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Abstract

Although the arterial splanchnic circulation is known to be dynamic and of clinical interest during
postnatal life, little is known about its prenatal development and function. We hypothesised that
current ultrasound technology allows standardised techniques and reference ranges to be established
and the dynamics of this section of the fetal circulation to be studied.
Aims: The aims of the study were 1) to establish reproducible ultrasound techniques for assessing
the fetal celiac, hepatic, splenic and superior mesenteric arteries and longitudinal reference ranges
for flow velocity and pulsatility index, 2) to address the hemodynamic relationships between these
arteries and the umbilical liver perfusion under physiological conditions and how these arteries are
related to the cerebral and umbilical circulation and 3) to establish longitudinal reference ranges for
the middle cerebral artery and the cerebroplacental ratio.
Material and methods: We recruited 27 women with low-risk pregnancies to the pilot study
establishing insonation techniques and a further 161 for a longitudinal study, all after we obtained
written consent. In the longitudinal study, we scheduled the participants for ultrasound examinations
3–5 times during the second half of pregnancy, each session lasting a maximum of 1 hour. The
Doppler assessment included the middle cerebral and umbilical artery, the celiac, hepatic, splenic
and superior mesenteric arteries, the left portal vein, the umbilical vein and the ductus venosus. We
carried out fetal biometry each time. The ductus venosus peak velocity represented the port-caval
pressure gradient, and the velocity in the left portal vein reflected the distribution of umbilical blood
within the fetal liver. Means and centiles were constructed using multi-level modelling. We assessed
the relationships between splanchnic arteries using Pearson’s correlation coefficients, and the
relationship with the umbilical liver perfusion and the pulsatility index of the cerebral and umbilical
arteries was assessed using deviance statistics.
Results: We established the interrogation of the left branch as our standard for the Doppler
assessment of the hepatic artery since this technique minimised interference from neighbouring
vessels and established longitudinal reference ranges. We showed that low port-caval pressure was
associated with low impedance in the hepatic artery, supporting the assumption that the hepatic
artery buffer response also operates in the fetus (Article I). We also established longitudinal
reference ranges for the celiac and splenic arteries and provided terms for conditional ranges for
repeat measurements. Splenic and celiac arteries showed compensatory mechanisms supporting the
portal perfusion of the fetal liver: low umbilical perfusion and port-caval pressure were linked to
splenic and celiac artery vasodilation (Article II). Along the same lines, we established longitudinal
reference ranges for the superior mesenteric artery and demonstrated a link to the port-caval pressure
and venous liver perfusion (Article III). However, there was limited correlation between the
pulsatility index of the branches from the celiac artery and the pulsatility index of the superior
mesenteric artery, suggesting largely independent local regulation (Articles II and III). The
longitudinal reference ranges established for the middle cerebral artery and cerebroplacental ratio
differed from those derived from cross-sectional data (Article IV). Further, the conditional ranges
assigned for serial measurements are narrower and shifted compared with the ranges for the entire
population (Articles II–IV). The covariation of the umbilical and cerebral arteries with the celiac,
splenic and superior mesenteric arteries indicates additional common determinants for these circuits
(Articles II and III).
Conclusions: We provide longitudinal reference ranges for the upper splanchnic and middle cerebral
arteries and the cerebroplacental ratio and terms for conditional mean and ranges suitable for serial
measurements. The development of these ranges indicates increased perfusion of the splanchnic
tissues towards the end of pregnancy. Our study suggests that the hepatic artery buffer response is
operating in the fetus and that the splenic and superior mesenteric arteries, by feeding the portal vein
through a distended vasculature, also support the fetal liver perfusion. Although locally these
splanchnic arteries operate independently, they also seem to be under common influence with the
cerebral and umbilical circulation.
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What is already known on this topic
Article I
During postnatal life the portal vein is the only source
of venous liver perfusion; prenatally, 80 % is of
umbilical origin.

The hepatic artery buffer response is important in
maintaining liver perfusion in postnatal life.

Studies of growth restricted fetuses have shown
increased hepatic arterial involvement.

What this study adds

A standardised measurement technique for Doppler
assessment of the fetal hepatic artery.
Reference ranges for the left hepatic artery flow
velocities and pulsatility index.

The hepatic artery buffer response seems to operate
in the human fetus: low arterial impedance is seen
at low venous perfusion and port-caval pressures.

Article II
The celiac artery gives of branches to supply the
liver, spleen, pancreas and proximal gut.

The spleen grows linearly throughout gestation, is
involved in hematopoiesis and has a high degree of
adrenergic innervation.

Studies of fetuses with intrauterine growth restriction
show a low pulsatility index in the splenic artery,
whereas high systolic velocity in the splenic artery is
predictive of anemia.

After birth drainage of the splenic vascular bed is a
major contributor to portal flow.

A standardised measurement technique for the
celiac artery, longitudinal reference ranges for the
celiac and splenic artery Doppler assessment, and
conditional terms for serial measurements in the
fetal surveillance.
The hepatic and splenic branches from the celiac
artery seem to be largely independently regulated in
non-compromised fetuses.
The celiac and splenic artery hemodynamics is
functionally linked to the port-caval pressure
gradient and umbilical venous liver perfusion: low
arterial impedance is seen at low port-caval
pressures and perfusion.
The celiac and splenic artery hemodynamics co-
varies with the cerebral and umbilical circulation,
suggesting common hemodynamic determinants.

Article III
In postnatal life, the superior mesenteric artery is an
important and responsive section of circulation.
Increased impedance and low flow velocity
prenatally seems to increase the risk of necrotising
enterocolitis.

Portal flow increases throughout gestation, and the
superior mesenteric artery vascular bed is an
important contributor to the portal venous flow.

Current cross-sectional reference ranges for the
pulsatility index in the fetal superior mesenteric
artery are based on few observations.

Longitudinal reference ranges for the fetal superior
mesenteric artery Doppler assessment.
The superior mesenteric artery is functionally
linked to the port-caval pressure gradient as well as
the internal distribution of umbilical blood in the
fetal liver.
The hemodynamics of the superior mesenteric
artery covaries with the cerebral and umbilical
circulation, suggesting influence of general
circulatory determinants.
The local regulation of the celiac branches and the
superior mesenteric artery seems largely
independent from each other, all aimed at
maintaining an even hepatic perfusion in the fetus.

Article IV
Doppler assessment of the middle cerebral artery is
used in the hemodynamic surveillance of fetuses at
risk for anemia or growth restriction.
The combined cerebroplacental pulsatility ratio
predicts perinatal outcome better that the pulsatility
index in the umbilical or middle cerebral artery alone.

Longitudinal reference ranges for middle cerebral
artery flow velocities and pulsatility index, and the
cerebroplacental pulsatility ratio. Terms for
conditional mean and ranges suitable for serial
measurements in clinical monitoring.
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1. Introduction

A short history of fetal physiology

The discipline of modern fetal physiology started in the 1920s with studies of fetal

sheep. In the 1930s, the problem of the course of the fetal circulation was solved by

using radiological methods (Barclay et al. 1945). The first studies were performed on

exteriorised fetuses, and fetal and placental growth, development and composition

were the main issues explored. In the 1950s, fetal physiologists started to cooperate

with clinicians in the field of perinatal medicine. The discovery that the growth of the

trunk and limbs occurred independently of growth hormone secreted from the central

nervous system was the beginning of fetal endocrinology, and fetal intraperitoneal

infusion of red cells for treating rhesus disease was the beginning of fetal medicine

(Dawes 1994).

During the 1960s and 1970s, Rudolph and colleagues measured systemic blood

flow and cardiac output using isotope-labeled microspheres in fetal lambs (Rudolph

and Heymann 1967). Their findings were corroborated recently by Doppler-

ultrasound studies, allowing studies of the human fetus in its protected environment.

Although newer research increasingly details the human version of fetal physiology,

experimental animal studies have provided a substantial body of understanding.

Nevertheless, these results may not always be transferable to human physiology. The

present study is another contribution to the human fetal research in this field.

Everyday clinical perinatal medicine applies in practice the results of fetal

physiology research, such as continuous positive airway pressure, dexamethasone,

Doppler and ultrasound monitoring. The last decade has shown that the fetal

environment influences the risk of disease later in life: individuals with low birth

weight are at increased risk of cardiovascular disease and type 2 diabetes (Barker and

Hanson 2004). The developmental origin of health and disease hypotheses has

brought new aspects to the research in fetal physiology.
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1.1 Fetal splanchnic development

1.1.1 Gut

The gastrointestinal tract develops from the primitive digestive tube, which is derived

from the dorsal intraembryonic portion of the yolk sac. The primitive digestive tube

consists primarily of endodermal cells. Three major arteries supply the digestive tube:

the celiac artery (CA) supplies the foregut (oropharynx - duodenum), the superior

mesenteric artery (SMA) the midgut (distal duodenum -distal third of the colon

transversum) and the inferior mesenteric artery the hindgut (distal colon and rectum)

(Figure 1). The midgut opens ventrally into the yolk sac, and the cranial end of the

midgut elongates more rapidly than the embryonic body itself, which leads to a

physiological umbilical herniation. The apex of the loop entering the yolk sac is

directly in line with the mesenteric artery (the omphalomesenteric duct) (Sadler

1985a). Following the ventral herniation, a counterclockwise rotation around the

SMA begins, and at 10 weeks the bowel starts its return to the embryonic abdominal

cavity. The prearterial segment enters first and consequently posterior to the SMA,

while the cecum and colon enters last and in front of the SMA (Clark and Munshi

2004).

At 10–11 weeks of gestation, swallowing begins. Ingestion of amniotic

material is important for the growth and development of the gastrointestinal tract. The

fetus ingests 300–1000 ml of amniotic fluid per day, and it is suggested that 60–70%

of the protein in the amniotic fluid is turned over every day, which accounts for 15–

20% of total body protein deposition in fetal sheep (Trahair 2001). The gut tissues

derive a significant part of their nutrition from locally absorbed substances, but global

fetal growth is also reduced by the obstruction of fetal digestion (Cozzi and

Wilkinson 1969). When the composition of the swallowed fluid is altered, body

allometry is also changed (Trahair and Sangild 2000), indicating that ingestion is also
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important before birth. The entire surface of the intestines is constantly being shed

and replaced in 3- to 5-day cycles, and the fetal enterocyte uptake and transport of

luminal material are crucial for the local metabolism.

Towards the end of pregnancy, the gut must be prepared to face the change in

diet, and the hypothalamic-pituitary-adrenal axis, which is involved in the complex

cascade leading to parturition, is also involved in the maturation of the enterocytes

(Burrin 2004).

Figure 1. The primitive digestive tract. Source:
www.med.umich.edu/lrc/coursepages/M1/embryology/embryo/10digestives
ystem.htm, with kind permission from Professor Tom Gest.

1.1.2 Liver

During the third or fourth week of gestation, a liver bud constituting of proliferative

tissue originates from the ventral foregut (Figure 1). In the liver bud, hepatoblasts

differentiate into either hepatocytes or cholangiocytes, and these cells are

intermingled by precursors of endothelial cells. The endothelial cells, hematopoietic

cells and connective tissue of the liver are derived from the mesoderm of the septum

transversum, which later forms part of the diaphragm. The Kuppfer cells originate

from the yolk sac and bone marrow (Lobritto 2004).
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The vitelline veins that drain the yolk sac fuse to form a plexus around the

proximal bowel and are the initial sources of sinusoidal blood. This plexus later

becomes the portal vein (PV). The vessels developing in the connecting stalk to the

chorionic plate are the umbilical veins (UV). Initially (<5 weeks) they pass on each

side into the liver, where they communicate with the vitelline sinusoids. At a later

stage (7 weeks) the right UV atrophies and disappears and the left UV remains patent

throughout gestation and carries blood from the placenta (chorion) and empties into

the hepatic sinusoids. The UV and vitelline vein are connected to the hepatic

sinusoids through veins that develop into the intrahepatic PV. The left branch of the

PV connects to the UV via the portal sinus.

The PV enters the liver and branches into smaller and smaller vessels that travel

along with small branches of the hepatic artery (HA) and the bile ducts in the portal

tracts, eventually emptying into the hepatic sinusoids (Sadler 1985b).

The current hypothesis for hepatic development and vasculogenesis is that

vessel anatomy does not follow a predetermined pattern but is instead guided by local

needs and flow dynamics during gestational weeks 10–25, controlled by vascular

endothelial growth factors. Recent reports (Weinstein 2002; Lammert et al. 2003)

show that endothelial cells induce essential steps in organ formation and cell

differentiation. Vascular differentiation results in the development of the arteries and

capillaries on the arterial side and PV and hepatic sinusoids on the venous side. After

25 weeks, only small changes in vascular architecture and differentiation are observed

(Gouysse et al. 2002).

In contrast, the cellular architecture of the liver develops until 5 years of age

(Horst and Karpen 2004). The functional unit of the liver is the hepatic lobule with

one central vein. Portal triads consisting of a PV, HA and bile duct form the corners

of the hexagonal lobule, and each lobule contains plates of hepatocytes and between

them the hepatic sinusoids that carry a mixture of blood of portal and arterial origin

and drain into the central vein. The direction of blood flow in the lobule is toward the
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central vein, which eventually empties into the hepatic veins, while the direction of

bile flow in the lobule is the opposite, toward the bile duct.

The fetal liver has a prominent role in regulating growth (Tchirikov et al. 2001,

2002). Its blood supply is unique since it derives from three sources: the UV and PV

and the HA. The fetal liver differentiates from being an essential hematopoietic organ

to a hepatopoietic organ during the second trimester (Nava et al. 2005). It is the main

site for hematopoiesis until the end of the second trimester, when a shift to the bone

marrow occurs (Mikkola et al. 2005). Both liver growth and hematopoiesis seem to be

affected by its perfusion (McLellan et al. 1995; Rocheleau et al. 1999; Tchirikov et al.

2001, 2002; Kunisaki et al. 2006).

1.1.3 Spleen

During the fifth week of gestation, a mesodermal primordium of the spleen appears

posterior to the developing stomach. Similar to the liver, differentiation of the

constituents in the fetal spleen is closely related to the development and

differentiation of the vascular tree. A characteristic organ structure becomes evident

from 15 weeks onwards when the splenic lobules are formed. Each lobule has a

central artery, and the red pulp develops in the periphery of these lobules (Vellguth et

al. 1985).

Erythrocytes, their precursors and numerous thrombocytes are recognized in the

red pulp of the spleen, which is involved in clearing the blood and possibly

erythropoiesis or hematopoiesis. Later (gestational weeks 17–24), the white pulp

develops around the central arteries and increases in size at the expense of the red

pulp until the compartments are of equal size at 24 weeks (Vellguth et al. 1985). In

contrast, the red pulp comprises 75–80% of the volume of the postnatal spleen.

The white pulp is the lymphoid compartment of the spleen, and during the third

trimester immunoglobulin G and M are synthesised there.
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Recent data on the ontogeny of intrinsic innervation in the human fetal spleen

describe a mainly sympathetic noradrenergic innervation with a perivascular

distribution of the nerves, increasing in density during gestation. This suggests an

increasing role of the sympathetic nervous system in blood flow control, lymphocyte

traffic and maturation of the immune system (Anagnostou et al. 2007).

The spleen functions in the interface of the circulatory and the immune systems,

and it grows linearly in the second half of pregnancy (Aoki et al. 1992; Oepkes et al.

1993). After birth, it has dual roles in maintenance and adaptation to stress and

disease. The red pulp filters and removes senescent or defective red blood cells and

antibody-coated bacteria in the circulation. The white pulp is the lymphoid

compartment, produces antibodies against invading pathogens and releases platelets

and neutrophils in response to bleeding or infection.

The adult spleen is also a site for extramedullary hematopoiesis when the bone

marrow cannot fulfil the demand in times of stress and disease, whereas the fetal

spleen as a site for hematopoiesis has been debated (Wolf et al. 1983; Vellguth et al.

1985; Chadburn 2000). However, newer studies have concluded that the major site of

hematopoiesis transitions from the fetal liver to the spleen and bone marrow late in

fetal development (Christensen et al. 2004; Cumano and Godin 2007). Hematopoietic

stem cells circulate from the fetal liver to the spleen, and hematopoietic

differentiation occurs there (Cumano and Godin 2007).

1.2 Fetal circulation

General aspects

The fetal circulation displays specific features: the placental circuit with the umbilical

arteries (UA) and vein(s) connecting the fetus and the placenta and the three fetal

shunts, the ductus venosus (DV), the foramen ovale and the ductus arteriosus (or

rather the aortic isthmus)).
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The UA originate from the fetal internal iliac arteries and return one third of the

cardiac output (one fifth after 32 weeks) to the placenta (Rudolph et al. 1971; Sutton

et al. 1991; Kiserud et al. 2006a). The placental vasculature is compliant and

relatively non-responsive, and the placental compartment constitutes a large blood

volume.

The right and left sides of the fetal heart work in parallel, and the right

ventricular output, supplying the lungs, placenta and lower part of the body, is larger

than the left cardiac output (supplying the heart, brain and upper body) (Mielke and

Benda 2001; Kiserud et al. 2006a). The combined cardiac output (CCO) increases

throughout gestation but is unchanged when normalised for fetal weight (Mielke and

Benda 2001; Kiserud et al. 2006a). There is no pressure difference between the

ventricles, and the ventricular pressure increases during gestation (Johnson et al.

2000).

The ductus arteriosus connects the pulmonary trunk with the descending aorta.

Low-oxygenated blood from the right ventricle enters the descending aorta to mix

with blood from the left ventricle. The aortic isthmus is located between the origin of

the left subclavian artery and the aortic end of the ductus arteriosus and establishes

communication between the aortic and pulmonary arches (Fouron 2003).

Arterial pressure is an important determinant of blood flow. The systolic and

diastolic pressure increases linearly throughout gestation (Johnson et al. 2000), mean

arterial pressure from 15 mmHg at mid-gestation to 40–50 mmHg at term. The blood

pressure and ability to change it depend on such cardiac features as size and

myocardial contractility but also peripheral vascular resistance. Resistance to flow

depends on vessel diameter and blood viscosity, especially in the segments of the

circulation with low flow velocity.
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1.2.1 The umbilical and left portal vein and the ductus venosus

The UV returns nutrient-rich oxygenated blood from the placenta to the fetal

body, and the fetal liver has the highest priority, taking 75–80% of it (Bellotti et al.

2000; Kiserud et al. 2000).

The DV is a shunt connecting the UV to the inferior vena cava (IVC) close to

the atrial inlet and directs oxygenated UV blood towards the foramen ovale and the

central circulation. Thirty percent of the umbilical flow (20% near term) is shunted

through the DV (Bellotti et al. 2000; Kiserud et al. 2000). The DV flow is influenced

by blood viscosity and pressure, stimulation by alpha-adrenergic substances or

endothelin induces DV constriction, while beta-adrenergic stimulation, nitrogen

monoxide and prostaglandins induce vasodilation of the DV (Coceani and Olley

1988; Kiserud et al. 2000; Tchirikov et al. 2003, 2005). During experimental hypoxia

and hypovolemia, the DV shunting fraction increases (Edelstone et al. 1980), and an

increased degree of shunting is seen in fetuses with placental compromise and

intrauterine growth restriction (IUGR) (Tchirikov et al. 1998; Bellotti et al. 2004;

Kiserud et al. 2006b).

The umbilical pressure in the human fetus is 2–11 mmHg, and the portal

perfusion pressure has been calculated to vary between 0.5 and 3.5 mmHg during the

heart cycle (Kiserud et al. 1994a; Ville et al. 1994). The blood flow velocity in the

DV connecting the intra-abdominal UV to the IVC is an indicator of the port-caval

pressure gradient that perfuses the liver tissue. The simplified Bernoulli equation is

suggested for estimating the pressure gradient (∆p: in mmHg) based on the peak

systolic velocity in the DV (VDVps) and the maximum velocity in the UV (VUVmax)

(Kiserud et al. 1994a):

∆p = 4((VDVps)
2 – (VUVmax)

2).

 The left portal vein (LPV) connects the umbilical with the portal circulation

(Figure 5), and the flow velocity in the LPV directly reflects UV supply to the right
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liver lobe (Kessler et al. 2007a). The flow is orthograde during the second half of

pregnancy, but reversal is a normal phenomenon during fetal respiratory movements.

The oxygen saturation in the UV blood is 80–90% at mid-gestation and

approximately 70% at term (Weiner 1990). Oxygenated blood is shunted through the

DV from the UV and runs through the foramen ovale to the left atrium, left ventricle

and aortic arch, ensuring a steady supply of highly oxygenated blood to the heart and

brain. Spillover of the shunted UV blood to the foramen ovale and low oxygen

extraction in the liver makes the difference in oxygen saturation between the right and

left ventricle relatively small (10–12%) (Rudolph 1985).

1.2.2 Arterial circulation

The most fundamental principle of cardiovascular regulation has traditionally been

that it should match each tissue’s blood flow to its metabolic demands. Blood flow in

the various organs is mainly regulated by altering vessel diameter, mediated by

pressure or neural, hormonal or metabolic influence on the vascular musculature. The

capacity to sustain the perfusion of an organ when blood pressure or cardiac output is

altered depends on the ability for autoregulation and the responses to neural and

hormonal stimuli. These responses and capacities are a function of the gestational

maturation of the various vascular beds.

The sympathetic nervous system is the main mediator of the neural control of

blood vessels (arterioles). Increased sympathetic tone induces vasoconstriction in

peripheral beds such as the skin, carcass and gut. In contrast, it causes vasodilation

and increased blood flow in the heart, brain and adrenal glands. The change in the

distribution of the cardiac output to the various vascular beds is called redistribution.

Local control of the circulation, autoregulation, has two functions: keeping the

blood flow constant in the face of changes in blood pressure and adapting blood flow

in the organ to local changes in metabolism independently of the blood pressure. The

mechanisms of autoregulation are: myogenic effect (vasoconstriction response to an
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increase in blood pressure), local metabolic (vasodilator response to low O2 and

increased concentration of metabolites) and vasoactive substances (Despopoulos and

Silbernagl 1986; Greisen 2005). Local control may include changes in the

microcirculatory bed to enhance oxygen extraction (local redistribution).

Adaptation to acute hypovolemia and hypoxia is distinguished from responses

to chronic challenges. Increased adrenergic tone (α- and β-adrenergic) is both an

acute and a chronic response, while the humoral agents are likely to be more

important in the response to prolonged hypoxia. The ability to regulate may be

impaired after sustained hypoxia or hypovolemia (Bristow et al. 1985).

The heart, brain, intestine and kidney have highly efficient autoregulation

mechanisms, and splanchnic organs and kidneys have extensive autonomic

innervation. Recent experimental research has revealed that the liver has a highly

specialized system for regulating intrahepatic blood volume and flow. The portal

perfusion is a key component in the intrinsic regulation of the HA (Lautt 2007).

1.2.3 Umbilical arteries

The UA coil around the UV in a clockwise manner (90%) to enter the placenta

(Figure 2). In 95% of the cases, the UA communicate near the placental end through

the Hyrtl anastomoses. This communication is likely to equalize pressure and blood

flow of the two UA (Raio et al. 2001).

The UA return deoxygenated blood from the fetus to the placenta. In the

human fetus, the umbilical/CCO flow fraction is estimated to be approximately 30%

(Rudolph et al. 1971; Sutton et al. 1991) before 32 weeks and declines to 20% beyond

32 weeks (Kiserud et al. 2006a). This implies an increased degree of recirculation of

blood within the fetal body towards term (Kiserud et al. 2006a).

The UAs are readily assessable for Doppler interrogation.  In the placenta,

increased vascularization (through increased number and reduced size of the placental

villi) decreases the downstream impedance of the UA towards term. This is reflected
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in the linear decline in the pulsatility index (PI) of the UA through gestation

(Gudmundsson and Marsal 1988; Acharya et al. 2005a). The PI is a measure of the

systolic-diastolic differential of the velocity pulse:

PI = peak systolic velocity - end diastolic velocity/ time averaged maximum velocity)

(Gosling and King 1975).

The blood flow velocities increase towards term and is positively correlated

with the volume of blood flow as measured in the UV (Acharya et al. 2005b).

Especially the diastolic flow velocity rises as gestation advances (Stuart et al. 1980),

resulting in the observed decline in PI towards term.

Figure 2. Ultrasound image of the umbilical cord. UA: umbilical arteries
(arrows). UV: umbilical vein.

If placental growth and vascularisation is impaired, resulting in fetal growth

restriction, an increase in resistance in the placental capillary bed and, accordingly, an

increase in downstream impedance of the UA (increased PI) reflect the degree of

pathology. A decline in UA diastolic velocity is seen when the capillary bed is

reduced by 30%, and UA diastolic velocity is absent or reversed when the capillary

bed is reduced by more than 50% (Figure 3) (Giles et al. 1985). Solid evidence

indicates that Doppler assessment of the fetoplacental circulation via the UA is an

important clinical monitoring tool for high-risk pregnancies (Alfirevic and Neilson

1995).



22

Figure 3. Doppler recording in the umbilical artery of a fetus (gestational
age 29 weeks) with intrauterine growth restriction showing reversed
diastolic velocity.

1.2.4 Middle cerebral artery

The middle cerebral artery (MCA) supplies 80% of the cerebrum, and under normoxic

conditions near term 16% of the CCO is directed to the brain in monkeys (Behrman et

al. 1970) versus only 3% in fetal sheep near term (Jensen et al. 1991). Autoregulation

of cerebral blood flow is developed early in gestation (at 0.6–0.7 gestation in the fetal

sheep) (Kurth and Wagerle 1992). Acute hypoxia promotes adenosine release, which

causes vasodilation and depresses cerebral oxygen consumption (Pearce 2006). The

vasodilator response to hypoxia varies with gestational age and is also heterogeneous

among different brain regions.

Redistribution to the cerebral circulation is seen as a response to hypoxia

(Jensen et al. 1991), and low PIMCA is associated with low fetal pO2 (Vyas et al. 1990).

The effect is termed “brain-sparing”; an increase (especially) in the diastolic flow

velocity and consequently reduced downstream vascular impedance (PIMCA) as

assessed by Doppler ultrasound (Wladimiroff et al. 1986). The brain-sparing effect

has been shown to be transient in animal studies and preterminal human fetuses,

presumably caused by the development of brain oedema (Richardson et al. 1989;

Konje et al. 2001). Redistribution combined with IUGR is associated with an

increased risk of brain lesions (Habek et al. 2004) and suboptimal nervous system

development (Scherjon et al. 2000). The term brain-sparing may therefore be
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misleading, as it is not only a beneficial adaptation but a necessary compensatory

mechanism that may have long-term detrimental effects. A recent study showed that

the cerebral resistance gradual declines with reduced growth, also before the stage of

apparent growth restriction (Verburg et al. 2008).

