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I. INTRODUCTION 

1. COLORECTAL CANCER  

1.1 HISTORICAL PERSPECTIVE  

Believes and mysteries surrounding cancer have evolved throughout the history. An 

increased understanding of the disease has resulted in improved treatment. A brief 

review of some of the historical milestones of (colorectal) cancer is provided:  

Findings and examination of ancient mummies indicate that cancer occurred in 

prehistoric time. However, the first written description of cancer is found in the 

Edwin Smith Surgical Papyrus and the Ebers Papyrus 1. These papyri are based on 

what was known in surgery and medicine up to 3000 BC and 1500 BC, respectively. 

The Edwin Smith Surgical Papyrus contains the earliest description of breast cancer, 

with the conclusion that there is no treatment. In the Ebers Papyrus, enlarged 

thyroids; polyps; and tumours of the skin, pharynx, stomach, rectum, and uterus are 

described. Cancer was not a prevalent disease in antiquity, as most people did not live 

to see old age. 

People of prehistoric times believed that cancer was caused by evil spirits, 

natural forces, contact with wicked men, and disharmony of the planets. According to 

Hebrew, Greek, and Roman teachings, cancer was caused by sin, violation of 

religious rules, and the wrath of gods 1, 2.  

Hippocrates (BC 460-375), a Greek physician and the “father of medicine” in 

the Western tradition, was opposed to superstitions and hypothesized that tumours 

were caused by an imbalance of the four humours: blood, phlegm, yellow bile, and 

black bile. Hippocrates noted that growing tumours occurred mostly in adults and the 

growths reminded him of a moving crab, which led to the terms carcinos (a tumour), 

carcinoma (a malignant tumour), and cancer (a nonhealing malignant ulcer). The 

hard tumour, the scirrhus, was different from carcinos and carcinoma. The black bile 

was particularly bad. Hippocrates wrote of dark, beef glaze-like vaginal discharge in 
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association with enlargement and ulceration of the uterus. He recognized cancers of 

the skin, mouth, breast, and stomach. He knew about anorectal condylomas and 

polyps, and recommended examination with a speculum if they were higher up in the 

colon. Hippocrates summed up his recommendation for treatment by writing that 

tumours that are not cured by medicine are cured by “iron” (knife), those that are not 

cured by iron are cured by “fire” (cautery), and those that are not cured by fire are 

incurable. For occult or deep-seated tumours, he advised not to use any treatment 

because if treated, the patient would die quickly. If not treated, the patient could 

survive for an extended period. 

During the Roman Empire, the medical seat shifted from Greece to Rome. The 

Greek physician Claudius Galen (AD 131-203) believed that accumulation of black 

bile in the breast, uterus, lips, and in hemorrhoids caused cancer – a view that 

mirrored the humoral model of Hippocrates. Paracelsus postulated a similar view in 

the 16th century – that cancer was the cause of a fundamental mineral imbalance 

within the body (the mineral theory). The accumulation of noxious substances in 

blood as cause of cancer, led to the introduction of blood letting. However, Galen’s 

theory was accepted as a doctrine by medical practitioners and organized religions for 

sixteen centuries (2nd to 18th century), with little modification.  

The 18th century saw the first theories on the local origin of cancer. John 

Hunter proposed extravasated blood as a potential etiology 3. Use of the light 

microscope in the 19th century introduced the view of a cellular origin of cancer by 

investigators such as Rudolph Virchow and Karl von Rokitansky. During the 1920s, 

the theory of colorectal cancer arising from neoplastic polyps developed the early 

“adenoma-carcinoma-sequence” 4, 5. 

From the time of Hippocrates until the late 19th century, physicians and 

surgeons were convinced that surgical attempts at treating colorectal cancers were 

doomed to fail. This opinion stemmed from prevailing views on carcinogenesis 6. The 

three dominant theories, the humoral, mineral, and lymph theories, held that all 

cancers developed in tissue that had a diseased disposition. Thus, excision of the 
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gross tumour mass alone seemed unlikely to cure the patient. Consequently, surgical 

treatment of all cancers, and in particular colorectal cancer, was condemned.  

 

Figure: early anatomical drawing of the large bowel by Vesalius. 

The 19th century represented a transition period. Advances in surgical technique made 

excision of rectal cancers feasible. Unfortunately, classical views that resection of 

cancer was futile delayed the development of surgical treatment for colorectal cancer. 

Indeed, it was not until the late 19th century that a few individuals ignored these tenets 

of classical medicine and attempted local resections of rectal cancers. By the second 

quarter of the 20th century, a radical change occurred in the prevailing theories of 

carcinogenesis. Wide acceptance of the unicellular origin of cancer and the mucosal 

origin of colorectal cancers washed away admonitions against surgical treatment of 

colorectal cancers. It became axiomatic that all cancers, including colorectal cancers, 

could be cured surgically if treated while still a localized disease 3. 

The rigid proctoscope was initially described in 1853, but not practiced widely 

before after the 1900s. The remainder of the large bowel remained inaccessible until 

the development of the fiber-optic endoscopes in the 1960s. Colonoscopy, as a means 

of evaluating the entire colon was introduced in 1969 7, and by 1979 the Beth Israel 
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Medical Center in New York, USA had performed more than 7,000 endoscopic 

polypectomies 8. Although already introduced by Dukes in the 1920s, the polyp-

carcinoma-sequence was not widely adopted before the publications by Morson in the 

mid 1970s 9-11.  

Surgery for colorectal cancer was initially performed to relieve of intestinal 

obstruction, reportedly by creating stomas. Surgery for cure was made possible 

through the development of anti- and aseptic techniques in the latter part of the 19th 

century. Surgery of the intraperitoneal colon, which was more difficult to access, 

followed surgery of the sigmoid and rectum 3.  Throughout the latter part of the 20th 

century developments in surgical technique has improved patient survival, i.e. by the  

“no-touch” technique reported in the early 1950s and perfected by surgeons at the 

Cleveland Clinic12, and notably by the standards of total mesorectal excision (TME) 

for rectal cancers introduced by Heald in the early 1980s 13. The current focus is on 

the laparoscopic colectomy approach14, allegedly also giving the patient an 

immunologic advance by reduced surgical stress, which is believed to positively 

influence the (surgical) oncological outcome. 

 

1.2 EPIDEMIOLOGY 

Colorectal cancer (CRC) is the second most frequent cancer occurring in the Western 

world with about 1 million new cases developed annually 15. In Norway 16, about 

3,500 new patients develop CRC each year with a male:female ratio of about 1. The 

age-adjusted incidence has almost tripled over the past 50 years. Geographically, the 

risk of CRC varies (for unexplained reasons) from county to county in Norway, with 

the Rogaland County perceived as being a high-risk area with a high incidence of 

CRC. Very few cancers are diagnosed in the young (then, often associated with 

hereditary syndromes), and CRC is generally perceived as a disease of the old, with 

cumulative age-related incidence steadily increasing after the age of 50 years, with 

median age of those diagnosed being about 70 years. The number of cancers is 
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estimated to increase before reaching a plateau into the year 2020, except for an 

estimated continued increase in female rectal cancers. 

  

Figure: Cancer incidence 2001-2005 (top) and for year 2004 (bottom) with selected, 

frequently occurring cancers of solid organs, including digestive organs. Developed from 

www.kreftregisteret.no. 
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Figure: Colonic cancer. Developed from www.kreftregisteret.no. 

 

Figure: Rectal cancer. Developed from www.kreftregisteret.no. 



 15 

 

1.3 RISK-FACTORS 

Colorectal cancer is a genetic disease, however, only 5-6% of cancers develop on a 

truly inherited genetic background 17. The most common, and best investigated, 

hereditary syndromes are the Familial Adenomatous Polyposis (FAP) syndrome 

caused by mutations in the APC gene, and the Hereditary Non-Polyposis Colorectal 

Cancer (HNPCC; the Lynch syndrome) caused by deficient DNA mismatch repair 

enzymes. Further, 10-20% of CRCs may have a ”familial” clustering of cases without 

any detectable or known specific genetic alterations leading to this increased risk; a 

relative risk of 2-3 is noted in those with a first-degree relative with CRC 18, 19. CRC 

may also develop on an inflammatory background, such as in long-standing 

ulcerative colitis, with cumulative probabilities for cancer development of 2% by 10 

years, 8% by 20 years, and 18% at 30 years 20.  

Nonetheless, the majority (70-80%) of CRCs are sporadic in nature, acquired 

through the accumulation of genetic “hits” over a lifetime. Truly, age is the single 

most important risk factor for developing CRC. Nonetheless, a long line of evidence 

indicates (as well as the geographical clustering with high incidences in the western 

world) that CRC is a lifestyle-related disease, with smoking, alcohol consumption, 

dietary factors, and physical inactivity all contributing to an increased risk 21-24. 

 

1.4 TREATMENT 

The only curative modality for CRC is surgery. New techniques give reduced surgical 

trauma, such as laparoscopic resection for CRC, while the indications for i.e. 

metastatic surgery is being widened, with improved results 14, 25. Adjuvant treatment 

(by different regimes) is given to patients operated on for cure who have lymph node 

metastasis (Dukes C, stage III cancers), while palliative chemo(-radio) therapy is 

given to those not amenable to curative surgery, or in an attempt to down-stage the 

tumour for resection. In particular, the neoadjuvant radiation approach for rectal 
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cancer continues to be discussed. Systemic treatment for CRC has improved over the 

last decades26, with a few “targeted therapies” already introduced, such as VEGF-

inhibitors 27-29. 

 

1.5 SURVIVAL 

Despite an overall increase in survival over the past 50 years, largely due to 

improvements in surgical technique and adjuvant therapy 30, still, 40-50% of those 

diagnosed with CRC are expected to die within 5 years of diagnosis due to recurrent 

disease. Survival is stage dependant, thus emphasizing the need for prevention and 

early detection and treatment of disease. Many prognostic factors have been introduce 

and investigated over time, while truly none have persisted to overtake the TNM-

system for prognostication. Some promising markers that have been investigated 

include microsatellite instability, thymidylate synthase expression, p53 expression 

and a number of other genetic abnormalities 31-36. While not perfect, the Dukes 

staging system guide prognostication and adjuvant treatment for most patients, with 

very good prognosis for Dukes A (>80-90% 5-year survival) and lowest survival for 

those with distant metastasis on diagnosis (Dukes D; <10-20% 5 year-survival). 
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1.6 SURVEILLANCE AFTER SURGERY FOR COLORECTAL CANCER 

Based on the notion that a large proportion of patients have recurrence despite 

surgery of curative intent, it has become common clinical practice to follow patients 

with CRC for several years following their definitive surgery and/or adjuvant therapy. 

Despite this widespread practice there is considerable controversy about how often 

patients should be seen, what tests should be performed, and whether these differing 

strategies have any significant impact on patient outcomes. In Norway, guidelines for 

surveillance after surgery in those <75 years of age have been made by the 

Norwegian Gastrointestinal Cancer Group (NGICG). The surveillance regimen is 

largely based on the diagnostic value of carcino-embryonic antigen (CEA) measured 

in the sera of patients 37. 

 

Figure: The Norwegian guidelines for follow-up after curative CRC surgery, developed from 

38, 39. 

 

North-American guidelines have focused on endoscopy in follow-up after curative 

resection for CRC 40, however, this modality received the lowest compliance in the 

evaluation in a defined Norwegian population 41. A recent (updated) Cochrane 

systematic review42, including eight randomized studies only, suggests that there is an 
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overall survival benefit for intensifying the follow up of patients after curative 

surgery for colorectal cancer. However, because of the wide variation in the follow-

up programs used in the included studies it was not possible to infer from the data the 

best combination and frequency of clinical visits, blood tests, endoscopic procedures 

and radiological investigations to maximize the outcomes for these patients. Nor was 

it possible to estimate the potential harms or costs of intensifying follow up for these 

patients in order to adopt a cost-effective approach in this area of clinical uncertainty. 

