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Summary of Thesis 

Anthracyclines have been first line drugs for more than 3 decades in the treatment of acute 

myelogenous leukemia (AML). Even though the mechanism of action of anthracyclines has been 

extensively studied over the years, large gaps remain in our understanding of why they act better 

than most other drugs and how they induce cancer cell death. The present study was undertaken 

to identify protein changes that could shed further light on how the anthracyclines induce and 

execute apoptosis. By this approach, we hoped to identify proteins or pathways of particular 

importance in AML cell death that in the future could be exploited as new drug-targets and lead 

to the development and use of less toxic or more efficient drugs than the anthracyclines. We also 

expected to reveal weaknesses in anthracycline actions that could explain why many patients in 

the end develop resistance to the drug. Targeting these weak points by other drugs could open 

new avenues for combination treatment.  

By using various proteomic approaches to identify cleavage, degradation or altered 

phosphorylation of proteins, we found that components associated with the Hsp90 multi-protein 

complex, clathrin-mediated endocytosis, and protein synthesis to be targeted in cells undergoing 

or about to undergo anthracycline-induced apoptosis. The Hsp90 complex was targeted through 

cleavage of its co-chaperone p23. The truncation or downregulation of components of the 

clathrin-dependent endocytic pathway were associated with decreased endocytosis and increased 

accumulation of surface receptors with cell death-modulating capability.  

We also found that anthracyclines induced the pre-apoptotic synthesis of presumed anti-apoptotic 

proteins. That the pre-apoptotic protein synthesis served a net survival role was suggested by the 

ability of protein synthesis inhibitors to enhance anthracycline-induced cell death. This was true 

both in cell culture and in animal models of AML.  

In conclusion, the Thesis contributes to the knowledge of how anthracyclines induce apoptosis by 

pinpointing new protein targets and pathways that are heavily modified not only in the execution-

phase, but also in the induction-phase of apoptosis. Based on our findings, we propose a novel 

anthracycline-based combination treatment regime for patients with AML that consists of an 

anthracycline and a protein synthesis inhibitor administered in the pre-apoptotic phase.  
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Introduction 

Acute myeloid leukemia 
Acute myeloid leukemia (AML) is a group of heterogeneous diseases characterized by 

accumulation of immature blasts of myeloid precursors in the bone marrow and 

peripheral blood. This is due to a differentiation block in hematopoietic progenitor cells 

at an early stage of myelopoiesis combined with proliferation of the immature blasts and 

eventually leads to suppression of normal bone marrow functions. Common symptoms of 

AML are diverse and non-specific and includes fatigue, hemorrage, infections and fever, 

all symptoms resulting from leukemic infiltration of the bone marrow with resultant 

cytopenia 1. 

A major hypothesis for myeloid leukemogenesis, the “two-hit” model, states that 

mutations both in a transcription factor and a tyrosine kinase are required for 

development of AML as this would impair cell differentiation and confer survival and/or 

proliferative advantages 2. Receptor tyrosine kinases (RTK) like Flt3 and c-kit are 

reported mutated and constitutive active in a substantial number of AML cases 3,4. 

Mutations and chromosomal translocations leading to impaired differentiation and 

subsequent apoptosis such as PML-RARα and AML1-ETO are also frequent events 5. 

Based on cytogenetics, patients are often classified into three major subgroups with 

different disease outcome. Translocations resulting in the AML1-ETO fusion protein, 

t(8;21)(q22;q22), often associated with FAB-classification AML-M2, and the PML-

RARα fusion protein, t(15;17)(q22;q21), often associated with promyelocytic AML-M3, 

are both prognostically favourable changes 6. Changes involving deletions of 

chromosomes 5 and 7 give rise to adverse prognosis. In addition to chromosomal 

translocations, aberrations in oncogenes, e.g. the presence of a mutated form of Flt3 7, 

and expression of the Bcl-2 family members are prognostic indicators, and the ratio 

between the anti-apoptotic Bcl-2 and the pro-apoptotic Bax have been shown to predict 

disease outcome in AML 8. 
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Treatment 

Current standard treatment of AML includes initial induction therapy to achieve 

hematological remission meaning 5% or less leukemic blasts in the bone marrow (disease 

is diagnosed upon the presence of 30% blasts in the bone marrow 9) followed by 

consolidation treatment 1. The induction treatment regime typically consists of an 

anthracycline (daunorubicin, DNR, or idarubicin, IDA) in combination with cytosine 

arabinoside (AraC). AraC is typically given by continuous infusion while DNR is given 

as an intravenous infusion for 30 min a day for the three first days of AraC treatment. 

After remission is achieved, consolidation treatment consisting of high-dose AraC is 

administered 10. For elderly patients (>60 years) an alternative to the high dose AraC for 

consolidation therapy must often be used due to high risk of treatment-related toxicity. 

For young patients, bone marrow transplantation is often offered as consolidation therapy 

for patients with intermediate or bad prognosis 11. Following relapse of the disease, 

patients are usually treated with additional chemotherapy or stem cell transplantation 12. 

This approach is marginally successful, and the overall 5-year survival rate is only 30–

40%, and less than 15% in elderly patients. 

The anthracyclines have been used successfully for over 40 years in the treatment of 

AML. However, they are mainly nonspecific in their mechanisms of action and will kill 

normal cells along with the cancer cells and can lead to severe systemic toxicities. 

Therefore, over the years, several new treatment modalities with drugs aimed at specific 

molecular targets have been proposed for AML treatment. The most successful has been 

the introduction of all-trans retinoic acid (ATRA) in combination with low-dose 

chemotherapy in treatment of patients with promyelocytic leukaemia, APL (AML-M3) 
13,14. Inhibition of RTKs are though to have an inhibitory effect on proliferation, and 

specific inhibitors have been developed and clinically tested. The combination of such 

inhibitors together with conventional therapy are considered to significantly improve 

clinical outcome in patients with AML 15-18. Also inhibition of survival signaling from of 

Ras 19, Hsp90 20 and mTOR 12 have been tested/postulated for combination therapy in 

AML. However, the drawback with using drugs that specifically target a kinase or 

another molecular target is that even though the initial response is successful, the patients 
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often relapse with a form of the disease that now show resistance toward that drug. This 

is often the case after treatment with Gleevec, a specific inhibitor of Bcl-abl, used in 

treatment of CML 21. Another scheme that has been tried in order to reduce the overall 

toxicity of the chemotherapeutic drugs, is to ensure specific delivery of the drug to cancer 

cells by coupling the drugs to monoclonal antibodies specific for antigens/receptors 

present on cancer cells and utlilize the cells endocytic apparatus to ensure drug uptake 
22,23. 

Anthracyclines 

Anthracyclines are cytotoxic antibiotics that are used in the treatment of hematological 

and solid neoplasms such as leukemias, lymphomas, breast cancer, prostate cancer and 

bladder cancer. The anthracyclines have been widely used in cancer therapy due to their 

ability to induce apoptosis in cancer cells. The anthracycline antibiotics are produced by 

Streptomyces coeruleorubidus or S. peucetius and include daunorubicin (DNR), 

doxorubicin, epirubicin and idarubicin (IDA). DNR and IDA are used in the treatment of 

AML, and we have utilized them in this study to explore the mechanism of anthracycline-

induced apoptosis. IDA is an analog obtained from DNR by removal of the 4-methoxy-

group in the D-ring (Figure 1). Compared to DNR, IDA has increased lipophilicity and 

cellular uptake and has been proposed to be less cardiotoxic 
24. The use of anthracyclines is a double-edged sword. Even 

though they play an important role in treatment of many 

cancers, they are cardiotoxic 25 and administration of the 

drugs induce cardiomyopathy and heart failure refractory to 

common medication. Due to the damaging effect on cellular 

DNA, treatment with anthracyclines is also often associated 

with the induction of secondary cancers. 

Initially, the main cytotoxic mechanism of action for the 

anthracyclines was thought to be induction of DNA 

damage. The direct effects of anthracyclines on DNA are 

DNA double helix distortion due to intercalation and 

Figure 1. The structure 
of daunorubicin and 
idarubicin. Adapted 
from 24. 
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introduction of DNA breaks. The breaks are introduced due to stabilization of the 

topoisomerase II complex or reactivity on the DNA backbone by free radicals 24. In 

addition to its direct effects on DNA, anthracyclines also have several other effects in 

leukemic cells such as inhibition of mitochondrial cytochrome C oxidase 26, binding and 

inhibition of the proteasome 27 and generation of free radical oxygen species (ROS) such 

as superoxides, peroxides and hydroxyl radicals 28,29. Even though anthracyclines are, 

above all, DNA intercalators, which results in genetic damage leading to cell death, 

increasing evidence suggests that the underlying mechanism for anthracycline 

cytotoxicity is the induction of apoptosis through intracellular-mediated signaling 

pathways 30. It has also been shown that DNA interaction may not be a prerequisite for 

anthracycline cytotoxicity, so whether drug/DNA interaction is necessary for apoptosis 

signaling is unknown. 

The cellular response to anthracycline treatment is highly regulated by a diverse set of 

signaling events that includes activation of both pro- and anti-apoptotic pathways such as 

the sphingomyelin-ceramide pathway, the MAP kinase and stress activated protein c-Jun 

N-terminal kinase (JNK), the NF-kB pathway and the Fas/FasL system 30. However the 

consequence of activation of these signaling pathways are not always obvious. For 

example, NF-kB activation normally considered an anti-apoptotic effect which may blunt 

the therapeutic efficiency of drugs, was found to be required for the cytotoxic effect of 

anthracyclines 31,32. How these pathways are activated in response to drug is again 

dependent upon factors such as the presence of oncogenes, tumor supressors and external 

stimuli such as growth factors. The dependency of the anthracyclines on protein synthesis 

for their action has been claimed by several studies since co-treatment of cells with a 

protein synthesis inhibitor inhibited drug-induced apoptosis 33-37. However, this view has 

been challenged 38 and particularly when it comes to the dependency of the 

anthracyclines on induction of the Fas/FasL pathway for their ability to induce cell death 
39,40.  

Anthracycline-induced death is associated with increased activity of caspases 41, and cell 

death is abrogated, but not completely blocked by caspase inhibitors 41,42. Enforced 

overexpression of the survival proteins Bcl-2 or Bcl-xL protect against anthracycline-
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induced apoptosis in vitro 43. In several systems, anthracycline treatment also activates 

p53-DNA binding and p53 could play an important function in anthracycline cytotoxicity 
30. 

All these findings implicate that the interactions between the anthracyclines and the cells 

are extremely complicated and that further studies are required to increase our knowledge 

about the mechanism of apoptosis induction and execution of the anthracyclines and to 

elucidate what factors are critical when it comes to resistance development. 

Protein synthesis inhibitors 
Protein synthesis is an absolute requirement for cellular survival, and several of the 

antibiotics used to treat bacterial infections (e.g. chloramphenicol, streptomycin, 

tetracycline, neomycin) function through the inhibition of protein synthesis. Inhibition 

can be effected at all stages of translation i.e. initiation, elongation and termination. 

Several toxins that inhibit protein synthesis in eukaryotes are also known, such as 

cycloheximide, puromycin, emetine, diptheria toxin and ricin. Since the protein synthesis 

inhibitor utilized the most in this study is cycloheximide, only this toxin will be described 

in detail. 

Cycloheximide (CHX) (from Streptomyces griseus 44) is a wellknown inhibitor of 

eukaryotic protein synthesis. Although inhibitory effects of CHX have been reported both 

on initiation, elongation end termination of protein synthesis 45,46, CHX is generally 

considered an inhibitor of protein elongation. CHX inhibits the translocation of peptidyl-

tRNA from the aminoacyl (A) site to the peptidyl (P) site on the ribosome by interacting 

with the P-site 45.  

CHX has for a long time been known to inhibit protein synthesis both in mammalian cell 

culture systems 47 and in intact mammals 37,48. Clinically CHX has been used in the 

treatment of acute cerebral phycomycosis 49 and as an antipyretic drug in patients with 

Hodgkin`s disease or other malignant neoplasms 50. In addition, treatment with CHX has 

been shown to induce involution of psoriatic plaques 51 and to be efficient in the 
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treatment of superficial basal cell carcinoma of the skin when added topically 52. Side 

effects of CHX is blocking of long-time memory 53,54 and acute nausea and drowsiness 50. 

Cytotoxic drugs commonly used in cancer therapy promote tumour cell death by inducing 

apoptosis. As a typical inhibitor of protein synthesis, CHX has been widely used to study 

the requirement of de novo protein synthesis in induction of apoptosis,s and studies have 

shown that the dependency upon protein synthesis for the ability of different drugs to 

function efficiently is diverse. The presence of CHX is in most cases essential for Fas- 

and TNF-α induced apoptosis due to the activation of NF-kB and resulting synthesis of 

survival proteins 55. For other drugs such as of etoposide 56,57, camptothecin 58 and 

doxorubicin 35-37,59 apoptosis was for a long time considered an active process requiring 

protein synthesis as the presence of CHX inhibited apoptosis. However, protein synthesis 

does not always seem to be a necessary step in the induction of apoptosis as CHX 

instead, of preventing epirubicin-induced apoptosis, enhanced the cytotoxic effect of 

epirubicin 38. 

Macromolecular complexes/pathways identified as targets in 
anthracycline-induced apoptosis 
The aim of this Thesis was to identify proteins that were modified either by proteolysis or 

post-translational modifications in anthracycline-induced cell death in order to learn more 

about the basic mechanism of action of these drugs and to identify new potential targets 

for directed therapy. During this study we came across several protein modifications that 

caught our interest because 1) they were related to macromolecular complexes that are 

current promising targets in cancer therapy, such as the Hsp90 complex (targeted by 

geldanamycin, GA) or the protein synthesis machinery (targeted by rapamycin), or 

because 2) several proteins involved at different stages in the same cellular pathway were 

targeted at the same time, such as the protein synthesis machinery and clathrin-mediated 

endocytosis and intracellular trafficking. To give the reader a background for 

understanding the papers resulting from this work, I will here give a brief general 

introduction into the three subjects that Paper I-III deals with, namely the Hsp90 multi-

protein complex, translational regulation of protein synthesis and clathrin-mediated 

endocytosis and intracellular trafficking. The introduction will focus on the proteins that 
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we identified as targets in anthracycline-induced apoptosis and will therefore not be 

complete when it comes to describing all the proteins and factors involved in and 

important for the Hsp90 complex, protein synthesis and endocytosis and trafficking. 

The Hsp90:p23 multi-protein complex 

Hsp90 is an abundant and ubiquitous chaperone expressed in the cells at high levels and 

necessary for cell viability in eukaryotes (for review see 60). During times of cellular 

stress, Hsp90 plays a role in reactivation of damaged proteins 61. In malignant cells, 

Hsp90 is found in a constantly active multiprotein complex together with several co-

chaperones such as p23 62, where it acts on a wide range of client proteins (for review, see 
63) and is essential for maturation, stability and activity of numerous signaling molecules 

involved in cancer progression and proliferation. These client proteins include protein 

kinases and ligand-regulated transcription factors 64-66 and refs therein).  

The Hsp90 co-chaperone p23 is part of the active Hsp90 multi-protein complex and 

facilitates conformational changes in Hsp90 63 and stabilizes Hsp90 interactions with 

transcription factors 67,68 and kinases 69. p23 also has a passive chaperone activity when it 

its not bound to Hsp90 and is able to inhibit aggregation of denatured proteins 70,71 and 

protect against ER stress induced cell death 72. In addition, p23 has been reported as 

identical to cytosolic prostaglandin E2 synthase 73. 

Recently, three different groups have tried to make knock-out mice of p23 74-76. However, 

even though p23 is dispensable for prenatal development and morphogenesis, p23 seems 

to be essential for perinatal survival as pups die during the prenatal period. The pups 

display retarded lung development which is probably due to the lack of a proper 

glucocorticoid response in p23-/- mice caused by a defect in assembly of a hormone-

responsive glucocorticoid receptor-Hsp90 complex that requires p23 for proper function 
74,75. 

As Hsp90 is involved in binding and stabilization of oncogene proteins, targeting Hsp90 

for directed chemotherapy has been very popular during the last decade. The Hsp90 

directed drug geldanamycin (GA) and its derivative 17-AAG have been tested with 

success in several treatment regimes, both alone and in combination with other cytostatic 
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drugs, and 17-AAG is now in clinical trial 20. GA is an ATP antagonist that binds to 

Hsp90 and prevents the association of p23 to Hsp90 77 since p23 binds to Hsp90 in an 

ATP-dependent manner 78. This results in destabilization and proteasomal degradation of 

Hsp90 client proteins and leads to growth inhibition and apoptosis 79-84. GA treatment also 

results in activation of the interferon-induced and double-stranded RNA-dependent 

protein kinase (PKR) 85. PKR kinase activation results in protein synthesis inhibition 86 

and has been described following apoptosis induction 87. 

Protein synthesis: Regulation of translation 

Protein synthesis is a highly energy depending process and is therefore exposed to tight 

regulation under normal conditions, and particularly in stressful situations such as viral 

infections, hypoxia, nutrient deprivation and exposure to apoptotic stimuli. Regulation of 

protein synthesis can be exerted on several levels, both by controlling mRNA availability 

on the transcriptional/processing level and by controlling the translation of proteins on 

ribosomes. During times of rapid environmental changes, such as acute stress, immediate 

and selective changes in protein levels are often necessary to ensure a rapid and suitable 

response. Translational regulation provides the cell with the plasticity that it needs to 

respond to rapid environmental changes 88.  

Translational initiation: cap- versus IRES 

The initiation of translation is under most stringent regulation and is a frequent target for 

translational control through phosphorylational events and proteolytic processing of 

essential factors. Two different mechanisms of protein synthesis initiation exist, the cap-

dependent and cap-independent mechanism. Cap-dependent translation is mediated by 

the mRNA 5`cap structure (m7GpppN where N is any nucleotide) and is the standard 

mode of translation used by most cellular mRNAs. 40S ribosomal subunit binding to the 

5`capped mRNA is mediated by the eukaryotic translation initiation factor 4F (eIF4F), a 

complex containing three proteins: eIF4E, the cap-binding subunit; eIF4A, a RNA-

dependent ATPase/ATP-dependent RNA helicase; and eIF4G, a scaffold protein for 

binding eIF4E and eIF4A. In addition binding of eIF4G to the 40S ribosome binding 

factor eIF3 and the poly(A)-binding protein (PABP) is also required (for review see 89 

(Figure 2a).  
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In cap-independent translation, the mode of translation of many mRNAs under stress, the 

ribosome is bound to a mRNA structural element called an internal ribosomal entry site 

(IRES) and requires the same canonical eIFs as cap-dependent, except for eIF4E. The 

initial steps of recruitment of ribosomes to the IRES are the eIF4A-dependent binding of 

eIF4G to the IRES with subsequent addition of 40S ribosomal subunit via the eIF4G-

eIF3-40S interaction (Figure 2b). Hence, the availability of eIF4E is considered to be a 

switch between cap-dependent and IRES-mediated translation 90. eIF4E availability for 

participation in the eIF4F complex is modulated by a family of repressor molecules, the 

eIF4E-binding proteins (4E-BPs). The 4E-BPs are substrates of the mammalian target of 

rapamycin kinase (mTOR), and when hyper-phosphorylated, 4E-BP does not interact 

with and inhibit eIF4E 91.  

mTOR regulates numerous components involved in protein synthesis (for review see 92 

and activation of mTOR through the PI3K/Akt pathway as a result of hormonal and 

nutrient stimulation or oncogene activation, increases cap-dependent translation initiation 
93. In addition to 4E-BP1, mTOR also phosphorylates p70S6K. p70S6K has numerous 

Figure 2. Cap-versus IRES-dependent translation initiation. (a) eIF4E binds to the 5´m7GpppN cap

structure. The capped end of mRNA is bridged to the 40S ribosomal subunit by eIF4G which also binds

to eIF3. eIF4A is involved in unwinding of the secondary structure of mRNA 5́ -UTR. PABP circularizes

mRNA through its interaction with both the 3´- and 5´-UTR. (b) ITAFs and proteolytic fragments of

eIF4GI or p97/DAP57NAT1 stimulates IRES translation. Adapted from 88.
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substrates among them pro-apoptotic Bad and ribosomal protein S6 94. p70S6K was for a 

long time thought to play a role in up-regulating the translation of mRNAs that contain a 

oligopyrimidine tract in their 5’-UTR, a 5`TOP, through phosphorylation of ribosomal 

protein S6 94-96. However, this hypothesis has been challenged and p70S6K does not 

seem to be involved  in translationally control of such mRNAs after all 94. Several 

mRNAs coding for components of the protein synthesis apparatus contain a 5`TOP 

considered essential for their regulation at the translational level 97. 

Initiation of IRES mediated translation is also regulated at the level of formation of the 

eIF2-methionyl-initiator tRNA-GTP ternary-initiation complex that is controlled by eIF2-

α phosphorylation. Phosphorylation of eIF2-α is mediated by several stress activated 

kinases such as e.g. PKR, and leads to reduced formation of the eIF2-methionyl-initiator 

tRNA-GTP ternary-initiation complex 86. This leads to a decrease in general protein 

synthesis, but an increase in selective translation of mRNAs coding for proteins that help 

the cell cope with cellular stress 88.  

