
A matrix-free method for

regularisation with unrestricted

variables

Bjørn Harald Fotland
June 2008

Thesis for the degree of Master of Science

Department of Informatics
University of Bergen

Norway

Notation

- Matrices are denoted by capital Latin letters such as A, B.

- Diagonal matrices are given in capital Greek letters such as Λ and Σ.

- Vectors and positive integers are represented by lower case letters such
as b and j. The type will be clear from the context.

- Lowercase Greek letters are reserved for scalar values such as δ, λ.

- ai denotes the i-th column vector of a matrix A.

- Aij denotes the element in the i-th row and the j-th column vector of
a matrix A.

An exception from the convention is ∆, which denotes a positive scalar.
Some exceptions also occur in the description of applications, although their
meaning should be clear from the context.

ii

Acknowledgements

First and foremost I would like to thank my supervisor Professor Trond
Steihaug for always having time to answer questions and discuss the thesis.
His insight and comments have been indispensable.

I visited the Institute for Informatics and Mathematical Modelling at the
Danish Technical University and I would like to thank Professor Per Christian
Hansen and others at the institute for making my stay a pleasant experience.

Last, but not least, I would like to thank my mother Bjørg Reime Fotland
for her support and Ida Gudjonsson for her support and patience.

iii

iv

Contents

1 Introduction 1

2 Regularisation and trust-region optimisation 3

2.1 Tikhonov regularisation . 6
2.2 The trust-region subproblem 8
2.3 Bridging the gap . 10

3 Matrix-free methods 13

3.1 The large-Scale TRS . 14
3.2 Adding non-negativity constraint 19
3.3 A generalisation to inequality constrained regularisation 21

4 The problems to be discussed 23

4.1 Accuracy and sensitivity of LSTRS 23
4.2 The problem . 24

5 Accuracy and stability of LSTRS 25

5.1 Tolerances and test problems 25
5.1.1 The Shaw problem . 26
5.1.2 The Heat problem . 26

5.2 Numerical equivalence . 27
5.3 Eigenpair sensitivity . 30

5.3.1 Perturbing the smallest eigenvalue 31
5.3.2 Perturbing the eigenvector of the smallest eigenvalue . 33

5.4 Concluding remarks . 34

6 Regularisation with unrestricted variables 37

6.1 The problem . 37
6.2 The general problem . 40
6.3 Penalty functions . 43
6.4 A scaling algorithm . 44

v

6.4.1 Choice of initial values 47
6.4.2 Updating strategy . 48
6.4.3 Stopping conditions . 49

7 Numerical results 51

7.1 Model predictive control: The four-tank system 51
7.1.1 Description of model 53
7.1.2 Testing . 54

7.2 Image deblurring and misalignment 55
7.2.1 A model for misalignment 57
7.2.2 Testing . 58

8 Conclusions and further work 61

A Definitions 63

B LSTRS Tolerances 65

vi

Chapter 1

Introduction

This thesis will be concerned with discrete ill-posed problems. Such a prob-
lem can be posed as an ill-conditioned linear system. The ill-conditioning
occurs naturally, often from an underlying continuous ill-posed problem, and
additional a priori information needs to be incorporated into the problem
to stabilise the solution. Discrete inverse problems are a group of problems
where, given a model and a set of measured data, the intent is to obtain a set
of model parameters. These problems occur in many fields of science. For
instance, medical imaging and geophysics.

The thesis is devoted to two related problems. The first being the norm
constrained least squares problem

min
x

1

2
‖Ax− b‖2

subject to ‖x‖ ≤ ∆,

where A ∈ R
m×n, b ∈ R

m and m and n are positive numbers. The second
problem is the partially norm constrained problem

min
x,y

1

2
‖
[

A B
]

(

x
y

)

− b‖2

subject to ‖x‖ ≤ ∆,

where A ∈ R
m×n, B ∈ R

m×p, b ∈ R
m and m, n and p are positive numbers.

While the first problem has been closely examined, the second problem
is new.

Applications in model predictive control and image misalignment can be
modelled using the second problem. Model predictive control aims to control
systems in process industries by constructing a prediction model. In image
misalignment two or more images are misaligned with respect to each other
and the task is to align the images.

1

Motivated by these applications, a method for the second problem will be
developed and applied to small and large-scale problems. The method will
use a solver for the first problem as an inner iteration. Due to the iterative
nature of the solver, its accuracy and sensitivity will be explored.

Common properties of the method and the solver are that only matrix-
vector products are required and that the methods have a low storage re-
quirement.

The thesis consists of eight chapters.
Chapter 2 first introduces concepts from numerical linear algebra. The

regularisation problem and the trust-region subproblem are subsequently pre-
sented, before showing that the problems are equivalent for a specific choice
of known values.

In Chapter 3 matrix-free methods are introduced and a recent large-scale
method for the trust-region subproblem is presented. Some recent extensions
are also discussed.

Chapter 4 explains the motivations behind the remainder of the thesis
and gives an overview the problem and applications that will be discussed.

Chapter 5 describes numerical tests carried out to investigate the accuracy
and sensitivity of the large-scale trust-region method presented in Chapter
3.

In Chapter 6 the partially norm constrained problem is explored. A
reformulation with concurrent first order optimality condations is presented
and finally an algorithm is suggested.

Chapter 7 presents applications for the partially norm constrained prob-
lem and how the application fits into the problem. Some preliminary results
are also shown.

Chapter 8 summarises the results, concludes and gives suggestions to
further work.

2

Chapter 2

Regularisation and trust-region

optimisation

This chapter first presents the common approach for solving linear systems.
Subsequently the least squares problem is explained and a few properties of
a group of problems called discrete ill-posed problems are discussed. Section
2.1 presents regularisation due to Tikhonov and Section 2.2 presents a norm
constrained quadratic problem. Finally the connection between the first two
sections is made in Section 2.3.

In numerical linear algebra one of the main goals is to solve a system of
equations

Ax = b (2.1)

with respect to x. Here A ∈ R
m×m, while x ∈ R

m and b ∈ R
m. For the

moment, let A have full rank (see Definition 2 in Appendix A).
Given A and b the aim is to obtain x by implicitly inverting A. The

implicit inversion is done by solving a set of linear systems. There are many
methods for this, each with its own properties with respect to computational
cost, stability of the solution and the structure of A. Golub and van Loan
[7] cover most of these methods. Here we restrict ourselves to the singular
value decomposition (SVD), which provides us with a good analytical tool
for explaining properties and differences between problems.

The SVD method decomposes A into three matrices U ∈ R
m×m and

V ∈ R
m×m, both orthogonal (see Definition 3 in Appendix A) and Σ =

diag(σ1, σ2, . . . , σm), such that

A = UΣV T .

The singular values σi along the diagonal of Σ are sorted such that

σ1 ≥ σ2 ≥ · · · ≥ σm.

3

Given a SVD of A, the solution of the linear system is

x = A−1b = VΣ−1UT b

where Σ−1 has the reciprocal of each element of Σ along the diagonal.
Often the right hand side b originates from measurements. This signifies

that the components in b are perturbed with measurement errors. The order
of the errors depends on the accuracy of the measuring equipment and the
precision used to store the data, called measurement errors and discretisation
errors respectively. To model the errors, b is split into two parts, b = bexact +
s, where bexact consists of the true or exact, but unknown, data and the
right part s represents the errors or noise introduced by the data acquisition
process. In some types of problems, ignoring the errors in b may have severe
effects on the solution. This will be discussed further in Section 2.1.

As A often comes from a discretisation of an integral equation, discreti-
sation errors occur here as well, although we assume that these errors are
negligible throughout the thesis.

Matrices are not always square and of full rank. If rankA < m the inverse
of A, A−1, is not defined and if we let A ∈ R

m×n, with m > n the system
may have an infinite set of solutions. Nonetheless, we seek a solution in some
sense. This can be done by relaxing the formulation of the problem. The
least squares method does precisely this, by only requiring that the difference
between both sides of (2.1), the residual, is minimised. If there is no exact
solution x to the linear system, that is, there does not exists a vector x in
the R(A), the least squares method selects the solution closest in Euclidian
distance to the range of A. On the other hand, if an infinite set of solutions
exists, the method picks the solution with minimum norm. Mathematically
the problem is written as

min
x
‖Ax− b‖,

where A ∈ R
m×n, x ∈ R

n and b ∈ R
m. Here ‖ · ‖ denotes the l2 norm (see

Definition 1 in Appendix A). This norm will be the default throughout the
thesis, ‖·‖ ≡ ‖·‖2. Other norms will be specified with appropriate subscripts.

It turns out that when using the SVD, the solution of the least squares
method is quite similar to the inverse, namely

xLS = A†b = V Σ†UT b =

n
∑

i=1

uT
i b

σi
vi, (2.2)

where xLS denotes the least squares solution. Assuming p = rankA < m,
Σ† has now non-zero elements along the first p elements of the diagonal and

4

zero elements elsewhere. A† is called the Moore-Penrose generalised inverse
or the pseudoinverse.

It is appropriate to introduce a few properties of matrices and character-
isations of problems before proceeding to Section 2.1.

The condition number of A ∈ R
m×m in the Euclidian norm is defined as

κ(A) = ‖A‖‖A−1‖ =
σ1

σm
,

where the last expression is the largest singular value divided by that smallest.
Note that κ(A) ≥ 1 for all A. If κ(A) is small, A is said to be well-conditioned
and on the other hand if κ(A) is large, A is termed ill-conditioned. If A does
not have full rank, κ(A) =∞. The accuracy of the solution largely depends
on the condition number of the matrix. In fact, as many as log10 κ(A) digits
of accuracy can be lost after solving a linear system, see [27, Theorem 12.2].

A problem is said to be well-posed (due to Hadamard) if a solution exists,
the solution is unique and the solution depends continuously on the data, b.
When a problem does not satisfy one or more of these requirements it is
termed ill-posed. From this definition we see that the least squares method
solves problems where the first two requirements are not satisfied. The third
requirement can also be stated differently; a small change in the data, b,
should cause a small change in the solution.

If the discretised problem does not satisfy the third requirement, it typ-
ically has a high condition number. Discrete inverse problems are a group
of problems having this property. The condition number of such problems is
often extremely high and if the least squares method is applied to them, it
does not produce meaningful solutions.

A classical example of an ill-posed problem is a Fredholm integral equa-
tion of the first kind, which can in general be written on the form

∫ 1

0

K(s, t)f(t)dt = g(s), 0 ≤ s ≤ 1.

where g and K are known functions and f is an unknown function. Many
inverse problems can be stated on this form. Discrete inverse problems often
consist of a discretisation of the kernel K. The right hand side g(s) is usually
a set of measurements contained in a vector b.

Discrete inverse problems are characterised by having a gradual decay
in the singular values, with no apparent jump in order of magnitude. If
such a jump exists the problem is called rank deficient and can be solved by
ignoring smaller singular values. A method called truncated SVD (TSVD)
only utilises the k largest singular values for the solution. In this way a
solution with lower resolution can be obtained by computing

5

xk =
k
∑

i=1

uT
i b

σi

vi,

where ui, vi are the i-th column vectors of U and V respectively and σi

is the i-th diagonal element of Σ. If a decomposition of A is not feasible,
we cannot easily know where to cut off the singular values and the problem
should be treated as a discrete inverse problem.

2.1 Tikhonov regularisation

The least squares method does not take the errors in the right hand side b
into account. When dealing with discrete ill-posed problems the noise must
be considered. Due to the severe ill-conditioning of A, a small perturbation
in b may change the solution completely. This leaves little confidence in the
solution.

Regularisation methods impose additional constraints on the problem in
hope of improving the accuracy and stability of the solution. The most widely
used regularisation method is Tikhonov regularisation [26].