Thus, the surveillance after CRC resection remains an unresolved issue and a great 

socio-economic health burden, were best evidence suggest a positive effect of “doing 

something”, but just not what. Thus, it remains an unresolved issue what the optimal 

surveillance approach should be 42-45. 
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2. THE COLORECTAL POLYP  

A “polyp” is defined as any lesion of the colorectal mucosa protruding into the 

lumen. Polyps in the colorectum are (histologically) classified as either 

“hyperplastic” or “adenomatous”, with various variants in between. Hyperplastic 

polyps in the colorectum have traditionally been regarded as non-neoplastic, but K-

ras mutation is common, clonality has been demonstrated and biochemical 

abnormalities have been reported. Since the 1990s46, this topic has received 

tremendous attention, and it is now clear that the “serrated adenoma” in hyperplastic 

polyps represents a distinct pathway (epigenetically modulated) in current colorectal 

carcinogenesis understanding47-49. The polyps evaluated in this thesis contain but non-

herediatry, non-inflammatory, non-serrated colorectal adenomas diagnosed in 

symptomatic patients with no prior cancer history. 

 

2.1 COLORECTAL (PRE)NEOPLASIA 

The traditional understanding of developing CRC is based on the concept of the 

adenoma-carcinoma sequence. According to this theory, benign, (pre)neoplastic 

adenomas of the colorectal mucosa gradually transform to invasive cancer over time. 

Thus, the removal of adenomas has demonstrated a preventive effect on colorectal 

cancer incidence in several studies 50-55. However, controversial to this issue is the 

notion of the so-called (and disputed) “de novo” carcinogenesis, and the more recent 

developed principles of aberrant crypt foci described in the colorectum. 

The “de novo” carcinogenesis: According to some reports, between 20-

40% of all tumours may evolve from the colorectal mucosa de novo and grow 

invasively into the bowel wall 56-58. Adenomatous remnants in invasive cancer have 

been found only in about 20% of the tumours 58, 59. While the concept of de novo 

carcinogenesis was considered as a phenomenon related to Asian populations, it has 

gained more attention in the Western world during the past decade 60, 61 . 
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Aberrant Crypt Foci (ACF): The suggested first and earliest identifiable 

neoplastic lesions in the carcinogenetic model of the colon and rectum are so-called 

aberrant crypt foci (ACF) 62, 63. They are defined as small circumscript areas in the 

colorectal mucosa with enlarged crypts as compared to surrounding normal mucosa. 

It is thought that in the course of subsequent accumulation of biochemical and 

mutational changes some of the ACF develop to cancer. The progression of ACF to 

polyp and, subsequently, to cancer parallels the accumulation of several molecular 

alterations and mutations whereby a small fraction of ACF evolve to CRC. Recent 

data indicate that not uncommonly, some ACF bypass the polyp stage in their 

carcinogenesis thus reinforcing the importance of their early detection and the 

understanding of their pathogenesis. ACF show variable histological features 64, and 

can be grouped into differing categories by in vivo examination with high-

magnification-chromoscopic-colonoscopy (HMCC). As expected, ACF are more 

frequently detected in distal animal and human colons coinciding with the geographic 

distribution of CRC. Various markers may be altered within ACF suggesting possible 

prospective pathological changes. These transformations may lead to the 

identification of the earliest pathological features initiating colon cancerogenesis. The 

long line of evidence developed over the past decade suggest that ACF might be an 

important, yet unresolved, biomarker for CRC. While endoscopic techniques continue 

to evolve and thus changes the ways of early detection and diagnosis of 

(pre)neoplasia and early cancer, the colorectal polyp continues to be the main target 

lesion. 

 

2.2 CLASSIFICATION  

2.2.1 Macroscopy/endoscopy 

Colorectal neoplasia research has traditionally focused on exophytically growing 

(protruding) tumours. However, during the past decades, Japanese researchers have 

emphasized the importance of intramucosal premalignant and malign lesions with 

endophytical growth pattern and early invasion into the bowel wall. The first case of 
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depressed neoplastic lesions was reported by Kariya in 1977 65. Current concepts 

include both elevated, flat and depressed neoplastic lesions 66. As stated, high-

magnification-chromoscopic-colonoscopy (HMCC) and newer techniques (such as 

endoscopic DBI; double band imaging) will further alter the “macro-endoscopic” 

picture and retrieval of (pre-)cancers in the colon.  

 

2.2.2 Microscopy 

As such, definition of neoplasia in the colorectal mucosa remains a central issue. 

According to the WHO classification67, intramucosal neoplastic lesions are confined 

to the mucosal layer (i.e. mucosa, lamina propria and muscularis mucosae), and are: 

• graded to the degree of intraepithelial neoplasia (IEN) (low-grade vs. high-

grade), and  

• typed by their predominant histologic growth pattern as tubular, tubulovillous 

or villous.  

As depicted in this system, dysplasia is conventionally graded using a WHO two-tier 

system, with little/no room for “that what is in between”68. Low- and high-grade IEN 

convey different connotations regarding cancer risk. This perspective argues that the 

critical differential diagnosis is the one between neoplastic and non-neoplastic 

epithelial cell proliferations. The stepwise, continous model of (pre)cancer 

progression thus makes the relevance of IEN grading questionable. It is furthermore 

expected that a molecular signature will predict the propensity to invasive carcinoma 

more accurately than routine histopathology in the (near) future. Research in this field 

needs to focus on a combination of biomarkers representing the molecular spectrum 

of genomic and proteomic expressions. 

 Invasive cancer is defined as tumour invading beyond the muscularis mucosae 

layer into the submucosa. However, Japanese pathologists consider intramucosal 

lesions as early CRC based on other features than solely invasion like nuclear and 
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structural changes, thus possibly leading to higher incidence-figures of early 

malignant lesion in the colorectum 69. Accordingly, intramucosal lesions with high-

grade dysplasia as defined by WHO may be diagnosed as intramucosal cancer 

according to the Japanese criteria. However, there has recently been achieved an 

international consensus with regard to classification of gastrointestinal epithelial 

neoplasia (“Vienna classification”) 70. Further, a “malignant polyp” is one containing 

a cancer in situ, as defined by the Haggitt’s classification71. The latter lesions 

represent a synchronous (same time) occurrence of “cancer in adenoma”. On the 

other hand, a non-cancerous adenoma may predict a patient’s future risk of having 

new neoplasia/carcinoma develop (metachronous cancer). While several technical 

difficulties exist in the classification and accuracy of retrieved polyps/adenomas, 

ranging from the endoscopic procedures per se to the biopsy itself 72, 73, it is clear that 

improved tools for better classification is needed. 

 

2.2.3 Morphometry  

Generally, morphometrics (from the Greek "morph," meaning shape or form, and 

"metron”, meaning measurement) comprises methods of extracting measurements 

from shapes. Morphometry, as a part of quantitative pathology, has tried to classify 

tissue lesions in a metric (and preferably more objective) mode rather than the 

subjective assessment performed by pathologists. While morphometric measurements 

have been applied with a wide range of methods in colorectal neoplasia (from 

adenoma to carcinoma)74-80, there is considerably heterogeneity in the studies 

performed, and a general applicability and consensus for clinical practice has thus far 

not been reached. 

 

2.3 PREVALENCE 

The prevalence of colorectal adenomatous polyps varies widely from country to 

country 81-85. Among asymptomatic, average-risk patients, adenoma prevalence 
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averages approximately 10-20% in sigmoidoscopy studies and over 25% in 

colonoscopy studies, whereas the prevalence of colorectal cancer among these 

patients is less than 1% 81, 85. These data may change in the future due to the advent of 

new technological approaches and, in particular, chromo- and magnifying endoscopy 

as well as confocal laser endoscopy. The cumulative incidence of new adenomas 

within 3 years after normal endoscopy averages about 7% by flexible sigmoidoscopy 

and 27% by colonoscopy 82, 86. However, the true incidence rate is hard to estimate 

exactly, as it depends strongly on the definition used for diagnosis and selection 

criteria in the populations studied. Regional differences in adenoma prevalence rates 

demonstrates a clear, positive correlation with increasing age and with increasing 

incidence of cancer in the population under study; with 4-6% of those under 50 years 

having adenomas, and up to 50-60% of those >75 years having an adenomas 81, 83.  

 

2.4 DETECTION AND PREVENTION 

As adenomas are believed to be the precursor to colorectal cancer, its detection and 

removal, or frank prevention from developing in the first place, is though of as the 

cornerstone in reducing the in incidence and, consequently, mortality from CRC. In 

this aspect, there is a plethora of approaches to achieve this; ranging from 

chemopreventive strategies87, 88, to occult fecal blood or molecular detection 

mechanisms89-91, “virtual colonoscopy” by modern multi-slice computer 

tomography92, and various screening programs using endoscopic techniques 51, 85, 93. 

While detection and removal of adenomas are feasible by endoscopic techniques, the 

majority of adenomas are thought to never develop into cancer. In fact, evidence 

suggest that a number of adenomas regress over time when left in situ. Thus, defining 

the “high risk” adenoma, and consequently defining the patients, requiring closer 

surveillance is a major research target. As such, the adenoma is a “surrogate endpoint 

biomarker”94, 95, however, defining characteristics within the adenoma (-patient) 

would further narrow the target group for enhanced surveillance.  
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2.5 SURVEILLANCE AFTER POLYPECTOMY 

Consequently, defining high-risk adenomas is important for surveillance strategy, 

follow-up intervals and intervention planning according to individual risk 96. 

Evidence suggests that multiplicity (≥3 adenomas), size (≥1 cm), villous features, and 

high-grade dysplasia are predictors of future advanced adenomas or cancers 97, 98. 

However, the studies from which these data derive are heterogeneous. The distinction 

between synchronous and metachronous CRC have not always been made, and 

studies have found an intriguing high rate of cancer in the early period of surveillance 
99, 100, indicating a high likelihood for “missed” advanced adenomas or (pre)cancers at 

index colonoscopy. Yet, still, the adenoma size, numbers, and histologic grade are the 

features by which current surveillance is guided. While adenoma numbers can be 

counted and size can be measured, the histologic type and grade has to be judged – an 

art well, but not perfectly, performed by pathologists 101. Few published studies 

stratify the incidence of advanced adenomas at surveillance colonoscopy according to 

index colonoscopy findings. In the future, large prospective studies or studies using 

pooled data from existing randomized controlled trial databases or polyp registries 

should be used to better define which patients are at low vs high risk for advanced 

adenoma recurrence. Thus, future screening and surveillance strategies should 

preferably be tailored after other and better surrogate endpoint biomarkers within the 

colorectal mucosa than the traditional adenoma features. 
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3. COLORECTAL CARCINOGENESIS 

3.1 THE HALLMARKS OF CANCER 

Cancer is now understood as the result of an accumulation of genetic alterations that 

allows growth of neoplastic cells with certain phenotypic hallmark characteristics102. 

Each tumourtype may show tissue- (and even patient)-specific molecular alterations 

that, however, as an endpoint goal of every neoplastic cell, serve to provide the 

cancer cell for:  

• self-sufficiency in growth signals (i.e through mutated oncogenes),  

• insensitivity to anti-growth signals (i.e. mutated tumour suppressor genes),  

• evasion of apoptosis (loss or inhibition of apoptosis signals),  

• limitless replicative potential (gain of telomerase function),  

• sustained angiogenesis (increased vascularity for nutrition),  

• the ability to invade tissues and metastasize (“seed & soil” capacity in tissues)103.  

