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Abstract 
The thesis contains studies of animal life histories at high latitudes. Several topics are 

covered; from ecosystem consequences of life histories to tests of specific behavioural 

predictions put forward based on life history arguments. Work on complete life 

histories is also included in an attempt to understand the evolution of capital and 

income breeding in marine copepods. My main research questions, followed by main 

topics and findings, are as follows: 

• How are seasonal environments influencing life history traits and 

phenology? 

• What are the roles of storage as a reproductive adaptation? 

• How are individual states, particularly energy reserves, influencing optimal 

life histories and behaviour? 

Paper 1 deals with how growth of a high-latitude pelagic fish, the Norwegian 

spring-spawning herring, is scheduled during the annual cycle. Body mass data reveal 

a short period of rapid annual increase in body mass at the time when the copepod 

Calanus finmarchicus is the main prey. The food consumption (energy units) of the 

entire herring population is estimated, using a bioenergetics model, and compared with 

production estimates of C. finmarchicus. Large herring populations, particularly 

because of their selective predation on older stages, can influence population dynamics 

of C. finmarchicus, and may explain some of the copepod’s life history adaptations. 

Finally, estimates of spatial energy transport are presented; caused by herring 

migrating from oceanic feeding grounds to coastal overwintering and spawning sites. 

The large herring stock may be responsible for the world’s largest biomass transport 

caused by a migrating population. This flux of energy and nutrients is important for 

coastal species, and potentially for interactions not yet studied, such as between 

herring eggs and benthic invertebrates. 

Paper 2 is a short comment on recent studies of copepod life cycles that have 

suggested that the large lipid stores serve as a means of obtaining neutral buoyancy at 

a given depth - an ultimate explanation of energy stores. There is, however, a need to 

understand the use of energy reserves remaining after the winter, before we understand 
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the ultimate explanation for storage. That is, we must study to what degree copepods 

are capital breeders (using energy reserves for egg production) as opposed to income 

breeders (relying on concurrent food intake for egg production). 

These ideas were pursued in papers 3 and 4 which are based on a life history 

model of the abundant Southern Ocean copepod Calanoides acutus. Life history trade-

offs arise in the model because bioenergetics, developmental constraints, and 

interactions with the environment (temperature, food availability and predation risk) 

are made explicit. Hence, trade offs need not be assumed. The model is state-

dependent and reproductive value of individuals with different developmental stage 

and condition is predicted by dynamic programming. The model predicts the optimal 

energy allocation and diapause strategies that maximise reproductive value at any time 

of the year, determining the entire life history strategy. A highly seasonal pattern in 

optimal egg-laying time is predicted. This optimality is, however, seen from an egg’s 

perspective. Actual egg production, as predicted from population simulations, do not 

match the seasonal peak in offspring fitness, which suggest that later life cycle stages 

are subject to trade-offs and constraints causing laying dates sub-optimal from the 

offspring’s perspective. Mechanism behind the mismatch are studied. Eggs from 

capital breeding have higher fitness than income bred eggs as capital breeding takes 

place early in the season, even before the phytoplankton bloom. The time an egg is 

produced influences its probability of: 1) reaching a stage capable of diapause; 2) 

developing large energy reserves, and; 3) developing to a stage capable of capital 

breeding next season. We conclude that seasonality in both growth potential and 

predation risk are key drivers of copepod life histories. 

Paper 5 is on the costs and benefits of capital breeding in aquatic environments, 

including ecosystem consequence that follow from capital breeding strategies such as 

the lipid transport of herring. Costs and benefits of carrying energy reserves are 

different for aquatic compared to terrestrial organisms. General analyses of the costs 

and benefits of capital breeding would improve by incorporating more of the findings 

from studies of marine organisms. Marine biologists, on the other hand, may better 

understand and appreciate the life history trade-offs of their study organism if 
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theoretical concepts from the predominantly terrestrial literature were used more 

actively. Quantification of pre-breeding costs of a capital breeder strategy is one such 

issue. These costs may influence how we understand life cycle questions such as 

timing of diapause and other state-dependent decisions prior to breeding. 

Paper 6 is on a long lived seabird whose reproductive strategy includes 

sophisticated parental care. State-dependent behavioural responses are studied, and as 

in the papers above, an important state is body condition in terms of stored resources. 

