and Holte, 1990).

3.4 Case-based Reasoning and Software Reuse

In this section a few projects within CBR and software reuse will be describes. These are

• Ostertag, Hendler, Dı́az, and Braun (1992) — retrieve reusable components described

by (feature, term) pairs by measuring the similarity between the features of the compon-

ents.

• Fouqué and Matwin (1993) — CAESAR, a case-based approach to software reuse.

• Adachi, Kobayashi, and Ohta (1994) — support for software design using case-based

reasoning

These approaches will be discussed in the following.

3.4.1 AI-based Reuse System (AIRS)

Ostertag et al. (1992) describe the steps of reusing components as: 1) define a new component

in the form of its functionality and its relation to the rest of the environment, 2) retrieve

candidate components that are similar to the target under development, 3) adapt the best

candidate, typically through a set of modification steps, and 4) incorporate the new component

into the reuse library.

The classification model is based on features used to describe the components. Each

feature is defined as a finite set of related values called terms. The set of features used to

classify a collection of components within a certain domain defines a feature space. Each

component is modelled by a finite set of pairs of a feature for a given feature space and a term

55

of that feature. A component defines a mapping from features to terms. A feature that is not

relevant for a component is mapped to a special null term.

Components are compared based on their descriptions, and AIRS quantifies their de-

gree of similarity by computing a distance between their corresponding descriptions. AIRS

provides two comparators, the closeness and subsumption relations, that are used in comput-

ing distance. Subsumption is used to represent the case in which a new component is expected

to be directly realizable using a component currently in the library. This computation is based

on the classical AI notion of property inheritance in semantic networks. The closeness relation

is added to capture the notion that new components can be constructed via the modification of

existing constructs. I describe these relations in more detail in section 5.1.1.

3.4.2 CAESAR

CAESAR (CAse-basEd SoftwAre Reuse) (Fouqué and Matwin, 1993) describes a case-based

reasoning framework, where cases consist of program specifications and corresponding C

language code. The case base is initially seeded by decomposing relevant programs into func-

tional slices using algorithms from dataflow analysis.

CAESAR retrieves stored specifications from this base and specializes and/or gener-

alizes them to match the user specification. Testing techniques are applied to the construct

assembled by CAESAR through sequential composition to generate test data which exhibits

the behaviour of the code. For efficiency, inductive logic programming techniques are used

to capture combinations of functions that frequently occur together in specifications. Such

combinations may be stored as new functional slices.

3.4.3 Software Design Support

Adachi, Kobayashi, and Ohta (1994) suggest a system based on CBR where the system de-

signer gets help, from previous design cases, about how to perform the design of a new project.

When a task has been finished, the system should help in deciding what task to perform next,

or what item to construct next.

56

3.5 Genetic Algorithms

Genetic algorithms take their inspiration from natural genetics, where individuals can be iden-

tified by its combination of genes. In this section, I first give a brief introduction to natural

genetics before going on to discuss computational genetics.

3.5.1 Natural Genetics

In the simplest of life forms, each individual consists of one single cell that reproduces by

fission, i.e., each cell is split in two, and the DNA is copied into each offspring. This results

in two cells that are identical to the original one. Evolution in such environments happen

through mutation, i.e., genetic changes caused by, for example, environmental influence or

damage, and where each off-spring becomes slightly different from the parent. Often these

individuals are failures, and they cannot compete for food or they die out of other reasons, but

sometimes the mutation is successful in the sense that they get a competitive advantage over

other individuals in the environment.

In more advanced forms of life, with sexual reproduction, each individual has genes

organized in chromosomes, and two individuals that produce off-spring, each provide one

half of the chromosomes needed to make up a complete set for an individual. By combining

chromosomes the off-spring will always be different from both the parents in some ways, and

the variability among the individuals in a population will be much more varied than without

sexual reproduction. Mutations also happen within such populations. Evolution is the sum of

all semi-random events and natural pressure to reproduce or die.

3.5.2 Computational Genetics

Genetic algorithms have their background in work by John Holland in the 1970s (see for

example Koza (1998)). He showed how an evolutionary process can be used to solve problems

by means of a highly parallel technique that is now called the genetic algorithm (GA). Genetic

algorithms are, according to Tessem (1998b), particularly well-suited for finding solutions to

problems of discrete nature with many local optima.

A GA transforms a population of individuals, each with an associated fitness value, into

57

a new generation of the population, using the Darwinian principle of “the survival of the fittest”

and analogs of naturally occurring genetic operations such as crossover and mutation (Koza,

1998). Crossover implies sexual recombination of genes.

A GA used for problem solving, according to Luger (2002), typically consists of the

following three distinct steps:

1. The individual potential solutions of the problem domain are encoded into represent-

ations that support the necessary variation and selection operations. These can be as

simple as bit strings, but they can also be more complex representation forms, e.g.,

production rules.

2. Mating algorithms produce a new generation of individuals that recombine features of

their parents. In addition, mutation algorithms are used to introduce random changes.

3. A fitness function judges which individuals are the best life forms. By this we mean:

What are the individuals that are most appropriate for the eventual solution of the prob-

lem.

After the individuals are evaluated, they are compared against each other. In each gen-

eration, individuals who will produce off-spring for the next generation, are selected. The

termination conditions can be based on different criteria, e.g., a maximum time limit, a solu-

tion’s value must be above a certain threshold, or the solution’s value does no longer improve

between generations.

The preparatory steps required to use the conventional genetic algorithm on fixed-length

character strings to solve a problem, are according to Koza (1998): 1) the representation

scheme, 2) the fitness measure, 3) the parameters and variables for controlling the algorithm,

and 4) a way of designating the result and a criterion for terminating a run.

Once the preparatory steps for the algorithm has been set up, the genetic algorithm,

as described briefly above, can be run. The initial population is randomly generated. The

evolutionary process is driven by the fitness measure. The primary parameters that are set to

control the genetic algorithm are the population size, and the maximum number of generations

to run (Luger, 2002). Additionally, there may be some secondary parameters to set. This set

may vary based on the implementation of the genetic algorithm.

58

3.6 Genetic Algorithms and Reuse

Tessem (1998b) presents an application of genetic algorithms during the mapping phase in

analogical reasoning. This work was done in the context of the ROSA project. Genetic al-

gorithms are used to identify correspondence between entities and relations in the two situ-

ations, these situations representing OOram role models.

Tessem (1998b) models the analogical mapping problem as the problem of finding sub-

graph isomorphisms in two graphs describing two potentially analogous situations. Each situ-

ation is represented by a directed graph. The mapping function, f , is represented by a binary

matrix M where each row represents a target node (ti) and each column a base node (bj). If

the element Mi,j = 1, then f(ti) = bj . The rest of the elements in a row is 0.

The search is further constrained by considering the semantics of the entities and rela-

tions in the situations. The problem is then to optimize the weighted sum of semantic similarity

between mapped nodes and the structural preservation in the mapping.

The fitness function used in Tessem (1998b) counts the number of local isomorphisms in

the mapping, denoted I(M), between two directed graphs, where a local isomorphism is a pair

of edges, from each of the two graphs, (ti, tj) ∈ ET , and (bk, bl) ∈ EB , such that f(ti) = bk

and f(tj) = bl. ET and EB are the edges of the target and base graph respectively. The higher

I(M) gets, the higher the structural consistency in the mapping is.

In addition to taking account of the structural mapping, semantic similarity between the

mapped nodes should also be considered. While Tessem says the semantic similarity should

be computed between the nodes by some kind of spreading activation in a term space, in his

work it is fixed before the actual mapping takes place. The strength of the semantic match

S(M) between the target and the base is given by

S(M) =
∑
i,j

s(ti, bj)Mi,j

where s(ti, bj) denotes the semantic similarity between the nodes ti and bj

The total fitness function is then given by

O(M) = αS(M) + βI(M)

59

The experiments were run on synthetic data, where one OOram model was first gener-

ated. Additional models were created as variations of the first model. Random, semantically

similarity values were created for all node pairs, with a tendency to have high similarity values

for those who map in the ideal mapping, and lower for the rest of the pairs.

During experimentation, α = 1 and β is set to a value between 0.25 and 2. While Tessem

discusses whether to use pragmatics during the mapping, of the type used in ACME, i.e., to

let the goal of the analogy problem constrain the search, he has, in this work, chosen not to do

so. The types of pragmatics he mentions can be used is to punish the objective function with

a large number if a node or a set of nodes is not mapped.

During experiments, Tessem tests four different genetic algorithms (Tessem, 1998b) and

each of them used with four different values of β (0.25, 0.5, 1, 2). The performance of the

algorithms were measured by comparing how many of the ideal mappings the algorithms

were able to identify. The algorithm giving the best results uses ten populations, each with

ten individuals. Each population runs a steady state algorithm (Syswerda, 1991), and for each

population one individual migrates to another population each generation. This algorithm is

called a deme genetic algorithm according to (Wall, 1996). Tessem argues that the reason for

the success of this algorithm is that the problem demands high diversity to get good results, and

that this is ensured by the multiple population algorithm. The deme algorithm with β = 0.5

gave the highest percentage of correct mappings.

3.7 Discussion

This chapter has discussed three research areas within AI that have been applied in relation

to software reuse. These three approaches: AR, CBR and GA are in different ways relevant

for the ROSA project. Each of these approaches are described, both theoretical and how it

has been applied to research within software reuse. The examples of their use within software

reuse are selected because they all focus on reuse of artifacts from early phases of the software

life cycle.

From the presentation of the different approaches it is clear that domain knowledge,

particularly from the efforts to reuse artifacts from analysis, is considered important. Domain

knowledge contributes to much of the semantics of the models. This is very much in line

60

with the discussion in chapter 2. Also, most of the efforts have chosen to focus on only one,

or perhaps a couple, of the phases of which AR or CBR consist. This is, most likely, due

to the inherent complexity of such a task. Much work has been put into the mapping phase

of AR, while within CBR more effort has been given to the retrieval phase. To be able to

utilize the vast knowledge that is kept within a software model repository, it is important to

understand how retrieval can be performed in an efficient way, so the contributions within

CBR is therefore important.

In the ROSA project, focus is on the retrieval and mapping phases of analogical reas-

oning. In this context, CBR is important due to its focus on retrieval, something that has not

been as emphasized within AR research. Also, I have discussed genetic algorithms because

the AR mapping phase within my project will utilize genetic algorithms. In section 3.6 the

work by Tessem on how to use a GA during the mapping of OOram models was described.

This work is applicable to my work in a somewhat modified and extended form. In section 3.6,

I discussed how these techniques fit into the project.

Chapter 4

Use of WordNet in ROSA

Lexical databases are useful in conjunction with many types of information systems, e.g.,

retrieval software, and automated natural language translation. In ROSA there is a need to

describe components both in terms of their structure and their semantics. I use available

results from lexical and semantic research as a basis for describing semantic information of

model components. The goal is to identify and organize semantic information in such a way

that it can successfully measure the semantic similarity between any two components in the

repository.

In this chapter, I look at problems related to how components can be described, and what

alternatives exist for solving the problems of identifying and organizing such information.

In particular, I look at WordNet (Fellbaum, 1998c) 1. The goal is to identify properties of

WordNet that are useful for finding similarities among OOram components. In section 4.1, I

give a brief overview of WordNet, a system that seems like a suitable lexical database to use

for this purpose. A full overview of the WordNet lexical database can be found in appendix B.

Section 4.2 presents how it can be used within the framework of ROSA, and in section 4.3 I

discuss how some additional problems related to naming can be solved.

4.1 The WordNet Lexical Database

WordNet is a lexical database that supports conceptual, rather than merely alphabetical, search

(Fellbaum, 1998c). It combines features from both a dictionary and a thesaurus. WordNet con-

1A previous version of this chapter can be found in Bjørnestad (1997).

61

62

tains the full range of common English vocabulary, and it has been handcrafted and expanded

as new sources of lexicons or other lexical information have become available or have been

selected. It is organized around meanings in synonym sets, or synsets, consisting of all the

words that express a common concept, and with relationships between these synsets.

Each word form, i.e., the written word, can have several word meanings. WordNet,

version 1.6, contains approximately 174000 word forms organized in about 91.600 synonym

sets. Word forms belong to one of the word categories nouns, verbs, adjectives, or adverbs. Of

the word categories, the noun group is by far the largest. The semantic relationships between

synsets (examples below are taken from Miller et al. (1993)) are exemplified in appendix B.

They include

• hyponymy—specialization—an elm is a type of tree

• meronymy—part-whole relation, from Greek meros (part)—a treetop is part of a tree

• entailment—implication, i.e., one statement implies others—John is a bachelor implies

that John is a man. Entailment is only used between verbs (see appendix B.3).

Lexical relations can also exist between words rather than between synsets, e.g., ant-

onymy, which expresses degree of oppositeness between words. This relation exists between

nouns, e.g., girl/boy, between adjectives, e.g., good/bad, and between verbs, e.g., appear/disappear.

These are relations between specific word meanings. Although opposite meanings can be iden-

tified among words other than direct antonyms, people are not likely to use them together in

pairs. While fall/rise and ascend/descend are direct antonyms, rise/descend and ascend/fall

are conceptually opposed, but they are not direct antonyms.

WordNet does not contain organizational units larger than words, but the relational se-

mantics does reflect some of the structure of frame semantics, e.g., WordNet does relate words

like buy and sell through the antonym relation, as in a frame for a commercial transaction; see

Fillmore and Atkins (1992). According to Fellbaum (1998a), WordNet “relates words and

concepts from a common semantic domain”. The word categories are discussed separately in

appendix B.

The basic relation used in WordNet is synonymy. Words are organized in synonym sets,

or synsets for short. This implies that the words in a synset are interchangeable in some,

although not in all, contexts. Some short phrases, or collocations, that would normally not be

63

included in a dictionary, are included in WordNet. Fellbaum says that the natural distinction

between word knowledge, which would be stored in a dictionary, and world knowledge, which

would be stored in an encyclopedia, has not been enforced completely. The boundary is fuzzy.

4.2 Semantics in ROSA

In this section, I look at ways semantic information can be used in ROSA to reduce ambiguity

and give better analogies. It requires that semantic knowledge is available in a term space, or

semantic net, and that it is organized in such a way that information about semantic similarity

between two terms can be identified. Although the term space does not need to contain all

possible words or phrases, it should contain all terms that are relevant for the domains of

interest, and it should have defined the necessary relationships between these terms. Two

example models are described in section 4.2.3. In chapter 5 I discuss similarity measures

and algorithms that may help identify good matches during retrieval. Here I discuss semantic

relations that may be useful for ROSA; also see Bjørnestad (1997).

4.2.1 Semantic Requirements of the ROSA Analogy Machine

Research in AR emphasizes deeper, structural similarities as important for finding analo-

gies (Gentner, 1983). Surface similarities like the names used, however, may play an important

role for improving the analogies. An analogy machine should quickly be able to identify the

models that most closely resemble the structure of the target model. Tests performed on syn-

thetic graphs, and not on OOram models, using a neural net approach (Ellingsen, 1997b) and

genetic algorithms (Tessem, 1998b), indicate that when using additional linguistic knowledge,

the search for good analogies is improved. These experiments used names chosen from a re-

stricted set, and the graphs were not conversions of real role models. The names used in these

tests were just text with no relations through a semantic net. It was therefore only possible

to say whether names were equal or not. One could assume that the addition of a semantic

net would enhance the importance of using semantics as an aid to identify analogies. There-

fore, the results after searching for structural similarities should be combined with a search for

semantic similarity.

64

Software component libraries are often categorized or classified according to the in-

tended use of each component, and this can often be seen through the names given to the

components, e.g., containers are components that are used to store other components. There

are different ways to think of most components, however, and several different perspectives

should be permitted. The components in my system, e.g., OOram role models, roles, and

messages, can be categorized in a set of different ways. These different dimensions may be

used to strengthen or weaken an analogy. A set of dimensions might be useful for describing

OOram components. For example,

• all components, e.g., roles and methods, have a name

• all models have one or several stimulus roles that may initiate an activity in the model

• models are described by their structure, and the structure descriptions are generated

using the stimulus role as the root node in a graph

• For each role in the model, the names of the roles it knows about, i.e., the ones it can

communicate with (possible values are zero, one, or many)

• For each port, a role may have a set of messages that it can send to the connected role

These dimensions indicate how structural and semantic information identified in models

can be combined to find potential analogies. In the following, I discuss the semantics in

OOram role models.

4.2.2 The Semantics in OOram models

The study of relations in the context of lexicons may be focused on language understanding,

translation, or generation. A system that handles natural languages within any of these areas

must handle intended ambiguity and use of metaphors. During analysis of software systems,

we try to remove ambiguity and make model names, descriptions, and relations as simple

and clear as possible. This will particularly reduce complexity concerning morphological

relations. Plural forms for nouns will typically be used only for roles representing collections,

or plurality is shown only indirectly through the use of multiplicity of the ports. The last

alternative may be preferable because of its simplicity.

Structural ambiguity is, according to Sowa (1991), a problem in natural language. This

problem is reduced when role models are created. Lexical ambiguity, which arises when a

65

word form can have several meanings, is reduced if the name of a component, e.g., an OOram

message, is linked to the word meaning rather than to the word form itself. Each OOram role

model represents one part of the problem domain, and some dimensions are explicitly present

in it, e.g.,

• stimulus role, structure, and contained roles for the role model

• name, knows about, message sends, and attributes for roles

• name, arguments, and return values for messages

Each role-to-role relation can be expressed using a simple sentence, e.g., A Borrower

returns (a Book) to the Library. OOram models are examples of what Chaffin and Herrmann

(1988) call complex relations made by adding specifications to simple relations or concatenat-

ing simple relations. They mention 5 types of case relations, of which three can be found in a

simple role-to-role relationship. When we make a role model based on a sentence like the one

above, these relationships are made explicit. The stimulus role becomes the actor in the given

relationship. Taking the model that can be made from the above mentioned sentence, we find:

• agent—action (Borrower—returns (Book))

• action—recipient (returns (Book) to—Library)

• action—instrument (returns—a Book)

Even in a model containing only two roles, each role may be able to send more than

one message to the other role. In OOram role models, the two roles represents the agent

and recipient, respectively, and the method can be considered the action. The communication

between two roles can therefore not be represented by one of the relations mentioned above,

which is rather the relation between a role and a message, a message and a recipient role, or a

message and an argument. When one role communicates with another, this is in OOram called

a knows about relationship. This relationship has some similarities to what Booch (1994) calls

an association. The difference is that while an association has no direction, the knows about

relation is directed.

According to Booch (1994), a relationship first identified as an association may later

be expressed in a more precise way, e.g., as aggregation (i.e., meronymy), inheritance (i.e.,

hyponymy), using (for example in a method or as a parameter in a message), instantiation (of

66

a type or class), and delegation (an alternative to inheritance). The knows about relationship,

however, is not applicable in all these situations.

• Inheritance is not seen in role models, but one could think of it as modelled as semantic

relationships in the term space. In OOram these relationships are delayed to the design

and implementation phases, where we talk about specialization of types or classes.

• Instantiation—more related to the design phase, and is not discussed here.

• The using relationship in the meaning “used as a parameter to a message” is modelled

differently in OOram. If “a role is used in a method”, this will be modelled by synthes-

izing a sub-model inside another model or by an attribute of a role.

• The knows about relationships might be substituted with aggregation or delegation.

An alternative way to specialize the knows about relationship is by analyzing the mes-

sages a role can send. A message is typically represented by a verb phrase. Generally, verbs

are more polysemous than nouns, and thus harder to study (Fellbaum, 1993). The meaning of

a verb is to a great extent determined by the noun it is used together with. Fellbaum (1998b)

indicates that this problem may be solved by adding a pointer from a verb synset to a noun or

noun synset. This will determine in what context the different verb meanings can be used. In

OOram models, however, messages are connected to the roles that send and receive them, so

this is already part of the model.

4.2.3 Example Role Models

In the following, two role models are shown. One is from a library example and the other

from a wholesaler example. They enable us to describe a set of useful relations. I am con-

sidering semantic relations between verbs as well as relations that can be seen between roles

and messages in the models. WordNet is used to find additional relations. The two models

are considered analogous—see discussions in Bjørnestad, Tessem, Tornes, and Steine-Eriksen

(1994). Still, the terms used to describe them are partly different. The two models are shown

in figures 4.1 and 4.2.

Borrower and customer are, respectively, stimulus roles in the two examples. Both

models contains a role called register. The multiplicity on the path from these roles to the

67

Figure 4.1: An OOram model for a library example where a borrower lends books (This model
is named Library sub0 in Table F.2)

Figure 4.2: An OOram model for a wholesaler example where a customer buys items (This
model is named Wholesaler Sub1b in Table F.2)

contained role indicates that they are containers. A multiplicity of many, however, does not

necessarily imply containment, as the relation between shop assistant and customer

exemplifies. Some relations between roles in the models are shown below, written on the form

fromRole, predicate, object(), toRole.

• Borrower, requests, book (“Garp’s Book”), Library assistant

• Library assistant, searches for, Book (“Garp’s Book”), Register

• Register, asks for, name (“Garp’s Book”), Information

• Customer, orders, partID (“carburator”), Shop assistant

• Shop assistant, searches for, partID (“carburator”), Register

• Register, asks for, name (“carburettor”), Information

The predicates are registered in the model as messages. The parentheses represent mes-

sage arguments to identify a particular instance. Below is a list of relations identified as im-

portant, based on the above examples. The two examples are similar in terms of the predicates

68

discussed above, but the analogy breaks when we look at a borrower returning a book. There

is no similar situation when it comes to items bought in a store, except for a situation when

the item is returned due to a production flaw.

• Synonymy—{person, individual, somebody, someone, . . . } a synset given in WordNet.

• Hyponymy (specialization)—borrower, customer, library assistant, and shop assistant

are all hyponyms of the synset listed above, even though the two types of assistants do

not exist in the current version of WordNet. Assistant can be found at level 5 in the same

hierarchy as borrower and customer are found. How close they are to each other in this

hierarchy can indicate how close they are semantically. Even this simple categorization

may help to show similarity.

• Meronymy (part-of)—roles may have attributes that also have names from the term

space. They may be used in later phases of matching to select the best match.

{course, course of study, course of instruction, class}—has the meronyms {lesson} and

{lecture, lecturing}.

• Antonymy (opposites)—borrower/lender, customer does not have a direct antonym.

Since only a few terms have direct antonyms, there is a weaker relation called oppos-

ites, where other terms in the synsets of the terms being compared have an antonymy

relationship.

• Instantiation—“Garp’s book” is an instance of a book.

Typical antonyms among nouns, e.g., {man/woman}, when used in two models that are

compared, will not exclude each other as being similar. In addition to being antonyms, they

also have a close similarity in WordNet. Therefore, I do not find it worthwhile to include this

relationship in the ROSA term space. When searching WordNet for the term return, 16 verb

senses are found, of which only one is relevant for the example Returning a book, sense 2

{render,return—(give back)}2. WordNet also contains examples of how a verb can be used,

e.g., Somebody s something where return should be inserted into the open slot as in Bor-

rower returns book.

The structure of the two models is similar, and the following mappings can be identi-

fied3:
2Version 1.6 of WordNet is used for the examples in this thesis.
3Notice that when selecting terms for a role model, Reenskaug, Wold, and Lehne (1996) recommends that

69

• borrower—customer

• library assistant—shop assistant

• register—register

• information—information

For example, books are borrowed at the library, while parts are bought at the store.

Even though the two models are analogous, not all relations and properties match. When

considering other parts of the model, we see that while books are returned after they have

been read, parts are not. This difference is not seen in the structure of the models; it is implied

by the messages that can be sent. This can be viewed as additional structure that may be used

during later stages in the analogical reasoning process. In many situations such differences can

not be resolved automatically, and the systems developer must evaluate the suggested mapping

of role models. This is illustrated in figure 4.3 below.

Library Model Wholesaler Model

Figure 4.3: The structure of the two role models

I will return to this example during the discussion of the similarity model in chapter 5.

4.2.4 Discussion

WordNet seems to have enough power to describe the semantics of role models, both when

it comes to the types of information it contains, the types of relationships that exist between

them, and the size of the database. Nouns can be used to name OOram roles. Verbs are used to

name OOram messages, possibly in the combination with a modifier, which in this case may

be a noun, as in add name. The function facet described in the classification scheme of Lung

and Urban can be compared to the message feature of a role in a role model. Role attributes

can be named using nouns as well. If messages have arguments consisting of names and types,

these may also be named using nouns. If we want to specialize role names, modifiers can be

used. These can be either nouns or adjectives.

one use terms that are slightly more general than necessary. I want to add that, if at all possible, it is advantageous
to use words that already exist in the repository.

70

To find similarities between OOram components, e.g., roles and messages, the relation-

ships between words and synonym sets can be used to find how similar any two names are. It

is more unclear how attributes and adverbs will be used.

When representing the term space as a semantic net, the relations between the terms

represent some kind of underlying semantic structure. The names of the roles or other OOram

components, therefore, represent something more than mere surface similarity.

It is unnecessary to store details on morphological forms in the ROSA term space. Plur-

ality is shown indirectly through the use of multiplicity at the ports. Verbs are typically used

in present form in models.

In section 4.3, I discuss additional issues related to how to solve specific problems of

handling semantics in ROSA.

4.3 Solving Semantic Similarity Problems in ROSA

Problems related to the use of semantic information for identifying analogous role models

were described in section 1.3. In this section, I analyze these problems, and for each topic I

refer back to the problem in section 1.4 and, whenever relevant, to experiments in chapter 7. If

semantic information is to be used to identify similarities between components in a repository

of reusable software artifacts, several problems should be addressed. These include

• how semantic information is represented,

• how semantic information is identified,

• how relationships within a repository of semantic information is defined,

• how relationships between potentially reusable components and their semantic descrip-

tion are organized, and

• what semantic information is useful to help identifying possible reusable components.

The goal is to find a representation that is adequate for solving the problem, yet does

not require too much work during initialization, information systems modelling, and retrieval.

The organization must support the search for similarities, and it must be adjusted to the re-

quirements of the analogy machine. The identification of terms used to name components

71

should not involve too much work on the part of the systems developer. Also, the reposit-

ory must contain a vocabulary large enough for the user to realistically be able to name the

components.

Problems related to naming ambiguity are discussed in section 4.3.1. In section 4.3.2,

I discuss the choice of vocabulary for ROSA. Section 4.3.3 discusses alternatives for how to

handle situations where several words co-occur, and, in section 4.3.4, I describe how the term

space can be filled in an efficient way. Section 4.3.5 presents some related work, and finally,

in section 4.4, I conclude about what this means for the ROSA project.

4.3.1 Naming Ambiguity in Software Development

Intuitively we use an artifact’s name when we compare it to similar artifacts. When looking

for analogies, however, as pointed out in section 3.1, the deeper, structural relationships of

the problem are important. In such situations, it is still useful to take advantage of semantic

similarities that may exist among components.

Even when not using AR, it is naı̈ve to think that we can use equality between the names

people give artifacts as the main criteria for retrieving reusable components. This is due to

the fact that people tend to use different words when describing the same thing, depending

on their background, or simply because there are several suitable terms to choose from. The

problems we face may be related to synonymy, the view the developer takes when addressing

the problem at hand, or to differences in abstraction level that is used when describing a

component.

One solution to this problem is to require that developers use a restricted language,

where they are required to look up terms in a data dictionary to find the “correct” term accord-

ing to some standard. This may work within a small organization, or when working within a

well-understood application domain, but it is hardly adequate for inter-organizational retrieval

and less understood domains. Such a restricted language should, if at all possible, be based

on domain analysis with a well established ontology for the problem area. Another solution

is to relax the requirement of equality, and use some kind of similarity measure. This is the

approach discussed in the next section.

During information systems analysis, systems developers normally use some kind of

72

semi-formal approach to model applications. They typically use terms from the application

domain, which describe the objects in question, during this initial phase. The selection of

terms will, however, depend on the person’s knowledge of the domain, and on his or her

experience as an information systems developer. For other people it will not always be obvious

which of several meanings a developer had in mind. If a domain is less well-known, there

is less chance that an established ontology for the domain exists. Introduction of a pattern

language for a particular domain could create such a common language for a community of

people.

4.3.2 Choice of Vocabulary

In section 4.1, I mentioned that in some situations short phrases are added to WordNet in

addition to single words. When people model information systems, compound words are often

used to describe components, e.g., roles. In an application such as ROSA, therefore, it may be

necessary to use more phrases than what exists in WordNet. This may better reflect knowledge

that is useful for describing models within a particular domain. In figures 4.1 and 4.2 we see

that the names library assistant and shop assistant are used, although they are

not originally part of WordNet. In the previous prototype, described briefly in section 1.2.3,

the addition of new compound terms was made frequently. The user could add new phrases to

the database, but it could be difficult to decide where in the term hierarchy new phrases should

be linked up.

There are reasons to believe that unrestricted additions of new terms should be discour-

aged. This will lead to uncontrolled growth of the term space, leading to increased problems

when it comes to term selection. This problem should therefore find another type of solution,

and this is one of the topics that I hope to shed more light upon during this work.

WordNet has a richer vocabulary within a few technical domains, e.g. medicine and bio-

logy. This is because WordNet has been used to perform experiments with regard to people’s

knowledge within these fields. This is an indication that there is a need for a richer vocabu-

lary within other technical domains as well, and many of the domains that are candidates for

information systems analysis are of this type.

Messages are organized in a hierarchy to distinguish between their semantics. Word-

73

Net organizes verbs in 15 categories according to semantic domains, e.g., verbs of change,

communication, competition, consumption, contact, creation, emotion, motion, perception,

possession, and social interaction; see appendix B.3. Most of these groups denote events or

actions. Another group contains verbs referring to state. These categories should be examined

to see how they can be used to structure the relation between messages. Maybe the most im-

portant thing when it comes to messages is that they are structured into categories. Fellbaum

states that the sense of a verb is often determined by the noun it is used together with.

The new ROSA prototype will use a collection of nouns for describing role names. Verbs

can describe messages. In many situations, however, some kind of modifier will probably be

needed. An example of a message name is set. For one role there may be different types of

values that can be set, and we would need different types of messages to set different types of

values. If we have a role called customer record, we could need the messages

• set name

• set address

• set telephone number

These arguments could be used to set the values of different attributes of the customer

record. In object-oriented programming, such functionality requires different names for

different set methods (in this case), to be able to tell what to set when such a message is sent

to the same object. One way to solve this problem would involve the use of an argument,

but in object-oriented design it is typically not done in such a way, and a modification would

therefore be needed before design. If we use name, address, etc., as arguments to the set

methods, the method names would have to be translated during design. On the other hand, if

we had different message names, there would not be a translation problem.