Given a δ, the method solves the problem

min
x
‖Ax− b‖2 + δ2‖Lx‖2,

where δ is known as the regularisation parameter and L is often a discrete ap-
proximation to the first or second derivative. From here on we only consider
Tikhonov regularisation on standard form,

min
x
‖Ax− b‖2 + δ2‖x‖2. (2.3)

In literature this form is also described as zeroth-order Tikhonov regulari-
sation [2, Chapter 5], since no derivative information is used directly in the
formulation. As long as L has full rank, the standard form can be obtained
by a change of variables. If L 6= I the regularisation imposes a smoothing
constraint on the solution, and if L = I it imposes a constraint on the size
of the solution.

The least squares method minimises the residual. The goal of regularisa-
tion is twofold, minimising the norm of the residual while keeping the norm
of the solution small. Notice that if δ = 0, problem (2.3) reduces to the least
squares problem. With this in mind Tikhonov regularisation can be seen as a
way of further relaxing the original linear system (2.1). The solution closest

6

to the range of A is no longer the goal, but the solution should not stray too
far from it either.

Choosing δ is a difficult problem in itself. There are three main classical
strategies for determining the parameter, the discrepancy principle, gener-
alised cross-validation (GCV) and the L-curve criterion. The first requires
an estimate of the noise level, while the others are post priori estimates,
requiring the solution of several regularisation problems for different values
of δ. More recently another method due to Hansen et al. [10] has been
suggested to decide the regularisation parameter. This method is based on
statistical tools and fast Fourier transforms and is thereby computationally
feasible even for large-scale problems.

There are two other ways of posing the Tikhonov regularisation problem,
namely

(ATA+ δ2I)x = AT b

and

min
x

∥

∥

∥

∥

[

A
δI

]

x−
[

b
0

]∥

∥

∥

∥

Note that latter is a least squares problem. By applying the SVD, the solution
to the regularisation problem can be written as

xδ = A#
δ b =

n
∑

i=1

σ2
i

σ2
i + δ2

uT
i b

σi

vi

where xδ denotes the regularised solution using a given value of δ and A#
δ

denotes the generalised inverse also dependent on δ. The vectors ui and vi

represent the i-th vector of the orthogonal matrices in the SVD. Comparing
the solution with (2.2), only the fraction σ2

i /(σ
2
i + δ2) differ. As δ is constant

for each term in the sum, we see that as the singular values σi decrease
the weighting supplied by δ decrease. The small σi that correspond to high
frequencies are thereby dampened and the solution becomes less sensitive to
changes.

To check if regularisation is needed, the discrete Picard condition can be
used. The discrete Picard condition is said to be satisfies if |uT

i b| decay faster
than σi. Observe that if this condition holds the norm of the solution will be
small. See Figure 2.1 for an example of the typical behaviour of a discrete
ill-posed problem.

To emphasise the need for regularisation, let us look at an example.

Example 1. Given A ∈ R
20×20 and b ∈ R

20, where A is a discretisation of
the Shaw problem from [9]. A more detailed presentation of the Shaw problem
is given in Section 5.1.1.

7

0 20 40 60 80 100
10

−20

10
−10

10
0

10
10

10
20

i

Picard plot

σ

i

|u
i
Tb|

|u
i
Tb|/σ

i

Figure 2.1: A Picard plot of the Shaw test problem

The aim is to find a solution to Ax = b. A least squares approach using the
exact b gives ‖xLS‖ ≈ 4.87, while a SVD-based Tikhonov approach with the
exact b and δ = 1.93×10−5 results in the solution ‖xδ‖ ≈ 4.46. The norm of
the exact solution is ‖xexact‖ ≈ 4.46. The relative accuracy of xLS is 0.4485
and for xδ it is 0.015. Figure 2.2 compares the elements of the solutions.
Observe that the least squares solution behaves erratic in the middle of the
solution, while the Tikhonov solution follows the curve of the exact solution.

2.2 The trust-region subproblem

Optimisation methods can be divided into two main areas, line search and
trust-region methods. In this section we look closer at the latter group of
methods. The main task at each iteration is to solve a problem on the form,

min
x

1

2
xTHx+ gTx (2.4)

subject to ‖x‖ ≤ ∆,

where H ∈ R
n×n and symmetric and x, g ∈ R

n. The problem only needs to
be solved to a desired accuracy when applied to optimisation problems.

This problem represents, from an optimisation point of view, a quadratic
approximation to the function we want to find a local minimum of. The
quadratic approximation is based on the Taylor series expansion. At each
iteration of a trust-region method, we try to find a direction of decrease

8

0 5 10 15 20
−0.5

0

0.5

1

1.5

2

2.5

i

V
al

ue
 a

t x
(i)

A comparison of solutions to the Shaw problem

Least squares of exact solution
Tikhonov, δ = 1.9297e−05
Exact solution

Figure 2.2: A comparison of the least squares solution and the Tikhonov regu-
larised solution for the Shaw problem

(minimise the model) subject to a restriction on the distance ∆ from the
current iterate. ∆ is called the trust-region radius, implying that we only
trust our model around the current iterate.

The solution of the problem can be divided into two classes. Either the
solution lies inside the trust-region, and the constraint is inactive or the
solution lies on the boundary.

Observe that from a regularisation point of view, we are restricting the
size of the solution. If the solution lies strictly inside the trust-region, no
regularisation is achieved.

A special property of (2.4) is that the solution has to be on a special form.
The following theorem discovered independently by Gay [6] and Sorensen [24]
explain the structure of the solution.

The result is stated in non-standard form, with a non-positive Lagrange
multiplier, which is in accordance with papers describing a large-scale TRS
method (explained in Section 3.1) that will be central later in the thesis.

Theorem 2.2.1. A vector x∗ ∈ R
n is a global solution of the TRS

min
x∈Rn

1

2
xTHx+ gTx subject to ‖x‖ ≤ ∆

if and only if x∗ is feasible and there exists a scalar λ ≤ 0 such that

(H − λI)x∗ = −g,
λ(∆− ‖x∗‖) = 0,

(H − λI) is positive semi-definite

9

Proof. See for instance [24] or [17].

When it comes to solving the TRS we can divide the methods available
into two distinct groups. One group of methods that solve the TRS approx-
imately and another group of methods that provide exact solutions. The
former group consists of methods mainly applicable in the context of opti-
misation, where a trade-off between the efficiency and accuracy is relevant
since several TRS problems need to be solved.

The most prominent among these are Powell’s dogleg method [17, Chapter
4, p. 73], which improves on the Cauchy point by a two step approximation,
and Steihaug’s approach, see [25] or [17, Chapter 7, p. 171], a conjugate
gradients (CG) based method with a trust-region modification providing a
solution lying in a Krylov subspace [27, p. 245].

Providing an exact solution on the other hand is a more cumbersome
process, which will be discussed further in Section 3.1. The method of choice
for small and medium scale problems (where a matrix factorisation is afford-
able) is the method due to Moré and Sorensen [15]. A more recent large-scale
method, LSTRS [23], will be the main topic of Chapter 3.

2.3 Bridging the gap

It turns out that the relationship between Tikhonov regularisation and the
trust-region subproblem is quite close. Let us start out with the situation
where H = ATA and g = −AT b, and write the TRS slightly differently,

min
x

1

2
xTATAx− (Ax)T b

subject to ‖x‖2 ≤ ∆2

By adding the constant 1
2
bT b to the objective function and writing the La-

grange function of this, we get

L(x, λ) =
1

2
‖Ax− b‖2 − λ(‖x‖2 −∆2),

with λ ≤ 0 as the Lagrange parameter. Minimising with respect to x results
in

min
x

1

2
‖Ax− b‖2 − λ‖x‖2.

By selecting λ = −δ2, Tikhonov regularisation and the boundary solution of
the TRS is shown to be equivalent with the given choices of H and g.

10

Although equivalent, this is under the assumption of the right values of
the regularisation parameter and the trust-region radius. This is an im-
portant difference between trust-region based regularisation and Tikhonov
regularisation. An interesting point is that there does not seem to be many
direct relations to δ in applications. However, applications do exist for which
an estimate of ∆ is available. One such application is image processing,
where ∆ is the energy of the image signal [4, Chapter 5, p. 98].

A method for solving the TRS is presented in Chapter 3.

11

12

Chapter 3

Matrix-free methods

There are situations where the sheer size of the problem limits the use of
full matrix decompositions such as the SVD. One such situation is image
deblurring, where the right hand side, b is the measured image and A is a
point spread function (PSF) which models the blurring effect.

An image of dimensions 256× 256 has 65536 pixels (considering only the
grayscale case). To fit into a linear model the image is vectorised by stacking
each column in the image, creating a b ∈ R

m with m = 2562. Assume A is
square, then its size must be 2562 × 2562. If A was to be stored explicitly
as double precision floats it would require 2562 × 2562 × 8 bytes ≈ 32GB of
storage.

Clearly an image of this size is quite small by today’s standards. A full
matrix decomposition is certainly out of the question, due to both storage and
computational cost. Luckily PSFs and many other large A can be generated
analytically and/or stored by sparse matrix schemes which exploit the large
number of zero elements and other structure such as symmetry in A. A
matrix decomposition such as QR or SVD would introduce dense matrices.

Methods for sparse matrices and large A can only work with the actions
of A and AT and possibly a partial decomposition. These methods are called
matrix-free. They are iterative in nature, which means that they start out
by an initial estimate and then converge towards a solution. The amount
of work needed to converge is not known in advance, as opposed to direct
methods, where the computational work can be estimated precisely.

In Section 3.1 a recent matrix-free algorithm for TRS is described. An
important result about the potential hard case being the common case in
regularisation is presented. The methods presented in Section 3.2 and 3.3
show extensions to handle non-negatively constrained and linear inequality
constrained regularisation.

13

3.1 The large-Scale TRS

Large-scale or matrix-free methods are needed when the dimension of a prob-
lem is so large that either storage of A directly is not feasible or when direct
methods become too costly to compute. In this section the main topic will
be the large-scale TRS (LSTRS) method developed by Rojas et al. [23]. The
method handles all cases of the TRS and was developed with regularisation
of discrete ill-posed problems in mind.

First the idea behind the algorithm will be presented and afterwards a
small digression will be made to introduce a useful function related to the
characterisation of eigenvalues. Afterwards this function will be related to
the method. The final part covers the so-called hard case and the potential
hard case of the TRS and shows that the latter is the common case for
discrete ill-posed problems.

Recall from Section 2.2 and Theorem 2.2.1 that the global solution of the
TRS requires that

(H − λI)x = −g, (3.1)

with (H − λI) positive semidefinite and λ ≤ 0. This can be written as

(

g H
)

(

1
x

)

= λx,

which looks like an eigenvalue problem, apart from the ”missing” one in the
first component in the rightmost vector. Adding this component, along with
a modified matrix, results in

(

α gT

g H

)(

1
x

)

= λ

(

1
x

)

, (3.2)

where α is a scalar. This is a symmetric eigenvalue problem, solvable by
methods such as the QR algorithm [27, Lecture 28-29] and the Lanzcos it-
eration [27, Lecture 36]. Since the emphasis is on large-scale a variant of
the latter is used; the implicitly restarted Lanzcos method (IRLM) [14]. For
future reference, let

Bα =

(

α gT

g H

)

be the bordered matrix parametrised by α.

The main idea is to solve a sequence of parametrised eigenvalue problems,
adjusting α such that H − λI is positive semidefinite and the remaining
requirements of a global solution are satisfied.

14

Before further elaboration the secular function and its derivative will be
introduced. The secular function is related to (3.1) and the characterisation
of eigenvalues.