Many mRNAs with IRES encode proteins that have important roles in cell cycle, 

proliferation, differentiation and apoptosis. Several proteins that are important regulators 

in apoptosis such as APAF1 98, XIAP 99, p53 100 and c-myc 101 are translated in an IRES 

dependent manner. During apoptosis, eIF4G as well as other initiation factors and parts 

of the translation initiation complex such as PABP, are cleaved by caspases 102 which 

leads to an inhibition of cap-dependent protein synthesis. Even though cap-dependent 

protein synthesis is targeted in apoptosis induction, protein synthesis can still go on in an 

IRES-dependent manner. Cleavage products generated from eIF4G and DAP5 can even 

specifically enhance translation of anti-apoptotic proteins during apoptotsis induction 
103,104. 

In addition to phosphorylational and caspase cleavage dependent regulation of initiation 

factors that induce a switch from cap-dependent to IRES-dependent protein synthesis, a 

switch can also be induced by stalling of elongation 105. The elongation process consists 

of recruiting the amino acyl-tRNAs to the A-site of the ribosome, a process involving 

eEF1A and eEF1B, and to translocate the ribosome relative to the mRNA by one codon, 

a process involving eEF2 106,107. The eEF1Ba subunit of eEF1B mediates GDP/GTP 
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exchange on eEF1A. The eEF2 is a GTPase and its activity is affected by the stalk 

structure of the 60S ribosomal subunit, a pentameric complex consisting of ribosomal 

proteins rpP1, rpP2 and rpP0 108. rpP2 has two C-terminal phosphorylation sites, Ser102 

and Ser105 109, and for rpP2 to interact with eEF2, it has to be in the phosphorylated form 
110,111. The eEF2 is regulated by phosphorylation by the eEF2 kinase (eEF2K), and is 

inactivated upon phosphorylation as the phospho form is unable to bind to the ribosome 

(for review see 107). Dephosphorylation of eEF2 is probably mediated by PP2A or a 

closely related phosphatase 112. The eEF2K is also regulated by phosphorylation by 

several kinases such, as e.g. p70S6K, and a phosphorylated form renders the eEF2K less 

active and hence promotes translation by a decreased eEF2 phosphorylation (for review 

see 107). 

10% of the cellular mRNA have the potential to be translated by an IRES-dependent 

mode 113. So far, IRES-mediated translation is the only cap-independent translational 

mechanism that has been validated 114-116. IRES mediated translation provides a way to 

escape the global decline in protein synthesis that is followed almost by any type of stress 

and is an energy saving mechanism since it is estimated that 50% of all cellular ATP is 

consumed in the protein synthesis process. It is also a way to allow selective translation 

of specific mRNAs, a function that is especially important in regulation of cell death and 

survival 117. A switch from global to specific translation allows for selective translation of 

proteins that are required for cell survival 118,119. Efficient IRES dependent translation 

requires cellular proteins known as ITAFs (i.e. hnRNP c1/c2 and hnRNP K 120) but their 

absolute requirement seems to be IRES specific 119. 

RNA granules 

Translational regulation can also be exerted on the level of availability/stability of 

transcribed mRNA. Cytoplasmic RNA granules serve key functions in controlling the 

localization, degradation/stability and availability of mRNAs 121, and several distinct 

types of RNA granules have been identified. After stress induction, mRNA assembles in 

stress granules where mRNAs are translationally repressed 122. RNA processing bodies 

(P-bodies) contain several proteins necessary for mRNA decay and RNA for degradation 
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or storage accumulates therein 123. Also other granules, as the IMP1 RNP granules, 

associates with untranslated mRNA 124. 

Protein synthesis in cancer 

Cancer cells are more dependent upon protein synthesis than normal cells as they have a 

higher rate of proliferation. Hence, deregulations of mTOR signaling pathways are 

considered to play an important role both in cancer initiation and progression 125, and 

mTOR is aberrantly activated in more than 70% of AML 12. Deregulation of mTOR can 

result from activation of upstream effectors of mTOR such as PI3K and Akt and/or over-

expression of components in the translational machinery so that they are no longer under 

the control of mTOR (reviewed in93). In addition, several components of the protein 

synthesis machinery are upregulated cancers 126,127 and refs therein. As several oncogenes, 

growth factors and anti-apoptotic proteins have been shown to have an IRES in their 5′-

UTR, regulation of their translation escapes cap-dependent regulatory mechanisms and 

selective translation of these factors contribute to survival of cancer cells under stressful 

situations and contributes to development and progression of cancer and to apoptosis 

resistance 128. 

 

Endocytosis and intracellular trafficking 

Endocytosis is the process of vesicle formation from the plasma membrane, and in this 

process, plasma membrane-associated proteins are internalised into membrane-bound 

transport vesicles. The endocytic pathway begins at the plasmas membrane and ends up 

in the lysosomes, and along this pathway cargo is either destined for recycling back to the 

plasma membrane or for degradation. As cargo passes through early and late endosomes, 

communication with the trans-Golgi network and the secretory pathway happens. The 

secretory pathway functions to deliver secretory and transmembrane proteins and lipids 

from the ER, via the Golgi apparatus, either to intracellular compartments, to the plasma 

membrane or to the exterior of the cell. At all stages in this vesicle-mediated transport 

between the plasma membrane and various intracellular compartments, recognition, 

tethering and fusion of vesicles are essential for proper destination of the cargo.  
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Endocytosis supports various cellular functions including nutrient uptake, growth-factor 

signaling, and membrane homeostasis 129. Categorically, endocytosis can occur by 

multiple mechanisms, and can be divided into phagocytosis or “cell eating” of large 

particles typically restricted to specialized cells such as macrophages and neutrophiles 130 

and pinocytosis or “cell drinking”, the uptake of fluid and solutes that occurs in all cells. 

Pinocytosis occurs by at least four basic mechanisms: macro-pinocytosis, caveolae-

mediated, clathrin- and caveolin-independent and clathrin-dependent endocytosis 129. 

These pathways are thought to vary mechanistically in how the vesicles are formed, 

which cargo molecules are internalized, how entry is regulated and to what intracellular 

destination the cargo is delivered.  

Clathrin-mediated endocytosis 

The best characterized endocytosis pathway is clathrin-mediated endocytosis (CME). It 

ensures uptake of nutrients and provides a way of transferring and regulating signaling 

from the exterior to the interior of the cell through surface receptor internalization. CME 

occurs both constitutively and as a result of ligand binding to surface receptors. 

Constitutive CME ensures a constant uptake of nutrients, such as e.g. iron, where iron-

loaded transferrin binds to the transferrin receptors, TfR 131. This internalization is not 

dependent upon ligand binding. On the other hand, cytokine and growth factor receptors 

are internalized upon ligand binding and endocytosis serves a prominent role in signal 

transmission from these receptors. While receptor-mediated endocytosis has traditionally 

been considered an effective mechanism to attenuate ligand-activated responses, more 

recent studies demonstrate that signaling continues on the endocytic pathway 132. Protein 

components of signal transduction cascades can assemble at clathrin coated pits and 

remain associated with endocytic vesicles following their release from the plasma 

membrane. Thus, endocytic vesicles can function as a signaling compartment distinct 

from the plasma membrane. 

Several proteins are involved in and essential for the formation of clathrin coated pits and 

vesicles and for the concentration of transmembrane receptors into these pits. This 

process and proteins involved are illustrated in Figure 3. Clathrin adaptors, such as 

adaptor protein 2 (AP2), link clathrin to cytoplasmic determinants of endocytic cargo  
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Figure 3. Clathrin-mediated endocytosis of EGFR. The internalization of EGFR is a well described 
model for ligand-induced endocytosis and is used here to illustrate components that are involved and 
important for clathrin-mediated endocytosis. The illustration is designed primary to show the function of 
the proteins that we found modified in anthracycline-induced apoptosis, and will therefore not be complete 
when it comes to all factors involved in internalization of EGFR. The AP180, AP2 and Eps15 adaptor 
proteins interact with membrane phopholipids and the intracellular parts of the receptor and recruit the 
clathrin triskelions to the membrane to assembel a polygonal lattice. The natural curvature of this lattice 
leads to the formation of invaginated structures known as clathrin coated pits. Phosphorylated EGFR 
recruits the E3 ligase Cbl which monoubiquitylates EGFR, associates with CIN85 and promotes receptor 
endocytosis. By the aid of dynamin, endophilins and amphiphysin these pits become a vesicle that is 
attached to the plasma membrane by a narrow neck. A GTP dependent change in dynamin causes scission 
and release of the vesicle from the membrane (After 133,134). 

 

during the formation of clathrin coated pits. The AP2-complex is a heterotetramer and its 

targeting to the plasma membrane is by the α-subunit. AP180 and Eps15, two other 

adaptor proteins, bind to AP2 and promotes the growth of clathrin coated vesicles by 

recruiting the clathrin triskelion. The adaptors also perform scaffolding functions in 

endocytosis by recruiting accessory or regulatory proteins 135. The adaptors might serve 

different functions for endocytosis of different receptors. E.g. phosphorylation of Eps15 

is essential for epidermal growth factor receptor internalization, but not for constitutive 

endocytosis of the TfR, suggesting Eps15 to have supplementary regulatory functions in 

endocytosis in response to proliferation signals 136.  
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The clathrin triskelion is a three-legged structure composed of three heavy chains (CHC) 

and three light chains (CLC). Clathrin will self-assemble into polyhedral lattices under 

non-physiological conditions 137, but requires adaptor proteins to assemble under 

physiological conditions 135. Dynamin is a multidomain GTPase that is recruited to the 

necks of coated pits where it mediates membrane fission resulting in release of endocytic 

transport vesicles 138. After uncoating of the clathrin lattice, the vesicles dock and fuse 

with early endosomes, a reaction dependent upon Early Endosome Antigen 1 (EEA1) and 

Rab5 139. Acidification of early endosomes leads to dissociation of most receptor-ligand 

complexes, and ligands destined for degradation traffic within late endosomes to 

lysosomes, while receptor-enriched vesicles are recycled back to the cell surface 140 141. 

Coated pits do not assemble randomly throughout the plasma membrane. Instead, CME is 

organized at endocytic “hot-spots” that are in part constrained by the actin cytoskeleton 
142. The cytoskeletal network also provides the tracks for the movement of transport 

vesicles between compartments. Several endocytic accessory proteins with multiple 

domains for protein-protein and /or protein-lipid interactions, such as Eps15 and 

intersectin, can function as scaffolding molecules that connect the endocytic machinery to 

the cytoskeleton 129. 

Vesicular recognition and fusion in membrane trafficking 

The intracellular membrane trafficking system uses vesicles and tubulovesicular 

structures to deliver cargo proteins and lipids from one compartment to the next. Several 

proteins including the Rab GTPases and the SNAREs are involved in recognition, 

docking and fusion of donor and acceptor compartments to ensure proper transport and 

delivery of cargo molecules 143. 

The Rab family is part of the Ras superfamily of small GTPases and confers recognition, 

initial docking and tethering of vesicles along the endocytic and secretory pathways 144. 

The Rabs display characteristic subcellular localizations, e.g. Rab5 localizes to the early 

endosomes 145 and to clathrin coated vesicles 146. The Rabs cycles between an active 

(GTP-bound) and inactive (GDP-bound) form and associates with a number of effector 

proteins that determine their specific targeting and function 144. 
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SNAREs acts downstream of the Rabs, and they confer tight docking and subsequent 

fusion of membrane bilayers in addition to ensuring specificity and recognition. They 

comprise three families of membrane associated proteins: The vesicle v-SNARE 

(synaptobrevin/VAMP), the target membrane t-SNARE (syntaxin) and the additional 

light chain family (SNAP-25). In addition to the SNAREs, several factors that interact 

directly with and are required for the ordered assembly of the SNAREs into functional 

complexes and fusion and trafficking of vesicles, are known. These include among others 

Munc13, synaptogamin and tomosyn 147. 

Endocytosis in cancer 

Defects or mutations in proteins related to the endocytic machinery are found in cancer 

cells. The translocation t(10;11)(p13;q14) found in ALL and AML resulting in the 

CALM-AP10 fusion protein, is linked to poor prognosis and leukemogenesis 148. CALM 

is the non-neuronal homolog of AP180 and involved in clathrin assembly. Exactly how 

the CALM/AF10 fusion protein contributes to leukemogenesis is not known, but several 

aspects have been suggested ranging from interference with gene expression 149 to 

impaired endocytosis resulting in prolonged growth factor signaling and increased 

proliferation stimuli 148. Also fusion proteins of Eps15 and endophilin-2 have been 

identified in AML and ALL 150. It has been established that impaired downregulation of 

RTKs is associated with cancer, and mutations or overexpression of proteins that impair 

receptor internalization and ensure enhanced signaling from growth promoting receptors 

have been reported. E.g. oncogenic forms of RTKs has been found to lack binding sites 

for Cbl, the ubiquitin ligase responsible for its internalization 151. Also Hip1, involved in 

CME, is overexpressed in cancers 151. 

In order to reduce systemic cytotoxicity of anti-cancer drug treatment, the endocytic 

pathway has been suggested as a specific mean for delivering therapeutic drugs to cancer 

cells. The TfR has been explored as a target for delivering therapeutics to cancer cells due 

to its increased expression in malignant cells, accessibility on the cell surface and 

constitutive endocytosis 152. Also the LDL-receptor family and folate receptors have been 

suggested as mediators of cellular drug uptake 153,154.  



 23 

Aims of the study 

We initiated a study of the molecular mechanism of action of the anthracycline class of 

chemotherapeutic drugs to:  

1: Learn how these drugs initiate and execute apoptosis in AML and identify 

proteins/pathways affected by the anthracyclines (curiosity-driven research).  

2: Based on above, hopefully pinpoint proteins/pathways that might become targets for 

rationally designed drugs.  

3: Learn about the shortcomings of anthracyclines in apoptosis-induction and propose 

suitable drugs for combination therapy to overcome some of the weak points of these 

drugs.  



 24 

 

Summary of Papers 

Summary Paper I 

By 2DE analysis the p23 co-chaperone of Hsp90 was identified as a caspase target in cell 

death induced by atnthracyclines (and various other death-inducing agents). Both effector 

caspases 3 and 7 could cleave p23, which occurred at two sites (D142 and D146) in the 

C-terminal tail of p23. The cleavages did not induce dissociation of p23 from the Hsp90-

complex. The presence of the Hsp90 inhibitor geldanamycin (GA) enhanced p23 

cleavage both in vitro by recombinant caspases and in intact cells exposed to 

anthracyclines and GA. GA also increased the apoptotic effect of the anthracycline. We 

postulate that the cleavage of p23 could compromise its ability to chaperone client 

proteins in the Hsp90 multi-protein complex and hence contribute to apoptosis induction.  

 

Summary Paper II 

We show that anthracyclines target the protein synthesis machinery by modulating key 

proteins involved in protein synthesis. The result is a switch from a regular cap-

dependent to non-cap-dependent synthesis. This switch is due to truncation, degradation 

and altered phosphorylation status of proteins controlling cap-dependent initiation, 

polypeptide elongation and specific mRNA translation. Targeting the protein synthesis 

machinery did not shut down synthesis all together, but resulted in a translational 

upregulation of proteins with pro-survival functions such as ER chaperones. Co-

administration of the anthracycline DNR and protein synthesis inhibitors (added in the 

pre-apoptotic phase) enhanced apoptosis both in AML cell lines in vitro and in several 

animal models of AML. This death-enhancing effect of the protein synthesis inhibitor 

could be due to disruption of the anthracycline-induced, presumably IRES-dependent 

synthesis of survival proteins. We postulate that the switching on of IRES-dependent 

synthesis of survival proteins is an “Achilles heel” in anthracycline action and that co-
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administering anthracyclines with a protein synthesis inhibitor in the pre-apoptotic period 

should be considered for developing improved anthracycline-based AML therapy.  

 

Summary Paper III 

Both by conventional 2DE analysis and an immunoblot screen we found that clathrin-

mediated endocytosis was targeted in anthracycline-induced cell death. Several proteins 

important for clathrin-mediated endocytosis were subjected to caspase-or proteasome-

mediated cleavage or degradation. This was accompanied by compromised uptake of 

transferrin and increased surface accumulation of the transferrin receptor. Clathrin light 

chain (CLC) was the first of the proteins involved in clathrin-mediated endocytosis to be 

targeted, and was completely degraded (presumably by the proteasome) before the onset 

of morphological signs of apoptosis and before detectable caspase activation. The 

degradation of CLC was also detected in blasts isolated from patients receiving induction 

therapy. Inhibition of the drug-induced CLC degradation resulted in reduced shutdown of 

transferrin endocytosis and reduced accumulation of surface receptors indicating that 

CLC plays an important role in clathrin-mediated endocytosis. Also receptors important 

in life-and-death signaling such as Fas/CD95 and IFNγ receptor accumulated on the 

surface in response to drug treatment, and co-treatment with monoclonal Fas antibody 

and IFNγ enhanced anthracycline-induced apoptosis. The anti-apoptotic 

phosphorylational activation of STAT5 induced by IFNγ was abrogated upon drug-

treatment. This indicates that accumulation of surface receptors due to targeting of 

proteins important in clathrin-mediated endocytosis can play a role in induction or 

execution of anthracycline apoptosis.  
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Methodological considerations and aspects 

AML cell lines 
Establishment of stable leukemia cell lines bearing gene rearrangements and secondary 

gene mutations characteristic of different AMLs have for decades been utilized for in 

vitro studies of aspects governing AML development and drug response. Cell lines are 

tools that can be exploited with some benefits, but the artificial aspects of cellular models 

based on selected, immortalized tumor cells should not be neglected. Therefore, to prove 

a principle/mechanism to be clinically and generally relevant for AML, one should 

address several representative cell lines and also include patient material in the study. In 

this study we have used the following AML cell lines, in addition to available patient 

material, to study the mechanisms of anthracycline action: 

NB4: The NB4 cell line (FAB-M3) was originally isolated from bone marrow cells from 

an APL patient in relapse 155. The cell line bears the t(15;17) translocation and 

differentiates into granulocytes upon ATRA-treatment 156. Upon treatment with arsenic 

trioxide and drugs such as anthracyclines and the Hsp90 inhibitor 17-AAG, the NB4 cells 

undergo apoptosis 157-159. The features of the cell line are extensively reviewed in 160. 

HL60: The HL60 cell line (FAB-M2) is a non-APL cell line, but exhibits an APL 

phenotype when it comes to ATRA-response. The cell line was initially derived from a 

patient with APL, however represents a less differentiated/more immature form of APL 

than the NB4 cell line, lacks the t(15;17) translocation and can be differentiated into a 

number of different cell types along the myeloid linage 161. The cell line has been 

extensively used to study AML proliferation, differentiation, oncogene expression and 

apoptosis induction. 

IPC-81: The IPC-81 cell line is an APL cell line derived from the Brown Norwegian rat 

acute myelocytic leukemia (BNML) 162. It has been widely studied as a model system for 

AML apoptosis-induction both by anthracyclines, phosphatase inhibitors and cAMP 163 
164. 
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Animal models of AML 
Even though cell lines are useful models for in vitro studies of cancer development and 

treatment response, they do not precisely recapitulate the in vivo settings of human AML. 

For this reason, AML animal models have been developed in which AML treatment 

modalities can be tested and studied. In this study we used several transplantable AML 

models to test a combination treatment consisting of an anthracycline and a protein 

synthesis inhibitor that had proved successful in cellular in vitro studies. 

The BNML rats are considered a good rat model for human AML as it closely resembles 

human AML with respect to growth characteristics and response to chemotherapy 165,166. 

The BNML rat model has been employed in preclinical evaluation of several treatment 

modalities and has been used to explore the action of and resistance against cytostatics 

like cyclophosphamide 167, 5-fluorouracil 168, acetyldinaline 169 and inhibitors of 

angiogenesis 170. This is a good model as it is syngenic. Hence, the immune system of the 

model is intact and the effect the immune cells exert on the cancer cells during therapy 

will be implicated in the therapy readout.  

To supplement the BNML rat model, we also used nude immuno-incompetent rnu/rnu 

Rowett rats as receivers of IPC-81 cells 171. 

The nonobese diabetic mice with severe combined immunodeficiency disease 

(NOD/SCID) exhibit multiple defects in both adaptive and innate immune response 172 

and is a successful model for transplanted human AML with high engraftment rates 173,174. 

In this study, we used the beta2 microglobulin knockout NOD/SCID B2mnull mice as 

receivers of NB4 cells. This strain is an excellent receiver of human leukemic AML cells 

as the innate immunity are further reduced due to lack of natural killer cells 175. 