The petrels are found to adjust chick feeding and guarding according to their own 

body condition, the body condition of their partner with whom they co-ordinate the 

chick-rearing period, and finally, adjustments in response to the chick’s needs for food 

and guarding. All these factors are found to play a role in determining individual 

behaviour. The results are obtained using a field experiment, and are discussed in 

relation to the life history strategies of seabirds. 
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Prologue 

The herring 
Together with thousands of neighbours in the school the herring cruises the ocean in 

search for food. The menu varies, but for some hectic months, a small copepod is the 

favourite. Some months later, the same herring is waiting for spring. Spring, or even 

late winter, means spawning time – the time when the work of last summer is cashed 

in as thousands of eggs deposited on the bottom of coastal spawning grounds. The 

challenges of the herring are many – where should it swim to obtain the best food, 

where should it spend the winter to be safe and not waste the valuable stores acquired 

through summer, where and when should it spawn, and what effort should be spent on 

egg production during each annual spawning event? 

The copepod 
When winter-storms are roaring at the surface and the suns energetic input reaches the 

annual minimum, many copepods have retreated to great depths to rest. Just as the 

herring, the copepod has brought with it a valuable package of resources. These stores 

fuel the daily needs but are also for maturation and early egg-production next spring. 

Before that, however, the copepod must respond to some clue telling it to migrate 

more than thousand meters to the surface. Positioning itself in the water column is one 

of the main challenges of a copepod and in contrast to the herring, its miniature size 

allows for little control of its horizontal destiny. There are also other key questions. 

Many are linked to the temporal patterns of food availability and risk of death: when 

should it produce offspring; how large should the energy reserves be before the winter; 

or should it instead reproduce this summer, leaving the winter with the offspring? 

The seabird  
It is heating up, the snow melts from the nest-sites, and the bird returns to the colony 

to breed. This is not a new experience; it did so last year and the year before, and will 

most likely breed next year. Organizing such a long life is in strong contrast to the 

challenge of the copepod. Also, the offspring are experiencing something very 

different from that of a young herring or a copepod, a caring parent. The single chick 
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is fed and guarded and thought many of the crucial skills of life while eager predators 

circle the skies above. Parents with surplus resources can care well for the chick and 

respond to its changing needs. Still, the parent must spare resources. It may be next 

year’s breeding conditions that that are ideal. 

The common denominator 
The great many ways to live a life have been observed by humans at all times. Some 

of this variation is described in the examples above. Charles Darwin understood that 

all these patterns of life had a common denominator – they were outcome of a process 

he termed evolution by natural selection (Darwin 1859). Individuals vary in their 

characteristics and those with the greatest success (leaving many high quality 

offspring) leave descendants that harbour many of the same qualities as their parents. 

Variation is however generated so that new types challenge existing ones. In the long 

run this leads to adaptations, including speciation. All aspects of life influenced by 

genetics are subject to this process; both the evolution of a well functioning eye and 

the evolution of life history characteristics such as clutch size in birds or egg size in 

herring. Life history theory is the branch of biology dealing with how growth and 

reproduction of organisms are scheduled through time. Life histories are also the focus 

of this thesis, in the context of high latitude copepods, fish and seabirds. 
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Introduction to synthesis 
The main actors are now introduced, and a summary of the thesis is given. I will 

continue with some background on life history theory, including its history and some 

of the recent developments. Then I present some key concepts of life history theory 

and illustrate them with relevant cases from the papers (referred to as P1-P6, see list of 

papers page 7). Finally, I give further background and perspectives on some central 

issues of the thesis. 1) State-dependent life history models and dynamic optimisation; 

2) capital and income breeding as a continuum of reproductive strategies; 3) 

seasonality as a selective force in life history evolution, and; 4) ecosystem 

consequences of life histories and behaviour. 

 

Life history theory  

History and recent developments 

Early landmarks 

Important landmarks in the studies of life history evolution appeared at increasing 

rates from the 1950s. One landmark is Cole’s (1954) extensive discussion and analyses 

of population consequences arising from life histories. Another milestone is 

Williams’s (1966a) short and to the point formalisation of what has later been termed 

the General Life History Problem; how current and residual reproductive value should 

be balanced. A crucial source of inspiration for both Cole and Williams, as well as 

today’s evolutionary ecologists, was the work by R. A. Fisher, in particular his book 

entitled The Genetical Theory of Natural Selection1 (Fisher 1930). Here, Fisher gave 

evolutionary theory a mathematical basis and he contributed to merge Darwin’s theory 

of natural selection with Mendel’s theory of inheritance. Life history questions were 

an important part of Fisher’s focus, with one of his major contributions being the 

                                              
1 for a digital collection of Fisher’s work see: 

http://digital.library.adelaide.edu.au/coll/special//fisher/index.html 
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concept of reproductive value. His work undoubtedly paved the way for evolutionary 

biology in general and for life history theory in particular. 