In the following, an analysis of the function is carried out by using the
eigenvalue decomposition, which factorises a symmetric matrix into a set of
orthonormal eigenvectors Q = [q1 q2 · · · qn] and a diagonal matrix Λ =
diag(λ1, λ2, . . . , λn), where λi, i = 1, 2, . . . , n are the eigenvalues of, such that
H = QΛQT . By convention eigenvalues are ordered non-decreasing

λ1 ≤ λ2 ≤ . . . ≤ λn,

which is the opposite of singular values.
The secular function is defined as

φ(λ) = gT (H − λI)−1g, (3.3)

and the derivative of φ at λ is

φ′(λ) = gT (H − λI)−2g. (3.4)

with the assumption that g 6= 0. Applying the eigenvalue decomposition to
(3.3) results in

φ(λ) = yT (Λ− λI)−1y

=
n
∑

i=1

y2
i

λi − λ

where y = QTg. Using a similar approach with the derivative of φ(λ) results
in

φ′(λ) =

n
∑

i=1

y2
i

(λi − λ)2
.

Observe that the poles of φ(λ) and φ′(λ) are the eigenvalues of H ; when
λ = λi. This behaviour is illustrated in Figure 3.1.

An important observation is that when gTx 6= 0, with x = −(H−λI)−1g,
the secular function and its derivative are monotonically increasing on the
interval (−∞, λ1). Also the eigenvalues of H interlace the eigenvalues of Bα.
This is known as Cauchy’s interlace theorem or the interlacing property [7,
Theorem 8.1.7] and applies to any symmetric matrix.

For (3.1) to hold, we need to ensure that H − λI is positive semidefinite.
If we can find the smallest eigenvalue λ of Bα the interlacing property ensures
that λ ≤ λ1. H − λ1I is thus positive semidefinite.

15

−3 −2 −1 0 1 2 3 4 5
−10

−5

0

5

10

λ

φ(
λ)

(a) φ(λ)

−3 −2 −1 0 1 2 3 4 5

0

2

4

6

8

10

λ

φ’
(λ

)

(b) φ′(λ)

Figure 3.1: The secular function φ(λ) and its derivative for a matrix with eigen-
values −1, 0, 1 and 3.

Given an initial α, the Hessian H and the gradient g, the strategy is
to solve the eigenvalue problem obtaining the eigenpair (λ1, (1, x

T)T) corre-
sponding to the smallest eigenvalue of Bα. From this point the H−λI will be
positive semidefinite. The next step is satisfying the remaining requirements
from Theorem 2.2.1, namely

λ(‖x‖ −∆) = 0 and λ ≤ 0. (3.5)

This is known as a complementarity condition, because either λ = 0 and the
solution is x = −H−1g, the unconstrained minimiser, or λ ≤ 0 and ‖x‖ = ∆,
which corresponds a solution on the boundary of the trust-region.

It is time to look closer at the symmetric eigenvalue problem. Multiplying
out both sides of (3.2) and rearranging result in

(H − λI)x = −g and α− λ = −gTx.

Assuming the matrix H − λI is nonsingular and substituting for x in the
right expression yields

α− λ = gT (H − λI)−1g = φ(λ)

where the right hand side is precisely the secular function (3.3). Its derivative
can be written

xTx = gT (H − λI)−2g = φ′(λ).

Observe that under the assumption that the eigenvector can be normalised
to have the first component equal to one, φ(λ) = −gTx and φ(λ) = xTx can
easily be evaluated.

16

λλ1 λ2

‖x(λ)‖2

∆2

(a) Regular case

λλ1 λ2

‖x(λ)‖2

∆2

(b) Hard case

Figure 3.2: Cases of the trust-region subproblem

The aim is now to find an α such that (3.5) holds. The secular equation
is

‖x‖2 −∆2 = 0. (3.6)

This corresponds to where ∆2 intersects φ′(λ), see Figure 3.2a. Since interest
lies only in the interval (−∞, λ1) we know that the function is monotonically
increasing and the intersection is unique. As long as a decomposition of H
is affordable, Newton’s method can be applied to solve the equation. Large-
scale options are the secant method or rational approximations. LSTRS uses
the latter, but not directly on the highly nonlinear secular equation. Instead
the following equation

1

φ′(λ)
− 1

∆2
= 0,

is used. This equation is nonlinear, but typically has linear behaviour near
the poles.

At each iteration a new α is chosen using rational interpolation on the
available points of φ(λ) and φ′(λ), with safeguarding to guarantee conver-
gence.

Up until now only the case where gTx 6= 0 has been discussed. If gTx = 0
the method lined out will break down. The two cases can be seen in Figure
3.2. The hard case only occurs when H − λI is positive semidefinite and
singular, or indefinite.

As a symmetric eigenvalue problem this corresponds to the case where
the first component of the eigenvector cannot be normalised,

(

α gT

g H

)(

0
x

)

= λ

(

0
x

)

.

17

When the eigenvector cannot be normalised it can be shown [22, The-
orem 3.1] that any other eigenvector can be normalised to have the first
component equal to one. Due to this, LSTRS computes the two eigenpairs,
corresponding to the smallest eigenvalue and another from a cluster of the
smallest eigenvalues.

Up to now the case, known as the hard case has been ignored. Recall that
Q is the set of eigenvectors of H . The exact hard case occurs when g ⊥ Q1,
where Q1 is the submatrix spanning the subspace corresponding to λ1 and
when ‖x‖2 = ∆2. In this case the secular equation has no pole corresponding
to λ1, as shown in Figure 3.2b.

For discrete ill-posed problems H = ATA and g = −AT b, which implies
that the requirement ofH−λI positive semidefinite is automatically satisfied.
An important result for discrete ill-posed problems is that the potential hard
case or the near potential hard case is the common case [20, Lemma 3.2]. By
potential we mean that g ⊥ Q1, but ∆2 = ‖x‖2 is not necessarily satisfied
and by near we mean that g is numerically orthogonal to Q1, this makes the
secular function extremely non-linear near the pole.

To show that the potential hard case occurs frequently for discrete ill-
posed problems we need a few assumptions. First note that discrete ill-posed
problems have a cluster of small singular values. This can be observed by
making a sufficient discretisation of an underlying continuous inverse prob-
lem. Secondly, we assume that the discrete Picard condition holds, which
means that uT

j b/σj → 0 on average, as the singular values decay. Hence
uT

j b→ 0 faster than σj .
Recall the singular value decomposition A = UΣV T and that b = bexact+s,

where s is a vector of random noise. We now have H = ATA = V Σ2V T and

g = −V ΣUT b

= −V ΣUT (bexact + s).

Notice that the columns of V corresponds to eigenvector of H .
Let uj and vj denote the left and right singular vectors respectively and

σk be the k-th singular value with multiplicity mk and 1 ≤ j ≤ mk. With V
orthogonal, Vk = {vk, vk+1, . . . , vn} is a basis for the subspace corresponding
σk. The relation σ2

k = λn−k+1 is clear from the expression for H and by the
opposite ordering of eigenvalues and singular values. Choose k such that it
corresponds to the smallest eigenvalue, then Vk is equal to the eigenspace Q1

corresponding to λ1. Hence we can set x = vj. Taking the inner product
with vj results in

vT
j g = −vT

j VΣUT (bexact + s)

18

and since vT
j vi = 0, i 6= j and vT

j vj = 1 by orthogonality

vT
j g = −σk(u

T
j bexact + uT

j s).

The discrete Picard condition implies that σku
T
j bexact will be effectively zero

showing that the exact hard case occurs when there is no noise present.
As long as σk is small, the noise must be large to avoid being numerically
orthogonal, which means the potential hard case will occur.

Since there is a cluster of small singular values in discrete ill-posed prob-
lems, the potential hard case is likely to occur in multiple instances.

An interesting observation is that when σk is not very small, the noise in
s may improve the problem in the sense that only a near potential hard case
may occur. This suggests that the TRS approach to regularisation is easier
to solve for high levels of noise in b, [20, Section 3.2].

3.2 Adding non-negativity constraint

Regularisation is about imposing properties on the solution in hope of achiev-
ing more stable and accurate solutions. Ensuring non-negativity of the so-
lution is an additional requirement that can be imposed. The extension to
non-negativity has applications in for instance image deblurring, where all
pixel values must satisfy this property.

The non-negativity constrained regularisation problem is stated as

min
x

1

2
‖Ax− b‖2

subject to ‖x‖ ≤ ∆

x ≥ 0,

where x ≥ 0 and the inequality is meant componentwise.
In [21] Rojas and Steihaug presents an interior-point trust-region method

for large scale non-negative regularisation. The trust-region part is solved
by the LSTRS algorithm. The objective function used is a logarithmic bar-
rier function which eliminates the non-negativity constraint by including an
addition term in the objective function. The aim is to

min
x

1

2
‖Ax− b‖2 − µ

n
∑

i=1

log xi

subject to ‖x‖ ≤ ∆

19

The second term in the objective function goes to infinity as xi goes to
zero illustrated in Figure 3.3. Observe that as µ gets smaller the components
are allowed to approach zero. The barrier term imposes non-negativity by
forcing positivity of the solution.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

−
µ

lo
g(

x)

µ = 0.1
µ = 0.05
µ = 0.01

Figure 3.3: The barrier term with only one component x. The functions for
µ = {0.1, 0.05, 0.01} are shown in blue, red and green respectively.

At each iteration of LSTRS, a trust region problem is solved while driving
the µ parameter in the barrier term to zero. The parameter is often called
the barrier parameter or the penalty-parameter. The hope is that as µ ap-
proaches zero the non-negativity constraints are satisfied and the objective
function minimised.

Note that an extension to problems with linear inequality constraints on
the form GTx ≥ c, G ∈ R

n×p and c ∈ R
p is also discussed in the same paper.

Morigi et al. [16] suggest using a modified barrier function for the non-
negativity extension. Namely,

min
x

1

2
‖Ax− b‖2 +

φ(µ)

2
‖x‖2 − µ

n
∑

i=1

log xi

subject to ‖x‖ ≤ ∆

where φ(µ) is a positive increasing function µ ≥ 0 and φ(0) = 0. The
authors use φ(µ) = µ in numerical results. The method relies on the LSQR
method [18] to solve the TRS. LSQR is mathematically equivalent to the
conjugate gradient method. More information about LSQR with regards to
regularisation can be found in [8, Chapter 6].

20

Iterates not satisfying the non-negativity constraint are projected into
the first orthant. The extra term added, compared to the method of Rojas
and Steihaug, is introduced to secure that the modified barrier function is
strictly convex.

3.3 A generalisation to inequality constrained

regularisation

By adding linear equality constraints to the regularisation, more properties
of the solution can be included. The problem is then

min
x

1

2
‖Ax− b‖2

subject to Cx ≤ d

‖x‖ ≤ ∆.

In Paper B in [3] Bergmann and Steihaug presents an interior-point
method for this problem. The method applies the barrier approach to the
inequality constraints, resulting in the modified problem

min
x

1

2
‖Ax− b‖2 − µ

m
∑

i=1

log(di −
n
∑

j=1

Cijxj)

subject to ‖x‖ ≤ ∆,

where µ is the barrier parameter. At each iteration the modified problem is
solved. Then a line search approach is used to assure that the step remains
feasible with respect to the inequality constraints. The barrier parameter is
chosen by an update rule based on an estimate of the dual variables, also
known as the Lagrange multipliers.

By setting C = −I and d = 0, the problem models the same situation
as in Section 3.2, which means that imaging applications are also relevant
to this problem. In [3] several imaging applications are mentioned. Among
these are the possibility to impose upper and lower bounds on the solution
and impose constraints on the mean in parts of an image or the whole image.

21

22

Chapter 4

The problems to be discussed

The previous chapters have not introduced any new results. They give an
introduction to concepts and methods used for trust-region based regulari-
sation, with emphasis on large-scale methods.

This chapter introduces the material which is treated in the upcoming
chapters. Section 4.1 describes the main motivations for Chapter 5, while
Section 4.2 introduces the problem of regularisation with unrestricted vari-
ables that will be elaborated in Chapters 6 and 7.