 

Figure: The hallmarks of cancer. 
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This can be achieved through various molecular mechanisms, complicating the 

network and understanding of carcinogenesis. Cancer development follows a clonal 

evolution with continuous accumulation of mutations contributing to the acquirement 

of the required phenotypic cancer hallmarks. In essence, a tumour forms from any 

single aberrant cell, which may, through further cell division, develop into an 

accumulation of preneoplastic cells (i.e. polypous growth), again forming into a 

precursor lesion (i.e. adenoma), further acquiring malignant features (i.e. carcinoma) 

and then invade and spread to distant sites (metastasis, such as in liver or lungs). 

 

3.2 COLORECTAL CANCER DEVELOPMENT 

Development of CRC from an adenoma to carcinoma may take several decades. In 

the colorectum, a continuous turnover of the epithelium occurs, with a shift of the 

epithelial lining every 4-6 days. Thus, the continuous exposure to various intestinal, 

luminal contents, and the potential for acquiring early mutative events in cryptal stem 

cells, may in due time cause neoplastic transformation and cancerous overgrowth in 

the large bowel 104. Stem cells share many properties with malignant cells, such as the 

ability to self-renew and proliferate. Colorectal cancer (together with many other 

cancers) is believed to be a disease of stem cells105. The gastrointestinal tract has high 

cancer prevalence partly because of rapid epithelial cell turnover and exposure to 

dietary toxins. The molecular pathways of carcinogenesis differ according to the 

tissue involved (e.g., pancreas, biliary tree, colorectum)17, 106, 107, although similarities 

exist.  

Research on hereditary cancer syndromes, including familial adenomatous 

polyposis (FAP), has led to advances in the understanding of the events that occur in 

tumour development from a gastrointestinal stem cell. The initial mutation involved 

in the adenoma-carcinoma sequence is in the “gatekeeper” tumour-suppressor gene 

adenomatous polyposis coli (APC). Somatic hits in this gene are non-random in FAP, 

with the type of mutation selected for by the position of the germline mutation. 

Clonal expansion of mutated cells occurs by niche succession. Further, expansion of 
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the aberrant clone then occurs by the longitudinal division of crypts into two daughter 

units, called crypt fission104, 108, 109. 

 

Figure: Crypt development in the intestine. From Radtke & Clevers. Self-renewal and cancer 

of the gut: two sides of a coin. Science 2005; 307: 1904-9 104. Reprinted with permission from 

AAAS. 

Two theories seek to explain the early development of adenomas: the “top 

down” and “bottom up” hypotheses109, 110. Initial studies suggested that colorectal 

tumours were monoclonal; however, later work has suggested that up to ¾ of early 

adenomas are polyclonal. Introduction of a homozygous resistance allele has reduced 

tumour multiplicity in the mouse and has been used to rule out random collision of 

polyps as the cause of these observations. It is likely that short-range interaction 

between adjacent initiated crypts is responsible for polyclonality105. Also, evolving 

data suggest that cancer polyclonality is caused by epigenetic disruption of 

stem/progenitor cells. Thus, cancer heterogeneity may be due in part to epigenetic 

variation in these progenitor cells, and epigenetic plasticity together with genetic 

lesions drives tumour progression. This crucial early role for epigenetic alterations in 
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cancer, is in addition to epigenetic alterations that can substitute for genetic variation 

later in tumour progression. Therefore, non-neoplastic but epigenetically disrupted 

stem/progenitor cells might be a crucial target for cancer risk assessment and 

chemoprevention in the future111. 

Invasion by colorectal carcinomas is characterized by an epithelial-

mesenchymal transition (EMT)-like dedifferentiation of the tumour cells involving 

several mechanisms112. However, a redifferentiation towards an epithelial phenotype, 

resembling a mesenchymal-epithelial transition, is detectable in metastases. This 

indicates that malignant progression is based on dynamic processes, which cannot be 

explained solely by irreversible genetic alterations, but must be additionally regulated 

by the tumour environment. In fact, there is a growing attention to the extracellular 

matrix which surrounds the tumour tissue, where inflammatory mechanisms and 

protease-systems among others are believed to foster invasiveness and metastasis in 

the epithelial tumour cells113-115. At the same time, several factors in the extracellular 

matrix may in fact prevent cancer progression, invasion and metastasis103, 116. Thus, 

the complexities herein will continue to receive much attention in the years to come.  

 

Figure. General depiction of the extracellular matrix (ECM) and factors involved in cancer 

development, progression and metastasis. Developed from Søreide et al 114.  
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The multigene, clonal evolution, and selection model of initiation and progression of 

CRC proposed by Fearon & Vogelstein originally identified the APC gene, genes on 

18q, and the K-ras and p53 genes as those in which mutations contribute to the 

evolution of CRC 117. Although confirmed by later studies, many additional genes are 

also involved. In fact, the recent understanding of the heterogeneity in colorectal 

carcinogenesis involves mechanisms related to chromosomes, to microsatellites, or to 

epigenetic phenomena, all distinctively driving the cells into cancer via several 

possible pathways of proliferation, invasion and metastasis 17, 47, 48, 114, 118-124. 

Consequently, rather than representing a linear model of required accumulative 

mutations in the APC, K-ras, and p53 genes (< 10% of all CRCs have all mutations) 

recent studies suggest they may each represent alternative, multiple mutational 

pathways in colorectal cancerogenesis 125, with specific associated chromosomal 

aberrations126, and distinct clinical outcomes 123. 

Knowledge derived from families with Familial Adenomatous Polyposis 

(FAP) or Hereditary Non-Polyposis Colorectal Cancer (HNPCC) helped establish the 

early model of colorectal carcinogenesis 117, 127. Hereditary syndromes have germline 

mutations in specific genes (such as mutation in the tumour suppressor gene APC on 

chromosome 5q in FAP; mutated DNA-mismatch repair genes in HNPCC) that 

greatly increase the lifetime risk for developing CRC (>80% in HNPCC) compared to 

the general population.  

Sporadic CRC develops through randomly acquired somatic mutations in 

several of the same genes found in hereditary cancers 17. However, the rate of random 

mutational events alone cannot account for the number of genetic alterations found in 

most human cancers 128. For this reason, it has been suggested that destabilization of 

the genome may be a prerequisite early in carcinogenesis 129. This "mutator 

phenotype" is best understood in CRC, in which there are (at least) two separate 

destabilizing pathways – chromosomal and microsatellite instability. 
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Figure: The adenoma-carcinoma sequence (Vogelstein model) incorporating the CIN and 

MSI pathway, the latter including the epigenetic pathway (adopted from Søreide et al17  

with permission. Copyright  British Journal of Surgery Society Ltd. Reproduced with 

permission. Permission is granted by John Wiley & Sons Ltd on behalf of the BJSS Ltd. 

 

3.3 GENETIC INSTABILITY & CANCER 

 Most cancers arise through clonal selection and waves of expansion of a somatic cell 

that has acquired genetic alterations in essential genes either controlling cell death or 

cell proliferation. Furthermore, stability of the genome in cancer cells becomes 

compromised because several cancer-predisposing mutations affect genes that are 

responsible for maintaining the integrity and number of chromosomes during cell 

division. Genetic instability may involve several genes at different levels; however, 

three major, independent or overlapping levels of instability seem to be crucial in 

carcinogenesis.  



 31 

 

Figure: The double helix – DNA depicted from chromosomes to basepairs. Reprinted by 

permission from Macmillan Publishers Ltd: Nature130, copyright 2003. 

 

3.3.1 Chromosomal instability (CIN) 

Chromosomal instability (CIN) is a defining characteristic of most human cancers131, 

132. Mutation of CIN genes increases the probability that whole chromosomes or large 

fractions of chromosomes are gained or lost during cell division. The consequence of 

CIN is an imbalance in the number of chromosomes per cell (aneuploidy) and an 

enhanced rate of loss of heterozygosity (LOH). A major question of cancer genetics is 

to what extent CIN, or any genetic instability, is an early event and consequently a 

driving force for tumour progression.  
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The archetypical transformation in cancer cells, including CRC, results in 

aneuploidy. Indeed, almost all cancer cells display a host of karyotype alterations, 

showing translocations, gains or losses of entire or large parts of chromosomes. 

Cancers do not necessarily have a higher mutation rate than normal tissue at the 

nucleotide level, unless they have gained a mutator phenotype through exposure to 

environmental stress, but rather exhibit gross chromosomal changes. Therefore, it 

appears that the main mechanism of tumour progression stems from chromosome 

instability. Chromosomal instability prevailing in cancer cells arises through several 

different pathways and is probably controlled by hundreds of genes. The main factors 

that control chromosome stability are telomere maintenance133, 134, mechanisms of 

cell division, and the mitotic checkpoints that govern centrosome duplication and 

correct chromosome segregation131, 135-137. 

The most common genetic pathway (approximately 85% of CRCs) is 

characterized by allelic losses, chromosomal amplifications, and translocations 48, 127, 

138-146. Deletion at 1p and 8p, as well as loss of heterozygosity (LOH) of 17p and 18q 

are frequent in CRC. Such alterations are characteristic of the chromosomal-

instability pathway (CIN), also referred to as the microsatellite-stability pathway 

(MSS). Various techniques exist for investigating abnormalities at the chromosome 

level, including conventional karyotyping, fluorescence in sity hybridization (FISH), 

flow cytometry (ploidy analysis), comparative genomic hybridization (CGH) and 

spectral karyotyping (SKY), and are described more detailed elsewhere 147, 148. 

 

3.3.2 Microsatellite instability (MSI) 

The second pathway (involving about 15-20% of sporadic CRCs) is referred to as the 

microsatellite-instability pathway (MSI) 17. Such tumours display base-pair 

substitutions that are commonly found in short, tandemly repeated nucleotide 

sequences known (i.e. CACACACA; or [CA]4) as “microsatellites” 149-153. This form 

of genetic destabilization is most commonly caused by loss of the DNA mismatch-

repair function. The consequence is repeatedly inbuilt errors in microsatellite 
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sequences, often causing frameshift mutations and protein alterations in the 

microsatellite instable sequences, and thus leading to carcinogenesis.  

Microsatellites are found in great number spread out over the whole DNA 

sequence and, due to their repetitive manner, are prone to changes during replication. 

The most common microsatellite in humans is a dinucleotide repeat of cytosine and 

adenine which occurs in several thousand locations throughout the human germ 

line153.  Mismatches of nucleotides occur when the DNA-polymerase inserts the 

wrong bases in the newly synthesized DNA. Normally, when two strands of DNA 

replicate, nucleotide mismatches occur, but almost all such errors are quickly 

corrected by a molecular proofreading mechanism. The DNA mismatch repair system 

works as a “spell checker” that identifies and then corrects the mismatched basepairs 

in the DNA. However, defects in the mismatch repair mechanisms (i.e. mutated 

genes) lead to MSI.  

Microsatellite instability was discovered to be a marker in HNPCC more than 

a decade ago153, 154, when searching for loss of heterozygosity (LOH) in the 

susceptible region to find a tumour suppressor gene among dinucleotide repeats. 