Life history theory is today a separate field of biology (Roff 1992, Stearns 1992, 

Roff 2002). However, life history studies are at the heart of biology and focus on how 

patterns of growth and reproduction are scheduled through life. The goal is to 

understand which factors that have selected for and currently select for observed 

variation in life history traits both within and between species. A wide range of 

ecological topics depend on insights from life history studies, including management 

of harvested resources (Law and Grey 1989), biodiversity (Dieckmann and Ferrière 

2004), population dynamics (Saether et al. 2005), and phenological responses to 

environmental change (Visser and Both 2005). Studies of life histories are much 

driven by theory developed from models in addition to empirical investigations. 

Returning to the early landmarks, Cole’s (1954) work is by many considered an 

important advent of systematic studies of life history characteristics. He discussed the 

population growth consequences of life histories and emphasised the use of the per 

capita growth rate r (or as termed by Fisher (1930), the Malthusian parameter) as a 

fitness measure. One of Cole’s key findings was the large influence of age at first 

reproduction on per capita growth rate. Further, Cole fathered the terms semelparity 

and iteroparity, introducing the need to understand the benefits of surviving to 

reproduce several times (iteroparous) compared to only once (semelparous).  

Williams’ (1966a) work some ten years later dealt with the costs of reproduction 

and the importance of adult survival (Williams 1966a). Fisher (1930) had postulated 

that enhanced investment of current reproductive effort would decrease the output 

from future reproduction, and he raised the question of how an organism should divert 

available resources to growth vs. reproduction. Williams stated the general solution to 

Fisher’s problem: 

“expenditures on reproductive processes must be in functional harmony 
with each other and worth the costs, in relation to the long-range 
reproductive interest; and the use of somatic processes is favored to the 
extent that somatic survival, and perhaps growth, are important for 
future reproduction”  G.C. Williams (1966a) 
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He also formalised the solution mathematically. Williams coined the term residual 

reproductive value for the part of reproductive value that may be realised in the future 

(Williams 1966a). In doing so, he started a still lasting focus on the consequences of 

current behavioural and life history decisions on future opportunities and possibilities, 

and he drew attention to the implications of differential mortality of individuals 

following different strategies.  

William’s insights had direct implications for current life history ideas such as 

Lack’s (1947) studies of clutch sizes in birds. Lack predicted optimal clutch size based 

on the number of chicks that the parents were able to raise, and he assumed that the 

parents’ foraging capability would be limiting. Lack did not consider the interaction 

between clutch size and parent mortality. Williams did however acknowledge that 

increased investments at one point may lead to reduced survival later (Williams 

1966a). Hence, the future survival of a parent investing in a larger clutch is lower than 

if the clutch had been smaller. This cost reduces Lack’s optimal clutch size as 

iteroparous parents invest prudently in a single reproductive attempt (Drent and Daan 

1980). There are empirical support for the costs of reproduction suggested by Williams 

(Lindén and Møller 1989, Dijkstra et al. 1990). Williams (1966a) showed how 

reproductive decisions may serve the interest of the individual, and in the same paper 

he added to his critique of the contemporary ideas that reproductive processes serve 

the survival of the species (Williams 1966b). 

Adding realism: individual states and explicit environments  

Early analytical models relied on simple assumptions, for instance that fecundity and 

survivorship are constant with age. More realistic models followed, such as Schaffer’s 

(1974) analyses of coevolution of age specific rates. Pianka and Parker (1975) also 

modelled age-specific life histories, and the appreciation of age differences raised a 

general appreciation of individual differences (Pianka and Parker 1975). Studies of 

phenotypic plasticity (the same genotype expressing different phenotypes depending 

on the environement) followed (e.g. Stearns and Koella 1986) and plasticity may itself 

be regarded a genetically determined trait (Houston and McNamara 1992). The focus 

on individual differences raised the question of which individual characteristics – 
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states – that indeed influence the optimal life history (McNamara and Houston 1996). 

Physiological states became viewed as important and were included in population 

models (Metz and Diekmann 1986), and states other than age, such as size and 

condition (for instance energy store, nutrient reserve, and parasite load) were 

suggested to be biologically more meaningful (McNamara and Houston 1996). For 

instance, there is a clear link between high energy reserves and high fecundity if 

reproduction depends on internal stores. The fact that increased reproductive effort at 

one point may have long lasting effects on future survival or reproduction (Gustafsson 

and Sutherland 1988, Daan et al. 1990) also suggest that condition variables determine 

reproductive success. Variation in life history traits such as laying date and clutch size 

may therefore be caused by individuals adjusting behaviour and investments in 

response to their state (Drent and Daan 1980). 

In parallel with the development towards state-dependent life history models, 

there was a growing appreciation of density dependence, such as its influence on 

optimal reproductive effort (Charlesworth and Leon 1976). The importance of density 

dependence has been discussed since, and it is clear that the choice of fitness measure 

in optimisation studies should depend on the form of density dependence that operates 

(Mylius and Diekmann 1995). The focus on density dependence, as well as frequency 

dependence (Heino et al. 1998), created a general interest in how a life history strategy 

influences its own environment. 