The MCA is the cerebral vessel of choice for Doppler assessment (Figure 4). It

is also suitable for assessing absolute velocity, since it may regularly be interrogated

with an accurate insonation according to the direction of the vessel. Assessment of the

flow velocity and PI of the MCA has become an integrated part of the monitoring of

fetuses with placental compromise (Mari and Deter 1992) or anemia (Mari 2000). The

peak systolic velocity of the MCA (VMCAps) increases significantly and consistently in

anemic fetuses. Reduced blood viscosity and increased cardiac output are thought to

result in hyperkinetic circulation, while oxygen tension and partial pressure of CO2

may also modify flow velocity by local vascular regulation (Pickelsheimer et al.

2007). In fetuses at risk for anemia, the VMCAps correlates well with fetal hemoglobin

obtained at cordocentesis, and the method has reduced the need for invasive testing

for fetal anemia (Zimmermann et al. 2002). After 35 weeks of gestation, however, the

method is not effective in predicting fetal anemia (Zimmermann et al. 2002) and

VMCAps has low predictive accuracy for anemia in IUGR fetuses (Makh et al. 2003).

Other physiological adaptations may also result in high VMCAps; it has been reported to

predict poor outcome in IUGR fetuses (Hanif et al. 2007; Mari et al. 2007).

Assessing the PIMCA in combination with the PIUA in a common index

(PIMCA/PIUA= cerebroplacental ratio) gives simultaneous information on fetal

adaptation to placental circulation and has been shown to predict adverse outcome

better than PIMCA and PIUA alone (Gramellini et al. 1992). A cerebral vasodilator

response to increased placental resistance results in a shift between the right and left

ventricular output in favour of the left caused by increased afterload of the right

ventricle.
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Figure 4. Colour Doppler image of the fetal circle of Willis (gestational age
29 weeks).  Middle cerebral arteries (MCA) arrows.

1.2.5 Splanchnic arteries

The arterial blood supply to the gastrointestinal system has extra- and intramural

components. The intramural systems have specialisation’s (in the liver, spleen and

intestine) adapted to the functions of these organs, and branches of the arteries form

rich anastomotic systems (Geboes et al. 2001). There is more variation in the

development of the venous drainage than in the arterial tree of the splanchnic organs.

Experimental data suggest that, after birth, multiple interrelated mechanisms

involving the splanchnic and renal circuits act to maintain central hemodynamics,

portal pressure and liver perfusion (Lautt 2007).
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Figure 5. Left. Oblique horizontal section of the upper fetal abdomen.
Right. Sagittal section of the fetal trunk. AO: aorta; CA: celiac artery; IVC:
inferior vena cava; SA: splenic artery; HA: left hepatic artery; SMA: superior
mesenteric artery; DV: ductus venosus; UV: umbilical vein; PV: portal vein;
LPV: left portal vein; Spl: spleen; S: stomach.

Celiac and splenic arteries

The CA is a short and relatively large vessel arising from the aorta between the crura

of the diaphragm (Figure 5). It passes horizontally forward and divides into three

branches: the common HA, SA and left gastric artery (this study did not assess the

latter). About 2% of humans have a common celiomesenteric trunk, and variation in

vascular anatomy is common (Geboes et al. 2001; Ferrari et al. 2007). The celiac

plexus of the autonomic nervous system covers the origin of the CA.

Experimental data (in pigs) show different responses to dobutamine in the CA

and HA, indicating operation of different regulatory mechanisms (Brander et al.

2006). The hemodynamics of the fetal CA has not been explored.

The SA courses on the cranial border of the pancreas to the spleen. It supplies

the pancreas, stomach and spleen and is a major contributor to hepatic portal flow.

Stress induces splenic contraction (Aoki et al. 1992), and in adults this is considered

to be a compensatory mechanism to increase the venous return from the spleen to the

central circulation during stress (Froelich et al. 1988). Fetal alloimmunization or fetal
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growth restriction (respectively) affect the flow velocity and PI of the fetal SA, and

Doppler assessment of the SA provides information on the risk of adverse outcome in

high-risk pregnancies (Abuhamad et al. 1995; Capponi et al. 1997; Bahado-Singh et

al. 2000). Reference ranges based on cross-sectional data have been established for

the flow velocity and PI of the fetal SA (Abuhamad et al. 1995; Capponi et al. 1997;

Bahado-Singh et al. 2000). The relationships between fetal SA and local or general

hemodynamics have not been explored.

Hepatic artery

The HA arises from the CA in most cases (18% from the SMA) (Michels 1966).

Where the gastroduodenal artery branches off, it becomes the hepatic proper artery.

This artery enters the portal tract, where it divides into the left, right and middle HA.

The right HA supplies the right liver lobe, the middle HA supplies the medial

segments of the left lobe (the quadrate lobe) and the left HA supplies the left lobe. We

focused on the latter in the present study. Variation in the pattern of HA supply is

common. When the HA branches have penetrated the hepatic parenchyma, they

arborize in the portal tracts and form two plexuses (one around small PV and one

around the bile ducts) before delivering blood to the hepatic sinusoid. The sinusoids

drain slowly into the terminal hepatic veins, eventually emptying in the IVC just

below its junction to the right atrium.

The arterial contribution to the fetal liver perfusion is not known, but fetal

sheep data suggest <10% (Edelstone et al. 1978), while postnatally the contribution is

25% (Greenway and Stark 1971).

Maintaining hepatic blood flow is essential for the homeostatic roles of the

liver in postnatal life, and experimental studies show that liver perfusion is ensured

through several hemodynamic compensatory mechanisms (Lautt 1996). One, the

hepatic artery buffer response (HABR), is activated instantaneously upon reductions

in portal flow. Adenosine, a potent vasodilator, is secreted at a constant rate into the

space of Mall surrounding the terminal branches of the hepatic arterioles and portal
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venules before they drain into the hepatic sinusoids. Its concentration is regulated by

the washout to the portal blood: reduced portal flow reduces washout and accumulates

adenosine, which dilates the HA, thus buffering the reduced portal flow. A similar

mechanism accounts for the autoregulation of the HA, whereby increased HA flow

leads to increased washout of adenosine and subsequently constriction of the HA

(Ezzat and Lautt 1987).

Studies of adults have confirmed the function of the HABR (Iwao et al. 1996;

Gulberg et al. 2002), and studies of growth-restricted fetuses have observed reduced

vascular impedance and an increase in flow velocity in the HA (Kilavuz and Vetter

1999; Dubiel et al. 2001).

Superior mesenteric artery

The embryonic vitelline arteries fuse to form the superior mesenteric trunk. The

terminal branches of this trunk supply the yolk sac, and these branches obliterate

when the ileum separates from the yolk sac (Sadler 1985b). Rapid growth of the

intestine requires proportional growth of the corresponding circulation.

Experimentally, it has been shown that the capacity to autoregulate intestinal flow is a

function of gestational maturation (Rouwet et al. 2000).

During hypovolemia and hypoxia, blood flow is dramatically redistributed

away from the gut, kidney and carcass to the brain, adrenal glands and heart mediated

by sympathetic activity (α-adrenergic receptors) (Jensen and Hanson 1995; Bennet et

al. 2000; Quaedackers et al. 2004). The mesenteric hemodynamic response to

circulatory shock redistributes blood away from the intestinal capacitance vessels,

resulting in an “autotransfusion” of up to 30% of the circulatory blood volume to the

systemic circulation (Ceppa et al. 2003). Under these conditions, although there is

some degree of vasoconstriction in other peripheral systems, it is disproportionately

greater within the mesenteric vascular bed. The strong mesenteric constrictor response

is caused by a five-fold affinity for angiotensin II in the mesenteric vascular smooth

muscle (Gunther et al. 1980). To deal with low supply, the vascular bed of the gut is
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capable of redistributing locally (intramurally) and increasing oxygen extraction to

prevent ischemic injury.

 Sustained hypoxia resulting in hypoperfusion of the fetal intestines is

associated with neonatal gastrointestinal morbidity (Robel-Tillig et al. 2002; Bennet

et al. 2006), and preterm neonates with high resistance patterns of flow velocity of the

SMA on the first day of life are at increased risk of developing necrotizing

enterocolitis (Murdoch et al. 2006).

Studies of neonates show that flow velocity in the SMA rises and resistance

declines during the first postnatal days (Martinussen et al. 1994) and that the severity

of IUGR negatively influences flow velocity in the SMA (Martinussen et al. 1997). In

fetal sheep, 4% of the cardiac output is directed to the gastrointestinal tract, not

including the spleen and liver (Itskovitz-Eldor and Israel 2005), while splanchnic

circulation receives 20% of the postnatal cardiac output and shows great flexibility,

increasing 30–130% during digestion (Perko 2001). A study of healthy adults found

that the flow velocity of the SMA depends on changes in central hemodynamics

(Perko et al. 1996).

Inferior mesenteric artery

The inferior mesenteric artery arises from the aorta at the level of the third lumbar

vertebra. It supplies the distal third of the colon and the rectum. The venous drainage

of the colon is mainly through the inferior mesenteric vein that empties into the

splenic vein. The hemodynamics of the inferior mesenteric artery is not the topic of

the present study and hence is not addressed further.
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2. Ultrasound

Sound with a frequency above 20 kHz is inaudible to the human ear and is known as

ultrasound. The frequencies commonly used for medical diagnostics are 2–10 MHz.

The resistance of a medium to sound transmission is called acoustic impedance. The

acoustic impedance of soft tissues is relatively low, whereas bone has higher

impedance. The boundaries between tissues with different properties of acoustic

impedance are called acoustic interfaces, and reflection occurs there. The magnitude

of the reflected wave is proportional to the magnitude of the difference in impedance

at the interface (Maulik 2005). The progressive decline of a propagating ultrasound

wave is known as attenuation. Many factors influence attenuation, such as the

impedance of the penetrated tissue, scattering and reflection and transmitting

frequency; the higher the frequency, the greater the attenuation. This limits the use of

high-frequency transducers for interrogation of deep structures. Tissue absorption is

an important source of attenuation, whereby ultrasound energy is converted to heat

energy.

The resolution of an image is the smallest distance between two targets that

can be discriminated (Angelsen 2000). A high frequency shortens the pulse duration

and narrows the beam width, which increases the resolution, but tissue penetration is

low. The operator can use insonation angle, gain, focusing of the ultrasound beam and

choice of frequency to optimise image quality.

2.1 Doppler ultrasound

Christian A. Doppler, an Austrian physicist and mathematician, first described the

Doppler effect in 1842. It is defined as the observed changes in the frequency of

transmitted waves when relative motion exists between the source of the wave and the

observer. The principle is applicable to all forms of wave propagation, and the shift in

frequency is proportional to the speed of movement between the source and receiver.
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In diagnostic Doppler ultrasound, the red blood cells act as moving receivers and as

moving sources.

The Doppler equation:

fD = 2 * ft * v /c

fD represents the Doppler frequency shift, ft the frequency of the incident beam

(transducer frequency), v the velocity of the scatterer (reflector) in a given direction,

and c the propagation speed of sound in the medium. If the direction of the incident

beam is at an angle θ to the direction of flow (Doppler angle), the equation includes

the cosine of the angle θ.

fD = 2 * ft * cos θ v/c

and the velocity of the moving scatterer may be calculated as:

v = fD * c/2 * ft * cos θ

That is, the velocity of the reflector is proportional to the cosine of the Doppler

angle. If the Doppler angle is 90°, the reflector is moving perpendicular to the

ultrasound beam and the detected Doppler shift is zero. Knowledge of the insonation

(Doppler) angle is essential in evaluating absolute velocity, and uncertainty in peak

velocity increases as the Doppler angle approaches 90°. At 20° of insonation, an error

of 5° corresponds to a 3.6% error in velocity. At 80° of insonation, the velocity error

is 99%.

Different Doppler techniques may be applied in diagnostic ultrasound, such as

pulsed-wave Doppler, colour Doppler, continuous-wave Doppler and power Doppler.

The pulsed-wave Doppler and colour Doppler techniques will be discussed here since

these modes were applied in this study.
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Pulsed-wave Doppler

Pulsed-wave Doppler provides the ability to select Doppler signals from

specific depths. Short pulses of ultrasound are sent out and received. Each Doppler

signal is sampled once for every pulse transmission, and the time interval for the pulse

transmission and reception determines the distance or range of the target area from

the transducer.

The rate at which a pulse is generated is called the pulse repetition frequency. If

the pulse repetition frequency is less than twice the frequency of the maximal Doppler

signal frequency (2fD), aliasing will occur, known as the Nyquist limit (pulse

repetition frequency equals 2fD). To eliminate aliasing, the operator should adjust the

frequency scale on the spectral Doppler display and, secondly, adjust the baseline.

Spectral analysis is a quantitative analysis showing the distribution of

frequencies (that is, velocities) to be presented as a function of time.

The three-dimensional region in the path of the transmitted ultrasound beam

from which the frequency shift signals are obtained is called the Doppler sample

volume. The operator can control the axial dimensions, while the transverse

dimensions are determined by the ultrasonic beam width, which approximates the

diameter of the transducer face in the near field and broadens in the far field (Maulik

2005).

Colour Doppler

Colour flow imaging combines data from moving reflectors (the Doppler shifts)

with grey-scale images and provides anatomical details along with information on

flow (high or low velocity and direction). The limitation of this display is that the

image rate tends to be slower. To improve the frame rate, the operator may reduce the

size of the imaged field in colour mode.
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2.2 Safety

Ultrasound may react with tissues by 1) thermal effects (tissue heating) and 2) non-

thermal mechanical effects (cavitation). (We do not discuss other mechanical effects

here, as their biological significance is unclear.)

When ultrasound penetrates tissue, the tissue absorbs a portion of its energy

and converts it to heat. The rate of heat generation depends on the characteristics of

the transmitted ultrasound and on the tissue. The elevation of temperature in tissue

also depends on factors that control the dissipation of heat in the tissue, such as

perfusion. B-mode (grey-scale) ultrasound operates at acoustic outputs that are

incapable of producing harmful temperature rises. The extent of heating for pulsed

Doppler is higher than other ultrasound modes, which require the operator to be

aware, especially when examining sensitive tissue such as a fetus.

Experimental studies in animals provide evidence of biological effects from

ultrasound in fetuses. These studies show that developmental injury requires a

temperature rise of at least 1.5°C above normal body temperature, and exposure that

elevates temperature in situ above 41°C for more than 5 minutes should be considered

hazardous (Ziskin and Barnett 2001). Since bone tissue has the highest acoustic

impedance, it carries the highest likelihood of thermal effects. Since the brain is

enclosed in bone, it is vulnerable to bone-related heating, and experimental data

confirm that the greatest brain heating occurs close to the bone and correlates with

gestational age and bone mineralization (Barnett 2001). A study on monkeys reported

a peak temperature rise of 0.6°C after Doppler exposure of the brain vessels,

suggesting that the presence of tissue perfusion may play a protective role by

dissipating heat (Tarantal et al. 1993). In contrast, studies on guinea pigs showed that

cerebral blood perfusion had a negligible effect on cooling (Barnett 2001).

 The mechanical biological effects of ultrasound exposure include cavitation,

which is the formation, growth, oscillation and collapse of bubbles in a liquid. The

mechanism of bubble formation seems to depend on the presence of a tissue–gas
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interface, and this is why this effect is less likely to be implicated in the ultrasound

exposure of the fetus.

Human epidemiology studies fail to show adverse outcome in fetuses exposed

to ultrasound (Itskovitz-Eldor and Israel 2005), but studies of biological effects face

methodological obstacles. Modern ultrasound devices have higher output than older

equipment, and data are limited for elucidating a dose–response relationship of

prenatal ultrasound exposure and adverse effects (Salvesen 2007). The

epidemiological evidence shows no association between ultrasound exposure and

childhood malignancies, adverse effects on growth or brain development (Itskovitz-

Eldor and Israel 2005).

Modern ultrasound equipment provides a real-time output display showing the

thermal indices for soft tissue, bone and cranial bone and mechanical indices that

serve to alert the operator to potential biological effects. The thermal indices estimate

the rise in tissue temperature in °C that is possible during the relevant ultrasound

exposure, while the mechanical indices estimate the potential for producing non-

thermal biological effects in the tissue (worst-case situations). However, these indices

have some limitations, as the potential effects may be underestimated (Marsal 2005).

The international guidelines based on the ALARA (as low as reasonably achievable)

principle underscore the operators’ responsibility to use ultrasound prudently.
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3. The present study

Reports of serial measurements in the monitoring of fetuses at risk have used

reference ranges based on cross-sectional data (Hecher et al. 2001; Bilardo et al.

2004; Baschat et al. 2007). We expected an increasing use of serial measurements in

the clinical management of individual pregnancies and therefore chose a longitudinal

study design, as temporal changes cannot be appropriately considered in a cross-

sectional manner (Royston 1995). A longitudinal study provides the necessary terms

for calculating conditional ranges, which we believe are more appropriate in repeat

assessments as they take into account the individual hemodynamic state, assuming

that this is an important determinant for subsequent development.

The motivation and hypotheses that initiated the study were as follows.

We assumed that we could identify the necessary details and landmarks to establish a

reliable method of studying major splanchnic arteries in the human fetus: CA, HA,

SA and SMA.

We anticipated that these techniques could be used to construct longitudinal reference

ranges describing the normal development during the second half of pregnancy and

suitable for monitoring fetal Doppler parameters.

We hypothesised that, although 85% of the venous liver perfusion is of umbilical

origin during prenatal life (Kessler et al. 2008), the HA, SA and SMA are involved in

maintaining the liver perfusion and can be traced under physiological conditions.

3.1 Aims of the study

• To establish a standardised, reproducible ultrasound examination technique and

longitudinal reference ranges for the HA flow velocity and PI.
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• To determine the blood velocity pattern in the HA at various states of port-caval

pressure gradient and venous liver perfusion, and the relationship with MCA and

UA hemodynamics.

• To establish longitudinal reference ranges for flow velocity and PI in the CA, SA

and SMA.

• To assess the blood velocity pattern of the CA, SA and SMA at various states of

liver perfusion and port-caval pressure gradient, and the relationship with the

hemodynamics of the MCA and UA.

• To determine the hemodynamic relationship between the CA and its branches (SA

and HA), and between the CA branches and the SMA.

• To establish longitudinal reference ranges for the MCA flow velocity and PI and

the cerebroplacental pulsatility ratio.

3.2 Material and methods

3.2.1 Study design

Reference ranges should be constructed from prospectively collected data in a

population selected for the purpose; thus, we chose a prospective observational

longitudinal design.

3.2.2 Study population

Women attending the ultrasound department for routine second trimester scans

between gestational week 17-20 were invited to participate in the study, which we

conducted during 2004-2006.  The regional Committee for Research Ethics approved

the study protocol (REK-Vest no. 203.03). During the pilot study, 27 women were

examined 1–3 times, giving a total of 43 examinations. After gestational age had been
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assessed by head biometry at routine ultrasound scan in the second trimester (Johnsen

et al 2004), another 161 healthy pregnant women with singleton pregnancies were

recruited.

  The reasons for not being enrolled were fetal anomaly, any maternal chronic

disease and a history of pregnancy-induced hypertension, fetal growth restriction,

placental abruption or delivery before 37 weeks. We obtained informed written

consent from the participants before enrolment. We aimed at examining each

participant four times at 3- to 5-week intervals.

We collected information from the medical records on birth weight, gender,

placental weight, Apgar score, duration of gestation at delivery, congenital anomalies,

mode of delivery and transfer to the neonatal intensive care unit.

In the study of the hemodynamics of the HA (Article I), three clinical cases

were included to illustrate the potential clinical use of Doppler assessment of the HA.

3.2.3 Measurements

We used a 2-5, 2-7 or 4-8 MHz abdominal transducer (Voluson 730 Expert; GE

Medical Systems, Kretz Ultrasound, Zipf, Austria) with colour Doppler and pulsed

Doppler facilities. The high-pass filter was set as low as possible, at 70 Hz. The

mechanical and thermal indices were below 1.1 and 0.9, respectively, in most of the

sessions, and were always kept below 1.9 and 1.5.

At each session we aimed at measuring blood flow velocity in the 1) MCA, 2)

UA, 3) CA, 4) left HA, 5) SA, 6) SMA, 7) DV, 8) intra-abdominal UV and 9) LPV.

We measured three biometric parameters three times at standard sections (head and

abdominal circumference and femur length) (Johnsen et al. 2006), noted a mean for

each and used these data to calculate the estimated fetal weight according to the

formula of Combs et al. (1993). For estimating the volume of UV blood flow, we

measured vessel diameter (D)(inner edges in a perpendicular insonation to the vessel
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wall at least three times) in the intra-abdominal UV distal to the first hepatic branches

(Figure 6). Diameter was measured repeatedly to reduce random error (Kiserud and

Rasmussen 1998). Flow velocity in the intra-abdominal UV was recorded in an axial

direction of the vessel, and the volume of blood flow in the UV (QUV, ml/min)

calculated as:

QUV = π * (D/2)²  * vmax * h * 60

where h is velocity profile factor and h = 0.5 for the UV (Kiserud et al. 1994b).

We applied standardized techniques for assessing the MCA, DV and LPV

(Kiserud et al. 1991; Mari et al. 2005; Kessler et al. 2007a) and performed the UA

recordings in a free-floating section of the umbilical cord. Each examination did not

last more than 1 hour, and we placed the women in a semirecumbent position.

We videotaped one examination session and timed the use of the different

ultrasound modes. The total examination time was 50 minutes, frozen time was 8:10

minutes (16.3%), grey-scale time 16:18 minutes (32.6%), colour Doppler 20:04

(40.1%) and pulsed Doppler 5:28 minutes (10.9%).
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Figure 6. Schematic drawing of the fetal abdomen with vessels of interest
in this study. A. Horizontal view. B. Sagittal view. The measurement points
(encircled): UV: umbilical vein; DV: ductus venosus; LPV: left portal vein;
SA: splenic artery; CA: celiac artery; HA: hepatic artery left branch; SMA:
superior mesenteric artery; PV: portal vein; Spl: spleen, S: stomach.

In the pilot study, we sought to visualize the branches from the CA directed to

the fetal liver using colour Doppler. The CA branches off from the abdominal aorta

into the left gastric artery, SA and common HA. In contrast to the renal arteries that

branch off directly from the aorta, the SA has its origin from the CA in front of the

aorta (Figure 6). The SA was regularly identified as it traverses behind the stomach to

the hilum of the spleen, cranial to the splenic vein, while the common HA was less

obvious running along the PV before dividing into the left and right HA (Figure 6).

We did not identify the middle HA in this study.

Flow in the common HA and right branch has the same direction as the

neighboring main PV and right PV, causing interference in the pulsed Doppler

recording, and was therefore less suitable for the assessment (Figure 7). However, the

left branch of the HA could be visualized free of the PV as it approached the DV to

continue distally to the left of the intra-abdominal UV. Since blood flow in the left

branch of the HA has the opposite direction to that in the neighboring DV and UV,

the Doppler recordings at this point can mostly be analyzed without interference, and

we chose this as the standard technique for the study.
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Figure 7. Doppler recordings of the hepatic artery waveform. A. Recording
from the left branch. B. Recording from the common hepatic artery with
interference from the neighbouring portal vein (gestational age 35 weeks).

The CA was assessed close to the aorta in a sagittal or horizontal view of the

fetal abdomen (Figures 6 and 8). The SA was visualized in a horizontal insonation

and the sample volume placed over the proximal part of the vessel (Figure 9). The left

HA was assessed in a horizontal or a sagittal view of the fetal abdomen and measured

as described above.

Figure 8. The celiac artery, the first anterior branch from the descending
aorta below the diaphragm, here assessed in a sagittal view of the fetal
abdomen. The Doppler gate is placed over the proximal part of the vessel
(gestational age 28 weeks).
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The SMA is the second anterior branch from the abdominal aorta. It leaves the

aorta at the level of the kidney arteries, is directed anterior and caudal into the

mesentery. We assessed the SMA in a sagittal or horizontal insonation and placed the

sample volume over the proximal part of the vessel (Figures 6 and 10).

For all Doppler assessments, we performed the insonation along the direction of

the vessels, keeping the angle of insonation as low as possible: always ≤10° for the

MCA and ≤30° for all other vessels. We acquired the recordings in fetal quiescence

and over at least three heart cycles. We traced the Doppler waveforms automatically

or manually, determined the systolic peak and time-averaged maximum velocity and

calculated the PI (Gosling and King 1975).

Figure 9. Colour Doppler image of the splenic artery in horizontal view of
the fetal abdomen, traversing posterior to the stomach. The Doppler gate is
placed over the proximal part of the vessel (gestational age 34 weeks).
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Figure 10: Colour Doppler image of the superior mesenteric artery. The
Doppler gate is placed over the proximal part of the vessel (gestational age
38 weeks).

3.2.4 Statistics

Power calculations

Longitudinal data can be used to provide the terms to evaluate temporal changes, that

is for calculating the expected value and reference ranges based on a previous

measurement (Royston 1995; Royston and Wright 1998). Experience from cross-

sectional studies suggests that about 15 observations per gestational week (Nc) are

necessary for calculating reliable centiles (Royston and Altman 1995; Kiserud et al.

2000). The corresponding number for a longitudinally designed study (Nl) is Nc/D,

where D is the design factor, which has been calculated as 2.3 in studies on fetal size

(Royston and Altman 1995). Thus, observations over 20 weeks correspond to

Nc = 300 and Nl = 130. An anticipated overall success rate of 80% for Doppler

measurements increased the study group to 160 participants.
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Construction of mean and centile curves

We used multilevel modelling to calculate mean and centiles for the variables

according to gestational age. The first level was the variance between measurements

of the same fetus and the second was the variance between the participating women.

The MlWin program (MlWin, Centre for Multilevel Modelling, University of Bristol,

UK) and SPSS (SPSS Inc., Chicago, IL, USA) were used for the statistical analysis.

To test for normal distribution of the outcome variables and the power in

which the dependent variables were transformed, we used Box-Cox power

transformation. Fractional polynomial regression models were fitted to the data as one

fixed and one random component.

We calculated the 2.5th, 5th, 10th and 25th centiles by subtracting 1.96

standard deviations (SD), 1.645 SD, 1.282 SD and 0.674 SD from the mean,

respectively. The 97.5th, 95th, 90th and 75th centiles were calculated by adding the

respective multiples of the SD to the mean. We derived the 95% confidence interval

(CI) of the mean and 5th and 95th centiles from the standard error of the regression

lines. To obtain approximate standard error around the 5th and 95th percentiles,

transformed observations ± 1.645 SD were regressed against gestational age.