To induce leukemia, cells were injected into the tail vein. Establishment of leukemia with 

homing and engraftment in the spinal cord, sternum and femur are shown in Figure 4.  
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Anthracycline concentrations and clinical relevance 

Several studies have pointed to different mechanisms of action of the anthracyclines (see 

Introduction for details). An important notice in this context is that the mechanism of 

cytotoxicity of the anthracyclines varies depending on the drug concentration used. To 

study the mechanism of drug action that is relevant for the clinical cytotoxicity of these 

drugs, it its therefore important to use concentrations that are achieved or sustained in 

patients receiving therapy. Findings by Muller et al. illustrate this point. They report that 

at pharmacological relevant doses of doxorubicin, the main killing mechanism against 

leukemic cells is induction of apoptosis and not oxidative DNA damage 176. Also, DNA 

breakage due to reactivity of ROS is probably only relevant at supra-clinical doses, at 

clinically relevant doses, the generation of DNA breaks is probably due to the inhibition 

of topoisomerase II 24. The different effects of anthracyclines at high and low doses are 

also evident in their ability to induce an apoptotic cell morphology. We found that low 

doses of DNR in IPC-81 cells induced apoptosis with classic morphological features such 

as membrane blebbing and chromatin condensation. However, at elevated doses, cell 

death with no classical signs of apoptosis occurred (Paper II). We called this “frozen “ 

cell death. Upon removal of the drugs by washing, the cells displayed classic apoptotic 

features. This phenomenon has also been reported for other leukemic cells and cell lines 

at elevated drug doses 59,177,178. 

 a 

b 

Figure 4. Engraftment of GFP-positive IPC-
81 cells in BN/Rij rat. Development of 
leukemia was followed and imaged in an 
eXplore Optix time-domain imager (ART 
Advanced Research Technologies Inc., 
Montreal, CA). (a) Ventral side of rat showing 
GFP-signals in the femur and sternum. The 
signal from the in the bladder is unspecific. (b) 
Dorsal side of rat showing GFP-signal from the 
spinal cord. The rats were imaged 3 weeks after 
injection of cells (picture taken by I. Brønstad).  
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For a study like this to have clinical relevance, it is therefore essential to mimic clinically 

relevant concentrations of DNR in experimental set-ups. However, finding the right drug 

concentrations to use is not straightforward. The peak plasma concentrations of 

anthracyclines like DNR are estimated to be in the range from 0.3 to 5 µM, and most 

often between 1–2 µM 28. However, extracellular drug concentration does not necessarily 

directly mimic the intracellular drug concentration as different cell lines show differences 

when it comes to drug accumulation and ability to accumulate the drug in intracellular 

compartments such as the lysosome which will decrease drug cytotoxicity 179,180.  

In our cell culture studies we used doses of DNR between 10 nM and 8 µM, i.e. most of 

our experiments lie within clinically relevant doses 28. When doses of DNR were used 

that exceeded the reported plasma peak concentration of 5 uM, this was to ensure rapid 

and complete effects, and also to counter the argument that what we observe was a 

response only relevant at sub-apoptotic concentrations of DNR and only reflect general 

cell stress and irrelevant as soon as cells start to undergo apoptosis. Major findings 

obtained with elevated doses were always reproduced with lower, clinically relevant 

doses to confirm the relevance of the findings. This accounts for e.g. the synergistic 

effect of DNR and CHX and the DNR-induced dephosphorylation of mTOR substrates 

(Paper II). IDA is a more lipophilic drug than DNR, accumulates more easily in cells and 

is considered about 4-8 times as efficient as DNR when it comes to apoptosis induction 
181. We therefore used IDA concentration ranging between 100 and 720 nM. Even though 

it is not straightforward to determine the proper drug concentrations to use or foresee the 

actual intracellular concentration of the drugs, that several of our drug-induced findings 

such as rpP2 dephosphorylation (Paper II), CLC degradation, transferrin endocytosis 

decrease and Fas-R surface accumulation (Paper II) were also detected in blasts isolated 

from patients receiving chemotherapy, convince us that our findings are clinically 

relevant even though we also obtained some of these results by using doses that are 

higher than the ones achieved in the patients during therapy. 

In our animal studies on the effect of co-treatment of anthracyclines and CHX, we also 

used clinically relevant drug doses. Typical treatment concentrations of DNR (Cerubidin, 

Aventis) for i.v. infusion are in the range 0.5 – 3 mg/kg per infusion (Felleskatalogen, 
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2007, 49. utgave. Felleskatalogen AS, Oslo). We used 0.5 or 1.5 mg/kg in animals on 

three consecutive days. Of interest, we found a significant prolongation of survival with 

administration of 1.5 mg/kg DNR, which was further enhanced by CHX, but with the 

lower dose of 0.5 mg/kg of DNR, we found little effect of DNR alone, but a stronger 

synergism with CHX (Paper II). The IDA doses we used are somewhat higher on mg/kg 

than the common clinical dose (12 mg/m2) used for human AML. We suspect the need 

for the relatively high doses of IDA to be due to pharmacokinetic differences, presumably 

suboptimal absorption of IDA from the intragastric tube used to administer that drug.  

While we are quite confident that the CHX concentrations used in cell culture 

experiments inhibited protein synthesis during the entire experiment, we did not measure 

the effect of CHX on protein synthesis in the AML cells in our in vivo models to establish 

that CHX for certain inhibited protein synthesis at the doses administered (mice: 5 

mg/kg).This was because doses between 2-5 mg/kg have been reported to be sufficient to 

inhibit protein synthesis in mice 37. In rats, the doses we used were lower, 0.8-1.5 mg/kg. 

The reason for this was that the rats were more sensitive to CHX treatment and were 

killed by higher doses of CHX. 

Proteome analysis: 2DE and COFRADIC 
The response of a certain drug on gene expression has for the last decade been a popular 

way of studying the effects of chemotherapeutics. The development of microarray 

techniques has provided an enormous amount of information on how drugs effect the 

expression of certain genes. However, drug-induced changes in gene expression have not 

always been reflected at the protein expression level. Even though the literature on how 

anthracyclines regulates gene expression is not that big and that further such studies are 

warranted, we decided to choose a proteomic approach in order to get direct information 

about the effects on cellular proteins. Another important reason for choosing a proteomic 

approach over a genomic approach is that we can detect drug-induced changes in post-

translational modifications, such as phosphorylation, which is an important cellular 

regulatory mechanism when it comes to transducing signals that are related to apoptosis 
182. 
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Studying how the proteome of a cell is affected by a drug provides information about the 

cellular targets/proteins that are important for the mechanisms of action of the drug and 

about which cellular signaling pathways that are activated in response to the drug. Two-

dimensional polyacrylamide gel electrophoresis (2DE) together with mass spectrometry 

(MS) have successfully been used to identify changes in the proteome linked to apoptosis 

induction or execution 183-190. Although 2DE because it also reveals posttranslational 

modifications such as changes in the phosphorylation status 191, the limitations of the 2DE 

technique in addition to being time consuming and problematic when it comes to 

reproducibility, is its failure in detecting low copy number proteins, hydrophobic proteins 

and proteins that are either very small or large or highly basic. For these reasons, we 

realized the need to study the proteome of apoptotic cells also by additional methods than 

2DE. 

To get a “global” view of protein changes associated with DNR-induced apoptosis, we 

used the non-gel high throughput technique of combined fractional diagonal 

chromatography (COFRADIC) for sorting of protein amino-terminal peptides 192-194. The 

technique is developed by K. Gevaert and J. Vandekerckhove at the Department of 

Medical Research and Biochemistry, Ghent University, Belgium. The peptide isolation 

procedure, MS/MS and data analysis that are part of this study, were preformed by Petra 

Van Damme in the lab of K. Gevaert (COFRADIC study on NB4 cells, Paper II) or by 

Anne Døskeland in the lab of K. Gevaert and at the Probe Unit, University of Bergen 

(COFRADIC study on IPC-81 cells, Supplementary Table 3). 

COFRADIC uses enforced changes in the chromoatographic qualities of a subset of 

peptides to reduce the complexity of the protein sample. In our study only the subset of 

N-terminal peptides in a trypsin-cleaved lysate were isolated and analyzed by MS/MS 
193,194. Since each protein only has one N-terminus, each protein is therefore represented 

only by one peptide. By differential labeling of peptides either chemically with oxygen-

16/18, or metabolically with SILAC-labeling, relative changes in protein expression 

between two different samples can be measured by MS. By this method data about new 

protein N-terminals that are generated as a result of protease-mediated activities are 

achieved, and the exact cleavage site is identified. In addition, by comparing the ratio of 
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N-terminal peptides, information about proteins that are downregulated (e.g. due to 

proteasomal activity) are also obtained. The COFRADIC method for sorting and analysis 

of peptides can also be used on other types of peptides in addition to the N-terminal ones, 

such as methionyl, cysteinyl and phosphorylated peptides.  

The diagonal peptide chromatography consists of two consecutive, identical peptide 

separations with an enzymatic or chemical alteration of the side-chain structure of the 

selected peptides in between the two separations. These selected and altered peptides then 

acquire different chromatographic properties and can thereby be segregated from non-

altered peptides in the secondary peptide separation. The procedure for sorting of N-

terminal peptides is outlined in Figure 5.  

In our first COFRADIC study (NB4 cells, Paper II) differentially Oxygen-16/18 labeling 

was used. O-16/18 labeling has the advantage that it is done post-metabolically in the 

reaction catalyzed by trypsin and therefore applicable on every proteolytic digest 

independent of its origin of sampling; being tissue extractions, body fluids or cell culture 

lysates. However, O-16/18 labeling was in the second COFRADIC study (IPC-81 cells, 

Supplementary Table 2) replaced by SILAC labeling. SILAC labeling has some 

advantages over O-16/18 labeling. O-16/18 labeling is not totally stable and back-

exchange can occur in acidic environments. Also, spacing, between the light and heavy 

isotopes is only 4 Da, making the determination of abundance ratios not so 

straightforward as with SILAC labeling where 13C/12C-arginine is used and peaks more 

easily declustered in the MS-analysis as the spacing is increased to 6 Da. However, 

metabolic SILAC labeling of cells has to be done in medium with dialyzed serum and for 

some cell lines this could affect viability and response to the experimental treatment. 

Also the cellular 13C6-arginine to 13C5-proline conversion during SILAC labeling is a 

challenge that will complicate MS analysis. To avoid this, the concentration of arginine 

in the medium was reduced and the concentration of proline was slightly increased. 
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Quite puzzlingly, when analyzing COFRADIC data, we detected unexplainable cleavages 

in our vehicle treated cells (Ctr) that were not normally seen in similar experiments done 

with Jurkat T cells (personal communication by P Van Damme and A Døskeland). That 

is, also internal N-terminal peptides were detected in the Ctr-sample (which theoretically 

should only contain one peptide per protein, the real N-terminus). The APL cell lines 

Figure 5. Scheme summarizing the chemistry and chromatographic steps during N-terminal peptide 
sorting utilized by COFRADIC. (a) (1) Protein-cystein residues are first alkylated using iodoacetamide 
(open circles). (2) Then all free amines (α -and ε-amines) are acetylated (filled diamonds), and the 
proteins are digested with trypsin (3) that will only cleave C-terminal to arginine residues. This creates 
two types of peptides: N-terminal peptides with a blocked N-terminus and internal peptides with a free N-
terminus. After the primary RP-HPLC fractionation of the generated peptide mixture, all peptides present 
in one HPLC fraction are treated with 2,4,6-trinitrobenzenesulfonic acid (TNBS) (4). Only the internal 
peptides with an unblocked N terminus are altered to trinitrophenyl-peptides (TNP open box). This 
reaction will induce a strong hydrophobic shift in the peptides and these peptides will shift out of their 
original position during the secondary chromatographic run that is identical to the first RP-HPLC 
separation. The N-terminal peptides are unaltered by the TNBS reaction and will thus elute at exactly the 
same time interval as during the first run and can be collected and analyzed further by LC-MS/MS (5). 
The internal peptides labeled with TNBS are discarded from further analysis (6). (b) Peptide elution 
profiles during the primary and secondary run of N-terminal peptide sorting. During the primary run of 
chromatographic fractionation of the tryptic protein digest, 12 fractions are collected and treated with 
TNBS to block the free amines. When the TNBS-treated fractions are separately rerun on the same 
column and under identical conditions, the internal trinitrophenyl peptides shift to later elution times 
(hydrophbic shift) while the unaltered N-terminal peptides elute within the same time interval and can be 
collected in a number of secondary fractions and analyzed by LC-MS/MS. Adapted from 192. 

a b 
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(such as NB4 and IPC-81) are known to have large amounts of granules containing 

proteases 195. The most likely explanation for the presence of internal peptides in the Ctr-

sample is that these proteases become activated upon sample preparation and are not 

inhibited by the cocktail of protease inhibitors present. However, the ratio between 

identical internal peptides generated in the Ctr-sample and the anthracycline-treated-

sample, were close to one, so these peptides were considered background noise in the 

system and subtracted from the analysis, and therefore considered not to influence the 

result of the study.  

Even though COFRADIC is a sensitive high throughput method, it has its limitations. 

Some caspase cleavages will not be detected. This is the case if the caspase generated C-

terminal peptide does not contain an arginine for trypsin cleavage. For this reason, we 

were not able to confirm the cleavage of p23 by the COFRADIC since the caspase 

cleavage creates a C-terminal fragment that does not contain a trypsin cleavage. A newly 

generated fragment could also be lost in the MS/MS-analysis if it is to long. 

Another surprising notion was that none of the endocytosis related proteins detected by 

an immunoblot screen to be modified in anthracycline-treated cells (Paper III), were 

identified as caspase targets or as being downregulated in any the two COFRADIC 

studies that were conducted. First, this indicates that even though COFRADIC is very 

sensitive when it comes to detection limits, it does not pick up all proteins and proteins 

can be lost during sample preparation, chromatographic analysis or MS analysis. The lack 

of a trypsin cleavage site in the generated C-terminal peptide can explain the missed 

detection for some of these proteins. A second plausible reason why endocytic proteins 

are under represented in the data obtained from these studies, is that they are not highly 

expressed in the cell or not properly dissolved from membranes during sample 

preparation. 

In the first COFRADIC study conducted on NB4 cells, we found that the majority of 

newly generated N-terminal fragments were due to caspase mediated cleavage and only a 

small fraction was due to cleavage by other proteases. However, in the second study 

conducted on IPC-81 cells in the presence of IDA and the proteasome inhibitor 

bortezomib, among the proteins we report in this study (which are only the ones that are 
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related to intracellular trafficking) only one cleavage was ascribed to correspond to a 

caspase cleavage site, the rest of the cleavages were due to the action of other proteases. 

This is quite puzzling, as anthracyclines are known to activate effector caspases 196. The 

reason for this is not obvious, but it is possible that the proteasome inhibitor also inhibits 

certain caspases. This is plausible since the proteasome possesses proteolytic activity that 

resembles the caspases (e.g the cleavage of AP2-α reported in Paper III and 197,198. A 

second plausible explanation for this observation is that IAPs, degraded by the 

proteasome upon apoptotic stimuli 199 are stabilized in the presence of bortezomib and 

serve to inhibit caspase activity. 

In the COFRADIC studies performed, we did not treat the cells with anthracyclines 

alone. The first study was performed in the presence of CHX together with DNR (Paper 

II). The reason for this was to ensure that the changes we identified were not due to 

newly synthesized proteins, as we wanted to identify modifications in proteins already 

present in the cell. Having established that CHX merely serves to enhance the effect of 

DNR and not change its character per se, we consider the changes obtained in this study 

to represent effects caused by DNR and not CHX. In the second study, IDA was 

supplemented with the proteasome inhibitor bortezomib. This was done both to inhibit 

further proteasomal degradation of protease-generated peptides 200, but also because we 

wanted to study the combined effect of IDA and botezomib since this combination is 

successful in inducing apoptosis in cancer cells 201. While the presence of bortezomib 

could influence the activity of IDA to a stronger extent than CHX would, COFRADIC 

results from IPC-81 cells treated with IDA alone, shows that the cleavage pattern is quite 

similar in the two samples (personal communication A. Døskeland) providing evidence 

that the protein targets reported in Supplementary Table 2 are most likely due to the 

action of IDA. 

Immunoblotting versus COFRADIC; supplementary methods 
A large part of the data obtained in this study is achieved by the use of proteomic 

methodology. This is a suitable approach for an open-end study such as the one we have 

undertaken here and produces unpredictable and exciting results. Nevertheless, even 

though proteomics can guide us in new directions, it is a technique that has to be 
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supplemented by other methods for verification. Firstly, this is because even though a 

proteomic study is considered a “global” study of changes in the proteome, far from 

every change will be detected (see above). Hence, one cannot be sure that the results 

achieved represent the full story. A proteomic study should therefore only be used to get 

an indication about what pathways one should look deeper into. Secondly, a proteomic 

study does not necessary indicate the nature of the protein modification. Therefore, hits 

should be verified by e.g. immunoblotting. Given that the appropriate anitbodies against 

suitable epitopes are used, immunoblotting will give information about whether a protein 

is totally degraded or whether a stable fragment is produced. Thirdly, data obtained by 

COFRADIC does not always indicate to what extent a protein is cleaved. Due to 

limitations in manpower and time, we have so far only verified a few of the proteins 

found by COFRADIC to be modified. We realize that several of the major findings 

should be verified by immunoblotting both to determine the completeness of their 

degradation/cleavage and to get information about the nature of the modification and 

whether a stable cleavage product is produced. This is important since caspase generated 

cleavage products are not necessary inactive, but can have distinct functions compared to 

the parent protein 202,203. A hit by COFRADIC should therefore not automatically be 

interpreted as a loss of function event, but should be further investigated. 

In vitro protein synthesis 
In this study we used in vitro protein synthesis translation by the Rabbit Reticulocyte 

Lysate (RRL) to study the effect of DNR on mRNA levels. The RRL-system is an 

efficient in vitro eukaryotic protein synthesis system widely used for translation of RNA, 

but the method clearly has its limitations. Even though translation of proteins in RRL is 

thought to be quite representative, e.g. high molecular proteins are often poorly translated 

due to their large size. For this reason, the value for PDI (spot 2, Figure 4 and Table 1, 

Paper II) is not given as an accurate value, but rather estimated due to the fact that PDI 

was not present in every gel we used for calculation. The reason why a calculated value 

for cutA (spot 4, Figure 4 and Table 1, Paper II) is not shown, is that the observed pI-

value for cutA does not correspond with the calculated one (pI 4.45 versus 5.15 

respectively), hence we were not able to detect cutA on the gels with in vitro translated 
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proteins. cutA is probably subjected to some kind of posttranslational modification in 

cells that is not mimicked in the in vitro translation system. 

From our in vitro translation experiments, we noted that translation of rpP2 (spot 1, 

Figure 4 and Table 1, Paper II) was surprisingly low compared to other proteins with 

similar molecular weight. This could reflect that there is very little rpP2 mRNA in the 

cells or it could reflect that translation from rpP2 mRNA is highly regulated. rpP2 is a 

ribosomal protein and has a 17 nucleotides long 5`TOP in its 5´-UTR (Figure 6). RRL 

has been shown to be absent or limiting in certain factors required for efficient 

translation, and supplementing RRL with these can enhance translation of proteins with a 

5`TOP 204,205. While the efficient translation of proteins with 5`TOP was initially thought 

to depend on phosphorylation of ribosomal S6 by the p70S6 kinase, this has later been 

questioned 94. We did not study the phosphorylation status of S6, but we found that DNR 

resulted in dephosphorylation and cleavage of p70S6K, probably leading to decreased S6 

phosphorylation. The enhanced synthesis of rpP2 in cells treated with DNR therefore 

supports the view that translational regulation of mRNAs with a 5`TOP is independent 

upon S6. Another ribosomal protein translated with much better efficiency in our system 

is eEF1Ba (spot 6, Figure 4 B,C, Table 1, Paper II). This protein has a 5`TOP consisting 

of 10 pyrimidines, probably making its mRNA less dependent upon specific translation 

factors (Figure 6). 

 

 

 

5`-cgcgctctct ttctgctgct ccccagctct cggatacagc cgacaccatg-3` 

5´-ggtttaaccc cgcctcttgc gtcggcgcct tccttttcct ccctgtcgcc accgaggtcg cacgcgtgag acttctccgc 
cgcctccgcc gcagacgccg ccgcgatg-3` 

eEF1Ba 

rpP2 

Figure 6. The 5`-UTR of rpP2 and EF1Ba. The inititation codon is underlined. The 
oligopyrimidine tract is in bold. 
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Flow cytometric (FACS) analysis 
In this study, as a supplement to microscopy, flow cytometry was used to determine 

apoptosis, either by AnnexinV and propidium iodide (PI) staining or by forward and side 

scattering qualities. AnnexinV detects externalized phosphatidylserine (PS). PS 

externalization is regarded an early event in apoptosis induction as PI is an “eat me” 

signal used for recognition of apoptotic cells and bodies for clearance 206. Forward (size) 

and side scattering (granularity) measures qualities regarded as being modified later in 

apoptosis than e.g. PS externalization. 

FACS-analysis was also used to measure transferrin endocytosis and accumulation of 

surface receptors. The strong fluorescence of the anthracyclines made these experiments 

a challenge. IDA is less fluorescent than DNR and was therefore used for apoptosis 

induction in experiments involving FACS-analysis. The Argon Laser (488 nm) excites 

IDA, which then gives a broad emission spectra. We therefore used an alternative red 

laser (635 nm) that does not excite IDA. For detecting surface molecules with 

commercially unconjugated antibodies or antibodies conjugated to FITC, we used a 

secondary antibody conjugated for readout by the red laser. To measure internalized 

transferrin, we used both transferrin conjugated to Alexa488 or Alexa647. The 

internalized transferrin conjugated to Alexa488 gives ten times stronger signal than IDA 

in the FL-1 channel (515 nm-545 nm), therefore the Alexa488 was suitable to use even in 

the presence of an anthracycline.  

For determination of surface receptors, extracellular flow cytometry was used. We did 

not combine this with analysis of the intracellular pool of the receptors. Doing so would 

provide information about the amount of receptors present on the surface relative to the 

intracellular pool.  

 



 39 

Discussion  

This study was undertaken to learn more about how the anthracycline class of drugs, used 

successfully for several decades in the treatment of cancers, induce apoptosis. By 

studying their mechanism of action, we can learn why they so efficiently kill cancer cells 

and identify specific proteins that can serve as targets for intelligent drug design. We can 

also discover the weaknesses, the “Akilles heel” of the drugs, and thereby be able to 

increase the efficiency of the anthracyclines by combination therapy.  