Optimisation and adaptation 

Optimisation is a search for the combination of life history traits that maximises fitness 

(an optimization criteria reflecting the success of a strategy). Commonly used fitness 

measures, r and R0, assume a constant environment in the sense that mortality and 

fecundity rates are constant and that the whole population consists of individuals with 

the same life history strategy (Stearns 2000). The classical explanations of life history 

variation are obtained using this optimality approach (Stearns and Schmid-Hempel 

1987, Stearns 2000). 

Eco-evolutionary feedbacks (Dieckmann and Ferrière 2004) are ignored in the 

optimization tradition that pervades early life history theory. Critics of optimization 
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suggests adaptation as the alternative in the sense that good strategies perform well 

only relative to the environment they are an integral part of (Dieckmann and Ferrière 

2004). Linking life history evolution with population dynamics is a route of current 

research which attempts to create an explicit environment and population where 

evolution takes place, thereby allowing both density and frequency dependent effects. 

This line of research is often called adaptive dynamics (Dieckmann 1997, Waxman 

and Gavrilets 2005). The focus on adaptation is also central in individual based models 

where algorithms, such as the genetic algorithm, mimicking evolution are used to 

search for well adapted life histories (Strand et al. 2002). When used for life history 

questions, individual based models allow for the eco-evolutionary feedbacks. 

The focus on eco-evolutionary feedbacks has been argued to be driven more by 

logic than evidence against the explanatory power of classical optimisation (Stearns 

2000). There are however recent and strong evidence for long term coexistence of 

several good, but not optimal, life history strategies in the same population. Impressive 

field studies of lizards have revealed coexistence of three strategies that all perform 

well when in minority (Sinervo and Lively 1996) and strategies that alternate in 

abundance because one performs well at low densities, the other at high densities 

(Sinervo et al. 2000). These field-studies may have been inspired by directions taken 

by theory as theory sometimes strongly shapes what is studied in the wild. 
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Elements of life history theory 
According to Stearns (2000) a biologist should ask at least three questions when 

studying life history evolution. First, which factors affect survival and reproduction of 

individuals of different ages and sizes (or other individual states)? Second, how are 

life history traits connected to each other? Third, what constraints are there on how a 

trait can vary? When working on these questions one uses more or less standardised 

concepts and terminology. The following concepts are important for the subsequent 

discussion and papers. 

Life history traits 

A life history trait is a characteristic of an individual (phenotypes are typically studied) 

that directly influences how growth and reproduction is scheduled through time. Key 

life history traits are age and size at maturity, juvenile and adult survival, offspring 

size and offspring numbers. Additional traits include growth patterns (determinate vs. 

indeterminate growth), migrations, energy storage, energy acquisition tactics and 

resting stages. 

Life history traits dealt with here include seasonal growth patterns and migration 

(P1, P3, P4), diapause (P2-P4), capital and income breeding (P1-P5) and parental care 

(P6). 

Short term behavioural strategies may be seen as the realization of a life history 

strategy. Whether a mother leaves the offspring alone or guards it one day longer may 

determine the reproductive success for the entire year (P6) and the future survival of 

the mother (and the offspring). Williams (1966a) used such micro-scale life history 

traits when dividing reproductive value in a current and residual (future) component. 

The challenge is to develop a currency where the fitness-consequences of behaviour 

are realistically related to lifetime fitness (McNamara and Houston 1986). 

Fitness 

Fitness is a measure of the success of a life history strategy relative to other strategies. 

Ultimately, success is linked to the ability to leave offspring, grand-offspring and so 

on. This assures high rate of gene propagation and thereby representation of the 

parent’s genes in future generations (Dawkins 1976). Several quantitative measures of 
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fitness have been suggested, all are approximations with limitations and assumptions, 

but some have been used extensively, such as the intrinsic rate of increase r or the 

reproductive ratio R0 (cf. Brommer 2000). Both measures focus on age specific 

patterns of survival and fecundity, two quantities that may indeed be measured in field 

studies. As it is not only the number of offspring that determine long term success, 

there is a need for more than simple counts. An ideal fitness measure should include 

the potential of an offspring resulting in grand-offspring. This potential varies with 

time of birth (seasonality), the number of co-specifics (density dependence), or the 

presence of other successful strategies (frequency dependence). 

As we have seen, feedback from the environment is not treated using r or R0, and 

it has been argued that an invasion criterion is needed to define a true fitness concept. 