Further regression analysis

To assess the possible effect of fetal variables (such as gender, estimated fetal weight,

VDVps, QUV, normalized QUV per kilogram of body weight and VUVmax) on the outcome

variables (velocity and pulsatility index in the HA, SA, CA and SMA), we included

these possible determinants as indicator variables in the multilevel regression models,

which describe the mean of the outcome variables. We included the determinants in

three categories (<10th centile, 10th to 90th centile and >90th centile) in the

regression model since we assumed that responses would occur more commonly in

extreme conditions. Indicator variables with significant improvement in the goodness

of fit to the models, as assessed by the deviance statistics (χ
2 with p <0.05), were

considered to influence the outcome variables.
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Reproducibility

Intra- and interobserver variations for the flow velocity and PI of the MCA were

calculated with a paired sample t-test and limits of agreement (Bland and Altman

1986). We calculated the variations of the splanchnic arteries with a paired sample t-

test and intra- and interclass correlation coefficients based on repeat observations

(Bland and Altman 2003).
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4. Results

4.1 Study population

Table 1 presents the characteristics of the study population. Since the aims of the

study were to establish longitudinal reference ranges for cerebral and splanchnic

arteries and to study hemodynamic relationships in physiological pregnancies, we

recruited healthy women with no history of pregnancy complications. According to

the prospective design of the study (that is, the outcome was not known at enrolment),

we decided not to exclude participants who developed complications. Since the birth

weight (Skjaerven et al. 2000) and caesarean rate did not differ from those of the local

population (local caesarean rate: 11.8%), we believe that the ranges may be applied to

the general population and that the information we provide on hemodynamic

relationships can be applied to physiological pregnancies.

 One woman had one set of measurements, 2 women had two, 18 had three, 126

four and 14 had five. No participant withdrew from the study after enrolment.  All

except three were Caucasians. Four smokers were included. Three neonates (1.9%)

were transferred to the neonatal intensive care unit (one because of supraventricular

arrhythmia and two after operative delivery).

Clinical cases (Article I)

Case 1. Fetomaternal bleeding following maternal abdominal trauma at 30 weeks. A

healthy girl 3400 g had a normal delivery at 40.3 weeks. Case 2. Non-immune fetal

hydrops caused by human parvovirus B19 infection was diagnosed at 24 weeks, and

had one intrauterine transfusion for anemia at 24.6 weeks. A boy 2680 g (<10th

centile) was delivered normally at 37.3 weeks. Case 3. IUGR at term, a girl 2550 g

(<5th centile) was delivered by acute caesarean because of fetal distress at 40.3

weeks.
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Table 1. Characteristics of the study population (n = 161)

Characteristics Median (range) or %

Maternal age at inclusion (years) 29 (20–40)

Parity 1 (0–5)

Birth order one (%) 48.4

Body mass index (kg/m2) at first visit 22.9 (18.1–40.8)

Gestational age at delivery (weeks) 40.4 (35.4–42.6)

Caesarean section (%) 10.6

Male baby (%) 50.3

Placental weight (g) 720 (350–1200)

Birth weight (g) 3700 (2260–4980)

Apgar score, 5 min, <7 (%) 0.62

4.2 Success rate

The total number of sessions during the study was 633, and median 4 (range 1–

5) examinations per participant (Table 2). The reasons for not achieving

measurements were fetal position, fetal movements and time constraints. We gave the

highest priority to measuring the splanchnic arteries.
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Table 2. Success rate for flow velocity measurements in the different vessels related to the
total number of examinations (n = 633)

Vessel
Number of

observations
Success
rate (%)

Middle cerebral artery 604 95.4

Umbilical artery 611 96.5

Cerebroplacental ratio 550 86.9

Hepatic artery 176 27.8

Celiac artery 510 80.6

Splenic artery 521 82.3

Superior mesenteric artery 589 93.0

Ductus venosus 596 94.1

Left portal vein 282 44.5

Umbilical vein 598 94.5

4.3 Reproducibility

The intra- and interobserver analysis showed that reproducibility was acceptable for

clinical use in the MCA, CA, SA and SMA (clinically acceptable limits of agreement

and intra- and interclass correlation coefficients >75%). For the HA study we found

lower intra- and interclass correlation. This may be explained by the physiological

properties of the HA (rapid changes are expected (Lautt 2007)) and technical

difficulties.
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4.4 Middle cerebral and umbilical arteries and the
cerebroplacental ratio

Middle cerebral artery

Serial monitoring commonly used in monitoring fetuses at risk ideally requires

reference ranges based on longitudinal data. Reference ranges published for clinical

use are based on cross-sectional data (Figure 11) (Mari and Deter 1992;

Kurmanavicius et al. 2001; Bahlmann 2002; Baschat 2003). A few longitudinal

studies have been published, but these are small or lack ranges for commonly used

parameters (Arstrom et al. 1989; Meerman et al. 1990; Harrington et al. 1995). Our

reference ranges (based on 566 observations) differ somewhat from the published

cross-sectional ranges, but all the curves compared for the PI of the MCA have

similar values for the last weeks of pregnancy (Figure 11).

We established longitudinal reference ranges for the MCA and

cerebroplacental ratio and provided terms for calculating conditional reference

intervals, i.e. the calculation of expected mean and ranges based on a former

observation in the same fetus (Figure 12). Our suggestion is to calculate the

conditional ranges based on the first observation in a series of observations. The

conditional ranges are narrower and shifted in the same direction as the index value

compared with the ranges for the entire population.
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Figure 11. Reference ranges (5th, 50th and 95th centiles) for the pulsatility index
(PI) based on 566 observations in our longitudinal study (continuous black lines)
compared with those from cross-sectional studies: — —: Bahlmann (2002);
continuous grey lines: Mari and Deter (1992); and - - - (mean): (Baschat 2003).

Figure 12. Serial measurements of the cerebroplacental ratio (CP-ratio) in
a pregnancy at risk for IUGR (red). The conditional ranges (blue broken
lines) are calculated from the observation at GA 22.9. Reference ranges
5th, 50th and 95th centiles (continuous black lines).
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Umbilical artery

The UA was measured 611 times in a free-floating loop of the umbilical cord. The

velocity and PI were entered into the statistical analysis and for the calculation of the

cerebroplacental ratio. We compared our results with those of another study with

corresponding design (Acharya et al. 2005a) and found minor differences (Figure 13).

Figure 13. Pulsatility index of the umbilical artery (PIUA) with 5th, 50th and
95th centiles (thick black lines) and their 95% CI (thin black lines) based on
611 observations in 161 low-risk pregnancies compared with the
corresponding centiles from another study (Acharya et al. 2005a) (red
lines)

4.5 The umbilical and left portal vein and the ductus
venosus

 Umbilical vein flow has been studied extensively. All studies show increasing

flow (ml · min–1) but decreasing normalized flow (ml · min–1 · kg–1) through gestation

(Bellotti et al. 2000; Kiserud et al. 2000; Acharya et al. 2005c). Our findings are in

accordance with this (using maximum flow velocity for estimating UV flow) (Figure
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14). For the regression analysis, we constructed centiles for the maximum UV flow

velocity, flow (ml · min–1) and normalised flow (ml · min–1 · kg–1).

Figure 14. Left. Umbilical flow (ml/min) with 5th, 50th and 95th centiles and
95% CI (thin lines) based on 568 observations. Right. Normalised umbilical
flow (ml · min–1 · kg–1) based on 553 sets of observations of estimated fetal
weight, UV diameter and UV maximum velocity in 161 low-risk
pregnancies.

The flow velocity in the LPV is a direct reflection of umbilical venous supply to

the right liver lobe (Kessler et al. 2007a). Thus, low velocity indicates a shift towards

less oxygenated blood and relatively more oxygen-depleted PV blood to the right liver

lobe. We constructed centiles for the further regression analysis.

In our study VDVps was used as a surrogate measure for portal perfusion pressure

(Kiserud et al. 1994a). We used a standardized technique (Kiserud et al. 1991) and

constructed centiles for use in the regression analysis.

4.6 Hepatic artery

We established a standardised technique (Figure 6) and reference ranges (Figure 15)

for measuring blood velocity and PI in the HA. We found the left HA suitable for

Doppler interrogation. Flow velocities in the left HA increase during the second half

of pregnancy (from mean VHAps 18 to 33 cm/s), while the mean PIHA increases from



51

1.49 at 21 weeks to 1.88 at 32 weeks when a plateau is reached (week 38

mean = 1.83). Although the Doppler measurements of the HA were increasingly

successful as the study developed, our overall success rate was low (Table 2). This

may be explained by difficulty in anatomical identification, low flow and interference

from neighbouring veins. We expect that pathological low umbilical flow and portal

perfusion pressure in clinical cases will provoke increased flow in the HA and

enhance visualisation.

Figure 15. Peak systolic velocity of the left hepatic artery (vHA-ps) 5th, 50th
and 95th centiles and 95% CI for the centiles (thin broken lines) based on
176 observations

 In the present study the regression analysis showed that high (>90th centile)

UV and normalised UV flow were positively associated with PIHA, and a low port-

caval pressure gradient (VDVps) was associated with a low PIHA. This finding of a

vasodilation in the HA at low UV perfusion and low port-caval pressure supports the

hypothesis of an intrinsic regulation of the HA in the fetus similar to the postnatal

HABR (Lautt 1996).
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We found no significant association of the HA hemodynamics (PI) with the

MCA and UA PI, indicating no common determinants for the HA, MCA and UA

under unprovoked physiological conditions.

The clinical cases showed decreased pulsatility and increased peak velocity in

the HA, indicating increased arterial contribution to liver perfusion in states of low

venous perfusion or possibly increased hematopoietic demand (Kunisaki et al. 2006).

4.7 Celiac and splenic arteries

The CA feeds both the HA and SA that supply the fetal liver; the HA directly, and the

SA indirectly via splenic venous drainage to the PV. To the best of our knowledge, a

standardised insonation technique and reference ranges for the CA have not been

available. Our reference ranges show that the flow velocities increases from a mean

VCAps of 26 to 50 cm/s and time-averaged maximum velocity (VCAtamx) from 12 to 22

cm/s during 21–39 weeks of gestation, while the curve describing the mean PICA is

parabolic, increasing from 1.73 to 2.10 at 29–30 weeks and declining to 1.81 at 39

weeks.

The SA is a major contributor to portal flow through the splenic vein. This

vessel is anatomically readily assessable for Doppler evaluation in the fetus, also with

an accurate insonation for evaluation of absolute velocities (Figure 8).

Similar to the CA, the SA velocity increases throughout the second half of

pregnancy (VSAps from 19 to 49 cm/s and VSAtamx11 to 24 cm/s). The curve describing

the mean PISA is lower than that of the PICA but is also parabolic and with a turning

point (1.85) at the corresponding gestational weeks, decreasing to 1.58 at 39 weeks.

In the present study, we found weak correlations between PIHA and PICA

(r = 0.3, 95% CI 0.1 to 0.5) and PIHA and PISA (r = 0.1, 95% CI –0.05 to 0.3),

indicating largely independent local regulation of the branches from the CA. The

correlation between PICA and PISA was stronger (r = 0.5, 95% CI 0.3 to 0.6). Thus, our
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results suggest that the hemodynamics of the CA is more closely related to that of SA

than HA.

Figure 16. The influence of port-caval pressure gradient expressed by the
ductus venosus peak blood velocity (VDVps) (A), umbilical venous
distribution to the right liver lobe (vLPVtamx) (B) and umbilical venous flow
(QUV) (C) on splenic artery impedance (PISA) according to regression
analyses. The difference between the lines represents the effect, all being
significant (p<0.0001). Lines with closed circles: <10th centile for the
variables; simple lines: 10th to 90th centiles; and lines with open circles:
>90th centile.

We tested the hypothesis that the port-caval perfusion pressure is a local

determinant for CA and SA vasodilation. Regression analysis showed that low port-

caval pressure gradient (VDVps <10th centile) is associated with vasodilation in the SA
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and CA.. A vasodilation response is also present at low UV distribution to the right

liver lobe (as expressed by flow velocity in the LPV; shown for the SA in Figure 16).

The PI in the MCA and UA were positively associated with the PI in the SA

and CA, indicating concurrent vascular regulation of these vessels with cerebral and

placental vascular beds under unprovoked physiological conditions.

4.8 Superior mesenteric artery

Knowledge of flow velocity in the SMA and its hemodynamic relationships in human

fetuses is lacking. We show that peak systolic and time-averaged maximum flow

velocities and PI in the SMA increase throughout the second half of pregnancy

(Figure 17). The increasing velocity is related to increased volume flow (Martinussen

et al. 1996; Acharya et al. 2004) and confirms increasing perfusion of the intestine

towards term, corroborating a study of the portal flow (Kessler et al. 2007b). Our

mean PISMA increases until week 32, when it plateaus; this is in accordance with

another small study (Korszun et al. 2002) but shows some variation compared with

the values reported by cross-sectional studies (Abuhamad et al. 1997; Achiron et al.

1998). The variation may be caused by differences in study design, population sample

or insonation technique.

When we assessed SMA flow velocity and PI for gender effects in the regression

analysis, we found no difference in the peak systolic flow velocity and only 1% lower

VSMAtamx and 2% higher PISMA in female fetuses when corrected for estimated fetal

weight (P < 0.0001).

We examnied for covariation between the hemodynamics in the SMA (PI) and the

SA and HA and found weak correlations (r = 0.39, 95% CI 0.27 to 0.51 and r = 0.30,

95% CI 0.22 to 0.37 respectively), indicating largely independent local regulation of

these vessels. PISMA was positively associated with PIMCA and PIUA, suggesting
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concurrent vascular regulation of the SMA with the cerebral and placental vessels in

non-compromised fetuses.

Figure 17. Longitudinal reference ranges for the superior mesenteric artery
systolic peak velocity (vSMAps) (A), time-averaged maximum velocity
(vSMAtamx) (B) and pulsatility index (PISMA) (C) with fitted 5th, 50th and 95th
centiles and 95% confidence limits for the centiles (thin lines), based on
589 observations

We tested the hypothesis that port-caval pressure gradient affects PISMA using

regression analyses. A low VDVps was hypothesised to be associated with vasodilation

of the SMA as indicated by a low PISMA. The analysis confirmed that fetuses with
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VDVps <10th centile had a lower PISMA (P < 0.0001), but the effects were small (PISMA

variation 0.02–0.03).
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5. Conclusions

In the present study, we constructed longitudinal reference ranges for the upper

splanchnic arteries and the MCA and the cerebroplacental pulsatility ratio. The

present ranges provide the terms for calculating conditional centiles based on a

previous measurement in each individual fetus and are thus appropriate for both

single and serial measurements in the monitoring of high-risk pregnancies.

Doppler assessment of the CA, SA and SMA can be achieved with a high

success rate and with acceptable reproducibility during the second half of pregnancy.

The development of flow velocity in the fetal splanchnic arteries indicates

increased perfusion of the splanchnic tissues towards the end of pregnancy.

We suggest the left branch of the HA close to the DV as a standard technique

for Doppler assessment of fetal HA.

We found that low port-caval pressure gradient and UV liver perfusion is

associated with low impedance (PI) in the HA, supporting the hypothesis that the

HABR operates in the fetal liver.

Our study suggests that the SA and SMA also act to support fetal venous liver

perfusion by feeding the PV through a vasodilated vasculature when UV perfusion is

low (Figure 18).

We have shown that the regulation of the PI in the CA, SA and SMA (in

contrast to the HA) is associated with the PI in the MCA and UA.

The UV return is the major contributor to liver perfusion in the fetus (85%), the

main portal stem providing the rest (15%). This study suggests that hepatic perfusion

is additionally modified by the interaction of the splanchnic arteries (Figure 18). Our

reference ranges provide new methods for the differential assessment of the
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developing circulation under physiological conditions and in clinical settings using

serial measurements.

Figure 18: The umbilical vein (UV) is the main supplier of blood for
perfusion of the fetal liver. The ductus venosus (DV) partly regulates this,
and its blood velocity reflects the port-caval pressure gradient. The hepatic
artery (HA) is directly connected to the liver tissue. The superior mesenteric
artery (SMA) and splenic artery (SA) contribute to the portal flow through
their capillary beds and main portal stem (MPS).
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6. Future aspects

We assume that the hemodynamics of the splanchnic arteries will be affected in

cases of placental compromise and in conditions that involve the function of the fetal

liver and intestinal tract (infections, myeloproliferative infiltration, mitochondrial

diseases, tumors, arteriovenous malformations and hemorrhage). Based on the present

results, we expect differential responses and adaptation of the CA, HA, SA and SMA

in such conditions. Observations suggest that the HA contribution increases in fetal

growth restriction, at low UV perfusion and in conditions with increased

hematopoietic demand. Likewise, we hypothesise that a regional splanchnic

redistribution may occur in fetal growth restriction, possibly favouring splenic

perfusion at the expense of the intestines.

We are accordingly conducting a study of 30 fetuses with growth restriction and

30 fetuses with accelerated growth to appreciate the dynamics of the extremes.

Recent studies have shown that maternal factors such as diet, body composition and

weight gain affect venous liver flow and intrauterine growth and adaptation (Haugen et al

2005). Whether maternal factors and more immediate influences such as maternal meals are

also reflected in alterations in the balance of the UV and splanchnic supply remains to be

explored.

We hypothesise that the longitudinal reference ranges and conditional terms for

Doppler parameters will improve the ability to identify the fetuses at greatest risk of

developing clinically relevant adverse outcome, and we believe that more detailed

knowledge of splanchnic adaptation before birth may explain some health differences

concerning nutrition and metabolism in adult life.
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Hepatic Artery Hemodynamics Suggest Operation of
a Buffer Response in the Human Fetus

Cathrine Ebbing, MD, Svein Rasmussen, MD, PhD,
Keith M. Godfrey, BM, PhD, FRCP, Mark A. Hanson, DPhil,

and Torvid Kiserud, MD, PhD

�After birth, the hepatic artery buffer response helps to maintain liver perfusion. Here, the authors establish
a Doppler technique to measure fetal hepatic artery flow velocity and test the hypothesis that the buffer
response also operates prenatally. Women with low-risk pregnancies were recruited to a longitudinal study
(N = 161). Measurement techniques and reference ranges for hepatic artery velocities and pulsatility index
(PI) were established. Ductus venosus peak velocity (VDVps) represented the portocaval pressure gradient, and
umbilical venous flow (QUV) represented portal flow. Reference ranges were established for the more accessi-
ble left hepatic artery branch. Hepatic artery PI was lower in fetuses with VDVps <10th centile (P < .05)
and in those with QUV <10th centile (P < .0001). Conversely, hepatic artery PI was higher in those with
QUV >90th centile (P < .0001). The authors establish a method for measuring fetal hepatic arterial blood
velocity, provide reference ranges, and show that the hepatic artery buffer response operates prenatally.

�KEY WORDS: Fetus, circulation, blood flow, Doppler, hepatic artery, reference ranges,
hepatic artery buffer response.

tion in the human fetus is not known, but fetal sheep data
suggest that it is <10%.5

The prominent role of the liver in fetal growth has been
demonstrated in experimental studies that increase umbilical
venous liver perfusion; this results in increased proliferation of
fetal hepatocytes,6 greater expression of insulin-like growth
factor 1 and 2 mRNA, and increased fetal growth.7 A study
of human fetuses in late pregnancy has suggested that mater-
nal body composition and diet may modify this distribution
of umbilical venous blood to the liver.8

Venous perfusion of the fetal liver is strongly influ-
enced by variations in pressure and blood viscosity9,10 but
is also actively controlled by changes in the portal vascu-
lature11,12 and ductus venosus (DV).13,14 Umbilical pressure
in the human fetus is 2 to 11 mm Hg,15 and the portal
perfusion pressure has been calculated to vary between 0.5
mm Hg and 3.5 mm Hg during the cardiac cycle,16 which
is in line with direct measurements in fetal sheep.17

Although the hepatic artery has a modest contribution
to the liver blood supply, it plays an important role in main-
taining total liver perfusion postnatally.18,19 The mechanism
is termed hepatic arterial buffer response and is an adenosine-
mediated vasodilatation in the hepatic artery. A reduced
portal liver perfusion leads to a reduced washout and a
corresponding local increase in adenosine concentrations,

The placenta, crucial for fetal development,
receives one-third to one-fifth of the combined
cardiac output through the umbilical arteries.1

However, when nutrient-rich blood returns to the fetal
body, it is the liver that has the highest priority, taking
75% to 80% of it.2 The fetal liver has 2 additional impor-
tant blood supplies: one is the portal vein, connected to
the umbilical vein (UV) through the left portal branch
and contributing 20% of the venous supply,3,4 and the
other is the hepatic artery, which is the focus of this study
(Figure 1).The arterial contribution to the liver circula-
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which in turn cause an instantaneous reduction in arterial
impedance, even during generalized splanchnic vasocon-
striction due to hemorrhage and hypovolemia.20 Whether
this mechanism operates during prenatal life is not known,
but Doppler measurements in growth-restricted fetuses sug-
gest that a similar response may exist.21,22 However, there is
little information about the fetal hepatic artery in normal
pregnancies, and standardized measurement techniques have
not been described.

The aim of this study is to establish a standardized
technique for measuring blood velocity in the hepatic
artery, to establish reference ranges, and to test the
hypothesis that the hepatic artery buffer response can
operate prenatally.

METHODS

Participants

Twenty-seven women were recruited for a pilot study,
after which 161 women with low-risk pregnancies were

recruited to a larger prospective longitudinal observational
study of the cerebral, splanchnic, and umbilical circulations.
The Regional Committee for Medical Research Ethics
approved the study protocol (REK Vest no. 203.03), and all
participants gave prior written consent.We have previously
presented the results of the middle cerebral and umbilical
artery measurements.23 Here, we present arterial and
venous data from the study of liver perfusion.

Gestational age had been assessed by head biometry24

at the routine ultrasound scan at 17 to 20 weeks of ges-
tation.Those who agreed to participate entered the study
at a median of 23 weeks of gestation (range, 19-28
weeks). Reasons for not being enrolled were multiple
pregnancy, fetal abnormality, any maternal chronic dis-
ease, and a previous history of pregnancy-induced hyper-
tension, fetal growth restriction, placental abruption, or
delivery before 37 weeks. Each woman was examined 3
to 5 times, at 3-week to 5-week intervals.

Birth weight, gender, placental weight, Apgar score,
mode of delivery, duration of gestation at delivery, and
congenital abnormalities were noted.

Figure 1. Fetal vasculature of the upper abdomen and the corresponding ultrasound images in sagittal (A and B) and horizontal views (C and
D).The common hepatic artery (HA) arises from the celiac trunk (CTr); its left branch can be visualized as it approaches the ductus venosus
(DV) to continue distally to the left of the intrahepatic umbilical vein (UV) and has a direction of flow opposite to that in the neighboring DV
and UV.AO indicates aorta, PV, main portal stem; IVC, inferior vena cava; Sp, spleen; and S, stomach.
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Measurements

In the pilot study, we sought to visualize the branches from
the celiac trunk directed to the fetal liver using color
Doppler.The celiac trunk branches off from the aorta and
divides into the left gastric, splenic, and common hepatic
artery.The splenic artery was regularly identified traversing
behind the stomach, while the common hepatic artery was
less obvious, running along the portal vein before dividing
into the left and right hepatic artery (Figure 1). Flow in the
common hepatic artery and the right branch has the same
direction as the neighboring main portal stem and right por-
tal vein, causing interference in the corresponding pulsed
Doppler recording, making these sites less suitable for the
assessment (Figure 2).However, the left branch of the hepatic
artery could be visualized as it approached the DV to con-
tinue distally to the left of the intrahepatic UV (Figure 1).
Since blood in the left branch of the hepatic artery flows in
the opposite direction than that in the neighboring DV and
UV (Figure 1), the Doppler recording at this point can be
analyzed without interference and was chosen as the standard
technique for the present study.

We used a 2-5, 2-7, or 4-8 MHz abdominal trans-
ducer (Voluson 730 Expert; GE Medical Systems, Kretz
Ultrasound, Zipf,Austria).The high-pass filter was 70 Hz.
The mechanical and thermal indices were below 1.1 and
0.9, respectively, in most of the sessions and were always
kept below 1.9 and 1.5.

Based on the experience of the pilot study, the left
branch of the hepatic artery was visualized using color
Doppler in a sagittal or oblique horizontal view of the fetal
abdomen (Figure 1). Using either approach of insonation,
the Doppler beam was directed along the intrahepatic part
of the UV and the inlet to the DV. The pulse repetition fre-
quency was kept low to visualize low-flow velocities.
Insonation was adjusted according to the direction of the
vessel, kept as low as possible and always ≤30°.The Doppler
gate was placed at the left branch of the hepatic artery close
to the DV and when needed the Doppler shift was cor-
rected for angle of insonation.The recordings were acquired
in the absence of fetal breathing or body movements over at
least 3 uniform heart cycles.The observation with the best
quality (ie, lowest insonation angle and most uniform pulse
waves) was included in the statistics. Doppler waveforms
were automatically traced, the systolic peak and time aver-
aged maximum velocity (VHAps and VHAta-max) were deter-
mined, and pulsatility index (PI) was calculated.25

The inner diameter of the UV (DUV) was measured
by an insonation perpendicular to the vessel wall in the
intra-abdominal portion distal to the portal branches.The

mean of at least 3 measurements was included in the sta-
tistics. The maximum UV blood flow velocity (VUVmax)
was recorded in an axial direction of the vessel. The
umbilical blood flow, QUV (mL/min), was calculated as
π × (DUV/2)² × VUVmax × 0.5 × 60.26

The DV connects the UV to the inferior vena cava,
and its blood velocity reflects the portocaval pressure gra-
dient.16,27 It was therefore used as a surrogate measure for
portal perfusion pressure in the present study. The DV
was assessed in a sagittal or oblique section of the fetal
abdomen using a standardized technique.28 The maxi-
mum velocity (VDVps) was determined based on wave-
forms that were either automatically or manually traced.

To determine the relationship between hepatic artery
haemodynamics and the general circulation, we assessed the
middle cerebral artery (MCA) and umbilical artery (UA).
For the MCA and UA recordings, an insonation angle close
to 0° was used.29 For the MCA measurements, the Doppler
gate was placed at the proximal part of the vessel,30 and
measurements of the UA were done in a free-floating loop
of the umbilical cord.Measurements of head and abdominal
circumference and femur length were performed at each
session, and estimated fetal weight was calculated by the for-
mula of Combs et al.31

Clinical Cases

Three clinical cases were studied to examine the poten-
tial clinical use of fetal hepatic artery Doppler assessment.

Figure 2. Doppler recordings of the hepatic artery waveform. (A)
Recording from the left hepatic artery. (B) Recording from the com-
mon hepatic artery with interference from the neighboring portal vein.
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Case 1 had experienced fetomaternal bleeding following
abdominal trauma at gestational week 30. Case 2 had fetal
anemia due to human parvovirus B19 infection diag-
nosed at 24 weeks’ gestation. Case 3 had severe intrauter-
ine growth restriction (IUGR) in late gestation.