Even though much is known about the mechanism of anthracycline action, the results 

obtained in this study revealed that there is still much to learn. The majority of the targets 

we identified are probably not anthracycline-specific, but are part of a common 

downstream cascade of apoptotic events representative for several apoptosis-inducing 

drugs. This accounts for several of the capsase cleaved proteins, such as e.g p23. On the 

other side, the targeting of cap-dependent translation through dephosphorylation of 

mTOR substrates could be a more anthracycline-specific effect and not a common event 

of all apoptosis inducing agents. Targeting of cap-dependent protein synthesis has 

previously been reported for cells exposed to stress 207, but it does not seem to be a 

common drug targeting pathway as we failed to detect similar changes in AraC-induced 

apoptosis and in apoptosis induced by drugs isolated from marine micro-organisms 

(Gausdal, Herfindal, Døskeland, unpublished results).  

The success of the anthracyclines is most likely due to the fact that they do not target one 

pathway or one specific oncogene, but affect a number of pathways important for cellular 

survival and cancer progression. Nevertheless, additional targeting of these 

pathways/proteins by specific drugs enhances the apoptotic-inducing effect of the 

anthracyclines. That this is true both for GA, Fas ligandation and proteasome inhibitors 

(anthracyclines also target several of the proteasome subunits and bortezomid enhance 

anthracycline-induced apoptosis, unpublished results) have been shown both in this study 

and by others. This shows that even though the anthracyclines are successful, enhancing 

their efficiency by combinational therapy is possible. The combinational therapy can 

either serve to further target the same pathways as the anthracyclines or specifically 



 40 

target pathways that the anthracyclines fail to inhibit or survival pathways that they 

induce. A combination with the Hsp90 inhibitor GA is already considered for use in 

AML (personal communication BT. Gjertsen), and GA is in clinical trial for several other 

cancers 20. Proteasome inhibitors are also postulated for treatment in AML 208. In 

addition, we have shown that administration of anthracyclines together with drugs that 

inhibit stress-induced survival protein synthesis could be a promising therapy strategy. 

When studying the interplay between a cell and an apoptosis-inducing drug, it is not 

always straightforward to discriminate whether the observed effects are the consequences 

of direct drug-mediated actions or rather reflects the cellular response to the drug. It is 

also not always obvious whether a specific cellular response will contribute to apoptosis 

or fight it. The drug-induced synthesis of survival proteins that we report in Paper II has 

been interpreted as a cellular response to fight apoptosis. However, calreticulin, one of 

the proteins preferentially synthesized during this period, are pre-apoptotically exposed 

on the surface of cells to ensure the engulfment of apoptotic tumor cells by specialized 

cells of the immunesystem 209. Hence, induction of immunogenic cancer cell death 

allowing the immunesystem to contribute to eradication of dying tumor cells is triggered 

by the exposure of calreticulin. Therefore, maybe the reason for increased synthesis of 

calreticulin is not primarily to withstand cellular stress and hence play an anti-apoptotic 

effect, but rather to ensure recognition of pre-apoptotic cancer cells by cells of the 

immunesystem and ensure clearance of apoptotic cells in an organism. 

In this work we report the shutdown of clathrin-mediated endocytosis (Paper III) and a 

decreased overall protein synthesis coupled with an increase in the synthesis of a specific 

subset of proteins (Paper II). Both endocytosis and protein synthesis are cellular 

pathways that are highly energy demanding. Whether a cell shall commit suicide through 

the apoptotic pathway or rather pursue down the necrotic pathway is often a question of 

energy supply 210. Apoptosis is an energy demanding process that can result in necrotic 

cell death if the energy supply is limiting. Necrotic cell death triggers an unwanted 

inflammatory response that is stressful to the organism. From an evolutionary point of 

view, a cellular response that would ensure apoptosis rather than necrosis would therefore 

be favored. By shutting down highly energy demanding processes, the cell ensures the 
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presence of enough ATP to commit to an apoptotic rather than necrotic cell death, a 

response favorable for the organism. While autophagy is a way of “self-eating” to 

provide nutrients and energy to stressed cells 211, we did not see clear evidence of 

induction of autophagic cell death in DNR-treated cells. This could be due to near 

complete downregulation of the eEF2K that is involved in autophagic cell death 212. Since 

the cell does not have the opportunity to sustain energy uptake through autophagy in 

anthracycline-induced cell death, it might respond to the drug to shut down processes that 

are highly energy demanding in order to ensure an apoptotic route to cell death. 

Anthracyclines and Fas/CD95 
A majority of chemotherapeutic agents used in clinical oncology are effective against 

cancer cells because they induce apoptosis. Although they trigger apoptosis through 

several mechanisms and despite the variance in chemotherapeutic initiation processes, the 

release of cytochrome c from mitochondria followed by activation of effector caspases 

such as caspased-3 and -7 213 are believed to be a final common pathway in 

chemotherapy-induced cell death 30,214. Chemotherapeutic drugs can also induce the 

upregulation of death ligands or their receptors, and induction and/or execution of 

apoptosis may therefore be dependent or independent of death receptor signaling. The 

involvement of the Fas signaling pathway in drug-induced apoptosis has been most 

extensively studied. Fas-mediated and chemotherapy-induced apoptosis can converge at 

the level of the receptor, DISC formation, activation of the initiator caspase-8, at the level 

of the mitochondria, or at the level of downstream effector caspase activation 215. 

However, there is controversy regarding the involvement of the Fas pathway in the 

apoptotic response of tumor cells to anti-cancer drugs. While anthracyclines have been 

shown to be independent upon activation of Fas-R death signaling to induced apoptosis 
39,40, anthracyclines can still kill through activation of Fas 33. In addition, the activation of 

Fas-R did enhance anthracycline-induced cell death 216,217. However, cells selected for 

resistance towards Fas-agonists failed to show cross-resistance to anthracyclines 218. We 

have shown that anthracyclines induced a protein synthesis independent accumulation of 

Fas-R on the cell surface and that treatment with monoclonal Fas antibodies enhanced 

anthracycline-induced apoptosis (Paper III). However, others have reported that treatment 
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with anthracyclines did not increase the surface expression of Fas-R 219. The reason for 

this is not clear, but it can be due to the fact that they used much lower doses than we did 

and that proteasome/caspase activity resulting in compromised clathrin-mediated 

endocytosis or triggering of exocytosis of the cytoplasmic pool of Fas-R 220 was not 

activated at the studied time point. That activation of Fas-R enhanced anthracycline-

induced cell death despite reduced receptor internalization, supports the findings of 

Austin et al. that receptor internalization is not a requirement for signaling 221. However, 

reports exists stating that internalization is necessary for death signaling 222, so our results 

could also reflecte that internalization is not completely compromised despite 

accumulation of the Fas-R and a reduced transferrin uptake. 

After the dawn of the “proteomics era”, Fas-induced cell death has been quite extensively 

studied 183,193,223,224. In addition to being similar when it comes to the death enhancing 

effect of co-treatment with protein synthesis inhibitors, our main impression is that 

anthracycline- and Fas-induced apoptosis are also similar when it comes to downstream 

caspase targets (Paper II and 183,193,223,224). An intriguing finding that links the two 

pathways and that can help explain the similarity of Fas-induced cell death and 

anthracycline-induced cell death is the cleavage of nascent polypeptide-associated 

complex, NAC (Paper II, and Supplementary Figure 1). NAC has been found in complex 

with FADD, is thought to modulate FADD-mediated signaling 225 and is cleaved in Fas-

mediated cell death 223. FADD is a critical mediator of signal transduction pathways 

activated by members of the TNF-receptor superfamily such as the Fas-receptor 226. Since 

the expression of NAC modulates FADD-mediated signaling, one could speculate that 

anthracycline-induced cleavage of NAC will disrupt the NAC/FADD complex and 

liberate FADD to be free to mediate Fas-like death signaling. 

 

Discussion Paper I 
In this work we report that p23 is cleaved in DNR-induced apoptosis and speculate that 

cleavage of the C-terminal tail of p23 could play a role in induction/execution of 

apoptosis. This was based on the fact that the C-terminal tail is important for p23´s 

chaperone activity 227,228, and we hypothesized that the cleavage could compromise both 
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the autonomous chaperone activity of p23 and the ability of Hsp90 to stabilize survival 

signaling proteins and hence contribute positively to apoptosis induction. This hypothesis 

has been supported by the work of Mollerup et al. where a recombinant truncated form of 

p23 mimicking the cleaved form impaired anti-aggregating activity towards heat 

inactivated citrate synthase 200. A recent publication also supports a role for p23 in cell 

survival. Rao et al. reported that blockage of p23 cleavage reduced ER stress induced cell 

death 72. They did not study whether a truncated p23 would enhance such death, but 

found that immune- or siRNA depletion of p23 enhanced ER stress induced cell death. 

As ER stress was found to disrupt p23`s interaction with the pro-apoptotic BH3-only 

protein PUMA, the molecular basis for p23`s protective role could be its binding to 

PUMA and inhibition of PUMA translocation to the mitochondria where it is known to 

interact with Bax and trigger cytochrome c release 229. While the ER stress induced 

cleavage of p23 was postulated to be the most likely explanation for dissociation of p23 

and PUMA, whether the truncated form of p23 was unable to interact with PUMA was 

not investigated.  

In this context it is worth mentioning that Rao et al. only reported the D142-site to be a 

caspase cleavage site in p23 upon ER stress induced apoptosis. We had to mutate both 

D142 and D145 in order to totally abrogate cleavage, but our impression was that the 

primarily cleavage site was at D142. The reasons for this discrepancy could be that while 

they studied p23 cleavage in transfected cells, we studied the cleavage in in vitro 

cleavage assays with recombinant caspases and with in vitro translated p23. It could be 

that in our system the second site was more exposed and available to caspase cleavage 

than it would be in a cellular system. Also the presence of two phosphorylation sites for 

casein kinase II (CKII) close to the cleavage sites could influence the cleavage 

differentially in the two systems 230,231. 

Another possibility for p23 to function anti-apoptotically became evident when p23 was 

reported to be identical to PGE2 synthase 73. PGE2 stimulates adenylyl cyclase and the 

production of cAMP which can modulate apoptosis in hematologic cells 232,233. We have 

found that PGE2 and cAMP protect against anthracycline-induced apoptosis in NB4 cells 

(Wergeland, Gausdal, Kleppe, Døskeland, unpublished results). Therefore the proposed 
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PGE2 production of p23 could contribute anti-apoptotically. However, results by us 

(Wergeland, Gausdal, Kleppe, Døskeland, unpublished results) and others 75 question 

whether the PGE2 synthase activity of p23 is sufficient enough to contribute 

physiologically. We therefore strongly doubt that the established protective role of p23 in 

cell survival 72 could be due to PGE2 production. 

 

Discussion Paper II 
We report protein modifications resulting in targeting of cap-dependent initiation and 

stimulation of a non-cap-, probably IRES-dependent translation, stalled elongation and 

changed mRNA preferences for translation in anthracycline-induced apoptosis. The 

modifications identified include dephosphorylation events and caspase and/or 

proteasome-mediated cleavages/downregulation of essential proteins involved in the 

abovementioned processes. The proteins that we found targeted in this study and their 

effect on translation and mRNA processing are summarized in Figure 7. 

Until recently, relatively little attention has been focused on the changes in protein 

synthesis that accompany the commitment and execution phases of apoptosis. Induction 

of apoptosis is in many cases associated with a rapid and substantial, although incomplete 

inhibition in protein synthesis 102. As a result of stress-induction, both global and specific 

protein synthesis are modulated through changes in the phosphorylation status of proteins 

controlling translation 207, through regulation of the association of these factors into 

functional complexes and targeted cleavage of factors by proteases 234. In addition to the 

hits that we report here, also eIF4G, eIF4B, eIF2-α and the p35 subunit of eIF3 are 

reported cleaved by capases upon cell death induction 102. Also the two other ribosomal 

P-proteins contributing to the stalk formation, rpP0 and rpP1, are dephosphorylated in 

Fas-induced apoptosis 235. We did not check specifically if these proteins are modified in 

our system, but we cannot exclude this. In addition, the polypyrimidine tract binding 

protein, found cleaved in Fas-induced apoptosis 193 and able to both inhibit 236 and 

enhance 237 translation of mRNAs with IRES, is totally degraded in anthracycline-induced 

apoptosis (Gausdal et al., unpublished results obtained in COFRADIC study on IPC-81 

cells described in Supplementary Table 3). 
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In addition to the proteins reported in Paper II, the cleavage of p23 might also contribute 

to the translational switch from a cap- to non-cap-dependent mode. The mTOR signaling 

pathway is facilitated upon interaction with Hsp90, and GA was found to suppress 

phosphorylation of the mTOR targets p70S6K and 4E-BP1 and hence inhibit cap-

dependent translation 238. A cleavage of p23 could very likely, as does GA, lead to 

suppressed phosphorylation of 4E-BP1 and hence inhibited cap-dependent translation. 

Cleavage of p23 could also facilitate the switch in protein synthesis through increased 

eIF2-α phosphorylation. Protein kinase R (PKR) is one of the stress-activated kinases 

that phosphorylates and inhibits eIF2-α 239. PKR is bound to Hsp90 and its activity is 

repressed in the Hsp90 complex 85. Upon p23 cleavage, the ability of Hsp90 to inhibit 

PKR might be compromised, hence freeing PKR to phosphorylate eIF2-α and stimulate 

IRES-mediated translation. Interestingly, PKR has been reported to be activated upon 

caspase cleavage in Fas-induced cell death 240. 

To us, one of the most exciting findings was the dephosphorylation and total degradation 

of eEF2K. The eEF2K was found to have a more than 10-fold downregulation of its N-

terminus by COFRADIC analysis. Immunoblotting confirmed the COFRADIC finding 

and revealed that dephosphorylation of eEF2K marginally preceded its degradation 
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(Supplementary Figure 3). However, we have not determined if eEF2K is a caspase target 

or degraded by other means. No stable fragment of eEF2K was detected by 

immunoblotting, but considering the COFRADIC data and that the antibody used for 

detection of eEF2K recognizes the N-terminus, we cannot exclude that such a fragment is 

generated. Using a caspase inhibitor or an antibody towards another epitope would be 

necessary to determine this. The sequence of eEF2K (725 amino acids) contains several 

possible caspase cleavage sites with the consensus DXXD 213, and one of these are 

located to the N-terminus (D30SDD33). The activity of such a caspase generated fragment 

could either be compromised, changed or still intact. The catalytic domain of eEF2K is in 

its N-terminal half 241, so a cleavage her could interfere with its catalytic activity. Also the 

phosphorylation sites of eEF2K at serine-residues in the C-terminal would be present in 

such a fragment. However, cleaved eEF2K would most likely be dephosphorylated as we 

did not detect a fragment by the use of an antibody toward Ser366 and since p70S6K, that 

phosphorylates eEF2K at Ser366, was both dephosphorylated and cleaved by caspases. 

We have not checked the phosphorylation status of the other sites in eEF2K 

phosphorylated by other kinases 107,242,243, but it is of course possible that these sites will 

also be influenced by the activity of anthracyclines. Dephosphorylated eEF2K is known 

to be active, however if a eEF2K lacking 33 amino acids in its N-terminal will be able to 

phosphorylate and hence inhibit eEF2, we do not know. That eEF2 is incompletely 

dephosphorylated (Supplementary Figure 3) could support the hypothesis of a still active 

eEF2K. However, lack of complete dephosphorylation of eEF2 could also be due to 

inhibited PP2A phosphatase activity towards eEF2 regulated e.g. in an mTOR dependent 

manner 244,245. Hence, the effect of drug-treatment on eEF2K is so far not conclusive and 

needs to be further elaborated. 

eEF2 is, when compared to eEF2K, only dephosphorylated to a limited degree upon 

DNR-treatment and seems to be only marginally degraded or cleaved. To speculate how 

DNR-treatment affects the activity of eEF2 is therefore not easy, since we do not know if 

it is the same pool of eEF2 that is both dephosphorylated and degraded/cleaved and since 

we have so far not studied the nature of the modification. However, we postulate that 

despite some dephosphorylation, eEF2 is inhibited, at least to a certain degree, through 

the presence of a dominant phosphorylated eEF2 pool and the limited degradation of 



 48 

eEF2. This could contribute to stalled elongation and to mediate a cap- to IRES-

dependent synthesis switch. In addition to the direct effect on eEF2, proteins affecting 

eEF2 activity is also modulated (rpP2 dephosphorylation and eEF1Ba cleavage) possibly 

further resulting in a compromised translocation process and a change in mRNA 

specificity. Hence, the combined effect of targeting elongation on this level will probably 

result in a switch in preferred protein synthesis.  

We show that DNR, like rapamycin, inhibits cap-dependent protein translation due to 

inhibition of the mTOR pathway. We saw this by decreased phosphorylation of the 

mTOR targets 4E-BP1 and p70S6K. Their dephosphorylation was not due to inhibition of 

upstream activation of mTOR, as mTOR itself is not dephosphorylated. Hence their 

dephosphorylation is most likely mediated by activation of a phosphatase. The effect of 

the phosphatase could be enhanced by a compromised activity of P-mTOR, due to e.g. 

less stabilizing chaperone activity by the Hsp90 complex due to p23 cleavage. In addition 

to its dephosphorylation, p70S6K is cleaved by caspases (Supplementary Figure 2). The 

sequence of p70S6K (525 amino acids) contains only one consensus site for caspases, 

D393SPD396. This cleavage, more or less in the middle of the protein, will most likely 

compromise its activity. However, this should eventually be tested by looking at its 

activity towards the substrate S6. An interesting notion is that p70S6K also 

phosphorylates and inhibits Bad 246. Hence, a dephosphorylaiton of p70S6K would also 

have a pro-apoptotic effect through activation of Bad. 

Between the level of transcriptional and translational regulation, lies regulation on the 

level of mRNA processing. Results from out COFRADIC study indicate that 

anthracyclines in addition to exerting translational regulation, also influences mRNA 

splicing by targeting members of the spliceosome. Other, more indirect events that also 

affect the rate and specificity of mRNA translation, and hence the proteome, such as 

accessibility of mRNAs to the ribosomes, transport out of the nucleus and stability of the 

mRNA in the cytosol are also targeted in anthracycline-induced apoptosis. Several of the 

COFRADIC findings not discussed in Paper II, point to the fact that these processes are 

affected and contributes to altered translational specificity in anthracycline-induced 

apoptosis (Figure 7b and Supplementary Table 1).  
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Several proteins involved in mRNA splicing are targeted in DNR-induced apoptosis and 

underscores the spliceosome as a specific target for anthracyclines (Figure 7b). This 

targeting would affect the production of mature mRNA for translation and could be 

somewhat specific in its preferences so that mRNAs coding for survival proteins are 

preferentially matured into translatable mRNA. pICln is part of the methylosome that 

methylates Sm proteins resulting in assembly of Sm proteins onto U snRNAs to form the 

core of the spliceosomal snRNPs 247. pICln might also have a function in snRNP 

assembly unrelated to the methylation process 248. A cleavage of pICln could affect 

assembly of the spliceosome. Also Lsm3 (like-Sm), the RNA binding motif protein 39 

isoform a, the U2AF2 splicing factor and TAR DNA binding protein are modified in our 

study (for references see Supplementary Table 1).  

While some mRNAs are programmed for immediate translation, other mRNAs are 

programmed for delayed translation and stored in granules until environmental or 

developmental cues call for their translation. Several of the modified proteins we 

identified are part of different RNA granules. The processing body (P-body) is a 

cytoplasmic RNP granule that is involved in mRNA decapping and decay 249. Lsm 

proteins, known to function in pre-mRNA splicing are present in P-bodies and also 

function in mRNA decay 250. The IMP1 RNP granule, is a newly identified granule 

thought to function as a post-transcriptional operon containing among others proteins 

several hnRNPs (i.e. A0 and U) and PABP2 124. These proteins involved in mRNA 

modification and accessibility are modified in DNR-induced apoptosis and could be a 

mode for regulating the mRNA pool available for translation. Another process governing 

mRNA availability for translation is transport out of the nucleus, and proteins such as 

PABP and members of hnRNPs involved in mRNA transport are also cleaved or 

degraded. Also proteins that regulate translation of specific mRNAs are modified in this 

study including several hnRNPs and S3a and L13a (see Supplementary Table 1 for 

references and details).  

The hnRNPs are a diverse group of pre-mRNA/mRNA binding proteins found both in the 

nucleus and in the cytoplasm that associates with mRNA transcripts and influence 

their function and fate. In addition to their role in pre-mRNA processing and splicing 
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251, they also play important roles in the control of specific mRNA translation, transport 

and stability. Several hnRNPs are modified in response to DNR-induced apoptosis, and 

for their specific function, I refer to Supplementary Table 1. 

Induction of survival protein synthesis and synthesis of ribosomal proteins 

In this study we show that cells treated with anthracyclines have preferred synthesis for 

proteins that are involved in protein synthesis itself and in promoting survival to the cell. 

We postulate that the preferred synthesis is manifested in the pre-apoptotic phase of the 

cell death induction. We base this on the facts that several of the changes we found does 

not primarily serve to totally shutdown all protein synthesis, but rather to switch the 

preference of proteins synthesized from a general one to a specific one, and the fact that a 

protein synthesis inhibitor administered one hour after DNR were able to enhance the 

effect of DNR. The molecular targets we have identified (Figure 7) indicate a switch in 

protein synthesis from a cap-dependent to a non-cap-dependent. This is probably an 

IRES-dependent synthesis. However, we cannot say this for sure as we have not proven 

this directly, and since it is not possible to identify an IRES-sequence in the 5'-UTR of a 

protein simply by looking at the nucleotide sequence since the IRES is a structural motif. 