Mylius and Diekmann (1995) formulated the master fitness concept as ‘the average 

exponential growth rate of the invader, growing in the environment set by the resident’ 

(see also Metz et al. 1992). In the case of an evolutionarily stable strategy (ESS) no 

strategy can in fact invade (Maynard Smith 1982). In adaptive dynamics invaders (or 

mutants) are tested in the resident strategy’s environment (Dieckmann 1997). A main 

lesson from the development and use of fitness measures is to be aware of their 

limitations and implicit assumptions, and to choose accordingly (Mylius and 

Diekmann 1995, Pasztor et al. 1996, Brommer 2000). 

The optimisation model presented in P3 and P4 relies on r as fitness measure, and 

reproductive value (see below) is maximised to predict optimal daily decisions that in 

turn determine the optimal life history. P6 on the other hand is a snapshot from reality 

where parental care strategies are studied. In this and similar studies, offspring survival 

or body condition are assumed to measure success. Such simplified measures are used 

when future success of parents and offspring are logistically difficult to follow (but see 

Gustafsson and Sutherland 1988, Daan et al. 1990). 

Life history trade-offs  

Life history traits are combined and in sum make up the entire life history. Changes in 

one trait may lead to changes in other traits, and trade-offs refer to those cases where a 

positive change (in terms of fitness) in one trait leads to a negative change in others. 
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Trade-offs operate simultaneously, and to understand life history variation one needs 

to understand interactions between trade-offs (e.g. Roff et al. 2006). It is useful to 

distinguish evolutionary trade-offs from physiological trade-offs (Stearns 1992). 

Evolutionary trade-offs imply a genetical link between two traits and are defined by 

the decrease in the value of a given trait as another trait is selected for. Physiological 

trade-offs are caused by competition for energy or material within a species, such as 

the trade-off between structural growth and energy reserves (P3, P4) or between 

allocation of resources to somatic vs. reproductive functions (P3, P4, P6). 

Trade-offs are manifested by the common coexistence of certain life history traits. 

Fast life histories have short lifespan, rapid development, high fecundity and small 

offspring. On the slow side, such as for seabirds or ourselves, we find long lifespan, 

high age at maturation, parental care, and few offspring (P6). Yet, there are 

exceptions, such as the many eggs spawned by the long lived herring during annual 

spawning-events (P1). 

Constraints 

Constraints are boundaries on possible solutions, such as minimal viable egg-size, 

growth rates or swimming speeds. The state-space (possible sizes of structure and 

energy reserves) assumed in the copepod model is one example (P3). Similarly, there 

are constraints on the amount of food gathered during a day, and thereby on growth 

and the rate of reproduction (P3). 

Constraints are also set by the evolutionary past as some traits do not contain the 

variation needed for rapid evolution. The fact that all species in the order 

Procellariiformes, such as the Antarctic petrel (P6), has a clutch size of one, may 

therefore be a lineage-specific effect (Stearns 1992), where a lineage is a set of species 

with common ancestry. Other traits, such as the degree of capital vs. income breeding 

in closely related copepods, seem not to be lineage specific and are instead free to 

evolve rapidly (P5). Lineage specific effects illustrate the limits of adaptation. Traits 

regarded as adaptations today evolved to yesterday’s environment and from genetical 

raw material that may limit potential solutions. Organisms are adaptation executers 
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and not fitness maximisers and may sometimes seem maladapted or have 

characteristics of little importance for fitness (cf. Gould and Lewontin 1979). 

Reproductive value 

Reproductive value (Fisher 1930) is a measure of how different individuals are 

expected to contribute to population growth, that is, the remaining number of offspring 

an individual can expect to have. Hence, subsets of a population such as age classes, 

take different numerical values, and thereby have different importance in the ongoing 

evolution. Mathematically, Fisher (1930) defined reproductive value as 

∫
∞

−=
x

tt
mt

x

mx

x dtble
l

ev  

where lx is the survival probability until age x, lt is the survival probability and bt the 

fecundity to ages t later in life, m is the population growth rate which he termed the 

Malthusian parameter. There is discounting for population growth, such that 

contribution by future offspring are devaluated if the growth rate is positive. 

Traditionally, age has been used to categorize individuals, but reproductive values 

depending on body condition, habitat, time of birth, or other individual states are 

increasingly popular and biologically more realistic (McNamara and Houston 1996). 

This focus on state dependence is a development reflected here (P3, P4, P6). 

Reproductive value typically increases from the onset of life towards maturation, 

declining thereafter (Fisher 1930, Stearns 1992). Reproductive value of an individual 

of given age assumes survival until that age and is by definition independent of the 

past of the individual, only by its present state. 