This second alternative may be preferable to doing modification in the term base, or

adding complicating constructs in the OOram repository. If implementing the ideas in rela-

tion to co-occurrence of words, as described in section 4.3.3 for role names, however, this

could just as well be done for messages. Actually, the construct linking an OOram name to a

word meaning is done in OOramNamedComponent, which is the direct superclass of both

OOramRole and OOramMessage (see figure 6.6 on page 123).

74

Nouns can also be used to describe the roles’ attributes. This possibility has not yet

been taken advantage of in ROSA, although in a full-fledged repository this feature may be

important.

4.3.3 Use of Word Collocations

Often, when systems developers describe components in a system, they use phrases or colloca-

tions. Examples are the role names area manager, section manager, and technical

expert (taken from an example in (Reenskaug et al., 1996, p. 151)). These phrases are not

part of WordNet, and I discuss alternative ways to approach this problem. Other examples

are shown in the example in 4.2.3, e.g., library assistant and shop assistant.

There exist several choices as to how to resolve this problem:

1. Include such terms in WordNet, and decide where in the hierarchy they best fit. This

approach was chosen in my first experiments. This approach is not without problems.

The term space will grow, and there is no guarantee that the selected hyponymy rela-

tions would have been approved by a linguist. One could require that additions of new

terms would be controlled by a librarian/linguist. In most organizations, however, it is

unrealistic to expect that they have a linguist on the team.

2. Simplify the models and select slightly more general terms than would be natural at

first. This approach is recommended by Reenskaug et al. (1996) to get more reusable

solutions. In some situations this is not a solution. In the example referenced above,

where you have several types of managers, they can not all be replaced by the name

manager. Of course, one of them could be replaced by a synonym, but that may change

part of the semantics in the model, and in many situations there are no synonyms. So this

is a solution that should be used in some situations, but cannot be applied universally.

3. Permit a component, like a role, to have a name that is composed of several words, where

each of them may be connected separately to a component in the term base. Although

this is a slightly more complex solution, it permits more flexibility without the problem

of a term space with increasing size. Names can be compared without necessarily being

stored in the term space. The developer can use meaningful words, yet prevent the term

75

base to grow uncontrolledly. Allowing a name to be linked to more than one word in the

term base reduces the problem of the user having to insert new collocations.

Within this approach, there are two alternatives. If a role name consists of two or more

words, and the combination is not an existing term in WordNet,

(a) each word is connected individually to a word meaning in the term base. When

looking for similarity, the term base is searched for each of them, and the similarity

measure must be based on a combination of the individual similarity values.

(b) only the most significant word is actually coded, i.e., the user has selected a word

meaning for it. The combined term is then regarded as a specialization of this term,

and the similarity value is adjusted for this extra distance in the term space.

Using approach (b), if a role named area manager, which does not exist in WordNet,

is used, then it is linked to manager. As manager is not the complete name, the

system treats the name as a specialization of manager, although it is not stored as

such. This approach permits roles to have different names, even if the significant term

may belong to the same synset. If two roles are compared, and they both have manager

as their significant name, but with different modifiers, we know that they are similar, and

that each of them is given an extra level in the hierarchy due to the modifier. But they

cannot be distinguished between, unless we can somehow compare the less significant

words. A simple solution to this problem is to link the insignificant part of the name to its

word form. The user does not have to select the meaning. If the two roles are compared

and the significant words are equal, the non-significant word are compared. If they are

also equal, the two roles have equal names; if not, the names are different, although

quite similar. Only when the more significant words have identical word meaning do

we have to compare the less significant words.

If I choose the last alternative, we have the following situation: Instead of letting an

OOramNamedComponent have a name attribute that is a reference to a WordMeaning, it

should have a list of such references. In many cases, this list will contain only one member.

Then this is of course the most significant word. In cases where there are several words in

co-occurrence, they are stored separate references to WordMeanings. As for now, I assume

76

that the last of these words will always be the most significant and the one that is used during

analogical retrieval and analogical mapping. I then assume that the occurrence of the extra

term just adds one level to the synset path. Only when the significant words that are compared

belong to the same synset is the less significant word examined. The similarity value for

these words must be modified by some kind of weighting. This approach requires, however,

more resources to calculate semantic similarity. Particularly during the retrieval phase, where

a target model is compared to all base models, such a cost should be evaluated against its

benefit.

4.3.4 Filling the Term Space

A problem when developing a repository, such as the ROSA repository, is to fill it with a

substantial amount of data so it is possible to test the selected approach. One such problem

is the organization of words and definitions of the relationships among them. A software

developer, who is not also a lexicographer, cannot fill a database with lexical and semantic

information and claim that it is correct. WordNet seems to solve the problem of how terms

should be organized, and I will adopt this lexical database.

Another problem is actually to fill the database. WordNet solves this problem, too.

The lexical information of WordNet is also distributed as a set of Prolog files, where each

file contains one relation, e.g., elements from synonym sets denoting what type of word it

was (e.g., noun, verb), synset glosses, hyponyms, antonyms, and so on. These files can be

read and interpreted in a specified sequence, and the term space can thus be filled with the

information that is already organized by experts. I have currently not incorporated all word

categories and all the relations of WordNet into the term space. The limitation is how to

utilize it rather than the availability of data. The word categories and relationship types may

be extended as it becomes more clear how the different types of information may be used in

ROSA. An important point related to what should be included in the database is that addition

of too much information may slow down the analogy machine, so additional word categories

and relationship types should be added with caution and only when it is clear how it will be

used.

77

4.3.5 Related Work

The project ROSA (Reuse of Software Artifacts) (Girardi and Ibrahim, 1994), not to be con-

fused with our own project, uses WordNet to obtain morphological information, grammatical

categories of terms, and lexical relationships between terms.

Burg and van de Riet (1998) use WordNet in COLOR-X, a linguistically based concep-

tual modelling environment. WordNet is used during conceptual modelling to ensure that the

resulting models are correct. WordNet is also used to paraphrase models into natural language

sentences. The models that are made are static object models and event models. Burg and

van de Riet claim that WordNet supports conceptual modelling. Information from WordNet is

used to select meanings of polysemous words. Once the correct meaning has been selected,

they extract information from WordNet about substance, part, and member meronymy rela-

tionships. They augmented WordNet with more relations, e.g., function words, and thematic

roles, and they also had to enrich the morphology.

Gulla, van der Vos, and Thiel (1997) use a linguistic approach to retrieve conceptual

models. Using their suggested approach, a user can search a repository using natural language,

since he may not know the syntax of the modelling language that is applied. They use a

model where the grammar-relevant semantic properties of words and phrases are modelled

as conceptual structures in a sign-expansion framework. The lexicon assumed in this model

is made up of conceptual frames that are not associated with any word category, but can be

expanded in different directions to support different words and different sub-categorization

frames.

Faceted classification of models is criticized by Gulla et al. (1997) because this clas-

sification does not really consider the semantics of the search terms (facet values). They

also criticize approaches where the semantic structure between elements of the model, e.g.,

between a loan and a book, is not analyzed, but where you can analyze each word by itself

for synonyms, hyponyms, and meronyms. Due to this problem the following problem can

occur: The above criticized approach will be able to capture the similarity between a book

reservation system and a dissertation reservation system, but not between any of these and a

car reservation system. The reason for this is that it is not the relationship between the book

and dissertation, or car, that is interesting, but the structural relationship between loan and

78

book or between loan and car. I discuss this example further in section 5.6. An example of

the approach they criticize is Richardson and Smeaton (1995), who have used WordNet as the

lexicon for an information retrieval system.

4.4 Discussion

In this chapter, I have discussed WordNet and in what way it can be useful as the basis for the

ROSA term space. The information from WordNet that will be included in the term space is

only what is directly useful for the AR machine. First of all this is the noun part that can be

used to name OOram roles. Later, verbs will be included to name messages, typically with

nouns as modifiers. The design of the OOram components should be flexible so that this later

extension is made easy.

The criticism from Gulla et al. (1997) of the work of Richardson and Smeaton (1995),

mentioned above, is concerned with their lack of structural information about the model itself.

This criticism is not really a problem for my approach, since I do not query the database in

a natural language, but rather in a semi-formal language in the form of a role model; see

section 4.2.2. The structure of the OOram model is used as a search criterion in addition to

the semantic information of the names of roles and messages in the model. This structural

information is of a similar type, although formulated in a different way, that they refer to.

Since I use role modelling instead of a natural language to describe role models, part

of the enhancement that Burg and van de Riet (1998) suggests, e.g., thematic roles, is not

needed. The algorithms used to identify similarities during retrieval and mapping is discussed

in chapter 5, while the design of the term space is described in chapter 6.

Chapter 5

The ROSA Similarity Model

Similarity is, in McKechnie (1979), defined as “1) having characteristics in common: strictly

comparable, 2) alike in substance or essentials, 3) not differing in shape but only in size or

position”. In AR, emphasis is put on finding deeper, structural similarities between a target

case and one or several base cases. Owen (1990) argues, however, that structure alone is not

enough to distinguish among cases that are similar and those that are not. I propose a similarity

model based on a combined measure of structural and semantic belief values both during the

retrieval and mapping phases. This measure is fine-tuned based on heuristics discussed in this

chapter.

In section 5.1, I outline a few earlier approaches to defining similarity models for identi-

fying reusable software components. In section 5.2, the overall similarity model proposed in

this thesis project is presented, and I describe how it is applied during retrieval and mapping.

Similarity considerations are handled in two ways:

1. during retrieval—to a great extent based on semantics

2. during mapping—based more on structural information.

Algorithms used for defining structural similarity are based on structure descriptions as de-

scribed by Tessem (1998a), and use of genetic algorithms (Tessem, 1998b) as discussed in

section 3.6. These algorithms are here adapted for use with the ROSA repository, and particu-

larly with the ROSA term space.

My discussion of the similarity model has its main focus on semantic similarity, and

two alternative semantic similarity models are presented in section 5.3. The motivation for

79

80

suggesting several versions of how to measure similarity is to study how different variables

influence the result. The models are tested individually, and a choice is made as to what model

is best suited for the ROSA project. In section 5.3.4 the similarity models are compared using

examples from a WordNet hierarchy. Section 5.4 gives a practical example of how similarity

is calculated both during retrieval and mapping, and how the two semantic similarity models

behave when comparing the role models shown in figure 1.4.

Section 5.5 discusses the possible advantage of distinguishing between ONE and MANY

ports in role models when mapping analogies. The use of such information may help to im-

prove mappings through a more complex approach to similarity. Finally, in section 5.6, I

discuss the selected approach in relation to the approaches presented in section 5.1.

5.1 Previous Software Component Similarity Models

Several similarity models have been proposed to identify reusable artifacts within software

development. Each is suggested within the context of a given research project with a specific

type of artifact, level of abstraction, and system development methodology used, and they may

therefore be difficult to compare. I therefore describe the context within which they have been

suggested.

5.1.1 The AIRS System

Ostertag, Hendler, Dı́az, and Braun (1992) discuss a technique to compute similarity among

components in a reuse library system (see section 3.4.1). The technique represents a formaliz-

ation of the concepts on which AIRS (AI based Reuse System) is based. The functionality of

a prototype implementation of AIRS is illustrated by the application of two different software

libraries: a set of Ada packages for data structure manipulation, and a set of C components

for use in Command, Control, and Information systems. This can be categorized as reuse of

code. These authors also seem to be focused on the mapping phase only.

A component is described by a set of (feature, term) pairs. A feature represents a clas-

sification criterion and is defined by a set of related terms. Candidate reuse components are

selected based on the degree of similarity between their descriptions and a given target de-

81

scription. Similarity is quantified by a nonnegative distance proportional to the effort required

to obtain the target given a candidate. Distances are computed by comparator functions based

on subsumption, closeness, and relations.

Ostertag et al. set the distance between a term and its synonyms to zero. Therefore, a

component for which the synonym is used will come up as a good candidate. There seems,

however, to be no attempts to handle polysemy, i.e., the situation where one term can have

several meanings, as WordNet does.

5.1.2 Analogical Similarity of Objects—Conceptual Modelling

Spanoudakis and Constantopoulos (1992) define similarity between software artifacts and dis-

cuss its potential exploitation in software reuse by analogy. They focus on the elaboration

phase of AR. They first identify what properties are important for finding similarity. There-

after they develop a systematic basis for comparison within a general conceptual modelling

framework. Finally, a general form of distance metrics for computation of similarity measures

is defined.

The conceptual distance between two objects is computed as an aggregate of partial

distance metrics defined over the representation dimensions of the Telos language, namely

identification, classification, generalization, and attribution. They are described as follows:

• The identification distance distinguishes between identical and non-identical objects

even if the latter are equal, i.e., they belong to exactly the same classes; they are gener-

alized to exactly the same superclasses; and they have attributes with equal values.

• The classification distance reflects differences expressed by the classification of two

objects in different classes. The non-common classes of the objects have different con-

tributions to the classification distance depending on the relative importance of the cat-

egorization they represent. The relative importance of each class is a decreasing func-

tion of the depth of the class in the taxonomies (generalization/specialization graphs) in

which it participates.

• The generalization distance reflects differences as captured by the assignment of non-

common superclasses. Like non-common classes in the case of the classification dis-

82

tance, non-common superclasses have different contributions to the generalization dis-

tance which are similarly determined.

• The attribution distance measures differences that occur at the level of attribute assign-

ment. Computing this distance involves establishing a (partial) one-to-one relationship

between the attributes of the two objects, which yields corresponding and unique attrib-

utes for each object. The notion of corresponding attributes is an important and useful

extension to the notion of common attributes: they are attributes that can be considered

comparable regardless of whether they bear the same or different names and modelling.

A necessary condition for two attributes to be comparable is that they belong to common

attribute classes (the principle of semantic homogeneity).

5.1.3 Systematic Software Reuse Through Analogical Reasoning

Whitehurst (1995) uses analogical reasoning to support reuse of software frameworks, i.e., the

classes that constitute such frameworks. This may be called reuse of design. The reuse strategy

was described in section 3.2.2. In this section the similarity measures will be described.

When a programmer creates a new association, he must assign a heuristic estimate of

the extent to which this new association is related to a particular association group. Groups

are similarly categorized into conceptual groups, and so on, forming a network of conceptual

distances. So, if a0, a1, . . . , an denote the associations corresponding to all vertices in the

shortest path from a0 to an, and δ(αβ) denote the cost of the path segment from α to β, the

conceptual distance, Δ, from a0 to an is given by:

Δ(a0, an) =
n−1∑
i=0

δ(aiai+1)

Systemic difference is the result of a pairwise application of a modified structure map-

ping algorithm, pre-computed for associations in the software repository without regard to

the resulting mappings. This information is stored in a table with one row and one column

for each association added. Relational indexing is information about which frameworks ref-

erence a particular association. Relational indexing serves as the basis for deriving a set of

similar frameworks from a partial framework specification through the computation of a rela-

83

tional coverage metric. Relational coverage is a measure of the extent to which a particular

framework matches the association components of a partial framework specification.

A partial system specification is given in the form of object classes and associations.

This specification is tried mapped to a set of source frameworks. Augmenting the matching

procedure with feature recognition or other heuristics has the potential of changing the reas-

oning process from analogy to some other form of similarity, the result of which is undefined.

In Whitehurst’s work the entity relationships are made explicit, thereby reducing the need to

augment the representation with additional feature-based information. The relationships are

also related through abstractions, and it is therefore possible to relax the definition of relational

equality to that subsumption.

5.1.4 REBOOT

In REBOOT (Reuse by Object-Oriented Techniques) the overall aim is to “provide methods

and tools to support creation and use of domain oriented components” (Gronquist, Villermain,

and Bongard, 1992). A similarity model for software components is proposed in Karlsson,

Sindre, Sørumsgård, and Tryggeseth (1992). Two weights are used to compute the distance

between objects. They are

• term weights—describe relative importance of terms that classify a component

• edge weights—describe the distances between various words

Term Weights

A term is the value of a facet used to classify a component. An estimate is made as to how

much of the component a term covers. The weights of terms used to classify a component

need not add up to 1.0. When a component is stored, the value of each facet is estimated. For

a stack, methods like push and pop are given a high weight, while other, less important

methods are given a lower weight.

Term weights are used during search. Terms are search criteria and do not specify actual

components The weight given implies the importance for this particular term for user satisfac-

tion. A high value given to a particular term indicates that this term is vital. If no weights are

84

given, the specified terms are given an equal weight of 1.0. A weight can also be given for a

facet, indicating its relative importance.

Edge Weights

Edge weights are used to permit relaxed search. There is one term space for each facet. Term

spaces have generalization/specialization and synonym relationships. There is a weight, w t,u,

assigned to each direction of an edge. A weight is defined as the effort of changing a compon-

ent classified by the term t to one that could be classified by the term u (EC), divided by the

effort of satisfying the term u from scratch (ES):

wt,u = EC/ES

Weights are not symmetrical. The effort of changing t to u need not be the same as

changing u to t. When terms are not directly connected, wt,u is used to denote the total weight

of the path with smallest total weight. A weight, wt,u > 1.0, implies that it is uninteresting to

modify the part of the object covered by the term. Nothing will be gained from it compared to

developing this functionality from scratch.

Each object is classified with a set of weighted terms for each facet. A query has the

same format as the classification of objects. The relative distance between a query and every

component in the database is found by

min
∑

facets

wf

∑
terms

wrwc,rwc

where wf denotes the weight of a facet, wr the weight of a requirement, and wc the weight of a

component. During search, each wr is matched against the nearest wc,r, i.e., the smallest wc,r

independent of wc and wr. Weights are estimated based on the abstraction and dependency

facets.

In Sindre and Sørumgård (1993), they recommend building the REBOOT terminology

in a top-down manner, starting with domain analysis. After a dictionary is built, the terms must

be structured into a term space that reflects the relations among them. After this structure is

made, the classification process begins. They recommend taking the terminology control task

85

seriously, as the first attempts may not get it right. Their example is concerned with reuse

of code, but they do also talk about reuse of domain analysis. The similarity measures are

planned to be used during retrieval, but this research is not related to AR.

5.2 Structural and Semantic Similarity in ROSA

This section defines the framework for the semantic similarity model presented in section 5.3.

This model is developed for use in an AR context. I first discuss the use of structure descrip-

tions for role models in section 5.2.1. Structural similarities are based on these descriptions.

Structural and semantic retrieval are both discussed in section 5.2.2. Finally, I discuss the

mapping in section 5.2.3.

5.2.1 Structure Descriptions

A role model is considered a directed graph, where a stimulus role is the root node. Tessem

(1998a) describes an algorithm for identifying sub-structures in such graphs. The sub-structures

are found based on paths between pairs of nodes along which messages can flow. The num-

ber of possible sub-structures that can be extracted from a role model depends on its size and

complexity. Tessem classifies them as tree, star, ring, and sequence, listed in decreasing im-

portance. When a new role model is created and added to the repository, its sub-structures are

identified and stored.

The idea is to identify, if possible, the three most important sub-structures in each role

model. It is assumed that these sub-structures contain the roles of a model that are considered

most important for the model’s overall behaviour, as they are believed to have the greatest

impact on its reuse potential. In addition to a sub-structure’s type, its value, or weight, also

depends on its size, e.g., trunk length for a tree, number of branches for trees and stars, number

of nodes in a ring, and the length of a chain (see figure 5.1). The open circles in the figure

denotes stimulus roles and the black dots represents other roles in the models.

In the implementation, information about a role model’s sub-structures is saved in an

object of type StructureIndexSet. The collection of index objects is used during retrieval to

identify base models that are structurally similar to the target model. The more complex the

86

Star Ring

Tree

Chain

Figure 5.1: Structure abstractions (Tessem and Bjørnestad, 1997)

communication between roles in the model is, the higher importance this part of the model

should be given.

5.2.2 Similarity During the Retrieval Phase

The search for potential analogies for a particular target model is initiated by doing a search

based on the structural index. The result when comparing the index of each base model to the

target model is in the form of a belief value, and is stored in a record that is inserted into a

collection C. The belief value is computed on the basis of the similarity between the structure

indices of a base and the target. Each element in C contains 1) reference to a base model,

2) the belief value based on structural similarity, and 3) the belief valued based on semantic

similarity.

During the process the elements of C are ranked according to a probability that the base

model is analogous. The probability is calculated through the evidence found in the two be-

liefs. Information about beliefs is added during the process, and it is, in the following, denoted

differently to underscore the current stage in the AR process. The collection is denoted Cvac

(vacuous) before any belief functions have been added, Cstr after belief functions from struc-

tural retrieval have been found, and Ccomb after the structural and semantic belief functions are

identified.

In this section I first

• give a brief description of the belief values as understood in the context of the Dempster-

Shafer theory of evidence (Shafer, 1976) and how they are used,

• discuss the structural similarity,

• then present semantic similarity,

87

• and finally, the combination of the results from these retrieval phases is given.

Belief Theory

Analogical similarity is in itself a rather vague concept to which it is difficult to assign a

numerical value. In the ROSA project, I use Dempster-Shafer theory of evidence (Shafer,

1976), or belief theory, to convert a value into a belief function. Belief theory is used to give

a measure of how strong an analogy is. When comparing two role models, there are only two

possible outcomes of a test for analogy: there is or there is not a useful analogy between them.

Thus, the frame of discernment, Θ, as used in belief theory is given by

Θ = {a,¬a}

where a indicates that there is an analogy, and ¬a indicates that it is not an analogy.

The mass assignment function in belief theory is a mapping m

m : 2Θ → [0, 1]

where 2Θ is the set of all possible subsets of Θ. m(∅) = 0 and
∑

A⊂Θ m(A) = 1.

The belief function Bel is then defined by

Bel(A) =
∑
B⊆A

m(B) (5.1)

where A can be {∅}, {a}, {¬a}, {a,¬a}. An example of a belief function is given below. The

belief that something is either an analogy or not, is always 1.

Bel({a}) = 0.4

Bel({¬a}) = 0.2 (5.2)

Bel({a,¬a}) = 1

In the following I use the term b to denote a base model. So, through the use of belief

theory I try to establish a belief about whether the base model b is analogous to a target

88

model t or not. The belief functions are given different names depending on whether they are

beliefs based on structural, semantic, or combined evidence, as in Belbstr({a}), Belbsem({a}),
or Belbcomb({a}).

The combined belief function that a target model t is analogous to a base model b is

found by combining the structure and semantic belief functions as in

Belbcomb({a}) = Belbstr({a}) ⊕ Belbsem({a}) (5.3)

using the standard belief combination operator ⊕ as defined in Shafer (1976).

To conclude the discussion on belief functions used during retrieval, I give an explan-

ation of how the probability value based on a belief function is computed, and that is used

for ranking base cases. It is this value that is named retrieval similarity in other parts of this

thesis.

Calculating the probability value can be done after each stage in the retrieval phase,

but most important is the combined probability calculated just before the beginning of the

mapping phase. The collection C is ranked based on the probability values, and C may be

truncated either by selecting a maximum number of base models to be included during the

mapping phase or by setting a lower threshold for the probability value (or retrieval similarity).

The probability is given by

pb(a) = m({a}) + k · m({a,¬a}) (5.4)

where the value of k decides whether the amount of un-assigned belief mass assigned to pb(a)

is optimistic, pessimistic or neutral; k = 1 is optimistic, while k = 1/2 is neutral. In the ROSA

project there is used a neutral approach. In the following, I will use the shorthand notation pb

to denote pb(a).

Structural Similarity

When searching for structurally similar models, the structure descriptions described in sec-

tion 5.2.1 are used. These descriptions are used as indices when searching for analogies, so

such an description is also called a structure index. An example of a structure index is: T 3 4,

89

meaning a tree with trunk length 3 and with 4 branches.

For each base, the target model’s three indices are compared to each of the base models’

three indices. Belief functions indicating similarity between each pair of indices are computed,

and the best matchings are selected and combined to give an overall belief for the similarity

of the structure descriptions.

The more roles in a role model that are included in selected sub-structure indices, the

higher is the similarity between two indices. A model that contains many roles, may have

many different sub-structures, and each sub-structure may include only a limited number of

these roles. Since only the three most important sub-structures are stored, some structural

information may be lost during retrieval, particularly for large models. This implies that the

larger, and more complicated, a role model is, the more roles may be excluded from the

structure descriptions, and the less likely it is that the best mapping may be found. This is

one of the reasons this method is used only for sub-models in the repository. Derived models

that are made by combining two or more sub-models, will contain more roles and will have

greater complexity.

The results of the structural similarity computations are stored in the elements of Cstr as

belief functions. In the implementation, each element is represented by a record containing a

pointer to an index object, INDEXb, of the base model itself, the beliefs we have in this model

being structurally and semantically similar to a given target model, and a probability value

calculated based on one of these belief values, or a combined belief value.

The structural similarity belief is denoted Belbstr, and the probability based on structural

similarity is denoted pb
str. This probability value is used as a criterion to sort the list. Cstr can

be sorted based on the probability values and truncated based on either a lower limit of the

probability value or the number of elements. A perhaps modified Cstr is then used as input to

the semantic similarity search.

Semantic Similarity

For convenience, I here give a short overview of how semantic similarity is computed. A full

description is found in section 5.3.

The semantic similarity value between two roles is based on the distance between the

90

two word meanings representing these roles, and it is measured as discussed in section 5.3.

The further apart they are in the term space, the lower the similarity value. For each role in

the target model, I select, from the base model, the role with the highest similarity value.

When the highest similarity value for each role in the target model is found, I calculate

the average similarity value for all the roles in the target model. This value is converted into a

belief function, Belbsem, and stored in the same structure as Belbstr. Based on this, a probability

value for semantic similarity, pb
sem, is calculated.

Thus I have chosen an optimistic approach to computation of similarity between mod-

els. For each role in the target model the best possible match to any role in the base model is

found. The assumption is that the best matching role is also the role to be matched in the map-

ping phase, which of course does not necessarily have to be true. In an analogical mapping,

however, two roles are not mapped to the same role in the target model, which may happen in

this optimistic model of semantic similarity. The reason for this is that during mapping, only

two roles that are in a similar structural position are mapped. What is found during semantic

retrieval is thus an upper bound for the semantic similarity.

Each role has a name found in the term base. It is not linked to the word itself, but rather

to a selected meaning of this word. The word meaning belongs to a synonym set with a given

synonym set ID. Role names are compared semantically by comparing their synonym set IDs.

This is a relatively inexpensive operation. This implies that I consider synonyms to be equal,

or to have zero distance, so they can replace each other, which is not entirely true in most

cases.

Combined Similarity During Retrieval

As mentioned before, belief functions for both structural and semantic similarity between one

target model and each of a set of base models are calculated. These belief functions are

denoted Belbsem and Belbstr respectively. Based on these, a combined belief value, Belbcomb,

is calculated by equation 5.3. Further, I compute the probabilities pb
comb from Belbcomb. The

results are stored in Ccomb. Ccomb is then sorted in decreasing order according to the value

of pb
comb. This permits the user to pick the best candidates for the analogical mapping phase

based on a lower threshold value for pb
comb or a specific maximum number of base models.

91

pb
comb is the same number referred to as retrieval similarity in other parts of this thesis.

The two belief functions, Belbstr and Belbsem, in equation 5.3 are given equal weight.

It is possible, however, to adjust one or both belief functions in order to change the relative

importance given to each of them. At this point, however, there is no indication that either one

of these similarities should be given more weight.

5.2.3 Similarity During the Mapping Phase

The best candidates for analogy identified during retrieval are selected for the mapping phase,

where their roles are tried to be mapped to the roles of the target model. This mapping results

in a similarity measure, also referred to as mapping similarity.

Structural and Semantic Similarity

During retrieval, the textual structure descriptions of the models are compared in order to es-

timate similarity, while during mapping specific roles from target and base models are mapped

according to their structural positions. The resulting mapping is the basis for computing an

analogical similarity between models. The genetic algorithm developed by Tessem (1998b)

presented in section 3.6 has been adopted for use with the ROSA repository to identify such

mappings.

When the mapping phase is initiated, a matrix is generated representing the connections

between nodes in a role model. This matrix contains the value 1 if there is a port—ONE or

MANY—between the two nodes and 0 if there is no port; see table 5.1. Such a matrix is

created for both the target and base models. The GA has a fitness function that gives score

for local isomorphism in the graphs, combined with use of the semantic similarity information

between the mapped roles. One example of such an isomorphism from the models in the

example is shown in figure 5.2.

borrower library assistant register information
borrower 0 1 0 0
library assistant 1 0 1 0
register 0 0 0 1
information 0 0 0 0

Table 5.1: Matrix graph representation for the library sub-model

92

library
assistant

borrower

shop
assistantcustomer

Figure 5.2: Example of an isomorphism from the example graphs

For each pair of role models that are mapped, a matrix is created containing the semantic

similarity values between each of the roles in the target and base models. Such a matrix for

the two role models shown in figure 1.4 is shown in table 5.2. The fitness function uses the

semantic similarity matrix to optimize the mapping.

borrower library assistant register information
customer 0.8 0.53182 0 0
wholesaler 0.42692 0.40714 0 0
shop assistant 0.53182 0.83333 0 0
register 0 0 1 0
information 0 0 0 1

Table 5.2: A semantic graph example for the role models in figure 1.4 using the semantic
similarity model in equation 5.8

The best mapping is taken to be the one that gives the highest total mapping similarity.

The analogy value simA(Bk, T) (mapping similarity) is taken to be the average value of the

similarities between the mapped roles, i.e.,

simA(Bk, T) =

∑
i sim(bi, ti)

n
(5.5)

where Bk is a base model, T is the target model, bi is a base role, and ti is its corresponding

role in T given the actual mapping.

The GA algorithm is typically set up to use a large number of individuals and generations

(more on this in section 7.2. This implies that for each base model, the algorithm is run many

times. This results in a relatively expensive algorithm, and the upper limit of base models that

93

are mapped to a target model may therefore be set by the systems developer. This is done in

one of two ways:

1. setting a lower limit on the probability values, pcomb, calculated during retrieval

2. restricting the number of base models selected for mapping

In the first case the value of the lower limit must be based on experiments to find what

gives an acceptable analogy. A combination of these two restrictions can also be used. The

system developer, however, is the one to decide how this should be restricted.