Statistics

Multilevel modeling was used to calculate the mean and cen-
tiles for the hepatic artery systolic peak and time-averaged
maximum velocity (VHAps and VHAta-max) and PIHA at differ-
ent gestational ages.To achieve normal distributions for the
outcome variables,we used power transformation.The out-
come variables were regressed against gestational age using
fractional polynomials.The 2.5th, 5th, 10th, and 25th cen-
tiles were calculated by subtracting 1.96 standard deviation
(SD), 1.645 SD, 1.282 SD, and 0.674 SD from the mean,
respectively.The 97.5th, 95th, 90th, and 75th centiles were
calculated by adding the respective multiples of the SD to
the mean.The 95% confidence interval (CI) of the mean,
5th, and 95th centiles were derived.

To assess the effect of VDVps,QUV norm,VUVmax,and QUV on
VHAps and PIHA, we included these measurements (in 3 cate-
gories: <10th centile, 10th-90th centile, and >90th centile,
since responses were assumed to occur more commonly in
extreme conditions) as indicator variables in the multilevel
regressions models, which describe the mean of VHAps and
PIHA.The gestational age–dependent centiles of these inde-
pendent variables were also calculated by multilevel regres-
sion. Indicator variables with significant improvement in

the goodness of fit to the models, as assessed by the
deviance statistics (χ2 with P < .05), were considered to
significantly influence the outcome variables.

Intraobserver and interobserver reproducibilities
were expressed as intraclass and interclass correlation
coefficients based on repeat blinded observations in 15
and 12 participants, respectively. Limits of agreement
were based on the same samples.32

The statistical analysis was performed using the
Statistical Package for the Social Sciences (SPSS Inc,
Chicago, IL) and the MlWin program (Centre for
Multilevel Modelling, University of Bristol, UK).

RESULTS

Median maternal height and weight at booking was 167
cm (range, 150-183 cm) and 65 kg (range, 49-122 kg),
respectively; maternal age was 29 years (range, 20-40 years)
at recruitment; 48% were primiparous. Median gestational
age at delivery was 40+3 weeks (range, 35+3-42+4 weeks).
The cesarean delivery rate (10.6%) and birth weights
(median, 3700 g; range, 2260-4980 g) were similar to val-
ues in the local population (cesarean rate of 11.8%).33

Five women developed preeclampsia (3.1%). Participants
who developed complications after enrollment in the
study were not excluded. Population characteristics have
been described in detail previously.23

We obtained 176 measurements of the hepatic artery
in 104 participants.No angle correction was required in 84

Table 1. Reference Ranges for the Hepatic Artery Peak Systolic Velocity Based on 176 Observations in 104 Low-Risk Pregnancies

Percentile

Gestation, wk 2.5 5 10 25 50 75 90 95 97.5

21 11.65 12.43 13.41 15.30 17.82 20.91 24.33 26.72 29.06
22 12.24 13.07 14.13 16.15 18.86 22.20 25.90 28.50 31.05
23 12.81 13.69 14.81 16.96 19.86 23.43 27.42 30.23 32.98
24 13.35 14.28 15.46 17.74 20.82 24.63 28.89 31.90 34.85
25 13.86 14.84 16.09 18.49 21.74 25.78 30.31 33.52 36.68
26 14.36 15.39 16.69 19.22 22.64 26.91 31.71 35.11 38.47
27 14.84 15.91 17.28 19.93 23.52 28.01 33.07 36.68 40.23
28 15.31 16.43 17.85 20.62 24.38 29.09 34.42 38.22 41.98
29 15.77 16.93 18.41 21.30 25.23 30.16 35.76 39.76 43.71
30 16.23 17.43 18.97 21.97 26.07 31.23 37.09 41.29 45.45
31 16.68 17.93 19.53 22.65 26.92 32.30 38.43 42.84 47.20
32 17.13 18.43 20.08 23.32 27.76 33.38 39.79 44.40 48.98
33 17.59 18.93 20.64 24.01 28.62 34.47 41.17 45.99 50.79
34 18.05 19.43 21.21 24.70 29.50 35.59 42.58 47.62 52.65
35 18.52 19.95 21.79 25.41 30.39 36.73 44.03 49.30 54.57
36 19.00 20.48 22.39 26.13 31.31 37.91 45.53 51.04 56.56
37 19.49 21.03 23.00 26.89 32.26 39.14 47.09 52.85 58.63
38 20.00 21.59 23.64 27.67 33.26 40.42 48.72 54.75 60.81
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recordings; in 13 recordings, the angle of insonation was
≤10°, and in 79 recordings, the angle of insonation was 10°
to 30°.The median sample volume was 4 mm (range, 2-9
mm). Measurements were performed with the vessel visu-
alized in the oblique transverse view of the fetal abdomen
in 89 observations and in the sagittal view in 87 observa-
tions (Figure 1). Unfavorable fetal position and move-
ment, insufficient visualization of the artery, or uncertain

anatomical identification were the reasons for not achiev-
ing a measurement.

The individual results of the VHAps,VHAta-max, and PIHA

with fitted mean and reference intervals are presented in
Figures 3 to 5.The corresponding gestational age–specific
values for the 2.5th, 5th, 10th, 50th, 75th, 90th, 95th, and
97.5th centiles are presented in Tables 1 to 3. Hepatic
artery velocities increased through the second half of

Table 2. Reference Ranges for the Hepatic Artery Time-Averaged Maximum Velocity Based on 176 Observations in 104
Low-Risk Pregnancies

Percentile

Gestation, wk 2.5 5 10 25 50 75 90 95 97.5

21 6.88 7.23 7.67 8.47 9.50 10.69 11.93 12.76 13.54
22 6.87 7.25 7.71 8.57 9.68 10.97 12.34 13.26 14.13
23 6.87 7.26 7.75 8.67 9.86 11.27 12.77 13.78 14.75
24 6.86 7.28 7.79 8.77 10.05 11.57 13.21 14.33 15.40
25 6.87 7.30 7.84 8.88 10.24 11.88 13.66 14.89 16.07
26 6.88 7.33 7.90 9.00 10.44 12.20 14.13 15.47 16.77
27 6.91 7.38 7.98 9.12 10.66 12.54 14.62 16.07 17.48
28 6.94 7.44 8.06 9.27 10.89 12.89 15.12 16.69 18.23
29 6.99 7.51 8.16 9.42 11.13 13.26 15.65 17.34 19.01
30 7.06 7.59 8.27 9.59 11.39 13.65 16.20 18.02 19.82
31 7.13 7.69 8.39 9.78 11.67 14.06 16.79 18.74 20.68
32 7.23 7.80 8.54 9.98 11.97 14.51 17.41 19.50 21.59
33 7.33 7.93 8.69 10.21 12.30 14.98 18.07 20.32 22.56
34 7.45 8.07 8.87 10.45 12.66 15.49 18.79 21.19 23.61
35 7.59 8.24 9.07 10.73 13.04 16.05 19.56 22.13 24.73
36 7.75 8.42 9.29 11.02 13.47 16.65 20.39 23.16 25.95
37 7.92 8.62 9.53 11.35 13.93 17.30 21.30 24.27 27.28
38 8.11 8.85 9.80 11.71 14.43 18.02 22.30 25.48 28.73

Table 3. Reference Ranges for the Hepatic Artery Pulsatility Index Based on 176 Observations in 104 Low-Risk
Pregnancies

Percentile

Gestation, wk 2.5 5 10 25 50 75 90 95 97.5

21 1.07 1.12 1.19 1.32 1.49 1.69 1.89 2.03 2.16
22 1.10 1.15 1.23 1.36 1.53 1.74 1.95 2.09 2.23
23 1.12 1.18 1.26 1.40 1.58 1.79 2.01 2.16 2.30
24 1.15 1.21 1.29 1.43 1.62 1.84 2.07 2.22 2.37
25 1.18 1.24 1.32 1.47 1.66 1.89 2.12 2.29 2.44
26 1.20 1.27 1.35 1.50 1.70 1.93 2.18 2.35 2.51
27 1.23 1.29 1.38 1.53 1.74 1.98 2.23 2.40 2.57
28 1.25 1.32 1.40 1.56 1.77 2.02 2.28 2.46 2.63
29 1.27 1.34 1.43 1.59 1.80 2.06 2.32 2.51 2.68
30 1.28 1.36 1.45 1.61 1.83 2.09 2.36 2.55 2.72
31 1.30 1.37 1.46 1.63 1.85 2.11 2.39 2.58 2.76
32 1.31 1.38 1.47 1.65 1.87 2.13 2.42 2.61 2.79
33 1.32 1.39 1.48 1.66 1.88 2.15 2.43 2.62 2.81
34 1.32 1.39 1.49 1.66 1.88 2.15 2.44 2.63 2.82
35 1.32 1.39 1.48 1.66 1.88 2.15 2.43 2.63 2.81
36 1.31 1.38 1.48 1.65 1.87 2.14 2.42 2.61 2.79
37 1.30 1.37 1.46 1.63 1.85 2.11 2.39 2.58 2.76
38 1.28 1.35 1.44 1.61 1.83 2.08 2.36 2.54 2.72
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pregnancy.The mean VHAps increased from 18 cm/s to 33
cm/s during 21 to 38 weeks of gestation. Similarly, the
mean VHAta-max increased from 9 cm/s to 14 cm/s, while
the mean PIHA increased from 1.49 to 1.83.

For the VUV max, QUV, and QUvnorm, the centiles calcu-
lated for the regression analyses are based on 598, 568, and
553 observations, respectively (not presented). For the UV
velocity measurements, the median angle of insonation was
9° (range, 0°-30°). The mean inner diameter of the UV
(Duv) was calculated when at least 3 measurements were
obtained during a session (which was the case in 606 ses-
sions, not presented).The VDV ps centiles were calculated on
the basis of 596 observations, and the median angle of
insonation was 10° (range, 0°-30°, not presented).

Regression analysis showed that fetuses at >90th cen-
tiles for QUV and QUVnorm tended to have a higher hepatic
artery PI (P < .0001). (Detailed information for this and the
following analyses is presented in the appendix.) Similarly,

VDVps <10th centile was associated with a lower hepatic
artery PI (P < .05; Figure 6A;Table 4).These findings indi-
cate a vasodilatation response in the hepatic artery to low
portocaval pressures and less vasodilatation (higher PI)
when the umbilical venous contribution to the liver perfu-
sion is high.Both findings support the hypothesis that there
is intrinsic regulation of the hepatic artery in the fetal liver,
reflecting a functioning hepatic artery buffer response.

Fetuses with VDVps <10th centile also tended to have
lower VHAps (P < .003); for the other parameters, the effect
was U shaped (10th-90th centile lowest;Figure 6B;Table 4).

When the centiles for PIMCA, VUA ps, and PIUA were
examined for possible associations with hepatic arterial
waveform parameters, we found no significant relations in
this group of normally growing fetuses (not presented).

The intraobserver and interobserver variation is pre-
sented in Table 5.

Clinical Cases

Case 1 (fetomaternal bleeding) showed low PI and high
systolic peak velocity, indicating priority of hepatic artery
flow (Figure 7). The high velocities and low PI in the
hepatic artery changed to reference ranges simultane-
ously with the reduction in fetal blood measured in the
maternal circulation.A healthy girl (3400 g) was born at
40+2 weeks of gestation.

Case 2, a fetus with nonimmune hydrops caused by
human parvovirus B19 infection,was treated with 1 intrauter-
ine blood transfusion at 24+4 weeks’ gestation because of
fetal anemia (hemoglobin concentration = 7.3 g/dL).The

Figure 3. Left hepatic artery systolic peak velocity (VHAps) with fit-
ted 5th, 50th, and 95th centiles and 95% confidence limits for the cen-
tiles based on 176 observations.

Figure 4. Left hepatic artery time-averaged maximum velocity
(VHATa-max) with fitted 5th, 50th, and 95th centiles and 95% confidence
limits for the centiles based on 176 observations.

Figure 5. Left hepatic artery pulsatility index (PIHA) with fitted 5th,
50th, and 95th centiles and 95% confidence limits for the centiles
based on 176 observations.
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initial high VHAps declined to reference values after the
transfusion, while the PIHA remained low throughout the
observation period (Figure 7).The baby boy was born at
37+2 weeks of gestation, with a birth weight <10th cen-
tile (2680 g).

Case 3, a fetus with severe IUGR at term 
(estimated fetal weight <2.5th centile), had low PIHA

and high VHAps (Figure 7). Hemodynamic evaluation by
Doppler revealed signs of placental compromise and
fetal compensation (PIUA >95th centile, PIMCA <5th
centile, and PIDV and VDVps >97.5th centile34). A girl
(2550 g) was delivered by cesarean section at 40+2

weeks of gestation.

DISCUSSION

In the present study, we have established a method of
assessing the hepatic artery flow velocities and PI in the
human fetus using Doppler examination of the left
hepatic artery close to the isthmus of the DV in the
human fetus. We have constructed reference ranges and
shown that during prenatal life, the artery is involved in
a hemodynamic buffer mechanism maintaining perfusion
of the liver when portal (umbilical) flow and pressure are
reduced. Our clinical cases underscore the potential clin-
ical use of this examination, showing substantial changes
in the hepatic artery PI and velocities in fetomaternal
hemorrhage, fetal anemia, and severe IUGR.

While the prenatal contribution of the hepatic artery
to the total liver blood flow is <10% in lambs,5,35 postna-
tally, the contribution is 20% to 30%.35 With the UV
occluded at birth, the main source for the venous liver
perfusion is switched from the umbilical to the portal
vein. The prenatally developed hepatic artery buffer
response shown in the present study is apparently a nec-
essary preparation for the dramatic transition of the liver
circulation at birth. The existence of a prenatal buffer
effect was supported by the significant effects of the intra-
abdominal umbilical venous flow and portocaval pressure
gradient (represented by the DV flow velocity) on the
hepatic artery activity in our study (Figure 6). As
expected, the magnitude of the effect is modest under
unprovoked physiological conditions (Table 4). The 3
clinical examples suggest that substantial effects result
during extreme conditions (Figure 7).

The fetal liver differentiates throughout gestation. From
being essentially a hematopoietic organ in the first trimester,
it shifts to an increasing hepatopoietic activity during the sec-
ond trimester.36 Between 25 weeks and birth,however, there
is little change in the vascular architecture of the liver.37

Systolic peak velocity and time-averaged velocity are
known to have a close relationship to the volume of blood
flowing in other sections of the fetal arterial system.38 We
believe that the increase in hepatic artery blood velocity
from 22 weeks to 39 weeks of gestation may reflect a sim-
ilar relationship.The impedance increases according to the
hepatic artery PI but only until 32 weeks, when a plateau
is reached. A corresponding plateau of development was
previously described for the DV shunting and foramen
ovale size and shunting, possibly signifying a transition to
a different level of developmental physiology.2,39,40

One previous small study examining hepatic artery
velocities, without specifying gestational age or site of

Table 4. Effects of the Portocaval Pressure Gradient (VDVps )
and Parameters of Umbilical Venous Liver Perfusion (QUVnorm,
VUVmax, QUV) on the Hepatic Artery Pulsatiliy Index (PIHA)
(Upper Panel) and Systolic Peak Velocity (VHAps; Lower Panel)
Assessed by Deviance Statisticsa

Percentile PIHA P Value

DV PSV <10 1.68 <.05
10-90 1.88
>90 1.93

UV flow/kg <10 1.83 <.0001
10-90 1.87
>90 1.93

UV max <10 1.90 <.0004
10-90 1.85
>90 1.98

UV flow <10 1.81 <.0001
10-90 1.86
>90 1.95

Percentile VHAPS, cm/s P Value

DV PSV <10 24.16 <.003
10-90 28.07
>90 28.68

UV flow/kg <10 27.57 <.0001
10-90 27.04
>90 29.49

UV max <10 29.46 <.0001
10-90 27.14
>90 28.87

UV flow <10 28.76 <.0001
10-90 26.90
>90 29.87

Abbreviations: PIHA, hepatic artery pulsatility index; QUV, umbilical
vein flow; Quvnorm, umbilical vein flow per estimated fetal weight;
VDVps, ductus venosus systolic peak velocity; VHAps, hepatic artery sys-
tolic peak velocity (cm/s);VUVmax, umbilical vein maximal velocity.
aThe values are given for 32 weeks of gestation to illustrate the mag-
nitude of the effects.
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measurement,22 found velocities in line with our results.
We believe the presently established reference ranges are
suitable for clinical use; the reliability of the ranges is
reflected in the 95% CI of the 5th, 50th, and 95th cen-
tiles (Figures 3-5).

Although measurements were increasingly successful
as the study developed, our overall success rate was low,
with 176 observations compared with more than 500
for other sections of the study. Based on our increasing
experience in clinical cases (Figure 7), we expect that the

increased hepatic artery blood velocities will enhance
visualization and improve the success rate in clinical con-
ditions.The variation of the arterial anatomy of the fetal
liver may also cause problems41-43 since the left hepatic
artery arises from the left gastric artery in about 15% of
fetuses and from the splenic or gastroduodenal artery or
aorta in 4%.44 One or two aberrant hepatic arteries from
the left gastric or superior mesenteric artery are found in
30% of human fetal livers.43 We believe that the landmarks
we suggest for recording the arterial hepatic circulation

Figure 6. Influence of portocaval pressure gradient expressed by the ductus venosus peak velocity (VDVps) and parameters of umbilical venous
liver perfusion (QUVnorm,Vuvmax, QUV) on the (A) hepatic artery pulsatility index (PIHA) and (B) systolic peak velocity (VHAps) according to deviance
statistics using centiles of the parameters.The difference between the lines represents the effects, all being significant.The effect sizes are shown
in Table 4. Lines with closed circles = <10th centile, thick lines =10th to 90th centile, and lines with open circles = >90th centile for the vari-
ables. QUVnorm indicates umbilical vein flow/kg;VUVmax, umbilical vein maximal velocity; and QUV, umbilical vein flow.
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should provide reliable and comparable measurements as
the left hepatic artery enters the liver close to the DV.

When selecting the left branch for the hepatic artery
standardization, it is important to be aware that there is
increasing evidence that the left and right liver lobe repre-
sent different functional units in the fetus.4,45,46 Venous
splanchnic blood is almost exclusively distributed to the
right liver lobe (with an addition of umbilical blood),
while the left liver lobe receives exclusively umbilical
venous blood under physiologic conditions.3-5 Gene
expression patterns are also different in the 2 lobes; 6 genes
related to oxygen transport and iron availability are down-
regulated in the right compared with the left lobe in fetal
baboons.46 In our study, we have focused on the left
hepatic artery supplying the left lobe, and the flow veloc-
ity pattern in this branch might not be representative of
the entire hepatic arterial supply; thus, interpretation must
be cautious. Postnatally, the hepatic artery buffer response
seems to operate differently in the liver lobes after left portal
vein ligation or right portal vein embolization, respectively,
indicating independent responses to ipsilateral portal flow
changes.47,48 Although desirable, it seems unlikely that we
will be able to measure blood velocity with any regularity
using the present techniques in the main stem of the com-
mon hepatic artery or its right branch.The reason is the
close vicinity to the portal vein and its right branch.The
blood flow direction is the same in the vein and artery for
these sections, and interference in the Doppler recording is
a common problem (Figure 2B).

Under experimental conditions, hypovolemia and
hypoxemia increase the fraction of UV flow shunted
through the DV, thus reducing the UV supply to the liver.10

Table 5. Intraobserver and Interobserver Variation of Hepatic Artery Flow Velocities and Pulsatility Index

Paired Differences

95% CI Limits of Agreement

Mean SD SE Lower Upper df P Lower Upper ICCC, %

Intraobserver variation
VHAps –0.47 4.03 1.04 –2.70 1.76 14 0.657 –8.37 7.43 84
VHAta-mx –0.28 1.92 0.50 –1.35 0.78 14 0.575 –4.04 3.48 80
PIHA 0.07 0.22 0.06 –0.05 0.19 14 0.248 –0.37 0.51 68

Interobserver variation
VHAps –1.70 5.38 1.55 –5.11 1.72 11 0.299 –12.24 8.85 88
VHAta-mx –0.88 3.25 0.94 –2.94 1.19 11 0.371 –7.25 5.50 64
PIHA 0.00 0.39 0.11 –0.25 0.24 11 0.971 –0.77 0.76 61

Abbreviations: df, degrees of freedom; ICCC, intraclass and interclass correlation coefficients, respectively; PIHA, hepatic artery pulsatility index;
VHAps, hepatic artery systolic peak velocity;VHAta-mx, hepatic artery time-averaged maximum velocity.

Figure 7. Results from cases 1 to 3 plotted against the reference
centiles illustrate how hepatic artery monitoring could provide new
hemodynamic information in clinical cases. (A) Hepatic artery systolic
peak velocity (VHAps). (B) Hepatic artery pulsatility index (PIHA).
Fetomaternal bleeding (case 1): line with squares. Human parvovirus
B19–infected fetus (case 2): line with circles. IUGR fetus <2.5th cen-
tile, at term (case 3): triangle.
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The observed reduction in PIHA and increase in systolic
peak velocity PSVHA in case 1 may reflect a compensatory
mechanism to buffer the effects of acute reduction of UV
perfusion of the liver and to mobilize the hepatic blood
reservoir, thus protecting the liver against passive changes in
the central venous pressure.49 In animal experiments, the
fetal vascular response to hemorrhage comprises general-
ized arterial vasoconstriction with the exception of the
cerebral, coronary, and hepatic beds50; our study, however,
found no relationship between hemodynamics in the mid-
dle cerebral or umbilical and hepatic arteries, suggesting
that these circulatory beds have a high degree of independ-
ent regulation and less common determinants.

In cases of fetal growth restriction (case 3), venous
liver perfusion is reduced.51,52 Our observations of the
hepatic artery in cases 1 and 3 (Figure 7) could be seen
as a similar response to the postnatal hepatic artery buffer
response (ie, a compensatory increase in hepatic artery
flow to buffer the reduction in venous liver perfusion).

Case 2 had nonimmune hydrops arising from suppres-
sion of hepatic erytropoiesis by human parvovirus B19
infection.53 A recent lamb study54 showed that increased
hepatic artery flow was associated with increased density of
hematopoietic cells, while hepatic artery ligation decreased
hematopoietic activity. Case 2 illustrates initial high veloci-
ties and persisting low PI in the hepatic artery. After
intrauterine transfusion at 24+6 weeks of gestation the
velocities in the hepatic artery decreased while the PI stayed
low, indicating a persisting priority of hepatic artery flow,
possibly in response to an increased hematopoietic demand.

Our findings in this low-risk population support the
hypothesis that the hepatic arterial buffer response oper-
ates in the fetal liver. The buffer response is prominent
during extreme conditions, and our observations under-
line the high priority of maintaining liver perfusion and
homeostasis also during prenatal life.We have established
a standardized technique and reference ranges for the
fetal hepatic arterial Doppler waveforms, applicable for
use in clinical situations.

APPENDIX

Associations of hepatic artery systolic peak velocity (VHaps) and
pulsatility index (PIHA) with ductus venosus systolic peak
velocity (VDVps), umbilical vein flow (QUV), umbilical vein flow/
estimated fetal weight (QUvnorm),and Uv maximal velocity (UVmax).

Hepatic Artery Systolic
Peak Velocity (VHAps)

VDVps

Regression model for estimated VHAps by gestational age (GA) in
weeks and VDVps. VHAps is transformed to the –0.309 power and
may be back-transformed as VHAps 

(1/–0.309). i and j denote the
measurement and fetus, respectively.

Mean = μij = 0.3610725 + 31.75537 GA–2
ij – 0.000000558 GA3

ij

– 0.0169254VDVps2j – 0.0193233VDVps3j

Significance level of decrease in the log likelihood including
VDVps in the model: P < .003.

Variance = σ2
ij = 0.000842116

VDVps 2: 10th-90th centile = 1, other values = 0
VDVps 3: >90th centile = 1, other values = 0

QUVnorm

Regression model for estimated VHAps by GA in weeks and umbil-
ical vein flow/kg.VHAps is transformed to the –0.309 power and
may be back-transformed as VHAps

(1/–0.309). i and j denote measure-
ment and fetus, respectively.

Mean = μij = 0.3560188 + 24.07714 GA–2
ij – 0.000000631 GA3

ij

+ 0.002156323QUVnorm2j – 0.007385144QUVnorm3j

Significance level of decrease in the log likelihood including
QUVnorm in the model: P < .0001.

Variance = σ2
ij = 0.000803505

QUVnorm2: 10th-90th centile = 1, other values = 0
QUVnorm3: >90th centile = 1, other values = 0

VUVmax

Regression model for estimated VHAps by GA in weeks and
VUVmax.VHAps is transformed to the –0.309 power and may be
back-transformed as VHAps

(1/–0.309). i and j denote the measure-
ment and fetus, respectively.

Mean = μij = 0.3341441 + 32.6641 GA–2
ij – 0.000004418 GA3

ij

+ 0.009017382VUVmax2j + 0.002215618VUVmax3j

(continued)
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Significance level of decrease in the log likelihood including
QUVnorm in the model: P < .0001.

Variance = σ2
ij = 0.000854265

VUVmax2: 10th-90th centile = 1, other values = 0
VUVmax3: >90th centile = 1, other values = 0

QUV

Regression model for estimated VHAps by GA in weeks and QUV

flow. VHAps is transformed to the –0.309 power and may be
back-transformed as VHAps

(1/–0.309). i and j denote the measure-
ment and fetus, respectively.

Mean = μij = 0.3433651 + 27.40524 GA–2
ij

– 0.000000486 GA3
ij + 0.007393046QUV2j – 

0.00412429QUV3j.

Significance level of decrease in the log likelihood including
QUVnorm in the model: P < .0001.

Variance = σ2
ij = 0.000790182

QUV2: 10th-90th centile = 1, other values = 0
QUV3: >90th centile = 1, other values = 0

Hepatic Artery Pulsatility Index (PIHA)

VDVps

Regression model for estimated PIHA by GA in weeks and
VDVps. PIHA is transformed to the –0.31 power and may be back-
transformed as PIHA

(1/–0.31). i and j denote the measurement and
fetus, respectively.

Mean = μij = 1 04977 – 0.000512676 GA–2
ij + 0.000009982 GA3

ij

– 0.0302817VDVps2j – 0.0365477VDVps3j.

Significance level of decrease in the log-likelihood including
VDVps in the model: P < .05.

Variance = σ2
ij = 0.00233934

VDVps2: 10th-90th centile = 1, other values = 0
VDVps3: >90th centile = 1, other values = 0

QUVnorm

Regression model for estimated PIHA by GA in weeks and
QUVnorm. PIHA is transformed to the –0.31 power and may be

back-transformed as PIHA
(1/–0.31). i and j denote the measure-

ment and fetus, respectively.