Reproductive value is used as an optimization-criteria in models of adaptive 

behaviour and life history (Houston and McNamara 1999) (P3, P4), but also when 

analysing data on life histories (Daan et al. 1990, Tinbergen and Daan 1990). 
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State-dependent life history models and dynamic optimization 
Individuals can take a number of actions. Examples include to feed or rest, breed or 

skip breeding, and migrate or stay. Each action affects the individual’s state, for 

instance body mass, and individuals with different states are affected differently. In 

addition, the effect of an action may vary within the season or in different habitats. If 

one seeks to find the optimal actions of individuals, not just at one point in time, but 

for consecutive time steps, it is apparent that the success of a great many individual 

trajectories must be calculated. Soon the brute force of computer simulations becomes 

limiting, and a shortcut is needed. 

Future expectations of an individual depend on its present but also future actions. 

One may therefore start with the future and work backwards. The optimal action at a 

given time is hence conditional on already determined future actions. Dynamic 

programming elegantly solves such problems (Mangel and Clark 1988, Houston and 

McNamara 1999, Clark and Mangel 2000). 

For life history problems one starts at the end of a life and proceeds towards birth, 

or for an annual life cycle (P3), starts at mid-winter and works backwards. Individuals 

alive at his endpoint need a reward, in this case a reproductive value. However, any 

reward will do as long as the model is run until the set of optimal actions are the same 

for consecutive years; and therefore independent of the initial reward (Houston and 

McNamara 1999). State-dependent reproductive values for all states and any day of 

the year emerges and can be used to predict optimal state-dependent actions. 

Dynamic programming have been used extensively for questions in behavioural 

ecology (Houston and McNamara 1999, Clark and Mangel 2000). Simplified fitness 

measures are then used, such as being alive on the final day. More recently, the same 

approach has been used for life histories (Fiksen and Carlotti 1998, Jørgensen and 

Fiksen 2006) (P3, P4) and annual routines (McNamara et al. 1998, Barta et al. 2006). 

The optimal strategy, which is then a sequence of actions through the year, now 

maximises the number of offspring produced or the reproductive value of descendants 

left far into the future. 
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There are limitations to the approach as it is outlined here and applied in P3 and 

P4. The strategy is optimal only in the defined environment, and there are no 

feedbacks from the strategy back on the environment, for instance in terms of altered 

food availability or predation risk. Effects of density dependence on optimal life 

histories are therefore not tested. As it is not known how the strategy alters the 

environment, the potential of other strategies as invaders can not be tested, and 

frequency dependence is not included. Finally, as the environment has no interannual 

variation, we can not model life history adaptations to fluctuating environments, such 

as bet-hedging strategies. There exists no equivalent to maximisation of descendants 

left far into the future when the environment is fluctuating (McNamara and Houston 

1996, McNamara 2000). 

 The limitations must be evaluated against strengths. The method is useful when 

linking short-term behaviour to life history strategies (e.g. Fiksen 1997). Further, we 

can elucidate life history trade offs because we link consequences of actions at 

different points in time (P3, P4). State-dependence creates focus on the plastic 

potential of organisms and explicitly acknowledges individual variation (Houston and 

McNamara 1999) (P3, P4). Finally, optimization by dynamic programming predicts 

highly realistic life histories when combined with bioenergetics models (Fiksen and 

Carlotti 1998, Jørgensen and Fiksen 2006) (P3, P4), including a condition dependent 

phenomena such as skipped spawning (Jørgensen et al. 2006). Skipped reproduction 

would not occur in a purely age structured model, but rely on states more closely 

linked to physiology, such as energy reserves. 
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Capital and income breeding as a continuum of reproductive strategies 
Life history strategies reflect how an organism’s limited resources are allocated to 

three typically considered purposes, growth, maintenance, and reproduction. This 

allocation question is the focus of reproductive effort theory (e.g. Williams 1966a), 

which predicts that resource allocation should balance an individual’s present effort 

against it chances of survival and future reproduction. The focus on residual 

reproductive value has directed much attention to the costs of reproduction paid after 

the offspring is independent, as when clutch-size is manipulated and the effect on 

future parental success is followed (Dijkstra et al. 1990). Resource acquisition has 

received less attention in life history studies (Jönsson 1997). One aspect of resource 

acquisition is storage, which may be viewed as a fourth main purpose to which 

resources should be allocated (Reznick and Braun 1987). Stores allow organisms to 

reproduce at times or in areas where food is scarce. Reproduction based on previously 

acquired stored resources are referred to as capital breeding, whereas reproduction 

based on current food intake is termed income breeding (Stearns 1992, Jönsson 1997). 