This algorithm searches for the roles that share the same structural position in the two

models being mapped. The best mapping is taken to be the one that gives the highest total

value, i.e., it maps as many of the roles in the target model as possible given that this results in

a higher similarity value. The genetic algorithm can be fine-tuned through a set of parameters

to improve the result. These include the size of the population, the number of generations to

be used, and the mutation probability of any individual in the population.

Increase Possible Similarity Between Stimulus Roles

The basic assumption is that when two role models are compared for analogical similarity, the

models are treated as directed graphs. I use the stimulus roles as the roots of the two graphs,

and compare the two stimulus roles first. To ensure that the algorithm should be more likely

to map these two roles, the implementation gives an extra weight to this similarity value as

shown in equation 5.6.

sim(t, b) = 0.5 + 0.5 · sim(wt, wb) (5.6)

Here sim(wt, wb) denotes the used similarity between the two word meanings used for the

stimulus roles, and sim(t, b) denotes the resulting similarity between those roles.

Calculated Mapping Similarity

As seen, when a set of structural mappings is identified, the value of the analogy is calculated

based on the semantic similarity values for the mapped roles. The algorithm used is similar

to the one used for finding semantic similarity during retrieval. The difference is that, while

94

during semantic retrieval the best semantic mappings, disregarding structural position, are

chosen, now only roles that are structurally mapped, are compared. This implies that the

semantic similarity value may be, and often is, lower than what has been found during the

retrieval phase. The algorithm is shown in section 5.3. A mapping between two roles that are

structurally mapped, but have no semantic similarity, attributes nothing to the total similarity.

Finally, I calculate the average similarity value of the roles of the target model. This is

called the value of the analogy between the two models. Some roles of the target model may

not be mapped at all, and the value is adjusted according to this. How this can be tested and

solved, will be discussed in section 7.2.

In section 5.5, I discuss how the structural similarity model can be modified due to the

multiplicity of roles a particular role knows about.

Results from AR do not represent accurate measures, so in the end the user must always

interact with the system to accept or reject a resulting analogy. This is done during what is

called the justification phase of AR.

5.3 The Semantic Similarity Model

This section presents two versions of a model for semantic similarity between two role names,

i.e., synsets, of increasing complexity. These models must be tested and, if necessary, modified

during experimentation. The goal is to identify a model that, during retrieval,

• will help identify (all) the best analogous role models (high recall)

• will help exclude role models that are not relevant (high precision)

• is simple enough to have an acceptable computational complexity

In other words, all relevant role models should be included among the list of models that

are sent to the mapping phase, and this list should preferably exclude irrelevant models. The

number of models that are sent to the mapping phase should be as small as possible, but the

user should still be confident that all potential candidates are analyzed. The retrieval phase

should be executed in as short a time as possible.

It would also be preferable that the base models’ values are spread out as much as pos-

sible on a scale from 0 to 1 during retrieval to clearly distinguish models that are good can-

95

didates for analogy from the ones that are not. The proposed similarity models are therefore

tested to see how well the model is able to distinguish between distances between target and

base nodes. Such tests are done using spreadsheets. A model that best spreads the word mean-

ings based on their semantic distances is, in this context, considered better than a model that

do not.

First, in section 5.3.1, I discuss how the individual roles are compared semantically by

comparing synset IDs. Next, I present a simple similarity model in section 5.3.2. This model

only takes into consideration the distance between the two synsets that are compared. A

slightly more complex similarity model, in which it is taken into consideration that roles with

names localized at different abstraction levels in the WordNet hierarchy, should be considered

less similar than if they are found on the same abstraction level.

5.3.1 Comparison of Synsets

I have previously mentioned that synsetIDs, and not the word meanings themselves, are com-

pared. In the next section I explain how this comparison is done. Before two role models are

compared for semantic similarity, for each model involved in the comparison, a list, IDLrm,

containing one list of synsetIDs for each role in the role model, is created. Each of the sub-

lists, IDLi, is filled with the synsetIDs of the synsets from the synset of the name of role i to

the root in the WordNet hierarchy. The root’s synsetID is the last element in IDLi.

5.3.2 Similarity Models

The models presented in this section assumes that each role has been described by a single

term, i.e., word form, from the term space, and that, if necessary, a particular meaning of this

word form has been selected. These models represent approximations that, in spite of their

simplicity, give results that are satisfying. The models do not distinguish between equality of

synset and equality of word meaning.

For both models, if the synsets being compared do not belong to the same hierarchy,

then sim(wt, wb) = 0, where wt and wb are word meanings. And if the two word meanings

are the same, then sim(wt, wb) = 1.

96

The first model For the first model, similarity between a role in the target role model and

in the base model is equal to the similarity of the word meanings chosen for the role, which is

calculated as in equation 5.7:

sim(wt, wb)

= 1 − (lev(wt) − lev(wp)) + (lev(wb) − lev(wp))

lev(wt) + lev(wb)

=
2 ∗ lev(wp)

lev(wt) + lev(wb)
(5.7)

In equation 5.7, wp is the nearest common ancestor of wt and wb and lev(wx) is the level of a

word meaning, wx, in a WordNet hierarchy. Figure 5.3 illustrates two such trees. The nodes’

level is indicated on the left side of the figure.

(a) (b)

1

2

3

4

5

6

wp

 wt’

 wb

wp

wt’’

wb

Figure 5.3: Trees with the nodes representing the word meaning of the target (wt) and base
(wb) and their closest common ancestor (wp)

In section B.3.1, I stated that in the WordNet hierarchies, there seem to be specific levels

97

in the hierarchies where the number of hyponyms, i.e., specializations, are much higher than

at other levels. Words at this level can typically be more easily replaced by a hypernym, i.e., a

more general term. At lower levels in the hierarchy—closer to the root—there are often more

technical terms that are very seldom used, but which have an important function in organizing

the lexicon.

One possible suggestion could be to view the relative semantic distance between synsets

dependent on the levels at which they are found in the hierarchy, i.e., their distance from the

root synset. Intuitively, one would think that the semantic distance between the synsets

<entity, something> and <life form, organism, being, living thing>

is greater than the distance between

<clerk> and <desk clerk, hotel desk clerk, hotel clerk>

The first two synsets are at levels 1 and 2, respectively, while the last two are at levels 6 and

7, respectively.

G.A. Miller, the principal investigator on WordNet, states that he believes “that the dis-

tance between two lexicalized concepts is an inverse function of the number of linguistic

contexts in which they can be interchanged” (Miller, 2000). He does not, however, have any

faith in node counting as a measure of semantic distance. He says that “if you believe, say,

that clerk and desk clerk share more contexts than do entity and organism, which seems very

plausible to me, then the more peripheral would be more similar than would the most gen-

eric”. He is reluctant to say anything general about this, and states that there would be great

differences among the different word hierarchies.

Such a difference in similarity is, however, somewhat supported by Fellbaum (1998b,

p. 72) in her discussion on verbs. She argues that the relative distance between communicate

and chat, and between do and communicate is not the same. While the first two words are so

close semantically that they might be interchanged in some situations, the last two words are

not. This may support my suggestion to make the level of the tree significant for calculating

the similarity between two synsets.

Notice that this argument is taken care of in the described similarity model. This can

bee seen by observing that even though the distances between the word meanings and their

98

common ancestor is constant, the similarity increases if the word meanings have higher levels

in the tree.

The second model Whereas the first model may give quite good results, there is another

factor that must be taken into consideration. This is the relative difference in height between

the two synsets representing the two roles being compared. The greater the difference in

height, the greater the semantic difference. Difference in height implies that one word meaning

(or synset) is at a higher abstraction level than the other, and such difference in abstraction

level should reduce the similarity value. This reduction should be dependent on the level at

which the two roles are found. The effect the difference in abstraction level should have is

controlled by a constant k. Experiments should decide its value, i.e., to which extent one

should emphasize the difference in levels. Equation 5.7 can be changed to:

sim(wt, wb)

= 1 − (lev(wb) − lev(wp)) + (lev(wt) − lev(wp))

lev(wt) + lev(wb)
− k

|lev(wt) − lev(wb)|
lev(wb) + lev(wt)

=
2 ∗ lev(wp) − k ∗ |lev(wt) − lev(wb)|

lev(wt) + lev(wb)
(5.8)

The semantic similarity between role models

The total semantic similarity sim(T, B) between two role models, as used during retrieval, can

then be estimated as equation 5.9. sim(T, B) thus represents an upper bound on the analogical

similarity between the target model and a base model:

sim(T, B) =

∑m
j=1 maxn

i=1sim(wb
i , w

t
j)

m
(5.9)

where m is the number of roles in the target, and n is the number of roles in the base. One

of the assumptions I made concerning the similarity model above is that what word meaning

is chosen does not matter, as long as the same synsetID is used. All synonyms would give

the same value as the exact same word meaning. This is, in many cases, not correct; see for

example 4.1.

No claims can be made concerning exactness and generality of the semantic similarity

99

based on computations. My goal is pragmatic, though: To find an approximation yielding the

best possible results. When the similarity model is being used during retrieval, the value that

is calculated can be considered an upper bound of the semantic similarity. The imprecision in

calculation due to the fact that the same two different roles in the base model may be mapped

to the same role in the target model and that there is no guarantee that the chosen similarity

will be used during mapping, causes me to conclude that if the similarity model gives results

that are sufficiently good, there is no reason to try to get a model that may give more precise

semantic similarity measures.

5.3.3 Adjustment for Possibility of Error in Sense Selection

Sometimes, when the software developer is creating a new role model, it may be difficult to

choose among different meanings of the same word. The problem is how to handle a situation

like the following: The software developer has selected a sense of a word for a role that does

not have the correct meaning. With one of the two semantic similarity models suggested

above, this will, in some cases, give a similarity of 0, if this sense belongs to a different

WordNet hierarchy than the roles it is compared to. To compensate for this, and to try to

prevent a model from getting a too low score to be selected for a mapping, a small similarity

value could be given in such cases. Let sim(t, b) = sim(wt, wb) mean the similarity value

that has been calculated between two roles. Let wft and wfb mean the word forms that name

the target and base roles, respectively. The constant λ represents a value that is given to the

similarity value in cases where the same word form has been selected for them, but where the

similarity value is 0, i.e., the meanings belong to different WordNet hierarchies. This is shown

in equation 5.10.

sim(t, b) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ if (sim(wb, wt) = 0) and (wft = wfb),

sim(wt, wb) if (sim(wt, wb) �= 0)

0 otherwise

(5.10)

Notice that it is only a question of a small adjustment, which is performed under the

particular condition mentioned above. Often this adjustment will not have any influence on

100

the upper limit of the semantic similarity between a role in the target model and the roles in

the base model. A value of 0 is not likely to be the result of comparing one role in a target

model to all the roles in a base model during retrieval. Remember that the best value is always

chosen. However, this solution might instead have some effect during mapping.

5.3.4 Test of Semantic Similarity Models

The two semantic similarity models described in section 5.3 were tested using spreadsheets.

The WordNet hierarchies are seen as a set of trees, where each node represents a synonym

set, and where the role names being compared can be located to such a node. Each of the

similarity models are used to compare nodes at different levels in such a tree.

Information about the levels of two nodes being compared, lev(wt) and lev(wb), and

that of their closest, common ancestor, lev(wp), is used. If wt and wb belong to different trees,

there is no similarity between them, i.e., sim(wt, wb) = 0. If they belong to the same synonym

set, sim(wt, wb) = 1. In all other situations sim(wt, wb) is between these outer bounds.

The goal of this analysis is to test how well the models spread the similarity values. A

good spreading of values would be advantageous as it would permit us to distinguish between

good and less good analogies. It would permit me to get an overview of the behaviour of the

similarity models without having to run all the experiments. Similarity values must be within

the range of 0 and 1. Both plots showing the difference in similarity value based on difference

between levels of target and base node, and difference when the level of the two nodes closest,

common ancestor had to be generated.

Figure 5.4 shows the similarity values for differences in level between target and base

for different levels of target. When both target, base and their common ancestor is at level 1

in the same tree, the similarity value is 1. This only happens when the three role names all

belong to the same synonym set. Figure 5.5 shows such a plot for the similarity model in 5.8

when k = 0.15.

It is important, however, to see to it that the similarity value can never be negative, so

therefore k must not be too large. As the most commonly used words are generally found at

level 4–6 in WordNet, the difference in level between any two words that are compared will

seldom exceed 4 (if they exist in the same hierarchy), and as only very few words exist above

101

lev(wt) = 10
lev(wt) = 9
lev(wt) = 8
lev(wt) = 7
lev(wt) = 6
lev(wt) = 5
lev(wt) = 4
lev(wt) = 3
lev(wt) = 2
lev(wt) = 1

|lev(wt)− lev(wb)|

si
m

(w
t,

w
b)

10987654321

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 5.4: Similarity model in equation 5.7: Each plot lev(wt) = i, where 1 ≤ i ≤ 10, has
lev(wp) = 1 and increasing difference between wt and wb.

the level of 10, we see that we can distinguish between them using this model.

lev(wt) = 10
lev(wt) = 9
lev(wt) = 8
lev(wt) = 7
lev(wt) = 6
lev(wt) = 5
lev(wt) = 4
lev(wt) = 3
lev(wt) = 2
lev(wt) = 1

| lev(wt)− lev(wb)|

si
m

(w
t,

w
b)

1086420

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 5.5: Similarity model in equation 5.8: Each plot lev(wt) = i, where 1 ≤ i ≤ 10, has
lev(wp) = 1, increasing differences between wt and wb and k = 0.15.

Comparison of the models

The preceding discussion has only shown an illustration of how the models would distinguish

between word meanings during selected circumstances. The plots shown are for a selected

102

situation where the closest common ancestor, wp, is at level 1, and where varying levels for

wt and wb have been selected. Table 5.3 shows a few different situations where the similarity

values are calculated using the WordNet tree in figure 5.3 (a). For the model in equation 5.8

the selected values of k is also shown.

Table 5.3: Calculated similarity values between wt and wb in figure 5.3 (a) using the different
similarity models, where |lev(wt)−lev(wb)| = 1

Sim. model lev(wp) lev(wt) lev(wb) k sim(wt, wb)
5.7 3 5 4 0.667
5.8 3 5 4 0.1 0.656
5.8 3 5 4 0.15 0.65

When |lev(wt)− lev(wb)| = 1 the effect of k is very little. Table 5.4 shows the effect on

the similarity values when this difference is increased to 2, as is the case in the example tree in

figure 5.3 (b). Here only one value of k is used in the relevant model. The difference between

the two trees is only that the target has been moved one level up—to level 6.

Table 5.4: Calculated similarity values between wt and wb under different circumstances when
|lev(wt)−lev(wb)| = 2 as in figure 5.3 (b)

Sim. model lev(wp) lev(wt) lev(wb) k sim(wt, wb)
5.7 3 6 4 0.6
5.8 3 6 4 0.15 0.57

5.3.5 Collocation of Terms

Reenskaug et al. (1996) suggests that roles should be given names that are as generic as pos-

sible in order to increase reuse of role models. Although this has been my goal, it may some-

times be difficult to do so because one can risk that several roles in one model end up with

identical names. In this situation, new words have been added to the repository, because a

more detailed vocabulary was needed. This could seem like a good solution at first, but it

is easy to see that the repository could grow uncontrollably. An alternative to this approach

is described in section 4.3.3. A role name could be described by more than one word form.

Several noun phrases are typically a collocation of a noun and a modifier, where the modifier

can be another noun or an adjective. If I introduce the possibility to code an OOram compon-

ent name with a list of word meaning pointers, it seems natural that, at least for nouns, the

103

last word should be the most significant. This means that the last word should be given more

emphasis in terms of giving the total semantic similarity between two roles. In section 4.3.3, I

give examples, e.g., library assistant and shop assistant. Assistant is the

part that gives the main meaning to these terms, and the first part of them gives additional

information.

Messages will often need names that are a combination of a verb and a noun, e.g., add

name, add phone-number for a role employee. In this situation it seems intuitively natural to

put more emphasis on the verb.

5.4 Example

To illustrate the use of the similarity model, the OOram role models from figure 1.4, that

shows the use of the ROSA search tool displaying a selected base model, are analyzed for

semantic similarity. All the stages of calculating the similarity are described. The results

when comparing these models will be shown, based on the similarity algorithms presented in

this chapter.

The two models in figures 4.1 and 4.2 are not so well suited as illustrations in the case

as the role names with the greatest similarity here are at the same level in the hierarchy. Also,

these models have the same structure. The parts of the WordNet hierarchy used in these

examples are shown in figure 5.6.

5.4.1 Structural retrieval

The structure descriptions are stored in the repository when the models are first entered. For

the two models involved in this example, I get the following structure descriptions.

Model Structure Indexes
1 2 3

Wholesaler Sub1 S 2 C 5 T 2 2
LibrarySub0 C 4

Table 5.5: Structure indexes for the models in the example

The target model in this example has three stored structure indexes, while the base model

has only one structure index. C 4 means that the structure is a chain consisting of 4 nodes, S

104

2 is a star with two branches, C 5 is a chain with 5 nodes, and T 2 2 is a tree with a trunk of

length two and with two branches.

There is little structural similarity between these two models, as the star is considered

the most important in the more complex model. The base model is ranked as number 124

among all the models in the repository. The calculated belief is 0.33059.

5.4.2 Semantic retrieval

1

2

3

4

5

6

7

8

9

entity, something

life form,
 organism, ...

person, individual,
 someone, ...

recipient,
receiver

consumer worker capitalist

borrower
costumer,

client
employee

shop assistant library assistant

businessperson ...

supplier, provider

distributor

jobber, middleman,
wholesaler

group,
grouping

collection,
aggregation, ...

information, data

relation

social relation

communication

signal, signaling,
sign

indication

evidence

record

written record,
written accord

register

Figure 5.6: Excerpts of WordNet hierarchies for word meanings representing the role names
used in the example

105

The nodes with a gray background in figure 5.6 represent synsets containing a a word

meaning that has been used to name a role in one of the role models in the example. The levels

of the nodes are marked at the left of the figure. Two of these role names are used in both the

models being compared, i.e., information and register. The role library assistant in model

LibrarySub0 was created by inserting a new word form (and therefore also a word meaning

and synonym set) into the term base.

The target model—Wholesaler sub1 in figure 1.4—contains five roles, while the whole-

saler model in figure 4.2 only contains four roles. Actually, a mapping like the one shown in

figure 1.4 could be used to identify flaws in modelling, e.g., the inclusion of the role wholesaler

may be superfluous, as it represents the domain and probably not an object in the application.

Role model Role name tree level
Wholesaler Sub1 customer entity 5

” wholesaler entity 8
” shop assistant entity 6
” information group 3
” register relation 9

LibrarySub0 borrower entity 5
” library assistant entity 6
” information group 3
” register relation 9

Table 5.6: The role models compared with information on the role names used, the Word-
Net hierarhies where the word meanings of the names belong, and the synset levels in these
hierarchies.

The table shows the two role models with their role names, and information about what

WordNet hierarchy the word meaning of each role’s name is found and at what levels the

synsets can be localized. The hierarchies are named after a word contained in its root synset.

The important thing here is that it is possible to show what role names are taken from what

WordNet hierarchies.

When the role names are compared, we get the highest similarity values for each of the

roles as shown in table 5.7. The role names information and register are actually taken from

the same synonym sets in the role models, giving a semantic similarity value oft 1. Two of

the roles in the target model, customer and wholesaler, get their highest semantic similarity

values when compared to borrower. During the mapping phase only one of the target roles

can actually be mapped to that base role, but at the moment I only try to find the best possible

106

solution.

roletarget rolebase Sim. model in equation 5.7 Sim. model in equation 5.8
customer borrower 0.6 0.6
wholesaler borrower 0.462 0.427
shop assistant library assistant 0.833 0.833
information information 1 1
register register 1 1
Average similarity 0.619 0.772

Table 5.7: The highest semantic similarity values found for each role in the target model when
it is compared to all roles in the base model according to the different similarity models.

Table 5.7 shows the role names for both target and base roles in the two first columns.

As can be seen, when wholesaler is compared with the role names in the base model, both

similarity models give the best similarity value when compared to borrower. For the model in

equation 5.7 the distance between this similarity value and the value between wholesaler and

library assistant is closer due to the correction for difference in levels.

In this example k = 0.15. If this value had been increased, the similarity between

wholesaler and library assistant would have become relatively higher. However, even when

k = 0.35, the role name with the highest similarity value would not have changed. When

comparing nodes where the difference in levels is greater, it must be ensured that the values

are positive. If wp = 1, and k = 0.3, and a difference in levels between target and base role

is 7, the similarity value would become negative. To prevent this under all circumstances,

k = 0.15 even though this will not influence the similarity value to the extent that we would

have wanted.

Since the roles customer and borrower are at the same level in the hierarchy, there is

no effect in the adjustment of similarity values based on difference in level, so equation 5.7

and equation 5.8 give the same similarity values. The same also goes for shop assistant and

library assistant.

From the average similarity value a belief value for the semantic similarity value is

calculated just like before. The belief value when the similarity model 2 has been used is

0.7448.

The combined belief value for the model Library sub0 is then 0.55403. This ranks this

model as number 74 among all the base models after retrieval. The results of this mapping is

107

shown in table 5.8.

wholesaler borrower 0.427
shop assistant library assistant 0.833
register register 1
information information 1
Tot. mapping value 0.652

Table 5.8: The final mappings between the two models using the semantic similarity model
in 5.8

One could argue that borrower should have been mapped to customer, and that whole-

saler is left out. The structure in the model does not suggest this, however, as both customer

and wholesaler has a port to shop assistant. If a user sees this mapping, though, he could

maybe reflect on the usefulness of adding the role wholesaler to the model in the first place.

It is a typical error among unexperience modelers to include a role (or Entity type) for the

application domain, while that role is actually taken care of of the whole application that is

generated. This indicates that a tool such as this could also be used as a learning tool for the

inexperienced developer that can learn from the models that exist in a reuse repository.

5.4.3 Similarity during mapping

When a mapping is performed between the two models in this example, for each role model

a matrix is created representing the structure of the model, as shown in table 5.1 for Lib-

rary sub0. To represent the semantic similarity model, the matrix is created where the pair-

wise semantic similarity between roles in the two models are represented, as shown in table 5.2.

The genetic algorithm tries to map as many roles in the models as possible, and for each

generation the semantic similarity values are used to find the mappings value.

5.5 Modifications of the Structural Similarity Model

Up until now I have only discussed what factors might influence the calculations regarding

semantic similarity. There is another aspect related to the structure of the models that is

important, which has not been taken into consideration in Tessem’s algorithm: An experiment

was performed within the ROSA project, where a group of students and faculty members

108

were asked to identify analogous models. Each person was given three sets of models, each

containing one target model and a set of base models. They were asked to give the base

models scores as to how analogous they were considered to be. At the same time they were

asked to comment on what had led them to the conclusion. Some of the participants said that

the multiplicity that was given to the roles in the different models was an important factor

when considering analogies. In the algorithm developed by Tessem, a role either knows, or

does not know, about any other role.

Note that this problem is only relevant during the mapping phase. The algorithm uses

a matrix for each role model, where a location represents a potential connection between the

two roles in the specified direction. In OOram role models the connection that permits a role

to send messages to the role on the other side of the path, is marked with a port. A single

port denotes that the role knows about one role on the far side. A double port denotes that the

role knows about several roles on the far side of the path. To allow for the distinction between

these situations in the current setting, I may modify the algorithm to use the following values

as elements in the matrixes.

0 – means that the role does not know about the role on the far side

1 – means that the role knows about one role on the far side

2 – means that the role knows about several roles on the far side

A matrix is created for each of the target and base models. This matrix shows the paths that

exists between the roles in the model. A matrix for the model in 4.1 is shown in table 5.9.

borrower library assistant register information
borrower 0 1 0 0
library assistant 2 0 1 0
register 0 0 0 2
information 0 0 0 0

Table 5.9: Matrix graph representation for the library sub-model when MANY ports are taken
into consideration

This information is important because it may tell us something more about the roles,

e.g., a role that knows about several roles on the other side may be a collection of these roles,

or it may be a role that typically handles a lot of instances of that type or role. Other roles

109

are always passive, typically objects representing an entity in the real world about which the

system stores information. This change of the structural similarity model needs to be checked.

5.6 Discussion

In some previous attempts of using semantics for software reuse, it seems that the term space

has been created more or less at random or based on a guess of how much work it will take

to convert one component into the other. This approach suggests that each term is connected

to one particular component. In Karlsson et al. (1992) the distance between any two terms is

based on how much effort the modification of the component A to component B will require.

The examples they use are typically code components, e.g., classes.

Other sources Gulla et al. (1997) discussing similarity measures or distance in a se-

mantic net, indicates that distances are given by users based on a subjective understanding.

The semantic net is often constructed manually of the terms that are used in the examples,

perhaps after a domain analysis has been performed. If the net is created without any lexical

knowledge, it is not likely that the values given will be reliable, and two people who add them

will probably not give the same value for the distance between any set of two terms.

According to Gulla et al. (1997), car and book are not related semantically. They discuss

the problem of semantic similarity between two models, where one is concerned with customer

rents a car, while the other is concerned with borrower lends a book. In WordNet, version

1.6, if the first meaning of car and book is chosen, both words belong to synonym sets at the

8th level in the same tree1. They have their last common generalization at level 3. This part of

the WordNet hierarchy is shown in figure 5.7.

If trying to find the similarity between these terms based on the models presented in

equation 5.7, the following result is observed

(4 ∗ 2)/(8 + 8) = 0.5 (5.11)

Because the two roles meanings are at the same level in the term space, equation 5.8 will give

the same result.
1In version 1.7 of WordNet, the first sense of car is at level 9. This would change the values in equations 5.11

but the point would still be valid.

110

entity, something

object,
 physical thing

life form,
 organism, ...

artefact

creation
instrumentality,
 instrumentation

product,
 production

work,
 peace of work

publication

book

conveyance,
 transport

vehicle

motor vehicle,
 automotive vehicle

car, auto

person, individual,
 someone, ...

recipient, receiver consumer

borrower costumer, client

Figure 5.7: WordNet hierarchy for nouns in this example

If the words borrower and customer are used, they are also related semantically. Both

are at the fifth level, and they belong to the same tree up to and including the third level.

(4 ∗ 2)/(5 + 5) = 0.8 (5.12)

From this example, it is clear that when using WordNet’s database, these words are

semantically similar. All words belonging to the same WordNet hierarchy have some degree

of semantic similarity, and actually the {entity, something} hierarchy contains most of the role

names that have been used in the role models in my experiments.

This example shows that to be able to find similarities among models within different

domains, it is necessary to have a rich lexical database with several types of relations. The

conclusion of Gulla et al. (1997) stating that car and book are not semantically related is, when

111

using WordNet, shown to be incorrect.

112

Chapter 6

Prototype for the ROSA Case Tool

The ROSA repository has gone through several stages. Initial work on an object-oriented

repository model was done by Steine-Eriksen (1995) modelling the static object model and

extended by Midttun (1998), under my supervision, with functionality for retrieval etc.

I have made considerable extensions to the model since then, particularly regarding

support for the semantics of role models, semantic similarity models, and support for the

mapping phase, but also support for the richer information related to the model structures.

This was made possible by the use of a DTD (Document Type Definition) describing OOram

role models.

In this chapter I describe the design of the most important sub-systems of the proto-

type for the ROSA CASE Tool. There was a need to refactor the repository based on the

introduction of new tasks and new types of information. Efficiency considerations related to

ObjectStore required redesign to avoid the creation of too many objects that were just point-

ers into the database. Issues related to the overall repository representation are described in

section 6.1. One major design change is related to realizing the WordNet model. Two altern-

ative approaches are tried, one where each OOram component is described by one term, and

one where it is permitted to use a kind of modification to the assigned main name. The new

organization is described in section 6.2.

In the previous prototype, the OOram role models were kept in a simple text file format.

This format was difficult to extend to support the additional information needs, for example

synonymy and multiplicity. To make the experimental environment more flexible, the model

113

114

data are now kept in XML files between runs in order to make it possible to start from a clean

database whenever needed. A Builder pattern, consisting of reader and writer classes, was

developed. It permits conversion between the text file and XML file or database format, and it

could easily be extended to convert from the database format and back to the XML file format.

This permits for easy population of the database. This subsystem is described in section 6.4.

The DTD for the OOram role models is shown in appendix C, and appendix D shows an

example role model using this DTD.

The OOram part of the repository has undergone quite a few changes, and the classes

of the new version are described in section 6.5. Other classes perform automatic indexing

(see section 6.6) or are responsible for the analogical mapping (see section 6.7). No objects

of these types are stored in the repository. I will not go into detail about the design of these

classes.

6.1 The Repository Model

The ROSA repository can be considered to consist of two main parts:

1. the OOram Model Space with all the related information

2. the WordNet Term Space

The OOram Model Space consists of several collections of specific components that are

interconnected, e.g., projects, OOram components, model index structures, and users. The

OOram Model Space consists of TermSpace and connected classes modelling the WordNet

database. These two main parts are interconnected by relationships.

The access to objects in an ObjectStore database, is implemented by going through a

database entry point. Most of the access to the database goes through the OOram Model

Space. Previously, ie., in the solution implemented by Midttun (1998), a new object was

created every time an entry point is accessed. If an application makes frequent accesses, there

will be many such entry point objects, and it may be difficult to know when such objects can be

safely released. The creation and deleting of objects slow down the application, and a severe

memory leak might be the result.

115

I therefore decided to do a redesign where a well-known design pattern (see section 2.2.2

named a Singleton (Gamma et al., 1995)) is used. The Singleton used in this context makes

sure that all access to the database goes trough a single database entry point1. All database

collections are thus accessed through this Singleton object—named DBRoots—from any ap-

plication. After this redesign, the DBRoots is the only entry point to the database. Figure 6.1

shows the top level classes of the repository. Only the relationships that are related to the

DBRoots class are shown here.

Figure 6.1: The top level repository structure

DBRoots has direct relationships to the TermSpace, OOramCompColl, and Index-

Coll. This makes it easy to both add new models and to search for analogous role models.

The goal is to make it easy for the applications to access the different parts of the database in

a homogeneous way, and for the cross-relationships to be easy to navigate.

1This may not be a viable solution if the database is used as a distributed, multi-use system.