Several genes involved in cell growth, proliferation, differentiation and the regulation of 

apoptosis contain IRES elements in their 5'-UTRs and can be translated in an IRES-

mediated way. This mode of translation provides a means of escaping a global decline in 

protein synthesis, and allows the selective translation of specific mRNAs. This indicates 

that the selective regulation of IRES-mediated translation is crucial to the regulation of 

cell death and survival. Selective translation of proteins may contribute to the survival of 

cancer cells under stressful situations, such as lack of nutrients, hypoxia, or therapy-

induced DNA damage 88,117. Also apoptotic control in transformed cells occurs via 

qualitative rather than quantitative changes in protein synthesis is mediated by a dynamic 

interplay between cap-dependent and cap-independent processes 252. 

We found an upregulated synthesis of rpP2, PDI/P4HB, PCNA and calreticulin. Since we 

only focused on a small part of the proteome, several other survival proteins in addition 

to the ones we found are also most likely preferentially synthesized in pre-apoptotic cells 
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and will contribute to the drug-induced anti-apoptotic response. How might the proteins 

we identified promote anti-apoptotic functions? The presence of de-phospho rpP2 (both 

due to dephosphorylation and increased synthesis of un-phospho rpP2 combined with a 

slow phosphorylation rate) will influence the fidelity and selectivity for mRNA 

transcripts 253 and could facilitate translation of mRNAs coding for proteins important in 

anti-apoptotic functions and not highly translated under normal conditions. Proliferating 

cell nuclear antigen, PCNA, is a cofactor for DNA polymerase delta, a polymerase with 

3'- to 5'- exonuclease activity and proof reading activity 254. In response to DNA damage, 

PCNA is ubiquitinated and is involved in the RAD6-dependent DNA repair pathway 255. 

PCNA has a proliferating effect and has been found to be upregulated in several cancers 
256. siRNA knock down of PCNA led to downregulation of apoptotic inhibitors and 

upregulation of pro-apoptotic genes. This makes it understandable that a stress-induced 

upregulation of PCNA could have an anti-apoptotic effect in anthracycline-treated cells. 

PDI functions among other things as a chaperone and inhibits aggregation of misfolded 

proteins 257, and PDI upregulation has been demonstrated to protect against neuronal cell 

death 258. Calreticulin is an ER chaperone and is involved in "quality control" within 

secretory pathways 259. In addition, calreticulin has also been shown to influence 

translation of several mRNAs. It blocks translation of p21 mRNA and hence promotes 

proliferation 260. It also represses translation of growth-inhibitory C/EBP proteins 261. 

However, the effect of translational upregulation of calreticulin is not definite, as 

calreticulin is translationally downregulated in Ras-transformed cells 262, induced in 

fenretinide-induced apoptosis 263 and triggers an immunogenic cancer cell death 209. 

Reports have stated that following stress, ER serves as the primary compartment for the 

synthesis of soluble and secretory proteins and that ER-bound ribosomes provide a 

unique mRNA translational function 264-266. We show that both rpP2 and calreticulin are 

preferentially synthesized in DNR-treated cells, and others have reported their 

translocation to the cell surface upon death induction 209,235. Whether the anthracycline-

induced protein synthesis we report here is preferentially located to the ER, we cannot 

conclusively state from our TEM experiments. However, several ribosomes seemed to 
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still attach to the ER even though polyribosomes were disaggregated in the cytosol, so 

this is plausible.  

Anthracycline-induced cell death and protein synthesis inhibitors 

Addition of a protein synthesis inhibitor is often essential for the ability to induce cell 

death via death receptors. This has been ascribed to the activation of survival pathways 

through NF-kB mediated gene-transcription and synthesis of proteins with an anti-

apoptotic function 55. Also DNR induces translocation of NF-kB to the nucleus 267. When 

present for a prolonged period (>15 h) of time, DNR has been reported to affect the 

expression of up to 10% of the genes expressed in some cells 268,269. Many of the genes 

upregulated by DNR codes for survival-associated proteins, presumably because DNR 

activates survival signaling through e.g. the NF-kB and PI3-kinase pathways 30. We can 

not completely exclude that a part of the survival protein upregulation due to DNR-

treatment to some extent is due to transcriptional regulation and not only to translational 

regulation. However, we have shown that DNR does not significantly influence gene 

transcription, and that all but one protein (PCNA) of the in vitro translated proteins in the 

sub-proteome analyzed (pI 4-5), showed a more than two-fold change in expression after 

DNR treatment (Supplementary Table 2). To study proteins specifically upregulated 

transcriptionally by DNR, a proteome analysis of cells after prolonged exposure to 

moderate concentrations of DNR would probably be a suitable approach and could reveal 

the identity of may proteins generally induced in stressed cells 270. However, in our 

experimental setup, we concluded, based on mRNA levels and protein modifications in 

the protein synthesis machinery, that the induction of survival protein synthesis that we 

see is primary due to translational regulation of protein synthesis. 

We report in this paper that inhibition of protein synthesis in the pre-apoptotic phase of 

anthracycline-induced apoptosis significantly enhances cell death both in cell culture and 

in animal models of AML. We postulate that the enhancing effect of the protein synthesis 

inhibitor on anthracycline-induced cell death is due to shutdown of the pre-apoptotic 

drug-induced synthesis of survival proteins such as e.g. chaperones. 
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Previous reports on the effect of CHX on cell death are somewhat contradictory, and 

CHX has been reported both to protect against 271,272 and to enhance 273,274 apoptotic cell 

death (see also Introduction). The reasons for the discrepancy between these reports are 

several, and the effect of CHX appears to depend on the cellular system, the 

concentrations used and the administration schedules. That CHX prevented cell death 

lead to the assumption that de novo protein synthesis of “killer” proteins was required for 

apoptosis to occur 275. However, the concentrations of CHX used are crucial for its effect 

and low doses of CHX that only modestly or transiently decrease protein synthesis has 

been found to induce cytoprotective signaling pathways and upregulate anti-apoptotic 

proteins such as Bcl-2 276. Therefore, the use of low doses of CHX and a consecutive 

induction of survival proteins can explain some of these reports 277. Also the fact that 

CHX induces apoptosis alone 58,274 argues against the requirement for de novo synthesis 

of “killer” proteins, and rather indicates that the machinery necessary to induce apoptosis 

is constitutively expressed in a latent form and that synthesis of labile short lived 

repressors/survival proteins are required to prevent the dormant apoptotic apparatus from 

inducing apoptosis 278,279. In addition, the fact that CHX is a reversible inhibitor of protein 

synthesis, primes for caution when interpreting the results of experiments that are 

preformed over an extended period of time as sustained inhibition of protein synthesis 

might not be achieved 277. Our studies were carried out with doses of CHX that more or 

less completely inhibited protein synthesis (measured by [35S]-methionine incorporation) 

during the experimental readout. After prolonged exposure, CHX will itself induce 

apoptosis 58. However, CHX alone did not induce significant apoptosis within the time-

course of our experiments. We therefore conclude that its inherent apoptosis-inducing 

ability is not relevant for the results obtained in this study.  

The time at which the protein synthesis inhibitor is supplemented relative to the other 

drug is also an aspect. We found that the death enhancing effect of CHX was most 

prominent when it was administered 1-1.5 h after the anthracycline. In a majority of the 

reports where CHX is reported to inhibit cell death, CHX is administered prior to the 

drug. CHX will shut down the synthesis of cyclines that are essential to pull a cell 

through the cell cycle. Hence, CHX induces cell cycle arrest. Drugs that are only 

effective e.g. in transtition between phases or in a particular cell cycle phase will 
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therefore most likely be inhibited by the presence of CHX given before addition of the 

drug. This is illustrated in the case of camptothecin-induced cell death, a DNA 

topoisomerase I inhibitor that acts only in the S-phase 58. Although anthracyclines exert 

their toxic effect in all phases of the cell cycle, the fact that they are topoisomerase II 

inhibitors indicate that cells in the S-phase are more sensitive to drug-induced apoptosis 
280. Stalling of cycling cells by protein synthesis inhibitors and thereby denying the drug 

access to cells in S-phase, could explain an antagonistic effect of CHX found by many. 

Finally, the finding that elevated drug-doses induce a “frozen” apoptotic morphology can 

also explain some of the reports where elevated drug and/or CHX concentrations have 

been used, since high drug doses prevent cells from displaying classical morphologic 

features of apoptotic cell death. 

We did not only observe an effect of CHX in cell culture, but saw the same effect in 

animal models of AML. One possible explanation for the death-enhancing effect of CHX 

observed in animal studies could simply be increased toxicity of the anthracycline owed 

to increased and stressed drug metabolism in the liver due to the presence of CHX. 

However, this unspecific effect of CHX is unlikely as others reported, when looking at 

apoptosis in the murine intestinal tract of in vivo treated animals, that CHX administered 

together with adriamycin/doxorubicin inhibited the effect of the anthracycline 37. This 

argues against that CHX increases the toxicity of the anthracycline via stressed drug-

metabolism in the liver. CHX could also have influenced uptake of the anthracycline and 

thereby increased the toxic effect of the drugs by enhancing its intracellular 

concentration. However, CHX has been reported not to influence the uptake of 

doxorubicin in leukemic cells 36. 

While the abovementioned can easily explain most of the discrepancy found in the 

literature on the effect of CHX on cell death, the data reported by Furusawa et al. that 

quite contrary to our data states that CHX abrogates the effect of doxorubicin in a 

leukemic mouse model, is not easy to explain 36. The discrepancy between these two 

works must be due to experimental differences. In the two studies, different cell lines 

were used to induce leukemia and different rodents were used as receivers. While we 

inoculated the leukemia cells via the tail vein, they inoculated the cells i.p. This could 
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result in leukemias with somewhat different qualities. While they administered CHX 

prior to the anthracycline, we administered it 1-1.5 h after. However, they administered a 

high dose of CHX (15 mg/ml for mice compared to our 5 mg/ml) that should be 

sufficiently high not to induce survival protein synthesis 276. While we administered the 

anthracyclines i.v. or perorally, they gave the drugs i.p. This could differentially 

influence both the effective concentrations of the drug and the drug metabolism in the 

liver. 

Ribosomal Protein P2 

Both CK II 109 and G protein-coupled receptor kinase 2 (GRK2) 281 phosphorylate rpP2. 

Which kinase that are the predominant one, is not known. Hasler and coworkers found 

that in vivo, the CK II only phosphorylated rpP2 at Ser105, and postulated this to be the 

primarily site of phosphorylation. However, we have shown that newly synthesized rpP2 

is phosphorylated in a consecutive manner from a non- to a mono- and di-phosphorylated 

form. Consequently, the Ser102 site is phosphorylated to a similar extent since the main 

form of rpP2 in non-apoptotic cells is a singel spot with pI correlating to a di-phospho 

form of rpP2. We have not investigated whether there is a preference in order of 

phosphorylation between the two sites or whether specific kinases show any preference 

toward the two phosphorylation sites. The kinetics of the phosphorylation is rather slow 

and not complete within 1 h. This is in contrast to what has been reported in yeast, where 

rpP2 phosphorylation reaches saturation within 10 min 282. This discrepancy could be due 

to cell specific variations. The slow phosphorylation of rpP2 could be a way of regulating 

peptide elongation by governing the availability of di-phospho rpP2 to interact with 

eEF2.  

We found di-phospho rpP2 to be dephosphorylated by a calyculin A sensitive 

phosphatase. Also the MCF-7 mammary carcinoma cell line show dephosphorylation of 

rpP2 upon anthracycline treatment indicating that this is not an AML specific event 

(Supplementary Figure 4a). rpP2 seems to de dephosphorylated in a consecutive manner, 

however, we have not looked into whether there is a preference to the sequence of 

dephosphorylation or whether it is completely random. rpP2 has previously been reported 

to be dephosphorylated in Fas-induced cell death in a caspase dependent manner 235. 
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Contrary to our finding, only one dephosphorylation step was noted. Their finding 

indicates that the phosphatase activity could be regulated at least partially by caspase 

cleavage. The phosphatase most likely responsible for rpP2 dephosphorylation is PP2A 
283. PP2A is activated early in Fas-induced apoptosis in neutrophiles 284 and caspase 

cleavage of PP2A results in increased PP2A activity towards specific pro-apoptotic 

substrates involved in the cellular apoptotic response 285. 

The dephosphorylation of rpP2 also happened in AML patient blasts after exposure to 

anthracyclines. The % dephosphorylation differed within the FAB sub-classification 

groups of AML. When the level of anti-apoptotic Bcl-2 was determined in patient blasts, 

there was a correlation between rpP2 dephosphorylation and Bcl-2 level, where high 

levels of Bcl-2 inhibited rpP2 dephosphorylation (Supplementary Figure 4b,c). 

Interestingly, also in IPC-81 cells stably transfected with Bcl-2 and completely resistant 

to anthracycline-induced apoptosis, rpP2 dephosphorylation was inhibited 

(Supplementary Figure 4d). Whether the inhibition is by direct interaction between Bcl-2 

and PP2A, or whether the inhibition of PP2A activity is secondary and a result of general 

Bcl-2-mediated inhibition of apoptosis and caspase activation, we cannot say. 

De-phospho rpP2 interacts badly with eEF2 111, and the GTPase activity of eEF2 and 

translocation of peptidyl-tRNA from the A- to the P-site of the ribosome is dependent 

upon the presence of rpP1 and rpP2 on the large ribosomal subunit 108,111. However, 

inactivation studies in yeast have shown that the P1 and P2 proteins are not absolutely 

essential for ribosome activity, but are able to affect the specificity of translation of some 

specific mRNAs 253. It has been shown that the cytoplasmic pool of rpP2 are 

interchangeable with the phosphorylated rpP2 pool present on the ribosomes 253. The 

dephosphorylation and enhanced synthesis of rpP2 combined with a slow 

phosphorylation rate may contribute to shifting the pool of rpP2 present on the ribosomes 

to a de-phosphorylated one and thus facilitate both a slowing of elongation, that might 

result in IRES-dependent translation 105, and a change in mRNA specificity for 

translation. 
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Several reports point to the utilization of rpP2 as a target in cancer therapy. Our finding 

that rpP2 is dephosphorylated early in apoptosis supports this notion. Monoclonal 

antibodies against ribosomal P-proteins have been shown to penetrate into several cell 

lines and induce apoptosis 286. Antibodies directed against the conserved C-terminal 

sequence of the P-proteins inhibited protein synthesis elongation by blocking access of 

elongation factors to the ribosomal stalk 287. Others have shown that antibodies towards 

the P-proteins have an inhibitory effect on global protein synthesis 288. The gonadotropin-

releasing hormone (GnRH) analogues are used in the treatment of several cancers, and 

inhibit proliferation by decreasing the rate of protein synthesis through downregulation of 

rpP1 and rpP2 289. The drug trichosanthin interacts specifically with rpP2 290, and has been 

shown to have anti-tumor effect 291. 

Anthracyclines and autophagy 

An interesting notice in view of the mimicry by DNR of rapamycin actions was the lack 

of appreciable autophagy induction by DNR. Electron microscopy did not reveal any 

obvious signs of autophagy. Also the fact that disaggregated ribosomes remained 

numerous late in apoptosis indicates no induction of autophagy as ribosomes are among 

the first targets in autophagic cell death 292. Autophagy can provide nutrients and energy 

to stressed cells 211, and is stimulated by mTOR inhibitors such as rapamycin, in part 

through the activation of eEF2K 212. The lack of obvious autophagy may be due in part to 

the near complete downregulation of eEF2K in DNR-treated cells. 

Drug-induced surface expression of proteins: A role for NAC? 

The finding that nascent polypeptide-associated complex (NAC) is cleaved at EEQD42 by 

caspases is tempting to link to the increased surface expression of proteins such as 

calreticulin an rpP2 that occur upon apoptosis induction 209,235. NAC was also reported 

cleaved in Fas-induced apoptosis, but the cleavage site was not identified 223. NAC is 

among the first ribosome-associated proteins to bind nascent polypeptides as they emerge 

from the ribosomes. The exact role of NAC is debated (for review see 293), however it has 

been postulated that NAC functions as a negative regulator of translocation of proteins 
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into ER 294,295. A cleavage of NAC could compromise this ability and allow ER-targeting 

of proteins not originally destined for ER and/or secretion.  

 

Discussion Paper III 
In this paper, we report anthracycline targeting of the endocytic machinery resulting in a 

decreased transferrin endocytosis and an accumulation of surface receptors. This was 

seen both in cell lines and in blasts from patients receiving induction treatment. 

 

CLC, AP2-α and Eps15 

Anthracyclines induced cleavage and degradation of several proteins involved in clathrin-

mediated endocytosis. Two of the proteins we found to be targeted upon cell death, CLC 

and AP2-α, were not exclusive caspase targets as the presence of zVAD did only 

partially inhibit their degradation. CLC contains the putative caspase target sequence 

D73AVD76, so its cleavage by caspases is feasible. CLC disappeared before visible 

caspase activation, but caspases have been shown to be active pre-apoptotically 296. 

Whether mutating the caspase target sequence would abrogate degradation, was not 

tested. However, mutating the destruction box (D-box) motif 297 in the C-terminal tail of 

CLC, abrogated CLC degradation. Which mode of CLC degradation that is the prominent 

one, we do not know, but our mutation analysis points to the proteasome as an important 

player. This shows that even though anthracyclines bind to and inhibit the proteasome 298 

and that several proteasome subunits are targeted for cleavage in IDA-induced apoptosis 

(Gausdal, Døskeland, et al., unpublished results), the proteasome is active at least in the 

induction phase of anthracycline-induced apoptosis and able to mediated degradation of 

proteins. We have not yet investigated which ligase that are involved in CLC 

ubiquitinylation, but one ligase, cbl, that is involved in ubiquitinylation og EGFR could 

be a candidate as it is found in the vicinity of clathrin coated pits 299.  

The modification in AP2-α was also only partially inhibited by the presence of zVAD, 

but totally inhibited by a proteasome inhibitor. We therefore concluded that AP2-α is not 

a sole caspase target. However, the presence of a stable product of AP2-α at about 50 
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kDa was puzzling since degradation by the proteasome does not normally result in a 

stable product, but in complete degradation of the protein. Interestingly, Austin et al. 

reported AP2-α to be cleaved by initiator caspases in death receptor-induced apoptosis 
221. The cleavage fragment obtained for AP2-α in TRAIL-induced apoptosis is similar to 

the one we find in DNR-induced cell death, indicating that AP2-α is most likely cleaved 

at the same site by the two death-induction modes. This could indicate that the 

proteasome has caspase-like qualities and is able to cleave/partially degrade proteins and 

leave stable cleavage fragments. 

Eps15, originally identified as a substrate for the kinase activity of EGFR (reviewed in 
300) and involved in ligand regulated, but not constitutive endocytosis 136, was also a 

caspase target. The antibody used for Eps15 detection binds to an epitope in the C-

terminal part of Eps15 that is involved in AP2-α binding. The sequence of Eps15 

contains several putative caspase target sequences, one of them is in the C-terminal 

(D795SPD798) in the middle of the immunogen (amino acid 694-888). By using this 

antibody, we were not able to show a stable cleavage fragment of Eps15 indicating that 

this part of Eps15 is cut off. A cleavage of Eps15 in this area would probably interfere 

with its binding to AP2-α and generation of the clathrin lattice.  

An aspect that we have not addressed in this study and that could play a role both in the 

function of endocytic proteins and their susceptibility to cleavage/degradation, is 

phosphorylational regulation. Both phosphorylation of CLC b-chain 301 and AP-2 302 have 

been reported to regulate CCV formation 303. Whether dephosphorylation of these 

proteins follows apoptosis induction is not known, but AP2-β is dephosphorylated in a 

PP2A dependent manner 304 and PP2A is a phosphatase activated in apoptosis 285. We 

have shown that a calyculin A sensitive phosphatase, probably PP2A, dephosphorylates 

rpP2 pre-apoptotically upon anthracycline treatment (Paper II). It is therefore not unlikely 

that proteins involved in clathrin-mediated endocytosis is also affected by this 

phosphatase and that the pre-apoptotic shutdown of endocytosis that we see could also 

partly be due to changes in the phosphorylational levels of proteins. CLC is 

phosphorylated by several kinases, among them CKII 301,305,306. CKII phosphorylates 

several proteins that are targeted for caspase-mediated cleavage during apoptosis, and 
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dephosphorylation of these CKII sites enhances caspase cleavage 230. Even though we 

found the degradation of CLC to be mainly via the proteasome, caspase inhibitors 

abrogated degradation to a certain extent, pointing to an involvement of caspases or to a 

caspase-like action of the proteasome. A pre-apoptotic dephosphorylation of CLC could 

also, in addition to affect its activity in CCV formation, increase its susceptibility to 

degradation. This regulation of caspase mediated cleavage by CKII is also probably seen 

with p23 (Paper I), as p23 is also phosphorylated by CKII 231. 

The notion that CLC is exposed to the cytoplasmic face of the vesicles and interacts with 

regulatory elements 307,308, is regulated by phosphorylation and binds to Ca2+ 309 and 

calmodulin 310 implicates that CLC also plays a role in signaling. Early targeting of CLC 

might therefore in also serve a regulatory function in the pre-apoptotic period by 

selectively facilitating endocytosis of specific receptors and modulate receptor signaling.  

Anthracyclines and iron 

In this work we used constitutive internalization of transferrin (Tf) as a measure for 

clathrin-dependent endocytosis. Tf binds Fe3+ (Fe in its toxic form) and is internalized via 

interactions with the TfR. Acidic conditions in the endosomes facilitate release of iron 

from Tf, and Tf is recycled together with TfR to the cell surface where it its released 152. 