Mean = μij = 0.9946803 – 000391262 GA2
ij +

0.000007161 GA3
ij – 0.004735979QUVnorm2j –

0.01317954QUVnorm3j

Significance level of decrease in the log likelihood including
QUVnorm in the model: P < .0001.

Variance = σ2
ij = 0.00249416

QUVnorm2: 10th-90th centile = 1, other values = 0
QUVnorm3: >90th centile = 1, other values = 0

VUVmax

Regression model for estimated PIHA by GA in weeks and
VUVmax. PIHA is transformed to the –0.31 power and may be
back-transformed as PIHA

(1/–0.31). i and j denote the measure-
ment and fetus, respectively.

Mean = μij = 1.001664 – .0 000467799 GA2
ij

+ 0.000009047 GA3
ij + 0.007268004VUVmax2j –

0.009860503VUVmax3j.

Significance level of decrease in the log-likelihood including
VUVmax in the model: P < .0004.

Variance = σ2
ij = 0.002425939

VUVmax 2: 10th-90th centile = 1, other values = 0
VUVmax3: >90th centile = 1, other values = 0

QUV

Regression model for estimated PIHA by GA in weeks and
QUV. PIHA is transformed to the –0.31 power and may be back-
transformed as PIHA

(1/–0.31). i and j denote the measurement and
fetus, respectively.

Mean = μij = 0.9994314 – 0.0004084734 GA–2
ij

+ 000007634968 GA3
ij – 0.006185075QUV2j –

0.01876463QUV3j

Significance level of decrease in the log likelihood including
QUV in the model: P < .0001.

Variance = σ2
ij = 0.00246936

QUV2: 10th-90th centile = 1, other values = 0
QUV3: >90th centile = 1, other values = 0
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ABSTRACT

Objective: To establish longitudinal reference ranges for the fetal celiac and splenic artery

flow velocities and pulsatility index (PI) and to determine if vasodilatation occurs at a low

porto-caval pressure gradient.

Methods: Prospective longitudinal study of 161 low-risk pregnancies using repeat Doppler

recordings of the celiac and splenic arteries.  To establish reference ranges for blood velocities

and PI measurements were made on 3-5 occasions at 3-5 weekly intervals.  Ductus venosus

peak velocity was used to represent porto-caval pressure gradient and the left portal vein

blood velocity to represent the umbilical distribution to the right liver lobe.  Celiac and

splenic artery Doppler measurements were also related to the middle cerebral (MCA) and

umbilical artery (UA) PI and to umbilical flow.

Results:  Longitudinal reference ranges were established based on 510 and 521 observations

during gestational weeks 21-39.  Terms for calculating conditional reference ranges to be used

for repeat observations were also provided.  Celiac and splenic artery peak velocity and PI

showed covariation, r=0.7 (95% CI 0.6-0.8), and r=0.5 (95% CI 0.3-0.6), respectively.  Their

PI was low when porto-caval pressure and umbilical supply to the right lobe were low

(p<0.0001).  Additionally, there was concordant variation with the MCA PI, UA PI and the

umbilical flow (all p<0.0001).

Conclusion: We provide longitudinal reference ranges for the fetal celiac and splenic artery

flow velocities and PI and show that although the PIs of these arteries covary with those in

other circulatory beds, they also show evidence of vasodilatation when the porto-caval

pressure gradient is low.

Word count:250
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INTRODUCTION

In the mid gestation human fetus, one third of the combined ventricular output is directed to

the placenta1,2 declining to one fifth near term1.  Nutrient-rich blood returning from the

placenta primarily perfuses the fetal liver, 70% and 80% at 20 and 30-40 weeks of gestation,

respectively3-6, and a correspondingly small fraction (30-20%) is shunted through the ductus

venosus7 to supply the left heart with oxygenated blood through the foramen ovale8.  Blood

velocity in the ductus venosus directly reflects the porto-caval pressure gradient that drives

liver perfusion9-11.

The large proportion of umbilical venous blood perfusing the liver is linked to liver

tissue proliferation, production of IGF 1 and 2 and overall fetal growth12,13 and can be

modified by external factors such as maternal body composition and diet14.  While the

umbilical vein is the most important supplier of venous blood to the fetal liver, with

advancing gestation an increasing contribution of oxygen depleted splanchnic blood comes

from the portal stem15, 14-20% at 21-39 weeks of gestation4,6, this mixes with the umbilical

blood in the right liver lobe, maintaining portal perfusion.  Differences in perfusion between

the left and right of the fetal liver could be important as they may underlie the differences in

cellular architecture16, haematopoiesis17, distribution of enzymes18 and gene expression19

between the two liver lobes.

  A recent study has shown that the equilibrium between the portal and umbilical

perfusion of the fetal liver is closely reflected in the blood velocity of the left portal branch20,

and can be used as a measure of left-right distribution.  This was utilised in the present study.

The arterial supply to the upper abdomen, the celiac and superior mesenteric arteries,

is also involved in maintaining liver perfusion.  One of the three celiac branches (Figure 1),

the hepatic artery (HA), is directly connected to the liver while the other two branches, the

splenic and left gastric artery, feed the splanchnic circuit that drains into the portal vein.
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During postnatal life increases in HA blood flow buffer liver tissue perfusion by an

adenosine-mediated vasodilatation in the face of a fall in portal flow21.  We have recently

reported that this mechanism also operates in the human fetus even though at this time the

portal system is connected to the umbilical circuit22.  The fetal HA has not been easy to

investigate using Doppler ultrasound22 although the celiac artery (CA) arising directly from

the aorta is more accessible.  To date a standardised insonation technique and reference ranges

have not been available for the CA, and there is no information as to whether a fall in

umbilical venous liver perfusion leads to a compensatory vasodilatation in the CA as in the

HA.

The splenic artery (SA), another of the celiac branches (Figure 1), is a major

contributor to portal flow through the splenic vein in postnatal life; during fasting it makes the

major contribution to portal flow23.  During prenatal life, the spleen has a higher density of

adrenergic neurons than in adults24, operates as a blood reservoir and is involved in

immunologic and haematopoietic activities25,26.  However, little is known of its hemodynamic

regulation in human fetuses e.g. whether local variation in portal liver perfusion or changes in

the systemic circulation reflected in the umbilical and cerebral artery parameters influence SA

blood flow velocities. Changes in peak velocity and pulsatility index (PI) of the SA in anemic

and growth-restricted fetuses27-31 indicate a potential clinical use, and cross-sectional

reference ranges have been introduced27,28,30.  Serial measurements and longitudinal reference

ranges provide a more secure basis for clinical and research purposes32 but have yet to be

published.

 The aim of the present study was to establish longitudinal reference ranges for

CA and SA flow velocities and PI and the necessary conditional terms needed for serial

measurements.  We addressed the hemodynamic relationship between HA, CA and SA, to test

whether these vessels show covariation or have different regulatory mechanisms.  We
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specifically tested the hypotheses 1) that the PI`s in the CA and SA will covary with those of

the umbilical and middle cerebral arteries (UA and MCA), reflecting regulation by similar

influences and 2) that the portal perfusion pressure and distribution are local regulatory

determinants for the CA and SA.

METHODS

Subjects

The present study is part of a larger prospective longitudinal study of the fetal cerebral,

umbilical and splanchnic circulation approved by the Regional Committee for Medical

Research Ethics (REK Vest no 203.03).  Here we present the results for CA and SA

hemodynamics.  The participants were 161 women with low-risk pregnancies recruited after

written consent, and ultrasound confirmation of gestational age at 17-20 weeks33.  Exclusion

criteria were twin pregnancy, fetal anomaly, history of pregnancy complications (e.g.

pregnancy-induced hypertension, fetal growth restriction and abruptio placentae), or any

general chronic disease.  Participants who developed complications after enrolment, were not

excluded.  Each woman was scheduled for examination 3-5 times, at 3-5 weeks intervals.

Pregnancy complications, birthweight, Apgar score, gestational age at delivery, gender and

congenital abnormalities were noted.

Measurements

Doppler ultrasound measurements were recorded using a 2-5, 2-7 or 4-8 MHz abdominal

transducer (Voluson730 Expert, GE Medical systems, Kretz Ultrasoud, Zipf, Austria) with the

high-pass filter set to 70 Hz.  Mechanical and thermal indices in the majority of sessions

were<1.1 and <0.9 respectively, and always <1.9 and <1.5, respectively.

The CA was identified as the most proximal of the unpaired branches of the abdominal

aorta (Figure 1).  The fetal abdomen was insonated in a sagittal (or horizontal) direction using
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colour Doppler and flow velocity waveforms were recorded close to the abdominal aorta

using pulsed Doppler with median sample volume 3 mm (range 1-8).

The SA was visualised in a horizontal insonation that identified its origin at the CA in

front of the aorta and its course behind the stomach to the spleen (Figure 1).  The sample

volume (median 4 mm, range 2-8) was placed over the proximal part of the vessel and

velocity parameters calculated as mentioned above.

The portocaval (i.e. umbilicocaval) pressure gradient drives the venous perfusion of

the liver.  The blood velocity in the portocaval shunt of the ductus venosus is a direct

representation of this pressure gradient 9,10,34.  The ductus venosus peak blood velocity was

recorded7 and included in the analysis to determine the effect of portocaval pressure on PICA

and PISA.

Prenatally, the left portal vein (LPV) connects the umbilical vein to the portal

circulation and represents a watershed between the two circuits35,36 (Figure 1).  The flow

velocity in the LPV is a direct reflection of the umbilical venous supply to the right liver

lobe20.  Thus a reduced LPV blood velocity indicates a shift towards less oxygenated

umbilical supply and relatively more oxygen depleted portal blood to the liver.  We used the

time-averaged maximum velocity of the LPV (VLPVtamx) to assess whether such a shift of

venous liver perfusion was associated with PICA and PISA changes.  The velocity was recorded

in an oblique insonation of the fetal abdomen using a standardised technique20 that included a

sample volume of median 2 mm (range 0.7-4.0).

We used the PIUA and PI MCA as well as the umbilical venous flow (QUV) to determine

a possible covariance with the PICA and PISA in order to test the assumption that these vessels

have a common dependency on central fetal hemodynamics.  Umbilical venous flow (QUV),

PIUA and PIMCA were recorded using standardised techniques22,37-39.
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All insonations for Doppler measurements were aligned in the direction of the vessel,

and the angle of interrogation was always kept ≤30 degrees.  When this angle was not zero,

the Doppler shift was corrected accordingly.  The recordings were acquired during fetal

quiescence over at least 3 uniform heart cycles to determine systolic peak and time averaged

maximum velocities and PI40.

Statistics

Multilevel modelling was used in order to calculate mean and centiles for the CA and

SA systolic peak and time averaged maximum velocity and PI by gestational age.  To achieve

normal distribution of the outcome variables, we used power transformation.  The outcome

variables were regressed against gestational age using fractional polynomials.  The 2.5, 5, 10

and 25th centiles were calculated by subtracting 1.96 standard deviation (SD), 1.645 SD,

1.282 SD, and 0.674 SD from the mean, respectively.  The 97.5, 95, 90 and 75th centiles were

calculated by adding the respective multiples of the SD to the mean.  The 95% CI of the

mean, 5 and 95th centiles were derived.

To assess the effect of VDV-ps, VLPV-tamx, QUV, PIMCA, and PIUA on PI and systolic peak

velocity in the CA and SA, we included these measurements (in three categories, <10th

centile, 10–90th centile, and >90th centile, since responses were assumed to occur more

commonly in extreme conditions) as indicator variables in the multilevel regressions models,

which describe the mean of PICA and PISA and VCA-ps and VSA-ps.  The gestational age-

dependent centiles of these independent variables were also calculated by multilevel

regression.  Indicator variables with significant improvement in the goodness of fit to the

models, as assessed by the deviance statistics (χ
2 with p <0.05), were considered to

significantly influence the outcome variables.
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Associations of peak systolic velocity and PI in the CA and SA on HA and SA peak

systolic velocity and PI were assessed by simple linear regression of transformed data.

The intra- and inter-observer reproducibility for the CA and SA measurements was

expressed as intra-and interclass correlation.

The statistical analysis was performed using SPSS (Statistical Package for the Social

Sciences, SPSS Inc, Chicago, IL) and the MlWin program (MlWin, Centre for Multilevel

Modelling, University of Bristol, UK).

RESULTS

Median maternal age at inclusion was 29 years (range 20-40) and median gestational age at

delivery was 40 weeks+3 days (range35+3 to 42+4 weeks).  The caesarean section rate (10.6

%) and birth weights (median 3700 g, range 2260-4980) were similar to values in the local

population (caesarean rate being 11.8%)41.  Five women developed pre-eclampsia (3.1%).

Population characteristics have been further detailed previously 37.  The intra- and inter-

observer study showed reproducibility with intra- and inter-class correlation coefficient >85%

for all parameters tested (table 1).

We obtained 510 measurements of the CA in a total of 633 sessions (80.6% success

rate).  Unfavourable fetal position and fetal movements were reasons for not obtaining

measurements.  The diaphragm, abdominal aorta and the neighbouring superior mesenteric

artery proved to be valuable anatomical landmarks when identifying the CA (Figure 1).  No

angle correction was required in 179 recordings; median angle correction of the Doppler shift

was 12° (range 0-30°).  The systolic peak velocity (VCA-ps) and time averaged maximum

velocity (VCA-tamx) and pulsatility index  (PICA) with fitted mean and reference intervals are

presented in Figure 2.  The corresponding gestational age-specific centiles are presented in

tables 2-4.  The mean VCA-ps increased from 26 to 50 cm/s and mean VCA-tamx from 12 to 22
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cm/s during 21-39 weeks of gestation.  The mean PICA increased from 1.73 to a plateau at

2.10 at 29-30 weeks and decreased to 1.81 at 39 weeks.

We obtained 521 measurements of the SA (82.3% success rate).  The median

angle of insonation was 0° (306 observations with no correction, range 0-30°).  Anatomical

landmarks for identifying the SA were the stomach and spleen, and the point of branching off

at the CA (Figure 1).  Similar to the CA, the SA velocities increased throughout the second

half of pregnancy, mean VSA-ps from 19 to 49 cm/s during week 21-39, and correspondingly

the VSA-tamx from 11 to 24 cm/s (Figure 3 and Tables 5-6).  The PISA increased from 1.39 to

reach a plateau of 1.85 at 29-30 weeks followed by a decline to 1.58 at 39 weeks of gestation

(Figure 3 and Table 7).  Terms for calculating conditional ranges for repeat measurements of

the CA and SA are presented in the appendix.

For the LPV measurements the median angle of insonation was 1° (range 0-30°)

degrees.  The mean VLPV-tamx increased from 8.9 cm/s at 21weeks to 12.1 at 32 weeks, and

then decreased to 10.9 cm/s at 38 weeks (Figure 4).

  In the following we assumed that absolute velocities predominantly reflected volume

flow and the kinetic condition of the central circulation (i.e. cardiac output)42,43, while PI to a

larger extent reflected degree of vasodilatation and local regulation.

Concerning local regulation, when examining for covariation between hemodynamics

in the CA and HA, we found a weak correlation between PIHA and PICA (r=0.3, 95% CI 0.1-

0.5).  When analysing the CA vs. SA we found a stronger correlation between the PISA and

PICA (r=0.5, 95% CI 0.3-0.6) (Figure 5).  Finally, there was a weak correlation between the

PI`s in the splenic and hepatic arteries (PISA vs. PIHA), (r=0.1, 95%CI –0.05-0.3) (Figure 5),

indicating that the SA and HA have independent local regulatory mechanisms, and that the

PICA is more closely related to the PISA than to PIHA.
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  A ratio of the CA and SA (PICA /PISA) showed a stable relationship throughout the

second half of pregnancy, mean 1.0 (95%CI 1.016-1.023) (Figure 6).

The hypothesis that the portocaval perfusion pressure is a local determinant for CA

and SA was tested using regression analyses.  A low VDV-ps, representing portocaval

pressure10, should then be associated with a vasodilatation, i.e. low PICA and PISA.  The

analysis confirmed that fetuses with VDV-ps <10th centile had a lower PICA and PISA (p<0.0001)

(Figure 7).

Another possible local determinant for vasodilatation in the CA and SA is the

umbilical and portal distribution between the left and right liver lobe reflected in the velocity

(VLPV-tamx) of the LPV.  We hypothesised that low velocity (indicating less oxygenated

umbilical blood to the right lobe) was associated with vasodilatation in the arteries (low PICA

and PISA).  The regression analysis confirmed that VLPV-max <10th centile was associated with

lower PICA and PISA (p<0.0001) (Figure 7).

QUV <10th centile was associated with low PICA and PISA (P< 0.0001) which is in line

with the hypothesis.  However, we also found a reduced PICA and PISA when the umbilical

blood flow was high (QUV >90th centile) (Figure 7) which is difficult to interpret.

Assuming that MCA and UA are indicators of the general fetal circulation (e.g. cardiac

output) we tested whether a low PIMCA and PIUA covaried with a low PICA and PISA.  Again,

using regression analysis, PIMCA and PIUA <10th centile were indeed associated with low PICA

and PISA (p<0.0001) (Figure 8).

Absolute blood velocities are positively related to volume flow42,43.  We used this

relationship to test the hypothesis that high blood velocities in CA and SA covary with high

volume flow in the umbilical circuit (QUV) and high velocities in the DV and LPV.

Regression analysis showed that VDV-ps,VLPV-tamx and QUV>90th centile were associated with

high velocities in the CA and SA (p<0.005 for VDV-ps VCA-ps relationship, for all others
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p<0.0001) (result not shown).  The hypothesis was further supported by the close relationship

in absolute velocities found between the arteries: VHA-ps vs. VCA-ps (r=0.6, 95% CI 0.5-0.8),

and VSA-ps vs. VCA-ps (r=0.7 95% CI 0.6-0.8).

DISCUSSION

The spleen has important hematopoietic and immunologic functions in the developing

fetus24,26,44.  Here we show that the fetal spleen, rich in adrenergic neurons24, is also involved

in maintaining portal perfusion (Figure 7), but independently from the hepatic artery (Figure

5), which buffers liver perfusion22 via an adenosine mediated mechanism21.  A vasodilatation

in the SA (as indicated by the low PISA) is also present when the right liver lobe has a reduced

umbilical supply (as indicated by low VLPV-tam) (Figure 7).  We suggest that active regulation

of SA under physiological conditions is augmented in extreme cases, explaining the

previously reported changes in PISA and VSA-ps in fetal growth-restriction and anemia27-31.

The celiac artery feeds both the hepatic and splenic arteries, and our results suggest

CA to be closer related to splenic than hepatic hemodynamics (Figure 5).  Thus, the PICA

cannot be used as a substitute for a less accessible PIHA (as had been hoped for), nor can their

absolute velocities be used interchangeably.  Rather, we found the ratio of the PICA and PISA

(PICA/PISA) to be constant through second half of gestation (Figure 6).  This finding might be

surprising since most growth velocities and hemodynamic relationships are gestational age

dependent.  Whether the priority of flow from the celiac artery to the spleen is altered in

growth restricted or anemic fetuses remains to be explored.

The longitudinal reference ranges established for the SA and CA in this study, together

with those recently established for the HA22, provide the methods for a differential

hemodynamic assessment of the fetus, particularly in cases such as fetal growth-restriction or

anemia.  In addition to being suitable for single measurements, these longitudinal ranges are
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appropriate for serial observations32 when used in combination with the terms for calculating

conditional reference ranges (Appendix).  The narrow 95% CI for the centiles indicates that

the reference ranges are reliable also for extreme values (Figure 2 and 3).

The variation seen between the present results and previous cross-sectional

studies of the SA27,29,30 may be due to differences in design, population sample, insonation

technique and analysis.  Bahado-Singh et al showed that their reference values for VSA-ps were

less suitable for predicting anemia at <28 weeks of gestation29.  Comparing our new reference

ranges with their results of anemic fetuses, it seems justified to reassess the method

particularly for pregnancies <28 weeks.

The inverted u-shaped curve of our reference ranges for the PICA and PISA (Figure 2

and 3) is in line with a previous cross-sectional study of the SA27 and similar to those of the

middle cerebral artery PI37,45 probably reflecting organ growth and vascularisation.  The

spleen exhibits linear growth during the second half of pregnancy46,47, while there is a

curvilinear increase in normalised portal flow (where SA is an important contributor) towards

term, supporting the assumption of increased vascularisation of the spleen15.

Arterial blood velocities are not only related to volume of blood flowing through an

organ but also to central hemodynamics and cardiac output43.  Our findings of increasing flow

velocities in the superior splanchnic arteries during late pregnancy are in line with this

concept and underscore the increasing perfusion of the splanchnic organs towards the end of

pregnancy.  We also showed that low PICA and PISA were linked with low PI in the umbilical

and cerebral arteries indicating a common dependence on general hemodynamics(Figure 8),

further supported by the fact that VSA-ps and VCA-ps were high when QUV was high.

When comparing our results for the mean VLPV-tamx with those of another

longitudinal study20 we find similar results.
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In short, we have shown that the CA feeds two independently regulated arteries, the

HA and SA, of which both are involved in maintaining fetal venous liver perfusion.  Our

reference ranges for the arteries and their interrelationship (CA vs. SA) provide new methods

for a differential assessment of the developing circulation under physiological conditions and

in clinical settings using serial measurements.
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APPENDIX

VCA-ps

An actual transformed VCA-ps observation may be expressed by the regression mean as a

function of gestational age (GA) in weeks and residuals as

(fetus)2levelandon)(observati1level

denotesandresiduals,andand,001712879.0ˆand,0.1311896ˆ

,512302.0ˆwhere,GAˆGAˆeuˆy
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1) Unconditional mean and variance

VCA-ps was transformed to the 0.283 power.

Transformed mean= µ
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which may be ”backtransformed” as µ(1/0.283)
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3) Conditional mean and variance
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The covariance between the first and a later observation (at gestational ages GA1 and GA2) is

set as the level-2 covariance as the level-1 covariance is assumed to be zero. The covariance is

given by

005154862.0

ˆ 2
012

=

= uσσ

Conditional mean µ2|1 is given by

2
112112 /)( σσµµ −+ y

were µ2 and µ1 are means at GA2 and GA1,  y1 is the observation at GA1,

and 2
1σ the variance at GA1; in this case the variance is independent of gestational age.

Conditional variance is given by
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4) Conditional reference interval

µ2|1  +  z  σ2|1

PICA

An actual transformed PICA observation may be expressed by the regression mean as a

function of gestational age (GA) in weeks and residuals as

(fetus)2levelandon)(observati1level
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1) Unconditional mean and variance

PICA was transformed to the –0.2 power.

Transformed mean= µ

=2.3801666+0.02139268 GA–0.6350049 ln(GA)

which may be ”backtransformed” as µ(1/-0.2)

Variance

2σ̂=

2
0

2
0 ˆˆ eu σσ +=

=0.0010406152

2) Unconditional reference interval is given by

ly.respectives,percentile5.97and,95,90,75,50,25,10,5,5.2thefor96.1

and,645.1,282.1,674.0,674.0,282.1,645.1,96.1zˆ and deviation standard  theiswhere

,ẑ

ththththththththth

−−−−=
+=

σ
σµ

3) Conditional mean and variance

The covariance between the first and a later observation (at gestational ages GA1 and GA2) is

set as the level-2 covariance as the level-1 covariance is assumed to be zero. The covariance is

given by

00007916.0

ˆ 2
012

=

= uσσ
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Conditional mean µ2|1 is given by

2
112112 /)( σσµµ −+ y

were µ2 and µ1 are means at GA2 and GA1,  y1 is the observation at GA1,

and 2
1σ the variance at GA1; in this case the variance is independent of gestational age.

Conditional variance is given by

2
1

2
12

2
2

2
1|2

/σσσ
σ

−=

4) Conditional reference interval

µ2|1  +  z  σ2|1

VCA-tamx

An actual transformed VCA-tamx observation may be expressed by the regression mean as a

function of gestational age (GA) in weeks and residuals as

(fetus)2levelandon)(observati1level

denotesandresiduals,andand,001027558.0ˆand,3413.13ˆ

,152027.1ˆwhere,GAˆGAˆeuˆy
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1) Unconditional mean and variance

VCA-tamx was transformed to the 0.054 power.

Transformed mean= µ

=1.152027–13.35413 GA-2+0.001027558 GA
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which may be ”backtransformed” as µ(1/0.054)

Variance

2σ̂=

2
0

2
0 ˆˆ eu σσ +=

=0.0001734746

2) Unconditional reference interval is given by

ly.respectives,percentile5.97and,95,90,75,50,25,10,5,5.2thefor96.1

and,645.1,282.1,674.0,674.0,282.1,645.1,96.1zˆ and deviation standard  theiswhere

,ẑ

ththththththththth

−−−−=
+=

σ
σµ

3) Conditional mean and variance

The covariance between the first and a later observation (at gestational ages GA1 and GA2) is

set as the level-2 covariance as the level-1 covariance is assumed to be zero. The covariance is

given by

00002405.0

ˆ 2
012

=

= uσσ

Conditional mean µ2|1 is given by

2
112112 /)( σσµµ −+ y

were µ2 and µ1 are means at GA2 and GA1,  y1 is the observation at GA1,

and 2
1σ the variance at GA1; in this case the variance is independent of gestational age.
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Conditional variance is given by

2
1

2
12

2
2

2
1|2

/σσσ
σ

−=

4) Conditional reference interval

µ2|1  +  z  σ2|1

VSA-ps

An actual transformed VSA-ps observation may be expressed by the regression mean as a

function of gestational age in weeks and residuals as

(fetus)2levelandon)(observati1level

denotesandresiduals,andand,000120349.0ˆand,7.831183ˆ

,11945.27ˆ where,GAˆGAˆeuˆy

21
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ββ

ββββ

denotes level 1 (measurement) and j level 2 (fetus).

1) Unconditional mean and variance

VSA-ps was transformed to the 0.69 power.

Transformed mean= µ

=–27.11945+7.831183 gestational age0.5–0.000120349 gestational age3

which may be ”backtransformed” as µ(1/0.69)

Variance

=σ2

2
0

2
0 ˆˆ eu σσ +=
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=3.257004

2) Unconditional reference interval is given by

=µ +  z  σ,

where σ is the standard deviation and z= −1.96, −1.645,  −1.282, −0.674, 0.674, 1.282, 1.645,

1.96, for the 2.5th, 5th, 10th, 25th, 75th, 90th, 95th, and 97.5th percentiles, respectively.

3) Conditional mean and variance

The covariance between the first and a later observation (at gestational ages GA1 and GA2) is

set as the level-2 covariance as the level-1 covariance is assumed to be zero. The covariance is

given by

8889915.0

ˆ 2
012

=

= uσσ

Conditional mean µ2|1 is given by

2
112112 /)( σσµµ −+ y

were µ2 and µ1 are means at GA2 and GA1,  y1 is the observation at GA1,

and 2
1σ the variance at GA1; in this case the variance is independent of gestational age.