Treating capital breeding as a life history strategy directs attention to costs paid 

prior to offspring production (Jönsson 1997). The distinction between costs incurred 

before as opposed to after offspring production was made by Sibly and Calow (1984) 

and has later been termed pre- and post-breeding costs (cf. Jönsson et al. 1998). Pre-

breeding costs must be studied to understand the trade-offs of a capital breeder 

(Jönsson 1997). For instance, knowing the degree of capital breeding is important 

when studying short term adjustments of parental care (Chastel et al. 1995). A capital 

breeder can judge at an early stage if it has the resources needed to complete the 

necessary care of an offspring, and if necessary, it should defer reproduction at an 

early stage. For a strategy on the income breeder side, it may pay to reduce own 

condition for a while, as feeding conditions may soon change, and in turn allow 

successful reproduction (see also P6). Furthermore, studying capital breeding attracts 

attention to costs of acquiring and carrying resources, which are often intimately 

linked to predation risk (Jönsson et al. 1995) (P5). Clear benefits of capital breeding 

are expected, as life cycles with mortality costs prior to the release of offspring should 
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be selected against. Why are there for instance semelparous capital breeders (Sibly and 

Calow 1986)? 

In high-latitude copepods, closely related species are represented along the full 

range of the capital-income breeder continuum (Lee et al. 2006), but the causes behind 

this variation is poorly understood (but see Hagen and Schnack-Schiel 1996). A 

general benefit of capital breeding is that feeding is decoupled from breeding, with the 

possibility of breeding when the offspring have the highest value. In many seasonal 

environments peak offspring fitness is early in the feeding season (Nilsson 1999, 

Reznick et al. 2006), favouring capital breeding. This is also predicted for the copepod 

studied here (P3, P4) where the ideal egg should be laid even prior to the feeding 

season. Other copepods use capital breeding to gain spatial independence from the 

food source, and produce offspring at depth (Miller et al. 1984). Copepods experience 

predation risk when storing energy in the surface habitat, and the gathered stores scale 

directly with next year’s fecundity. Hence, the classical trade-off between fecundity 

and survival is experienced prior to breeding. One should then expect a level of stores 

maximising a combination of survival and the fecundity realised next spring. At the 

inter-specific level, differences in predation risk may explain variation in the degree of 

capital breeding, and intra-specifically, one should expect plastic behavioural and life 

history responses to the level of predation risk and stores acquired (Fiksen and Carlotti 

1998) (P4, P5). High-latitude copepods constitute an excellent group of study species 

to further elucidate the costs and benefits of capital and income breeding (P2-P5). 
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Seasonality as a selective force in life history evolution 
Phenology is concerned with the dates of natural events in their annual cycle. Many 

such events are life history events, for instance flowering or arrival of migrating birds. 

Timing of life history events within the annual cycle are important when there is 

seasonality, for instance in food availability (Cushing 1990) and predation risk 

(Vonesh 2005). Life histories of months and longer are exposed to this seasonality and 

annual events are common in life cycles spanning several years. Timing of breeding, 

growth, and diapause influence survival and fecundity directly and are therefore life 

history traits per see. Although profound at high latitudes there are also annual 

environmental cycles at lower latitudes (e.g. Gu and Adler 2004) to which life history 

adaptations are expected (Watling and Donnelly 2002, Lee et al. 2006). 

Life histories in temperate and high-latitude systems have marked fitness 

gradients related to timing of reproduction (Rowe et al. 1994, Nilsson 1999). This is a 

recurring topic of the thesis, treated most explicitly when predicting the seasonal 

variation in reproductive value of a copepod egg (P3), patterns that can only be 

understood in relation to the seasonal environment (food, predation risk and 

temperature). Timing of reproduction is also a central component of the annual cycle 

of the Norwegian spring-spawning herring (P1), which needs to place eggs at the coast 

when temperature and food availability render possibilities of efficient larval growth 

(cf. Cushing 1990). Both the timing (Devold 1963, Varpe et al., unpublished) and area 

(Holst et al. 2002) of spawning has varied historically, and it is a present challenge to 

understand the causes of this variation, as well as the impact on the coastal ecosystem 

(P1). 

Other factors than food may limit the time-window available for reproduction, 

such as the availability of ice floes for breeding seals (Lydersen and Kovacs 1999), or 

nest sites free of snow in birds. The synchronised breeding of the Antarctic petrel 

studied here (P6) may be a consequence of a short period available for nesting or it 

may be a predator-swamping strategy (Ims 1990, Varpe and Tveraa 2005). 

In seasonal environments there are also adaptations to long periods with low food 

availability. Dormancy and diapause are such adaptations, implying reduced 
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metabolism, and the use of safe habitats, which may require long seasonal migrations 

(P3). In annual organisms, different life cycle stages may serve as the link between the 

productive seasons. Many calanoid copepods spend the winter in well developed 

stages close to maturity (P3, P4), whereas others have resting eggs (Uye 1985). 