116

6.2 The Structure of the Term Space

The term space in the current version of ROSA is modelled after WordNet as described in

chapter 4. Two versions have been used. In both, a named OOram component has a rela-

tionship to a word meaning instead of to a word as before. One advantage of this approach

is that I now allow for several meanings of one word. One disadvantage, however, is that the

user, in situations where the selected name has several meanings, must decide what meaning

to choose. To help the user pick the intended meaning, most terms in WordNet have accom-

panying descriptions that are also made part of the ROSA term space. A new version of the

repository meant for a systems developer, should aid the user in selecting word meanings

without having to select the synsetIDs as I have done in the prototype.

6.2.1 Simple Solution

In this approach the whole name of an OOram component must exist in the term space as a

single phrase. The intention of using WordNet is to free the systems developer from having

to add new terms to the term space and thus to require that the developer use the existing

vocabulary. The only exception to this rule should be some special terms that are naturally

used within special technical domain. Figure 6.2 shows the classes involved in this new version

of the term space. The descriptions of the synonym sets are not included.

WordNet contains the vocabulary of a person with English as the first language, and with

a little flexibility, and maybe a little adaptation, it should be possible to name the roles and

messages of the OOram models in a natural way. The design of the ROSA term space allows

for navigation up and down the synset hierarchies. This should make it possible to measure

similarities between two terms in the semantic net. It is possible, through the relationships

between WordMeaning and OOramNamedComponent to get the particular sense of an

OOramNamedComponent, like a role or a message, and to find the components that use a

particular WordMeaning.

It turned out, however, that sometimes, when making a new role model, it was difficult

to do this without adding new terms, and this was very cumbersome. Whenever the systems

developer wants to use a name that does not exist as such in the term space, a new term must

117

Figure 6.2: The ROSATerm Space

be added, and the system developer must decide where in the synset hierarchy the new term

should be inserted. This implies decisions such as: “Should this be a new, separate synset or is

the new word meaning a synonym of an existing word meaning? What is the direct hypernym

to this new synset?” Such decisions are not easy, and the risk is that the quality of the term

space may deteriorate over time.

6.2.2 Extension to Permit Role Names that are Collocations

Due to the need sometimes to name an OOram component by using more than one term from

the term space, I looked for alternative solutions. To permit one OOram component’s name to

consist of collocations of terms as described in section 4.3.3, only one change of the model in

figure 6.2 was needed. A relationship was inserted between OOramNamedComponent and

WordForm. Every time the system developer wants to use a name that does not exist as one

term in the term base, a search is performed to see if it consists of co-occurring words, and if

that is the case, the least significant word is removed, and a search is performed to see if the

most significant word exists. If it does, a word meaning is selected for this word—called the

mainName. The modified version of figure 6.2 is shown in figure 6.3.

118

Figure 6.3: The modified ROSA Term Space

The part of the name that was removed is used as a modifier, and a relationship is made

between the OOramNamedComponent and the WordForm. If the modifier does not exist

either—because it in itself consists of several terms—the process is repeated. In this situation,

only the last part of the modifier is used as the modifier. For nouns, this is considered to be the

most significant part of the word. So far there has not been any need for this last option, so it

was added merely to make the system more robust.

The database may be kept smaller by this approach, but that is not the most important

reason for this change. The most important motivation is to avoid the insertion of new synsets

that may lower the quality of the term space. A negative factor is that the algorithms become

more complicated. The reason to go for this solution is that it frees the systems developer from

having to select a word meaning for the modifier under the assumption that it is not likely that

there will be a conflict when it comes to finding the semantic similarity between two roles.

119

6.3 The Creation of the Term Space

As mentioned before, the term space is created based on a Prolog version of the WordNet

database. I currently use three of the Prolog files that are used to create the synsets, the rela-

tionships between the synsets, and the glosses. The ROSA version currently contains 116402

noun word meanings including a few that were not part of the original WordNet lexicon. The

verbs and glosses have also been added, but they haven’t really been used. The classes re-

sponsible for reading the Prolog files and construct the term base, are shown in figure 6.4.

Figure 6.4: Term Space Construction Classes

One Prolog file contains the word meanings of all categories. Each line represents one

120

entry or one Prolog predicate. Each predicate has the following attributes

• a synsetID unique for each synset

• the word’s sequence number, i.e., its position in the synonym set

• the word itself, e.g., the word form

• a word category, e.g., n for noun

• the number of this sense of the word form

• a tag state with the value 1 if the sense number has been assigned based on frequency

of use, and 0 otherwise. This attribute is not used by us.

The class WNSynElem is responsible for parsing this file, and a Synset object is created based

on one or several such objects. This is made easier because the predicates are ordered based

on synsetID.

Another Prolog file contains the hyponym relationships between synsets. This gives the

synset number of one synset, i.e., the hyponym, and the synset number of another synset, i.e.,

its hypernym or generalization. The class that parses this file is RelationShip. These objects

are thus used to create the relationships between Synsets.

Yet another file contains the glosses, i.e., the descriptions for synsets and possibly ex-

amples of their usage. Gloss is used to parse this file. Glosses are useful when a systems

developer is going to select a particular meaning of a word based on its description. In all my

experiments I have pre-selected the synsetID and written it into XML-files that describes the

role models.

The collection SynsetColl is responsible for populating the term space. It has separate

methods for filling the synonym sets, the hyponyms, and the glosses. It initiates both the

creation of the PrologRel objects, the Synset objects, and indirectly the WordMeanings and

WordForms. The Prolog files are read, the term space is filled, and a copy of the database

with only the term content is kept. This makes it possible to start each new experiment with a

blank model base, but with the term space filled. Due to its size, this part takes the longest to

generate.

121

6.4 Reading OOram Role Models

The responsibility for creating the OOram components from different sources and converting

between various formats could have been given to the OOram components themselves. This

was the approach originally taken. The result may be, however, that classes become unne-

cessarily complex. For every time there is a need to create an object of a particular type in a

different way, a new constructor is needed, and every time a new type of conversion or format

is necessary, a new method is needed. The classes may grow uncontrollably and become

unmanageable.

An alternative approach is to allocate this responsibility to specialized classes, so that if

we want to generate the components in a new way, e.g., from a new data format, the class that

is responsible for this task, can be substituted.

Figure 6.5 is an implementation of the Builder design pattern described in (Gamma et al.,

1995). To read and create a group of related objects from the source is separated out into a

special class or set of classes. Thus input and output formats can be combined in a flexible

way. In ROSA, OOram role models have been read from two different formats, and there

exists two different output formats. These input and output formats can now be combined in

any way. It is easy to add a new Reader or Builder class should there be a need for a new

format, i.e., to build a printable version of an OOram role model. Additionally, I prevent that

component classes get too complex.

6.5 Model for OOram Components

The OOram Repository has been modified from the previous prototype by introducing some

abstract classes, responsibilities are moved accordingly, and some redundancies have been

removed. Figure 6.6 shows the OOram repository and its relationship to the term space.

The flexibility of the design is important for later extensions and modifications of the

system. The introduction of the Builder subsystem has made the OOram component classes

much simpler.

The DTD used, see appendix C, permits the role models to contain other role models.

This has also been implemented in the classes, but this feature has not been used in any of the

122

Figure 6.5: The Design for the Builder Pattern

models.

6.6 Determine Structure Descriptions

As mentioned previously, the retrieval phase of the current approach starts by searching the

structure descriptions for structural similarities; see section 5.2.2. Belief functions are used

to find the similarities between a target model and each of the base models in the repository.

To make this search easier, a structure description for each role model is stored in a special

collection in the repository when the role models are created. A subsystem has been designed

123

Figure 6.6: The OOram Component Hierarchy

to create these descriptions. Figure 6.7 shows the classes involved in this subsystem.

A role model is converted into a graph, and an algorithm tries to generate all possible

sub-graphs that can be made with the stimulus role as its root. A value is calculated based

on which structure is believed to be most dominating for the model, and up till three sub-

structures are stored in the repository for each role model. Complexity in structure and size

are weighted.

For each role model there can thus exist between one and three structure descriptions.

The structure description contains a pointer to the role model, but the objects themselves are

small. This makes the search through this collection very fast.

124

Figure 6.7: The Structure Identification Sub-system

6.7 Find Analogies

This subsystem is responsible for the mapping phase of the analogical reasoning. Mapping-

Problem is responsible for trying to establish a mapping between the roles of two potential

analogous OOram models by use of the genetic algorithm. A MappingProblem object is cre-

ated, and, for each pair of role models that is compared, this object is initiated with references

to the models that are compared.

A matrix is created for each of the target and base models to describe the existing ports

within it. This matrix shows the existing paths between the roles in the model. An example

matrix for the model in figure 4.1 was shown in table 5.1.

A matrix for the semantic similarity between the two roles is also created. This matrix

has the role names of the target model along one axis and the role names of the base model

along the other axis. The locations are filled with the semantic similarity values of the role

125

names, see table 5.2. Here the same algorithm is used as during semantic retrieval, with the

addition that if the two roles have names where the same word form is used, but there is no

semantic similarity between them, the value is adjusted; see section 5.3.3. The adjustment

factor used is 0.2.

The mapping is made by a genetic algorithm for analogical mapping. To be able to use

an Objective() function for the genetic library, the MappingProblem is implemented using

the Singelton design pattern described previously. This lets us avoid making several of the

data members static. Instead, one public function, Instance(), is static. It is called within the

Objective() function, and it therefore gives Objective() access to the necessary information

about the role models. The genetic algorithm is run until a threshold has been reached, and

the mapped roles are compared for semantic similarity in each generation the algorithm runs.

A matrix is created that indicates the mappings between the two role models. The classes

involved are shown in figure 6.8.

Figure 6.8: Classes Responsible for Identifying and Storing Analogies

126

6.8 User Interface for Analogy Search

A prototype for a user interface of the AR system is developed for illustration purposes. Fig-

ures 1.2, 1.3, and 1.4 show this at different stages of use. While this prototype shows OOram

models that are created using the Taskon OOram tool and dumped to gif-files, it should ideally

be incorporated with a tool graphical editor that is used to create the OOram models, and that

can be used to select word meanings from the term base.

I wanted to illustrate, however, how I envision that such a tool can be. This includes how

a developer can set certain parameters for the analogy search, and how the base models can be

browsed to identify the good analogies. After all, some sort of human intervention is needed to

see which models are the best candidates. When studying the potential analogies, the systems

developer can identify other parts of the suggested analogy that can also be applicable in the

new model. The analogous role model can then be investigated further, e.g., by looking at other

models belonging to the same system, the design models, and maybe also its implementation.

If two models are selected as the best candidates, one of them might be chosen because of

the technical solution, or maybe the implementation of some roles from one model may be

chosen, while the architecture of another model is identified as the best.

Chapter 7

Experiments

This chapter describes the experiment design and the 11 different experiments. The inten-

tion is to study whether the chosen approach is capable of identifying good analogies for an

OOram role model under construction. If such models are identified during retrieval, we avoid

performing mapping on all models in a potentially large model repository. The focus is on the

retrieval and mapping phases of analogical reasoning.

Section 7.1 describes the content of the database during the experiments and the ne-

cessary fine-tuning of parameters for the genetic algorithm. In section 7.2 the experiments

outlined in section 1.4 are described. An initial test establishes a base case (section 7.1.2).

This is used as the basis for further experiments to see if the suggested AR approach can

be optimized further. In section 7.4, I discuss the validity of the experiments, and finally, in

section 7.3, I discuss the results of the experiments.

7.1 Preparations

This section describes the content of the repository, both term space and the OOram model

space, the semantic similarity models and how they are tested using the OOram models in

the repository. Finally I discuss how the genetic algorithms are fine-tuned to obtain the best

possible mappings.

127

128

7.1.1 Content of the Term Space

The term space is filled with information from the Prolog version of WordNet. Excerpts from

the Prolog files used are shown in appendix E. The organization of the word categories is taken

from WordNet. Database and applications are created so that the descriptions and example part

of the synsets— the glosses—can also be loaded. Glosses are useful when a user must select

among different meanings of a word form.

Initializing the term base is a time consuming process in ROSA, but this activity is only

done after modifications are made to its content. For efficiency reasons the content of the

WordNet senses file is split into a set of files, one for each word category. In the experiments I

only use nouns, as roles are the only OOram components in the current models that are named

using the term space. I keep a copy of the database containing only the term space to be used

as a starting point for each experiment.

All noun word forms with meanings from WordNet are added to the repository. Many

words are not used, but I use this as an initial approach. Moreover, I have created a file with

some additional terms not included in WordNet, but which I felt were needed when creating

the model files. These are typically collocations.

7.1.2 Content of the Model Part of the Repository

133 OOram role models are used in the experiments. Most models are sub-models, i.e., they

represent one scenario for a particular system. Many of these models have been found in

books or papers that present object-oriented analysis and design, eg. in (Blaha et al., 1988;

Castano and Antonellis, 1993; Gulla et al., 1997; Halpin, 1998; Kendall, 1999). In most cases

the models were presented using other notations than OOram and are rewritten using OOram

notation. Other models are created particularly for the ROSA project, and some of these are

created to be analogous (see for example the examples discussed in section 4.2.3. It would

be valuable to see if the algorithms are efficient enough when the size of the repository grows

even more, but it is time consuming manually to create sufficiently realistic models in large

numbers. It is vital to have a minimum number of models to evaluate the algorithms and to

use statistical methods to evaluate the results. The existing number of models is adequate for

this purpose.

129

The models are read from XML files written according to the DTD shown in appendix C.

This DTD was written to cover the most essential subset of the OOram language grammar

described in Reenskaug et al. (1996, p. 341). In the first experiments the DTD in appendix C.1

is used, while the DTD in appendix C.2 is used after introduction of a role name modifier in

section 7.2.4. Use of XML gives the flexibility to add more detail to the role models than what

was possible in the previous ROSA prototype.

While the simplest role model is a chain with one structure description, the most com-

plex role models may be described by many structure descriptions. Since only the three most

important of them are stored, not all roles will be part of a stored structure description later

used during retrieval. The intention of the ROSA approach to reuse is to find analogies among

sub-models, but it is also interesting to see how the system degrades as the models grow larger

and more complex.

Most sub-models are simple—the smallest is a chain containing two roles—but typically

they contain 3–5 roles with differing structure. On the other end of the scale there are two

complex models that typically represent a high level of synthesis; see appendix A. The most

complex model contains 16 roles and 36 ports.

When roles are named using word forms with more than one meaning in WordNet,

a meaning is selected by identifying a synsetID. An example OOram role model in XML

format is given in appendix D. These are the same synsetIDs that can be found in the Prolog

predicates in appendix E. In a realistic system, this functionality would need support in the

user interface by giving the user an option to choose from a set of meanings displayed with

synonyms, descriptions, and examples. The synsetID would then be given implicitly.

At the beginning of each experiment, the database is filled with the base models for the

experiment. Each experiment consists of a set of cases, each with a different target model.

The types of target models are varied both with respect to size, structure, and semantics to get

a representative set. For some models there do exist similar ones in the repository, while for

others this is not the case.

130

7.1.3 Test of Semantic Similarity Models

Two semantic similarity models were described in section 5.3. Section 5.3.4 describes tests

performed to study how these models would behave during different circumstances when two

role names were compared. These tests were done using spreadsheets. It is interesting, how-

ever, to see how the similarity models behave when used on the OOram models. The similarity

model in equation 5.8 was run with three different values of k: 0.1, 0.15, and 0.2. Generally,

I found that this similarity model gave better results than the simple model in equation 5.7,

meaning that I got higher mapping similarity for good analogies. If the goal is to separate

analogous models from those that are not, it is an advantage that the mapping similarity values

are spread out on the whole scale of values.

In the next section I discuss the fine-tuning of some parameters for the genetic algorithm

to study how further tests with the different combinations of parameter values with the two

similarity models. This shows some of the complexities involved when trying to identify the

optimal values that should be used to perform the experiments with.

7.1.4 Tuning Parameters for the Genetic Algorithm

The genetic package GALib (Wall, 1996) is used in the prototype. This package is very flexible

and you can set up one or several populations and predefine several parameters. The chosen

implementation uses one population with the following parameters fine-tuned to improve the

results. These parameters include

• number of generations

• number of individuals in each generation

• mutation rate probability

The goal of these tuning experiments is to identify a combination of parameters which will

optimize the sum of mapping similarity values, xn, for the n best analogies

xn =

n∑
i=0

vi (7.1)

where vi is the value of the ith analogy. I initially conduct a set of experiments where I modify

these parameters in different combinations. To make sure that the results are sound, I check

131

the combination of parameters using the similarity models described in section 5.3, to see what

combination gives the best analogies. Due to lack of measures of what constitutes a good ana-

logy, the best parameters is here taken to mean those optimizing xn (see equation 7.1). I started

the experiments using the values chosen by Tessem (1998a) as default in his experiments.

First, I ran a set of experiments that differed in population size and number of genera-

tions within the minimum and maximum ranges in table 7.1. The mutation rate had a starting

value of 0.03. Several sets of tests where done with the similarity models given in equa-

tions 5.7 and 5.8. These findings led me to narrow down the tests performed later with the

second similarity model.

Parameter min value max value
Population size 200 3000
Number of generations 250 2500
Mutation rate 0.03 0.07

Table 7.1: The outer limits of the genetic algorithm parameters tested

I ran the similarity model in equation 5.8 with population size and number of generations

equal to 400, and with a mutation rate of 0.05. Thereafter an experiment was performed with

size of population and number of generations equal to 500. The latter gave increased value

of xn compared to the default if n equals the number of base models in equation 7.1. After

further study this was no longer obvious.

The seemingly better result, an increased xn, was often due to an increase in mapping

similarity for base models with low rank and therefore low mapping similarity. These models

are uninteresting since I only look for the best analogies. The models that were intentionally

created to be analogous, e.g., almost identical models, should always get the best mappings.

The goal was therefore modified to ensure that the best analogies always get the highest

mapping similarity values possible, and to distinguish models that are highly analogous from

weaker analogies. Only the 10 best analogies, i.e. n = 10, is therefore included when the

sum in equation 7.1 is calculated. Mutation probability rates of 0.04, 0.045, 0.05, 0.06, and

0.07 were checked using the two similarity models with population/generations as previously

described.

A mutation probability of 0.04 was chosen as it gave acceptable results. Using this

value, a set of tests were executed where population size and number of generations varied.

132

Population size varied between 200 to 600, and the number of generations varied between 250

to 600.

Conclusion The chosen values for the genetic algorithm after these initial tests are: A muta-

tion rate equal to 0.04, population equal to 400, and number of generations equal to 350. The

similarity model in equation 5.8 is chosen. These vales gave the highest mapping similarity

for the 10 best analogies using equation 7.1.

7.2 The Experiments

This section starts out with testing the first implementation of the AR machine in section 7.2.1.

This first experiment establishes what is called the base situation. The following experiments

are aimed at testing several modifications of this first implementation. Each of them is run

with at least one alternative situation to be compared to the base situation. I call the base

situation A and the alternative situation B. A table showing the sequence of experiences is

shown in table 7.2.

After the base situation is established, 10 experiments are performed. In each exper-

iment, the same 24 cases are run. Each case has a specific target model. In each case it is

searched for the best analogies for this target model. The results from the two situations are

compared. In each case, all models except the target model are used as base models. In this

experimental situation, similarity information about all base models is stored. For each case

in each situation, the following information is stored about each base model:

• the probability that the model is analogous to the target after the retrieval phase, i.e., the

retrieval similarity

• the rank of the model according to the retrieval similarity (see section 5.2.2 for the belief

theory and how this is converted to a analogy mapping value in equation 5.4)

• the mapping similarity value

• the rank of the model according to its mapping similarity value

For each case the result contains a set of base models with a calculated mapping sim-

ilarity value. The 5 and 10 most promising analogies for each of the 24 test cases in the two

133

situations are compared using

xy
ij = πy(aij) (7.2)

where aij is the ith analogy in case j, and xy
ij is the rank, π, after retrieval of the ith analogy

in case j using method y. A change in xy
ij is measured as δij = xB

ij − xA
ij . To study the best

analogies in particular is important because this can reveal whether the results are improved

by the modifications that are done to the solution.

Each experiment, except for the initial experiment testing the soundness of the genetic

algorithm, see section 7.1.4, and the experiment setting the base situation, see section 7.2.1,

has one out of two objectives, namely to

• improve the rank according to retrieval similarity in the alternative situation for poten-

tially good analogies, ie., models with a high rank after the mapping phase, compared

to the base situation

• find better mappings between the base and target models in the alternative situation, i.e.,

to improve their mapping similarity values, compared to the base situation

In experiments concerned with the first objective, the rank after retrieval, xij , of the

analogies with rank i in case j for the two situations are compared. Only models that are

potentially analogous, i.e., with the highest mapping similarity values, are interesting, and

therefore only models with the top ranks, i.e., i = 1 . . . 10, are studied. Preferably the models

should be ranked in the same sequence after retrieval as they are ranked after mapping. The

ideal is that the models are ranked the same way after retrieval and mapping. In other words

that I am able to identify the best analogies after retrieval. As this is difficult to achieve, a

good result would list the potentially best analogues in the upper part of the retrieved list, say

among the top 20 or 30 ranked models after retrieval.

Experiments concerned with finding better, or more correct, mapping similarity values,

i.e., better mappings between a target model and each of the base models, should compare

the mapping similarity between pairs of target and base models before and after some change

has been made to the algorithm that identifies analogies. The mapping similarity value is

improved if more roles are structurally mapped, and if the mappings that are identified are

134

between roles with names that are semantically close. The difference between the mapping

similarity calculated in the two situations being compared is δij = zA
ij − zB

ij , where zX
ij is the

mapping similarity of the ith analogy in case j for situation X , and where A and B represents

the two situations being compared. If the difference is positive, the mapping similarity is

better.

Table 7.2 shows an overview of the experiments performed, their objectives, and the

properties that are measured during the experiments. The measurement in an experiment

compares a property from the situation before with the same property after the change has

been made. These experiments are described in the following sections.

Experiment Objective Measurement

Test similarity models Establish base situation Rank after retrieval

on real OOram models of best analogies

Map target model Test the soundness of Sequence of

to itself the genetic algorithm target models

Compare two Test the stability of Diff. between

identical runs genetic algorithm mapping similarity

The importance of Reduce need to Diff. between value

modifiers expand term space after retrieval

Distinguish between Find better analogies Diff. between

one and many ports mapping similarity values

Adjust for error Improve pos. of best Rank after retrieval

in sense selection analogies after retrieval of best analogies

Increase weight on Improve pos. of best Rank after retrieval

struct. sim. during retr. analogies after retrieval of best analogies

Increase weight on Improve pos. of best Rank after retrieval

sem. sim. during retr. analogies after retrieval of best analogies

Punish large base Improve pos. of best Rank after retrieval

models during sem. retr. analogies after retrieval of best analogies

Remove synth. models Improve pos. of best Rank after retrieval

from repository analogies after retrieval of best analogies

Use fitness function Improve sorting order of Rank after retrieval

to sort analogies models after retrieval of best analogies

Table 7.2: Overview of the experiments that have been performed

If not otherwise stated, all experiments are run with the parameters for the genetic al-

135

gorithm and the similarity model listed in table 7.3 below.

Parameter Value
Population size 400
No of generations 350
Mutation rate 0.04
Similarity model Equation 5.8

Table 7.3: Chosen parameters for genetic algorithm and semantic similarity model

7.2.1 Test Similarity Models on Real OOram Models

The similarity models was originally checked on spreadsheet data, see section 5.3.4, and there

was a need to establish a base situation using the OOram models in the repository. The para-

meters in table 7.3 where used. I want to find out how many role models must be transferred

to the mapping phase to be reasonably sure that the best analogy is among these models for

all the 24 test cases in this initial set up.

Results Figure 7.1 illustrates how many models must be transferred to the mapping phase

for the best analogy, i.e., i = 1, to be found in all the cases. The x-axis represents the number

of base models returned from the retrieval phase, while the y-axis represents the fraction of

the best analogies that are identified. In 15 of 24 cases, the best analogy is found in position 1

after retrieval.

In the worst case the best analogy was ranked number 67 after retrieval, i.e. for the best

analogy to be found in all these 24 cases, 67 models must be transferred to the mapping phase.

If, in each case, the 26 top ranked models after retrieval are passed on to the mapping phase, I

will be able to identify the best analogy in 21 of the 24 cases.

For the worst case, in which the best analogy was ranked number 67 after retrieval, the

base model scored low on structural similarity as it was ranked number 123 after structural

retrieval. If the two models, the target and base model in this situation, are analyzed further,

it shows that the reason for the low structural similarity is that this base model has only one

structure description index, i.e., a sequence, while the target model has a tree and a sequence.

This base model scores high on semantic similarity, rank 6, i.e., if semantics had been given

more weight, this base model would have come higher on the list after retrieval. Structural

136

base

x

y

140120100806040200

1
0.95
0.9

0.85
0.8

0.75

0.7
0.65
0.6

Figure 7.1: Fraction of best analogies found pr. models mapped

and semantic similarity are given equal weight and this fact accounts for the failure to identify

this particular base model after retrieval.

Several cases have a target model where at least one base model is semantically similar.

In some situations there are base models that are intentionally created as variants of the target

model, or vice versa, and these are both semantically and structurally similar. The best models

are always found in these cases. In the cases where analogous models had been created, these

where also identified, even though the semantic similarity is lower in these cases. Some of

these models have been used as target models (see table F.1. An example of this is shown in

section 7.3. The goal of analogical reasoning is to be able to find the best analogies across

application domains, so there must not be given too much weight to semantic similarity. Sec-

tion 7.2.7 and 7.2.8 describe experiments where the weights on structure and semantics are

varied during retrieval.

Conclusion The intention of this first experiment was to establish a base situation that can

be used for comparison in later experiments. I want to see which of the alternatives give the

best analogy, given that a good analogy is one with a high mapping similarity. As an initial

attempt the algorithms give some indication of a viable approach. For all the best analogies

to be identified during mapping, I had to pass on 67 models to the mapping phase, i.e., about

50 % of the models in my experiments. However, if only the 26 highest ranked models after

retrieval are passed on, the best analogy is found in 21 of the 24 cases.

137

7.2.2 Map a Target Model onto Itself

One basic requirement for an AR machine is that a model should always be found analogous to

itself. To test the soundness of the analogy model in this respect, an experiment was performed

where the target model itself was included in the collection of base models.

Results In all of the 24 cases run with different target models the best analogy was the target

model itself. In all but one case, this mapping had the value of 1, i.e. all roles were mapped

onto itself. In the last case the mapping was lower because two of the roles in the base model

were mapped to another role than itself. This situation can be explained by the fact that a

genetic algorithm selects mutations at random, and so a local optimum was found.

Conclusion If the target model is included in the collection of base models, the best mapping

is almost always between the target model and itself.

In the remaining experiments, the target model is excluded from the collection of base models,

and the set of base models consists of 132 models.

7.2.3 Compare Two Identical Runs

When using genetic algorithms, there is no guarantee that the same results are produced each

time the program is run with the same target model. In fine-tuning the genetic algorithm,

the goal was to identify the best possible mappings. The parameters varied were the size of

the population, number of generations, and mutation rate. To be able to compare different

situations in an experiment, it is an advantage to know how much the results vary in two

identical situations. Such an experiment was performed and the results were analyzed. The

difference in mapping similarity δij = zA
ij − zB

ij , between the two situations was measured for

all the mappings.

Results In 24 cases, with a total of 3165 mappings, only 5 mappings differed in value when

the exact same set of tests were run twice. This amounts to 0.158 % of the mappings. The

difference in mapping similarity in these 5 cases was 0.045, with a maximum of 0.111. In this

last case, this difference did not result in a difference in rank after mapping.

138

Conclusion Since less than 0.2 % of the mappings vary between two identical runs, I can

conclude that variations between two runs that differ in some respect, are not due to random

variations in positions or mapping similarity value when the same parameters are chosen.

7.2.4 The Importance of Modifiers

In some early experiments, new terms were added to the term base every time a model could

not naturally be described by terms contained therein. This situation could occur if two roles in

a model have names that are specializations of a common term, and the specializations do not

exist in WordNet. Adding a new word meaning usually leads to the insertion of a new synset as

well. The new synset must be linked to an existing synset in the term base as a specialization.

This process is error prone due to the risk of adding a new synset at a semantically wrong place

in the hierarchy. Even worse, because neither I nor any typical practicing software engineer

have experience in creating a lexicon, there is a risk of reducing the quality of the term base.

To cope with this situation, a modifier is introduced, as described in section 6.2.2. The

introduction of a modifier allows a role to be named using two terms, and the second term, if

used, is called the modifier. All roles with names not already in the term space get a modifier.

The modified DTD for the OOram models is shown in appendix C.2.

To illustrate the introduction of modifiers, the Library assistant role in Library is

changed to rName = assistant and mName = library. The role model Library is compared

to

• itself,

• a model Library a, where the same change to this role is made, but where another role

has been removed,

• a smaller model, Library sub, that uses the original word form library assistant, and

thus no modifier.

Results When compared to itself, Library gets simsem = 1 on all roles. The roles library

assistant has the closest common ancestor at level 6 in the hierarchy. When compared to Lib-

rary a, all roles, except the missing one, has simsem = 1. Total semantic similarity in this case

is 0.944. When compared to Library sub—with only 5 roles—the two library assistant roles

139

get a similarity equal to 0.667. They have the closest common ancestor at level 4. Figure 7.2

shows part ot the hierarchy that involves these terms. The modifier library is marked with a

dotted arch to distinguish it from specializations. The reason the term library assistant is a

specialization of employee rather than of assistant is that a synset containing shop assistant

was already linked in this way in WordNet.

entity, something

life form,
 organism, ...

person, individual,
 someone, ...

worker

employee assistant, helper, ...

library assistant

library

Figure 7.2: Term space hierarchy related to library assistant

Conclusion If two roles, named by the same word meaning, are compared, Simsem = 1.

The same is true if both the same word meaning and modifier are used in both cases. If, on the

other hand, the role name is the same, but one role is named using a modifier while the other

role is named by adding a new term to the hierarchy, they do not get the maximum semantic

similarity. Such a situation can be avoided by notifying the user so he could fix it. If he wants

to add a new term to the term space, he should be asked to use the first approach instead. This

will ensure that the term space develops in a more controlled way.

So, if a role name is written using a modifier in all situations, the similarity between

two identical role names will be 1, and I therefore introduce this in the repository. It is easy

140

to enforce this by not permitting the introduction of new terms in the term space. In the role

models used in these experiments, after this change, there are 31 uses of a modifier.