4.1 Accuracy and sensitivity of LSTRS

The result relating Tikhonov regularisation and the TRS is a mathematical
one. Because of the discrete nature of computers, two methods that are
mathematically equivalent may produce different results. An example of this
is the QR decomposition by the Gram-Schmidt method. The method aims
to decompose A into an orthogonal matrix Q and a tridiagonal matrix R.
The classic version of the method [27, p.51] is unstable in a sense that it
does not always produce a numerically orthogonal columns in Q. A modified
version [27, p.58] results in a more stable method. Still, the methods are
mathematically equivalent. It is therefore of interest to compare Tikhonov
regularisation with LSTRS numerically. We want to investigate to what
degree the equivalence carries over to the computational case.

As mentioned in Section 3.1 the LSTRS method relies on an iterative
eigensolver when applied to large-scale problems. Iterative methods usually
only provide approximate solutions, in this case a couple of eigenpairs (the
second reserved for the exact hard case). With this in mind a further inves-
tigation of the sensitivity of the smallest eigenvalue and its corresponding
eigenvector will be made.

23

4.2 The problem

The main goal in this thesis is to develop a large-scale method for regu-
larisation of unrestricted variables by using LSTRS as the TRS solver. By
unrestricted variables, we mean that some components of the solution are
not restricted by the trust-region constraint. We write the problem as

min
x,y

1

2
‖
[

A B
]

(

x
y

)

− b‖2 (4.1)

subject to ‖x‖ ≤ ∆.

Some immediate observations are in order. Since only the components
xi of x are restricted to be within ∆, the corresponding matrix A may be
ill-conditioned and originate for instance from an inverse problem. The unre-
stricted yi components of y imply that B must be a well-conditioned matrix
to some degree. We are therefore looking at a problem for applications where
one part of the problem need restrictions, while the other part needs no fur-
ther restrictions.

The motivation behind the development are applications in model pre-
dictive control (MPC) and imaging. In model predictive control the aim is
to adjust system parameters based on a prediction model of a system. Some
parts of a system may cause unstable predictions and need constraints on
the change allowed. Other parts may be stable and can be predicted in an
unrestricted manner.

In imaging, deblurring is a typical example of a discrete inverse problem.
Deblurring may also occur in connection with misalignment of layers in colour
images or between subsequent frames in a video. This may for instance
happen due to camera intrinsics.

In Chapter 7 the two applications will be explained in further detail, and
available test results presented.

24

Chapter 5

Accuracy and stability of

LSTRS

This chapter is devoted to numerical testing of the LSTRS algorithm with
comparisons to a conventional algorithm for Tikhonov regularisation based
on the SVD. Several inverse test problems from Hansen’s Regularization Tools
[9] are used in the tests. The LSTRS implementation used is from the Matlab
package due to Rojas et al. [23].

The overall aim is to use the LSTRS as a TRS solver for the develop-
ment of regularisation algorithms. Therefore it is assuring to verify that the
mathematical properties carry over to the computational case. Especially so
since the use of TRS based algorithms has yet to see wide use in practice [2,
Chapter 6, Notes].

Section 5.1 explains the test set-up, choices of variables and presents
selected test problems. In section 5.2 the boundary solution of LSTRS is
compared to Tikhonov regularisation, and finally in Section 5.3 the sensitivity
of an eigenpair used by LSTRS is explored. Concluding remarks are given in
Section 5.4.

5.1 Tolerances and test problems

To ensure convergence and to allow flexibility in the LSTRS algorithm with
respect to the type of TRS to be solved, several parameters need to be
set. Recall that regularisation problems account for the special case where
H = ATA and g = −AT b. Only the most relevant tolerance parameters for
the testing will be described here, but for completeness a description and
default values of tolerances are given in Appendix B . See [23] for further
details.

25

Since only problems in need of regularisation will be considered here,
lopts.correction and lopts.interior are disabled as suggested in [23]. The
former was disabled because it can introduce high-frequency components into
the solution and the latter was disabled because we are only interested in the
boundary solution, for which the equivalence is proven.

A relevant tolerances is ǫ∆, which requires that a boundary solution x
satisfies

(‖x‖ −∆)

∆
≤ ǫ∆.

Another is ǫInt, which declares the algebraically smallest eigenvalue of Bα.
The eigenvalue λ1 is considered positive if λ1 > −ǫInt. The parameter ǫInt = 0
in all tests, while ǫ∆ = 10−4 by default, but will be changed in some cases.

Since the Shaw problem and the inverse heat problem are recurring test
problems throughout the thesis a more detailed mathematical characterisa-
tion is given in Section 5.1.1 and Section 5.1.2.

5.1.1 The Shaw problem

The Shaw problem is a one-dimensional image restoration problem. A is the
discretisation of K(s, t) using quadrature, and f(t) is the analytical solution.

We want to solve
∫

π

2

−π

2

K(s, t)f(t)dt = g(t) for f(t).

K(s, t) = (cos(s) + cos(t))2

(

sin(u)

u

)2

u = π(sin(s) + sin(t))

f(t) = a1e
−c1(t−t1)2 + a2e

−c2(t−t2)2

The standard values given in [9] of the constants are used, namely a1 = 2,
a2 = 1, c1 = 6, c2 = 2, t1 = 0.8 and t2 = −0.5. Figure 5.1a shows the
analytic solution.

5.1.2 The Heat problem

The inverse heat equation is a Volterra integral of the first kind. Its kernel
is given by K(s, t) = k(s− t), where

k(t) =
t−3/2

2κ
√
π
e−1/(4κ2t).

K(s, t) is discretised by quadrature (see for instance [2, Chapter 3]). We

want to solve
∫ 1

0
K(s, t)f(t)dt = g(t) for f(t). The variable κ can have a

26

value between 1 and 5, where 1 gives a severely ill-conditioned problem and
5 gives a well-conditioned problem. Unless stated otherwise, κ = 1.

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

(a) The Shaw problem

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

(b) The Heat problem

Figure 5.1: Analytical solutions

5.2 Numerical equivalence

Mathematical equivalence between Tikhonov regularisation and the trust-
region subproblem was shown in Section 2.3. Assuring as this is from a
mathematical point of view, it does not in general imply that numerical al-
gorithms will be well-behaved and produce accurate or even similar solutions.

Computers do not represent floating point numbers exactly. Instead a
method similar to scientific notation is used to represent a real number as a
combination of an exponent and a mantissa. In relation to this ǫmach is often
used to denote the larger distance between two numbers in floating point
format.

Other, more relevant errors, are discretisation errors and measurement
errors. It is often the case that A is obtained from the discretisation of an
integral equation. This introduces discretisation errors. If we look at the
system Ax = b, b is nearly always obtained by measurements with some
type of equipment. Recall from Chapter 2 that we model this by having b =
bexact + s, where bexact is the unknown exact measurement, and s models the
noise. Propagation errors are also present. Depending on which algorithm is
used, the size of propagation errors may result in quite different solutions.

The L-curve criterion was mentioned in Section 2.1 as a way of deciding
the optimal regularisation parameter. This section explains tests, where a
sequence of points on the L-curve was generated for Tikhonov regularisa-

27

tion and the LSTRS method. The aim is to investigate the correspondence
between the two methods in practice.

Since the two methods are parametrised differently, Tikhonov regulari-
sation by δ and LSTRS by ∆, comparing solutions could be difficult. For-
tunately the LSTRS Matlab routine returns the non-positive Lagrange mul-
tiplier λ of (H + λ)x = −g as described in Section 3.1. The relationship
between the regularisation parameter and Lagrange multiplier is −λ = δ2.
The idea is then to solve a problem using LSTRS for different choices of ∆,
resulting in corresponding values of λ. Subsequently Tikhonov regularisa-
tion based on the SVD is applied using the relation δ2 = λ. If the algorithms
are numerically equivalent the results should be approximately the same for
each of the two methods. By numerically equivalent we mean that the norm
of the solutions and the norm of the residuals coincide to a large degree of
precision.

The L-curve typically forms an L-shape when traced out (hence its name).
Figure 5.2 shows the typical behaviour.

log ||Ax - b||

log | |x| |

Figure 5.2: L-curve behaviour. Upper left part corresponds to under-smoothing
and lower right part corresponds to over-smoothing.

Due to the parametrisation of the LSTRS method, the different λ returned
will be unevenly distributed and this also applies to the solutions. Note that
only the lower part of the L-curve is of interest here, which correspond to the
boundary solution of the TRS. Although this boundary will be adjusted, it
cannot be adjusted further than to where LSTRS starts to produce interior
solutions.

Figure 5.3 shows a comparison of the two methods using the severely ill-
posed Heat test problem for 100 point on the L-curve. Uniformly distributed
noise on the order of 10−2 was added to the right hand side b and the external
eigensolver routine was eigs lstrs gateway. Both methods produce approx-
imately equal points. This can be seen on a smaller scale by examining the

28

10
−1

10
0.1

10
0.2

10
0.3

|| Ax − b ||

||
x

||

L−curve. Problem: Heat. Dimension: 100.

LSTRS
Tikhonov

Figure 5.3: A comparison between Tikhonov and LSTRS for the Heat problem.
A blue cross denotes a point on L-curve for a Tikhonov solution, while a red circle
corresponds to the LSTRS solution.

1.2 1.4 1.6 1.8 2 2.2

10
−10

∆

||x
T

IK
H

 −
 x

LS
T

R
S
||/

||x
T

IK
H

||

Figure 5.4: Norm of the difference between the Tikhonov and the LSTRS solution
for increasing ∆.

29

norm of the difference in between the Tikhonov solutions and the LSTRS
solutions. In Figure 5.4 this difference in solutions is compared against the
increase in ∆, where ∆ is approaching ‖xexact‖ from left to right. For small
values of ∆ the difference in solutions are close to machine accuracy (using
double precision) and much more accurate than the required precision of the
solution ǫ∆ = 10−4. As ∆ increases, the difference between the Tikhonov
solutions increase, but still stays one order below ǫ∆. By setting ǫ∆ = 10−8,
the difference in solutions was decreased also for higher values of ∆.

5.3 Eigenpair sensitivity

This section tests the sensitivity of LSTRS with respect to the eigenpair
provided by the eigensolver. The LSTRS method needs two eigenpairs, where
the first corresponds to the smallest eigenvalue of

Bα =

(

α gT

g H

)

and the second corresponds to an eigenvalue from a cluster of the same
matrix. The second eigenpair is only needed when the hard case occurs.
The eigenpairs are obtained from an external eigensolver. The interfaces
provided by the Matlab code [23] are based on the Matlab functions eig and
eigs, and an additional method using a Chebychev spectral transformation
to improve convergence. In the following we restrict ourselves to the eigenpair
corresponding to the smallest eigenvalue and to the eigensolvers eig and eigs.

The eig interface makes calls to LAPACK [1], while the eigs interface
makes calls to ARPACK [14]. The difference between eig and eigs is that
the former method gives nearly exact estimates of the eigenpair, while the
latter applies the implicitly restarted Lanczos method (IRLM) and only gives
estimates of the eigenpairs. Note that eig will not be feasible when the matrix
is large, as it computes a complete eigenvalue decomposition of Bα.

The motivation behind the tests is that we want to assure that the so-
lutions produced by the method are stable in the sense that the eigensolver
used, need not produce very accurate eigenvalues. Given an inaccurate eigen-
value the LSTRS method should still be able to converge to a solution. The
stability of the eigenvectors will also be tested. During tests the eigenvalue
and corresponding eigenvector will be perturbed and the working hypothe-
sis will be that if 90 percent of the perturbations do not exhibit dramatic
change, the method will be concluded to be stable with respect to changes
in the chosen eigenpair.

30

0 20 40 60 80 100
9.4998

9.4999

9.5

9.5001

9.5002

9.5003

9.5004

9.5005

Sorted experiments

||x
p||

(a) Perturbed solutions

0 20 40 60 80 100
0.4205

0.4206

0.4207

0.4208

0.4209

0.421

0.4211

0.4212

0.4213

0.4214

Sorted experiments

||A
x p −

 b
||

(b) Perturbed residuals

Figure 5.5: Perturbed solutions and residuals using eig. Horizontal lines denote
‖xu‖ and ‖Axu − b‖

Problems from Hansen’s Regularization Tools [9] were used in the testing.
We have chosen the problems; shaw, heat (ill-conditioned) and phillips.
The right hand side, b, was perturbed by uniformly distributed random noise
on the order of 10−2, b = bexact+s and the problem matrix A is of dimensions
100× 100. The choice of ∆ was lowered from around ‖xexact‖ such that the
method produced boundary solutions for all perturbations.