Adaptations to seasonal resource depressions also include migration away from the 

area and to more abundant resources, as seen in efficient travellers such as birds and 

marine mammals (Alerstam et al. 2003). 

Finally, seasonality may act differently on offspring compared to parents with 

potential for parent-offspring conflicts regarding time of reproduction. In iteroparous 

life cycles prudence may cause the conflict, because the parent should balance 

investment in young against its chances to survive and reproduce in the future. When it 

is energetically costly to reproduce early, although beneficial for the offspring, the 

prudent parent will delay reproduction until it can justify the cost (Drent and Daan 

1980, Daan and Tinbergen 1997). A conflict is also predicted here (P3, P4). Eggs are 

laid later than their time of maximum fitness. This occurs because it pays to delay 

capital breeding so that income breeding can follow directly. The first eggs do, 

however, still have markedly higher fitness than the last. 

It is important to understand life histories in terms of the reproductive value 

produced, not simply in terms of the number of offspring. Knowing the reproductive 

value of an individual has consequences for how we should interpret data and how 

harvested stocks should be managed. Times of the year when only a few offspring are 

born may seem unimportant from a managing point of view, but it may in fact be these 

individuals that contribute most to next generations (P3, P4). 
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Ecosystem consequences of life histories and behaviour 
 
"On coasts long frequented by herring, and favorably situated in other 
respects, towns gradually spring up."  
Bjørnstjerne Bjørnson, first sentence, The Fisher Maiden (1869) 

 

Because of trade-offs there are no super-organisms that have solved all challenges of 

life history evolution. Dieckmann and Ferrier (2004) recently discussed biodiversity in 

light of the absence of such super-organisms, or “Darwinian Demons” (Law 1979), 

and drew the attention to life history trade-offs as a fundamental unit of biodiversity. A 

“Darwinian Demon” would quickly outcompete any other form and leave no diversity 

behind. Trade-offs, on the other hand, open the existence of niches and diverse 

communities. 

The thesis also deals with life history consequences beyond the optimality of the 

studied species, for instance the ecosystem consequences of migrations (P1, P5), and 

the cascades of effects that a life history may have on other components of a trophic 

system. State-dependent life histories are one example. The spawning migration of 

herring along the Norwegian coast is predicted to be state-dependent in the sense that 

individuals in poor condition undertake a shorter migration than individuals that are 

better off (Slotte and Fiksen 2000). This individual response may, when average 

condition of the population is poor, lead to shorter migrations, other spawning 

habitats, and lower reproductive effort, with many potential effects for coastal species 

relying on herring eggs and larvae for food. Why then may the herring be in poor 

condition some years? The answer is most likely related to food-availability. One 

suggested mechanism is that large herring populations reduce the number of its main 

copepod prey that enters diapause, and to levels that limit subsequent copepod 

recruitment (P1). There is some recent support for this mechanism (Olsen et al. in 

press). The herring’s selective feeding on large copepod stages (Dalpadado et al. 

2000), and potentially those with the largest oil sac, strengthens the predation 

mechanism. It may be added, in line with the flexible responses expected by capital 

breeders under predation risk, that when the herring is abundant, it may induce earlier 
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diapause and smaller energy reserves in the copepod. Such responses by the prey 

would in turn reduce the proportion of early eggs, produced by capital breeding, which 

may have high value also in this species, Calanus finmarchicus (Richardson et al. 

1999). Some of these links are highly uncertain and needs further study, but this line 

of reasoning is an example of how state-dependent life histories influence ecosystem 

dynamics. 

I also discuss other ecosystem consequences, particularly those emerging from 

storage (P5). These include increased accumulation of organic pollutants in trophic 

systems where capital breeders are common, and where capital breeders migrate 

between systems with resulting transport of pollutants (Krümmel et al. 2003). 

Transports are also common in breeding seabirds, but then on shorter timescale. 

Parental care include feeding of young, and for seabirds this means commuting 

between sea and land, with a resulting flux of energy with far-reaching consequences 

for many terrestrial systems (e.g. Ellis 2005, Sekercioglu 2006). However, complex 

ecological interactions determine the breeding success of the seabirds, including their 

willingness to breed (Chastel et al. 1995). When breeding is initiated, the state of their 

prey is important, as it influences the net transport of energy to the chick (Wanless et 

al. 2005). The prey’s state is, as illustrated above, a result of complex interactions 

between the environment and the life history, including our own harvesting strategies 

(Österblom et al. 2006). It is a challenge to understand the role of life history strategies 

in determining such ecological dynamics. The theory of evolution by natural selection 

has, however, given biology predictive power, providing us with some of the tools 

(Sutherland 2005). 
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