Conditional variance is given by

2
1

2
12

2
2

2
1|2

/σσσ
σ

−=
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4) Conditional reference interval

µ2|1  +  z  σ2|1

PISA

An actual transformed PISA observation may be expressed by the regression mean as a

function of gestational age in weeks and residuals as

(fetus)2levelandon)(observati1level

denotesandresiduals,andand,30113.21ˆand,60801.75ˆ

,825513.2ˆ where,GAˆGAˆeuˆy
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denotes level 1 (measurement) and j level 2 (fetus).

1) Unconditional mean and variance

PISA was transformed to the –0.252 power.

Transformed mean= µ

=2.825513 +57.60801 gestational age-1–21.30113 gestational age-0.5

which may be ”backtransformed” as µ(1/-0.252)

Variance

=σ2

2
0

2
0 ˆˆ eu σσ +=

= 0.00302078

2) Unconditional reference interval is given by

=µ +  z  σ,
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where σ is the standard deviation and z= −1.96, −1.645,  −1.282, −0.674, 0.674, 1.282, 1.645,

1.96, for the 2.5th, 5th, 10th, 25th, 75th, 90th, 95th, and 97.5th percentiles, respectively.

3) Conditional mean and variance

The covariance between the first and a later observation (at gestational ages GA1 and GA2) is

set as the level-2 covariance as the level-1 covariance is assumed to be zero. The covariance is

given by

00054649.0

ˆ 2
012

=

= uσσ

Conditional mean µ2|1 is given by

2
112112 /)( σσµµ −+ y

were µ2 and µ1 are means at GA2 and GA1,  y1 is the observation at GA1,

and 2
1σ the variance at GA1; in this case the variance is independent of gestational age.

Conditional variance is given by

2
1

2
12

2
2

2
1|2

/σσσ
σ

−=

4) Conditional reference interval

µ2|1  +  z  σ2|1
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VSA-tamx

An actual transformed VSA-tamx observation may be expressed by the regression mean as a

function of gestational age in weeks and residuals as

(fetus)2levelandon)(observati1level

denotesandresiduals,andand,0000724.0ˆand,0002964.0ˆ

,077274.2ˆ where,GAln(GAˆGAˆeuˆy

21
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=++++=

ββ

ββββ

denotes level 1 (measurement) and j level 2 (fetus).

1) Unconditional mean and variance

VSA-tamx was transformed to the 0.432 power.

Transformed mean= µ

=2.077274+0.0002964497gestational age3–0.0000724184 ln(gestational age) gestational age3

which may be ”backtransformed” as µ(1/0.432)

Variance

=σ2

2
0

2
0 ˆˆ eu σσ +=

= 0.105805

2) Unconditional reference interval is given by

=µ +  z  σ,

where σ is the standard deviation and z= −1.96, −1.645,  −1.282, −0.674, 0.674, 1.282, 1.645,

1.96, for the 2.5th, 5th, 10th, 25th, 75th, 90th, 95th, and 97.5th percentiles, respectively.
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3) Conditional mean and variance

The covariance between the first and a later observation (at gestational ages GA1 and GA2) is

set as the level-2 covariance as the level-1 covariance is assumed to be zero. The covariance is

given by

0.02022107

ˆ 2
012

=

= uσσ

Conditional mean µ2|1 is given by

2
112112 /)( σσµµ −+ y

were µ2 and µ1 are means at GA2 and GA1,  y1 is the observation at GA1,

and 2
1σ the variance at GA1; in this case the variance is independent of gestational age.

Conditional variance is given by

2
1

2
12

2
2

2
1|2

/σσσ
σ

−=

4) Conditional reference interval

µ2|1  +  z  σ2|1
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LEGENDS

Figure 1: The fetal vasculature of the upper abdomen in a sagittal (panel A) and horizontal

(panel C) view with corresponding colour Doppler images (panel B and D).  The celiac artery

(CA) is the first anterior branch from the descending aorta (AO) below the diaphragm, the

Doppler gate is placed over the proximal part of the vessel (Panel A and B).  The splenic

artery (SA) arises from the celiac artery and continues posterior to the stomach (S) to reach

the hilum of the spleen (Spl), the Doppler gate is placed over the proximal part of the vessel

(panel C and D). Inferior vena cava (IVC), portal vein (PV), superior mesenteric artery

(SMA), ductus venosus (DV).

Figure 2:  Longitudinal reference ranges for the celiac artery systolic peak velocity (VCA-ps)

(Panel A), time averaged maximum velocity (VCA-tamx) (Panel B), and pulsatility index (PICA)

(Panel C) with fitted 5th, 50th and 95th centiles and 95% confidence limits for the centiles

based on 510 observations.

Figure 3: Longitudinal reference ranges for the splenic artery systolic peak velocity (VSA-ps)

(Panel A), time averaged maximum velocity (VSA-tamx) (Panel B), and pulsatility index (PISA)

(Panel C) with fitted 5th, 50th and 95th centiles and 95% confidence limits for the centiles

based on 521 observations.

Figure 4: Longitudinal reference ranges for left portal vein time averaged maximum velocity

(VLPV-tamx) with fitted 5th, 50th and 95th centiles and 95% confidence limits for the centiles

based on 282 observations.
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Figure 5: Panel A: The hemodynamic relationship between the celiac and splenic artery is

shown in a simple linear regression analysis of transformed data of their pulsatility indices

(PICA and PISA) r=0.5 (Panel A).  The independency between the hepatic and splenic artery is

demonstrated with r=0.1 for their pulsatility indices, PIHA and PISA (Panel B).  Thin lines

represent the 95%CI for the regression line.

Figure 6: The ratio of the celiac and-splenic artery pulsatility indices (PICA/PISA) with fitted

5th, 50th and 95th centiles and 95% confidence limits for the centiles based on 427 sets of

observations.

Figure 7: The influence of porto-caval pressure gradient expressed by the ductus venosus

peak blood velocity (VDV-ps)(Panel A), umbilical venous distribution to the right liver lobe

expressed by the left portal vein blood velocity (VLPV-tamx) (Panel B) and umbilical venous

flow (QUV) (Panel C), on splenic artery pulsatility index (PISA).  The difference between the

lines represents the effect, all being significant.  Lines with closed circles =<10th centile,

simple lines =10-90th centile, lines with open circles=>90th centile for the variables.

Figure 8:  Influence of the general circulatory status expressed by the umbilical and middle

cerebral artery pulsatility index (PIUA and PIMCA) on local regulation expressed by splenic

artery pulsatility index (PISA) (Panel A: PIUA, and Panel B: PIMCA).  The difference between

the lines represents the effect, all being significant.  Lines with closed circles= <10th centile,

simple lines=10-90th centile, lines with open circles=>90th centile for the variables.
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Tables

Table 1: Intra- and interobserver variation of celiac and splenic artery flow velocities and

pulsatility index.

Table 2: Longitudinal reference ranges for the celiac artery pulsatility index based on 510

observations in 161 low-risk pregnancies.

Table 3: Longitudinal reference ranges for the celiac artery peak systolic velocity based on

510 observations in 161 low-risk pregnancies.

Table 4: Longitudinal reference ranges for the celiac artery time averaged maximum velocity

based on 510 observations in 161 low-risk pregnancies.

Table 5: Longitudinal reference ranges for the splenic artery pulsatility index based on 521

observations in 161 low-risk pregnancies.

Table 6: Longitudinal reference ranges for the splenic artery peak systolic velocity based on

521 observations in 161 low-risk pregnancies.

Table 7: Longitudinal reference ranges for the splenic artery time averaged maximum

velocity based on 521 observations in 161 low-risk pregnancies.
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Table 1 : Intra-and interobserver variation of celiac and splenic artery flow velocities and
pulsatility index

Intraobserver variation

Paired differences

95% CI

Mean SD SE Lower Upper p ICCC (%)

VCA-ps 0.37 2.87 0.72 -1.2 1.9 0.612 98

VCA-tamx -0.28 1.92 0.50 -1.35 0.78 0.126 97

PICA 0.07 0.22 0.06 -0.05 0.19 0.152 88

VSA-ps 0.13 3.14 0.78 -1.54 1.80 0.866 99

VSA-tamx 0.37 3.13 0.78 -1.30 2.04 0.642 94

PISA -0.05 0.28 0.07 -0.20 0.10 0.506 85

Interobserver variation

Paried differences

95% CI

Mean SD SE Lower Upper p ICCC (%)

VCA-ps -1.47 6.37 1.70 -5.15 2.20 0.402 93

VCA-tamx -0.46 3.10 0.83 -2.26 1.31 0.576 87

PICA -0.02 0.25 0.07 -0.16 0.13 0.779 86

VSA-ps 0.54 4.21 1.09 -1.80 2.87 0.630 97

VSA-tamx -0.16 2.76 0.71 -1.69 1.37 0.828 95

PISA 0.06 0.20 0.05 -0.05 0.17 0.282 89

VCA-ps;; Celiac artery systolic peak velocity; VCA-tamx;; Celiac artery time averaged maximum

velocity;  PICA:; Celiac artery pulsatility index; VSA-ps;;Splenic artery systolic peak velocity;

VSA-tamx;; Splenic artery time averaged maximum velocity;  PISA:; Splenic artery pulsatility

index; SD;  standard deviation; SE;  standard error; p; two tailed significance. ICCC:  Intra –

and inter class correlation coeffesient. respectively.
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Table 2  Reference ranges for the celiac artery pulsatility index based on 510 observations in
161 low-risk pregnancies.

Centile
Gestation
(weeks)

50 2.5 5 10 25 75 90 95 97.5
21 1.73 1.23 1.30 1.38 1.53 1.96 2.19 2.35 2.49
22 1.81 1.28 1.36 1.44 1.60 2.05 2.30 2.46 2.62
23 1.88 1.33 1.41 1.50 1.67 2.13 2.39 2.57 2.73
24 1.94 1.37 1.45 1.54 1.72 2.20 2.48 2.66 2.83
25 2.00 1.41 1.48 1.58 1.76 2.26 2.54 2.73 2.91
26 2.04 1.43 1.51 1.61 1.80 2.31 2.60 2.79 2.97
27 2.07 1.45 1.53 1.64 1.83 2.35 2.64 2.84 3.02
28 2.09 1.47 1.55 1.65 1.84 2.37 2.67 2.87 3.05
29 2.10 1.47 1.56 1.66 1.85 2.38 2.68 2.88 3.07
30 2.10 1.47 1.56 1.66 1.85 2.39 2.68 2.88 3.07
31 2.09 1.47 1.55 1.66 1.85 2.38 2.67 2.87 3.06
32 2.08 1.46 1.54 1.64 1.83 2.36 2.65 2.85 3.04
33 2.06 1.44 1.53 1.63 1.82 2.33 2.62 2.82 3.00
34 2.03 1.43 1.51 1.61 1.79 2.30 2.59 2.78 2.96
35 1.99 1.40 1.48 1.58 1.76 2.26 2.54 2.73 2.90
36 1.95 1.38 1.45 1.55 1.73 2.21 2.49 2.67 2.84
37 1.91 1.35 1.42 1.52 1.69 2.16 2.43 2.61 2.77
39 1.81 1.28 1.35 1.44 1.60 2.05 2.30 2.46 2.62
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Table 3  Reference ranges for the celiac artery systolic peak velocity (cm/s) based on 510
observations in 161 low-risk pregnancies.

CentileGestation
(weeks) 50 2.5 5 10 25 75 90 95 97.5

21 26 16 17 19 22 30 35 38 40
22 28 17 19 21 24 33 37 40 43
23 30 19 20 22 26 35 40 43 46
24 32 20 22 24 28 37 43 46 49
25 34 22 24 26 30 40 45 48 52
26 36 23 25 27 31 42 47 51 54
27 38 25 27 29 33 44 50 53 57
28 40 26 28 30 35 46 52 56 59
29 42 27 29 32 36 48 54 58 61
30 43 28 30 33 38 50 56 60 63
31 45 29 32 34 39 51 58 62 65
32 46 30 33 35 40 53 59 63 67
33 47 31 33 36 41 54 60 65 68
34 48 32 34 37 42 55 62 66 70
35 49 32 35 38 43 56 62 67 71
36 49 33 35 38 43 56 63 67 71
37 50 33 35 38 43 57 64 68 72
39 50 33 36 38 44 57 64 68 72
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Table 4  Reference ranges for the celiac artery time averaged maximum velocity (cm/s) based
on 510 observations in 161 low-risk pregnancies.

CentileGestation

(weeks) 50 2.5 5 10 25 75 90 95 97.5
21 12 8 8 9 10 14 16 17 18
22 13 8 9 10 11 15 17 18 19
23 13 9 9 10 12 15 18 19 20
24 14 9 10 11 12 16 18 20 21
25 15 10 10 11 13 17 19 21 22
26 15 10 11 12 13 18 20 22 23
27 16 11 11 12 14 18 21 23 24
28 17 11 12 13 14 19 22 23 25
29 17 11 12 13 15 20 22 24 26
30 18 12 13 14 15 20 23 25 27
31 18 12 13 14 16 21 24 26 27
32 19 12 13 14 16 22 25 26 28
33 19 13 14 15 17 22 25 27 29
34 20 13 14 15 17 23 26 28 30
35 20 14 15 16 18 24 27 29 31
36 21 14 15 16 18 24 27 29 31
37 22 14 15 16 19 25 28 30 32
39 23 15 16 17 20 26 29 32 34
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Table 5  Reference ranges for the splenic artery pulsatility index based on 521 observations in
161 low-risk pregnancies.

CentileGestation
(weeks)

50 2.5 5 10 25 75 90 95 97.5
21 1.39 0.90 0.96 1.04 1.19 1.64 1.91 2.09 2.28
22 1.50 0.96 1.03 1.11 1.28 1.77 2.07 2.28 2.49
23 1.60 1.01 1.09 1.18 1.36 1.89 2.22 2.45 2.67
24 1.68 1.06 1.14 1.23 1.42 1.99 2.34 2.58 2.82
25 1.74 1.10 1.18 1.28 1.48 2.07 2.43 2.69 2.94
26 1.79 1.12 1.20 1.31 1.51 2.13 2.51 2.77 3.03
27 1.82 1.14 1.22 1.33 1.54 2.17 2.56 2.83 3.10
28 1.84 1.15 1.24 1.35 1.56 2.19 2.59 2.87 3.14
29 1.85 1.16 1.24 1.35 1.56 2.20 2.60 2.88 3.15
30 1.85 1.15 1.24 1.35 1.56 2.20 2.60 2.88 3.15
31 1.84 1.15 1.23 1.34 1.55 2.19 2.58 2.86 3.13
32 1.82 1.14 1.22 1.33 1.54 2.16 2.55 2.82 3.09
33 1.79 1.12 1.21 1.31 1.52 2.13 2.51 2.78 3.04
34 1.76 1.11 1.19 1.29 1.49 2.10 2.47 2.73 2.99
35 1.73 1.09 1.17 1.27 1.47 2.06 2.42 2.67 2.92
36 1.69 1.07 1.15 1.25 1.44 2.01 2.36 2.61 2.85
37 1.66 1.05 1.12 1.22 1.41 1.96 2.31 2.55 2.78
39 1.58 1.00 1.07 1.17 1.34 1.86 2.18 2.41 2.63
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Table 6  Reference ranges for the splenic artery systolic peak velocity (cm/s) based on 521
observations in 161 low-risk pregnancies.

Centile
Gestation
(weeks)

50 2.5 5 10 25 75 90 95 97.5
21 19 8 9 11 15 24 28 31 33
22 22 10 11 13 17 26 31 34 36
23 24 12 13 16 19 29 34 36 39
24 26 14 15 18 22 31 36 39 42
25 29 15 17 20 24 34 39 42 44
26 31 17 19 22 26 36 41 44 47
27 33 19 21 24 28 39 44 47 49
28 35 21 23 26 30 41 46 49 52
29 37 23 25 27 32 43 48 51 54
30 39 24 26 29 34 45 50 53 56
31 41 26 28 31 35 46 52 55 58
32 42 27 29 32 37 48 53 57 60
33 44 28 31 33 38 49 55 58 61
34 45 29 32 34 39 51 56 60 63
35 46 30 33 35 40 52 57 61 64
36 47 31 34 36 41 53 58 62 65
37 48 32 34 37 42 54 59 63 66
39 49 33 35 38 43 55 61 64 67
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Table 7 Reference ranges for the splenic artery time averaged maximum velocity (cm/s)
based on 521 observations in 161 low-risk pregnancies.

Centile
Gestation
(weeks)

50 2.5 5 10 25 75 90 95 97.5
21 11 6 7 7 9 13 15 16 17
22 11 6 7 8 9 13 15 17 18
23 12 7 7 8 10 14 16 18 19
24 13 7 8 9 11 15 17 19 20
25 13 8 9 10 11 16 18 19 21
26 14 8 9 10 12 17 19 20 22
27 15 9 10 11 13 17 20 21 23
28 16 10 10 11 13 18 21 22 24
29 17 10 11 12 14 19 22 23 25
30 17 11 12 13 15 20 23 24 26
31 18 11 12 14 16 21 24 25 27
32 19 12 13 14 16 22 25 26 28
33 20 13 14 15 17 23 25 27 29
34 21 13 14 16 18 23 26 28 30
35 21 14 15 16 19 24 27 29 31
36 22 14 15 17 19 25 28 30 31
37 23 15 16 17 20 26 29 31 32
39 24 16 17 18 21 27 30 32 34
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ABSTRACT

The superior mesenteric artery (SMA) supplies most of the gut and is an important

contribution to portal liver perfusion in postnatal life.  Less is known of its functional role

during fetal life.  Based on 589 serial Doppler ultrasound measurements in 161 low-risk

pregnancies we established longitudinal reference ranges for SMA blood flow velocities and

pulsatility index (PI) for gestational weeks 21-39.  Using ductus venosus peak velocity to

represent port-caval pressure gradient and umbilical venous flow to represent portal flow, we

found that low portal pressure and flow were associated with low SMA impedance.  SMA PI

correlated weakly with the hepatic and splenic artery PI and showed co-variation with

umbilical and cerebral artery PIs.  Thus, the SMA not only perfuses the fetal gut, but is also

actively involved in the regulation of fetal liver perfusion, which is believed to be of

importance for both fetal and postnatal development.

Word count: 146
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INTRODUCTION

During postnatal life the portal vein perfuses the entire liver.  Prenatally, splanchnic blood

through the main portal stem constitutes only 15% of the total venous liver perfusion, the

major source being the umbilical vein (85%).1,2  These recent data from human fetuses

indicate that splanchnic blood is almost exclusively assigned for the right liver lobe while the

oxygenated blood from the umbilical vein perfuses the entire left lobe and additionally blends

in with the deoxygenated splanchnic blood in the right lobe.  One third (1/5 near term) of the

combined ventricular output perfuse the placenta,3 but as much as 75-85% of the venous

return from the placenta is distributed to the fetal liver, signifying a high developmental

priority, and this is supported by experimental data.4,5  Increased umbilical liver perfusion in

fetal lambs leads to augmented liver cell proliferation, increased IGF 1 and 2 production, and

increased growth of other organs, while a reduced perfusion has opposite effects.6

The liver circulation includes blood from the hepatic artery, directly connected to the

liver tissue, and the splenic and mesenteric arteries, indirectly connected to the portal vein

through the spleen and gut.  We have recently found evidence that the hepatic artery buffer

response (i.e. an adenosine-mediated arterial vasodilatation caused by a drop in portal

perfusion7) is active in human fetuses during the second half of pregnancy.8

The superior mesenteric artery (SMA) is a prominent contributor to portal flow and

liver perfusion, represents also a circulatory bed of considerable capacity 9 and shows

substantial variation induced by meals,10 but with no steal phenomenon from the cerebral

circulation.11  Experimentally, the fetal SMA shows vasoconstriction as part of the general

redistribution response to hypoxia or hypovolemia.12,13  If sustained, such hypoperfusion of

the gut is associated with an increased risk of necrotising enterocolitis in the neonatal

period.14  With this background we speculate that Doppler recording of the SMA is a
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potentially useful method in the evaluation of fetal hemorrhage, anemia, hypoxemia and

placental compromise, but its hemodynamic role in the human fetal circulation is not known.

Thus, the objectives of the present study were 1) to establish longitudinal reference

ranges for the blood flow velocities and pulsatility index (PISMA) for the SMA, and 2) to test

the hypothesis that the SMA is functionally linked to the port-caval pressure gradient and

umbilical flow and, on the arterial side, related to the splenic, middle cerebral and umbilical

artery hemodynamics.

METHODS

Subjects

The present study is part of a prospective longitudinal study of the fetal cerebral, umbilical

and splanchnic circulation.  Here we present the results of the superior mesenteric artery

hemodynamics.  The participants were 161 women with low-risk pregnancies recruited after

written consent provided gestational age had been assessed by ultrasound at 17-20 weeks of

gestation.15  Exclusion criteria were twin pregnancy, fetal anomaly, history of pregnancy

complications (e.g. pregnancy induced hypertension, fetal growth restriction and abruptio

placentae), or any general chronic disease.  Each woman was scheduled for examination 3-5

times, at 3-5 weeks intervals.  Complications in pregnancy, birthweight, Apgar score,

gestational age at delivery, gender and congenital abnormalities were noted.

Measurements

  Doppler ultrasound measurements were recorded using a 2-5, 2-7 or 4-8 MHz abdominal

transducer (Voluson730 Expert, GE Medical systems, Kretz Ultrasoud, Zipf, Austria) with the

high-pass filter set to 70 Hz.  Mechanical and thermal indices were <1.1 and <0.9,

respectively, in the majority of the sessions and always <1.9 and <1.5, respectively.

  The fetal abdomen was insonated in a sagittal or horizontal direction using colour

Doppler to visualise the SMA as the second of the unpaired branches of the abdominal aorta,
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directed anterior and caudal (Figure 1).  The blood flow velocity was recorded close to its

origin using pulsed Doppler with median sample volume 4 mm (range 1-9mm).

The port-caval (i.e. umbilico-caval) pressure gradient drives the venous perfusion of

the liver.  The blood velocity in the port-caval shunt ductus venosus is a direct representation

of this pressure gradient.16  The ductus venosus peak blood velocity was recorded 17 and

included in the analysis to determine the effect of port-caval pressure on PISMA.

The umbilical venous flow (QUV) and hepatic artery (HA) was assessed as described

previously.8  Prenatally the left portal vein (LPV) connects the UV to the portal circulation,

representing a watershed between the two circuits.18,19  The time-averaged maximum velocity

of the LPV (VLPVtamx) is a direct reflection of this watershed and we used it to assess whether

a shift of venous liver perfusion was associated with PISMA changes.20  The splenic artery (SA)

was visualised in a horizontal view of the fetal abdomen, and PI obtained from the proximal

part of the vessel.

In addition to these local regulatory links, we tested whether PISMA had any functional

link to other essential sections of the fetal circulation, i.e. the umbilical and cerebral

circulation, using the PIUA and PIMCA. 21,22

All insonations for Doppler measurements were aligned in the direction of the vessel,

and the angle of interrogation was always kept ≤30 degrees.  When this angle was not zero,

the Doppler shift was corrected accordingly.  The recordings were acquired during fetal

quiescence over at least 3 uniform heart cycles to determine systolic peak and time averaged

maximum velocity and PI.  Head and abdominal circumferences and femur length were used

for the estimation of fetal weight.23

Statistics

Multilevel modelling was used in order to calculate mean and centiles for the SMA

systolic peak and time averaged maximum velocity and PI by gestational ages.  To achieve
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normal distribution of the outcome variables, we used power transformation.  The outcome

variables were regressed against gestational age using fractional polynomials.  The 2.5, 5, 10

and 25th centiles were calculated by subtracting 1.96 standard deviation (SD), 1.645 SD,

1.282 SD, and 0.674 SD from the mean, respectively.  The 97.5, 95, 90 and 75th centiles were

calculated by adding the respective multiples of the SD to the mean.  The 95% confidence

intervals of the mean, 5th and 95th centiles were derived.

To assess the effect of VDV-ps, VLPV-tamx, QUV, PIMCA and PIUA on PI in the SMA, we

grouped these measurements in three categories (<10th centile, 10–90th centile, and >90th

centile) assuming that responses occur more commonly in extreme conditions.  The variables

were included in the multilevel regression models describing the mean PISMA.  Indicator

variables with significant improvement in the goodness of fit to the models, as assessed by the

deviance statistics (χ2 with p <0.05), were considered to significantly influence the outcome

variables.  Similarly, gender effects on SMA velocities and PI, were assessed including

gender in the regression models.  Associations of SMA (PISMA) with splenic and hepatic

artery (PISA and PIHA), were assessed by Pearson correlation analyses.

Intra- and inter-observer reproducibilities were expressed as intra-class and inter-class

correlation coefficients based on repeat observations in 17 and 14 participants, respectively.

The statistical analysis was performed using SPSS (Statistical Package for the Social

Sciences, SPSS Inc, Chicago, IL) and the MlWin program (MlWin, Centre for Multilevel

Modelling, University of Bristol, UK).

The Regional Committee for Medical Research Ethics approved the study protocol

(REK Vest no 203.03).

RESULTS

Median gestational age at delivery was 40 weeks+3 days (range 35+3 to 42+4 weeks).  The

caesarean section rate (10.6 %) and birth weights (median 3700 g, range 2260-4980) were
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similar to those of the general population (caesarean rate being 11.8%).  Five women (3.1%)

developed pre-eclampsia (further population characteristics have been detailed previously)8,24.

We obtained 589 measurements of the SMA in a total of 633 sessions (93% success

rate).  Unfavourable fetal position and fetal movements were reasons for not obtaining

measurements.  The reproducibility study showed intra-class correlation coefficients of 98, 95

and 94% for the VSMA-ps, VSMA-tamx, and PISMA, respectively.  The corresponding values for

inter-observer variation were 94, 85 and 75%.

The abdominal aorta, renal and celiac arteries were anatomical landmarks for

identifying the SMA.  Median angle correction of the Doppler insonation was 16° (range 0-

30).  The VSMA-ps, VSMA-tamx and PISMA with fitted mean and reference intervals are presented

in Figure 2.  The corresponding gestational age-specific centiles are presented in tables 1-3.

Terms for calculating conditional ranges for repeat measurements of the SMA are presented

in the appendix.

Gender had no effect on VSMA-ps when corrected for estimated fetal weight, but female

fetuses had lower VSMA-tamx (1%, p<0.0001) and higher PISMA (2%, p<0.0001) than males.