Instead, microsatellites that had changed in length were found in all the HNPCCs – 

not only in the critical genetic region, but virtually everywhere in the genome of the 

tumour. This phenomenon was termed "replication error" (RER) and later renamed 

"microsatellite instability”153-156. Widespread MSI in HNPCC is associated with 

defective DNA-mismatch repair proteins caused by germline mutation of one of the 

three main genes (MLH1, MSH2, and MSH6). As a consequence, the lifetime risk for 

developing CRC is >80% for HNPCC offspring, compared to a lifetime risk for CRC 

of up to 5-6% in the general population157, 158. In addition, the risk is greatly elevated 

for endometrial cancer (lifetime risk of 50-60%, compared to 2-3% in the general 

population), moderately increased in ovarian and gastric cancer (12% and 13%, 

respectively)157, 159, but equals the normal population for lung, prostate, or breast 

cancer. Deficient mismatch repair occurs in approximately 15% of all sporadic CRC. 

In contrast to HNPCC, the cause in sporadic CRC is methylation of cytosine residues 

of the cytosine and guanine (CpG)-rich promoter sequences of MLH1160-163. Simply 
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stated, the ‘epigenetic change’ affect gene function (without genetic changes) by 

aberrant methylation of DNA that prevents the gene (-region) from being transcribed, 

thus ‘silences’ the gene, and cause deficiency in protein expression (see section on 

“epigenetics”).  

  

Testing for MSI 

The choice of microsatellite markers is important for MSI testing164. Testing for MSI 

can be done at the protein level with immunohistochemistry, but genotyping by 

means of the polymerase-chain-reaction (PCR) is the “gold standard”. Mutations that 

alter microsatellite length (by deletion or insertion) are visualized as bandshifts on 

either electrophoresis, or by sequencing. The latter is the preferred method. 

 Immunohistochemistry (IHC), although proposed to be more cost-effective than 

PCR, is currently not sensitive and specific enough to be used routinely in detecting 

MSI in sporadic and hereditary CRC. The reasons for this are several; the 

heterogeneity within tumours; the weak and focal IHC staining patterns that may be 

associated with MSI or gene mutation, or both; variability in technical protocols for 

fixation and staining quality within laboratories; and differences in interpretation of 

results. The rate of normal IHC results (but with PCR detected mutations) ranges 

from 2 to 36% in the literature165-167, and PCR has a higher sensitivity and specificity 

compared to IHC168. One of the major problems with IHC is detection of the 

frequently altered MLH1 gene mutations (sensitivity <50%). 

The 1997 Bethesda Guidelines169, 170 proposed a panel of five microsatellite 

markers for the uniform PCR analysis of MSI in HNPCC. This panel included two 

mononucleotide (BAT-25 and BAT-26) and three dinucleotide (D5S346, D2S123, 

and D17S250) repeats. The Bethesda guidelines have since been revised171, as the use 

of dinucleotide repeats may cause under- and overestimation of the instability-status. 

The revision mainly recommends the use of more mononucleotide markers in 

unequivocal cases (i.e. in only dinucleotide unstable cases). 
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Screening for HNPCC using the recommended Bethesda MSI markers are now 

performed in trials for detection of HNPCC172, 173, however, the current diagnostic 

yield and implemented costs demand for cautious expectation at best174. Although 

feasible, the choice to screen all patients who have CRC for MSI should await further 

evidence relating to the clinical importance and therapeutic influence of this 

information. Clearly, the many available techniques and numbers of markers for MSI 

testing make general comparison of the obtained clinical outcomes difficult in both 

hereditary and sporadic CRC175, 176. However, knowledge is evolving rapidly in this 

field of CRC research. 

 

Microsatellite frequency 

For whatever the number of microsatellite markers that are used in a panel, instability 

in ≥ 40% of markers (i.e. 2 of 5 markers in the Bethesda panel) is defined as high-

frequency MSI (MSI-H), while instability in 20-40% of markers are defined as low-

frequency MSI (MSI-L). Tumours with no proven instability (or ≤20%) are termed 

microsatellite stable (MSS) – these tumours comprise those said to follow the CIN-

pathway. The existence of MSI-L is still controversial and under debate177-181. 

Complexities are related to the wide genomic distribution of dinucleotides, the yet 

unresolved molecular alterations that have been found in these markers, and the 

possible influence on carcinogenesis178, 181-183. When many dinucleotide markers are 

used, a large number of CRC are graded as MSI-L181. The select use of 

mononucleotide markers may avoid this problem177, 184, 185. However, proponents of 

MSI-L tumours have found frequent k-ras mutations, as well as more frequently LOH 

at 5q, 1p and 8p140, relating them to the CIN-pathway180 while this has not been 

confirmed in other studies181. Interestingly, some MSI-L tumours are epigenetically 

silenced in the DNA-repair gene MGMT (O-6-methylguanine DNA 

methyltransferase) more frequently than both MSI-H and MSS cancers186, which may 

pose a different way to DNA repair errors.  MSI-L status has been related to poor 

prognosis in patients with stage C cancers187. Although techniques to more readily 
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detect these subtle differences are developing, such as hypermethylation of MGMT188, 

the true clinicopathological yield of MSI-L status remains to be established. 

 

Genetic differences 

Tumours exhibiting CIN and MSI resemble each other in all but a few distinct ways. 

Tumours with CIN have mutations in p53 and APC, including gross chromosomal 

abnormalities. In contrast, tumours with MSI have frameshift mutations in specific 

target genes, such as β-catenin and TGFβRII189, and fewer mutations are found in k-

ras and p53190. The same holds true for allelic imbalance at other genetic loci, such as 

18q. Mutations of p53 are associated with poor prognosis35, explaining in one way the 

prognostic advantage of MSI tumours. However, MSI-positive tumours that express 

p53 seem to have a more aggressive biology than their p53-negative counterparts191. 

 Defective mismatch repair presumably facilitates malignant transformation by 

allowing the rapid accumulation of mutations that inactivate genes, which ordinarily 

have key functions in the cell. The lack of mismatch-repair proteins, fails to correct 

nucleotide mismatches and thus promotes mutations in other genes. However, genes 

carrying MSI in their own coding sequences are also involved, such as the BAX and 

TGFβRII genes192.  

 A frameshift mutation inactivates the BAX gene in about 35% of all tumours 

with MSI. Altered BAX-expression is believed to contribute to carcinogenesis by 

disrupting the apoptosis pathway mediated by Bcl-2 193-198.  

 The TGFβRII gene, which encodes transforming growth factor β (TGF-β) 

receptor II199, undergoes a frameshift in up to 90% of all HNPCC. This mutation 

leads to a disruption in the function of TGF-β, which acts as both a tumour 

suppressor and promoter in CRC200-204. TGF-β signalling pathway involves activation 

of the Smad proteins which regulate transcription. Other genes with coding 

microsatellites (i.e. the tumour-suppressor gene p16INK4A) are mutated in mismatch-
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repair–deficient CRC, but their precise roles are not well understood. More recently, 

the use of array technology has identified a number of genes differentially expressed 

in the two subtypes of CRC205-208. 

 

Clinicopathological implications 

Distinct clinical and pathological features of CRCs arising from the two separate 

mutational pathways have been identified191, 209-211.  

 

Figure: Clinicopathological characteristics of MSI vs CIN tumours of the large bowel. 

Adopted from Søreide et al17. Copyright  British Journal of Surgery Society Ltd. Reproduced 

with permission granted by John Wiley & Sons Ltd on behalf of the BJSS Ltd. 

 

MSI is observed more frequently in women and in CRCs that occur proximal to the 

splenic flexure. These tumours also exhibit poor differentiation, a mucinous cell type, 

and frequently peritumoural lymphocytic infiltration (“Crohns-like inflammation”)209, 



 38 

212, 213. By which mechanisms this inflammatory response may contribute to the better 

prognosis remains to be fully explained, but the cytotoxic effects of CD8+ 

lymphocytes seem to be important212, 213. Recent data suggests an interplay with TGF-

β and peritumoural lymphocytes200.  

Furthermore, MSI tumours are usually diploid unlike the often aneuploid CIN 

tumours. CRC exhibiting MSI is associated with a larger size (i.e. T3 tumours) of the 

primary tumour, but with a more favourable stage distribution (less lymph node 

involvement and reduced occurrence of metastasis). The pronounced genetic 

instability of cells with MSI may increase susceptibility to apoptosis because of an 

accumulation of mutations in genes that are required for cell growth. An increased 

rate of mutation in other genes might lead to aberrantly expressed proteins in 

membranes, which may be associated with the antitumour immune response 

evidenced by the lymphocytic infiltrates that surround tumours with MSI209, 212, 213. 

MSI cancers have a higher incidence of synchronous and metachronous 

tumours. In a recent study Velayos et al214 explored the MSI patterns in patients with 

metachronous and synchronous CRC. They found that MSI occurred with equal 

frequency among patients with synchronous and metachronous CRCs. However, the 

underlying mechanism for MSI was different (loss of MLH1 expression associated 

with promoter hypermethylation was more common in MSI-H synchronous CRC). 

Observed differences in MLH1 promoter hypermethylation and patient characteristics 

suggested that most MSI-H synchronous CRCs were sporadic in origin214. 

Most importantly, patients with CRCs that exhibit MSI have longer overall 

and cancer-specific survival than stage-matched patients with cancers exhibiting 

CIN33, 215. The important contrast in survival between the two types of CRC remains 

unexplained. Paradoxically, colorectal cancers with MSI bear many features that are 

generally associated with poor prognosis, including deep tumour invasion and low 

histologic differentiation. However, MSI positive tumours are rarely found in hepatic 

metastasis from CRC216.  
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Adjuvant chemotherapy with fluorouracil benefit patients with tumours 

exhibiting CIN, but apparently not those with tumours exhibiting MSI217. However, 

an overall reduced benefit from adjuvant therapy in patients with MSI and CRC could 

not be demonstrated in a recent systematic review and metaanalysis33, but the overall 

survival of MSI colorectal tumours was better. Thus, the mechanism in which MSI 

tends to render clinically less aggressive cancers remains an interesting but 

unresolved research target. Real differences in adjuvant chemotherapy response 

between MSI and CIN tumours remain to be demonstrated. 

 

3.3.3 Epigenetic silencing 

Aberrations in the DNA methylation patterns are recognized as a hallmark of human 

cancer development, and so-called “epigenetic silencing” is now recognized as a 

'third pathway' in Knudson's model of tumour-suppressor gene inactivation in 

cancer208, 218, 219. One of the most characteristic changes is the hypermethylation of 

CpG islands of tumour suppressor genes associated with their transcriptional 

silencing.  

CpG islands are regions where there are a large number of cytosine and 

guanine adjacent to each other in the backbone of the DNA (linked by phosphodiester 

bonds; thus named CpG). They are in and near approximately 40% of promoters of 

mammalian genes (about 70% in human promoters). The length of a CpG island is 

typically 300-3000 base pairs. These regions are characterized by CpG dinucleotide 

content equal to or greater than what would be statistically expected (approx. 6%), 

whereas the rest of the genome has much lower CpG frequency (approx. 1%), a 

phenomenon called CG suppression. Unlike CpG sites in the coding region of a gene, 

in most instances, the CpG sites in the CpG islands of promoters are unmethylated if 

genes are expressed. This observation led to the speculation that methylation of CpG 

sites in the promoter of a gene may inhibit the expression of a gene. Methylation is 

central to imprinting along side histone modifications. The usual formal definition of 

a CpG island is a region with at least 200 bp and with a GC percentage that is greater 
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than 50% and with an observed/expected CpG ratio that is greater than 0.6. Most of 

the CpG islands are associated with genes, and can be used as recognition sites for 

restriction enzymes. 