For the remainder of the section only results for the Shaw problem, where
∆ = 9.5 and ‖xexact‖ ≈ 9.9820, are presented. A hundred perturbations were
made for each experiment.

5.3.1 Perturbing the smallest eigenvalue

In this experiment eig gateway.m from the LSTRS package was modified
to make it possible to perturb the eigenvalues returned from eig.

First a random vector of uniformly distributed numbers of order 10−2 was
generated. The i-th component ξi of the random vector was added to the
smallest eigenvalue value such that λ̃1 = λ1 + ξi, where λ̃1 represents the
perturbed eigenvalue. The problem was then solved for each perturbation.

Let xu denote the unperturbed solution, while xp denotes one of the
perturbed solutions. In Figure 5.5 we take a look at the different ‖xp‖ and
also the different ‖Axp− b‖. The horizontal dashed blue line in each subplot
marks the norm of the unperturbed solution and the unperturbed residual.
To make the distribution of solutions and residuals clearer, the experiments
have been sorted increasingly by ‖xp‖. Notice that this results in a decreasing

31

order for the residuals, which is in accordance with the behaviour of the L-
curve. Observe that the changes in ‖xp‖, the computed norm of the solution
is bounded by 10−4.

0 20 40 60 80 100
0

1

2

3

4

5

6
x 10

−5

Experiments sorted increasingly

||x
u −

 x
p||

/ |
|x

u||

Figure 5.6: Differences between the perturbed and the unperturbed solutions

Next the relative errors between ‖xu‖ and ‖xp‖ of the different pertur-
bations are compared in Figure 5.6. Observe that the relative error in all
cases is on the order of 10−5. In this figure and also in the previous figure
the norm of the solutions and residuals are distributed linearly.

For the unperturbed solution 7 iterations of LSTRS were required, and
also an average of 7 iterations for the perturbed values. For perturbations
on the order of 10−1 of the smallest eigenvalue, the average was 8.68. The
perturbations in the eigenvalues do not seem to have a major impact on the
number of iterations.

As a second part of this experiment a graphical representation of the
distribution of the perturbation was made. This can be seen in Figure 5.7,
were perturbations on the order of 10−1, 10−2 and 10−3 are coloured green,
red and blue respectively. In this figure we see that in all the orders of
perturbations the behaviour is similar. The distribution of solutions and
residuals is nearly linear.

By modifying the file eigs lstrs gateway.m, test were carried out using
eigs. Similar results were observed, with the exception of a few outliers. Still,
over 90 percent of the perturbations turn out to have a linear behaviour. The
results for the Shaw problem can be seen in Figure 5.8, which corresponds
to Figure 5.5.

By using the iterative eigensolver eigs we are, in addition to the iter-
ation count, able to get the total number of matrix vector products used.
This number is used to measure the efficiency of iterative and matrix-free
algorithms.

32

0 50 100
9.499

9.4995

9.5

9.5005

9.501

9.5015

Sorted experiments

||x
p||

(a) Perturbed solutions

0 50 100
0.419

0.42

0.421

0.422

0.423

0.424

Sorted experiments

||A
x p −

 b
||

(b) Perturbed residuals

Figure 5.7: Changes in distribution of perturbations for several orders of magni-
tude.

For xu, 306 matrix vector products were needed, while on average for
the different xp, 267.15 matrix vector products were needed. Notice that the
average is less than the number of matrix vector required by the unperturbed
solution. This indicates that this particular xu required more work than one
of the perturbed ones. The LSTRS method does not seem to be overly
affected by an imprecise eigenvalue from the eigensolver.

5.3.2 Perturbing the eigenvector of the smallest eigen-

value

In this section the smallest eigenvalue is left unperturbed, but the corre-
sponding eigenvector is perturbed by a vector of uniformly distributed ran-
dom noise. As LSTRS uses this vector in the final result (all but the first
component makes up the solution), the last iteration directly perturbs the
solution.

Note that due to a frequent occurrence of many small components in
eigenvectors, only relative perturbation is considered. For the eigenvector q
and the perturbation vector s we have that q̃ = q∗(1+s), where the multipli-
cation (∗) is meant componentwise and q̃ represents a perturbed eigenvector.
Table 5.1 shows the growth in number of iterations for increasing order of
perturbations. The number of iterations needed steadily increased as the
order of perturbations increase.

We look closer at the norms of the different xp and Axp−b for a perturba-
tion on the order of 10−3, in Figure 5.9. Observe that the distribution of the
solutions is similar to previous experiments, but the norms of the residuals

33

0 20 40 60 80 100
9.499

9.4995

9.5

9.5005

Sorted experiments

||x
p||

(a) Perturbed solutions

0 20 40 60 80 100
0.4205

0.421

0.4215

0.422

0.4225

0.423

Sorted experiments

||A
x p −

 b
||

(b) Perturbed residuals

Figure 5.8: Perturbed solutions and residuals using eigs. Horizontal lines denote
‖xu‖ and ‖Axu − b‖

Order of perturbations Avg. # of iterations
10−5 7.0
10−4 7.9
10−3 11.5
10−2 12.2

Table 5.1: A comparison of order of perturbations and iteration count

are starting to oscillate. The oscillations quickly get more frequent for larger
perturbations.

When perturbing the smallest eigenvector using eigs similar observations
as when using eig were made. Figures and further elaboration corresponding
to eigs is therefore omitted.

5.4 Concluding remarks

In section 5.2 we saw an example of the correspondence between Tikhonov
regularisation and the LSTRS method for boundary solutions. The methods
can be said to be numerically equivalent for small values of ∆. The values
of ∆ when getting near to ‖xexact‖ corresponds to larger differences between
the methods, although this can be improved by adjusting the tolerance ǫ∆.
The larger ∆ values correspond to where the TRS has potential hard cases,
the increasing non-linearity of the secular equation (3.6) makes it harder to

34

0 50 100
9.498

9.499

9.5

9.501

9.502

9.503

Sorted experiments

||x
p||

(a) Solutions

0 50 100
0.419

0.42

0.421

0.422

0.423

0.424

0.425

Sorted experiments

||A
x p −

 b
||

(b) Residuals

Figure 5.9: Solutions and residuals for eigenvector perturbations using eig

solve. Still LSTRS is able to solve the problems to high degree of precision
when compared with the SVD-based Tikhonov regularisation. During these
tests we have looked into perturbations of the smallest eigenvalue and its
corresponding eigenvector.

The smallest eigenvalue given by the eigensolver does not seem crucial
to a good result of the LSTRS method. A good estimate will decrease the
number of iterations, but not heavily so.

The eigenvector is more sensitive to perturbations, especially absolute
perturbations as this will make zero or small components change drastically.
Using relative perturbations, mostly large components of the eigenvector
were perturbed. This test showed that as long as small components are
kept small, perturbations of the large components do not need to be overly
accurate. Perturbation of the eigenvector also affects the number of iterations
needed by LSTRS to converge.

As mention, the test problems heat and phillips were also tested, giving
similar results. Thus the figures presented show a trend found in several
problems and is not due to special properties of the Shaw problem.

In [21] and Paper B in [3] and in Section 6.4, LSTRS is used in the
innermost loop with a repeated number of solves. It is therefore important
to know that the method is robust with respect to inaccurate solutions.

35

36

Chapter 6

Regularisation with

unrestricted variables

This chapter describes a method which allows for regularisation with some
variables left unrestricted. Section 6.1 formulates the problem and also
presents a reformulation, while in Section 6.2 a more general problem is
presented. Section 6.3 shortly describes a strategy for solving constrained
problems. Finally a method for the general problem is presented in Section
6.4.

6.1 The problem

The problem of interest is a least-squares problem where some components
of the solution are restricted to be within a closed ball ∆, while other com-
ponents remain unrestricted. Specifically the aim is to

min
x,y

1

2
‖
[

A B
]

(

x
y

)

− b‖2 (6.1)

subject to ‖x‖ ≤ ∆,

where A ∈ R
m×n, B ∈ R

m×p and full rank, b ∈ R
m and ∆ > 0. The

unknowns are x ∈ R
n and y ∈ R

p and m, n and p are positive integers such
that m ≥ p.

By formulating the problem in this way, it can be interpreted statistically
as a partially biased problem. Because Tikhonov regularisation imposes a pri-
ori knowledge on the solution it can be shown to be biased, while a weighted
least squares method can be shown to be unbiased [2, p. 21]. Notice also that

37

if p = 0 the problem reduces to the one of Tikhonov regularisation, covered
in Section 2.1.

To simplify notation, the objective function is restated as

f(x, y) =
1

2
‖
[

A B
]

(

x
y

)

− b‖2 =
1

2
‖Ax+By − b‖2. (6.2)

It follows that

f(x, y) =
1

2
(Ax+By − b)T (Ax+By − b)

=
1

2
xTATAx+

1

2
xTATBy − 1

2
xTAT b

+
1

2
yTBTBy +

1

2
yTBTAx− 1

2
yTBT b

− 1

2
bTAx− 1

2
bTBy +

1

2
bT b.

The terms xTATBy, xTAT b and yTBT b can be combined with their respective
transpose term, because β = βT for any scalar β. The objective function is
therefore simplified, resulting in

f(x, y) =
1

2
xTATAx− xTAT b+

1

2
bT b

+ yTBTAx− yTBT b+
1

2
yTBTBy.

Finally, we get

f(x, y) =
1

2
‖Ax− b‖2 + yT (BTAx+

1

2
BTBy −BT b).

Observe that given a solution (x∗, y∗) of (6.1), y∗ must be a solution of

min
y
yT (BTAx∗ +

1

2
BTBy − BT b).

This is an unconstrained quadratic problem. In general the matrix BTB is
positive semi-definite and y∗ must satisfy the linear system

BTBy∗ = BT b− BTAx∗

Since only B with full rank is considered here, BTB it is positive definite
and the solution is unique.

If B has less than full rank, the problem can be reduced by eliminating
the columns in B that are linear dependent on the others. In this case a

38

matrix decomposition is needed, which limits the size of B in a large-scale
perspective. The result of such a reduction is a decrease in the number of
unrestricted variables needed; the number of components in y∗.

The solution for a given x∗ is y∗ = −(BTB)−1BT (Ax∗− b) and for any x,
the minimal y can be uniquely determined by this expression. By substituting
for y in (6.2) we obtain

1

2
‖Ax−B(BTB)−1BT (Ax− b)− b‖2.

Rearranging the terms and setting P̂ = B(BTB)−1BT results in

1

2
‖(Ax− b)− P̂ (Ax− b)‖2,

and finally by factorising we have

1

2
‖P (Ax− b)‖2, (6.3)

where P = (I − P̂). Note that P is a projector [27, Lecture 6], which means
it has the property that P = P 2.

The reformulation of the objective function suggests a connection with
the following problem,

min
x,y

1

2
‖Âx− b̂‖2

subject to Cx+Dy = d (6.4)

‖x‖ ≤ ∆

where C ∈ R
m̂×n, D ∈ R

m̂×p and d ∈ R
m̂ and m̂ ≥ p.

This is a linear equality constrained quadratic problem with a trust-region
constraint. Note that the unknown y only appears in the equality constraints.

To compare a solution to (6.1) with a solution to (6.4) we need the first-
order necessary conditions, also known as the KKT-conditions [17, Theorem
12.1]. Since the Lagrangian function is central to the KKT-conditions it is
included for completeness. For consistency with earlier chapters, the non-
standard nonpositive Lagrange multiplier is used for inequality constraints.