7.2.5 Distinguish Between One and Many Ports in OOram

In OOram role models, a role can know about many, one, or no occurrences of the role at the

other end of a path connecting the two roles; see appendix A. In the experiments described

thus far, structural similarity during mapping is found based on whether the role knows about

the role at the other end or not, i.e., there has been no distinction between situations where

there has been a ONE or MANY port.

Now the code is modified to give different results depending on the multiplicity of the

ports. I want to analyze whether the addition of such information helps to identify better

analogies, i.e., with higher values. The original, or base, situation is called situation A and the

alternative situation B.

Hypotheses The null hypothesis, H0, states that there will be no improvement in mapping

similarities based on the additional multiplicity information. The alternative hypothesis, H 1,

states that there will be an improvement when such information is taken into account.

A change in mapping similarity is measured as the difference between mapping similar-

ity for pairs of target and base models, aij, for the two situations (A and B). The difference is

measured as δij = zB
ij − zA

ij .

Formally the hypotheses can be set up as:

H0: median (δ) = 0

H1: median (δ) > 0

Analysis

In this experiment, I want to find out what happens to the mapping similarity values when

multiplicity is taken into consideration. In some cases, the use of multiplicity information

may result in mappings with lower values, but this may still be a more correct mapping. It is

without importance if these models do not show up among the top ranked analogies. For each

141

target model, j, the base models are sorted alphabetically. In this way the analogy values of

the same base model can be compared for situations A and B.

To analyze the calculated differences, a suitable statistical method must be identified.

Using probability plots, the data do not show a normal distribution, so a non-parameterized

method is used. The values of differences can be ranked, so the Wilcoxon signed rank test (Wil-

coxon and Wilcox, 1964) is used. The significance level, α, is set to 0.05.

H0 is first tested using data from all mappings. The data set is then reduced several times

by incrementally removing weaker analogies. I want to find out if, above some level, H0 can

be rejected. Since the same mappings are not the best in both situations, I keep the best x

mappings from both situations. Table 7.4 shows the result for this experiment.

k best N for Estimated
mappings N Test P Median
k = 132 3165 1430 1.000 0
k < 100 2612 1261 1.000 0
k < 80 2157 1065 1.000 0
k < 60 1636 822 0.997 0
k < 40 1096 536 0.947 0
k < 20 1096 536 0.947 0
k < 15 418 198 0.117 0
k = 10 278 120 0.030 0
k < 10 250 107 0.034 0
k < 5 121 54 0.052 0
k < 4 92 38 0.025 0
k < 3 62 24 0.042 0

Table 7.4: Analysis of using multiplicity information with the Wilcoxon test

Results In table 7.4, N represents the total number of data points, while N for test represents

the number of data points that differ from zero. P is the probability of getting the results in

table 7.4 if run again, while k represents the max rank of best analogies that are kept from both

situation A and B. The models that have the highest similarity mappings may vary between

the two situations.

Conclusion

From table 7.4 it can be seen that when considering the 2–10 best models in either A or B,

the probability P is within the significance level. It is therefore possible to conclude that

142

when looking at the 2–10 best analogies in both situations, H0, stating that the analogy values

will not be better, can be rejected. In future experiments, I therefore include the extended

multiplicity information of the ports, as it seems to improve the mappings. The alternative

situation in this experiment, B, will be used as the new base situation in future experiments.

Additional Comments

Figure 7.3 illustrates, by comparing situations A and B, the effect of adding multiplicity in-

formation on how many base models must be mapped to find the best analogy in each of the

24 cases. The x axis represents base models in the list after retrieval, and the y axis the relative

number of the number one analogies found from the 24 test cases.

B
A

x

y

140120100806040200

1
0.95
0.9

0.85
0.8

0.75

0.7
0.65
0.6

Figure 7.3: Fraction of best analogies found at position x after retrieval

In the first part of the list, B shows an improved situation over A. A possible explanation

of this fact may be that in situation A the genetic algorithm fixes the structure too early due to

greater semantic similarity. At about position 30, the number of analogies found in situation

B is lower than in situation A. This poorer performance of B at higher positions may be

explained by the fact that some mappings in A between ONE and MANY ports that were

considered good, are now rejected, because of a lower score than a mapping between two

equal types of ports.

An additional advantage stemming from the use of multiplicity information is seen when

comparing two identical tests under situation B: All mappings were equal. We saw in sec-

tion 7.2.3 that a little under 2 % of the mappings were different in two identical runs. This

143

indicates that B gives a more stable behaviour of the genetic algorithm.

7.2.6 Adjust for Error in Sense Selection During Retrieval

Sometimes, when a software developer creates a new role model, it may be difficult to choose

between meanings of a term. The problem is how to handle a situation such as the following:

A software developer unintentionally selects the “wrong” sense for a specific role name. If

this sense belongs to a WordNet hierarchy different from what the senses of the other roles it

is compared to does, the semantic similarity value, simsem, between these roles equals 0.

To prevent a model from getting a too low score for a mapping when the name is the

same, a small similarity value, e.g., γ = 0.2, can be assigned in these cases. Let wf t and wf b

be the word forms that name the target and base roles, respectively, and simsem in these cases

are calculated according to equation 5.10.

Notice that it is a question of only a small adjustment, performed only in situations

when the mentioned condition occurs. Often this adjustment will have no influence on the

upper bound of the semantic similarity between roles in the target and base models. One

might think that this situation is not likely to occur, since another better match is found. This

is not the case, however, as will be described below.

How Often Does a Role Get no Semantic Match During Retrieval?

When talking about the probability that two roles are semantically similar during retrieval,

what it really means is the upper bound of the probability of a semantic match for the particular

target role. It gives the similarity value if these two models were structurally mapped. Also,

when searching for semantic similarity for the role names in the target model, the best map

for several of the roles may be the same role in the base model. The value identified during

mapping can in fact be a lot lower. This may indicate that the actual similarity model used is

less important during retrieval than during mapping.

I selected one of the test cases with Program committee job 2 as the target

model. This model has 4 roles. When looking at the best matches between one of these 4

target roles and any role in the base models, there are the following occurrences:

• 28 identical matches

144

• 197 no match

• 307 partial match

In this particular example, no match was found in about 37 % of the situations.

It is reasonable to believe that when roles named by the same word form, but with

meanings taken from different hierarchies, are compared, there may be no other roles in the

role model that gives a (partial) match. To introduce an adjustment in this situation may

therefore influence the outcome of retrieval. In situations where other role names have a

greater similarity, this will have no influence on the result.

Adjustment Experiment

The base case is the alternative case from the test of addition of multiplicity information, i.e.,

situation B. In the previous experiment nothing involving the retrieval phase was changed.

Here, I want to study the effect of modifications of the semantic similarity value on the ranking

of role models after retrieval relative to the rank of the models according to analogy values. In

a couple of models such differences in sense selection was inserted deliberately. For the rest

of the models, I tried to avoid it.

I first analyzed the results of the mappings. To be able to measure such a small effect,

the relevant cases are separated out. Matches between roles with the same name, but where

the word meaning belonged to different term hierarchies, occur in 13 of the 24 test cases.

These 13 cases were studied separately. There are a total of 34 occurrences of 5 different

word forms. That this happens so frequently, even though I, for the most part, have tried to

prevent it, indicates that this type of differences in sense selection is likely to happen.

For one of the target models, Library1, there occurs 5 times during mapping that a

role is mapped to a role in a base model with the same name—same word form—but with

different meaning, and where these meanings belong to a different word hierarchy. In 4 of

these situations the best similarity value is 0. This implies that by correcting for a possible

error in sense selection, the similarity would have been increased by 0.2 in these 4 cases.

I checked for the implications for the best analogies’ positions after retrieval. For the 3

best analogies for each of the 24 cases, the only modifications were that the second and third

best model had switched places a couple of times.

145

Conclusion It is not verified that this heuristic helps. No statistical significance is found.

In some situations, where there is a deliberate choice behind the selection of name, such a

modification may even make harm. In the following experiments, I decide not to adjust for

error in sense selection.

7.2.7 Increase Weight on Structural Similarity During Retrieval

The purpose of this experiment is to see if good analogies will be ranked higher after retrieval

when structural similarity is given relatively higher weight. This would be in line with theory

saying that analogies are based on deeper, structural similarities rather than surface similar-

ities, e.g., semantic information; see 3.1.2. If, in this experiment, base models with a high

score during retrieval but with small analogy values are moved down in the list after retrieval,

that experiment can be considered a success.

Modification is made by reducing the weight given to the semantic belief function. The

experiment is conducted as several runs with the same set of target models, where, for each

run, the weight of the semantic belief function is reduced before it is combined with the

structural belief function. The weight given to the semantic similarity is 0.9, 0.8, 0.7, 0.5, and

0.0 of its original weight. The value 0.0 means that semantic similarity is given no weight.

Hypotheses The null hypothesis states that a reduction in weight on semantic similarity

during retrieval will not improve the ranking after retrieval of the 10 best analogies.

The alternative hypothesis states that a reduction in weight of semantic similarity will improve

the ranking after retrieval of the 10 best analogies.

The 10 best analogies for each of the 24 test cases in the two situations are compared as

before. A change in xy
ij is measured as δij = xB

ij − xA
ij . If the 10 best analogies are moved

closer to the front of the list, the median of δ will be less than zero.

H0: median (δ) = 0

H1: median (δ) < 0

146

Analysis

The sign test for median is used to analyze the data, and table 7.5 shows the result. In this case

there are more than one alternative situation B. Bk means that the semantic similarity in test

B is reduced to k.

δ N Below Equal Above P Median
B0.9-A 240 38 82 120 1.00 0.5
B0.7-A 240 41 48 151 1.00 3.0
B0.5-A 240 46 31 163 1.00 8.0
B0.0-A 240 29 8 203 1.00 19.0

Table 7.5: Results from the experiment

The rank after retrieval of the best analogies is not improved by reducing the weight on

semantic similarity during retrieval. On the contrary, it seems that the 10 best analogies have

been given a lower rank after retrieval, contrary to the theory. The probability is 1 for all tests,

and the null hypothesis can therefore not be rejected.

If I turn the problem around, use the same H0 as before and change the alternative

hypothesis to H1: median (δ) > 0, we get the following results if looking at only the two last

tests in table 7.5.

δ N Below Equal Above P Median
B0.5-A 240 46 31 163 0.00 8.0
B0.0-A 240 29 8 203 0.00 19.0

Table 7.6: Testing for the alternative method giving higher values

It can be seen here that if the alternative hypothesis states that the increased weight struc-

tural similarity during retrieval would give a lower rank after retrieval to the best analogies, H0

would have been rejected, i.e., H1 : median < 0. The results even give some indication that

the contrary could really be the case; that semantics is very important for identifying similarity

among the models.

Figure 7.4 shows how many of the retrieved models must be passed on to the mapping

phase to find the 10 best analogies for all 24 cases. The situation in the base case, A, with

equal weight on structure and semantics is compared to situation B0.5, where the weight on

semantics has been reduced by half, and B0 with no weight on semantics.

147

B0 (10)
B0.5 (10)

A (10)

x

y

140120100806040200

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

Figure 7.4: Fraction of 10 best analogies found relative to rank after retrieval

Since it may be unclear whether it is necessary to get the 10 best analogies, I made the

same plot for the 5 best analogies for each case. See figure 7.5.

B0 (5)
B0.5 (5)

A (5)

x

y

140120100806040200

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

Figure 7.5: Fraction of 5 best analogies found relative to rank after retrieval

Figure 7.6 compares the fraction of the 5 best analogies found with that of the 10 best

analogies for the three situations described above.

Conclusion H0 cannot be rejected. A reduction in weight on semantic similarity during

retrieval will not give the 10 best analogies a higher rank after retrieval.

148

B0 (10)
B0.5 (10)

A (10)
B0 (5)

B0.5 (5)
A (5)

x

y

140120100806040200

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

Figure 7.6: Comparison of situations with the 5 and 10 best analogies

7.2.8 Increase Weight on Semantics During Retrieval

The findings of the previous experiment indicates that semantics may play a more important

role than structure during retrieval, at least for the current models in the repository. One reason

to perform this experiment is that, with semantically similar models in the repository, it is more

likely that they are reusable than are models that are only structurally similar. The argument is

contrary to the arguments used in the last experiment. I set up an experiment where the weight

on structure is reduced while semantics plays the same role as in the original case A.

Hypotheses The null hypothesis states that a reduced weight on structural similarity during

retrieval will not improve the rank after retrieval of the 10 best analogies.

The alternative hypothesis states that by reducing weight on structural similarity during re-

trieval, the 10 best analogies will be given a higher rank after retrieval.

The 10 best analogies for each of the 24 test cases in the two situations are compared, giving

the following results. The comparisons are done as in section 7.2.7. If the 10 best analogies

are moved closer to the front of the list, the median of δ will be less than zero.

H0: median (δ) = 0

H1: median (δ) < 0

149

Analysis

The sign test for median is used on the 10 best analogies, and the results are given below. The

base case A is the same as in the previous experiment, while the alternative case is called C.

If situation C is better than situation A, the median will be smaller than 0.

δ N Below Equal Above P Median
C0.9 − A 240 119 89 32 0.000 0.0
C0.8 − A 240 128 74 38 0.000 -1.0
C0.7 − A 240 128 76 36 0.000 -1.0
C0.5 − A 240 138 65 37 0.000 -2.0
C0.0 − A 240 138 41 61 0.000 -3.0

Table 7.7: Effect of reducing weight of structural similarity

In table 7.7, δ represents situation Ck, where the value of k is the factor used to adjust

the weight of the structural belief function. From the table it is seen that when reducing the

weight on structure during retrieval, the best analogies get higher rank after retrieval. H0 can

thus be rejected.

Based on this result it is not possible to draw the conclusion that structure is not import-

ant. The reason for the result may be that the models used in the experiments are more similar

semantically than structurally, or it may be that the structure description algorithm used is not

able to capture the true structure of the models. The last point would probably be a greater

problem for the larger models in the repository.

C0 (10)
C0.5 (10)

A (10)

x

y

140120100806040200

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

Figure 7.7: Fraction of 10 best analogies found relative to position after retrieval

Figure 7.7 compares the result when structural weight is reduced to 0.5 and 0.0 compared

150

to case A. As can be seen, the best analogies are, to a larger extent, found among the first part

of the list of models after retrieval. Figure 7.8 shows the similar situation for the 5 best

analogies, and figure 7.9 compares the behaviour for the 10 and 5 best analogies.

C0 (5)
C0.5 (5)

A (5)

x

y

140120100806040200

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Figure 7.8: Effect of reducing weight on structure during retrieval of 5 best analogies

C0 (10)
C0.5 (10)

A (10)
C0 (5)

C0.5 (5)
A (5)

x

y

140120100806040200

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 7.9: Comparing the results for the 5 and 10 best analogies

The analogy values are calculated using the same algorithms during all these tests, so this

does not contradict the general theory that deeper, structural similarities are more important

than surface similarities. The result may be that the algorithm used is not capable of capturing

the structure of the models, or rather the difference among their structure, in a fruitful way.

As the two experiments have tried to show opposite effects, it is natural to show the

effects combined in one figure. Figure 7.10 shows what fraction of the 5 best analogies will

151

be found at a certain level of the list after retrieval for both the emphasis on structural and on

semantic beliefs.

B0 (5)
B0.5 (5)
C0 (5)

C0.5 (5)
A (5)

x

y

140120100806040200

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 7.10: Comparison of effect of increase of structural and semantic weight for 5 best
analogies

Conclusion This experiment showed that H0 is rejected. Reduced weight on structural sim-

ilarity during retrieval did give the 10 best analogies a higher rank after retrieval. The experi-

ment indicates that the more weight on semantics the better. It also shows that the tendency to

find the best analogies with a high rank after retrieval is strengthened if looking at the best 5

instead of the best 10 analogies.

7.2.9 Punish Large Base Models during Semantic Retrieval

One observation made is that some large base models that get a high score during retrieval, get

a low mapping similarity. During semantic retrieval I identify the role from each base model

giving the best semantic similarity to each role in the target model. If a base model has more

roles than the target model, there is an increased probability that we can identify a good match,

simply because there are a larger number of alternative role names to compare to. The model

program committee synthesis is an example1. The complexity of the model, however, is

more due to the number of ports than to the number of roles. It contains 16 roles and 36 ports.

1It is, as the name implies, a synthesized model, and it should probably not be included among the base
models. However, in the experiments thus far, it has been included.

152

If a target model with only 4–5 roles is compared to this larger model, each of the roles in the

target model has a higher probability to finding a role with a reasonable semantic similarity.

Some models may get an unreasonably high belief value during semantic retrieval, and

thus the total retrieval, while the real analogy values are low. It follows that the goal is to

the push weaker analogies down the list of base models m1 during retrieval, while the top

analogies are moved to the front of the list as much as possible. The base case, m1, is the

alternative case, B, from 7.2.5. Punishment is performed according to

simsem = simsem − k ∗ ib − it
it

where ib and it are the number of roles in the base and target models, respectively. The

experiment has been performed with k = 0.05 and k = 0.1. I call these experiments m2

and m3, respectively. The methods differ only in the way the simsem is calculated. The base

models are ranked according to analogy values, aij , as before, and their positions, xij , after

retrieval are identified.

The two alternatives, m2 and m3, are compared to m1. Each of the three situations is

run for the 24 cases with different target model and with the same set of base models. I am

interested in the effect this punishment has on the sequence of base models after retrieval.

Hypotheses The null hypothesis states that punishment of large base models with respect to

their semantic similarity will not improve the rank of the 5 top analogies after retrieval.

The alternative hypothesis states that such punishment will have a positive effect on the rank

of the 5 top analogies.

The effect is measured by taking the difference, δ, between a pairwise set of data from

the base case, m1, without punishment and the case, mx, with punishment, where x = [2, 3].

The 5 best analogies for each of the 24 test cases for the two situations are compared, and the

differences between the measurements are analyzed. One method is better than another if the

best analogies are found higher up in the list after retrieval. If the alternative hypothesis is

supported, the top analogies of m2 or m3 will be moved forward in the list, and δ > 0.

H0: median (δ) = 0

H1: median (δ) > 0

153

Analysis

In some situations, punishment may affect the sequence of models in an unintentional way,

as a large, true analogue will also be punished. If a synthesized model is found to be a good

analogy, this model can be moved down the list, and the effect will be negative. The analogical

reasoning engine, however, is supposed to be good also in situations where the analogies

belong to a different application domain, and thus there is a tradeoff between these two goals.

For each of the x best analogies, its rank after retrieval is identified. The difference in

rank after retrieval for these models is found. The intention is to reduce false similarity due to

larger size of base models, with the risk of creating a reduced similarity in situations where a

true analogy is being punished because the base model is larger than the target. It is unlikely

that we get only examples of the first of these outcomes.

Sign test for median is used to analyze the data. I compared m1 with m2. For each pos-

ition in the lists that are compared, a new value is calculated as m1i − m2i, where i represents

the position in the list. If the value is negative, the model has been moved down the list in the

m2. I later did the same with m1 and m3.

When looking at the five best analogies for each target, and comparing m1 with m2 and

m1 with m3, the results were

δ N Below Equal Above P Median
m1 − m2 120 28 76 16 0.9756 0.00
m1 − m3 120 29 71 20 0.9238 0.00

Table 7.8: Results from using the sign test for median on the punishment data

The probability of a result where m2 or m3 is better than m1 in the two results listed above,

is very small for both cases. When the two columns for m1 and m2 are plotted against each

other, I get the results as seen to the left in figure 7.11, and to the right m1 is plotted against

m3.

Figure 7.11 shows that of the 5 best models for all the 24 tests, only four get a considerably

better position using method m2, i.e., the one with a small punishment. These four are repres-

ented by the dots in the upper, left diagonal. Using m3, only two of these models get a better

position.

154

Figure 7.11: Method m1 plotted against m2 and m3 respectively

Conclusion H0 can not be rejected. There is no support in saying that punishment of large

base models with respect to their semantic similarity will improve the rank of the 5 top analo-

gies after retrieval.

Additional tests The same test was done with the 10 and 20 best base models. In these

situations it is not so obvious that the models with punishment are worse than m1. Since my

goal was to try to find a model that was better than m1, I can thus conclude that to punish large

base models during semantic retrieval is not the way to go.

7.2.10 Remove Synthesized Models from Repository

The repository contains two synthesized role models. One of these was discussed in the pre-

vious section. These two models show up among the 10 best analogies in 10 of the 24 cases,

although they are not given enough belief to be get a high rank after retrieval, and it would

require a large number of role models to be transferred to the mapping phase to ensure that

these are found.

When the project was first initiated, it was not intended that these models should be

kept in the same part of the repository as the sub-models. The repository is designed with

links from each role model to potential sub-models and synthesized models. Search should be

done among the sub-models. If an analogy is found in the repository, the elaboration phase

can include an analysis of the other models in the same project as the analogous model to see

whether more of that project is reusable. I thought it was interesting, however, to see how the

system would behave with such models present, as this shows how the algorithm degenerates

when the sizes and structures varies more among the models.

155

One major problem concerning the synthesized models is that the algorithm identifying

structural similarity cannot describe enough of their structure since I only use the three best

structure descriptions, see section 5.2.1. The most important structure descriptions for a large

model need not be the ones that will give the best match to a semantically similar model. The

model program committee synthesis contains 36 ports, and the number of sub-structures in

this model is far above the three that are stored in the repository. The sub-models from which

these models are synthesized will also be kept in the repository, and the software developer

can indirectly get to the synthesized models through them.

It is interesting to see what happens if these models are removed from the repository.

This will give us a collection of models that is closer to the intended one, and the results

stemming from structural similarity during retrieval may be fairer, and the best analogies may

get a higher score after retrieval. Because there are only two synthesized models, I need not

analyze the whole set of 24 cases, but only those in which one or both of these models occur

among the best 10 analogies.

Hypotheses The null hypothesis states that, of the tests where one of the synthesized mod-

els were among the 10 best analogies, the rank after retrieval of the 10 best analogies are not

improved by removing the synthesized models.

The alternative hypothesis states that the rank after retrieval of the 10 best analogies is im-

proved after these models are removed.

In the base case, A, the synthesized models are in the repository, while in the alternative

case, B, these models have been removed. The measurements of rank of the 10 best analogies

for the two situations are made, as before, and δij = xA
ij − xB

ij are calculated. The alternative

hypothesis is strengthened if δ > 0.

H0: median (δ) = 0

H1: median (δ) > 0

Results When the data from the 10 cases, where one or both of the synthesized models were

included among the 10 best analogies, were analyzed using the sign test, the following result

was obtained:

156

N Below Equal Above P Median
A − B 100 34 18 48 0.0756 0.00

Table 7.9: Results when synthesized models are removed

Conclusion H0 cannot be rejected.

The submodels will still be removed from the repository in the remaining experiments,

because the content that they represent—in the form of their sub-models—are present in the

repository as such. The sub-models will also typically be more in line with the target model

in size and complexity.

Additional tests If, instead, I look at only the 5 best analogies for each case, there are only

8 cases where A contains one of the synthesized models. When the other cases are removed,

and I analyze the remaining data, we get the results as shown in table 7.10. The reduced set of

A is named A1 and B is named B1.

N Below Equal Above P Median
A1 − B1 40 13 8 19 0.1885 0.00

Table 7.10: Result when the 5 best analogies are considered

In four of these cases one of the synthesized models ends up as the best analogy in situation

A; see table 7.11. Here rank represents the rank after retrieval of the best analogy. The worst

case, i.e., the lowest rank after retrieval of the best analogy is reduced from 96 to 65 when

looking at these four cases when the synthesized models are removed, but the best analogies

do not necessarily get a higher rank after retrieval, as can be seen in the table. No conclusion

can be drawn based on this, however.

A B
Target rank value rank value
CustomerPlaceOrder 96 0.585 26 0.508
Register for course 30 0.544 65 0.544
Program committee job no 2 24 0.803 1 0.781
Checkbook application 5 0.477 10 0.477
Median 27 18

Table 7.11: The 4 cases where one of the synthesized models is the best analogy

157

Discussion One point to make at this stage is that the analogy values are low in these ex-

amples, except for the situation where a synthesized model is mapped to one of the models

from which it is built. This is the case in the third line i table 7.11. The model that replaces the

synthesized model here when it is removed, is a model called IFIP example - no 1, that is one

example taken from the same application area. A last indication strengthening the belief in

the results given above can be seen in figure 7.12 showing the fraction of the 10 best analogies

from each of the depending on the number of models that are passed on from the retrieval to

the mapping phase.

B
A

x

y

140120100806040200

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

Figure 7.12: Fraction of 10 best analogous models found with and without the synthesized
models

7.2.11 Use of GA Fitness Function to Rank Analogies during Mapping

The results found in sections 7.2.7 and 7.2.8, indicating that structure is of less importance

than semantics during retrieval, is problematic since it contradicts current theory regarding

analogical reasoning. One explanation could be that the analogy values are calculated with

too much emphasis on semantics. They are calculated as average semantic similarity for the

roles in the target model that are structurally mapped to a role in the base. Unmapped roles

get semantic similarity equal to zero.

An alternative approach is to use the fitness function that is used by the genetic algorithm

during mapping to calculate the mapping similarity value. This algorithm takes into account

information on both structure and semantics.

158

The Experiment

The base case, A, for the experiment is the same as the alternative situation after the exper-

iment in section 7.2.10. In A, the value of the analogy is calculated as the mean semantic

similarity value of the roles in the target model that are mapped. In the alternative case, B, the

analogy gets the value of the best genome returned from the fitness function. Because these

two algorithms give very different values, it is not possible directly to compare the mapping

similarity values. Instead, I want to see if B ranks the analogies in an order that is more in line

with the rank of role models after retrieval.

Hypotheses The null hypothesis states that there will be no improvement in rank after re-

trieval for the 10 best analogies when the fitness function is used to calculate the mapping

similarity.

The alternative hypothesis states that the use of the fitness function to calculate the mapping

similarity will result in an improved rank of the 10 best analogies after retrieval.

For each of the 10 best analogies, aij , where i is its rank in mapping similarity for the

test j, I measure the position of aij after retrieval. The difference, δij = xA
ij −xB

ij , is calculated

for each of the 10 best analogies. Alternative B is better if δ > 0.

H0: Median (δ) = 0

H1: Median (δ) > 0

Results When testing H0 relative to H1, I used a sign test for median. The results of this test

for the 10 best analogies is shown in table 7.12.

N Below Equal Above P Median
B-A 240 162 12 66 1.0000 -18.5

Table 7.12: Results from using the fitness function to calculate the mapping similarity

Conclusion H0 cannot be rejected. A majority of the 10 best analogies where given a lower

rank than to a higher rank.

159

Further tests I ran the same experiment with varying weight on semantic and structural

similarity like in the experiments in sections 7.2.7 and 7.2.8. When reducing the weight of

semantic similarity belief, the results were worse, just as was the case in section 7.2.7. When

reducing the weight of structural similarity belief, the situation improved. These results are in

line with the experiment in section 7.2.8.

If comparing situation B, where B is the alternative situation described above in this

section, with the situations Bstr0.5 and Bstr0 , meaning that the weight on structure has been

reduced to 0.5 and 0 respectively, and where I have looked at the 10 best analogies for each

case, I get the results as shown in table 7.13.

N Below Equal Above P Median
A − B 240 125 27 88 0.9954 -2.0
A − Bsem0.5 240 121 26 93 0.9763 -1.0
A − Bsem0 240 102 26 112 0.2692 0.0
A − Bstr0.5 240 141 26 73 1.0000 -3.0
A − Bstr0 240 159 25 56 1.0000 -6.0

Table 7.13: The effect of reducing weight on structural similarity belief

7.3 Discussion

Some analogies was intentionally added to the repository. Some wholesaler and library models

were created for purpose. Some of these models have been shown before. Figure 7.13 shows

an example with mappings between the roles. The structure and size of the two models is

equal and two of the roles have the same name. This wholesaler model was ranked first after

retrieval due to the high structural and partly semantic similarity. After mapping this model is

ranked as number three, with a mapping similarity of 0.7987. This example illustrates that it

is possible to identify analogies across domains.

One question I wanted to answer was how many base models should be passed on to

the mapping phase to have a fair chance of identifying the best analogies in all cases. In the

first experiment (see section 7.2.1) the aim was to establish a base situation. There, if 26 of

132 base models are passed on to the mapping phase in each case, the best analogy is found

in 21 of 24 of the cases. All but one of them will be found if 30 base models are passed on

160

1 10.6 0.168 0.833

Figure 7.13: Mapping of models from different application domain

to mapping. For the last case, the best analogy gets a low score because of a low structural

mapping; see discussion in section 7.2.1. Figure 7.14 shows the mapping. Also note that the

mapping between the two roles library assistant in the models does not give a value of 1. This

is due to the fact that in one case a specialization of employee is used, while in the other a

modifier of assistant is used; see also figure 7.2. The semantic similarity is therefore lower.

The base model, the lower model in figure 7.2, is ranked as number 123 for structural

similarity, while it is ranked number 6 in terms of semantic similarity. Both models have four

roles. Even though they have different structure—a tree and a sequence—all the roles are

mapped due to high semantic similarity. This contributes to the result that makes this base

model the best analogy. If library assistant had been coded equally in the two cases, the

probability of semantic similarity would have been 1, and the model would have been ranked

higher after retrieval, but the structural rank would be the same.

In the experiment where the fitness function is used to calculate the mapping similarity

(section 7.2.11), this particular base model is ranked as the 8th best analogy. This is because

the semantics alone is not used to calculate the mapping similarity. The experiment shows

that this approach does not give better overall results. Another alternative to reflect that the

analogy between these two models is week, could be to adjust the mapping similarity based on

161

Library_sub0

Request_Library_Card

1 10.6666671

Figure 7.14: Mapping of models with unequal structure

the fact that the structural similarity is not so close. It is not advisable, however, to make the

algorithms too complicated as I do not know much about the intended purpose of this particular

role model. Such information should be found in a textual description that the user can view

after the model has been selected, or it could be found by analyzing other properties of the

same model. An argument for allowing mapping of roles that are not mapped structurally like

in the above example, is that the software developer may have made a mistake when making

the new model, and that this model therefore is suggested as a possible match. All in all, the

base case can be called a promising result.

A concluding summery of the remaining experiments is:

• When mapping a target model onto itself the analogical engine is in fact capable of

identifying itself as the best analogy. This experiment was included to test the soundness

of the engine.

• The algorithms were also tested for stability by performing two identical runs. Of the

3165 mappings made in this case, only 5 differed in value. This amounts to less than

0.2 %, so in general I can eliminate this error.