The iron-interacting quality of the anthracyclines could be an issue in this context, as 

interactions with iron is involved in drug-induced ROS formation 24, and reduction of 

iron uptake has been shown to decrease the apoptotic inducing effects of doxorubicin 311. 

Especially in the heart, iron chelators have been shown to be cardioprotective of the 

cytotoxcic effect of the anthracyclines 312. Due to the iron interacting mode of the 

anthracyclines, this classic model for measuring endocytosis is maybe not optimal when 

used in combination with anthracyclines. Nevertheless, at the anthracycline 

concentrations that were used in this study, involvement of ROS generation for oxidative 

DNA damage is probably not a major issue 24.  

The sensitivity of tumor cells to undergo apoptosis upon iron deprivation differs, but cells 

of hematopoietic origin are sensitive to iron deprivation and undergoes apoptosis 313,314. 
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However, cells contain an intracellular storage or iron sufficient to sustain immediate 

metabolic needs 315. This, in addition to the fact that we in our experimental setup use 

medium with abundant iron supply and have short death-induction times, argues against 

changes in intracellular iron concentration as playing an important role in DNR 

apoptosis-induction. However, for patients receiving chemotherapy with prolonged 

exposure to the drugs and with possibly limiting iron supply, the decreased uptake of iron 

could have an enhancing effect on anthracycline-induced apoptosis. It is therefore 

interesting to see that transferrin uptake was decreased in AML blasts isolated from 

patients that receive induction therapy.  

Surface receptor accumulation and signaling 

We have not specifically investigated whether the drug-induced decrease in transferrin 

uptake and the accumulation of surface receptors represent an absolute shutdown of all 

modes of endocytosis or whether some clathrin or clathrin-independent internalization is 

still going on. Late in apoptosis induction and in the execution phase, probably all 

endocytic activity are more or less completely compromised due to complete degradation 

and cleavage of several proteins. However, effects on endocytosis in the initial phases of 

apoptosis are probably more subtle and it its these changes that are the most interesting to 

study. We have mainly focused on the clathrin-mediated endocytosis of receptors since 

the proteins we found targeted are primarily involved in this process. We also speculate 

that clathrin-independent internalization is targeted due to degradation of e.g dynamin 

and Eps15, but we have not tested this. However, internalization modes independent 

upon dynamin exists 316, receptors can be internalized by different modes of endocytosis 
317 and endosomal sorting have different requirement for clathrin 318. We have not 

investigated the effect of drug-treatment on each specific mode of internalization to 

compare whether e.g. IFNγ-R are internalized via caveloae when clathrin-mediated 

endocytosis is compromised. Due to this, we cannot exclusively conclude from our data 

that only surface signaling from IFNγ-R mediates the death-enhancing effect, as some 

IFNγ-R could be internalized due to other means of endocytosis. 
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Cell culture studies showed that upon IDA treatment, Fas-R and IFNγ-R accumulated on 

the surface in cells with reduced tranferrin endocytosis. These receptors are mainly 

considered death-receptors even though the effect of IFNγ treatment can differ depending 

on the cell system and the presence of other cytokines 319. Activation of Fas-R and IFNγ-

R enhanced apoptosis in HL60 cells treated with DNR. We postulated therefore that the 

accumulation of these receptors together with a compromised STAT5 signaling could 

contribute to apoptosis induction. However, the picture is not quite this simple. Also the 

stem cell factor (SCF) receptor c-kit accumulated on the surface upon drug treatment 

(Supplementary Figure 5a). Whether co-administration of SCF inhibits anthracycline-

induced apoptosis has so far not been tested, but it is plausible as c-kit is an oncogene 320, 

SCF is considered a survival promoting cytokine and treatment with anti-SCF enhances 

anthracycline treatment 321. GM-CSF-R, another growth-promoting receptor, did not 

accumulate on the surface of cells (Supplementary Figure 5b), and treatment with GM-

CSF did not modulate apoptosis (Supplementary Figure 6). However, STAT5 signaling 

from GM-CSF-R was also compromised in IDA-treated cells that showed a reduced 

transferrin uptake (Supplementary Figure 7). The reason why we do not see an 

accumulation on GM-CSF-R could be due to low endogenous expression of the receptor. 

We also saw an accumulation of the RTK Flt3 on AML blasts isolated from patients 

receiving induction treatment (Supplementary Figure 8). However, we were not able to 

reproduce this effect on AML cell lines something that could reflect a higher expression 

of Flt3 on primary blasts. The effect of surface accumulation of a specter of receptors on 

blasts in patients receiving chemotherapy is not clear and will be influenced by the 

presence of ligands and signaling molecules in the complex extracellular matrix and on 

the surface of neighbouring cells. Especially, to predict the effect of IFNγ-R 

accumulation is not straightforward and will probably vary since the effect of IFNγ on 

human AML blasts is diverse when it comes to proliferation inhibition or apoptosis 

induction and depends on the local cytokine network 319. 

The reduction of anti-apoptotic STAT5 signaling could contribute to death induction. 

However, also pro-apoptotic STAT1 activation 322 from IFNγ-R was abrogated upon IDA 

treatment (Supplementary Figure 9). Therefore both death- and survival promoting 

signaling from the receptor is affected. The effect of interfering with STAT signaling is 
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not clear. STATs are constitutively activated in AML 323, and depending on the stability 

of the mRNA and proteins regulated by the STATs, the effect of turning off STAT 

signaling might not be manifested immediately. Abrogation of survival signaling itself is 

probably not enough to modulate DNR-induced apoptosis, as GM-CSF did not have an 

enhancing effect on DNR-induced apoptosis even though we saw compromised STAT5 

activation also from GM-CSF-R after drug treatment. This indicates that pro-apoptotic 

signaling, probably independent upon internalization, is still going on from the IFNγ-R, 

and that IFNγ-R also exerts its effects via other mechanisms than just through activation 

of STATs.  

 

Receptor-mediated drug delivery 

The use of targeted delivery of liposomal anthracyclines depending on transferrin or 

folate receptor endocytosis for internalization have been reported to successfully induce 

apoptosis in cells 23,154. This could be due both to uptake of the drug by internalization 

before targeting and shutdown of the endocytic machinery, uptake of the drug by other 

means than receptor-mediated endocytosis or due to release of the drug from membrane 

bound liposomes followed by uptake of the released drug into the cell 23. However, even 

though initial delivery of liposomal anthracycline by endocytic internalization has proven 

efficient, uptake of the drug by this pathway after initial induction of apoptosis will 

probably be compromised. Based on this, we therefore question the use of combining an 

anthracycline with a second drug that is dependent upon receptor-mediated 

internalization for its activity. 

Anthracyclines and intracellular trafficking 

Apoptosis has by others previously been reported to be accompanied by changes in the 

early secretory pathway between ER and Golgi 324,325 and loss of cisternal organization of 

the Golgi due to caspase-mediated cleavage or essential proteins such as syntaxin 5, 

giantin and Golgi stacking proteins 326. By an immunoblot screen, we had identified 

EEA1, involved in early endosome fusion, as a caspase target. Early endosome fusion has 

previously been reported to be blocked in cytochrome c induced death by caspase-
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mediated cleavage of rabaptin-5, an effector of Rab5 327. The COFRADIC study reported 

in Paper II showed that VAMP-3, involved in recycling endosome fusion and secretion 
328 was downregulated in anthracycline-induced cell death.  

In a second COFRADIC on IPC-81 cells treated with IDA and bortezomib, we found a 

number of proteins involved in intracellular trafficking and proteins linking the endocytic 

machinery to the cytoskeleton to be targeted for cleavage/degradation (Supplementary 

Table 3). Vacuolar protein sorting-associated protein 33A (r-vps33a) 329 and VAMP-8 330 

involved in late endosome fusion was found to be cleaved. Fusion of recycling 

endosomes and secretion were targeted due to VAMP–8 328 and snapin 331 cleavage. 

Secretion and exocytosis were also targeted through the cleavage of Munc13-1, which 

plays an essential role in vesicle priming before exocytosis 332.  

Intersectin-1 was also cleaved upon drug treatment, and its cleavage can affect several 

trafficking steps. Intersectin-1 is a multifunctional protein involved both in clathrin 

mediated endocytosis as a scaffold protein binding to Eps15 and dynamin 333, in 

exocytosis through its interaction with SNAP-25 334, in actin dynamics 335, in signal 

transduction pathways 336-338 and as a negative regulator of apoptosis 339. On a more 

general level, trafficking is targeted by cleavage of SNAP-29, a protein able to bind to a 

broad range of syntaxins 340, and by the degradation of dynamin and CLC (Paper II) as 

clathrin coated vesicles are also involved in intracellular trafficking 341. 

The Rabs and SNARES control the steps of initial docking/tethering and 

specificity/fusion between vesicles and intracellular compartments. While several 

SNARE-proteins came up as hits in the COFRADIC study, we saw no data on the Rabs. 

An immunoblot screen of several Rabs revealed that only Rab1 was affected, and then 

only to a limited extent, at the stage in apoptosis when several proteins involved in 

endocytosis were cleaved (Supplementary Figure 10). However, at prolonged incubation 

with DNR, also Rab4 and 6 were affected. This shows that the Rabs are stable throughout 

the induction-course of apoptosis and that the Rabs are not major targets in anthracycline-

induced apoptosis 

The involvement of the cytoskeleton in receptor-mediated endocytosis has been 

established 342,343. Several proteins related to the cytoskeleton were modified upon 
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apoptotic induction. Spectrin and ezrin are cleaved by proteases. Both link receptors to 

the sub-membrane actin fibers 344 and internalization of Fas-R is dependent upon 

redistribution of the receptor to microdomains in the membrane where the actin 

cytoskeleton is linked to the membrane in an erzin-mediated association 345. Paxillin is 

also targeted and links membrane receptors to the underlying cytoskeleton and is in 

addition involved in signal transduction 346. Also the degradation of CLC b-chain might 

interfere with assembly of the cytoskeleton as the CLC b-chain shows regulatory activity 

towards a microtubule associated protein phosphatase and inhibits its activity 347.  

It is clear from our data that anthracycline-induced apoptosis leads to the 

cleavage/degradation of proteins involved in trafficking and secretion. We have not 

investigated how seriously the simultaneous targeting of several proteins involved at 

different stages in trafficking affects intercellular membrane trafficking or how early in 

the apoptotic scheme these modifications are evident. However, upon treatment with 

anthracyclines, pre-apoptotic translocation of calreticulin from ER to the cell surface has 

been reported 209. We also postulate that the accumulation of surface receptors (Paper III) 

is a result of endocytotic shutdown combined with induced or sustained recycling of 

receptors to the surface. This shows that transport from ER to the cell surface membrane 

is operative in the early phases of apoptosis indicating that the effect on intracellular 

trafficking either is manifested in the execution phase of apoptosis, that the disruption of 

proteins involved is not serious enough to completely abrogate exocytosis in the pre-

apoptotic phase (we have so far not tested the extent of cleavage of any of these proteins 

by immunoblotting), or that the protein modifications observed serve to regulate or 

finetune the exocytic process to facilitate the export of some proteins rather than shut 

down trafficking per se. A thing to notice is that CLC is also involved in vesicle transport 

between intracellular compartments 348. Expecting that the entire intracellular pool of 

CLC are degraded at the same kinetics, pre-apoptotic degradation of CLC would also 

affect the formation of CCVs from the endosome and Golgi. However, this is at least not 

enough to totally impair the secretory pathway even though it might slow it down. 

Another interesting finding in this matter, was that tomosyn-1, an inhibitor of exocytosis 
349 was also cleaved. The cleavage of tomosyn-1 might in some way counteract the effects 

of protease cleavages of other proteins. 
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Concluding remarks 

When we started this project, we mainly had the following goals: To learn more about the 

basic mechanism of action of the anthracyclines, to identify possibly new protein targets 

for directed therapy and detect “Akilles heels” in the ways the anthracyclines work to 

suggest combination therapy. Our open-ended approach showed that the anthracyclines 

target numerous pathways/proteins in the cell, including pathways/proteins that have 

already been exploited and tested for specific drug targeting in the treatment cancers (e.g. 

Hsp90, the proteasome, cap-dependent protein synthesis). This convinces us that our 

approach is a successful one when it comes to searching for new drug targets. 

We identified several proteins that were targeted for proteolysis/degradation or 

phosphorylational modifications that had not previously been reported to be modified 

during apoptosis. Several of the anthracycline-induced changes we found had previously 

been reported to be implicated in apoptosis induced by other drugs, such as e.g. the 

cleavage of p23 and several of the proteins related to protein synthesis and endocytosis, 

but not in anthracycline-induced apoptosis per se. In addition to identifying new single 

molecular targets, we also found evidence that whole cellular systems are specifically 

targeted in apoptosis. This accounts for protein translation, clathrin-mediated endocytosis 

and intracellular trafficking. 

We also found that anthracyclines induce a non-cap-dependent stress-induced synthesis 

of survival proteins following anthracycline treatment and that this could be inhibited by 

careful and timed addition of protein synthesis inhibitors. This combination of drugs 

increased AML cell death and increased survival in animal models with AML. Since a 

general protein synthesis inhibitor like CHX is probably not suitable for use in cancer 

therapy due to serious side effects, finding ways to selectively perturb the IRES-

dependent protein synthesis in anthracycline-stressed AML cells and thereby achieve the 

same effect as with CHX, but with less side effects, is the aim for further studies. Several 

of the proteins that we identified as targets in anthracycline-induced apoptosis could be 

possible targets for intelligent drugs, e.g. rpP2 and eEF2K. 
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Future perspectives 

The open-ended approach that we took to explore anthracycline action opened up several 

new fields of research to us that requires further investigation. 

1. The role of truncating p23 on apoptosis induction will have to be explored. p23-

constructs mimicking the truncated form and an uncleavable version of p23 have 

been generated for transfection studies. Studies are initiated to look at the effect of 

p23 truncation on apoptosis-induction and on Hsp90 client protein stability. 

2. Reports that proteins are translocated to the surface during anthracycline-induced 

apoptosis and our finding that several proteins involved in intracellular trafficking 

are modified in anthracycline-induced apoptosis claims for a study of what 

happens to the secretory/exocytic pathway during drug-treatment. To study the 

modulating effect of anthracyclines on the “secrotome” and on protein surface 

display by a proteomic approach will also be very interesting. 

3. The finding that rpP2 is dephosphorylated early in apoptosis claims for further 

study of the effect of dephosphorylation on translation. Constructs with mutations 

in the phosphorylation-sites of rpP2 have been generated and to see how these 

influence translation will be interesting. The possibility of using rpP2 as a target 

for intelligent drug design will have to be explored.  

4. The finding that a protein synthesis inhibitor enhanced anthracycline-induced 

apoptosis in AML animal models suggests that this could be an interesting 

combination for an anthracycline-based combination regime. The combination 

regime should be tested on other animals as well such as e.g. mini-pigs and dogs. 

While CHX is a global inhibitor of protein synthesis and probably not suitable for 

use on people, a search/screen for alternative protein synthesis inhibitors that are 

less toxic and more specific in their action are warranted.  
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happens in a Bcl-2 dependent manner both in cell
lines and in blasts isolated from AML patients. (a)
Mcf-7 cells were treated with vehicle or 8 µM DNR for 6
h and cell extracts analyzed by 2DE. Gels were silver
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staining or autoradiograpy. (d) were done by R. Hovland.
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Supplementary Figure 5
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Supplementary Figure 6

Surface receptor accumulation after IDA treatment. (a) NB4 cells
were treated with vehicle or IDA (720 nM, 5 h) and analyzed for surface
expression of c-kit/CD117. (b) HL60 cells were treated with vehicle or
IDA (720 nM, 5 h) and analyzed for GM-CSF-R/CD116.

Modulation of DNR-induced
apoptosis. HL60 cells were treated with
vehicle or DNR (1.6 µM, 4 h) in the
presence or absence of monoclonal
antibody towards Fas-R (1 µg/ml), IFNγ
(20 ng/ml) or GM-CSF (20 ng/ml), and
apoptosis was scored. Data represents
±SEM of 3 experiments.
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P-STAT5

Ctr - GM-CSF 

Ctr + GM-CSF 

IDA + GM-CSF 

IDA - GM-CSF 

Supplementary Figure 7

Flt3 accumulates on the surface of
AML blasts during induction
treatment. AML blasts from two patients
(O, #7  and Δ, #6 ) were collected before
and 2, 4 and 6 h after start of IDA+AraC
treatment. Isolated blasts were assayed
for surface expression of Flt3. See Paper
III for patient information and
methodology.

Supplementary Figure 8
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9. Stat1 ifn gamma

Abrogation of STAT5 signaling after IDA
treatment. HL60 cells were treated with vehicle
or IDA (720 nM, 5 h) and stimulated with GM-
CSF (20 ng/ml) the last 15 min. Alexis488-
conjugated transferrin was present the last 10
min, and P-STAT5 were analyzed by FACS. For
IDA treated cells, the two populations differing
in transferrin endocytosis (reduced endocytosis,
shown, and sustained endocytosis, not shown
and identical to Ctr) were separately analyzed
for P-STAT5.

Supplementary Figure 9

Ctr - GM-CSF 

Ctr + 
GM-CSF 

Sustained,
+GM-CSF 

Reduced,
+GM-CSF 

Reduced,
-GM-CSF 

Sustained,
-GM-CSF 

Abrogation of STAT1 signaling after IDA
treatment. HL60 cells were treated with vehicle
(green) or IDA (red, 720 nM, 5 h) and
stimulated with GM-CSF (20 ng/ml) the last 15
min. Alexis488-conjugated transferrin were
present the last 10 min, and P-STAT1 were
analyzed by FACS. For IDA treated cells, the
two populations differing in transferrin
endocytosis (reduced Tf endocytosis and
sustained Tf endocytosis) were separately
analyzed for P-STAT1.

P-STAT1
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Supplementary Figure 10

Effect of DNR on the family of Rab GTPases. HL60
cells were treated with vehicle or 8 µM DNR for 4 or 16
h and cell extracts immunoblotted and probed for
members of the Rab family.



Supplementary Table 1. Proteins related to RNA binding and protein synthesis found by COFRADIC N-terminal analysis to be altered 
in DNR+CHX treated NB4 cells. 
A: Internally located alpha-N-acetylated peptides generated after aspartic acid specific cleavage. 

Protein Description 
Accession 

number Cleavage Site Functions 
 H/ACA ribonucleoprotein complex subunit 4 O60832 EYVD↓ Pseudouridine synthase involved in rRNA posttranscriptional modification 1  
 Heterogeneous nuclear ribonucleoprotein A0  Q13151 HAVD↓ mRNA translation regulation 2,3 

 Heterogeneous nuclear ribonucleoprotein U  Q00839 PAGD↓ 
Nuclear retention, packing and processing of RNA 4, part of IMP1 RNP Granules 5, 
scaffold mRNA-protein interactions 6, scaffold DNA-interacting protein 7. Cleavage 
results in detachment of protein from nuclear scaffold, could contribute to nuclear 
structure collapse, cleavage does not affect function in RNA metabolism 8,9 

 Nascent polypeptide-associated complex subunit alpha  Q13765 EEQD↓ Binds nascent polypeptide chains and inhibits ER targeting 10, regulates FADD 
function 11, transcriptional co-activator 12 

 Polyadenylate-binding protein 2  Q86U42 VEGD↓  mRNA transport 13, stimulates addition 14 and controls size of the poly(A)-tail 15, 
translational regulation 16 

 RNA-binding protein 39  Q14498 ERTD↓ Co-localizes with core spliceosomal proteins, possibly a splice factor 17 

 Splicing factor U2AF 65 kDa subunit P26368 MTPD↓ Initiation of spliceosome assembly, binds directly to polypyrimidine tracts in the 3`-
UTR 18 

 TAR DNA-binding protein 43  Q13148 DETD↓ Regulates splicing of the cyctic fibrosis transmembrane conductance regulator 
(CFTR) gene 19 

 U6 snRNA-associated Sm-like protein LSm3 P62310 DDVD↓ mRNA decapping 20 and pre-mRNA splicing 21 
    

B: N-terminal peptides with decreased expression. 

Protein Description 
Accession 

number 
Fold down-
regulation Function 

 Elongation factor 2 kinase, eEF2K  O00418 >10 Ca2+/calmodulin-dependent kinase, eEF2 only known substrate 22,23 

 Eukaryotic translation initiation factor 4H, eIF4H Q15056 >10 Initiation of protein synthesis 24, modulates eIF4A helicase activity 25. 