The Lagrangian of (6.1) is

L(x, y, λ) =
1

2
‖Ax− b‖2 − yT (BTAx+

1

2
BTBy − BT b)− λ(‖x‖2 −∆2),

39

and the KKT-conditions are

ATAx∗ + ATBy∗ − λx∗ = AT b (6.5a)

BTAx∗ +BTBy∗ = BT b (6.5b)

‖x∗‖ ≤ ∆ (6.5c)

λ(‖x∗‖2 −∆2) = 0, (6.5d)

where λ ≤ 0.

Next we consider (6.4). Its Lagrangian is

L(x, y, z, λ) =
1

2
‖Âx− b̂‖2 − zT (Cx+Dy − d)− λ(‖x‖2 −∆2)

and its KKT-conditions are

ÂT Âx∗ − λx∗ − CT z = ÂT b̂ (6.6a)

Cx∗ +Dy∗ = d (6.6b)

‖x∗‖ ≤ ∆ (6.6c)

λ(‖x∗‖2 −∆2) = 0 (6.6d)

DT z = 0 (6.6e)

where z ∈ R
m̂ and λ ≤ 0.

When setting C = BTA, D = BTB and d = BT b into the conditions
above, z = 0, since BTB has a trivial null space. As a result of this the
equation (6.6e) equals zero and the term involving z in (6.6a) vanishes. Com-
paring what is left with the KKT conditions of (6.1), we see that only (6.6a)
appears to differ; it lacks the ATBy∗ term.

By choosing Â = PA and b̂ = Pb the KKT conditions for both problems
are the same. This is clear by observing that these choices result in the
objective function (6.3).

To summarise, we have that by proper choice of the known values in (6.4)
the solutions of the two problems, (6.1) and (6.4) coincide. Thus a problem
on the form (6.1) can be solved by an algorithm solving (6.4) and vice versa.

6.2 The general problem

In this section a problem incorporating both problems from the previous
section, is introduced.

40

Consider the following problem,

min
x,y

1

2
‖Ax+By − b‖2 (6.7)

subject to Cx+Dy = d

‖x‖ ≤ ∆.

where A ∈ R
m×n, B ∈ R

m×p, C ∈ R
m̂×n̂, D ∈ R

m̂×p̂ and b ∈ R
m, d ∈ R

m̂.
Given an algorithm for this problem we can solve problems on the forms (6.1)
and (6.4) for the right choices of coefficient matrices. If C and D are zero
matrices of appropriate dimensions, we get a problem on the same form as
(6.1). If B is a zero matrix or B has full rank, we can get the problem on
the form of (6.4). In addition, if both B and D are zero matrices or if all
components of the solution are restricted by ∆, problems on the form

min
x

1

2
‖Ax− b‖2

subject to Cx = d

‖x‖ ≤ ∆

can also be solved. Note that to solve all these cases an algorithm must
handle situations where B, C and D are zero matrices and the case where B
has full rank.

The reformulated problem (6.4) is not applicable for large-scale problems
as the matrices in its objective function are on a special form and the number
of variables in the equality constraint and the objective function differ. On
the other hand, since both problems from Section 6.1 can be solved by (6.7),
a combination might solve the problem more efficiently.

Let us now look at the equality constrained quadratic problem

min
x
ψ(x) =

1

2
xTHx+ gTx (6.8)

subject to Cx = d

where H ∈ R
n×n and symmetric and g ∈ R

n. The problem has the following
necessary conditions

Hx∗ = −g + CT z∗ (6.9)

Cx∗ = d

where z∗ ∈ R
n denotes Lagrange multipliers. Problem (6.7) fits into this

problem if the norm constraint is ignored. The Lemma 6.2.1 presents some
properties of the equality constrained quadratic problem.

41

Lemma 6.2.1. Let Z be a matrix of full rank such that CZ = 0.

(i) Let x∗ and z∗ be a solution of (6.9) and x∗ a local solution of (6.8),
then x∗ is also a global solution.

(ii) Let x∗ and z∗ be a solution of (6.9) and ZTHZ be positive semi-definite,
then x∗ is a global solution.

(iii) If x∗ and z∗ satisfy (6.9) and x∗ is a local solution, then ZTHZ is
positive semi-definite.

Proof. In the first statement (i) we have that x∗ is a local solution. The
second order necessary conditions requires that H must be positive semi-
definite. The objective function is thus convex at x∗. The constraints are also
convex, which implies that any local solution x∗ must be a global solution.

For (ii), let x be any feasible point satisfying Cx = d and let p = x∗ − x.
Cx∗ = Cx = d implies that Cp = 0. Substituting for x in the objective
function gives

ψ(x) =
1

2
(x∗ − p)TH(x∗ − p) + gT (x∗ − p)

= ψ(x∗)− pTHx∗ +
1

2
pTHp− gTp.

Replacing for the first condition in (6.9) results in

ψ(x) = ψ(x∗)− pT (−g + CT z∗) +
1

2
pTHp− gTp

= ψ(x∗)− (Cp)T z +
1

2
pTHp.

Since Cp = 0 we have

ψ(x) = ψ(x∗) +
1

2
pTHp

and p can be written p = Zu because it lies in the null space of C, where Z
is a basis for the null space.

ψ(x) = ψ(x∗) +
1

2
uTZTHZu (6.10)

Since ZTHZ is assumed to be positive semi-definite ψ(x) ≥ ψ(x∗) for all x,
which proves (ii).

For the last part (iii), we can also arrive at (6.10). Now assume that
ZTHZ is not positive semi-definite. Then 1

2
uTZTHZu < 0, which implies

that there exists an x with a smaller function value. This is a contradiction of
the assumption that x∗ is a local solution, thereby concluding the proof.

42

If we were to add trust-region constraint ‖x‖ ≤ ∆ to (6.9) there is a
possibility that the linear equality constraints are inconsistent with respect
to the size of the solution. That is, there might not be a point x satisfying
both the linear equality constraints and the trust-region constraint. When
the trust-region is applied to a subset of the components of x we have (6.7).

The first order necessary conditions of (6.7) are

[

ATA ATB
BTA BTB

] [

x∗

y∗

]

− λ∗
[

x∗

0

]

−
[

CT

DT

]

z =

[

AT

BT

]

b

[

C D
]

[

x∗

y∗

]

= d

‖x∗‖ ≤ ∆

λ∗(‖x∗‖ −∆2) = 0

where z∗ ∈ Rm̂ and λ∗ ≤ 0 are Lagrange multipliers (dual variables).
Due to the properties of the linear equality constrained quadratic problem

given in Lemma 6.2.1 together with the properties of the TRS solution given
in Theorem 2.2.1, it seems probable that the necessary conditions (6.7) also
are sufficient.

Conjecture 6.2.2. The necessary conditions for (6.7) are also sufficient.

Recall that the aim is to use LSTRS as a subroutine in an algorithm,
which means that a subproblem must be on the form of a TRS. Certainly, for
(6.7) this is not the case, as it has an additional linear equality constraint. A
strategy for avoiding constraints is to include additional terms in the function
that penalise directions where the constraints are not satisfied. This strategy
is explained in more detail in the next section.

6.3 Penalty functions

Penalty functions include constraints as terms in the objective function. In
this section the general problem (6.7) is reformulated as a penalty problem.
For simplicity the norm constraint is ignored.

Several choices are available when choosing a penalty function. The main
three classes are: quadratic, augmented Lagrangian and nonsmooth. See [17,
Chapter 17] or [5, Chapter 14] for an overview. Here the focus will be on
quadratic and nonsmooth penalty functions.

Penalty functions introduce a penalty parameter ν > 0, which is used to
adjust the weighting of the penalty terms. Quadratic penalty functions are

43

smooth and are basically made up of an additional quadratic term which in
the case of problem (6.7) results in,

Q(x, y; ν) =
1

2
‖Ax+By − b‖2 +

ν

2
‖Cx+Dy − d‖2.

Nonsmooth penalty functions have the favourable property of being exact.
Here exact means that, for a particular choice of ν, a single minimisation
of the penalty function can result in the exact solution to the non-linear
programming problem [17, Section 17.2]. Typical choices for nonsmooth
penalty functions include the l1, l2 (not squared) and l∞-norms (see Definition
1 in Appendix A), where the l1 is reported [17, p. 507] to be a common choice.

For the objective function in (6.7) the l1 penalty function is

Q(x, y; ν) =
1

2
‖Ax+By − b‖2 + ν‖Cx+Dy − d‖1. (6.11)

The exactness comes at the cost of l1-norm not being differentiable (non-
smooth). It does however have a directional derivative along any direction.
Constrained optimisation methods also use exact functions such as (6.11) as
merit functions. Merit functions are used for step acceptance. Only a suffi-
cient reduction in the merit function will lead to the acceptance of the step
and thereby the progression of the algorithm. If the step is not accepted ad-
justment of the penalty parameter may be needed. By requiring a reduction
in the merit function global convergence is assured.

6.4 A scaling algorithm

As noted in previous sections, problem (6.7) only has a norm restriction on
x. Let us look at the problem where the norm of y is also constrained by ∆,

min
x,y

=
1

2
‖Ax+By − b‖2

subject to Cx+Dy = d (6.12)

‖
[

x
y

]

‖ ≤ ∆.

Apart from the linear quality constraints this problem is on the form of a
TRS. Observe that if ‖y‖ can be kept small compared to ‖x‖, the contribution
of the components of y may be negligible.

The idea is to introduce a scaling parameter σ > 0 and apply this to y
such that ŷ = σy and let σ ց 0. Note that to keep the same problem, B

44

and D need to be scaled by the reciprocal of σ. This results in the problem,

min
x,y

1

2
‖Ax+

1

σ
Bŷ − b‖2

subject to Cx+
1

σ
Dŷ = d

‖
[

x
ŷ

]

‖ ≤ ∆.

Now the linear equality constraints need to be handled. Applying the
quadratic penalty strategy from Section 6.3 results in,

min
x,y

1

2
‖Ax+

1

σ
Bŷ − b‖2 +

ν

2
‖Cx+

1

σ
Dŷ − d‖2 (6.13)

subject to ‖
[

x
ŷ

]

‖ ≤ ∆.

where ν is the penalty parameter.
To develop an algorithm we estimate the objective function of (6.13)

around a given iterate (xT , yT)T by using a quadratic model. First we simplify
notation by introducing the following

Â =
[

A 1
σ
B
]

Ĉ =
[

C 1
σ
D
]

x̂ =

[

x
ŷ

]

Furthermore we have that

f(x̂) =
1

2
‖Âx̂− b‖2 + νc(x̂)

∇f(x̂) = ÂT Â− ÂT b+ ν∇c(x̂)
∇2f(x̂) = ÂT Â+ ν∇2c(x̂)

c(x̂) =
1

2
‖Ĉx̂− d‖2

∇c(x̂) = ĈT Ĉx̂− ĈTd

∇2c(x̂) = ĈT Ĉ.

The quadratic approximation is written as

q(x̂+ h) = f(x̂) +∇f(x̂)Th+
1

2
hT∇2f(x̂)h.

When minimising this function, constant terms f(x̂) and c(x̂) can be ignored
and the problem becomes

min
x̂+h

p(x̂+ h) =
1

2
(x̂+ h)TH(x̂+ h) + (x̂+ h)Tg

subject to ‖x̂+ h‖ ≤ ∆.

45

Algorithm 1: Backtracking subroutine

Data: x, h, ν
Result: α
α = 1, ρ ∈ (0, 1), γh ∈ (0, 1)
while m(x+ αh; ν) ≤ m(x; ν) + γhα∇m(x; ν)Th do

α = ρα
end

αk = α

where

H = ÂT Â + νĈT Ĉ and g = −ÂT b− νĈTd

By setting z = x+ h, we get the TRS problem

min
z

1

2
zTHz + zT g (6.14)

subject to ‖z‖ ≤ ∆.