162

• Introduction of a modifier does not change the values of mappings, so the only effect

that is seen on the mappings is if two roles being compared has the same name but these

names are coded differently—one with a modifier and one by adding a new word form

to the repository.

• The introduction of multiplicity information to the role models gave the result that the

10 best analogies were ranked higher after retrieval. This also resulted in more stable

mappings.

• The experiments with varying weights on structure and semantics during retrieval showed

that for the models in the repository, semantics seems to be more important than struc-

ture. This may only imply that for the content of this specific repository, the are models

that more semantically than structurally similar. The important conclusion I can draw,

however, is that the user should be given the freedom to balance the emphasis on struc-

ture and semantics during retrieval. The default should be a neutral balance. The user

may know that the repository contains models from the same application area and cause

him to emphasize semantics.

• The fitness function is used to rank the analogies to test whether the results from the pre-

vious experiments on weighting semantics and structure during retrieval was the result

on bogus analogy values. However, the results show that no matter how structure and

semantics were combined, the ranks of the analogies were not more in line with their

rank after retrieval.

To give a stronger conclusion, one would have to perform experiments where users

actually evaluate the mappings that are suggested, or alternatively try to reuse an earlier design

based on the analogous analysis models. Such experiments have not been performed as part

of this this thesis.

Based on the experiments performed, I was not capable of setting a definite lower

threshold for the mapping similarity, although the default value of 0.6 should, in most cases,

get potential analogies included. To more precisely find such a lower threshold, an experiment

could be set up where users get a set of models with known similarity values based on experi-

ments, and where they are asked to identify which models are analogous. I will, however, not

163

involve users in any experiments, so the measures used here for a good analogy is one where

the calculated mapping similarity is as high as possible. A user may then accept or reject a

proposed analogy.

7.4 Validity Evaluation

When conducting experiments, their validity should be considered. We normally distinguish

between internal and external validity, and sometimes also conclusion, and construct validity

(Wohlin, Runeson, Höst, Ohlsson, Regnell, and Wesslén, 2000).

In theory testing, the priorities of validity testing for experiments is in increasing order:

internal, construct, conclusion, and external validity testing, while in applied research external

validity is more important. My research falls somewhat in between, as it is applied in the

sense that I test an approach on a set of models that are written with the intention of being

real-world, but I cannot claim that I have tested whether my results are valid for a wider set of

neither models, application areas, nor model types.

7.4.1 Conclusion Validity

Conclusion validity is concerned with the relationship between the treatment and the outcome.

Can I be certain that there is a statistical relationship, i.e., with a given significance. Wohlin

et al. (2000) divides this in statistical power and reliability of measures.

Statistical Power I use two different statistical tests, Sign test and Wilcoxon rank test. The

choice of test is restricted by the fact that the data used do not show normal distribution, so a

non-parametric test is required. The data, difference in analogy values and difference in rank

after retrieval, can be found on an ordinal scale.

Reliability of Measures When I sometimes get varying results in different analogies even

though no change in the algorithm have been made, this is an error source. I did two tests

to check the variability when conducting two identical tests: for the original case and when

multiplicity information was used (see section 7.2.3). In the first case the variability was of a

magnitude less than 0.2 %, while in the second the results were identical.

164

In other experiments, however, where I wanted to improve the rank after retrieval of good

analogies and had made a change in the algorithm accordingly, differences also occurred. I

have not been able to explain these differences other than by the fact that the genetic algorithm

creates genomes at random and therefore may reach an alternative local optimum. They do

not occur frequently among the better analogies, however.

7.4.2 Internal Validity

Internal validity is concerned with whether an observed relationship between the treatment

and the outcome is a causal relationship, and that it is not a result of a factor of which I have

no control or have not measured. It is discussed in terms of instrumentation.

Instrumentation One important threat is the correctness of the program used to identify

the analogies. The calculations of structural descriptions, have been checked manually for

correctness. This also applies to the calculations of semantic similarity, both during retrieval

and mapping. As far as I can observe, the calculations are correct. It is not possible, however,

to remove completely errors in a program.

The role models that are represented in the repository constitute the objects of study. An

important question is whether the role models that where chosen as target model in the study

are representative for the models currently in the repository. The table below shows some

general properties of the models’ structure and size (in terms of number of roles). Recall that

each model is described by, at most, three structure descriptions. Large models, with more

complex structure, will therefor not be fully described during retrieval.

Table 7.14 shows the percentage of each of the types of structures as well as the percent-

age of lacking structures. The last number is to indicate how many sub-models that have less

than three sub-structures.

The structures in table 7.14, chain, star, tree, and ring, are listed in increasing order ac-

cording to complexity. The size of the target models is not less than the average of the models

in the repository. The selected target models are simpler, however, than the average models in

the repository, i.e., there are more occurrences of the simplest structure—the chains—than in

the average repository model. There are also more target models with less than three structure

165

Models
All All except synth. Target

Mean size 5.78 5.6 6.08
Median size 5 5 5
Chain (%) 44.4 45 52.8
Star (%) 17 16.8 12.5
Tree (%) 24.8 24.4 20.8
Ring (%) 5.3 5.1 2.8
Lacking structures (%) 8.5 8.7 11.1

Table 7.14: Aggregated properties of all models and target models

descriptions. This could indicate that the targets are not representative for the models in the

repository. It is reasonable, however, to argue that when a systems developer searches for an

analogy for a particular target model, then the model is unfinished and one of the goals is to

identify an analogous models from which some properties also can be transferred.

7.4.3 Construct Validity

In my case, I look for better analogies, and I have defined this to mean a higher mapping

similarity, although it is clear that I cannot claim that this implies that the analogies are actually

useful due to lacking expert evaluations. Since I have not tried to reuse the analogies, and since

there is no implementation of the systems being modelled, I have no proof that the suggested

analogies are in fact reusable.

7.4.4 External Validity

External validity is concerned with generalization. If our results are externally valid, it should

be possible to generalize the result of a study outside the scope of the study. The purpose of

this research has not been to conclude on this issue.

The intention has been to find models that are as realistic as possible. Many of the role

models in the repository has been collected from books and papers on software development.

An additional few have been created by participants in the ROSA project with the intention of

being analogous. Some of the models are variants of other models. No models are developed

as part of a real software development project and later implemented. The question is, are

the models in the repository representative of the models that could be generated by software

166

developers. This we do not know.

The size and structure varies among the models. This would probably also be the case in

a realistic repository. I have selected target models that represent the various types of described

structures and varied the combination and size of them.

The genetic algorithm works on a graphical representation of a model, so any model

that can be converted into a directed graph could in principle be analyzed using the techniques

presented in this work. Examples of such models are for example UML 2 sequence diagrams.

In order to give a more complete answer to this question, more research needs to be done.

Chapter 8

Summary and Conclusions

The main research question for this research project has been 1:

Is analogical reasoning a viable approach to identifying potentially reusable artifacts from

early phases of the software development life cycle?

Examples of such artifacts are OOram role models. The above question is so general

that it is difficult to answer it precisely and is therefore operationalized as follows:

OPERATIONALIZED RESEARCH QUESTION: Is analogical reasoning a viable approach to

retrieving potentially reusable OOram role models from a test bed of models?

Three sub-questions, that are easier to address, are formulated, and the answers to them

will together shed some light on the main question. They are:

Q 1 What kind of information is relevant to identify analogies between role models?

Q 2 How can we use this information to realize both retrieval and mapping of analogies?

Q 3 How can we balance this information in our identification of analogies?

In section 8.1, the findings related to these sub-questions are discussed separately. In sec-

tion 8.2, further work is discussed.

8.1 Summary

The discussion in this section refers partly back to the analysis regarding the use of WordNet in

chapter 4, the similarity model in chapter 5, and chapter 7 where the experiments are discussed.

The three sub-questions are here discussed separately.

1The results of this thesis is also presented in Bjørnestad (2003)

167

168

8.1.1 Q 1: What kind of information is relevant

If the software developer can identify reusable analysis models from a base of such models

without investing a lot of time in describing his new model by use of AR, this would be an

important time saving opportunity. When creating OOram role models, one starts creating

the roles and the communication paths between them. Later, cardinality information as well

as role attributes and methods are inserted. An important question is whether it is possible

to identify analogies based on knowledge of role names and communication paths among

these roles. Experiments were set up to find analogies among role models with only such

information.

Chapter 4 discussed how the semantics in the ROSA repository should be organized

based on the lexical database WordNet. It demonstrated that the structure and content of

WordNet makes it suitable for the ROSA term space. It has been demonstrates, through ex-

amples, how the semantic similarity model can be used to identify similarity between terms

where others have previously argued that there is none.

Section4.3.3 Various ways to handle situations where a role name does not exist in the

term space have been discussed, and two of these alternatives are used in the experiments;

1) the use of modifiers in OOram role names, and 2) the possibility to let the user add new

word meanings to the term space. I argue that the first alternative can give enough semantic

strength, while at the same time ensuring a correct handling of semantic similarity. This

point is discussed further in section 5.3.5, and it is shown through experiments that the use of

modifiers handles this situation to satisfaction.

The main problem with using WordNet for naming OOram roles is that the systems

developer must choose among the different word meanings of a term. This is time consuming

and can be error prone, and the software developer should be given all possible help in this

process. In WordNet itself, the most common meaning of a term is listed first. While this

has not been enforced in the ROSA repository, this could certainly be done. The glosses, i.e.,

explanations of a particular word meaning, and often also examples of use could be used as

an aid when selecting a word meaning. Another solution might be to look at what other word

meanings have been used in existing models in the repository. Given the organization of the

repository, such information is easy to get.

169

In OOram role models we distinguish between the number of occurrences of the roles at

the other end of a path a role knows about, e.g., none, one, or many (this is similar to specifying

cardinality in conceptual modelling). Such situations will be handled quite differently in the

implementation. This can for example distinguish between a role that acts as a container and

one that is merely storing information about one item, e.g., a document. This information is

therefore important for identifying models that are structurally more equal.

The experiment testing the importance of multiplicity information on the ports shows

that the mapping similarities are more stable than without distinguishing between them al-

though the actual ranking of analogies is unchanged. This option is kept even though the

results of the experiment was not statistically significant.

8.1.2 Q 2: How can we use this information for Retrieval and Mapping

The two semantic similarity models that were proposed in section 5.3 are both capable of

identifying semantic similarity among roles based on the distance between the word meanings

used. The difference between these models is related to whether they take into consideration

the level in the WordNet hierarchy, and if the word meanings that are found at higher levels in

the tree can be considered to be semantically more closely related. There are some indications

of this, and the selection of a semantic model, especially for use during retrieval, may be based

more on pragmatics, as the semantic belief computed represents an upper bound.

The chosen similarity model for the experiments measures the distance between two

synonym sets in the term space, but it also takes into account the difference in abstraction

level of the two synsets. Two terms at about the same abstraction level are more likely to be

interchangeable than two terms with greater difference in abstraction level, even though the

distance between the terms in the two pairs is the same. In the experiments performed thus

far, the synsetID has been coded to distinguish among word meanings. When this approach is

used by systems developers, the word meanings should be selectable through a user interface

where the senses, explanations, and examples of use, if they exist, are displayed.

Analysis and experiments performed as part of this project show that it is possible to use

analogical reasoning to identify OOram role models that are similar to a target model. The

suggested approach supports both the retrieval and mapping phases of analogical reasoning.

170

The results of a mapping between two models from different application domains also show

that the approach is capable of identifying such analogies although in general we can not

conclude that the models that are found are really analogous.

During retrieval, structure descriptions are used to identify structural similarity. This

does not give a complete picture of the structures of the models, but fulfills the intention to

get a quick identification of those models that have similar structures. The semantics in ROSA

is modelled after WordNet as this ensures that there is a large vocabulary modelled by ex-

pert lexicographers. Semantic retrieval identifies an upper bound for the semantic similarity.

Structural and semantic similarity are combined in a belief of whether a base model is ana-

logous to a target. The rank of base models after retrieval decides what models are passed to

the mapping phase. During mapping, a genetic algorithm was used to identify analogies based

on structural and semantic similarity. The models that were mapped should, after retrieval,

be ranked as similarly as possible to the rank they get after mapping. Mapping similarity was

calculated based on an average of the semantic similarity for the roles in the target model. The

potentially best analogies were found among the 26 highest ranked base models after retrieval

in 21 out of 24 cases.

Many base models may therefore safely be removed from the mapping. Still, it is unclear

how this will evolve as the repository becomes larger. In the current repository it means that

about 50 % of the models must be included to find the best analogies in all the 24 cases, but

it is uncertain if this percentage will be the same in a larger repository. It is not possible,

however, safely to cut the number of models sent to mapping to 20–30 and still be reasonably

confident that the best analogy will be found in all situations.

8.1.3 Q 3: How can we balance information in identification of analogies

Theory within AR claims that the underlying structural similarity is more important than sur-

face similarities for identifying similarities. This is the theory on which the algorithms were

built. Some of the experiments indicate, however, that if semantic similarity is emphasized

more than structure during retrieval, the best analogies will be ranked higher, meaning that

fewer models need to be transferred to the mapping phase. These results indicate that the sys-

tem should be somewhat flexible on this point, permitting the systems developer to move the

171

emphasis in one direction or the other. He may have knowledge about some previous projects

in the repository and take advantage of such knowledge.

The algorithm that calculates mapping similarities is based on the semantic similarity

values of the structurally mapped roles of the target model. To test whether this leads to a too

strong weight on semantics, an experiment was run where the GA fitness function was used

instead. This algorithm did not result in an improved result when it comes to the rank of the

best analogies after retrieval, and this algorithm was therefore abandoned.

In section 4.2.1, the semantic requirements of the ROSA analogy machine was described,

and section 4.2.2, discusses the semantics of OOram role models. Based on the collaboration

view of OOram models (see appendix A), information of the role names was the most import-

ant. The experiments seem to identify the best analogies in most cases.

8.1.4 Conclusion

It has been shown through a set of experiments that the proposed approach can identify, during

analogical retrieval, the OOram models with highest mapping similarity, in most cases. In all

cases the best analogies are found if only 50 % of the models are sent to the analogical mapping

phase.

Based on theory from analogical reasoning, the algorithm was based on an equal weight

on semantic and structural information. The experiments showed that better results were

achieved when more emphasis was put on semantics. This can be true when there exist models

from within the same application domain in the repository. Many software companies have

special niches, so it is reasonable to think that this will be the case in such organizations. The

developer should therefore be given the opportunity to determine the balance between the two.

Although the model repository is not as large as can be expected from a working repository

in a software organization of moderate size, it is large enough to draw conclusions about the

relevance of the approach.

All in all, the suggested approach to integrate AR in a software development tool seems

to be viable. It has been

• identified information that can be used to search for analogies

• demonstrated how both the retrieval and mapping phases of AR can use this information

172

• demonstrated that the suggested approach is capable of identifying the best analogies,

i.e., the models with highest mapping similarity, among the highest ranked models after

retrieval.

• demonstrated how the balance between the semantic and structural information can be

done, and discussed in what situation one or the other of these types of information

might turn out more favorable than the other.

These items together answers the operationalized research question in a satisfactory way.

This work is an attempt to combine retrieval and mapping and such efforts are not com-

mon. Section 3.1 presents attempts to use analogical reasoning to identify reusable software

components. The examples described here did, however, not combine retrieval and mapping.

CBR, as discussed in section 3.4, has focused more on retrieval, and there is a lot to be learned

from this.

More work is required to adjust the algorithms and develop environments that give the

user more control, although sensible default values for the parameters for the analogy engine

should be offered. Also, it might be very interesting to see whether the use of information

about the behavioural aspects of the systems might turn out more useful for identifying ana-

logous role models than just structural information as has been demonstrated here.

But the question remains, does this imply that a conclusion can be drawn concerning the

main research question? Only to the extent that we accept that a high mapping similarity is

the same as good analogy. Further study is needed to determine this.

It has not been shown that models identified as analogous to the target models are in fact

reusable. However, the main research question only states that they should be potentially re-

usable. It is a good question, though. To determine whether an analogy (or a model with good

mapping similarity) is reusable, one would have to implement the system to represented by the

base model, and try to use the implementation in building the target systems. The question,

however, concerning whether the models are really reusable, is left to further research.

8.2 Future Work

There are three main fields within which further work should be directed:

173

1. evaluate the results of this work, where software developers are asked which of the

models are identified as analogies that they actually believe are analogous.

2. study whether the artifacts from later stages of the development process are

3. test and extend algorithms to improve the AR technique, reusable

These directions will be discussed in the next sections.

8.2.1 Evaluation of the Analogies

Thus far the approach has not been evaluated from a user’s perspective. I have taken the per-

spective that a model that is structurally and semantically similar is analogous to the target

model. How a systems developer will view this should be analyzed. An experiment could

be set up where a set of software developers was given the task of sorting through all the

base models—on paper—to find the ones they consider to be most analogous to a given target

model. If they were given the same set of target models that has been used in the experi-

ments in this thesis, and it they where to pick the 5 best candidate for each target model, the

comparison would be straightforward.

Such evaluation might also help to solve the problem of what mapping similarity value

will be the lower bound of what is interesting to show to a user. It may also answer the question

of what should be set as a lower bound on the retrieval similarity for a base model after the

retrieval phase.

8.2.2 Transfer of Information from the Analogy

Even though an analysis model is considered analogous, it is not necessarily the case that

artifacts from design and implementation are reusable. To study this problem, a known case

with a known design and implementation should be available in the repository. A new case,

where one or more analysis models are considered analogous, should be created. Artifacts

from the analogous base case should be attempted transferred to the new case. Obviously not

all artifacts can be transferred, but it would be interesting to see how much, if anything, of the

original case can be reused.

174

8.2.3 Improvements and Extensions

Test Structure Descriptions

The results indicating that structure should be given less emphasis than semantics during re-

trieval, calls for further study. One direction this could take is to look at the structure descrip-

tions themselves. For larger role models a problem can be that not all roles in the models are

covered by the structure descriptions for that model.

One possibility could be to make it possible to allow more than three structure descrip-

tions for each model. This will reduce the efficiency of the retrieval, but if the result is better,

it may be worth it.

Reuse of Scenario Views in OOram

In the implementation and experiments presented in this thesis, the OOram role model col-

laboration view is used. This view emphasizes the roles and connections among them. An

alternative would be to use the scenario view that emphasizes the message flow between the

roles; see section A. One could argue that such a view gives more information about the in-

tention of the model at hand. Alternatively, these views can be presented to the user after an

analogy has been identified.

Use Suggested Approach with Other Modelling Techniques

Today, UML is the most wide spread object-oriented modelling technique. For the ROSA

approach to reuse to be accepted in the industry, I would have to show that the technique is

applicable with UML. The type of UML model that is most comparable to the OOram analysis

models, is the collaboration diagram.

The actor in the UML diagram would play the role of the stimulus role in OOram. It is

clearly stated what direction the messages flow, but while the collaboration diagrams can also

show a numbered sequence of messages, the OOram models do not. The use of multiobjects

in UML is parallel to the use of MANY ports in OOram.

UML collaboration models can be converted to a directed graph with the actor being

the root node. As long as this requirement is maintained, the implementation should be easily

175

modified to be used with this type of models. An extension in this direction could be done

as a refactoring to allow for several types of modeling techniques being supported. It could

be done by introducing a generic type of modelling technique as an abstract factory (Gamma

et al., 1995), and by having classes related to the special modelling techniques as subclasses.

Sequence Models or Scenarios

In all the experiments performed thus far, only the role names have been used. Another direc-

tion in which to move could be to use the OOram Scenarios or UML sequence models when

trying to identify analogies. In this case both the role and message names would be used.

Graphs could be created where a stimulus role or an actor initiates the activity, and both role

and message names would be represented as nodes in the graphs. Every other node would be a

message and the others would represent roles. This is possible to do. The question is whether

the dynamic aspect of the models is more important for reuse than are the static properties of

the role models.

A more flexible way to do both retrieval and mapping is to see what information has

been inserted into the target model and what views have been used, and then set up the analogy

search in relation to this. If the systems developer has specified structural aspects of the role

model, this is the basis for search. If, on the other hand, behavioral information is added, this

part is also included in the search.

Although no experiments have been performed in this direction, it certainly would be

an interesting approach. It is doable, as the type of nodes—role or message names—could be

distinguished among, and as the structure of the verb and noun part of WordNet is the same, it

would not require a restructuring of the ROSA term base. As discussed in section B.3, method

names could have an extension in addition to a verb, i.e., add name, the message modifier

would be placed after the main name whereas it is placed before the main name for the role

names. Plain polymorphism could be used to solve this problem in the implementation, as the

name of the OOram components is placed in a common superclass of the OOramRole and

OOramMessage classes.

176

Problems Related to Choosing a Particular Word Meaning

The use of a lexical database such as WordNet as the basis for the ROSA term space is advant-

ageous. The system developer avoids the problems of making decisions about how the terms

are related. The system developer must select among different meanings of a particular term.

This may be a problem. In cases where the name of an OOram component is not already in

the term space, the name must be split into terms. For this part of the system to be useful for

a systems developer, more work needs to be done to automate this process. This is definitely

viable.

The current version of the ROSA term space is dependent on WordNet synset identifiers

that are generated as the WordNet database is created as an offset into the WordNet term file,

and they will therefore probably vary among versions of WordNet.

Another limitation has been the availability of analysis models. Several models included

in the repository are added only as noise, and they are definitely not all at the same abstraction

level.

Domain Analysis

Although I have not considered using domain analysis, it is clear that the chosen approach

would benefit from its use. WordNet was developed to model the vocabulary of a person

with English as the first language. This is hardly what is needed in a CASE tool, where there

is a need to have a vocabulary of a more technical character directed towards the application

domains with which the system should be used. This should be something that can be modified

by the users of the system. If an ontology exists for a particular domain, and it could be

provided in terms of the existing WordNet data base, that type of modifications will be easy.

One way of using the analogy mapping in ROSA could be to create a generic model based on

a very good analogy between two or more role models. This is similar to what is described as

an alternative of creating a domain model (Neighbors, 1989).

Tool Support for Sense Selection

The tool used by a systems developer should support the task of selecting meanings of a

particular term. When the user is adding a name for a role, the alternative synonym sets with

177

definitions and examples, if provided, should be displayed. This will make it easier to see

which meaning to choose. Information about what other models have used the particular word

meaning could also be displayed at this point, as there is a direct link to the models that use

the different word meanings.

One of the problems related to use of a semantic database with polysemy is that the user

must choose among the different meanings. WordNet contains word forms with at least 29

meanings. One means of reducing this problem is to create the list of meanings for a word form

as a self-organizing list. This means that the word meanings that are used most frequently are

placed first in the list. The original organization could be based on the frequency information

that for many words already exist in WordNet. As the repository is filled with projects, the

meanings that are used most frequently, will show up first in the list a user must select from.

The background for this suggestion is a belief that many of the meanings in WordNet

will not be relevant for an application such as the ROSA Tool. As I currently have no definite

knowledge about this, however, it would be too drastic to remove them. This again implies

that at a later point of time, when there is more experience with the tools, tests examining what

word meanings are actually used, may also be performed. It could also be interesting to study

what synset trees are are used most frequently in software development. At that point in time,

it may be reasonable to remove parts of the term space that is not used.

178

Bibliography

H. Adachi, Y. Kobayashi, and T. Ohta. Software design support using case-based reasoning. In Proc.
of International Conference on Expert Systems for Development, pages 85–90, 1994.

C. Alexander, S. Ishakawa, M. Silverstein, M. Jacobsen, I. Fiksdahl-King, and S. Angel. A Pattern
Language. Oxford University Press, New York, 1977.

Scott W. Ambler. The Object Primer: Agile Model Driven Development with UML 2. Cambridge
University Press,, 3 edition, 2004.

Egil P. Andersen and Trygve Reenskaug. System design by composing structures of interacting objects.
In ECOOP’92, Proceedings of the 1992 European Conference on Object-Oriented Programming,
LNCS 615, pages 133–152, July 1992.

Guillermo Arango. Domain analysis methods. Ellis Horwood Workshops, chapter 2, pages 17–49.
Ellis Horwood, 1994.

Kevin D. Ashley. Arguing by analogy in law: A case-based model. In D.H. Helman, editor, Analogical
Reasoning, pages 205–224. Kluwer Academic Publisher, 1988.

Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval. Addison-Wesley,
1999.

E. Ray Bareiss, Bruce W. Porter, and Craig C. Wier. PROTOS: An exemplar-based learning apprentice.
International Journal of Man-Machine Studies, 29(5):549–561, 1988.

Victor R. Basili. Software development: A paradigm for the future. In Proc. of the 13th Annual Inter-
national Computer Software and Applications Conference, COMPSAC 89, pages 471–485, 1989.

Roberto Bellinzona, Maria Grazia Fugini, and Barbara Pernici. Reusing specifications in oo applica-
tions. IEEE Software, 12(2):65–75, March 1994.

S. Berczuk. Finding solutions through pattern languages. Computer, 27(12):75–76, December 1994.

Lucy M. Berlin. When objects collide: Experiences with reusing multiple class hierarchies. In Norman
Meyrowitz, editor, Proceedings of the Conference on Object-oriented Programming Systems, Lan-
guages and ApplicationsEuropean Conference on Object-Oriented Programming, pages 181–193,
Ottawa, Canada, October 1990. Association for Computing Machinery, ACM Press. Published as
ACM SIGPLAN Notices Vol. 25, No. 10, Oct. 1990.

Ted Biggerstaff and Charles Richter. Reusability framework, assessment, and directions. In Biggerstaff
and Perlis (1989), chapter 1, pages 1–17.

Ted J. Biggerstaff and Alan J. Perlis, editors. Software Reusability. Vol. I. Concepts and Models.
Addison Wesley, 1989.

179

180

Andreas Birrer and Thomas Eggenschwiler. Frameworks in the financial engineering domain: An ex-
perience report. In Oscar M. Nierstrasz, editor, ECOOP’93, LNCS 707, pages 21–35, Kaiserslautern,
Germany, July 1993. Springer-Verlag.

S. Bjørnestad, B. Tessem, K.M. Tornes, and G. Steine-Eriksen. Useful characteristics for identifying
analogous specifications. Technical Report No. 24, ISSN 0803–6489, Dept. of Information Science,
Univ. of Bergen, 1994.

Solveig Bjørnestad. Software reuse, what, when, and how? In IRIS’24, Proceedings of the 24th
Information Systems Research Seminar in Scandinavia, volume III, pages 130–144, Ulvik, Norway,
11–14 Aug 2001. Dept. of Information Science, University of Bergen.

Solveig Bjørnestad. Analogical reasoning for reuse of object-oriented specifications. In K. D. Ashley
and D. Bridge, editors, Case-Based Reasoning Research and Development, Proc. of the 5th Inter-
national Conference on Case-Based Reasoning, ICCBR 2003, volume 2689 of LNAI, pages 50–64,
Trondheim, Norway, June 23-26 2003. Springer Verlag.

Solveig Bjørnestad. Relations to support reuse of specifications. In NIK’97, Norsk Informatikkonfer-
anse, pages 31–42. Tapir, November 1997.

Michael R. Blaha, William J. Premerlani, and James E. Rumbaugh. Relational database design using
an object-oriented methodology. Communications of the ACM, 31(4):414–427, April 1988.

Grady Booch. Object Oriented Design with Applications. The Benjamin/Cummins Publ. Comp., 2
edition, 1994.

A. Borgida, S. Greenspan, and J. Mylopoulos. Knowledge representation as the basis for requirements
specification. IEEE Computer, pages 82–91, 1985.

A.W. Brown and K.C. Wallnau. The current state of CBSE. IEEE Software, 15(5):37–46, September-
October 1998.

J.F.M. Burg and R. P. van de Riet. Color-x: Using knowledge from wordnet for conceptual modeling.
In Fellbaum (1998c), chapter 15, pages 353–377.

Mark Burstein. Combining analogies in mental models. In D.H. Helman, editor, Analogical Reasoning,
pages 179–203. Kluwer Academic Publishers, 1988.

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal. Pattern-
Oriented Software Architecture - A System of Patterns. Wiley and Sons, 1996. ISBN 0471958697.

J.G. Carbonell. Learning by analogy: Formulating and generalizing plans from past experience. In R.S.
Michalski, J.G. Carbonell, and T.M. Mitchell, editors, Machine Learning: An Artificial Intelligence
Approach, pages 137–161. Tioga, Palo Alto, CA, 1983a.

J.G. Carbonell. Derivational analogy and its role in problem solving. In Proceedings AAAI-83, pages
64–69, Pittsburgh, PA, 1983b.

S. Castano and V. De Antonellis. A reconstructive approach to reuse of conceptual components. In
Prieto-Dı́az and Frakes (1993), pages 19–28.

Alejandra Cechich and Mario Piattini. Early detection of COTS component func-
tional suitability. Information and Software Technology, 49:108–121, 2007. URL
http://dx.doi.org/doi:10.1016/j.infsof.2006.03.008.

181

Roger Chaffin and Douglas J. Herrmann. The nature of semantic relations: a comparison of two ap-
proaches. In Martha Walton Evens, editor, Relational models of the lexicon. Representing knowledge
in semantic networks, Studies in natural language processing, chapter 13, pages 289–334. Cambridge
University Press, 1988.

P. Chaiyasut, G. Shanks, and P. M. C. Swatman. A computational architecture to support consep-
tual data model reuse by analogy. In Seventh International Workshop on Computer-Aided Software
Engineering, pages 70–79, Toronto, Canada, 1995. IEEE Computer Society Press.

Chia-Chu Chiang and David Neubart. Constructing reusable specifications through analogy. In SAC’99,
Proc. of the 1999 ACM symposium on Applied computing, pages 586–592, San Antonio, Texas, 1999.

Reidar Conradi. Process support for reuse. In 10th International Software Process Workshop (ISPW
’96), pages 43–47. IEEE Computer Society, 1996.

Brad J. Cox. Object Oriented Programming, An Evolutionary Approach. Addison-Wesley Publishing
Company, Reading, Massachusetts, 2 edition, 1987.

R. Creps, R. Prieto-Diaz, M. Davis, M. Simos, P. Collins, and G. Wickman. Using a conceptual frame-
work for reuse processes as a basis for reuse adoption and planning. Technical report, December
1993. URL citeseer.nj.nec.com/creps93using.html.

Pádraig Cunningham, Donal Finn, and Seá Slattery. Knowledge engineering requirements in deriva-
tional analogy. In Stefan Wess, Klaus-Dieter Althoff, and Michael M. Richter, editors, EWCBR93,
1st European Workshop on Topics in Case-Based Reasoning, pages 234–245, Kaiserslautern, Ger-
many, November 1993. Springer-Verlag.