 Lysyl-tRNA synthetase  Q15046 >10 Ligates lysine to tRNA 26,27, interacts with eEF-1 28 

 60S ribosomal protein L13a  P40429 5.9 Structural part of 60S ribosomal subunit, transcript-specific translational control 29,30 

4.4 Translational modifier of c-myc 31, stimulates IRES-mediated translation 32, mRNA 
transport out of nucleus 31,33  Heterogeneous nuclear ribonucleoproteins C1/C2  P07910 

2.9   



 Asparaginyl-tRNA synthetase, cytoplasmic  O43776 4.2 Ligates asparagine to tRNA 26,34 

 40S ribosomal protein S30 P62861 2.5 Structural part of the 40S ribosomal subunit 35 
 60S ribosomal protein L30 P62888 2.5 Structural part of 60S ribosomal subunit 36 
 U6 snRNA-associated Sm-like protein LSm3 P62310 2.5  mRNA decapping 20 and pre-mRNA splicing 21 
 Elongation factor 2, eEF2 P13639 2.4 Ribosomal translocation during elongation, GTPase 23 

 Eukaryotic translation initiation factor 1A,  O14602 2.3 Promotes 43S complex formation, ensures fidelity of AUG-codon selection 37,38 

 Phenylalanyl-tRNA synthetase alpha chain  Q9Y285 2.3 Ligates phenylalanine to tRNA 26, interacts with EF-1 28 

 40S ribosomal protein S3a P61247 2.2 Structural part of 40S ribosomal subunit 35, interacts directly with mRNA 39, inhibits 
PARP 40 

 FK506-binding protein 1A  P62942 2.1 Promotes binding of rapamycin to mTOR 41 

    

A subset of internally located alpha-N-acetylated peptides (A) and peptides with decreased (B) expression after induction of apoptosis in NB4 cells with 
DNR (1.6 µM) and CHX (3.6 µM) for 8 h (80 % apoptosis) are listed. Only peptides with corresponding parent proteins with functions related to mRNA 
binding/processing and protein synthesis are shown. The complete list of peptides is given in Paper II. Peptide identification was done using 
"UniProt_SwissProt and UniProt_TrEMBL" databases. The parent proteins are referred to by description and UnitProt database accession number. The 
peptides B indirectly indicate proteolytic processing of their parent proteins. 
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Supplementary Table 2

Cells were treated with vehicle or 8 µM DNR for 4.5 hours and proteins translated from RNA isolated from
vehicle- (Ctr, shown) or DNR-treated cells in the presence of [35S]-methionine were analyzed by 2DE (pI 4-5).
Protein spots were analyzed for relative labeling intensity. The ratio between relative spot intensity in DNR-
and vehicle-treated cells after in vitro translation was calculated. Protein abbreviations are as in Table 1, Paper
II. n.i.: not identified, n.d.: not determined. The data are average from 3 separate experiments. The numbers in
the table refers to the proteins spots in Figure 4B, Paper II and the autoradiogram of the 2DE gel shown here.

Spot Protein Fold increase

number abbreviation  (DNR/Ctr)

1 rpP2 1.93

2 P4HB ~1

3 PCNA 0.27

4 cutA n.d

5 CALR 0.55

6 eEF1Ba 0.86

7 PSMA5 0.50

8 CTM 1.39

9 MLC 1.12

10 n.i 0.91

11 n.i 0.81

12 n.i n.d

13 n.i n.d

14 n.i 0.5

15 n.i 0.95

16 n.i 1.1

Effect of DNR on the relative 35S-
methionine incorporation of spesific proteins 
based on in vitro mRNA translation.
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Supplementary Table 3. Internally located alpha-N-acetylated peptides generated after IDA/bortezomib-induced apoptosis 

Protein Description 
Accession 

number Start End Identified Peptide Site 
VAMP-8, endobrevin Q9WUF4 21 32 Ac-GVKNIM<Mox>TQNVER SEVE_ 
hnRNP-Q, synaptotagmin-binding protein Q7TP47 316 323 Ac-AKPPDQKR EIVF_ 

38 45 NH2-Q<Pyr>KLEDSYR TLRR_ Spectrin alpha chain P16086 
1206 1214 Ac-N<Dam>SIKELNER VATF_ 

SNARE-associated protein Snapin  P60192 83 89 Ac-KKLLN<Dam>AR DPYV _ 
SNAP-29 Q9Z2P6 75 83 NH2-VASSEELVR EKIG _ 
Syntaxin-binding protein 5 (Tomosyn-1)  Q9WU70 1008 1016 Ac-LVSPTEIQR QALY_ 
Intersectin-1, regulator of endocytosis 1 Q9WVE9 361 367 Ac-N<Dam>LELEKR EFRG_ 
Unc-13 homolog A (Munc13-1) Q62768 31 39 Ac-VKSTTIAVR KVQN _ 
Myosin-9  Q62812 1629 1641 NH2-ANKNREEAIKQ<Dam>LR HIDT_ 
Spectrin beta chain, brain 2 Q9QWN8 1042 1051 Ac-EVQ<Dam>TGWEDLR TRLG_ 
Tektin-4 Q6AXV2 130 137 Ac-Q<Dam>MM<Mox>AQKLR SETD_ 
Vacuolar protein sorting-associated protein 33A (r-
vps33a)  Q63615 10 20 NH2-VN<Dam>LNVLREAVR SYGR_ 

Paxillin Q66H76 149 157 Ac-LLELNAVQR LDRL_ 
Ezrin P31977 299 309 NH2-IEVQ<Dam>QMKAQAR KPDT_ 
      

A subset of proteins detected by N-terminal COFRADIC-analysis of IPC-81 cells treated with IDA (100 nM) and bortezomib (30 nM) for 6 
h. Only peptides with corresponding parent proteins with functions related to cellular vesicle trafficking are shown. Amino acids preceding 
the identified peptide are indicated (site). The parent proteins are referred to by description and SwissProt accession number. Ac- indicates 
acetylation,  <Dam> deamidation,  <Mox> methionine oxidation and <Pyr> cyclic pyro-glutamate peptide. 
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Errata 
Figure 7a page 45: eIF4A should be eIF1A. 
Figure 7b, page 46, mRNA should be single stranded. 
 
Page 100, Supplementary Table 2. Spot number 2 should be called PDI/P4HB. 
 
PaperII 
Page 40, Figure 5D. Heading should be ”Internally located alpha-N-acetylated 
peptides generated by cleavage after aspartic acid in DNR/CHX-treated cells”. 
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Caspase-dependent, geldanamycin-enhanced cleavage of co-

chaperone p23 in leukemic Apoptosis 
 

G Gausdal, BT Gjertsen, KE Fladmark, H Demol, J Vandekerckhove and S-O Døskeland 

 

Co-chaperone p23 is a component of the heat-shock protein (Hsp)90 multiprotein-complex 

and is an important modulator of Hsp90 activity. Hsp90 client proteins involved in oncogenic 

survival signaling are frequently mutated in leukemia, and the integrity of the Hsp90 complex 

could therefore be important for leukemic cell survival. We demonstrate here that p23 is 

cleaved to a stable 17 kDa fragment in leukemic cell lines treated with commonly used 

chemotherapeutic drugs. The cleavage of p23 paralleled the activation of procaspase-7 and -3 

and was suppressed by the caspase-3/-7 inhibitor DEVD-FMK. In vitro translated 35S-p23 (in 

reticulocyte lysate) was cleaved at D142 and D145 by caspase-7 and -3. Cleavage of p23 

occurred in caspase-3-deficient MCF-7 cells, suggesting a role for caspase-7 in intact cells. 

The Hsp90 inhibitor geldanamycin enhanced caspase-dependent p23 cleavage both in vitro 

and in intact cells. Geldanamycin also enhanced anthracycline-induced caspase activation and 

apoptosis. We conclude that p23 is a prominent target in leukemic cell apoptosis.  

Geldanamycin enhanced p23 cleavage both by rendering p23 more susceptible to caspases 

and by enhancing chemotherapy-induced caspase activation. These findings underscore the 

importance of the Hsp90-complex in antileukemic treatment, and suggest that p23 

may have a role in survival signaling. 

 

Keywords: AML; anthracyclines; co-chaperone p23; geldanamycin; caspase-7 
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Abstract 

Anthracycline action has been thought to involve the neosynthesis of pro-apoptotic gene 

products, and therefore depend on protein synthesis for optimal effect.  We found that 

inhibition of general, but not rapamycin-sensitive (cap-dependent), protein synthesis in 

the pre-apoptotic period enhanced anthracycline-induced AML cell death, both in vitro 

and in several animal AML models. Pre-apoptotic anthracycline-exposed AML cells had 

altered translational specificity, with enhanced synthesis of a subset of proteins, including 

ER chaperones. The altered translational specificity could be explained by perturbation 

(protein degradation, truncation or dephosphorylation) of the cap-dependent translation 

initiation machinery and of proteins controlling translation of specific mRNAs. We 

propose that judiciously timed inhibition of cap-independent translation is considered for 

combination therapy with anthracyclines in AML. 
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ABSTRACT 

Anthracyclines are among the most efficient chemotherapeutics against acute 

myelogenous leukemia (AML), but their use is limited by toxicities and lack of persisting 

remissions. Understanding the molecular mechanisms behind cell death induced by the 

polypharmacologic anthracyclines may facilitate development of more efficient and less 

toxic treatment. Using two-dimensional polyacrylamide gel electrophoresis and an 

immunoblot screen, we found that clathrin-dependent endocytosis was targeted through 

degradation of numerous proteins involved in clathrin-mediated endocytosis. Clathrin 

light chain (CLC) was the only protein to be degraded in the pre-apoptotic phase and 

CLC was also targeted in patients receiving induction treatment. Early after drug-

treatment, transferrin endocytosis was abolished and receptors involved in death and life-

signaling accumulated on the cell surface. This was due to caspase and proteasomal 

degradation of proteins, proposed by restored endocytosis by inhibition of caspase or 

proteasomal activity and through mutational disruption of the destruction box in CLC. 

Attenuated clathrin dependent endocytosis was accompanied by compromised survival 

signaling through growth factor receptors. Several lines of evidence suggest that CLC 

plays a prominent role in pre-apoptotic targeting of the endocytic machinery. We 

hypothesize that the anthracycline targeting of endocytosis and growth factor signaling 

contributes to their successful cancer cell debulkment.  
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INTRODUCTION 

The anthracyclines, notably daunorubicin (DNR) and idarubicin (IDA), have been the 

backbone in AML therapy for decades 1,2. Even though direct effects of the anthracyclines 

such as DNA intercalation, topoisomerase II inhibition and generation of oxidizing 

radicals contribute to apoptosis induction, the actions of anthracyclines in cell death 

induction are incompletely understood 3,4. Anthracyclines are hampered with adverse 

effects, particularly cardiotoxicity, and many patients experiences disease relapse after 

treatment. New insight into the therapeutic mechanisms of anthracyclines could therefore 

be beneficial to enhance the therapy and avoid toxicities.  

Expression of constitutively activated receptor tyrosine kinases is proposed to induce 

drug resistance, and inhibition of such receptors enhances the cellular effect of 

anthracyclines 5-8. Internalization of cytokine receptors through clathrin-dependent 

endocytosis may be a prerequisite for signaling and downstream activation of signal 

transducers and activators of transcription (STATs) 9.  

The clathrin triskelion is a triskelion composed of three heavy chains (CHC) and three 

light chains (CLC) 10. Whereas the heavy chains of clathrin form the structural backbone 

of the triskelion, the tree smaller light chains have a less clear role. However, they are 

thought to regulate the formation or disassembly of the clathrin coats. While studies have 

shown that CLC is dispensible for clathrin triskelions assembly in vitro 11, CLC is 

important for assembly of triskelions onto intracellular membranes in the amoeba 

Dictyostelium 12, in yeast 13,14 and in mammalians 15. 

We analysed cellular protein modifications induced by anthracyclines by 2-dimensional 

gel electrophoresis and immunoblotting to elucidate the early apoptotic responses to 
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anthracyclines. We found pre-apoptotic degradation of CLC, attenuated clathrin 

dependent endocytosis and decoupled survival signaling from growth factor receptors. 

This elucidates a central role for clathrin light chain in receptor signaling and propose a 

new therapeutic target in future therapy 

 

MATERIALS AND METHODS  

Reagents 

RPMI medium, horse serum (HS) and fetal bovine serum (FBS) were from Gibco (Grant 

Island, NY, USA). Daunorubicin (DNR) and cycloheximide (CHX) were from Sigma (St. 

Louis, MO), and idarubicin (IDA) was from Pharmacia AB (Stockholm, Sweden). 

zVAD-fmk and MG132 were from Alexis Corp. (Läufelfingen, Switzerland). Anti-Fas 

IgM was from Upstate, IFNγ from Peprotech Inc. (Rocky Hill, NJ). Transferrin 

conjugated with Alexa Fluor488 or 647 and ProLong antifade kit were from Molecular 

Probes (Eugene, OR). Monoclonal antibodies against Fas-R/CD95 (FITC-conjugated) 

was from BD-Bioscience (Oslo, Norway), TfR/CD71 from Diatec (Oslo, Norway), IFNγ-

R/CD119 from Santa Cruz Biotechnology, and isotype control (mouse IgG1, FITC/PE 

conjugated) were from Immunotech (Marseille, France). Annexin V-FITC was from 

Nexins Research (Kattendijke, Netherlands).  

Cell lines and patient material 

The HL60 cell line was from GCMCC (www.dsmz.de) and the NB4 cell line from Dr. M 

Lanotte (INSERUM U-496, Hôp. St Louis, Paris, France). They were cultured in RPMI 

medium with 10% FBS and L-glutamine (2 mM) and kept in logaritmic growth until 

studied at about 0.5x106 cells/ml. The IPC-81 rat promyelocytic leukemia cell line was 
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cultured as described 16. Primary AML blasts for in vivo analysis were collected before 

and after start of the chemotherapy induction course. Blood were collected by cubital 

vein puncture while chemotherapeutics were infused through a central venous catheter. 

Cells were separated by Ficoll gradient centrifugation 17, and freshly isolated cells were 

assayed or washed once in 9% saline and precipitated in 7% trichloroacetic acid (TCA) 

for 2DE analysis. Primary AML blasts for in vitro analysis were collected from patients 

with >90% blasts in peripheral blood, separated by Ficoll gradient centrifugation and 

cultured in StemSpan medium (StemCell Technologies, Vancouver, Canada) 18. Informed 

consent was obtained from all patients, and detailed information about patient material is 

given in Supplementary Table 1. 

 

Immunoblotting, 2DE-gel electrophoresis and MALDI-TOF-MS analysis 

Immunoblotting was as described 19. Antibodies against CLC, procaspase-3, Rab5, Rab7 

and actin were from Santa Cruz Biotech. Antibodies against CHC, AP2-α, dynamin, 

AP180, EEA1, Eps15 and Rab4 were from BD Biosciences. CIN85 antibody was from 

Upstate. Antibodies against Rab1, Rab2, Rab6 and caveolin were provided by Dr. J 

Saraste, University of Bergen, Norway. 

[35S]-methionine metabolic labeling of cells, 2DE-gel electrophoresis, staining of gels, 

picking of spots and MALDI-TOF-MS analysis was essentially as described 19 and Gausdal et 

al., Paper II. 
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Assessment of apoptosis  

Cells were fixed in phosphate-buffered saline with 2% formaldehyde and screened for 

apoptosis using differential interference contrast microscopy to visualize surface budding 

and fluorescence microscopy for chromatin condensation. The chromatin pattern in cells 

incubated with the autofluorescent anthracyclines was identical to that observed with the 

DNA specific dyes bisbenzimide H33342 and DAPI 20. Apoptosis was also scored by 

flow cytometric analysis of forward and side light scattering 21 and by AnnexinV staining. 

 

Transferrin endocytosis, surface receptors and intracellular phosphoproteins 

To study transferrin endcytosis, cells were exposed to experimental drugs and 

fluorescently conjugated transferrin was preset at 100 µg/ml during the 10 last minutes of 

treatment. Cells were washed once in 20 vol of 0.9% NaCl at 4°C and then fixed in 1 vol 

4% paraformaldehyde. For microscopy, the cells were mounted with ProLong antifade kit 

and analyzed using a BioRad MRC1024 scanning confocal system. 

Determination of Fas-R/CD95, IFNγ-R/CD119, TfR/CD71 was performed following the 

suppliers’ instructions. Cells exposed to experimental drugs were washed ones in 20 vol 

of 0.9% NaCl at 4°C and then fixed in one vol 1.5% paraformaldehyd prior to staining 

with respective antibody. Alexa647 F(ab’)2 was used as secondary antibody for detection 

by flow cytometry.  

Preparation of cells for intracellular phospho-protein analysis were performed as 

previously described 22 and following the supplier’s instruction for antibody 

concentration and time of incubation. Anti P-STAT5 (pY694) were from BD 
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Biosciences, Norway. Samples were analyzed in a Becton Dickinson FACSCalibur flow 

cytometer. 

 

CLC constructs, mutagenesis and virus transfection 

CLC a-chain cDNA was subcloned into pEGFP-C3 (BD Biosciences), and mutations in 

CLC (R205A and L208A) was generated by overlapping PCR primer extension (primers 

5´-gtctcccgcatggcctcagtcgccatctccctcaag-3´ and  5´ -

cttgagggagatggcgactgaggccatgcgggagac-3`). The wildtype and mutated CLC was sub-

cloned into a retroviral vector (CRU5-IRES-GFP) allowing CLC and GFP to be 

translated form a single bicistronic mRNA. Enzyme digestion and DNA sequencing 

verified all constructs. 

Virus production was performed as described 23. Spin infection of NB4 cells was 

performed by centrifugation at 1200 x g for 90 min (32°C) followed by incubation for 48 

h. About 10% of the cells showed GFP fluorescence, and positive cells were isolated on a 

FACS Aria (BD). 

 

RESULTS 

Anthracyclines induce modifications in clathrin light chain (CLC) and surface 

receptor endocytosis both in cell lines and in blasts from patients under induction 

chemotherapy. 

Cell extracts from HL60 cells treated with vehicle or DNR were subjected to 2DE 

analysis. One spot (Mw 28 kDa, pI 4.4) absent in extract from DNR-treated cells was 

identified by MS as clathrin light chain (CLC) (Figure 1A). The DNR-induced 
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downregulation of CLC was due to degradation and not decreased translational efficiency 

or CLC-mRNA levels, since CLC was synthesized in vitro from mRNA isolated from 

both vehicle and DNR-treated cells (Figure 1B) and since CLC was degraded in cells 

prelabeled with [35S]-methionine and chased in the presence of cold methionine and DNR 

(Figure 1C). 

CLC is involved in stabilization of the clathrin lattice, but the exact role of CLC in 

clathrin-dependent endocytosis is not known. To determine whether clathrin-mediated 

endocytosis was affected by DNR treatment, we examined uptake of transferrin after 

drug-treatment since receptor-mediated transferrin uptake is dependent on endocytosis 

via clathrin coated vesicles 24. Scanning confocal microscopy revealed that the amount of 

internalized fluorescently labeled transferrin was markedly decreased in cells already 

after 2 h of incubation with DNR, and most interestingly, before the cells showed 

morphological signs of apoptosis such as nuclear chromatin condensation (Figure 1D). 

When the effect of IDA on transferrin uptake was determined by FACS analysis, the cells 

divided into two populations, one with decreased uptake of transferrin and one with 

uptake that was identical to vehicle treated cells (Figure 1E and not shown). Neither of 

the two cell populations showed morphological signs of apoptosis judged by forward and 

side scatter, indicating that clathrin-mediated endocytosis is modified in the early phases 

of anthracycline-induced apoptosis.  

The decrease in internalization of transferrin could be due either to degradation of the 

receptor itself or to inhibited endocytosis of the receptor. We therefore studied the effect 

of IDA on the surface expression of transferrin receptor (TfR) and found that the 

population of cells with reduced transferrin uptake (Figure 1E) showed accumulated TfR 
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on the cell surface (Figure 1F). This indicates that the reduced transferrin uptake was due 

to decreased TfR endocytosis.  

Clathrin-mediated endocytosis is a major mechanism for the cell to transmit signals from 

the exterior to the interior of the cell 25. Consequently, interfering with this process could 

be important for how a cancer cell respond to chemotherapy and could have clinical 

relevance. We therefore isolated blasts from patients with diagnosed AML and treated 

them with DNR in vitro. 2DE analysis showed degradation of CLC in AML blasts 

(Figure 2A). AML blasts were also isolated from 3 patients before and after the onset of 

induction treatment, and 2DE analysis of cell extracts revealed that CLC was partially or 

completely degraded in patients receiving induction chemotherapy (Figure 2B). In the 

body, cells with morphological signs of apoptosis are removed from the circulation 26. 

Hence, the degradation of CLC seen in blasts isolated from patients receiving 

chemotherapy indicates that this takes place in the pre-apoptotic phase. 

To study if endocytosis was affected during the course of induction treatment, primary 

AML blasts from 2 patients collected before and after start of treatment were analyzed by 

FACS for internalization of transferrin and for surface expression of Fas receptor (Fas-

R). Within 6 h after start of induction treatment, the uptake of transferrin was reduced 

(Figure 2C) and Fas-R accumulated on the surface of the AML blasts (Figure 2D). 

Nuclear chromatin staining (not shown) and FACS analysis of AnnexinV labeled cells 

showed that the amount of Annexin-positive cells did not increase substantially during 

the treatment (Figure 2E). We suggest, based on degradation of CLC, decreased 

transferrin uptake and accumulation of receptors on the surface on AML cells harvested 
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from patients under chemotherapy, that clathrin-mediated endocytosis is pre-

apoptotically targeted in anthracycline treatment in vivo. 

 

Anthracyclines induce caspase- and proteasome-mediated degradation of proteins 

involved in clathrin-mediated endocytosis 

Clathrin-mediated endocytosis is reported sustained in the absence of CLC 27. Therefore, 

since anthracycline-treated pre-apoptotic cells demonstrated both compromised 

transferrin endocytosis and CLC degradation, we questioned if other components of the 

endocytic machinery were targeted during apoptosis. An immunoblot screen including 

several proteins involved in clathrin-mediated endocytosis, revealed that a number of 

proteins known to be structurally or regulatory involved in clathrin-mediated endocytosis 

were targeted for degradation in anthracycline-induced apoptosis. Both clathrin heavy 

chain (CHC) and proteins involved in assembly of the clathrin triskelion, namely AP180, 

AP2-α and Eps15 were degraded or cleaved in DNR treated cells (Figure 3A). Also 

EEA1, involved in fusion of early endosomes, dynamin, the GTPase responsible for 

release of clathrin coated vesicles from the membrane and CIN85, a regulator of ubiquitin 

ligases involved in receptor cycling, were modified upon anthracycline treatment (Figure 

3A). Structurally analogous adaptors that mediate clathrin-dependent vesicular transport 

between the trans-Golgi network and the endosomes (AP1-γ, AP3-δ and AP3-β) were not 

modified during DNR-treatment (data not shown). 