As mentioned in Section 6.3, l1 penalty functions are also applicable as merit
functions. This is precisely the aim for our algorithm. Let

m(x̂; ν) =
1

2
‖Âx̂− b‖2 + ν‖Ĉx̂− d‖1 (6.15)

be the merit function. We want to ensure that a sufficient decrease of (6.15)
occurs at each iteration. It is important that the scaling of xk and the
matrices in the penalty function are equal when the function is evaluated.

To decide if the new point x̂+ results in sufficient decrease, a backtracking
approach is used. As the l1 norm is not differentiable at points x̂ where
Ĉx̂ − d = 0, this may lead to difficulties. Let us first ignore this situation
and suggest a backtracking subroutine.

From line search theory [17, Section 3.1] we have the backtracking algo-
rithm, see Algorithm 1. The backtracking approach begin by checking if the
whole step x̂+ h ensures sufficient decrease. If not, it cuts the step short to
some fraction ρ of the previous step. We will allow ρ ∈ [ρmin, ρmax] where
0 < ρmin ≤ ρmax < 1. ρmin and ρmax are lower and upper limits of ρ that
can be adjusted at each iteration.

The sufficient decrease condition is

m(x̂+; νk) ≤ m(x̂k; νk) + γhα∇m(x̂k; νk)

where x̂+ = x̂k + αh and γh ∈ (0, 1). This implies that the gradient of
m(x̂k; νk) is needed.

46

The first part of the gradient is straight forward,

∇m(x̂; ν) = ÂT Â− ÂT b+ ν∇l(x̂)

but the second part, here denoted by l(x̂) = ‖Ĉx̂−d‖1 requires more thought.
In the following the subscript k denotes the k-th component of a vector.

Since the aim is to evaluate the function, we can write the k-th partial
derivative of x̂ as

∂l(x̂)

∂x̂k
=

m̂
∑

i=1

∂|ci(x̂)|
∂x̂k

=

m̂
∑

i=1

Ĉik
ci(x̂)

|ci(x̂)|

where ci(x̂) =
∑n+p

j=1 Cijx̂j − di.
The components for which (6.15) is not differentiable correspond to the

case when the constraint is satisfied and they should therefore not contribute
to the direction and may be set equal to zero.

To express the gradient on matrix form we can write

∇l(x̂) = ĈT Ξ(Ĉx̂− d)

where Ξ = diag(1/|c1(x̂)|, 1/|c2(x̂)|, . . . , 1/|cm(x̂)|).
Recall that if ci(x) = 0 the derivative does not exist and this corresponds

to the case where get a division by zero in Ξ. From a computational point of
view this can be avoided by first evaluating Cx̂−d, and when constructing Ξ
a zero can be introduced if ci(x̂) = 0 occurs. This way of constructing ∇l(x̂)
comes from the iteratively restarted least squares (IRLS) method described
in [2, Chapter 2, Section 4].

In summary, ∇m(x̂; ν) can be constructed by the procedure outlined
above and a sufficient decrease condition can be used ensure decrease in
the merit function.

Algorithm 2 gives an overview of the scaling approach. Note that {νk}, νk →
∞ and {σk}, σk → 0.

6.4.1 Choice of initial values

An initial x0 can be obtained by solving (6.12). In other words, solving the
problem without scaling and penalty function. To get a reasonably feasible
y0, we solve

min
y
‖Dy + Cx0 − d‖. (6.16)

For regularisation problems with unrestricted variables B is assumed to have
full rank, and D = BTB is thereby symmetric positive definite and (6.16)

47

Algorithm 2: Scaling algorithm

Data: A, B, C, D, b, d, ∆ > 0, ǫf , ǫx, ǫν
Result: x∗, y∗

Choose x0, y0, ν0 > 0, σ0 ∈ (0, 1]
x̂0 = (xT

0 , y
T
0)T

k ← 0
while not converged do

Scale B and D by 1/σk

Solve (6.14) for z
Adjust scaling of xk to match z
h← z − x̂k

Compute α using Algorithm 1
x̂k+1 ← x̂k + αh
if ‖Ĉx̂k − d‖ ≥ ǫν then

Compute νk+1

else
νk+1 ← νk

end

Compute σk+1

k ← k + 1
end

x∗ ← x̂k(1 : n)
y∗ ← x̂k(n+ 1 : n + p)/σk

can be solved by a CG method if the number of variables is large. Otherwise
a direct method will suffice.

Initial values for σ and ν will depend on the problem, and are chosen in
an ad-hoc manner.

6.4.2 Updating strategy

The penalty parameter νk is updated a constant multiple as long as the
feasibility of ‖Ĉx̂ − d‖1 ≥ ǫν , where ǫν is a given tolerance. The update
constant is chosen such that γν > 0, resulting in the update rule

νk+1 = γννk.

The scaling parameter σk need to be decreased at each iteration and the
update is chosen to be constant multiple γσ ∈ (0, 1). This results in the
following update rule,

σk+1 = γσσk.

48

6.4.3 Stopping conditions

The conditions for convergence are based on the change in (6.15) and the
change between the previous iterate and the current.

|m(x̂k; νk)−m(x̂k−1; νk−1)| ≤ ǫf |m(x̂k; νk)|
and

‖x̂k − x̂k−1‖ ≤ ǫx‖x̂k‖

The tolerances ǫf and ǫx need to be supplied by the user.

49

50

Chapter 7

Numerical results

In this chapter two applications for (6.2) are presented. Numerical results
for a prototype implementation are also given. The tests were carried out in
Matlab version 7.5. In addition routines from the Matlab packages of Hansen
[9] and Rojas et al [23] were used.

In Section 7.1 an application in model predictive control is presented,
while Section 7.2 covers misalignment and image deblurring.

7.1 Model predictive control: The four-tank

system

Model predictive control (MPC) is a part of the larger field of process control.
Given a model of a facility and measurements of its current state, the aim is
to predict how changes in input, for instance the effect of a pump, will affect
the state of the system and use this prediction to drive the system towards
a steady state. At given intervals a so-called finite horizon control problem
is solved. Finite horizon means that the prediction model is sampled a finite
number of time steps. The current measured state is used as starting point.
The control problem is commonly solved by formulating it as a quadratic
programming (QP) problem, see [19] for an overview of the design process.
Only the first time step is used for adjusting the actual system. At the
following interval the system state is checked again and the control problem
is solved using the current state as the initial state.

The four-tank system, also known as the quadruple-tank process, is due
to Johannsson [13] and is used in several courses in process control. Figure
7.1 gives a schematic overview. The test setup consists of four interconnected
tanks, each with a given level of liquid, two valves and two pumps. When
voltage is applied to a pump, liquid is distributed to the connected tanks

51

h1 h2

h3 h4

Tank 1 Tank 2

Tank 3 Tank 4

Valve 1 Valve 2

Pump 1 Pump 2

Figure 7.1: The four-tank system consists of four tanks, two pumps and two
valves. The circles denoted h1, h2, h3 and h4 represent measured values.

via a valve. Pump 1 distributes liquid to Tank 1 and Tank 4, while Pump 2
distributes liquid to Tank 2 and Tank 3.

The objective is to stabilise the levels in Tank 1 and Tank 2 by adjusting
the pump voltages. In our case one pump is uncertain and may give inaccu-
rate predictions. To improve the certainty of predictions a norm constraint
is imposed, penalising the size of the predictions. The second pump is pre-
cise and is therefore not in need of additional restrictions. The relevance
to our problem (6.1) should now be clear. One part of the problem needs
regularisation, while the other is well-behaved.

As mentioned these problems are commonly modelled as a QP. In such
programs the norm constraint is usually in the l∞ norm. The choice of this
norm is believed to be mainly due to be its ease of fit into the QP framework.
As the l2 norm fits into our problem, this can be used instead. Note that
this may also make an interesting comparison between algorithms.

52

7.1.1 Description of model

The four-tank system can be described by the nonlinear model

dh1

dt
=
γ1

A1
F1 +

a3

A1

√

2gh3 −
a1

A1

√

2gh1

dh2

dt
=
γ2

A2
F2 +

a4

A2

√

2gh4 −
a2

A2

√

2gh2 (7.1)

dh3

dt
=

1− γ2

A3

F2 −
a3

A3

√

2gh3

dh4

dt
=

1− γ1

A4

F1 −
a4

A4

√

2gh4

where ai, i = 1, 2, 3, 4 is the area of each of the four pipes and Ai, i = 1, 2, 3, 4
is the cross sectional area of each of the four tanks. The flow distribution
constants, for each of the two valves, are represented by γ1 and γ2 and g is
the acceleration of gravity. F1 and F2 corresponds to the voltage applied to
each of the two pumps. Given F s

1 and F s
2 , the steady state or the stationary

point, is found by solving the equations in (7.1) set to zero, giving xs =
(hs

1, h
s
2, h

s
3, h

s
4)

T , where the superscript s denotes the steady state. Also the
following steady state variables are needed,

us =

[

F s
1

F s
2

]

and zs =

[

hs
1

hs
2

]

.

The linearised version of the system is given by

dx

dt
= Acx(t) +Bcu(t)

z(t) = Cx(t)

where

Ac =

− 1
T1

0 A3

A1T3
0

0 − 1
T2

0 A4

A2T4

0 0 − 1
T3

0

0 0 0 − 1
T4

Bc =

γ1

A1
0

0 γ2

A2

0 1−γ2

A3
1−γ1

A4
0

C =

[

1 0 0 0
0 1 0 0

]

.

and Ti = Ai

ai

√

2hs

i

g
for i = 1, . . . , 4. x(t) is the previous tank levels and

u(t) denotes the previous voltage levels. Note that these matrices do not

53

correspond to the ones for problem (6.1). A discrete-time linear system

xk+1 = Axk +Buk

zk = Cxk

can be constructed by computing

A = eAcTs

B =

∫ Ts

0

eAcsBcds.

The MPC design process formulates the problem such that a method
(usually a QP method) can be applied to it, by defining the matrices

Φ =

CA
CA2

...
CAN

Γ =

H1 0 · · · 0
H2 H1 · · · 0
...

...
...

...
HN HN−1 · · · H1

Hi = CAi−1B 1 ≤ i ≤ N

All odd numbered columns of Γ correspond to Pump 1 and all even num-
bered columns correspond to Pump 2.

We now have enough information to get the four tank system on the form
of problem (6.1). To get the problem on this form Φ is separated with respect
to each pump.

A =
[

φ1 φ3 · · · φN−1

]

B =
[

φ2 φ4 · · · φN

]

b = −Φx0 (7.2)

where x0 denotes the initial state and φi is the i-th vector of Φ. Furthermore
the linear equality constraints are constructed by setting

C = BTA D = BTB d = BT b. (7.3)

This was suggested in Section 6.1. What remains is the choice of ∆, the
restriction on the size of the solution. Once ∆ is chosen we have all the
information needed and Algorithm 2 can be applied to solve the system.

It is important to note that when solving the control problem, it is the
deviation from the steady state that is found.

7.1.2 Testing

This section describes the testing of the four-tank system by applying Al-
gorithm 2. An overview of the parameters used in testing is given in Table

54

Value Description
1.2272 ai,i, i = 1, 2, 3, 4, area of outlet pipe in cm2

380.1327 Ai, i = 1, 2, 3, 4, cross sectional area of Tank i in cm2

981 g, acceleration of gravity in cm/s2

0.45 γ1, flow distribution constant, Valve 1
0.40 γ2, flow distribution constant, Valve 2

Table 7.1: Parameters used during testing

7.1. The values are based on a test system used in labs at the Technical
University of Denmark.

The steady state was obtained by choosing F s
1 = F s

2 = 300 and solving
the system (7.1) set equal to zero.

Initial values related to the algorithm were chosen to be ν0 = 0.1 and
σ0 = 0.1. Update strategy used is γν = 10 and γσ = 0.1. Figure 7.2 shows a
result.