The target genes of epigenetic silencing are distributed in all cellular pathways 

(e.g. apoptosis, DNA repair, cell cycle, cell adherence), and are thought of as early 

initiators of carcinogenesis220, 221. They are "classical" tumour suppressor genes with 

associated familial cancers (e.g. BRCA1, hMLH1, p16INK4a, VHL) and putative new 

tumour suppressor genes which loss may contribute to the transformed phenotype 

(e.g. MGMT, p14ARF, GSTP1, RARB2). A tumour-type specific profile of CpG 

island hypermethylation exist in human cancer that allows the use of these aberrantly 

hypermethylated loci as biomarkers of the malignant disease. The eruption of new 

technologies for the careful study of the DNA methylation patterns, and their genetic 

partners in accomplishing gene silencing, may also provide us with new drugs for the 

epigenetic treatment of human tumours. 

For selected genes, epigenetic changes are tightly related to neoplastic 

transformation in CRC. As an example, loss of the tumour suppressor gene PTEN 

located at 10q23 occurs through promotor hypermethylation in CRC with MSI-H206. 

In the colon, aberrant DNA methylation arises very early, initially in normal mucosa, 

and may be part of the age-related field defect observed in sporadic CRC. Aberrant 

methylation also contributes to later stages of CRC formation and progression 

through a hypermethylator phenotype termed CpG Island Methylator Phenotype 

(CIMP). CIMP appears to be a defining event in about half of all sporadic CRCs222. 

CIMP-positive CRCs are distinctly characterized by pathological, clinical and 

molecular genetic features222-225. 

 MSI in sporadic CRC usually arises because of epigenetic silencing of the 

DNA mismatch repair gene MLH1226, and is thus associated with methylation, but the 

overlap of “mutator” and “methylator” phenotypes is not exact149, 152, 227. In particular, 

some cancers with extensive DNA methylation do not show the mutator phenotype. 

Although DNA methylation is associated with a worse outcome in CRC, this adverse 
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prognostic influence is lost in methylated tumours with MSI228. Collectively, these 

factors add a layer of complexity to the clinical, morphological, and molecular 

classification of CRC47. 

 

3.4 PROLIFERATION AND APOPTOSIS 

The balance between “life and death” is essential in all tissue development, and also 

in development of neoplasia and cancer. Colorectal cancer has served as a model for 

the detection and description of several important genes and the molecular pathways 

they control 229. Basically these genes regulate the inner cellular network, leading to 

the endresult of either cell proliferation or apoptosis. However, cross-talk among 

several pathways exists, and the true function of certain proteins/factors may differ 

with “time and dose” of their presence204. A brief outline of a few pathways are given 

here. 
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Figure: Several molecular pathways are involved in colorectal cancer development, of 

which a simple outline is given here. Developed from Søreide et al 17.  

 

3.4.1 Proliferation 

WNT-pathway: The “WNT”, or “wingless” (so named for the mutator effects in the 

fruit fly Drosophila), pathway is one important signal pathway involved in embryonic 

development of the intestine as well as in cancer development of the colorectum104, 

230, 231. 

The role of β-catenin in colorectal carcinogenesis was first suggested by the 

association with the adenomatous polyposis coli (APC) protein, and by evidence of 

dysregulation of beta-catenin protein expression at all stages of the adenoma-

carcinoma sequence232, 233. However, several studies have shown that yet more 

components of colorectal carcinogenesis are linked to β-catenin pathways – thus 

making this protein a “linchpin” in CRC234. The oncogenic properties of Wnt/β-

catenin signaling stem from alteration in phosphorylation-dependent protein 

degradation and subcellular localization of beta-catenin from cell membrane to the 

nucleus, where it binds to T-cell factor (Tcf) to form a bipartite transcription factor. 

The β-catenin/Tcf complex facilitates transcription of target genes that encode 

effectors for activation of cell proliferation and invasion and inhibition of apoptosis, 

leading to colorectal cancer development 235. 

Pro-oncogenic factors that release β-catenin from the adherens complex and/or 

encourage translocation to the nucleus include RAS, EGF, c-erbB-2 and others, 

whereas anti-oncogenic factors (that also inhibit nuclear β-catenin signalling) include 

transforming growth factor (TGF)-β, retinoic acid, and vitamin D. Association of 

nuclear β-catenin with the Tcf/lymphoid enhancer factor (LEF) family of 

transcription factors promotes the expression of several compounds that have 

important roles in the development and progression of CRC. This include (but are not 

exclusive of) such genes and proteins as c-myc, cyclin D1, cyclooxygenase (COX)-2, 
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matrix metalloproteinases (MMPs), and several others 114, 236, 237. Genetic aberrations 

of several components of the β-catenin pathways, such as Frizzled (Frz), AXIN, and 

TCF-4, may potentially contribute to colorectal carcinogenesis. In addition, in the 

tumour invasion front, stabilized and activated β-catenin interacts with other 

molecular pathways to facilitate tumor progression. 

KRAS-BRAF-MAPK-pathway: K-ras is an oncogene which, when mutated, 

causes constitutively cell signal stimulus for cell-cycle entry and cell division. Recent 

evidence suggest that APC, K-ras, and p53 have different pathways and roles in CRC 

development 125, 126, 238. While the combination of APC/β-catenin and K-ras 

alterations are found in most CRCs232, they do not necessarily show a coexistence in 

all tumours. However, K-ras mutation, when it occurs (in about 35% of adenomas), 

seems to be an early event in adenoma-carcinoma development239, may have 

additional down-stream mutations in the pathways (i.e B-raf)240, is negatively 

associated with microsatellite instability190, and confer a poor prognosis in patients 

with CRC241.  
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3.4.2 Apoptosis 

Apoptosis is described by its morphological characteristics, including cell shrinkage, 

membrane blebbing, chromatin condensation and nuclear fragmentation. The 

realization that apoptosis is a gene-directed program (“programmed cell death”) has 

had profound implications for the understanding of developmental biology and tissue 

homeostasis, for it implies that cell numbers can be regulated by factors that influence 

cell survival as well as those that control proliferation and differentiation242. 

Moreover, the genetic basis for apoptosis implies that cell death, like any other 

metabolic or developmental program, can be disrupted by mutation. In fact, defects in 

apoptotic pathways are now thought to contribute to a number of human diseases, 

ranging from neurodegenerative disorders to malignancy, and the avoidance of the 

“cell death programme” is regarded one of the cancer hallmarks and an important 

feature in CRC 243, 244. In fact, inability to escape apoptosis could possibly explain the 

clinical notion of “regression” in many colorectal polyps245, 246 – and, inversely, an 

ability to grow and progress if the apoptotic mechanisms are avoided.   

 To important molecules in cancer development futher illustrated the importance 

of apoptosis control in cancer devlopment. One was the cloning and characterization 

of the bcl-2 oncogene, another was the p53 tumour suppressor gene.  

 bcl-2 was first identified in a human leukemia line and later in follicular 

lymphomas. Bcl-2 promotes cell survival by blocking apoptosis. To date, at least 15-

20 Bcl-2 family member proteins have been identified in mammalian cells, including 

proteins that promote apoptosis and those that prevent apoptosis. In addition to Bcl-2, 

Bcl-xL is a potent death suppressor that is upregulated in some tumour types. 

Conversely, Bax is a death promoter that is inactivated in certain types of colon 

cancer and in hematopoietic malignancies.  

 p53 was the first tumour suppressor gene linked to apoptosis. p53 mutations 

occur in the majority of human tumours and are often associated with advanced 

tumour stage and poor patient prognosis. By the early 1990s, p53 was established as a 

checkpoint protein involved in cell-cycle arrest and maintaining genomic integrity 
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following DNA damage. In addition, other stimuli can activate p53 to promote 

apoptosis, including hypoxia and mitogenic oncogenes. Moreover, several upstream 

and downstream components of the p53 pathway (such as Mdm-2, ARF and Bax) are 

mutated in human tumours.  

 Clearly, it is now known that mutations in many cancer-related genes in addition 

to bcl-2 and p53 can disrupt apoptosis during colorectal carcinogenesis 242-244. Several 

signal transduction pathways promote cell survival in response to growth and/or 

survival factors, and these pathways may be crucial in controlling cell numbers.  

 Molecules that regulate apoptosis can have other activities (and many of them 

do). For example, p53 can promote apoptosis, cell-cycle arrest and senescence such 

that loss of p53 function increases viability, chromosomal instability and cellular 

lifespan. In colon cancer, bax and p53 mutations appear mutually exclusive, 

consistent with a pathway relationship. In contrast, p21 which is essential for p53-

mediated arrest, is rarely mutated in human tumours. Some tumour-derived p53 

mutants remain capable of promoting cell-cycle arrest while losing their apoptotic 

potential. 

 A variety of signals appear important to trigger apoptosis during 

cancerogenesis242, 244. Extracellular triggers include growth/survival factor depletion, 

hypoxia, radiation and loss of cell-matrix interactions. Internal imbalances can also 

trigger apoptosis, including DNA damage (produced by cell-cycle checkpoint defects 

or exogenous toxins), telomere malfunction and inappropriate proliferative signals 

produced by oncogenic mutations. In some instances the apoptotic `trigger' actually 

alleviates an anti-apoptotic signal. For example, Insulin-like growth factor (IGF)-1 

promotes cell survival through the PI3K-pathway, and depletion of IGF-1 or other 

survival factors can trigger “death by default”. In contrast, other stimuli involve true 

pro-apoptotic factors; as an example, many forms of cellular stress can activate p53, 

which promotes apoptosis through pro-apoptotic molecules, like Bax.  

 The identification of apoptotic “triggers” provides insight into the forces of 

tumour evolution, both in initiating neoplasia development and in tumour 
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progression242, 244. Other apoptotic triggers are important in tumour progression. As 

developing tumours outgrow their blood supply, they encounter hypoxia (low 

oxygen), which can activate p53 to promote apoptosis. Cells acquiring apoptosis 

defects (such as p53 mutations) can survive hypoxic stress, leading to a clonal 

expansion within the tumour. Similarly, as developing tumour cells undergo repeated 

divisions, telomeres are shortened until some malfunction triggers either senescence 

or apoptosis. Like hypoxia, p53 is required for apoptosis induced by telomere 

malfunction; thus p53 mutant cells survive this response and are genomically 

unstable. Indeed, suppression of the apoptotic response to telomere malfunction may 

explain why combined loss of telomerase and p53 stimulates tumour development. 

This may explain why p53 mutations are usually late events in tumour development, 

as a cell acquiring a p53 mutation might not have a selective advantage until the 

developing tumour encounters hypoxic conditions or achieves sufficient telomere 

erosion.  

 Clearly, the molecular network in the regulation of apoptosis and proliferation 

is complex. However, a few important molecules deserve attention in the current 

setting. 

One is Survivin – a 16.5 kDa protein mapped to cromosome 17q25 – which 

was detected only a decade ago 247. Functionally, survivin is known to inhibit 

apoptosis, take part in cell division and mitogenic events such as control of 

microtubuli connection, and enhance angiogenesis 136, 248. The expression of survivin 

shows distinct differences between normal and malignant tissue and, plays a causal 

role in CRC progression 249, 250. Recently, a possible interrelationship between 

survivin expression and telomerase activity has been reported 249, as confirmed in this 

study. Endo et al 249 observed correlation between survivin and human telomerase 

reverse transcriptase (hTERT) expression in colon cancer tissues, and 

overexpression of survivin enhanced telomerase activity by up-regulation of hTERT 

expression in human CRC cells. This is in line with our findings of the co-expression 

of these two markers 251. 
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Human telomeres are composed of long repeating sequences of “TTAGGG”, 

associated with a variety of telomere-binding proteins. The function of hTERT as an 

end-protector of chromosomes prevents the chromosome from end-to-end fusion, 

recombination and degradation. hTERT acts as a reverse transcriptase in the 

elongation of telomeres, which prevent the loss of telomeres during replication.  