We investigated cleavage and degradation kinetics of these proteins to determine if CLC 

was an early proteins affected by anthracycline treatment. HL60 cells were treated with 

DNR for 1 to 6 h and cell extracts analyzed by immunoblotting. The majority of the 
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proteins show a cleavage-pattern that coincides with activation of procaspase-3. This 

accounts for Eps15, EEA1, AP2-α, CIN85 and dynamin (Figure 3B). Notably, the 

activation of procaspase-3 occurs at the same time as the cells start to show 

morphological signs of apoptosis (Figure 3C) indicating that the cleavage of these 

proteins are probably related to the execution phase of apoptosis. The completeness of 

cleavage varies between the proteins. While EEA1, Eps15 and AP2-α show a more or 

less complete cleavage/degradation, CIN85 and in particular dynamin, are only partially 

cleaved. The only protein that is degraded before activation of procaspase-3, is CLC 

(Figure 3B). This supports indications that CLC is targeted pre-apoptotically (Figure 2B) 

and we hypothesized that degradation of CLC is related to apoptosis induction.  

In addition to clathrin-mediated endocytosis, the cell also has other pathways for 

internalizing surface receptors and extracellular substances. Clathrin-independent 

endocytosis has been considered to occur through cholesterol- and sphingolipid-enriched 

membrane domains such as lipid rafts and caveolae 28. Caveolin, a cholesterol-binding 

protein associated to caveola was not degraded in DNR-induced apoptosis (Figure 3B).  

Anthracyclines are well known to induce caspase activation 29. As targeting of most of the 

proteins coincided with activation of procaspase-3, we wondered whether the protein 

modifications were due to caspase-mediated cleavage. Cells were treated with 

anthracyclines and the broad range caspase inhibitor zVAD and cell extracts analyzed by 

immunoblotting. While the drug-induced effect on Eps15, CIN85, EEA1 and dynamin 

could be completely inhibited by the presence of zVAD, CLC and AP2-α were only 

partially rescued even in the presence of high doses of the caspase inhibitor (Figure 4A) 

indicating that the degradation of CLC and AP2-α were not solely due to caspases. An 
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alternative way of degrading proteins is through the proteasome. The presence of the 

proteasome inhibitor MG132 totally blocked the degradation of AP2-α and partially 

blocked degradation of CLC (Figure 4B). 

Having shown that several essential proteins involved in clathrin-mediated endocytosis 

were targets for caspase- or proteasome-mediated degradation, we wanted to see whether 

we could restore the decrease in transferrin endocytosis by inhibiting their degradation. 

By co-treating cells with DNR and zVAD or MG132, we were able to restore transferrin 

endocytosis to the level seen in vehicle-treated cells (Figure 4C). We conclude that 

anthracyclines induce degradation and cleavage of several proteins involved in clathrin-

mediated endocytosis and that this results in a downregulation of clathrin-mediated 

transferrin endocytosis. 

 

Cytokine receptor expression and signaling are modified in anthracycline-treated 

cells.  

Receptor internalization by clathrin-mediated endocytosis plays an essential role in 

surface receptor signaling 25. Several receptors known to modulate the effect of 

apoptosis-inducing drugs, including Fas-R and interferon gamma receptor (IFNγ-R) are 

internalized after ligand interaction. However, the role of internalization for signaling is 

still elusive 9,30-32. Our Fas analysis of blasts isolated from patients receiving 

chemotherapy indicated that Fas accumulated on the cell surface, and we therefore 

studied receptors and their signaling more in detail in cell lines. Treatment of NB4 and 

HL60 cells (not shown) with IDA induced a surface accumulation of both Fas-R (Figure 

5A) and IFNγ-R (Figure 5B). The accumulation was not due to increased synthesis of 
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receptors as the protein synthesis inhibitor cycloheximide (CHX) did not prevent 

accumulation (Figure 5A,B).  

STAT5 phosphorylation is involved in transferring cytokine receptor signaling into an 

anti-apoptotic response. NB4 (not shown) and HL60 show STAT5 phosphorylation upon 

stimulation with IFNγ (Figure 5C). This phosphorylation was inhibited upon IDA 

treatment in cells with attenuated transferrin uptake, while cells with normal transferrin 

uptake displayed normal STAT5 response (Figure 5C and not shown). Both cells with 

high and low transferrin uptake demonstrated forward and side scatter signal identical to 

vehicle treated cells. 

A possible modulation of anthracycline-induced apoptosis through these receptors was 

next examined, and we found that IFNγ and monoclonal antibodies against Fas-R 

markedly enhanced DNR-induced apoptosis (Figure 5D). 

We conclude that surface receptors with the ability to modulate cellular response to drug 

exposure accumulate during anthracycline-induced apoptosis and that anthracycline-

induced inhibition of STAT5 activation correlates with a reduction in clathrin-mediated 

endocytosis. 

 

Destruction-box motif involved in anthracycline-induced CLC degradation and 

endocytosis shutdown 

Since CLC degradation was an early event in apoptosis induction (Figure 2B and 3B), we 

suspected that inhibition of CLC degradation could affect endocytosis shutdown and 

apoptosis induction. The sequence of CLC contains the cyclin B-like sequence known as 

a destruction-box (D-box), a common motif for recognition by E3 ligases for 
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ubiquitinylation of proteins destined for proteasomal degradation 33. This motif was 

mutated in CLC a-chain (R205SVL208 to ASVA, CLC D-boxmut) to inhibit recognition by 

ligases. In NB4 cells retrovirally transfected with CLC D-boxmut, CLC was prevented 

from degradation upon anthracycline treatment (Figure 6A). However, judged by 

immunoblotting, the endogenous CLC was not completely replaced by CLC D-boxmut, 

indicating that we are studying the effect of a mixed population of wildtype (wt) and D-

boxmut CLC. Interestingly, by mutating only CLC a-chain, we also abrogated the 

degradation of CLC b-chain, supporting evidence that the b-chain is dependent upon the 

a-chain for stability 27. 

To see whether the CLC D-boxmut clone displayed a different phenotype than the clone 

carrying wt CLC, we studied apoptosis induction and effects on endocytosis. The 

presence of CLC D-boxmut did not influence the rate of apoptosis induction when 

compared to the CLC wt clone (not shown). However, the CLC D-boxmut clone 

internalized transferrin to a greater extent after IDA treatment than the clone carrying 

CLC wt, indicating that the presence of CLC supports endocytosis after IDA-treatment 

(Figure 6B). After IDA treatment, the CLC D-boxmut clone also showed less accumulation 

of Fas-R (Figure 6C) and IFNγ-R (Figure 6D) compared to the CLC wt clone, suggesting 

that lack of CLC degradation after IDA facilitated persisting transferrin endocytosis as 

well as receptor accumulation at the cell surface. 

 

Discussion 

Clathrin-mediated endocytosis is essential for the cell both through receptor mediated 

uptake of nutrients and through regulation of receptor mediated signaling by receptor 
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internalization. In the present study we report that several proteins involved in clathrin-

mediated endocytosis are targeted for caspase- or proteasomal-mediated degradation in 

anthracycline-induced AML cell death. We also show modulation of surface receptor 

expression and signaling in response to drug treatment. As drug-induced modulation of 

endocytosis was also seen in blasts from AML patients receiving induction therapy, we 

postulate that these effects could be of relevance in vivo. 

A variety of proteins involved in different stages of clathrin-mediated endocytosis was 

targeted for cleavage or degradation in anthracycline-induced apoptosis. Formation of the 

clathrin triskelion was targeted through the degradation of CLC and cleavage of CHC and 

the adaptor proteins AP180, AP2-α and Eps15 34,35. Scission of clathrin coated vesicles 

was targeted by dynamin cleavage 36. Also endosome fusion is targeted through cleavage 

of EEA1 37. CIN85, involved in regulation of receptor tyrosine kinase internalization 

through its interaction with the ubquitin ligase cbl, 38 was degraded in anthracycline-

treated cells. Our data suggest that CLC is among the first proteins targeted, and based on 

morphological analysis and evaluation of procaspase-3 and selected targets we propose 

that CLC is degraded in a pre-apoptotic phase. This is supported by the observation that 

CLC is degraded in AML cells in vivo, where early apoptotic cells are eradicated from 

the circulation 26. 

siRNA studies have reported somewhat contradictory results regarding the effects of 

knocking down these proteins on clathrin-mediated endocytosis. While a dominant 

negative Eps15 totally inhibited vesicular stomatitis virus entry by a clathrin-mediated 

pathway 39, siRNA knock-down of Eps15 did only to a small extent reduce endocytosis 27. 

Neither did knock-down of CLC, EEA1 or CALM, the non-neuronal version of AP180, 
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severely inhibit TfR endocytosis 27, even though CALM to some extent inhibited EGFR 

internalization. However, siRNA knockdown of CLC inhibited entering of respiratory 

syncytical virus into the cells via clathrin-mediated endocytosis 40. siRNA depletion of 

dynamin, CHC and AP2-α severely inhibited both constitutive TfR endocytosis and 

ligand-induced EGFR endocytosis 27,41,42. On the other hand, other studies report neither 

CHC nor AP2-α to be essential for EGFR internalization, but only for transferrin uptake 

43,44. Targeting each single protein in itself might not be sufficient enough to completely 

inhibit clathrin-dependent endocytosis, but the simultaneous degradation and cleavage of 

several proteins would most likely ensure a more or less complete inhibition of clathrin-

mediated endocytosis affecting both constitutive and ligand-induced endocytosis. The 

drug-induced decrease in transferrin uptake and accumulation of surface receptors 

supports this. Even thought we did not see any significant degradation of caveolin, the 

cleavage of dynamin 45 and Eps15 46 will most likely also influence and impair modes of 

clathrin–independent endocytosis. 

The mechanism by which anthracyclines induced CLC degradation is elusive. Based on 

our data we hypothesize that an ubiquitin and proteasome dependent mechanism is 

involved in CLC degradation. Anthracyclines activate the proteasome rapidly after 

administration 47, and proteasome activation has for etoposide induced apoptosis been 

shown to precede caspase activation 48. The nature of the ligase responsible for CLC 

ubiquitinylation remains to be found, but e.g. Cbl, responsible for EGFR ubiquitinylation 

and found in the vicinity of clathrin coated vesicles 49, could be a candidate. 

That CLC plays an essential role in clathrin-mediated endocytosis and is involved in pre-

apoptotic modulation of endocytosis was supported by the effect on endocytosis of 
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disrupting the destruction-box in CLC. Mutating the D-box in CLC impaired its 

degradation and resulted in partially sustained transferrin internalization and decreased 

accumulation of surface receptors upon drug-treatment. The small extent to which CLC 

D-boxmut inhibits endocytosis shutdown probably reflects the time lag between CLC 

degradation and cleavage of other endocytic proteins.  

The inhibitory effect on endocytosis correlated with accumulation of surface receptors 

such as TfR, Fas-R and IFNγ-R. As exocytosis is sustained pre-apoptotically in 

anthracycline-treated cells 50, the increased surface display is probably due both to 

decreased clathrin-mediated endocytosis and continued or induced recycling of receptors 

back to the surface. The accumulation of Fas-R and IFNγ-R were more prominent than 

the accumulation of TfR. In addition to being located to the cytoplasmic membrane, Fas-

R is also present in cytoplasmic granules and is translocated from the cytosol to the cell 

surface upon death induction 51. A similar intracellular pool of IFNγ-R also exists 52. An 

induced translocation of intracellular receptor pools probably contributes to the 

prominent accumulation of these receptors.  

While endocytosis has classically been viewed as a passive mean for terminating 

signaling, there is growing evidence that endocytic membrane trafficking plays a more 

sophisticated role in signaling from surface receptors 53. The concept of “signaling 

endosomes” from which signal transduction continues after its initiation at the plasma 

membrane has proven important for EGFR signaling 54, nerve growth factor receptor 

signaling 55 and insulin receptor signaling 56. Also internalization of the IFNγ-R might be 

a prerequisite for signaling and downstream activation of STATs 9. Recruitment of the 

DISC and apoptosis induction after activation of Fas-R has also been reported to be 
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dependent upon internalization of the receptor 30. We found that DNR co-treatment with 

IFNγ and Fas-monoclonal antibody enhanced apoptosis. This implies that death-signaling 

from the receptors is not dependent upon internalization and supports the findings of 

Austin et al. where Fas induced recruitment of FADD and caspase 8 and led to the 

activation of caspase 8 under conditions where endocytosis was blocked 31.  

The finding that anti-apoptotic STAT5 57 activation from IFNγ-R was abrogated after 

DNR-treatment and that this coincided with reduced transferrin endocytosis and surface 

accumulation of IFNγ-R, indicates that anti-apoptotic signaling from the receptor is 

dependent upon internalization. That anti-apoptotic signaling is dependent upon 

endocytosis has been reported as depletion of CHC induced apoptosis 58. Reduced STAT5 

activation could solely be due to decreased receptor endocytosis, but also to 

disruption/cleavage of proteins essential for an intermediate step in signal transduction, 

such as e.g. CIN85, shown to modulate both EGFR 59 and TNF-α signaling 60, or 

activation of phosphatases that can dephosphorylate STAT directly 61,62. Reduced 

survival signaling mediated through STAT5 could be involved in the death enhancing 

effect of IFNγ on DNR-induced apoptosis.  

Several surface receptors are preferentially expressed on cancer cells making them 

attractive candidates for targeted delivery of drugs. Both the TfR and the folate receptor 

type beta are selectively upregulated on AML cells and are therefore considered attractive 

candidates for targeted liposomal drug delivery 63-65. Based on the findings in this work, 

we will call for caution in combining anthracyclines with drugs that depend upon 

internalization by clathrin dependent receptor endocytosis.  
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The present study shows that several components of the endocytotic machinery as well 

endocytosis itself is targeted and inhibited by anthracycline treatment. The drug-induced 

accumulation of surface receptors and decreased endocytosis is also seen in patients 

receiving anthracycline-based chemotherapy. Activation of surface receptors did have a 

modulating effect on anthracycline-induced apoptosis indicating that in the presence of 

ligands, their drug-induced accumulation could play a role in enhancement of 

anthracycline-induced apoptosis. Finally, this indicate CLC and the endocytotic 

machinery as a potential therapeutic target 
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 FIGURE LEGENDS 
 
Figure 1. Anthracyclines induce degradation of clatrin light chain (CLC) and inhibit 

transferrin endocytosis in HL60 cells. (a) Cells were treated with vehicle (Ctr) or 

daunorubicin (DNR; 8 µM, 6 h), analyzed by 2DE and protein spots visualized by Sypro 

Ruby staining. MS-analysis verified a drug-induced degradation of CLC (accession 

number NM_001833; encircled). (b) Autoradiograms of proteins translated in vitro in the 

presence of [35S]-methionine with RNA isolated from vehicle or DNR (8 µM, 4.5 h) 

treated cells as template. (c) Cells were pre-labeled with [35S]-methionine and chased for 

6.5 h with unlabeled methionine with vehicle or DNR (8 µM) present during the last 6 h 

of incubation. Note the disappearance of pre-labeled CLC. (d) Cells were treated with 

DNR (8 µM, 2 or 5 h) with Alexis 488-conjugated transferrin present the last 10 min. The 

cells were processed for scanning confocal microscopy and transferrin uptake was 

studied. The apoptotic state of the cell was determined by nuclear chromatin DNR 

fluorescence. The experiment shown is representative of five experiments. Magnification: 

900x. (e) FACS-analysis of transferrin endocytosis in IDA (0.72 µM, 5 h) treated cells. 

Only cells with a forward and side scatter identical to vehicle treated cells were analyzed 

for transferring Alexis 647 endocytosis (f) The two cell populations in (e) showing 

different transferrin endocytosis were analyzed for surface expression of the transferrin 

receptor (TfR). The experiment is representative of 3. 

 

Figure 2. Anthracycline-induced CLC degradation and modified endocytosis 

happen pre-apoptotically in AML blasts in vivo. (a) 2DE analysis of protein extracts 
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from in vitro treated AML blasts (8 µM DNR, 6 h) isolated from two patients (#1, #2). 

(b) AML blasts from three patients (#3-#5) were collected before and 4 h, 16 h or 24 h 

respectively after onset of induction treatment with IDA and AraC, and cell extracts were 

analyzed by 2DE. The encircled spot represents CLC. Note the decrease/disappearance of 

CLC after induction treatment. All gels were silver stained. (c-e) AML blasts from two 

patients (#6: closed bars, #7: open bars) were collected at times indicated after start of 

induction treatment with IDA and AraC, and blasts were assayed for internalized 

transferrin (c), surface expression of Fas-R/CD95 (d) and labeled with AnnexinV to assay 

cell viability (d). Patient numbers refer to Supplementary Table 1.  

 

Figure 3. Anthracyclines induce cleavage/degradation of proteins involved in 

clathrin-dependent endocytosis. (a) HL60 cells were treated with DNR (8 µM, 5 h, 50 

% apoptosis) and cell extracts were immunoblotted and probed for proteins involved in 

clathrin-mediated endocytosis. (b,c) HL60 cells were treated for 1 to 6 h with DNR (1.6 

µM), and cell extracts were immunoblotted and probed against proteins involved in 

clathrin-dependent and -independent  endocytosis (b) and scored for apoptosis (c). 

 

Figure 4. Clathrin-dependent endocytosis is targeted through caspase- and 

proteasomal-mediated degradation of structural and regulatory proteins. (a) HL60 

cells were treated with IDA (0.72 µM, 5 h) or DNR (8 µM, 4 h) in the presence or 

absence of zVAD-fmk (100 µM given 15 min before addition of the anthracycline). Cell 

extracts treated with IDA were immunoblotted and probed against CLC, Eps15, AP2-α 

and CIN85, and cell extracts treated with DNR were probed against EEA1, dynamin and 
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procaspase-3. (b) HL60 cells were treated for 15 min with MG132 before addition of 

IDA (0.72 µM, 5 h) and cell extracts immunoblotted and probed for CLC (1 µM MG132) 

and AP2-α (1 µM MG132). (c) Cells were treated with vehicle or DNR (8 µM, 5 h) in the 

presence or absence of MG132 (30 µM) or zVAD (100 µM) and analyzed by FACS for 

transferrin endocytosis.  

 

Figure 5. Surface receptor expression and signaling are modified during 

anthracycline treatment. FACS-analysis of Fas-R/CD95 (a) and IFNγ-R/CD119 in NB4 

cells treated with vehicle, IDA (720 nM, 5 h) or IDA + cycloheximide (CHX; 3.6 µM). 

(c) HL60 cells were treated with vehicle or IDA (720 nM, 5 h) and stimulated with IFNγ 

(20 ng/ml) the last 15 min. Transferrin Alexis 488 were present the last 10 min, and P-

STAT5 were analyzed by FASC. For IDA treated cells, the two populations differing in 

transferrin endocytosis (reduced endocytosis, shown, and sustained endocytosis, not 

shown and identical to Ctr) were separately analyzed for P-STAT5. The experiment 

shown is representative of 3. (d) Cells were treated with vehicle or DNR (1.6 µM, 4 h) in 

the presence or absence of monoclonal antibody towards Fas-R (1 µg/ml) or IFNγ (20 

ng/ml), and apoptosis was scored. Data represents ±SEM of 3 experiments. For further 

details, se Materials and Methods.  

 

Figure 6. Inhibition of CLC degradation maintains clathrin-dependent endocytosis 

after anthracycline treatment. (a) NB4 cells stably transfected with CLC wt and CLC 

carrying the mutations R205A and L208A (CLC D-boxmut) were treated with vehicle, 

DNR (5 µM, 5 h) or IDA (0.5 µM, 5 h) and cell extracts were analyzed for CLC by 
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immunoblotting. (b) CLC wt and D-boxmut were treated with IDA (0.72 µM, 5 h) and 

transferrin Alexis 647 were present during the last 10 min. Cells were analyzed by FACS 

for transferrin endocytosis. Data shown are representative of 4 experiments. (c,d) CLC wt 

and D-boxmut were treated with IDA (0.72 µM, 5 h) and analyzed by FACS for surface 

expression of Fas-R (c) and IFNγ-R (d). 

 

Supplementary Table 1. Clinical and biological characteristics of patients. 

Abbreviations: female (F), male (M), acute myelogenous leukemia (AML), Flt3 length 

mutation (Flt3 LM), nucleophosmin (NPM-1) nd: not determined.  
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Supplementary Table 1. Clinical and biological characteristics of patients

Patient Age Sex Classification Flt3 LM Flt Asp835 NPM-1
CD13 CD14 CD15 CD33 CD34 Karyotype

1 82 M AML-M5 (-) (-) (+) (+) (-) 45X wt wt wt
2 45 F AML-M1 nd nd nd nd nd Normal nd nd nd
3 29 M AML-M4 (+) (-) (-) (+) (+) Normal 0,06 0,17 +
4 63 F AML-M4 (+) (-) (-) (+) (+) Normal 0,04 wt nd
5 82 M AML-M5 (+) (+) (+) (+) (-) Normal wt wt +
6 55 M Atypical (+) (-) (+) (+) (-) Multiple wt wt nd
7 61 M AML-M4/M5 (-) (-) (+) (+) (-) Normal 0,03 nd +

Membrane molecules
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