L. Peter Deutch. Design reuse and frameworks in the Smalltalk-80 programming system. In Ted J.
Biggerstaff and Alan J. Perlis, editors, Software Reusability, Vol. II, Applications and Experience,
pages 55–71. Addison Wesley, 1989.

Barry Ellingsen. Connectionist-Based Analogical Mapping. PhD thesis, Dept. of Information Science,
University of Bergen, 1997a.

Barry K. Ellingsen. Distributed representations for analogical mapping. 9th European Conf. on Ma-
chine Learning, pages 25–32, Prague, April 1997b.

ERCIM92. ERCIM Workshop on Methods and Tools for Software Reuse, Heraklion, Greece, Octo-
ber 29–November 1 1992.

T. G. Evans. A program for the solution of geometric analogy intelligence test questions. In M. Minsky,
editor, Semantic Information Processing. MIT Press, Cambridge, 1968.

Geir Fagerhus and Even-André Karlsson. Organizing and managing reuse. Technical Report REBOOT
8206.4, Q-Labs, October 10 1992.

Brian Falkenhainer. The SME user’s manual (SME version 2e). Technical Report UIUCDCS-R-
88-1421, Department of Computer Science, University of Illiois at Urbana-Champaign, December
1988.

Brian Falkenhainer, Kenneth D. Forbus, and Dedre Gentner. The structure-mapping engine: Algorithm
and examples. Artificial Intelligence, 41:1–63, 1989.

C. Fellbaum. English verbs as a semantic net. http://www.cogsci.princeton.edu/∼wn/, 1993.

Christiane Fellbaum. Introduction. In Fellbaum (1998c), pages 1–19.

182

Christiane Fellbaum. A semantic network of english verbs. In Fellbaum (1998c), chapter 3, pages
69–104.

Christiane Fellbaum, editor. WordNet, an Electronic Lexical Database. The MIT Press, Cambridge,
USA, 1998c.

Eduardo B. Fernandez. Building systems using analysis patterns. In ISAW3, pages 37–40, Orlando,
Florida, 1998.

C.J. Fillmore and B.T.S. Atkins. Towards a frame-based lexicon: The semantics of RISK and its
neighbors. In A. Lehrer and E. Feder Kittay, editors, Frames, fields, and contrasts, pages 75–102.
Erlbaum, Hillsdale, NJ, 1992.

Gene Forte and Ronald J. Norman. A self-assessment by the software engineering community. Com-
munications of the ACM, 35(4):28–32, April 1992.

Gilles Fouqué and Stan Matwin. A case-based approach to software reuse. Journal of Intelligent
Information Systems, 1:165–197, 1993.

Martin Fowler. Patterns of Enterprise Application Architecture. The Addison-Wesley Signature Series.
Addison-Wesley, 2003.

Martin Fowler. Analysis Patterns. Reuseable Object Models. Addison-Wesley, 1997.

Martin Fowler. Refactoring. Improving the Design of Existing Code. Addison-Wesley, 1999.

William B. Frakes. Software engineering. In AccessScience@McGraw-Hill. McGraw-
Hill, 2002. http://www.accessscience.com/server-java/Arknoid/science/AS/Encyclopedia/6/63/Est-
631400 frameset.html; accessed May 13, 2004.

Harald Gall, Mehdi Jazayeri, and René Klösh. Research directions in software reuse: Where to go from
here? In Samadzadeh and Zand (1995), pages 225–228. Special Issue.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patters, Elements of Reusable Object-
Oriented Software. Professional Computing Series. Addison-Wesley, 1995.

Dedre Gentner. Structure mapping: A theoretical framework for analogy. Cognitive Science, 7(2):
155–170, 1983.

M. R. Girardi and B. Ibrahim. Automatic indexing of software artifacts. In Advances in Software Reuse.
Proc. of the Third International Conference on Software Reusability, pages 24–32, Los Alamitos,
CA, 1994.

Bjorn Gronquist, Claude Villermain, and Blandine Bongard. A component approach for reuse. In Proc.
TOULOUSE -92, Toulouse, France, December5–7 1992. EC2.

Jon Atle Gulla, Bram van der Vos, and Ulrich Thiel. An abductive, linguistic approach to model
retrieval. Data & Knowledge Engineering, 23:17—31, 1997.

Rogers P. Hall. Computational approaches to analogical reasoning: A comparative analysis. Artificial
Intelligence, 39:39–120, 1989.

Terry Halpin. UML data models from an ORM perspective: Part 2. Journal of Conceptual Modeling,
1998. URL http://www.orm.net/pdf/ICMArticle2.pdf.

Mehdi T. Harandi. The role of analogy in software reuse. In Ed Deaton, K. M. George, Hal Berghel,
and George Hedrick, editors, Proceedings of the ACM/SIGAPP Symposium on Applied Computing,
pages 40–47, Indianapolis, IN, February 1993. ACM Press.

183

Peter Herzum and Oliver Sims. Business Component Factory. John Wiley & Sons, Inc., 2000.

Nadine Heumesser and Frank Houdek. Towards systematic recycling of systems requirements. In Pro-
ceedings of the 25th International Conference on Software Engineering, pages 512–519, Portland,
Oregon, May 3–10 2003.

J.H. Holland, K.J Holyoak, R.E. Nisbett, and P. Thagard. Induction: Processes of Inference, Learning,
and Creativity. MIT Press, Cambridge, MA, 1986.

Michael Jackson. Problem Frames. ACM Press Books, 2001.

Michael Jackson. Problem frames and software engineering. Information and Software Technology, 47
(14):903–912, November 2005.

Jun-Jang Jeng and Betty H. C. Cheng. Using analogy and formal methods for software reuse. In Proc.
of IEEE 5th International Conference on Tools with AI, pages 113–116, 1993.

Jun-Jang Jeng and Betty H. C. Cheng. A formal approach to reusing more general components. In
Proc. of IEEE 9th Konwledge-Based Software Engineering Conference, September 1994.

Jun-Jang Jeng and Betty H. C. Cheng. Specification matching for software reuse: A foundation. In
Samadzadeh and Zand (1995), pages 97–105. Special Issue.

Ralph E. Johnson and Brian Foote. Designing reusable classes. Journal of Object-Oriented Program-
ming, 1(2):22–35, June/July 1988.

E.-A. Karlsson, G. Sindre, S. Sørumsgård, and E. Tryggeseth. Weighted term spaces for relaxed search.
In Proc. CIKM-92, Baltimore, USA, November 8–11 1992. ISMM.

Smadar Kedar-Cabelli. Analogy—from a unified perspective. In D.H. Helman, editor, Analogical
Reasoning, pages 65–103. Kluwer Academic Publishers, 1988.

Elizabeth A. Kendall. Role model designs and implementations with aspect-oriented programming. In
Proceedings of the Conference on Object-oriented Programming Systems, Languages and Applica-
tions, pages 353–369, Denver, CO, USA, November 1999. Association for Computing Machinery,
ACM Press.

R. E. Kling. A paradigm for reasoning by analogy. Artificial Intelligence, 2(2):147–178, 1971.

Cris Kobryn. Modeling components and frameworks with UML. Communications of the ACM, 43(10):
31–38, 2000.

Janet L. Kolodner. Reconstructive memory: A computer model. Cognitive Science, 7:281–328, 1983.

J.L. Kolodner, R.L. Simpson, and K. Sycara-Cyranski. A process model of case-based reasoning in
problem solving. In Proceedings IJCAI-9, pages 284–290, Los Angeles, CA, 1985.

John R. Koza. Genetic Programming II: Automatic Discovery of Reusable Progrms. The MIT Press,
1998.

Glenn E. Krasner and Stephen T. Pope. A cookbook for using the model-view-controller user interface
paradigm in smalltalk-80. Technical report, ParcPlace Systems, 2400 Geng Road Palo Alto, CA
94303, October 1987. Draft.

W. Lam, S. Jones, and C. Britton. Technology transfer for reuse: a management model and process im-
provement framework. In Proc. of the Third International Conference on Requirements Engineering,
pages 233–240, 1998.

184

Hing-Yan Lee. Automated Acquisition and Refinement of Reusable Software Design Components. PhD
thesis, University of Illinois at Urbana-Champaign, 1992.

Hing-Yan Lee and Mehdi T. Harandi. An analogy-based retrieval mechanism for software design reuse.
In The 8th Knowledge-Based Software Engineering Conference, pages 152–159. IEEE, September
1993.

John A. Lewis. An experiment to determine software reusability factors. In Proc. of the 1990 ACM
annual conference on Cooperation, page 405, Washington, USA, 1990.

George F Luger. Artificial Intelligence, Structures and Strategies for Complex Problem Solving. Ad-
dison Wesley, 4 edition, 2002.

Chung-Horng Lung and Joseph E. Urban. Integration of domain analysis and analogical approach for
software reuse. In ACM SAC’93, pages 48–53, IN, USA, 1993.

Chung-Horng Lung and Joseph E. Urban. An approach to the classification of domain models in
support of analogical reuse. In Samadzadeh and Zand (1995), pages 169–178. Special Issue.

Chung-Horng Lung and Joseph E. Urban. An expanded view of domain modeling for software analogy.
To appear in Compsac, Aug. 1995, 1995b.

Chung-Horng Lung, Joseph E. Urban, and Gerald T. Mackulak. Analogy-based domain analysis ap-
proach to software reuse. Requirements Engineering, 12(1):1–22, 2007. DOI: 10.1007/s00766-006-
0035-8.

P. Maguire, V. Shankararaman, R. Szegfue, and L. Morss. Application of case-based reasoning (CBR)
to software reuse. Lecture Notes in Computer Science, 1020:166–??, 1995. ISSN 0302-9743.

N.A. Maiden and A.G. Sutcliffe. Exploiting reusable specifications through analogy. Communications
of the ACM, 35(4):55–64, 1992.

N.A.M. Maiden and A.G. Sutcliffe. Computational mechanisms for reuse of domain knowledge during
requirements engineering. Technical Report NATURE-94-08, Centre for Human-Computer Interface
Design, City University, London, UK, 1994.

N.A.M. Maiden and A.G. Sutcliffe. Analogical retrieval in reuse-oriented requirements engineering.
Software Engineering Journal, pages 281–292, September 1996.

Neil A. Maiden. Analogical Specification Reuse During Requirements Analysis. PhD thesis, School of
Informatics, City University, London, 1992.

Neil A. Maiden and Alistair G. Sutcliffe. Requirements engineering by example: An empirical study. In
Proceedings of First International Symposium on Requirements Engineering, pages 104–112. IEEE
Computer Society Press, 1993.

Frank McCarey, Mel Ó Cinnéide, and Nicholas Kushmerick. Rascal: A recommender agent for agile
reuse. Artificial Intelligence Review, 24(3-4):253–276, 2005.

M. D. McIllroy. Mass-produced software components. In Software Engineering Concepts and Tech-
niques, 1968. NATO Conference on Software Engineering, pages 88–98, 1976.

Jean L. McKechnie, editor. Webster’s New Twentieth Century Dictionary Unabridged. Simon and
Schuster, 2 edition, 1979.

Dieter Merkl, A Min Tjoa, and Gerti Kappel. Learning the semantic similarity of reusable software
components. In Proc. of the Third International Conference on Software Reuse: Advances in Soft-
ware Reusability, pages 33–41, 1994.

185

Bertrand Meyer. Reusability: The case for object-oriented design. IEEE Software, 4(2):50–64, March
1987.

Bertrand Meyer. Applying “Design by contract”. IEEE Computer, 25(10):40–51, 1992.

Kjetil Midttun. Analogical retrieval in a repository of analysis specifications. Master’s thesis, Dept. of
Information Science, University of Bergen, 1998. in Norwegian.

G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. Miller. Introduction to WordNet.
URL=http://www.cogsci.princeton.edu/∼wn/, August 1993.

George A. Miller. Nouns in WordNet. In Fellbaum (1998c), chapter 1, pages 23–46.

George A. Miller. Personal communication, July 2000.

Katherine Miller. Modifiers in WordNet. In Fellbaum (1998c), chapter 2, pages 47–67.

James M. Neighbors. Draco: A method for engineering reusable software systems. In Biggerstaff and
Perlis (1989), chapter 12, pages 295–319.

Eduardo Ostertag, James Hendler, Rubéen Prieto Dı́az, and Christine Braun. Computing similarity
in a reuse library system: An AI-based approach. ACM Transactions of Software Engineering and
Methodology, 1(3):205–228, July 1992.

Stephen Owen. Analogy for Automated Reasoning. Academic Press, Harcourt Brace JOvanovich,
London, 1990.

D.L. Parnas. Software aging. In Proc. of the 16th International Conference on Software Engineering,
pages 279–287, 1994. ICSE-16.

X. Pintado and D. Tsichritzis. An affinity browser. In D. Tsichritzis, editor, Active Object Environments.
Centre Universitaire d’Informatique, Université de Genève, Geneva, 1988.

Bruce W. Porter, Ray Bareiss, and Robert C. Holte. Concept learning and heuristic classification in
weak-theory domains. Artificial Intelligence, 45:229–263, 1990.

Jeffrey S. Poulin. Reuse: Been there, done that. Communications of the ACM, 42(5):98–100, 1999.

Rubén Prieto-Dı́az. A Software Classification Scheme. PhD thesis, University of California, Irvine,
1985.

Rubén Prieto-Dı́az and William B. Frakes, editors. Lucca, Italy, March 24–26 1993. IEEE CS Press.

Trygve Reenskaug, Per Wold, and Odd Arild Lehne. Working With Objects. The OOram Software
Engineering Method. Manning Publications Co., 1996.

Danielle Ribot, Blandine Bongard, and Claude Villermain. Development life-cycle WITH reuse. In
Proceedings of the ACM 9th Symposium on Applied Computing, Phoenix, USA, March 6–8 1994.
Also available as WithReuseMethod-sac94.ps.Z from the REBOOT anonymous ftp-site.

R. Richardson and A. F. Smeaton. Using wordnet in a knowledge-based approach to information
retrieval. Technical Report CA-0395, Dublin City University, Glasnevin, Dublin, 1995.

Dirk Riehle. Framework Design. A Role Modeling Approach. PhD thesis, ETH Züich, 1999. Disserta-
tion No. 13509.

Linda Rising, editor. The Patterns Handbook. Cambridge University Press, 1998.

186

Mary Beth Rosson and John M. Carrol. Climbing the smalltalk mountain. SIGCHI Bulletin, 21, January
1990.

Mansur Samadzadeh and Mansour Zand, editors. Proceedings of the Symposium on Software Reusab-
ility, SSR’95, Seattle, WA, April 1995. ACM Press. Special Issue.

Douglas C. Schmidt. Why software reuse has failed and how to make it work for you. C++ Report,
January 1999.

Douglas C. Schmidt. Using design patterns to develop reusable object-oriented communication soft-
ware. Communications of the ACM, 38(10):65–74, October 1995.

Glenn Shafer. A Mathematical Theory of Evidence. Princteon University Press, Princeton, New Jersey,
1976.

Karma Sherif and Ajay Vinze. Domain engineering for developing software repositories: a case study.
Decision Support Systems, 33(1):55–69, May 2002.

Karma Sherif, Radha Appan, and Zhangxi Lin. Resources and incentives for the adoption of systematic
software reuse. International Journal of Information Management, 26(1):70–80, February 2006.

R.L. Simpson Jr. A Computer Model of Case-Based Reasoning in Problem Solving: An Investigation
in the Domain of Dispute Mediation. PhD thesis, Georgia Institute of Technology, 1985.

Guttorm Sindre and Sivert Sørumgård. Terminology evolution in component libraries. In Proc. 3rd
International Congress on Terminology and Knowledge Engineering, Cologne, Germany, Aug 24–
27 1993.

Ian Sommerville. Software Engineering. Addison-Wesley, 7 edition, 2004.

L. S. Sørumgård, G. Sindre, and F. Stokke. Experiences from application of a faceted classification
scheme. In Prieto-Dı́az and Frakes (1993).

L.S. Sørumgård, G. Sindre, and F. Stokke. Experiences in reusable component classification. In
ERCIM92 ERCIM92.

John F. Sowa, editor. Principles of Semantic Networks, Explorations in the Representation of Know-
ledge. Morgan Kaufmann, San Mateo, California, 1991.

George Spanoudakis and Panos Constantopoulos. Similarity for analogical software reuse: A
conceptual modelling approach. In ERCIM92 ERCIM92. URL Also available from
ftp.informatik.twth-aachen.de as NATURE-92-8.ps.Z.

George E. Spanoudakis and Panos Constantopoulos. Analogical reuse of requirements specifications:
A computational model. Applied Artificial Intelligence, 10(4):281–306, 1996a.

George E. Spanoudakis and Panos Constantopoulos. Elaborating analogies from conceptual models.
International Journal of Intelligent Systems, 11(11):917–974, 1996b.

Gorm Erik Steine-Eriksen. ROSA-repository. the development of an object-oriented CASE-repository.
Master’s thesis, Dept. of Information Science, University of Bergen, October 1995. in Norwegian.

Alistair Sutcliffe. Domain analysis for software reuse. Journal of Systems and Software, 50(3):175–
199, 2000.

Gilbert Syswerda. A study of reproduction in generational and steady state genetic algorithms.
In Gregory J. E. Rawlings, editor, Foundations of genetic algorithms, pages 94–101. Morgan
Kaufmann, San Mateo, 1991.

187

Clemens Szyperski, Dominik Gruntz, and Stephan Murer. Component Software. Beyond Object-
Oriented Programming. Addison-Wesley, 2 edition, 2002.

B. Tessem, S. Bjørnestad, K.M. Tornes, and G. Steine-Eriksen. ROSA = Reuse of Object-oriented
Specifications through Analogy: A project framework. Technical Report No. 16, ISSN 0803–6489,
Dept. of Information Science, Univ. of Bergen, 1994.

Bjørnar Tessem. Structure abstractions in retrieval of analogical software models. Expert Systems with
Applications, 15:341–348, 1998a.

Bjørnar Tessem. Genetic algorithms for analogical mapping. In Proc. of Intl. Conf. on Evolutionary
Computation (ICEC’98), pages 762–777, Anchorage, Alaska, 1998b. IEEE.

Bjørnar Tessem and Solveig Bjørnestad. Analogy and complex software modeling. Computers in
Human Behavior, 13(4):465–486, 1997.

Paul Thagard. Dimensions of analogy. In D.H. Helman, editor, Analogical Reasoning, pages 105–124.
Kluwer Academic Publishers, 1988.

Knut Martin Tornes. The ROSA modeling tool. Master’s thesis, Dept. of Information Science, Univer-
sity of Bergen, 1995.

Will Tracz. Personal email, April 2004.

Will Tracz, editor. Software Reuse: Emerging Technology. IEEE Computer Society Press, Los Alami-
tos, CA, 1988. Tutorial, Part 1, Overview.

Will Tracz. Software reuse myths revisited. In Proc. of the 16th International Conference on Software
Engineering, pages 271–272, 1994a.

Will Tracz. Reuse state of the art and state of the practice report card. In Proc. of the 3rd International
Conference of Software Reuse: Advances in Software Reusability, pages 193–194, 1994b.

Will Tracz. Confessions of a used-program salesman: Lessons learned. In Samadzadeh and Zand
(1995), pages 11–13. Special Issue.

Ahsan Ul-Haq. An analogy machine for ROSA, adapting sme to ooram analysis models. Master’s
thesis, Dept. of Information Science, University of Bergen, Norway, November 1997.

B. C. Vickery. Faceted Classification: A Guide to Construction and use of Special Schemes. Aslib,
3 Belgrave Square, London, 1960.

Matthew Wall. Galib documentation. http://lancet.mit.edu/galib-2.4/, 1996. Version 2.4.2.

Kurt Wallnau, Scott Hissam, and Robert Seacord. Building Systems from Commer-
cial Components. Addison Wesley, 2002. ISBN ISBN: 0201700646. URL
http://www.aw.com/catalog/academic/product/1,4096,0201700646,00.html.

R. Alan Whitehurst. Systematic Software Reuse Through Analogical Reasoning. PhD thesis, University
of Illinois, Urbana-Champaign, IL, 1995.

Frank Wilcoxon and Roberta A. Wilcox. Some rapid approximate statistical procedures. Technical
report, Lederle Laboratories, Perl River, NY, 1964.

M.E. Winston, R. Chaffin, and D.J. Hermann. A taxonomy of part-whole relations. Cognitive Science,
1987.

188

Patrick Henry Winston. Learning and reasoning by analogy. Communications of the ACM, 23(12):
689–702, 1980.

Patrick Henry Winston. Learning new principles from precedents and exercises. Artificial Intelligence,
19(3):321–350, 1982.

C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén. Experimentation in
Software Engineering. An introduction. Kluwer Academic Publishers, 2000.

Mansour Zand, Vic Basili, Ira Baxter, Martin Griss, Even-Andre Karlsson, and Dewayne Perry. Reuse
rd: Gap between theory and practice. In Proceedings of the fifth symposium on Software Reusability,
pages 172–177, Los Angeles, CA, USA, May 1999. ACM Press.

Appendix A

The OOram Methodology

Reenskaug et al. (1996) define object orientation as the “modelling of interesting phenomena

as structures of interacting objects”. They claim that objects should always be considered in

the context of their collaboration. While other definitions are directed more towards properties

such as inheritance and polymorphism, Reenskaug et al. say that, although these properties are

important, they are not the essence of object orientation. Since collaboration in object-oriented

systems is emphasized, there is a need for a modelling technique that focuses on this aspect

instead of the static properties, such as classes and inheritance relationships. Classes are seen

as powerful implementation abstractions.

Role Models in OOram

OOram focuses on the role model as the basic object abstraction. “A real world phenomenon

is described as a number of cooperating objects. Sub-phenomena are specified by their area

of concern, objects describing a sub-phenomenon are organized in a pattern of objects, and all

objects having the same position in the pattern are represented by a role. We say they play the

same role in the object structure” (Reenskaug et al., 1996, p. 7).

A role has identity and is encapsulated (like an object), and it is an archetypical rep-

resentation of the objects occupying the corresponding positions in the object system. A role

model describes the subject of the object interaction, the relationships between objects, the

messages that each object may send to its collaborators, and the model information processes.

It describes how a structure of objects achieves a given area of concern. According to these

189

190

definitions an object may play different roles, and one role may be played by several types,

or classes, of objects. This allows us to treat different aspects of an object, or object tasks, in

separate role models. OOram supports the following views of role models as

• role model collaboration view—shows the roles, their attributes and their collaboration

structure

• interface view—shows the message interfaces

• scenario view—shows the message flow between roles, such as UML sequence dia-

grams

• method view—shows what happens in a role when it receives a message, i.e., when it is

triggered.

It is up to a user of the methodology to choose which views are suitable for a particular

project. Each role model consists of a set of roles, where the stimulus role initiates the activity

in the role model. If a role in the model can communicate with other roles in the model, there

must be a path between the two roles. Each role can have a set of ports, and each port is linked

to another role through a path. Each port can define a set of messages. Messages may be sent

over the path. This set of messages of a port represents the interface to the role at the far end

of the path. The role at one end of a path knows about zero, one, or many roles at the other end

of the path. If it has knowledge of no roles, there is no port. An example role model is given in

figure A.1. Here the role borrower is the stimulus role. A role model can be a synthesization

of several role models. Role models have knowledge about both their super- and sub-models.

Figure A.1: The OOram role model Request library card.

191

Role Model Synthesis

Since one complex problem is described as a set of role models, each representing one area

of concern, we need a way to combine these models to get an overview of all the roles of the

problem. This is done by a process called synthesis. The term role model synthesis is used to

denote the construction of a derived model from one or more base models in a controlled man-

ner. Reenskaug et al. (1996) claim that while all object-oriented methods support inheritance,

where a derived class can be defined to inherit attributes and behaviour from one or more base

classes, in OOram, inheritance is lifted to the model level, so that a derived model inherits the

static and dynamic properties of one or more base models.

Synthesis is used for three different purposes: 1) to create specialisation/generalisation

relationships between models, 2) to compose a synthesized model from one or more base

models on the same level, and 3) as an aggregation. Andersen and Reenskaug (1992) give an

example of synthesis1. There are two important aspects of role model synthesis

• role models are combined vertically by letting their objects play multiple roles,

• integration of role models is done through the methods that objects use to process in-

coming messages.

Dependencies among synthesized role models are expressed in the methods of the ob-

jects. The behaviour of an object when receiving a message in the context of a role in one role

model may be modified because it also plays some other role from another role model.

Implementation of Role Models

During implementation, the object specification model is introduced. It is the role model of

a structure of objects that are implemented. An object type is a role in an object specifica-

tion model, i.e., it is the specification of a set of objects with identical, externally observable

properties. A class is an implementation of an object type.

Different classes can implement the same type. This is often done in an inheritance

hierarchy, but is not essential. In Java it can be through an Interface. An object can play

1The notation used in their paper as well as several other prior papers is slightly different from that used in
Reenskaug et al. (1996)

192

several roles, and these roles are then implemented in the same class. There exist many-to-

many relationships between objects, roles, types, and classes as shown in figure A.2.

Object Role
In pattern

Class

Instantiates

Type

Specifies

Implements

Figure A.2: Relationships among object, role, type, and class in OOram (from Reenskaug
et al. (1996))

1. The object is the is abstraction, and represents a part of the system. It has identity and

attributes and is encapsulated so that the messages it sends and receives constitute all its

externally observable properties.

2. The role is the why abstraction. All objects serving the same purpose in a structure of

collaborating objects, as viewed from the context of some area of concern, are said to

play the same role.

3. The type is the what abstraction. All objects that exhibit the same externally observable

properties are considered to belong to the same type.

4. The class is the how abstraction. All objects that share a common implementation are

considered to belong to the same class.

Reuse in OOram

Reuse has always been considered important in OOram, and it has been emphasized that

“reuse of ideas, design, and code” should be maximized. Reuse may be done at five levels

during software development

1. system user model—composed from general patterns created in the current project or

found in a repository

193

2. system requirements model—composed from general patterns created as part of the pro-

ject or found in a repository

3. system design model—based on a number of patterns or frameworks from the repository

4. system implementation—derived from one or more framework classes in the repository

5. system of objects—composed from predefined library objects

Object-oriented code reuse is based on inheritance and encapsulation. This gives the

objects similarity that can be searched for, protection from misuse, and the possibility to be

replaced with another object with a similar behaviour. The last point is similar to the rule re-

commended in literature related to Java: “Program towards interfaces, not classes”. However,

there seems to be no support for reuse in the OOram tool made by Taskon.

194

Appendix B

The WordNet Lexical Database

WordNet is a lexical database that supports conceptual, rather than merely alphabetical, search

(Fellbaum, 1998c). It combines features from both a dictionary and a thesaurus. Contrary to

many similar dictionaries with a restricted vocabulary, WordNet contains the full range of

common English vocabulary. It is organized around meanings in synonym sets, or synsets,

consisting of all the words that express a common concept, and with relationships between

these synsets.

Each word form, i.e., the written word, can have several word meanings. Word forms

belong to one of the word categories nouns, verbs, adjectives, or adverbs. Of the word categor-

ies, the noun group is by far the largest. The semantic relationships between synsets (examples

below are taken from Miller et al. (1993)) include

• hyponymy—specialization, e.g., {tree} is a hyponym of {plant}, and {plant} is a hy-

pernym of {tree}, i.e., a generalization,

• meronymy—part-whole relation, from Greek meros (part), e.g., a car has an air bag.

The opposite of meronymy is holonymy, e.g., air bag is part of a car.

• entailment—implication, i.e., one statement implies others, e.g., the relation between the

sentence John is a bachelor and the sentences John is a male / John is an adult / John

is unmarried. These entailment relations reflect the fact that the lexical composition of

bachelor includes the components male, adult, and unmarried. Entailment is only used

between verbs (see section B.3).

Lexical relations can also exist between words rather than between synsets, e.g., ant-

195

196

onymy, which expresses degree of oppositeness between words. This relation exists between

nouns, e.g., girl/boy, between adjectives, e.g., good/bad, and between verbs, e.g., appear/disappear.

These are relations between specific word meanings. Although opposite meanings can be iden-

tified among words other than direct antonyms, people are not likely to use them together in

pairs. While fall/rise and ascend/descend are direct antonyms, rise/descend and ascend/fall

are conceptually opposed, but they are not direct antonyms.

WordNet does not contain organizational units larger than words, but the relational se-

mantics does reflect some of the structure of frame semantics, e.g., WordNet does relate words

like buy and sell through the antonym relation, as in a frame for a commercial transaction; see

Fillmore and Atkins (1992). According to Fellbaum (1998a), WordNet “relates words and

concepts from a common semantic domain”. The word categories are discussed separately in

this chapter.

The basic relation used in WordNet is synonymy. Words are organized in synonym sets,

or synsets for short. This implies that the words in a synset are interchangeable in some,

although not in all, contexts. Some short phrases, or collocations, that would normally not be

included in a dictionary, are included in WordNet.

B.1 Nouns

The most important relationship between noun synsets is hyponymy (subordination or special-

ization); see example in the list above. Hyponomy, according to Miller (1998a), organizes

synsets into a set of lexical hierarchies, each with a unique beginner at its root. He describes

25 such beginners shown in table B.1. The features that characterize a unique beginner are

inherited by all its hyponyms. A unique beginner can be regarded as a primitive semantic

component of all words in its hierarchically structured semantic field.

The unique beginners are organized in 11 hierarchies, as they can be divided into natural

groups according to what they are concerned about. These hierarchies are shown in figure B.1.

The figure shows how the other beginners are organized within the 11 hierarchies. In order to

create these hierarchies, a few new general synsets are introduced.

The hierarchies tend to be fairly shallow, and lexical inheritance systems are seldom

more than 10–12 levels deep. The hierarchies in WordNet vary much both in terms of the

197

{act, activity} {food} {possession}
{animal, fauna} {group, collection} {process}
{artifact} {location} {quantity, amount}
{attribute} {motivation, motive} {relation}
{body} {natural object} {shape}
{cognition, knowledge} {natural phenomenon} {state}
{communication} {person, human being} {substance}
{event, happening} {plant, flora} {time}
{feeling, emotion}

Table B.1: List of 25 unique beginners for WordNet nouns

number of synsets belonging to them and their depth. A noun has typically only a single

hypernym, although there are examples in the WordNet database where this is not the case.