In most tumour cells, telomeres are extremely short and stable. Telomere length is an 

important indicator of the telomerase activity in tumour cells and it may be used in 

the prognosis of malignancy, including colorectal neoplasia 252. hTERT activation or 

up-regulation causes an indefinite cell proliferation. This cellular immortalization is a 

potentially rate-limiting step in carcinogenesis that is important for the continuing 

evolution of most advanced cancers. In CRC development, hTERT activation occurs 

during the progression from low-grade to high-grade IEN in adenomas and increases 

steadily with the progression of the degree of dysplasia and invasion during colorectal 

carcinogenesis 252-255. Telomere instability causes increased expression of p16INK4a 256.  
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4. BIOMARKER DISCOVERY 

 

4.1 DIAGNOSTIC ACCURACY 

Diagnostic accuracy is the ability of a laboratory test to correctly classify subjects 

into clinically relevant groups (i.e. cancer vs. no cancer). Diagnostic accuracy refers 

to the quality of the information provided by the classification device (i.e. cut-off 

level for a continuous variable) and should be distinguished from the usefulness, or 

actual practical value, of the information 257. 

Diagnostic tests are usually measured and interpreted in their applicability by a 

number of features, including258: 

 Sensitivity, or the True Positive rate, which tells how good the test is at 

picking up people with the condition investigated. A high sensitivity is typically 

preferred in a screening test to rule out people without the disease. 

 Specificity, or the True Negative rate, which tells how good the test is at 

correctly defining people without the disease. A high specificity is required for 

diagnostic tests in order to have a low false positive rate. 

 Positive predictive value (PPV, or the post-test probability of a positive 

test), which is a measure of the probability of having the condition if a person tests 

positive. 

Negative predictive value (NPV, or the post-test probability of a 

negative test); will address the situation “if a patient/person tests negative on a test, 

what is the probability of not having the condition/disease”. 

Accuracy, gives the proportion of all tests that have given the correct result 

(true positives and true negatives) as proportion of all the results. 
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Sensitivity and specificity are features of the test itself, and “looks backward” 

in that they show the probability that a person with a disease will have a positive test, 

rather than “looking forward” and showing the probability that the person who tests 

positive actually has the disease 259. 

Likelihood ratios (LR) is an estimate of the relative predictive value of a test 

(true positives/false positives), is useful in clinical practice as it indicates how likely a 

positive result will be found in a person with the disease compared to a person 

without the disease. LR of a test indicates the increase from pre-test probability (e.g. 

prevalence of the disease) to post-test probability. Interpretation of LRs can be used 

by nomograms. As a rule of thumb, LR over 10 is generally regarded as large and a 

conclusive change in pre- to post-test probability of having the disease. LR of 5-10 

are considered moderate, and LR<2 are rarely considered important 259. For tests with 

a continuous range of test-results (e.g. from 1-100), rather than a dichotomous test-

result (yes/no; red/green; present/absent), the sensitivity and specificity (and the LR) 

heavily relies on the chosen cut-off value for dichotomization into f. ex. healthy vs 

diseased. 

As an example, expression (positive stain) of any protein biomarker in 

cancerous tissues produces a continuous spectrum of test results (i.e. from 0-100%). 

Thus, the diagnostic properties of such biomarkers (as expressed by sensitivity, 

specificity, predictive values, or likelihood ratios) depend on the chosen cut-off value 

to differentiate between normal and disease states 260.  

 Receiver-operating characteristics curve (ROC) analysis provides a 

statistical method to assess the diagnostic accuracy of a test with continuous spectrum 

of results 261. The ROC curve is a graphical display of the true-positive rate 

(sensitivity, y-axis) and the false-positive rate (1-minus-specificity; x-axis). Each 

classification rule, or cut-off level, generates a point on the graph. The traditional 

ROC curve arises when a continuous value is measured in each subject and the 

classification is positive if the value is above a threshold. As the threshold varies, a 

new classification rule is created, and the resulting plot is a single curve. The optimal 
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ROC curve is the line connecting the points highest and farthest to the left-upper 

corner. The rationale for the optimal ROC curve is that it captures the trade-off 

between sensitivity and specificity over a continuous range. The area under the curve 

(AUC) is a measure of overall diagnostic accuracy of the test, and the cut-off value 

providing the highest sensitivity and specificity is calculated. Importantly, the results 

are independent of the prevalence of the disease. Furthermore, ROC plots occupy a 

central position in the process of assessing and using diagnostic tools 37, 257, 261. 

 

 

4.2 SURROGATE ENDPOINTS BIOMARKER (SEPB) 

 

Intraepthelial neoplasia (IEN): As a near obligate precursor to cancer, the 

intraepithelial neoplasia (IEN) is an appropriate target for intervention. Occurring in 

most gastrointestinal epithelial tissues as moderate to severe dysplasia, IEN shares 
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phenotypic and genotypic similarities with invasive disease and is on the causal 

pathway leading from normal tissue to cancer. In addition, IEN serves as a significant 

risk marker for cancer. Subjects with IEN, particularly those with severe IEN, are at 

significantly higher risk than unaffected individuals for developing invasive cancer in 

the same tissues. This risk in fact exceeds other measurable factors (e.g., age, race, 

and family history), with the exception of germ-line mutations that occur in genetic 

syndromes. IEN is also a disease in its own right, in that treatment provides clinical 

benefit. In standard clinical practice, surgical interventions are used to reduce the 

burden of IEN. This same goal of reducing IEN burden is thus also appropriate for 

medical (noninvasive) intervention, not only to reduce invasive cancer risk, but also 

to reduce surgical morbidity.  

 The colorectal adenoma is an IEN prototype and a good example for 

using IEN as surrogate end-points (SEPs). Knowledge of the biology of tumour 

progression therefore allows us to identify specific tests that are useful for early 

detection or screening 95. Molecular probes, for instance, could detect altered DNA 

shed into the faeces 89. Correlation of the molecular alterations with demographic 

data, risk factors, environmental exposure, family history, and dietary history may 

provide important information on the aetiology of CRC. Molecular genetic alterations 

could also contribute toward the assessment of risk. Risk assessment is the search for 

risk factors that provide the earliest evidence for the risk of cancer in persons not 

diagnosed with the disease. Biomarkers that are predictive of risk can potentially 

trigger more aggressive interventions and surveillance. Individuals who test positive 

for any risk marker become candidates for an intervention or for surveillance. The 

earliest risk factors are probably the inherited genetic defects, which is well 

demonstrated in the case of CRC (for example patients with HNPCC or FAP). 

 Markers of risk and markers of early detection share the same outcome, 

namely, the incidence of disease. However, markers of risk and markers for early 

detection differ in the degree of certainty they convey regarding the existence of 

cancer. A risk factor confers significantly less than 100% certainty of cancer within a 

specified time interval, whereas early detection markers confer close to 100% 
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certainty of cancer. Risk markers indicate that cancer is more likely to occur within a 

specified time in persons with the marker than in the general population. Early 

detection markers indicate the existence of cancer, or that cancer will occur with 

nearly a 100% certainty within a specified time interval.  

 From a screening perspective, all surrogate outcomes in individuals not 

diagnosed with cancer are risk factors. Colonic polyps, for instance, are a surrogate 

end point for screening and a risk factor for colon cancer 95, 262. The elements that are 

necessary in order to use risk factors as surrogate outcomes in screening, early 

detection, or prevention interventions are somewhat different. However, for a risk 

factor to be a useful SEPB, it must be strongly connected to the definitive outcome, 

and the probability and direction of the relationship must be known. Several criteria 

must be met before biomarkers can serve as risk factors or as markers for early 

detection95, 263, 264, for which some steps are crucial:  

• the biomarker must be differentially expressed in normal, premalignant or 
high-risk, and tumour tissue;  

• the marker and its assay must provide acceptable predictive accuracy for 
risk or for the presence of cancer; and  

• the variance of the detection tests and the intra- and interlaboratory 
variance must be known.  

Risk markers are usually used as surrogate outcomes to detect the effect of a 

prevention intervention more rapidly than waiting for the definitive outcome. These 

criteria can be tested and evaluated in animal models and in human tissue specimens. 

Today, there are very few biomarkers for risk of colon cancer, except for the colonic 

adenoma per se94, 95. 

 

4.3 ENDPOINT: SYNCHRONOUS vs METACHRONOUS CANCER  

Metachronous neoplasia development after having an adenoma has been investigated 

in a number of ways, with a large number of parameters and techniques, but 

unfortunately from very heterogeneous populations, and with inconsistent use of 
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endpoints (any adenoma, advanced adenoma, or cancer) and definition of the 

“metachronous interval” 80, 96, 118, 265-268. “Metachronous cancer” development is (most 

frequently) defined as detection of a second cancer occurring beyond a 6-12 months 

interval after a primary, index cancer diagnosis/surgery41, 214, 269-271. For cancers 

developed after adenoma detection and/or polypectomy a “long-term” risk or an 

undefined metachronous cancer risk has been stated, as opposed to “synchronous” 

cancers detected in the same-session endoscopic procedure. In the adenoma study, we 

defined metachronous cancers as cancer developing after at least 24 months interval 

from the index adenoma 80, 118, to avoid a high incidence of missed synchronous 

cancers. 

 

4.4 GENOMICS & PROTEOMICS 

4.4.1 The potential 

Year 2003 marked the 50th anniversary of the 1953 landmark description of the DNA 

double helix 272. The same year the Human Genome Project completed the 

successfully sequencing of the human genome 273, 274. These are major achievements 

in biology and medicine in general, not the least to the understanding of 

carcinogenesis. New molecular insights and technologies have given clues to the 

initiation, early detection and possible prevention of neoplasia, prognostic and 

predictive markers in oncology, and targets for early detection and therapy. Modern 

molecular medicine is thought to overtake the current use of pathologist dysplasia 

classification and tumour-staging systems in the future68, 275. 

The search for cancer-causing alterations within the currently known genes of 

the whole genome (Genomics – the study of the human genome) is complexed by the 

different ways the genes may be transcribed (Transcriptomics) into a variety of 

functionally different proteins (Proteomics – the analysis of the protein complement 

of the genome), which themselves over time can undergo essential functional 
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changes. Each has the potential for discovery of new diagnostic biomarkers, therapy 

targets, and predictive and prognostic features276. 

An analogue to the understanding of the genetic code is the comparison with 

the alphabet. As such, we have discovered the letters (the sequence) and have thus far 

found a few sentences (genes that we know of), but we have only merely begun 

reading the chapter contents (how genes may be transcribed), while the books (the 

proteins and the metabolites) will keep mankind reading for many centuries to come. 

Obviously, the human/mammalian library contains many books. In more scientific 

terms, the outline of the genome has enabled the study of gene products that are the 

focal point of proteomic studies, the effectors of the DNA277. Thus, considering the 

complexities of human nature and disease processes, we have just become aware of 

the alphabet-code for a vast library of knowledge.  

 

4.4.2 The pitfalls 

Genomic medicine is poised to offer a broad array of new genome-scale screening 

tests. However, these tests may lead to a phenomenon in which multiple abnormal 

genomic findings are discovered, recently coined “incidentalomics”278, analogous to 

the "incidentalomas" that are often discovered in radiological studies. If practitioners 

pursue these unexpected genomic findings without thought, there may be disastrous 

consequences. One recent example of this in Norwegian medicine is the fecal gene-

testing initiated for colorectal (pre-)neoplasia detection prior to any evidence that this 

really improve detection and work-up in symptomatic patients 279. 