  We found a relatively weak correlation between the SMA (PISMA) and the splenic and

hepatic artery (PISA and PIHA), r=0.30 (95%CI 0.22-0.37) and r=0.39 (95%CI 0.27-0.51)

respectively, indicating largely independent local regulation of these vessels.

When examining the hypothesis that port-caval pressure gradient (expressed by the

VDVps) influences SMA vasoactivity (expressed by the PISMA), we found that those with the

lowest port-caval pressure (VDVps <10th centile) had evidence of vasodilation (i.e. lower

PISMA) (p<0.0001), but the effect was small (PISMA variation 0.02-0.03).  Vasodilatation (i.e.

low PISMA) was also linked to QUV < 10th centile (p<0.0001) and a right-shift in umbilical flow

distribution to the liver, i.e. VLPVtamx >90th centile.
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PISMA co-varied with PIUA and PIMCA (p<0.0001) indicating some common

hemodynamic determinants for the mesenteric, cerebral and placental vasculature.

DISCUSSION

In this study we provide new longitudinal reference ranges suitable for single and serial

measurements of the fetal SMA and have shown that this artery is functionally linked to the

port-caval pressure gradient and liver perfusion.  Keeping in mind that during prenatal life it

is essentially the umbilical blood that perfuses the liver and that the main portal stem provides

a modest 15% of hepatic venous blood flow, we now can draw a more complete map of the

fetal liver circulation that includes differential roles of the hepatic, splenic and superior

mesenteric arteries (Figure 3).  The SMA represents an important source of blood to the portal

system, but seems modestly involved in the regulation of portal pressure and fetal liver

perfusion under physiological conditions.  The splenic artery, however, seems more tightly

linked to compensate portal pressure reduction (Unpublished data).  The hepatic artery

operates differently by increasing arterial flow directly to the sinusoids when portal perfusion

is low.7,8  Our data suggest that the regulation of the three arteries is relatively independent

from each other, which is in line with studies in postnatal life.25,26

In addition to showing regulatory adjustments according to the port-caval pressure

gradient (i.e. VDVps) and umbilical flow, our present and previous results show that these

arteries are also linked to the more subtle internal distribution of umbilical blood in the liver

as expressed by the Doppler recording in the left portal vein, which reflects the watershed

between the left and right lobes.  Recent data suggest an extensive functional differentiation

between the left and right liver lobe in the developing fetus and that maternal diet and body

composition modifies umbilical liver perfusion.27,28  It seems plausible that also the

mesenteric, splenic and hepatic arteries are engaged in the finer circulatory tuning of the fetal

liver development, possibly with long-term consequences.
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SMA hemodynamics shows significant co-variation with cerebral and placental

hemodynamics, probably signifying that these sections of the fetal circulation have also

common determinants (e.g. blood pressure).

We found that peak systolic and time averaged maximum flow velocities and PI in the

SMA increased with gestational age (Figure 2).  In general, increasing velocities are related to

increased volume flow 29 and, in our case, this confirms that intestinal perfusion rises towards

term, which is in agreement with recent studies of the main stem of the portal system in

human fetuses.30

When redistribution causes lower mesenteric perfusion, the intestinal tissues respond by

increasing oxygen extraction, keeping oxygen consumption relatively constant, but

consequently the oxygen tension in the portal venous blood is reduced.31,32  We speculate that

under such circumstances, redistribution from the mesenteric to the splenic and hepatic

vascular beds occurs, possibly optimising the oxygen delivery to the liver.  Similar results are

reported from experimental animal studies and a study of neonates.24,33  In line with this is the

finding that growth restricted fetuses with compromised umbilical circulation and elevated

PISMA before birth are more likely to develop necrotising enterocolitis.34  Similarly, SGA

neonates more frequently show a high resistance pattern in the SMA compared with normally

grown infants, possibly reflecting a persistent SMA pattern from prenatal life.25,35-37

Thus, there are good reasons for a more detailed evaluation of the splanchnic circulation

before birth.  This conclusion is supported by previous studies of fetuses with gastrochisis and

placental compromise and smaller series of normal fetuses.34,38,39  We believe that the present

longitudinal reference ranges based on a high number of observations form an improved basis

for such future clinical assessment.



11

Reference List

1. Haugen G, Kiserud T, Godfrey K, Crozier S, Hanson M. Portal and umbilical venous

blood supply to the liver in the human fetus near term. Ultrasound Obstet Gynecol

2004;24:599-605.

2. Kessler J, Rasmussen S, Godfrey K, Hanson M, Kiserud T. Longitudinal study of

umbilical and portal venous blood flow to the fetal liver: low pregnancy weight gain is

associated with preferential supply to the left fetal liver lobe. Pediatr Res 2007;In press.

DOI:10.1203/PDR.0b013e318163a1de

3. Kiserud T, Ebbing C, Kessler J, Rasmussen S. Fetal cardiac output, distribution to the

placenta and impact of placental compromise. Ultrasound Obstet Gynecol 2006;28:126-

136.

4. Bellotti M, Pennati G, De Gasperi C, Battaglia FC, Ferrazzi E. Role of ductus venosus

in distribution of umbilical blood flow in human fetuses during second half of

pregnancy. Am J Physiol-Heart Physiol 2000;279:H1256-H1263.

5. Kiserud T, Rasmussen S, Skulstad S. Blood flow and the degree of shunting through the

ductus venosus in the human fetus. Am J  Obstet Gynecol 2000;182:147-153.

6. Tchirikov M, Kertschanska S, Sturenberg HJ, Schroder HJ. Liver blood perfusion as a

possible instrument for fetal growth regulation. Placenta 2002;23:S153-S158.

7. Lautt WW. The 1995 Ciba-Geigy Award Lecture. Intrinsic regulation of hepatic blood

flow. Can J Physiol and Pharm 1996;74:223-233.



12

8. Ebbing C, Rasmussen S, Godfrey K.M, Hanson M.A., Kiserud T. Hepatic artery

hemodynamics suggest operation of a buffer response in the human fetus. Reproductive

Sciences 2008 (in press).

9. Reilly PM, Wilkins KB, Fuh KC, Haglund U, Bulkley GB. The mesenteric

hemodynamic response to circulatory shock: An overview. Shock 2001;15:329-343.

10. Perko MJ. Duplex ultrasound for assessment of superior mesenteric artery blood flow.

Eur J Vasc Surg 2001;21:106-117.

11. Martinussen M, Brubakk AM, Linker DT, Vik T, Yao AC. Mesenteric Blood-Flow

Velocity and Its Relation to Circulatory Adaptation During the First-Week of Life in

Healthy Term Infants. Pediatr Res 1994;36:334-339.

12. Jensen A, Hanson MA. Circulatory responses to acute asphyxia in intact and

chemodenervated fetal sheep near term. Reprod Fertil Dev 1995;7:1351-1359.

13. Quaedackers JS, Roelfsema V, Heineman E, Gunn AJ, Bennet L. The role of the

sympathetic nervous system in postasphyxial intestinal hypoperfusion in the pre-term

sheep fetus. Journal of Physiol-London 2004;557:1033-1044.

14. Murdoch EM, Smith GCS, Sinha AK, Shanmugalingam ST, Kempley ST. Neonatal

necrotizing enterocolitis is associated with high resistance flow in the superior

mesenteric artery on day 1 of life in preterm infants. Early Hum Dev 2006;82:618-619.

15. Johnsen SL, Rasmussen S, Sollien R, Kiserud T. Fetal age assessment based on

ultrasound head biometry and the effect of maternal and fetal factors. Acta Obstet

Gynecol Scand 2004;83:716-723.



13

16. Kiserud T, Hellevik LR, Eiknes SH, Angelsen BAJ, Blaas HG. Estimation of the

pressure-gradient across the fetal ductus venosus based on doppler velocimetry.

Ultrasound Med Biol 1994;20:225-232.

17. Kiserud T, Eiknes SH, Blaas HGK, Hellevik LR. Ultrasonographic Velocimetry of the

Fetal Ductus Venosus. Lancet 1991;338:1412-1414.

18. Kilavuz O, Vetter K, Kiserud T, Vetter P. The left portal vein is the watershed of the

fetal venous system. J Perinat Med 2003;31:184-187.

19. Kiserud T, Kilavuz O, Hellevik LR. Venous pulsation in the fetal left portal branch: the

effect of pulse and flow direction. Ultrasound Obstet Gynecol 2003;21:359-364.

20. Kessler J, Rasmussen S., Kiserud T. The left portal vein as an indicator of watershed in

the fetal circulation: development during the second half of pregnancy and a suggested

method of evaluation. Ultrasound Obstet Gynecol 2007;30:757-764.

21. Acharya G, Wilsgaard T, Berntsen GKR, Maltau JM, Kiserud T. Doppler-derived

umbilical artery absolute velocities and their relationship to fetoplacental volume blood

flow: a longitudinal study. Ultrasound Obstet Gynecol 2005;25:444-453.

22. Mari G, Zimmermann R, Moise KJ, Deter RL. Correlation between middle cerebral

artery peak systolic velocity and fetal hemoglobin after 2 previous intrauterine

transfusions. Am J Obstet Gynecol 2005;193:1117-1120.

23. Combs CA, Jaekle RK, Rosenn B, Pope M, Miodovnik M, Siddiqi TA. Sonographic

Estimation of Fetal Weight Based on A Model of Fetal Volume. Obstet Gynecol

1993;82:365-370.



14

24. Ebbing C., Rasmussen S., Kiserud T. Middle cerebral artery blood flow velocities and

pulsatility index and the cerebroplacental ratio: longitudinal reference ranges and terms

for serial measurements. Ultrasound Obstet Gynecol 2007;30:287-296.

25 Coombs RC, Morgan MEI, Durbin GM, Booth IW, Mcneish AS. Abnormal Gut Blood-

Flow Velocities in Neonates at Risk of Necrotizing Enterocolitis. J Pediatr Gastroenterol

Nutr 1992;15:13-19.

26. Murdoch EM, Sinha AK, Shanmugalingam ST, Smith GCS, Kempley ST. Doppler flow

velocimetry in the superior mesenteric artery on the first day of life in preterm infants

and the risk of neonatal necrotizing enterocolitis. Pediatrics 2006;118:1999-2003.

27. Perko MJ, Nielsen HB, Skak C, Clemmesen JO, Schroeder TV, Secher NH. Mesenteric,

coeliac and splanchnic blood flow in humans during exercise. J Physiol 1998;513:907-

913.

28. Cox LA, Schlabritz-Loutsevitch N, Hubbard GB, Nijland MJ, McDonald TJ,

Nathanielsz PW. Gene expression profile differences in left and right liver lobes from

mid-gestation fetal baboons: a cautionary tale. J Physiol 2006;572:59-66.

29. Haugen G, Hanson M, Kiserud T, Crozier S, Inskip H, Godfrey KM. Fetal liver-sparing

cardiovascular adaptations linked to mother's slimness and diet. Circ Res 2005;96:12-

14.

30. Kessler J, Rasmussen S, Kiserud T. The fetal portal vein: normal blood flow

development during the second half of human pregnancy. Ultrasound Obstet Gynecol

2007;30:52-60.



15

31. Ceppa EP, Fuh KC, Bulkley GB, Gregory B. Mesenteric hemodynamic response to

circulatory shock. Curr Opin Crit Care 2003;9:127-132.

32. Jakob SM. Clinical review: Splanchnic ischaemia. Crit Care 2002;6:306-312.

33. Jakob SM, Tenhunen JJ, Heino A, Pradl R, Alhava E, Takala J. Splanchnic

vasoregulation during mesenteric ischemia and reperfusion in pigs. Shock 2002;18:142-

147.

34. Korszun P, Dubiel M, Breborowicz G, Danska A, Gudmundsson S. Fetal superior

mesenteric artery blood flow velocimetry in normal and high-risk pregnancy. J Perinat

Med 2002;30:235-241.

35. Kempley ST, Gamsu HR, Vyas S, Nicolaides K. Effects of intrauterine growth-

retardation on postnatal visceral and cerebral blood-flow velocity. Arc Dis Child

1991;66:1115-1118.

36. Martinussen M, Brubakk AM, Vik T, Yao AC. Relationship between intrauterine

growth retardation and early postnatal superior mesenteric artery blood flow velocity.

Biol Neonate 1997;71:22-30.

37. Robel-Tillig E, Vogtmann C, Bennek J. Prenatal hemodynamic disturbances -

Pathophysiological background of intestinal motility disturbances in small for

gestational age infants. Eur J Pediatr Surg 2002;12:175-179.

38. Abuhamad AZ, Mari G, Cortina RM, Croitoru DP, Evans AT. Superior mesenteric

artery Doppler velocimetry and ultrasonographic assessment of fetal bowel in

gastroschisis: A prospective longitudinal study. Am J Obstet Gynecol 1997;176:985-

990.



16

39. Achiron R, Orvieto R, Lipitz S, Yagel S, Rotstein Z. Superior mesenteric artery blood

flow velocimetry: Cross-sectional Doppler sonographic study in normal fetuses. J

Ultrasound Med 1998;17:769-773.



17

Appendix

Systolic peak velocity VSMAps

An actual transformed VSMAps observation may be expressed by the regression mean as a
function of gestational age (GA) in weeks and residuals as

(fetus)2levelandon)(observati1level

denotesandresiduals,andand,0055396.0ˆand,4448166.0ˆ

,19094.2ˆwhere,uGAˆGAˆeˆy
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1) Unconditional mean and variance
VSMAps was transformed to the 0.459 power.

Transformed mean= µ
= –2.190914+0.4448166 GA–0.0055396 GA2

which may be ”backtransformed” as µ(1/0.459)

Variance
=σ2

2
2

2
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=0.2404756 + 0.00000007220807 GA4

2) Unconditional reference interval is given by
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3) Conditional mean and variance
The covariance between the first and a later observation (at gestational ages GA1 and GA2) is
set as the level-2 covariance as the level-1 covariance is assumed to be zero. The covariance is
given by

22

222
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2GA1GA080700000007220

2GA1GA

.

u

=

= σσ

Conditional mean µ2|1 is given by
2
112112 /)( σσµµ −+ y

were µ2 and µ1 are means at GA2 and GA1,  y1 is the observation at GA1,

and 2
1σ the variance at GA1

Conditional variance is given by
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4) Conditional reference interval
µ2|1  +  z  σ2|1

Pulsatility index PISMA

An actual transformed PISMA observation may be expressed by the regression mean as a
function
of gestational age (GA) in weeks and residuals as

(fetus)2levelandon)(observati1level

denotesandresiduals,uand,and,001147983.0ˆand,0.0779139ˆ

,2424218.0ˆwhere,GAˆuGAˆeuˆy
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1) Unconditional mean and variance
PISMA was transformed to the 0.503 power.
Transformed mean= µ
=0.2424218+0.0779139 GA –0.001147983 GA2 which may be ”backtransformed” as µ(1/0.503)

Variance
=σ2

22
101

2
0

2
0 GAGA2 uuue ˆˆˆˆ σσσσ +++=

=0.03710171 – 0.001855088 GA + 0.000036501 GA2

2) Unconditional reference interval is given by

ly.respectives,percentile5.97and,95,90,75,50,25,10,5,5.2thefor96.1

and,645.1,282.1,674.0,674.0,282.1,645.1,96.1zˆ and deviation standard  theiswhere

,ẑ
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−−−−=
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σ
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3) Conditional mean and variance

The covariance between the first and a later observation (at gestational ages GA1 and GA2) is
set as the level-2 covariance as the level-1 covariance is assumed to be zero. The covariance is
given by

 GA2 GA1 10.00003650GA2)(GA1 40.00092754   .026036670

2GA1GAGA2)(GA12 2
1u01u

2
012

+++=

+++= σσσσ ˆˆˆ u

Conditional mean µ2|1 is given by
2
112112 /)( σσµµ −+ y

were µ2 and µ1 are means at GA2 and GA1,  y1 is the observation at GA1,

and 2
1σ the variance at GA1; in this case the variance is independent of gestational age.
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Conditional variance is given by
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4) Conditional reference interval
µ2|1  +  z  σ2|1

Time averaged maximum velocity VSMAtamx

An actual transformed VSMAtamx observation may be expressed by the regression mean as a
function of gestational age (GA) in weeks and residuals as

(fetus)2levelandon)(observati1level

denotesandresiduals,andand0808681and7906693

1782324whereGAln(GA)euy
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1) Unconditional mean and variance
VSMAtamx was transformed to the 0.338 power.

Transformed mean= µ
= –4.178232+3.790669 ln(GA) –1.080868 GA0.5

which may be ”backtransformed” as µ(1/0.338)

Variance
2σ̂=

2
0

2
0 ue ˆˆ σσ +=

=0.03200046 + 0.005569469 =0.037569929

2) Unconditional reference interval is given by
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3) Conditional mean and variance
The covariance between the first and a later observation (at gestational ages GA1 and GA2) is
set as the level-2 covariance as the level-1 covariance is assumed to be zero. The covariance is
given by

40.00556946
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Conditional mean µ2|1 is given by
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were µ2 and µ1 are means at GA2 and GA1,  y1 is the observation at GA1,

and 2
1σ the variance at GA1; in this case the variance is independent of gestational age.

Conditional variance is given by
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4) Conditional reference interval
µ2|1  +  z  σ2|1



21

Table 1 Longitudinal reference ranges for the superior mesenteric artery peak

systolic velocity (cm/s) based on 589 observations in 161 low-risk pregnancies

CentileGestation
(weeks)

50 2.5 5 10 25 75 90 95 97.5
21 29 17 19 21 25 34 39 42 44
22 32 20 21 24 27 37 42 45 48
23 35 22 24 26 30 40 45 49 52
24 38 24 26 28 33 43 49 52 55
25 40 26 28 31 35 46 52 56 59
26 43 28 30 33 37 49 55 59 62
27 46 30 32 35 40 52 58 62 65
28 48 32 34 37 42 55 61 65 69
29 50 33 36 39 44 57 64 68 72
30 53 35 37 40 46 60 67 71 75
31 55 36 39 42 48 62 69 73 77
32 56 37 40 43 49 64 71 76 80
33 58 38 41 45 51 66 73 78 82
34 60 39 42 46 52 68 75 80 85
35 61 40 43 47 53 69 77 82 87
36 62 40 44 47 54 70 79 84 88
37 63 41 44 48 55 71 80 85 90
38 63 41 44 48 55 72 81 86 91
39 64 41 44 48 55 73 82 87 92
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Table 2 Longitudinal reference ranges for the superior mesenteric artery time
averaged maximum velocity (cm/s) based on 589 observations in 161 low-risk

pregnancies.
CentilesGestation

(weeks)
50 2.5 5 10 25 75 90 95 97.5

21 13 8 9 10 11 16 18 19 21
22 15 9 10 11 12 17 19 21 22
23 15 10 10 11 13 18 20 22 23
24 16 10 11 12 14 19 22 23 25
25 17 11 12 13 15 20 23 24 26
26 18 11 12 14 16 21 24 25 27
27 19 12 13 14 16 22 24 26 28
28 20 13 14 15 17 22 25 27 29
29 20 13 14 15 18 23 26 28 30
30 21 14 15 16 18 24 27 29 30
31 22 14 15 16 19 25 28 30 31
32 22 14 16 17 19 25 28 30 32
33 23 15 16 17 20 26 29 31 33
34 23 15 16 18 20 26 29 31 33
35 23 15 17 18 20 27 30 32 34
36 24 16 17 18 21 27 30 32 34
37 24 16 17 19 21 28 31 33 35
38 24 16 17 19 21 28 31 33 35
39 25 16 18 19 22 28 31 34 35
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Table 3 Longitudinal reference ranges for the superior mesenteric artery
pulsatility index based on 589 observations in 161 low-risk pregnancies

CentilesGestation
(weeks)

50 2.5 5 10 25 75 90 95 97.5
21 1.88 1.29 1.38 1.48 1.66 2.10 2.31 2.45 2.57
22 1.95 1.36 1.45 1.56 1.74 2.18 2.40 2.53 2.65
23 2.03 1.43 1.52 1.63 1.82 2.26 2.48 2.61 2.73
24 2.10 1.50 1.59 1.69 1.88 2.33 2.55 2.69 2.81
25 2.16 1.55 1.64 1.75 1.94 2.40 2.62 2.76 2.88
26 2.22 1.60 1.69 1.80 2.00 2.46 2.68 2.82 2.95
27 2.27 1.64 1.73 1.85 2.04 2.51 2.74 2.88 3.01
28 2.32 1.67 1.77 1.88 2.08 2.56 2.79 2.93 3.06
29 2.35 1.70 1.80 1.91 2.12 2.60 2.84 2.98 3.11
30 2.38 1.72 1.82 1.94 2.14 2.64 2.87 3.02 3.15
31 2.41 1.73 1.83 1.95 2.16 2.66 2.91 3.06 3.19
32 2.42 1.73 1.84 1.96 2.17 2.68 2.93 3.09 3.22
33 2.43 1.73 1.84 1.96 2.18 2.70 2.95 3.11 3.25
34 2.43 1.72 1.83 1.95 2.17 2.70 2.96 3.12 3.26
35 2.43 1.70 1.81 1.94 2.16 2.70 2.97 3.13 3.28
36 2.41 1.68 1.79 1.92 2.15 2.70 2.97 3.13 3.28
37 2.39 1.65 1.76 1.89 2.12 2.68 2.96 3.13 3.28
38 2.37 1.61 1.72 1.85 2.09 2.66 2.94 3.11 3.27
39 2.33 1.56 1.68 1.81 2.05 2.63 2.92 3.09 3.25
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LEGENDS

Figure 1:  Colour Doppler image of the fetal superior mesenteric artery. The Doppler gate is

placed over the proximal part of the vessel.

Figure 2:  Longitudinal reference ranges for the superior mesenteric artery systolic peak

velocity (VSMA-ps) (Panel A), time averaged maximum velocity (VSMA-tamx) (Panel B), and

pulsatility index (PISMA) (Panel C) with fitted 5th, 50th and 95th centiles and 95% confidence

limits for the centiles based on 589 observations.

Figure 3:  The umbilical vein (UV) is the dominant supplier of blood for perfusion of the fetal

liver.  The ductus venosus (DV) partially regulates this and its blood velocity reflects the port-

caval pressure gradient.  The superior mesenteric artery (SMA) and the splenic artery (SA) are

less prominent contributors to the liver perfusion through their capillary beds and main portal

stem (MPS).  When portal flow is low, the hepatic artery (HA) responds with an increased

direct flow to the liver tissue.
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ABSTRACT

Objectives To establish reference ranges suitable for serial
assessments of the fetal middle cerebral (MCA) and
umbilical (UA) artery blood flow velocities, pulsatility
index (PI) and cerebroplacental pulsatility ratio and
to provide terms for calculating conditional reference
intervals suitable for individual serial measurements.

Methods This was a longitudinal study of 161 singleton
pregnancies. Using Doppler ultrasound, MCA and UA
blood velocities and PI were determined three to five
times at 3–5-week intervals over a gestational age range
of 19–41 weeks. Polynomial regression lines for the
95th, 50th and 5th percentiles were calculated for the
peak systolic velocity (PSV), time-averaged maximum
velocity (TAMXV), PI and cerebroplacental ratio. Terms
for calculating conditional reference intervals were
established.

Results Based on 566 observations our new longitudinal
reference ranges for fetal middle cerebral PSV, TAMXV
and PI provided terms for calculating conditional ref-
erence intervals (i.e. predicting expected 95% confidence
limits based on a previous measurement), and correspond-
ingly for the cerebroplacental ratio (n = 550). The refer-
ence ranges were at some variance with those of previous
cross-sectional studies. The narrow 95% confidence limits
for the 5th and 95th percentiles ensured reliable ranges.

Conclusions We have established longitudinal reference
ranges appropriate for the serial assessment of MCA blood
velocities and PI and cerebroplacental ratio. Particularly
the terms for calculating conditional ranges based on a
previous observation make this system more appropriate
for longitudinal monitoring than are cross-sectional data.

Copyright  2007 ISUOG. Published by John Wiley &
Sons, Ltd.

INTRODUCTION

Evaluation of the cerebral blood flow in the fetus has
become an integrated part of the assessment of high-
risk pregnancies. The middle cerebral artery (MCA) has
been studied extensively, and its Doppler recordings are
incorporated regularly into the management of fetuses
at risk of developing placental compromise and fetal
anemia. In cases of intrauterine growth restriction (IUGR),
clinical management is based primarily on the waveform
analysis, i.e. the pulsatility index (PI), a low PI reflecting
redistribution of cardiac output to the brain1,2. MCA peak
systolic velocity (PSV) is used mainly for the prediction
and management of fetal anemia3–5. However, high
MCA-PSV has been shown to predict perinatal mortality
better than does low MCA-PI in a group of IUGR fetuses6.
The surveillance of fetuses at risk usually requires serial
Doppler measurements, including that of the MCA.

The use of such parameters depends on appropriate
reference ranges7. However, while several cross-sectional
reference ranges are now in use8–10, these are less suitable
for serial observations because the appropriate reference
ranges for serial measurements require longitudinal
data11. A few longitudinal studies have been published,
but they suffer from too few participants, or lack ranges
for commonly used parameters, and none has developed
conditional terms for repeat measurements12–14.

Combining the Doppler waveform analysis of the
MCA with that of the umbilical artery (UA) by a
common cerebroplacental ratio, i.e. the ratio of their
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pulsatility indices has been suggested as a useful clinical
simplification15. A low cerebroplacental ratio reflects
redistribution of the cardiac output to the cerebral
circulation and has been shown to improve accuracy
in predicting adverse outcome compared with MCA
or UA Doppler alone16–20. The ratio has increasingly
been incorporated in the surveillance of the fetus at risk
by repeating the assessment at intervals21–23. Reference
ranges currently in use for the cerebroplacental ratio
assessment21,24–26 are based on cross-sectional studies
and thus suitable for single observations27,28. For serial
assessments, however, the reference ranges should be
based on studies with a longitudinal design11.

The purpose of this study was therefore to establish
new longitudinal reference ranges for MCA and UA
Doppler velocities and PI and the cerebroplacental ratio,
and to provide terms for calculating conditional reference
intervals suitable for individual serial measurements.

METHODS

The study population of 161 women was recruited from
the low-risk population to a prospective longitudinal
observational study of the cerebral, splanchnic and
umbilical arterial circulation. Here we present the results
of the MCA, UA and the cerebroplacental ratio part of
that project. The regional committee for medical research
ethics approved the study protocol (REK Vest no. 203.03),
and all participants gave prior informed written consent.
Gestational age was assessed by ultrasound head biometry
at 17–20 weeks of gestation29. Multiple pregnancy, fetal
abnormalities, obstetric history of previous complications
such as pregnancy-induced hypertension, IUGR and
placental abruption excluded participation, as did the
presence of diabetes or any general chronic disease. None
of the fetuses was at risk of developing anemia. Each
woman was examined three to five times, at 3–5-week
intervals over a gestational age range of 19–41 weeks.
Complications in pregnancy and birth, birth weight,
placental weight, Apgar score, age, gender and mode
of delivery were noted. A pediatrician examined the
neonates once during the first 3 postnatal days, and any
abnormality was noted.