Miller distinguishes between the hyponymic relation types: IS-A-KIND-OF relation dis-

cussed before, and IS-USED-AS-A-KIND-OF (Miller, 1998a). While these may be important

in natural language, it is unclear whether they are significant for system development.

A word’s antonym is often the first word that comes to mind when a person hears a

word. For example, given the word man, a person would most likely respond woman. This

is a lexical, not a semantic, relation, and it is represented between word meanings and not

synsets. If an antonym is defined between two words, this implies that there is some kind of

weaker opposite relation between the other words in the two synsets as well.

Noun attributes are represented by the meronymy relation. Winston, Chaffin, and Her-

mann (1987) have identified 6 different meronymy relations. In WordNet they have coded

three of these: COMPONENT-PART, e.g., branch/tree, MEMBER-OF, e.g., tree/forest, and the

STUFF SOMETHING IS MADE OF, e.g., aluminum/airplane. A noun can have attributes that are

described by adjectives (see section B.2.1). This kind of relation is not added to WordNet. The

only way adjectives are used in relation to nouns is as modifiers, e.g., an easy chair, straight

chair. These collocations are typically hyponyms of the noun.

B.2 Modifiers

Adjectives are used to modify nouns, and adverbs modify verbs, adjectives, other adverbs, and

entire clauses or sentences (Miller, 1998b).

198

{state}

{shape}

{possession}

{location}

{group, collection}

{event, happening}

{act, activity}

{natural phenomena} {process}

{motivation, motive}

{abstraction}

{attribute}

{quantity, amount}

{relation}

{time}

{entity}

{organism}

{object}

{animal,fauna}

{person, human being}

{plant, flora}

{artifact}

{natural object}

{substance}

{body}

{food}

{communication}

{psycological
 feature}

{cognition, knowledge}

{feeling, emotion}

Figure B.1: The 11 noun hierarchies in WordNet

B.2.1 Adjectives

Adjectives are used to modify or elaborate on the meaning of nouns. In English, nouns can

also be used as adjectives. In addition, prepositional phrases, and even entire clauses, may

be used to modify nouns. WordNet divides adjectives in two broad categories. These are

the descriptive adjectives, e.g., big, interesting, and possible, and relational adjectives, e.g.,

presidential, and nuclear. The two groups of adjectives are discussed separately.

Descriptive Adjectives

This is what one usually thinks of when adjectives are mentioned. We can say that they ascribe

to a noun a value of an attribute. When we say that a room is little, little can be thought of as

being the value of an attribute size. WordNet contains pointers between descriptive adjectives

199

and the nouns by which appropriate adjectives are lexicalized. If you look up little, and select

little is a value of, size is shown. Little is also shown as the opposite of big, i.e., its antonym.

Descriptive adjectives are organized differently from the other major categories, as ant-

onymy is the basic semantic relation among them. Semantic similarity is introduced among

synonym sets. An adjective A1 is similar to an adjective A2, and A2 is antonym to an adjective

A3 as in “Prompt is similar to fast is antonymous to slow”. For adjectives with no obvious ant-

onym, the strategy has been to find a similar adjective that does have an antonym, and to code

it as similar to one in that pair. Thus, adjectives form clusters around pairs of antonyms, as

with the pair fast/slow which denotes the attribute speed. Each of these two adjectives forms

the heads of a half cluster. The elements in these clusters are called satellite synsets. The

satellites can be considered specializations of the head synset.

In WordNet, different senses of an ambiguous word frequently have different antonyms,

e.g., fresh/stale bread, while fresh/dirty shirt. Adjectives are selective about the nouns they

modify. The adjectives most widely used are those expressing evaluations, e.g., good/bad.

Those expressing activity also have a wide applicability, e.g., active/passive, fast/slow. As the

noun is considered more important for the meaning of an expression than the adjective used

with it, the noun is given meaning first, and then the adjective is given meaning in relation to

the noun.

Relational Adjectives

Relational adjectives are related semantically to nouns. Such adjectives play a similar role

as a modifying noun and function as classifiers. An example is musical instrument, which is

related to music. There is also a semantic relation between the adjective and the noun that

it modifies, e.g., in agricultural equipment and agricultural college, agricultural has different

relations to the noun. Relational adjectives do not refer to a property of the noun they modify.

Few of them have a direct antonym.

B.2.2 Adverbs

Most adverbs are created from adjectives by adding a suffix. Most are derived by adding the

suffix -ly to specify manner or degree. In WordNet, derived adverbs are linked to the adjective

200

by the relation DERIVED-FROM. This link is by way of a particular adjective sense. The ones

that are related to adjectives often also inherit the antonym relation. Adverbs with the form

adjective + -ly are not semantically related to the adjective at all, e.g., hardly. WordNet also

contains some phrases that are used adverbally.

Adverbs are organized by their relation to their adjective form. Moreover, only syn-

onymy and sometimes antonymy is stored. Each synset contains one adverb, its related adject-

ive, if any, any synonyms or antonyms, and a parenthetical gloss including example phrases.

B.3 Verbs

Verbs are, according to Fellbaum (1998b), organized as a network of related synsets basically

in the same way as nouns. Verbs are more polysemous than nouns, i.e, they can take on more

meanings. The higher polysemy suggests that verb meanings are more flexible than noun

meanings. They can change their meanings depending on the noun arguments with which

they co-occur. It is therefore more unclear what should constitute unique beginners for verb

hierarchies.

In WordNet verbs are divided in 15 groups or semantic domains, although Fellbaum

admits that the borders between these groups are often vague. Several suggestions for unique

beginner verbs have been put forward, such as those described for nouns (see section B.1),

and there is no general agreement concerning how to do this. One distinction may go between

translational movement and movement without displacement (Fellbaum, 1998b). The mo-

tivation behind selection of unique beginner verbs is outside the scope of this thesis. I will

emphasize, however, that they are, among other things, based on studies of how people seem

to organize their mental lexicon, studies of the use of substitution errors, as well as studies of

traditional dictionaries.

Although verbs are organized as synonym sets, there are few true synonyms among

English verbs, one example being the verbs close and shut. Words that will typically not

be used in the same context, e.g., as one represents a more formal context, are in WordNet

organized in the same synset, e.g., begin and commence. To clarify the difference in use,

glosses are used to show in what contexts the different members of a synset can be used.

201

B.3.1 Lexical and semantic relations

Relations used between verb synsets can be categorized by lexical entailment. This is a rela-

tion between two verbs, V1 and V2, that holds when the sentence Someone V1 logically implies

Someone V2. This is a unilateral relation. If two verbs were mutually entailing, they must be

synonyms. Negation reverses the entailment. Entailment is somehow similar to meronymy

among nouns. An activity or event is part of another activity only when it is part of, or a stage

in, its temporal realization. They can be occurring at the same time, like drive and ride (a car)

or they can be temporally coexistent (at least partly) as in snore and dream which can be part

of sleeping. Details about how one verb can entail the other, will not be discussed here.

Hyponymy among verbs is expressed differently than among nouns. We distinguish,

for example, between ways things can move by the MANNER in which it moves. This man-

ner relation is termed TROPONOMY by Fellbaum and Miller (referred in Fellbaum (1998b).

Troponomy can be expressed as To V1 is to V2 in some particular manner. Manner can be

thought of as the OCCASION for something to happen, e.g., fight, the INTENTION of the action

or event, e.g., for communication verbs, or the MEDIUM of communication.

Troponomy is a special form of entailment. Every troponym V1 of a more general verb

V2 also entails it. March is a troponym of walk, but marching entails walking. Activities

referred to by a troponym and its more general superordinate are always temporarily coex-

tensive. You must be walking if you are marching, but not the other way around. The other

case, however, needs not be the case, i.e., an entailment needs not be a troponym. The example

given before—snore/sleep—shows this. Verbs in pairs like this are related only by entailment

and proper temporal inclusion, and they cannot also be related by troponomy.

The hierarchies of verbs tend to be more shallow and “bushy” than the noun hierarchies.

They seldom exceed four levels. There also seems to be one level that contains much more

verbs than the others. When looking at the taxonomy from one sense of talk, the more general

level is communicate, the next lower level contains few verbs, including talk, write. The next

level, however, has many troponyms, including babble, mumble, slur, etc. To say that Talk is

to communicate in some way is totally acceptable, but to say that To babble/mumble/slur . . . is

to talk in some way shows a closer resemblance. These words are obviously specific ways of

talking. Talk seems to be more remote from its superordinate communicate. The further down

202

the hierarchy we descend, the fewer nouns the verbs can take as a potential argument. This is

natural since the verbs tend to take on a more and more specific meaning.

B.3.2 Polysemy

When identifying the senses for verbs in WordNet, the developers have split rather than

lumped together senses. The most frequent used verbs (have, be, run, make, set, go, take,

and others) are also the most polysemous, and their meanings depend heavily on the nouns

with which they co-occur. For example, dictionaries differentiate between the senses of have

in sentences such as I have a BMW and I have a headache. The difference is less due to the

polysemy of have, however, than to the concrete or abstract nature of its objects. In WordNet

they settled on more meaningful beginners.

B.4 Design of the WordNet Database

The WordNet lexical database is organized as a set of ASCII files that are converted to an

indexed database file by a program calculating the offset into the file where a particular synset

is found. The senses of a specific word form are ordered according to their frequency of use,

with the most frequently used sense listed first. The frequencies are calculated based on a set

of corpora. A word’s familiarity is recorded in WordNet as a count of its polysemy. It has

been found that this correlates well with people’s familiarity with it.

For each word form, a number is stored that represents the polysemy for each word

category in which it occurs. For each word category, a data file and an index file are created.

The index file contains each word form, its polysemy count, and the offsets for the synsets

that contain it. The sequence of the synset address represents the sense number. The relational

information is given by the type of relation, in the form of a relational symbol, the address of

the target synset, and its syntactic category. The last piece of information is necessary in cases

where the target synset belongs to another syntactic category. The types of relations coded in

WordNet for the different syntactical categories are listen in table B.2.

203

Noun Verb Adjective Adverb
Antonym Antonym Antonym Antonym
Hyponym Troponym Similar Derived from
Hypernym Hypernym Relational adj
Meronym Entailment Also see
Holonym Cause Attribute
Attribute Also see Participle

Table B.2: Relations coded in WordNet

B.4.1 Morphology

In traditional dictionaries, typically only a head word is listed, with the various morphological

forms being put in a sub-listing. This typically does not cause a problem. When searching

for a word, however, it may cause a problem if the system just reports that the word does

not exist in the database. In WordNet only the base forms are listed. To spare the user from

stripping affixes, a program handles morphological transformations. Rules on how to handle

regular cases are added, and exception lists are added to take care of the rest, one for each word

category. Collocations are typically more complicated than single words, and verb phrases are

more complicated than compound nouns, especially if they contain a preposition.

204

Appendix C

The DTD for OOram Models

Two versions of the DTD has been used in the experiments. The first version shown in C.1
is used in all experiments before introducing the modifiers in role names, while the second
version, in C.2, is used in the examples thereafter. The only differences between them are
related to the mName.

In XML, tags of the form < !- - some text - -> represents comments.

C.1 The Initial DTD

<?xml version="1.0" encoding="ISO-8859-1"?>
<!-- DTD for OOramModelCollection S. Bjoernestad 2000.05.02 -->
<!-- The DTD is used to read a file of unrelated OOram Models. -->
<!-- An OOramModelCollection may have one or more Role models -->

<!ELEMENT OOramModelColl (RoleModel*)>

<!ELEMENT RoleModel (Name , descr? , Project? ,
Developer? , modelLink? , Role+ , Port+)>

<!ATTLIST RoleModel id ID #REQUIRED
kind (roleModel | objectSpecification | typeModel)

’roleModel’>
<!ELEMENT Project EMPTY>
<!ATTLIST Project name CDATA #REQUIRED >

<!ELEMENT Developer EMPTY>
<!ATTLIST Developer logonName CDATA ’solveig’ >

<!-- A Role has a rName, a description, and any number of ports. -->
<!ELEMENT Role (rName, descr? , Port* , roleLink?)>
<!ATTLIST Role id ID #REQUIRED

kind (stimulus | internal) ’internal’ >
<!ELEMENT rName EMPTY>
<!ATTLIST rName name CDATA #REQUIRED

synsetID CDATA #IMPLIED >

205

206

<!-- A role model can be synthesized from several role models. -->
<!-- A role model is part of just one synthesized role models. -->
<!ELEMENT modelLink EMPTY>
<!ATTLIST modelLink subModels IDREFS #IMPLIED >

<!-- similar as role model links. -->
<!ELEMENT roleLink EMPTY>
<!ATTLIST roleLink subRoles IDREFS #IMPLIED >

<!-- A Port may have a set of Messages. -->
<!ELEMENT Port (Message*)>

<!-- A Port must specify the from and to roles. -->
<!-- It can have an attribute card. 2 = N. -->
<!-- If not given, the default is 1 -->
<!-- It can also have a name, however, this is not recommended -->
<!ATTLIST Port fromRole CDATA #REQUIRED>

<!ATTLIST Port toRole CDATA #REQUIRED>

<!ATTLIST Port card (1 | 2) "1">

<!ATTLIST Port name CDATA #IMPLIED>

<!ELEMENT Message (Name , Arg* , RetType?)>

<!ELEMENT Arg ((Name , Type)+)>

<!ELEMENT Name (#PCDATA)>

<!ELEMENT descr (#PCDATA)>

<!ELEMENT RetType (Type)>

<!ELEMENT Type (#PCDATA)>

C.2 The Introduction of Modifiers

<?xml version="1.0" encoding="ISO-8859-1"?>
<!-- DTD for OOramModelCollection S. Bjoernestad 2002.05.20 -->
<!-- This version has introduced the use of modifiers in role names -->
<!-- The DTD is used to read a file of unrelated OOram Models. -->
<!-- An OOramModelCollection may have one or more Role models -->

<!ELEMENT OOramModelColl (RoleModel*)>

<!ELEMENT RoleModel (Name , descr? , Project? ,
Developer? , modelLink? , Role+ , Port+)>

207

<!ATTLIST RoleModel id ID #REQUIRED
kind (roleModel | objectSpecification | typeModel)

’roleModel’>
<!ELEMENT Project EMPTY>
<!ATTLIST Project name CDATA #REQUIRED >

<!ELEMENT Developer EMPTY>
<!ATTLIST Developer logonName CDATA ’solveig’ >

<!-- A Role has a rName, may have mName + any number of ports. -->
<!ELEMENT Role (rName , mName? , descr? , Port* , roleLink?)>
<!ATTLIST Role id ID #REQUIRED

kind (stimulus | internal) ’internal’ >
<!ELEMENT rName EMPTY>
<!ATTLIST rName name CDATA #REQUIRED

synsetID CDATA #IMPLIED >

<!ELEMENT mName EMPTY>
<!ATTLIST mName name CDATA #REQUIRED >

<!-- A role model can be synthesized from several role models. -->
<!-- A role model is part of just one synthesized role models. -->
<!ELEMENT modelLink EMPTY>
<!ATTLIST modelLink subModels IDREFS #IMPLIED >

<!-- similar as role model links. -->
<!ELEMENT roleLink EMPTY>
<!ATTLIST roleLink subRoles IDREFS #IMPLIED >

<!-- A Port may have a set of Messages. -->
<!ELEMENT Port (Message*)>

<!-- A Port must specify the from and to roles. -->
<!-- It can have an attribute card. 2 = N. -->
<!-- If not given, the default is 1 -->
<!-- It can also have a name, however, this is not recommended -->
<!ATTLIST Port fromRole CDATA #REQUIRED>

<!ATTLIST Port toRole CDATA #REQUIRED>

<!ATTLIST Port card (1 | 2) "1">

<!ATTLIST Port name CDATA #IMPLIED>

<!ELEMENT Message (Name , Arg* , RetType?)>

<!ELEMENT Arg ((Name , Type)+)>

208

<!ELEMENT Name (#PCDATA)>

<!ELEMENT descr (#PCDATA)>

<!ELEMENT RetType (Type)>

<!ELEMENT Type (#PCDATA)>

Appendix D

Example XML OOram Role Model

<?xml version="1.0"?>
<!DOCTYPE OOramModelColl SYSTEM "OOramModelColl.dtd">
<!-- Created by XMLBuilder -->
<OOramModelColl>
<RoleModel id="m1">
<Name>Request_Library_Card</Name>
<Role id="r1" kind="stimulus">
<rName name="borrower" synsetID="107121607"/>
<descr>asks for a library card</descr>

</Role>
<Role id="r2">
<rName name="assistant" synsetID="107240707"/>
<mName name="library"/>
<descr>helps the borrowers</descr>

</Role>
<Role id="r3">
<rName name="information" synsetID="106250971"/>
<descr>the record stored in the system</descr>

</Role>
<Role id="r4">
<rName name="database"/>
<mName name="reference"/>

</Role>
<Port fromRole="r1" toRole="r2"></Port>
<Port fromRole="r2" toRole="r1" card="2"></Port>
<Port fromRole="r2" toRole="r3"></Port>
<Port fromRole="r2" toRole="r4"></Port>

</RoleModel>
</OOramModelColl>

<?xml version="1.0" ?>
<!DOCTYPE OOramModelColl SYSTEM "OOramModelColl.dtd">
<!-- Created by XMLBuilder -->
<OOramModelColl>
<RoleModel id="m1" kind="roleModel">
<Name>Library_sub</Name>

209

210

<descr>registers information about borrower</descr>
<Role id="r1" kind="stimulus">
<rName name="borrower" synsetID="107121607" />
<descr>lends books</descr>

</Role>
<Role id="r2" kind="internal">
<rName name="library" synsetID="102920588" />
<descr>contain books</descr>

</Role>
<Role id="r3" kind="internal">
<rName name="library assistant" synsetID="107240710" />
<descr>helps the borrowers</descr>

</Role>
<Role id="r4" kind="internal">
<rName name="information" synsetID="106250971" />
<descr>the record stored in the system</descr>

</Role>
<Role id="r5" kind="internal">
<rName name="register" synsetID="104883282" />
<descr>stores borrower data</descr>

</Role>
<Port fromRole="r1" toRole="r2" card="1" />
<Port fromRole="r2" toRole="r1" card="2" />
<Port fromRole="r2" toRole="r3" card="1" />
<Port fromRole="r3" toRole="r2" card="1" />
<Port fromRole="r3" toRole="r5" card="1" />
<Port fromRole="r5" toRole="r4" card="2" />

</RoleModel>
</OOramModelColl><?xml version="1.0" ?>

<!DOCTYPE OOramModelColl SYSTEM "OOramModelColl.dtd">
<!-- Created by XMLBuilder -->
<OOramModelColl>
<RoleModel id="m1" kind="roleModel">
<Name>Wholesaler_Sub</Name>
<descr>registers information about customer</descr>

</Role>
<Role id="r1" kind="stimulus">
<rName name="customer" />
<descr>buys parts</descr>

</Role>
<Role id="r2" kind="internal">
<rName name="wholesaler" />
<descr>has parts in store</descr>

</Role>
<Role id="r3" kind="internal">
<rName name="shop assistant" />
<descr>helps the customer</descr>

211

</Role>
<Role id="r4" kind="internal">
<rName name="register" synsetID="104883282" />
<descr>register of the customers</descr>

</Role>
<Role id="r5" kind="internal">
<rName name="information" synsetID="106250971" />
<descr>information about the customer</descr>

</Role>
<Port fromRole="r1" toRole="r2" card="1" />
<Port fromRole="r2" toRole="r1" card="2" />
<Port fromRole="r2" toRole="r3" card="1" />
<Port fromRole="r3" toRole="r4" card="1" />
<Port fromRole="r3" toRole="r2" card="1" />
<Port fromRole="r4" toRole="r5" card="2" />
</RoleModel>
</OOramModelColl>

212

Appendix E

Prolog Version of WordNet

In this appendix parts of the files in the Prolog version of WordNet are given to show how they are
structured. I have used three files, and they contain the word senses, the relation between hypernyms
and hyponyms, and the glosses. All Prolog predicates have a name and a set of arguments on the form:
predicateName(arg1, arg2, ...).

E.1 Senses

Each line in the senses file wn s.pl contain one predicate s. The following is an exerpt from the
beginning of this file. The content of the parenthesis is in sequence:

1. a synset Id—unique for each synset
2. the word’s sequential position in a synonym set
3. the word form itself
4. the category of word (n—noun, v—verb, etc.)
5. the sequence in a set of meanings of a particular word form
6. a tag state indicating whether the sequential position above is made due to frequency of use of

the particular word form (1) or whether it is arbitrary (0). This attribute is not used by us.

s(100001740,1,’entity’,n,1,1).
s(100001740,2,’something’,n,1,0).
s(100002086,1,’life_form’,n,1,0).
s(100002086,2,’organism’,n,1,1).
s(100002086,3,’being’,n,2,1).
s(100002086,4,’living_thing’,n,1,1).
s(100002880,1,’life’,n,10,1).
s(100003011,1,’biont’,n,1,0).
s(100003095,1,’cell’,n,2,1).
s(100003731,1,’causal_agent’,n,1,0).
s(100003731,2,’cause’,n,4,1).
s(100003731,3,’causal_agency’,n,1,0).
s(100004123,1,’person’,n,1,1).
s(100004123,2,’individual’,n,1,1).
s(100004123,3,’someone’,n,1,1).
s(100004123,4,’somebody’,n,1,0).
s(100004123,5,’mortal’,n,1,1).

213

214

s(100004123,6,’human’,n,1,1).
s(100004123,7,’soul’,n,2,1).
s(100008019,1,’animal’,n,1,1).
s(100008019,2,’animate_being’,n,1,0).
s(100008019,3,’beast’,n,1,1).
s(100008019,4,’brute’,n,2,0).
s(100008019,5,’creature’,n,1,1).

E.2 Hypernyms

Each line in the hypernym file wn hyp.pl contains one predicate hyp. The predicate has two argu-
ments representing synsetIDs where the first is the spesialization (or hyponym) and the second is the
generalization (or hypernym). The set of hyp- predicates ties all the synsets together in a hierarchical
way.

hyp(100002086,100001740).
hyp(100002880,100002086).
hyp(100003011,100002086).
hyp(100003095,100001740).
hyp(100003731,100001740).
hyp(100004123,100002086).
hyp(100004123,100003731).
hyp(100008019,100002086).

E.3 Glosses

Each line in the file wn g.pl contains one predicate p with the gloss for one synset. The arguments
represent the synset’s synsetID, the gloss, and sometimes also examples. Not all synsets have glosses.
Note that each predicate below must be kept on one line, but for editing reasons, some of the predicates
have been split over several lines.

g(100001740,’(anything having existence (living or nonliving))’).
g(100002086,’(any living entity)’).
g(100002880,’(living things collectively; "the oceans are teeming with

life")’).
g(100003011,’(a discrete unit of living matter)’).
g(100003095,’(the basic structural and functional unit of all

organisms; cells may exist as independent units of life
(as in monads) or may form colonies or tissues as in
higher plants and animals)’).

g(100003731,’(any entity that causes events to happen)’).
g(100004123,’(a human being; "there was too much for one person to

do")’).
g(100008019,’(a living organism characterized by voluntary movement)’).
g(100008864,’(a living organism lacking the power of locomotion)’).
g(100009457,’(a physical (tangible and visible) entity; "it was full of

rackets, balls and other objects")’).
g(100010123,’(an object occurring naturally; not made by man)’).

Appendix F

Role Model Overview

In the tables below all the role models used in the experiments are listed. Table F.1 lists the role models
used as targets in the experiments, while table F.2 contains all remaining models. The target models are
sorted according to size and complexity. The names of the role models reflect the application domain,
but they do not reflect the concrete task that is modelled.

Index Structures
Role model name Roles 1st 2nd 3rd
LibrarySystem1 3 star chain chain
LibrarySystem1a 4 star tree chain
CustomerPlaceOrder 4 star chain chain
Program committee job no 2 4 star chain chain
Register for course 4 star chain chain
Request Library Card 4 tree chain chain
PaperSubmission 4 star chain chain
SeminarOrganizerSchema 4 tree chain chain
Library sub 5 chain
Library sub1 5 chain
Wholesaler Sub 5 chain
Checkbook application 5 star tree chain
Wholesaler Sub1 5 star chain tree
Course Organization 5 tree ring chain
ConferenceOrganizationSchema 5 tree chain chain
CourseOrganizerSchema 6 tree chain chain
access system1 8 star tree tree
Library1 a 8 tree chain chain
Library a 8 tree chain chain
access system2 9 ring tree tree
Library 9 chain chain chain
Library1 9 chain chain chain
Wholesaler1 11 tree chain chain
Wholesaler 12 chain star chain

Table F.1: Overview of the role models used as targets in the experiments

215

216

The tables include information related to the number of roles in each model and the structure
indexes that have been stored in the repository. In the cases where the role model does not have three
different substructures, the remaining locations are left empty. The 17 simplest role models have only
1 structure index.

Table F.2: Overview of role models used in the experiments

Index Structures
Role model name Roles 1st 2nd 3rd
a system 3 star chain chain
access system3 9 ring tree tree
Aircraft information 4 star chain chain
Airports at cities 2 chain
AllocateResources 4 star chain chain
Apply for parking permit 4 tree chain chain
Appoint referee 2 chain
ATM 5 ring chain tree
ATM class sys 8 tree chain chain
ATM perform transaction 7 tree tree tree
ATM scenario 4 chain
ATM system no 1 7 tree chain star
ATM system no 2 7 star tree chain
Block connectivity object mode 6 tree chain chain
Booking system 4 chain
Booking system1 4 chain
Bureaucracy Pattern 3 chain
car loan system 5 star tree chain
Car rental 2 chain
car transmission 7 tree tree tree
ChangeARequirement 3 star chain chain
class consortium 3 star chain chain
Company with employees 3 star chain chain
Concert management application 4 star chain chain
Concert management application 2 4 chain
Course test 3 star chain chain
Course test 2 3 star chain chain
Customer purchase and postal data 8 chain tree tree
decision maker sys 4 star chain chain
DefineProject 3 star chain chain
DefineProjectPhases 3 chain
Derived traveling sys 6 star tree tree
desktop publishing system no 1 4 star chain chain
desktop publishing system no 2 7 star tree chain
Desktop publishing system no 3 6 star chain chain
Directed acyclic graph 4 star chain chain
Directed graph 4 tree chain chain
Directed graph 2 4 chain
display gauge process sys 8 star tree tree

continued on next page

217

Table F.2: Overview of role models used in the experiments

Index Structures
Role model name Roles 1st 2nd 3rd
employee register system 7 star tree chain
Employees and sports 2 chain
enterprise project groups 6 tree chain ring
Flag nicknames 4 star chain chain
Flexible Manufacturing System 10 tree tree tree
Flight 7 tree tree star
Flight reservation model 11 tree star tree
Frontloading schedule 4 tree chain chain
Frontloading schedule 2 4 star chain chain
Glider simulator 10 ring tree tree
head office system 6 tree tree tree
Helicopter transport system 8 tree star tree
IFIP example - no 1 7 star chain chain
Inventory role model 7 tree chain chain
Library system 9 star tree chain
Library sub0 4 chain
Library sub1 5 chain
LibraryFull 5 star chain tree
LibraryFull0 4 chain
Mail handling system 5 tree chain chain
ModifyStaffAllocation 4 star tree tree
Moon 3 star chain chain
Movie Theater 1 5 chain chain chain
net connectivity object mode 7 star chain chain
node connectivity object mode 11 star chain tree
Open bank account 3 star chain chain
Organizing committee job 1 4 star chain chain
Organizing committee job 2 6 star tree chain
Organizing committee job 3 6 star ring chain
organizing committee job no 4 5 star tree tree
Organizing conference: Print attended badge 6 tree chain chain
Outboard sales store 10 tree chain chain
Paper Evaluation 3 tree chain chain
Pattern: controller 5 star chain chain
Pattern: tool 3 star chain chain
Pattern: view 5 tree chain chain
phone call 3 star chain chain
Program committee job 1: CFP 4 ring chain chain
Program committee job 3 7 star chain chain
Program committee job 4 5 star chain tree
Program committee job 5 7 ring chain chain
Program committee job 6 7 star ring chain
Program committee job 7 6 star tree chain
Program committee job 8 7 star ring chain

continued on next page

218

Table F.2: Overview of role models used in the experiments

Index Structures
Role model name Roles 1st 2nd 3rd
Purchase system 2 4 star ring ring
Purchasing system 4 star ring chain
RegisterPaper 7 star tree tree
ROSA CASE Tool application 12 ring tree tree
ROSA CASE TOOL application no. 2 8 ring tree tree
scoring system 12 star tree chain
Simple diagram editor 7 star tree tree
Submit Referee Report 4 star chain chain
test no 3 3 star chain chain
Trader mechanism system 5 ring tree chain
Transaction counter 5 chain chain chain
Travel agent system 1 5 tree chain chain
Travel agent system 2 5 ring tree chain
travel permission sys 5 tree chain chain
University1 5 tree chain chain
University2 7 star tree chain
Updating account 3 star ring chain
user selections of elements 4 ring chain chain
Video Rental 9 tree chain chain
Video Rental Chain 9 tree tree tree
Video system 8 chain tree chain
View and control system 4 tree tree tree
Visual part architecture 12 chain tree tree
Wholesaler Sub1b 4 chain
writing paper 3 star chain chain

 2

Errata

Page v “UML sequence diagrams” – Corrected to “UML communication diagrams” (in
Abstract)

Page 5 “Unified Modelling Language (UML) sequence diagrams” – Corrected to
”Modelling Language (UML 2.0) communication diagrams (called collaboration
diagrams in UML 1.x)”

Page 6 “diagrams like sequence diagrams” – Corrected to “diagrams”.

Page 6 “The UML sequence diagrams does not” – Corrected to ”The UML communication
diagrams does not”.

Page 166 “UML 2 sequence diagrams” – Corrected to “UML 2.0 communication diagrams”.

Page 174 “collaboration diagram” – Corrected to “communication diagram”.

Page 175 “UML sequence models” – Corrected to ”UML communication diagrams”.

Page 175 “while the collaboration diagrams” – Corrected to “while the communication
diagrams”.

Page 190 “UML sequence diagrams” – Corrected to “UML communication diagrams”.

	Avhandling-forside-Bjørnestad
	Thesis_Bjørnestad_utenforside
	Thesis-Errata-eng.pdf
	Errata forAnalogical Reuse of Object-Oriented Analysis Models