First, physicians, as well as researchers, will be overwhelmed by the 

complexity of pursuing unexpected genomic and proteomic measurements. This is 

underlined by the notion that according to our existing knowledge, only 1.1% of the 

genome consists of exons coding for proteins, 24% is intronic sequences and the 

remaining 75% consists of intergenic DNA currently without a known function 

(although knowledge is evolving rapidly) in RNA-transcription or protein translation.   
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Second, patients will be subjected to unnecessary follow-up tests, causing 

additional morbidity, and potentially impaired quality of life. While molecular 

markers have the potential for non-invasive, large-scale screening, such as panels 

used for faecal detection of occult genes for colorectal cancer280, 281, the 

implementation of such tools require crucial attention to every step in the 

implementation process, including assessment of diagnostic accuracy, reliability, 

validity, cost-effectiveness, and risk-benefit analysis. Commercial benefits alone 

should not justify nationwide implementation279. 

Third, the cost of genomic medicine will increase substantially with little 

benefit to patients or physicians (but with great financial benefits to the genomic 

testing industry279), thus throwing the overall societal benefit of genome-based 

medicine into question. Several authors have discussed the basis for these concerns 

and suggested similar approaches through several steps that can be taken to help 

avoid the risks to the practice of genomic, personalized medicine 148, 263, 278, 282-284. 

That molecular markers can accurately diagnose cancer have been claimed and 

disputed; some prominent results have not been reproduced and bias has been 

proposed to explain the original observations282, 285. As new Omics-fields are explored 

to assess molecular markers for cancer, bias will increasingly be recognized as the 

most important 'threat to validity' that must be addressed in the design, conduct and 

interpretation of such research. 

Although molecular markers will undoubtedly provide advances in diagnosis 

and prognosis, the degree of success claimed at present is extraordinary. In an 

example, the carcino-embryonic antigen (CEA) was several decades ago purported to 

be nearly “…100% sensitive and specific…” for colorectal cancer screening in initial 

research, whereas subsequent research had very different results. History might not 

necessarily repeat itself, but it indicates caution before making claims of success. The 

non-reproducibility of the CEA results was due, in large part, to the fact that 

individuals who were initially studied had extensive cancer, whereas individuals who 

were later studied had less extensive asymptomatic cancer in which CEA might not 
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have been increased282, 286. The fact that test results vary with the ‘spectrum’ of 

disease might seem obvious now37, 41, but there was little understanding in that era of 

the concept of spectrum of testresults and of the biases that affect research about 

diagnostic tests282, 286. Development of the methods and rules of evidence by which 

diagnostic tests are judged today occurred in part because of the CEA experience and 

should guide future study design264, 282, 286. 

 

4.4.3 Some techniques 

The techniques used in modern molecular biological medicine continuous to evolve 

and improve, and includes a plethora of possible approaches to explore, measure and 

investigate the human genome and its by-products (proteins). Reviews covering 

several techniques have been given in more recent publications147, 148, and but a few 

examples are mentioned here: 

 Immunohistochemistry (IHC): refers to the process of localizing proteins in 

cells of a tissue section exploiting the principle of antibodies binding specifically to 

antigens in biological tissues. It takes its name from the roots "immuno," in reference 

to antibodies used in the procedure, and "histo," meaning tissue. IHC staining is 

widely used in the diagnosis and treatment of cancer. Specific molecular markers are 

characteristic of particular cancer types. IHC is also widely used in basic research to 

understand the distribution and localization of biomarkers in different parts of a 

tissue. Visualising an antibody-antigen interaction can be accomplished in a number 

of ways, either by the direct or indirect method. In the most common instance, an 

antibody is conjugated to an enzyme, such as peroxidase, that can catalyse a colour-

producing reaction. 
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Figure: The basic principles of immunohistochemistry. 

 

 Tissue microarrays (TMA): is an array-based, high-throughput technique that 

facilitates gene expression and copy number surveys of very large numbers of 

tumours. Up to 1000 cylindrical tissue biopsies (though typically lower, e.g. 40-60 

per block) from individual tumours can be distributed in a single tumour tissue 

microarray. Sections of the microarray provide targets for parallel in situ detection of 

DNA, RNA and protein (IHC) targets in each specimen on the array, and consecutive 

sections allow the rapid analysis of hundreds of molecular markers in the same set of 

specimens. TMA technology is of substantial value in rapidly translating genomic 

and proteomics information to clinical applications287-289. Due to variety in core 

diameter (i.e. from 0.6 micrometers-2.0 micrometers), number of cores (1-3 per 

specimen), tumour heterogeneity (invasive front, tumour centre etc) there is a risk for 

sampling error and low reproducibility with careless use of this technique. 

 

Figure: Construction of tissue microarray (TMA) for high-throughput analysis of antigens. 
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 Polymerase chain-reaction (PCR): is a biochemistry and molecular 

biology technique for exponentially amplifying DNA via enzymatic replication. As 

PCR is an in vitro technique, it can be performed without restrictions on the form of 

DNA, and it can be extensively modified to perform a wide array of genetic 

manipulations. In 1983, the PCR technique was invented by Kary B. Mullis. He 

received the Nobel Prize in Chemistry in 1993 for his invention. PCR is now a 

common technique used in medical and biological research labs for a variety of 

tasks (ranging from cancer/disease research and diagnosis, to genetic 

“fingerprinting”, paternity issues and forensic sciences). One such applicable area 

for the use of PCR is the testing of microsatellite instability in cancers from patients 

with (clinically suspected) hereditary non-polyposis colorectal cancer (HNPCC). 

PCR is used to amplify specific regions of a DNA strand. This can be a single 

gene, just a part of a gene, or a non-coding sequence. PCR, as currently practiced, 

requires several basic components, including chemical components and buffers. 

The most important components are: 

1. DNA (“template”) that contains the region of the DNA fragment to be amplified 

2. One or more primers (i.e. MSI markers or the like), which are complementary to 

the DNA regions at the 5' and 3' ends of the DNA region that is to be amplified. 

3. a DNA polymerase (e.g. Taq polymerase or another DNA polymerase with a 

temperature optimum at around 70°C), used to synthesize a DNA copy of the 

region to be amplified. 

4. Deoxynucleotide triphosphates, (dNTPs) from which the DNA polymerase builds 

the new DNA. 

 

The PCR is carried out in small reaction tubes that are inserted into a thermal cycler 

that heats and cools the reaction tubes to the precise temperature required for each 

step of the reaction. In practice, PCR can fail for various reasons, in part due to its 

sensitivity to contamination causing amplification of spurious DNA products. 
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Because of this, a number of techniques and procedures have been developed for 

optimizing PCR conditions. Contamination with extraneous DNA is addressed with 

lab protocols and procedures that separate pre-PCR reactions from potential DNA 

contaminants. 

Other proteomic technologies: The definition of proteomics has greatly changed over 

time. Originally it was coined to describe the large-scale, high-throughput separation 

and subsequent identification of proteins resolved by 2-dimensional polyacrimide gel 

electrophoresis (2DE). Currently “proteomics” denotes to nearly any type of 

technology focusing upon proteins analysis, ranging from a single protein to thousand 

in one experiment. Proteomics thus has replaced the phrase protein science.  
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II. AIMS OF STUDIES 

 

The use of colorectal adenomas and intraepithelial neoplasia (IEN) as a surrogate 

enpoint biomarker for colorectal cancer is extensive. It is the current target for 

diagnosis, therapy and prevention of colorectal cancer and its precursors. However, 

the diagnostic accuracy and predictive value of the IEN in colorectal adenoma for 

long-term, metachronous cancer development is not optimal. A major focus has been 

on the detection of synchronous (”same time”) cancer in patients with colorectal 

adenomas rather than the long-term risk of (metachronous) colorectal cancer. The 

majority of adenomas never progress to cancer, thus, defining patients with adenomas 

at high-risk for cancer development would be beneficial in surveillance after 

polypectomy. The objectives of the studies on colorectal adenomas were: 

• to find new and better morphologic/morphometric predictors of metachronous 

CRC development by investigating a large set of quantitative morphometric cell 

features within adenomas, by using digitalized objective image analysis (paper II: 

Søreide K, et al. Am J Surg Pathol 2006;30(9):1120-9). 

• to further investigate selected morphometric cell features together with a large 

number of cell-cycle and apoptosis-related proteins by immunohistochemistry. 

Again the objective was to find new and better predictors of metachronous CRC 

development (paper IV: Søreide K, et al. Cell Oncol 2007;29(4):301-13). 

• to find optimal cut-offs for biological markers investigated in paper II and IV and 

validate these in a larger set of patients. The cut-offs were evaluated by receiver 

operating characteristics curve (ROC) analysis, and useful predictors identified by 

multivariate analysis. (paper V: Søreide K, et al submitted 2007). 
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After surgery for colorectal cancer, national Norwegian guidelines mandates 

systematic follow-up to detect curable, asymptomatic recurrences or curable 

metastatic disease. This surveillance is performed within a comprehensive program, 

based on serial CEA measurements and clinical visits, in addition to radiologic 

investigations and endoscopy. Hitherto, the effectiveness and outcome of this 

programme have not been evaluated in clinical practise. The objectives of the studies 

were: 

• to evaluate the effectiveness, costs and compliance to the systematic follow-up 

programme recommended by the Norwegian Gastro-Intestinal Cancer Group 

(NGICG) in a consecutive cohort of patients undergoing surgery for CRC with 

curative intent (paper I: Kørner H, Søreide K et al. J Gastrointest Surg 

2005;9(3):320-8). 

• to evaluate the diagnostic accuracy of serial measurements of CEA to detect 

asymptomatic, recurrent disease amenable for secondary curative surgery. 

ROC analysis was used to evaluate various cut-off levels, as well as the slope 

of increase in CEA from post-operative baseline to the CEA value associated 

with diagnosis of recurrence. (paper III: Kørner H, Søreide K et al. Ann Surg 

Oncol 2007;14(2):417-23). 

• to evaluate the role of microsatellite instability and DNA ploidy in relation to 

clinicopathological features, risk of any recurrence (both locoregional and 

distant metastasis) and disease-specific survival in a patient cohort undergoing 

systematic follow-up after curative surgery for CRC (paper VI: Søreide et al. 

submitted 2007).  
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III. RESULTS OF STUDIES 

 

Studies on colorectal adenomas 

In paper II (Søreide K, et al. Am J Surg Pathol 2006;30(9):1120-9) we 

investigated a large set of quantitative morphometric cell features within adenomas, 

by using digitalized objective image analysis. We evaluated the prognostic value of 

classical clinicopathologic features and a monotonous population of elongated cells 

(MPECs) in colorectal adenomas from 171 consecutively selected patients from a 

defined population and with long-term follow-up. Quantitative image analysis, and 

univariate and multivariate regression analysis were applied. Ten of 171 patients with 

adenomas (5.8%) developed metachronous CRC (defined as >24 mo interval and >5 

cm from the index adenoma to the cancer). Median follow-up of adenomas with 

metachronous CRC was 68.4 and without cancer 149.7 months (range: 25 to 192 and 

25 to 256, respectively). The most prognostic classical features were the localization 

of the marker adenoma as proximal (i.e., in the coecum through transverse colon) 

versus distal from the transverse colon [P=0.0003, hazard ratio (HR)=8] and the 

number of polyps found during colonoscopy (<or=2 vs >2, P=0.002, HR=6). 