Doppler ultrasound measurements were recorded using
a 2–5, 4–8 or 2–7-MHz transabdominal transducer
(Voluson 730 Expert, GE Medical systems, Kretz
Ultrasound, Zipf, Austria). The high-pass filter was set to
70 Hz and in the majority of the sessions the mechanical
and thermal indices were below 1.1 and 0.9, respectively,
and they were always kept below 1.9 and 1.5. The MCA
was visualized using color flow mapping in an axial
section of the brain. The Doppler beam was directed along
the MCA, and the sample volume (median, 3 mm; mean,
3.5 mm; range, 1–7 mm) was placed over the proximal
section where the MCA emerges from the circle of Willis.
When the MCA in the near field could not be interrogated,
we used the MCA of the opposite side. The recordings
were acquired in the absence of fetal breathing or body
movements over at least three uniform heart cycles. The

Doppler waveforms were traced automatically, the PSV
and time-averaged maximum velocity (TAMXV) were
determined, and the PI was calculated according to
Gosling and King30.

The waveforms from the UA were obtained in a free-
floating loop of the umbilical cord using a corresponding
technique with the insonation in alignment with the
direction of the vessel. The velocities and PI were entered
into the statistics and the cerebroplacental ratio was
calculated as the ratio of the MCA- and UA-PI.

The number of participants needed to construct
percentiles based on cross-sectional collected data (Nc)
has been calculated to be about 15 per gestational week31.
The corresponding number for a longitudinally designed
study (Nl) is Nc/D, were D is the ‘design factor’, which
has been calculated as 2.3 in studies on fetal size7. Thus,
observations over 20 weeks correspond to Nc = 300 and
Nl = 130. An anticipated overall success rate of 80%
for Doppler measurements increased the study group
to 160 participants. Multilevel modeling was used in
order to calculate mean and percentiles for the MCA
Doppler velocities and PI according to gestational age. To
achieve normal distribution of outcome variables, we used
Box–Cox power transformation. Fractional polynomial
regression models11 were fitted to the data in order to
construct mean curves for PSV, TAMXV and PI according
to gestational age. We used multilevel modeling, where
the first level was the variance between measurements
within the same fetus and the second was the variance
between the participating women. The choice of fixed
and random components in the models was based on
gain in likelihood. The confidence interval of the mean
was calculated from the standard error (SE) of the mean.
To obtain approximate SEs around the 5th and 95th

percentiles, transformed observations ± 1.645 SD were
regressed against gestational age. The regression lines
equaled the 5th and 95th percentiles. The SE of the
regression lines was used to obtain 95% confidence
intervals around the 5th and 95th percentiles. The
longitudinal design provided the necessary information
for establishing terms for conditional reference values;
i.e. for calculating the expected value and reference
ranges conditional on a previous measurement11. Briefly,
the conditional reference interval is calculated from the
conditional mean and variance and the level-2 covariance;
the level-1 covariance is assumed to be zero11. Formulae
for conditional means and SDs are presented in Appendix
S1 online. The intraobserver and interobserver variations
were calculated with a paired sample t-test on the basis
of 20 and 14 observations, respectively. The statistical
analysis was carried out using SPSS (Statistical Package
for the Social Sciences, SPSS Inc, Chicago, IL, USA)
and the MlWin program (MlWin, Centre for Multilevel
Modelling, University of Bristol, Bristol, UK).

RESULTS

Measurements were obtained from all 161 participants:
one woman had one set of measurements, two had two

Copyright  2007 ISUOG. Published by John Wiley & Sons, Ltd. Ultrasound Obstet Gynecol 2007; 30: 287–296.
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Table 1 Characteristics of the study population (n = 161)

Characteristic Median (range) or %

Maternal age at inclusion (years) 29 (20–40)
Parity 1 (0–5)
Para 0 (%) 48.4
BMI at first visit (kg/m2) 22.9 (18.1–40.8)
Smokers (%) 2.5
Gestational age at delivery (weeks) 40.4 (35.4–42.6)
Mode of delivery spontaneous (%) 77
Induction of labor (%) 5.6
Vacuum extraction (%) 3.7
Forceps (%) 3.1
Cesarean section (%) 10.6
Placental weight (g) 720 (350–1200)
Birth weight (g) 3700 (2260–4980)
Apgar score at 5 min < 7 (%) 0.62

BMI, body mass index.

sets, 18 had three, 126 had four and 14 had five. The
median fetal age at first examination in the study was
23.3 (range, 19.3–28.4) weeks. Characteristics of the
study population are presented in Table 1. All except
three women were Caucasian. Two pregnancies were
the result of in-vitro fertilization. Five women devel-
oped pre-eclampsia (3.1%) and three women delivered
preterm (gestational age, 35–36 weeks). One fetus devel-
oped a supraventricular arrhythmia shortly before term,
and another proved to have a single umbilical artery.
There were 80 female and 81 male neonates. Participants
who developed complications after enrolment in the study
were not excluded.

We obtained measurements of the MCA in 604 of 633
sessions, giving a success rate of 95.4%. Measurements
that required an angle correction larger than 10◦ were not
included in the statistics. No angle correction was required
in 540 recordings and in 26 the angle correction was
≤ 10◦, leaving 566 observations for statistical analysis.
Unfavorable fetal position or movements were the reasons
for not achieving an acceptable measurement.

The results showed notable individual variation
with gestational age (Figure S1, available online). The
results of the MCA-PSV and PI with fitted mean and
reference intervals are presented in Figures 1 and 2. The
corresponding gestational age-specific reference values for
the 2.5th, 5th, 10th, 25th, 50th, 75th, 90th, 95th and 97.5th

percentiles are presented in Tables 2 and 3 (Table S1
and Figure S2 for the TAMXV are available online).
MCA velocities increased throughout the second half
of pregnancy. The PSV increased less during the last
10 weeks compared with the TAMXV, resulting in a
continuous decline in PI in the last 10 weeks of gestation.
This gave the PI reference curve an inverted U-shape with
a turning point at 30 weeks (Figure 2).

Terms for calculating conditional mean, SD and
ranges are presented in Appendix S1 online. A clinical
case illustrates the use of conditional ranges in serial
measurements in Figure 3. A spreadsheet for calculating
conditional mean and ranges (see Figure 3b) can be
downloaded from the UOG website (Spreadsheet S1).
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Figure 1 Peak systolic velocity (PSV) in the middle cerebral artery
(MCA) in 161 low-risk pregnancies (566 observations) with 5th,
50th and 95th percentiles (thick lines) and their corresponding 95%
CI (thin lines).
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Figure 2 Pulsatility index (PI) in the middle cerebral artery (MCA)
in 161 low-risk pregnancies (566 observations) with 5th, 50th and
95th percentiles (thick lines) and their corresponding 95% CI (thin
lines).

The intra- and interobserver study showed acceptable
reproducibility (Table 4).

We obtained 611 recordings of the UA velocity, and
550 complete sets of both MCA and UA observations.
The angle of insonation of the UA was zero degrees
in 582 observations and the median was 2 degrees in
the remaining 29 (range 1–17). The UA-PI declined
linearly from mean 1.15 at 21 weeks to 0.77 at 39 weeks
(Figure 4). Individual observations of the umbilical artery
peak systolic and time averaged maximum velocities and
calculated 5th, 50th and 95th percentiles with 95% CI are
presented in Figures 5 and 6.

The cerebroplacental ratio increased from mean 1.41 at
21 weeks of gestation to a peak 2.36 at 33 weeks, and then
decreased to 1.97 at 39 weeks (Figure 7). The 95% CI for
the 5th percentile at 21 and 39 weeks were 0.84–0.96
and 1.12–1.40 respectively, and correspondingly for the
95th percentile 2.00–2.23 and 2.74–3.07. Gestational
age specific values for the 2.5th, 5th, 10th, 50th, 75th, 90th,
95th and 97.5th percentiles for the cerebroplacental ratio
are presented in Table 5. In Figure 8 a clinical example
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Table 2 Longitudinal reference ranges for the middle cerebral artery peak systolic velocity (in cm/s) based on 566 observations in 161
low-risk pregnancies

GA
Percentile

(weeks) 2.5th 5th 10th 25th 50th 75th 90th 95th 97.5th

21 17.14 18.12 19.31 21.46 24.09 27.00 29.90 31.75 33.45
22 18.34 19.37 20.63 22.91 25.69 28.77 31.83 33.79 35.57
23 19.62 20.72 22.05 24.47 27.41 30.67 33.90 35.97 37.86
24 20.98 22.15 23.56 26.12 29.25 32.70 36.12 38.31 40.31
25 22.41 23.65 25.16 27.87 31.19 34.85 38.48 40.80 42.91
26 23.89 25.21 26.82 29.70 33.22 37.11 40.96 43.42 45.67
27 25.43 26.83 28.53 31.60 35.34 39.47 43.56 46.18 48.56
28 26.98 28.47 30.28 33.54 37.52 41.92 46.27 49.05 51.59
29 28.53 30.11 32.04 35.51 39.74 44.42 49.06 52.03 54.73
30 30.04 31.73 33.77 37.47 41.98 46.97 51.91 55.08 57.97
31 31.49 33.28 35.46 39.39 44.19 49.51 54.79 58.18 61.27
32 32.83 34.73 37.04 41.22 46.34 52.02 57.67 61.30 64.61
33 34.02 36.04 38.49 42.94 48.39 54.46 60.50 64.39 67.94
34 35.02 37.16 39.76 44.48 50.29 56.77 63.24 67.41 71.22
35 35.79 38.05 40.80 45.81 51.99 58.90 65.83 70.31 74.41
36 36.29 38.66 41.57 46.86 53.43 60.81 68.22 73.02 77.43
37 36.48 38.97 42.02 47.60 54.56 62.41 70.34 75.49 80.23
38 36.33 38.92 42.12 47.99 55.34 63.67 72.13 77.64 82.73
39 35.82 38.51 41.83 47.97 55.70 64.52 73.52 79.41 84.85

GA, gestational age.

Table 3 Longitudinal reference ranges for the middle cerebral artery pulsatility index based on 566 observations in 161 low-risk pregnancies

GA
Percentile

(weeks) 2.5th 5th 10th 25th 50th 75th 90th 95th 97.5th

21 1.12 1.18 1.26 1.41 1.60 1.82 2.04 2.19 2.33
22 1.18 1.25 1.33 1.49 1.69 1.92 2.15 2.30 2.45
23 1.24 1.32 1.41 1.57 1.78 2.01 2.25 2.41 2.56
24 1.31 1.38 1.47 1.64 1.86 2.10 2.35 2.52 2.67
25 1.36 1.44 1.54 1.71 1.94 2.19 2.45 2.62 2.78
26 1.42 1.50 1.60 1.78 2.01 2.26 2.53 2.71 2.87
27 1.46 1.55 1.65 1.83 2.06 2.33 2.60 2.78 2.95
28 1.50 1.58 1.69 1.88 2.11 2.38 2.66 2.84 3.01
29 1.53 1.61 1.71 1.91 2.15 2.42 2.70 2.88 3.05
30 1.54 1.62 1.73 1.92 2.16 2.44 2.72 2.90 3.07
31 1.54 1.62 1.73 1.92 2.16 2.43 2.71 2.90 3.07
32 1.52 1.61 1.71 1.90 2.14 2.41 2.69 2.87 3.04
33 1.49 1.58 1.68 1.87 2.10 2.37 2.64 2.82 2.98
34 1.45 1.53 1.63 1.81 2.04 2.30 2.57 2.74 2.90
35 1.39 1.47 1.56 1.74 1.96 2.21 2.47 2.64 2.80
36 1.32 1.39 1.48 1.65 1.86 2.11 2.36 2.52 2.67
37 1.23 1.30 1.39 1.55 1.75 1.98 2.22 2.38 2.52
38 1.14 1.20 1.29 1.44 1.63 1.85 2.07 2.22 2.36
39 1.04 1.10 1.18 1.32 1.49 1.70 1.91 2.05 2.18

GA, gestational age.

of a high-risk pregnancy illustrates the calculation
of conditional mean and ranges based on the first
examination. All equations and terms are listed in the
Appendix S2, and a spreadsheet for practical use is
available online (Spreadsheet S2).

DISCUSSION

We have established longitudinal reference ranges for the
MCA-PSV, -TAMXV and -PI and the cerebroplacental

ratio suitable for use with serial measurements for fetal
surveillance. We have also provided terms for calculating
conditional reference ranges needed for such longitudinal
monitoring (Appendix S1 and S2 online). In practical
terms, this means that the expected 50th percentile
and corresponding ranges can be adjusted according to
the previous observation, as shown in the examples in
Figures 3 and 8. Typically, the conditional 50th percentile
is shifted in the same direction as the index value, and
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Figure 3 (a) Serial measurements of pulsatility index (PI) in the middle cerebral artery (MCA) in a fetus under surveillance for intrauterine
growth restriction ( ), conditional mean and reference interval (5th and 95th percentiles) calculated from the first measurement ( ) and
unconditional 5th, 50th and 95th percentiles ( ). (b) Spreadsheet for the calculation of unconditional and conditional mean and
percentiles. In this example, the conditional mean and ranges for week 31 + 5 were calculated based on the measurement at 31 + 2 weeks.
1st visit, values from previous measurements; GA, gestational age.

Table 4 Intra- and interobserver variation in middle cerebral artery flow velocities and pulsatility index

Paired differences

95% CI LOA

Mean SD SEM Lower Upper t d.f. P* Lower Upper

Intraobserver variation
PSV −0.24 1.14 0.26 −0.78 −0.31 −0.90 18 0.380 −2.47 2.00
TAMXV −0.16 0.79 0.18 −0.54 0.22 −0.88 18 0.390 −1.71 1.39
PI 0.00 0.12 0.03 −0.06 0.06 0.04 18 0.970 −0.24 0.24

Interobserver variation
PSV 1.46 7.44 1.99 −2.84 5.75 0.73 13 0.477 −13.13 16.04
TAMXV 0.29 2.98 0.80 −1.43 2.01 0.36 13 0.724 −5.55 6.13
PI 0.05 0.43 0.11 −0.20 0.30 0.43 13 0.674 −0.79 0.89

*Two-tailed significance. d.f., degrees of freedom; LOA, limits of agreement; PI, pulsatility index; PSV, peak systolic velocity; SEM, standard
error of the mean; t, test value of the paired t-test; TAMXV, time-averaged maximum velocity.

the ranges are narrower compared with the unconditional
ones. This provides an objective method of assessing
changes in blood flow, which cross-sectional percentiles
cannot achieve with validity.

The reference ranges we have established for the MCA
differ slightly from those of cross-sectional studies. Our

PSV values are slightly lower compared with those
of Kurmanavicius et al.9, especially after 34 weeks of
gestation (Figure 9). Compared with Mari et al.10, our
mean values are higher from the 28th to the 35th week
of gestation. Our finding that the increase in velocity
is blunted after 36 weeks of gestation is in line with
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Figure 4 Umbilical artery pulsatility index (UA-PI) (free loop) in
161 low-risk pregnancies (611 observations) with 5th, 50th and 95th

percentiles (solid lines) and their corresponding 95% CI (dashed
lines).
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Figure 5 Umbilical artery peak systolic velocity (UA-PSV) (free
loop) in 161 low-risk pregnancies (611 observations) with 5th, 50th

and 95th percentiles (solid lines) and their corresponding 95% CI
(dashed lines).
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Figure 6 Umbilical artery time averaged maximum velocity
(UA-TAMXV) (free loop) in 161 low-risk pregnancies (611
observations) with 5th, 50th and 95th percentiles (solid lines) and
their corresponding 95% CI (dashed lines).

another small longitudinal study14, and probably reflects
a physiological reduction of vascular impedance.
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Figure 7 Cerebroplacental ratio (CP ratio) in 161 low-risk
pregnancies (550 observations) with 5th, 50th and 95th percentiles
(solid lines) and their corresponding 95% CI (dashed lines).
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Figure 8 Serial measurements of the cerebroplacental ratio (CP
ratio) in a pregnancy at risk of intrauterine growth restriction ( ).
Based on Doppler measurements and cardiotocography she was
delivered acutely at term of a girl weighing < 2.5th percentile
(2250 g). Conditional percentiles ( ) were calculated from the
first observation at gestational age 22.9 weeks. Unconditional
reference ranges are also shown ( ). The necessary terms for
calculating the conditional mean and ranges are found in Appendix
S2, and a spreadsheet for practical use is available online.

The method of using multiples of the median
for the MCA-PSV has been extremely successful in
identifying fetal anemia using single observations5. To
further improve surveillance, Detti et al.32 suggested the
steepness of a regression line constructed from three
successive measurements would indicate the severity of
the development. However, to take full advantage of
serial measurements, the calculation of longitudinally
conditioned ranges, such as in our present study, offers a
more statistically sound basis for predicting a deviation
from normal development.

Our parabolic curves for PI in the MCA are higher
than are those of Bahlmann8, and somewhat lower than
are those of Mari and Deter2 (Figure 10). However,
all the compared reference curves had similar values
for the last weeks of pregnancy. Study methodology
was expected to cause differences between our results
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Table 5 Longitudinal reference ranges for the cerebroplacental Doppler ratio (formed as a ratio of the middle cerebral and umbilical artery
pulsatility index) based on 550 observations in 161 low-risk pregnancies

GA
Percentile

(weeks) 2.5th 5th 10th 25th 50th 75th 90th 95th 97.5th

21 0.82 0.90 1.00 1.18 1.41 1.67 1.94 2.11 2.27
22 0.90 0.98 1.09 1.28 1.52 1.79 2.07 2.25 2.42
23 0.98 1.07 1.18 1.38 1.63 1.92 2.20 2.39 2.56
24 1.06 1.16 1.27 1.48 1.74 2.04 2.33 2.52 2.70
25 1.14 1.24 1.36 1.58 1.85 2.15 2.46 2.65 2.83
26 1.22 1.32 1.45 1.67 1.95 2.26 2.58 2.78 2.96
27 1.30 1.40 1.53 1.76 2.05 2.37 2.69 2.90 3.08
28 1.37 1.47 1.60 1.84 2.14 2.46 2.79 3.00 3.19
29 1.42 1.53 1.67 1.91 2.21 2.55 2.88 3.09 3.29
30 1.47 1.58 1.72 1.97 2.28 2.62 2.95 3.17 3.37
31 1.51 1.62 1.76 2.01 2.32 2.67 3.01 3.23 3.43
32 1.53 1.64 1.78 2.04 2.35 2.70 3.05 3.27 3.47
33 1.53 1.65 1.79 2.05 2.36 2.72 3.07 3.29 3.49
34 1.52 1.63 1.78 2.04 2.35 2.71 3.06 3.29 3.49
35 1.49 1.60 1.74 2.00 2.32 2.68 3.03 3.26 3.46
36 1.44 1.55 1.69 1.95 2.27 2.62 2.97 3.20 3.41
37 1.37 1.48 1.62 1.88 2.19 2.54 2.89 3.12 3.33
38 1.29 1.40 1.53 1.78 2.09 2.44 2.79 3.01 3.22
39 1.19 1.29 1.43 1.67 1.97 2.31 2.66 2.88 3.09

GA, gestational age.
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Figure 9 Mean peak systolic velocity (PSV) in the middle cerebral
artery (MCA) in our present longitudinal study ( ) compared
with that in the cross-sectional studies of Kurmanavicius et al.9

( ), Mari et al.10 ( ) and Bahlmann8 ( ).

and those of others. The study on MCA-PSV by Mari
et al.10 was retrospective and included 135 participants
at 15–42 gestational weeks, whilst the study by Mari and
Deter2 on PI included 128 participants, which, according
to Royston and Altman7, is too small a number from
which to construct reliable reference ranges. The study by
Kurmanavicius et al.9 on MCA-PSV had few observations
for the last weeks of pregnancy, whilst Bahlmann8 had
few observations in the early weeks and excluded fetuses
with biometric parameters of the head and abdomen
outside the 90% reference interval. The 95% CIs for the
5th, 50th and 95th percentiles presented here (Figures 1
and 2) assured reliable ranges for clinical use, both for
single measurements and for longitudinal surveillance,
provided that the same technique of measurement is
applied.
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Figure 10 Reference ranges (5th, 50th and 95th percentiles) for
pulsatility index (PI) in the middle cerebral artery (MCA) in our
present longitudinal study ( ) compared with those in the
cross-sectional studies of Bahlmann8 ( ), Mari and Deter2

(mean and predicted values, ) and Baschat25 (mean, ).

The variability of velocities and indices has been shown
to be larger and the PI higher in the distal portion com-
pared with the proximal third of the MCA33–36. We
therefore standardized our technique to record at the
origin of the vessel at the circle of Willis, and we recom-
mend an insonation aligned accurately along the vessel. In
our hands, this technique gave reproducible results, with
no difference between observers and acceptable limits of
agreement (Table 4). We measured TAMXV because this
parameter is robust and is influenced less by interference
compared with weighted mean velocity37. A retrospec-
tive study by Bartha et al.38 showed that time-averaged
weighted mean velocity is altered earlier than is PSV when

Copyright  2007 ISUOG. Published by John Wiley & Sons, Ltd. Ultrasound Obstet Gynecol 2007; 30: 287–296.



294 Ebbing et al.

anemia develops. We assume that TAMXV could be a cor-
responding useful parameter for surveillance of fetuses at
risk of anemia.

Our longitudinal reference ranges for the cerebropla-
cental ratio are suitable both for single observations
(Figure 7 and Table 5) and for serial measurements (when
using the corresponding terms as shown in Figure 8).
The number of included participants and observations
ensured reliable ranges as reflected in the narrow 95%
CI for the 5th, 50th and 95th percentiles (Figure 7). Our
results differ somewhat from reference curves based on
cross-sectional data (Figure 11)21,24,25. Low numbers of
observations (82)21, or unknown method of the MCA
measurement24, and different site of MCA recording (i.e.
distal section of the vessel25 rather than the recommended
proximal site,33,36,39) may have contributed to the varia-
tion between curves. The difference in design and analysis
was also expected to cause visible differences. When com-
paring our results of the UA velocities with those of
another longitudinal study with corresponding design and
insonation technique40 we found minor differences, while
the results of the UA-PI were identical, which was a
reassuring external validation.

Different approaches have been applied in order to
interpret cerebroplacental ratio results, a fixed cut-off
at = 1.0816 or cross-sectional reference ranges according
to gestational age21,24,25. Curiously, one study showed
that the use of a uniform cut-off for the second
half of pregnancy (Figure 11) predicts adverse outcome
equally well compared with using reference ranges
according to gestational age23. Cerebroplacental ratio
performs differently before and after 34 weeks of
gestation21,23, which may reflect differences in physiologic
responses with advancing development. We believe
that by introducing our new longitudinal reference
ranges and individually calculated conditional ranges
for repeat observations, the clinical application of the
cerebroplacental ratio is more in line with physiologic
development.
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1.2C
P 

ra
ti
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Figure 11 The 50th percentile for the cerebroplacental ratio (CP
ratio) established in the present longitudinal study ( ) with
95% CI ( ) compared with cross-sectional studies: Baschat and
Gembruch25 ( ), Arduini and Rizzo24 ( ), Bahado-Singh
et al.21 ( ), and categorical cut-off 1.08 ( ) according to
Gramellini et al.16.

The hypoxic index (amplitude of flow redistribution
× duration in days) was introduced by Arbeille et al. in
order to describe the cumulative intensity and duration
of hypoxia or redistribution of flow to the brain in
fetuses at risk41. The approach seems intricate and
time-consuming. Our alternative, using a spreadsheet to
calculate conditional ranges for repeat assessments of the
cerebroplacental ratio appears quicker and is individually
adjusted.

Our aim was to construct reference ranges for the
second half of pregnancy. However, we obtained insuf-
ficient numbers of observations for constructing reliable
ranges for gestational age below 21 and above 39 weeks
(Figures 1, 2 and 7). A considerably larger study popula-
tion would be needed to cover the period of 40–42 weeks
of gestation adequately, a period when a substantial pro-
portion of the women has delivered. We also aimed to
examine each participant at least three times, but one
woman had only one examination, and two had two
examinations. Nevertheless, the study population showed
overall excellent compliance.

The question may be raised as to whether our reference
ranges were applicable to the background population. The
study was based on a population that was at low risk.
The gestational age at delivery (median, 40.4 weeks),
average birth weight (mean 3660 g42) and Cesarean
section rate (approximately 12%) were in accordance
with that of the background population. By not excluding
participants who developed complications, we avoided
selection towards the supernormal and believe that our
reference ranges can be applied in a general population.

It can be argued that the study population was rather
uniformly of Nordic ethnicity and that the reference
ranges may not be equally applicable in different ethnic
populations. Apart from birth weight and placental size,
it has been shown that the effect of ethnic and socio-
economic differences is likely to be small43. Since our
data are longitudinally designed, conditional reference
ranges can be calculated for any fetus based on a previous
measurement.

In short, we have established new reference ranges
for MCA-PSV, -TAMXV and -PI as well as for the
cerebroplacental ratio based on longitudinal observations
and have provided terms for calculating the conditional
reference ranges that are needed for longitudinal
monitoring.
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SUPPLEMENTARY MATERIAL ON THE INTERNET

The following material is available from the Journal homepage:

http://www.interscience.wiley.com/jpages/0960-7692/suppmat (restricted access)

Figure S1 Raw data (566 observations) for the middle cerebral artery peak systolic blood velocity (PSV) in 161
low-risk pregnancies, illustrating the longitudinal variation in the population. Each line represents results from
one fetus.

Figure S2 Individual observations (n = 566) of time-averaged maximum velocity (TAMXV) in the middle
cerebral artery in 161 low-risk pregnancies, with fitted 5th, 50th and 95th percentiles. Thin lines represent 95%
confidence limits for these percentiles.

Table S1 Longitudinal reference ranges for the middle cerebral artery time-averaged maximum velocity (cm/s)
based on 566 observations in 161 low-risk pregnancies.

Spreadsheet S1 Excel spreadsheet for calculating unconditional and conditional ranges for serial measurements
of middle cerebral artery blood flow velocities and pulsatility index.

Spreadsheet S2 Excel spreadsheet for calculating unconditional and conditional ranges for serial measurements
of cerebroplacental pulsatility ratio.

Appendix S1 Formulae for calculating conditional means, reference ranges and SDs for serial measurements of
middle cerebral artery blood flow velocities and pulsatility index.

Appendix S2 Formulae for calculating conditional means, reference ranges and SD for serial measurements of
umbilical artery blood flow velocities and pulsatility index and the cerebroplacental ratio.
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