Quantitative features of the MPECs included the longest nuclear axis and variance of 

the number of nuclei with 2 neighbors (higher and lower in cancer cases, 

respectively). Of the 171 adenomas, 50 (29%) had MPECs, of which 9 (18%) patients 

developed metachronous CRC at follow-up, contrasting 1/121 (0.8%) without 

MPECs (P=0.0003, HR=23). MPECs occurred in both low-grade and high-grade 

dysplasia, and in tubular and (tubulo) villous adenomas. MPECs had the strongest 

prognostic value for metachronous CRC development. Adenomas proximally located 

had additional value but only if they were MPEC positive (which only occurred in 5 

adenomas, 3 of which (60%) developed cancer). Having more than 2 polyps also had 

additional prognostic value but only in MPEC-negative adenomas [10 cases; 1 (10%) 

developed cancer]. Dysplasia grade and histologic growth pattern had no additional 
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value. Thus, colorectal adenomas with subsequent metachronous cancer development 

can be identified more accurately with MPECs than with classical prognostic factors. 

 In paper IV (Søreide K, et al. Cell Oncol 2007;29(4):301-13) we investigated 

morphometric cell features together with a large number of cell-cycle and apoptosis-

related proteins by immunohistochemistry on tissue microarrays (TMA). We assessed 

the differential expression of cell-cycle and apoptosis-regulating proteins and a 

monotonous population of elongated cells (MPECs) in colorectal adenomas. 

Immunohistochemistry was performed on tissue microarrays in consecutive patients 

having colorectal adenomas and with long-term follow-up. Influence of classic 

features (e.g., intraepithelial neoplasia grade, histological type, size) was examined. 

Of 171 patients with colorectal adenoma 86% (n=147) were eligible for study; 10 

(7%) developed metachronous CRC. Median time to cancer was 69 months (range, 

25–256). Median follow-up was equal for the non-cancer and cancer groups. Elevated 

expression of cell-cycle regulators p16INK4A, p21CIP1, and cytoplasmic/nuclear β-

catenin correlated with increased CRC risk (all P < 0.0001), as did elevated 

expression of the anti-apoptosis protein survivin (P< 0.0001) and human telomerase 

reverse transcriptase (hTERT; P < 0.001). Survivin, hTERT, and nuclear β-catenin 

were the most predictive molecular markers (hazard ratios [HRs]: 6.3, 9.4, and 5.8, 

respectively). In a combined multivariate model, MPECs had the best overall 

prognostic ability (HR 28.2, 95% CI: 3.6–223.0), together with survivin, and hTERT. 

Within adenomas containing MPECs, several molecular markers further defined 

high-risk patients. MPECs, survivin and hTERT may, when validated, provide 

information superior to conventional histology, with relevance for the clinical 

management of patients with colorectal adenoma. 

 In paper V (Søreide K, et al submitted 2007) the investigated features in paper 

II and IV were validated in a second and larger set of patients (n=227=), and 

evaluated by ROC analysis for optimal cut-offs and useful predictors identified by 

multivariate analysis. We sought to validate biomarkers predictive of metachronous 

colorectal cancer (mCRC) in patients with sporadic colorectal adenomas from 374 

consecutive patients within a defined population. Risk-evaluation was performed for 
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patient and adenoma (i.e. grade, size, multiplicity) risk factors, morphometric nuclear 

axis, and immunohistochemistry (survivin, hTERT, β-catenin, p16INK4a, p21CIP1, 

cyclin D1). Diagnostic accuracy was assessed by receiver-operating characteristics 

(ROC) curve analysis, and uni- and multivariate analysis performed by Kaplan-Meier 

survival plot and Cox proportional hazards methods. Of the 374 patients, 26 (7%) 

developed mCRC with a median of 5.6 yrs (range 2-19) from index adenoma. Age 

≥60 yrs, proximal location, multiplicity (≥3 adenomas), and high-grade neoplasia 

were independent risk factors, with high-grade IEN and proximal location the 

strongest on multivariate analysis (hazard ratio=HR of 4.1 and 5.2, respectively; both 

p<0.05). The molecular markers had significant independent value, while hTERT 

(HR 11.3, 95% CI 3.9-33.1; p<0.001) and survivin (HR 7.0, 95% CI 2.4-20.5; 

p<0.001) were the strongest, only retaining proximal location (4/16=25% with 

mCRC) in the combined multivariate model. The value of hTERT and survivin were 

retained in the validation set. The combination of survivin and hTERT yielded high 

mCRC risk when both were positive (15/51=29%; OR 14.3, 5.6-36.5), modest for one 

positive (survivin 4/90=4.4%; hTERT 4/60=6.7%) and no risk if both were negative 

(0/144=0%). The multivariate risk-model showed that hTERT and survivin are the 

best risk-predictors for long-term, metachronous CRC development in patients with 

sporadic colorectal adenomas. 

 

Studies on surveillance after surgery for colorectal cancer 

 In paper I (Kørner H, Søreide K et al. J Gastrointest Surg 2005;9(3):320-8) 

the effectiveness, costs and compliance to this programme was evaluated in 

consecutively accrued patients undergoing surgery for CRC with curative intent. In 

194 (62%) of the patients, follow-up was conducted according to the Norwegian 

guidelines. Twenty-one patients (11%) were operated on for curable recurrence, and 

18 patients (9%) were disease free after curative surgery for recurrence at evaluation. 

Four metachronous tumors (2%) were found. CEA interval measurement had to be 

made most frequently (534 tests needed) to detect one asymptomatic curable 
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recurrence. Cancer-specific survival did not differ among those patients with 

compared without systematic surveillance after surgery. Overall compliance with the 

surveillance program was 66%, being lowest for colonoscopy (55%) and highest for 

ultrasonography of the liver (85%). The total program cost was 228,117 euro (US 

280,994 dollars), translating into 20,530 euro (US 25,289 dollars) for one surviving 

patient after surgery for recurrence. The total diagnostic yield with regard to disease-

free survival after surgery for recurrence was 9%. Compliance was moderate. The 

results call for a discussion on the usefulness and cost-benefit of mandating this 

programme at a national level. 

 In paper III (Kørner H, Søreide K et al. Ann Surg Oncol 2007;14(2):417-23) 

the diagnostic accuracy of serial measurements of CEA was performed, using ROC 

analysis and evaluating various cut-offs and the slope of increase in CEA. One 

hundred ninety-four consecutive patients surgically treated with curative intent for 

CRC between July 1996 and June 1999 had systematic follow-up for five years. 

Follow-up included radiologic imaging, coloscopy and serial CEA measurements. 

Complete data including CEA measurements were available from 153 patients. ROC 

analysis of CEA was done with regard to detection of recurrent disease. Depending 

on the chosen cut-off value of CEA, the diagnostic accuracy (DA) varied widely 

within the normal range (CEA <or=10 U/ml). CEA >4 U/ml provided the highest 

sensitivity (0.78) and specificity (0.91), compared to a sensitivity and specificity at 

the upper normal range (CEA = 10 U/ml) of 0.51 and 0.99, respectively. Thirty-three 

patients (24%) developed recurrence. Among 11 (5%) asymptomatic patients 

diagnosed by elevated CEA levels, only two patients (1.5%) were amenable to 

secondary curative surgery. A threefold increase of CEA in an individual patient had 

the same DA as the best cut-off value (>4 U/ml). In conclusion, the diagnostic 

accuracy of CEA in follow-up after curative surgery for CRC is influenced by the 

chosen cut-off value. A threefold increase of CEA may indicate recurrent disease. In 

conclusion, we found that the value of serial measurement of CEA was limited. 
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 In paper VI (Søreide K et al. submitted 2007) we evaluated the effect of 

microsatellite instability and DNA ploidy in relation to survival and risk of recurrence 

or distant metastasis in patients undergoing systematic follow-up after surgery for 

CRC. We investigated the impact of MSI on recurrence patterns and survival in 186 

patients undergoing systematic surveillance after CRC surgery with curative intent. 

Systematic follow-up was performed according to Norwegian Gastro-Intestinal 

cancer Group (NGICG) guidelines. PCR-technique was used to analyze for MSI 

using quasi-monomorphic markers (BAT-26, BAT-25, NR-21, NR-24, and NR-27), 

and image cytometry for ploidy analysis. Tumour features were investigated with 

regard to risk for any recurrence (locoregional or distant metastasis), time to 

recurrence, recurrence-free survival (RFS) and disease-specific survival (DSS) with 

uni- and multivariate methods. Median age at diagnosis was 67 years; median follow-

up time 6.2 years. Patients with MSI (n=37; 20%) were significantly younger (median 

61 yrs; P=0.016). MSI tumours were significantly more often found in proximal 

colon, were larger, of more invasive nature (pT3-4), were diploid and low histologic 

grade, and had a more advanced stage (stages II or III) than their MSS counterparts. 

MSI was not associated with increased risk for any recurrence (odds ratio [OR]=1.2, 

95% confidence interval [c.i.] 0.6-2.4), but had a higher OR for developing 

locoregional recurrence (27% vs 11%, respectively; OR 2.9, 95% c.i. 1.2-7.0; 

P=0.016). Also, a non-significant trend towards shorter time to locoregional 

recurrence (P=0.060) was noted for MSI cancers. MSI-status did not influence on 

RFS and DSS, nor did any of the DNA histograms, including ploidy. TNM-stage with 

nodal status was the overall best predictor of DSS (hazard ratio [HR]=4.9, 95% c.i. 

2.6-9.0; P<0.001). In conclusion, TNM-stage, explained by nodal status (pN+) had 

the most prognostic feature for RFS and DSS in the selected patient cohort. MSI had 

no prognostic value on RFS or DSS in patients undergoing systematic surveillance 

after curative surgery for CRC. Risk for locoregional recurrence was significantly 

increased in MSI, with a trend towards shorter time to locoregional recurrence. This 

knowledge could be of clinical importance for the choice of surveillance modality 

(i.e. endoscopy vs radiologic imaging).  
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IV. FUTURE DIRECTIONS & CHALLENGES 

As depicted in the general introduction and summary of the papers in this thesis, 

colorectal neoplasia (both precursors and cancer) will continue to pose a great health 

burden in the years to come. The understanding of colorectal carcinogenesis is 

rapidly evolving, however, clinical translation of the basic science results are not 

easily overcome and may take years to implement. However, the first “targeted 

therapies” have evolved into clinical use based on molecular knowledge – new modes 

of detection and prevention are likely to follow in due course as well.  

In the overall management of colorectal pre-neoplasia it appears important to be 

able to identify patients (with adenomas) having high-risk features for better 

surveillance after polypectomy. Markers that can be both risk-markers and targets for 

(medical preventive) therapy would be optimal for detection and prevention. In 

addition, if nationwide screening is implemented, risk markers beyond the traditional 

adenoma may be required to better address the surveillance of patients over time. 

Furthermore, as the population grows older, still more will live to develop colorectal 

cancer – post-surgery surveillance with “one size fits all” will represent a 

considerable socio-economic health burden if not improved by risk-stratification and 

tailored follow-up 290.  

Thus, future exploration of riskmarkers in preneoplasia and colorectal cancer needs 

to address this based on the known and evolving genetic pathways in colorectal 

carcinogenesis 291. Together with the utilization of modern molecular techniques in 

genomic and proteomic sciences new markers of disease or risk will evolve.  

Lastly, succeeding in this task requires collaboration between disciplines – a hurdle 

sometimes more difficult to overcome than understanding the human genome itself. 
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VI. ERRATA 

 

Paper 1: J Gastrointest Surg 2005;9(3):320-8. 

In figure 3, the box titled “no evidence of disease” the correct number of patients 

should read 116 (not 186). 

 

Paper 2: Am J Surg Pathol 2006;30(9):1120-9. 

Table 2, the rows 5 and 6 (from the top) should read: 

No. of adenoma 

   ≤2 

   >2 

 

155 

16 

 

7 

3 

 

245 (237–254) 

201 (160–241) 

0.01 

Size 

  ≤ 2 cm 

  >2 cm 

 

101 

70 

 

4 

6 

 

247 (238–255) 

237 (222–252) 

0.29 
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