0 5 10 15 20 25 30
−1

−0.5

0
Pump 1

Time [30ms]

P
re

di
ct

ed
 c

ha
ng

e

0 5 10 15 20 25 30
−1000

−500

0

500
Pump 2

Time [30ms]

P
re

di
ct

ed
 c

ha
ng

e

Figure 7.2: A result for the four-tank system

One iteration for the Algorithm 2 was needed. An accuracy of only ǫ∆ =
10−1 was achieved, implying that the algorithm did not perform well on the
problem.

7.2 Image deblurring and misalignment

When images are captured by an imaging system, for example by a camera or
a microscope, blurring occurs. Blurring processes typically result in images
with less contrast and less distinct edges. During capture not all of the
high-frequency components, the parts containing details, are retained.

55

There are several types of blurring, among which the simplest is perhaps
linear motion blur, where the camera is moved in a certain direction while
capturing the image at low shutter speed. This results in a smeared unclear
image. Another form of blur is when the focal lens of the camera is wrongly
adjusted, resulting in out-of-focus blur. Yet another form of blur originates
from atmospheric turbulence. This kind of blur is often simulated by a
applying a Gaussian kernel to an image. This is illustrated with the standard
test image of Lena [28] in Figure 7.3.

(a) Original image (b) Blurred image

Figure 7.3: (a) original image, (b) image blurred by a Gaussian kernel

When digitalising an image, noise is typically introduced after the blur-
ring, adding to the complexity of deblurring. A natural starting point for
a deblurring method is to have a blurred image with noise. In the process
of trying out methods, we simulate noise by stochastic models. Typically
pseudorandom numbers distributed uniformly or by a Gaussian distribution
is added to the blurred image.

Colour images are divided into channels, where each channel represents
a distinct part of the image. The RGB (Red-Green-Blue) colour model is
one way this representation can be carried out. Each channel consists of an
array of intensities related to each of the three colours, which means that the
whole image is represented as a multidimensional array.

When capturing an image, misalignment may occur between the colour
channels. This is due to the optics and intrinsics of the camera. A source
of misalignment is digital cameras with one CCD (Charge Coupled Device).
In such cameras the incoming light is split into three parts representing each
colour in the model and stored in a filter called a Bayer pattern. If this pat-
tern is misaligned with respect to the incoming light, some light representing
another colour may be falsely interpreted, causing an incorrect distribution
of colours, [11, Chapter 7].

56

Perhaps a more common place to observe image misalignment is when
reading a newspaper. Sometimes the printing presses are misaligned causing
a displacement between the colour channels (typically using a different colour
model known as CMY (Cyan-Magenta-Yellow)), resulting in an unappealing
image.

Misalignment is also termed in a more positive way, namely alignment.
A related problem is image registration where the goal is to automatically
align related images. Registration is used in fields such as medical imaging
and computer vision.

In Section 7.2.1 a model for deblurring and misalignment is presented and
in Section 7.2.2 a test using Algorithm 2 is shown. Note that both deblurring
and misalignment are solved simultaneously in one problem.

7.2.1 A model for misalignment

To test out the algorithm we restrict ourselves to only two colour channels
and model the problem as follows. The blurring process is modelled using
atmospheric turbulence blur. The point spread function (PSF) is generated
by the blur routine from [9]. The blur was first applied to the whole test
image then two overlapping parts of the image were used to represent each
colour channel. The blurred channels, B1 and B2, were subjected to additive
noise on the order of 10−2. The mathematical model for the blurring is

A =

(

A1 0
0 A2

)

where A1, A2 ∈ R
1282×1282

represent identical PSFs. The channels are rep-
resented as matrices, to fit the problem they first needed to be vectorised
b1 = vec(B1) and similarly, b2 = vec(B2). The operation x = vec(X) per-
forms stacking of the columns of X, in the order x1, x2, . . . xn from top to
bottom.

The misalignment was modelled using homogeneous coordinates, which is
commonly used in computer graphics. See for example [12, Chapter 5]. Ho-
mogeneous coordinates allows affine translation, or misalignment, of points
to be described by a matrix operation. We get the following model for the
misalignment,

T =

1 0 mx

0 1 my

0 0 h

The numbers mx and my denote the misalignment in each direction and h
is a number different from zero. To obtain the misalignment in Euclidean
coordinates, a division by h will suffice. In the tests, h = 1 initially.

57

The misalignment is now almost on the form of (6.1). By using the PSF
matrix A, constructing a zero-padded translation matrix

B =

[

T
0

]

and the misaligned and blurred channels as b =
[

bT1 b
T
2

]T
, we have the pa-

rameters needed for the objective function. The matrices and vector corre-
sponding to the linear equality constraint can be constructed as suggested
in Section 6.1, namely C = BTA, D = BTB and d = BT b. The unknown x

represents the deblurred image channels, x =
[

xT
1 x

T
2

]T
, where x1 = vec(X1)

and x2 = vec(X2). The unknown y ∈ R
3 represents the inverse misalignment

in homogeneous coordinates. Finally we have to choose ∆. As mention in
Section 2.3, for imaging a natural choice for ∆ is energy of the image signal.

7.2.2 Testing

To test the algorithm we use the image from Figure 7.3a. Two subsections
of the image around the hat were extracted and the algorithm was applied
as outlined in the previous section.

Figure 7.4: Deblurring and misalignment result of two 128 × 128 images. The
green and red colour channel overlaps to one pixel accuracy in each direction.

For σ0 = 0.01, ν0 = 0.1 and update constants γν = 10 and γσ = 0.01.
The result for the test images is shown in Figure 7.4. A misalignment of
(mx, my) = (−30,−20) was added before running the algorithm. The result
gives nearly the inverse, namely (xs, ys) ≈ (30.95, 21.03). Since only two
colour channels were used the third channel (blue) was filled with zeros,
resulting in the black background.

58

Two iterations were needed in addition to computing x0 and y0, at the
cost of 614 matrix-vector products.

59

60

Chapter 8

Conclusions and further work

The trust-region subproblem solver was intended to be used as an inner iter-
ation of a method for the partially norm constrained least squares problem.
The solver’s accuracy and sensitivity has been explored.

First boundary solutions of the solver were compared with Tikhonov reg-
ularisation solved by SVD. The correspondence was found to be close to
machine precision for small ∆, and sufficiently adjustable for solutions near
to or in the potential hard case.

The smallest eigenvalue of the Hessian matrix in the trust-region subprob-
lem is crucial for finding solutions. The sensitivity of the smallest eigenvalue
along with its corresponding eigenvector was investigated by perturbing the
eigenvalue and eigenvector separately. Results show that the solver gives so-
lutions within the given accuracy requirement. Also the distribution of the
norm of the perturbed solutions shows an overall linear tendency.

The problem of regularisation with unrestricted variables has been pre-
sented together with a reformulation. Based on these formulations a method
applicable to large-scale problems was developed. The method seems promis-
ing in one of the two applications presented.

Some areas require further work. Among these are the need for more
strategic update choices of the penalty and scaling parameters for the scaling
algorithm. Also argumentation for that a decrease in the quadratic penalty
function guarantees a decrease in the merit function needs to be given.

The comparison with Tikhonov regularisation suggests that LSTRS solves
the boundary case of the TRS cost effective when not in a potential hard case.
As the hard case is not common in optimisation, it would be interesting to
compare the computational costs of LSTRS with other large-scale methods
which only approximate the solution of the TRS.

61

62

Appendix A

Definitions

Definition 1. The most common vector norms are the 1-norm (l1), 2-norm
(l2) and ∞-norm (l∞) defined below on a vector x ∈ R

n.

1-norm ‖x‖1 =
n
∑

i=1

|xi|

2-norm ‖x‖2 =

(

n
∑

i=1

x2
i

)1/2

=
√
xTx

∞-norm ‖x‖∞ = max
i=1,...,n

|xi|.

The second of these is often referred to as the Euclidian norm.

Definition 2. The rank of a matrix A is the dimension of the column space
of A and is denoted rankA.

A matrix that with the maximum possible rank is said to have full rank.
If not the matrix is rank deficient.

Definition 3. An orthogonal matrix is a square invertible matrix Q with
the property that Q−1 = QT .

Note that an orthogonal matrix has orthonormal columns, that is, each
column qi is normalised to have ‖qi‖ = 1.

63

64

Appendix B

LSTRS Tolerances

A description of tolerances supplied to the LSTRS method and their default
values. More information on input parameters is available in the software
manual for the LSTRS package at the LSTRS homepage1. See [23] for elab-
oration on the tolerances and other aspects of the LSTRS method.

Tolerance Default value Description
ǫ∆ 10−4 The accuracy in the norm of the solu-

tion with respect to a boundary solution
|‖x‖−∆‖

∆
≤ ǫ∆.

ǫHC 10−4 The accuracy of a quasi-optimal solution.
Let ψ(x) = 1

2
xTHx+ gTx and x∗ be the op-

timal solution and x̃ the quasi-optimal solu-
tion, then ψ(x∗) ≤ ψ(x̃) ≤ (1 − ǫHC)ψ(x∗)
must hold.

ǫInt 10−10 Declares the algebraically smallest eigenvalue
of Bα in the test for an interior solution. λ1

is considered positive if λ1 > −ǫInt.
ǫα 10−8 The safeguarding interval for α is con-

sidered too small when |αU − αL| ≤
ǫα max{|αL|, |αH|}.

ǫν 10−2 The relative size of an eigenvector component
ξ is small when |ξ| ≤ ǫξ

‖q‖
‖g‖

.

Table B.1: Tolerances of LSTRS

1http://www2.imm.dtu.dk/˜mr/lstrs.html

65

66

Bibliography

[1] E. Anderson, A. McKenney, D. Sorensen, Z. Bai, C. Bischof, L. S. Black-
ford, J. Demmel, J. J. Dongarra, J. Du Croz, S. Hammarling, et al.
LAPACK Users’ guide. SIAM, 1999. ISBN 0-89871-447-8.

[2] R. C. Aster, B. Borchers, and C. H. Thurber. Parameter Estimation and
Inverse Problems. Elsevier Academic Press, 2005. ISBN 0-12-065604-3.

[3] Ø. Bergmann. Optimization issues in medical imaging and fiber-tracking.
PhD thesis, University of Bergen, 2008. ISBN 978-82-308-0520-6.

[4] M. Bertero and P. Boccacci. Introduction to Inverse Problems in Imag-
ing. IOP Publishing, Bristol, UK, 1998. ISBN 0-7503-0435-9.

[5] A. R. Conn, N. I. M. Gould, and P. L. Toint. Trust Region Methods.
SIAM, Philadelphia, PA, 2000. ISBN 0-89871-460-5.

[6] D. M. Gay. Computing optimal locally constrained steps. SIAM Journal
on Scientific and Statistical Computing, 2(2):186–197, 1981.

[7] G. H. Golub and C. van Loan. Matrix Computations. Johns Hop-
kins University Press Baltimore, MD, USA, London, third edition, 1996.
ISBN 0-8018-5414-8.

[8] P. C. Hansen. Rank-Deficient and Discrete Ill-Posed Problems. SIAM,
Philadelphia, PA, 1998. ISBN 0-89871-403-6.

[9] P. C. Hansen. Regularization Tools version 4.0 for Matlab 7.3. Numerical
Algorithms, 46(2):189–194, 2007.

[10] P. C. Hansen, M. Kilmer, and R. H. Kjeldsen. Exploiting residual in-
formation in the parameter choice for discrete ill-posed problems. BIT,
46:41–59, 2006.

[11] P. C. Hansen, J. G. Nagy, and D. P. O’leary. Deburring Images: Matri-
ces, Spectra, and Filtering. SIAM, 2006. ISBN 0-89871-618-7.

67

[12] D. Hearn and M. Baker. Computer Graphics with OpenGL. Prentice-
Hall PTR, third edition, 2004. ISBN 0-13-120238-3.

[13] K. H. Johansson. The quadruple-tank process: a multivariable labora-
tory process with an adjustable zero. Control Systems Technology, IEEE
Transactions on, 8(3):456–465, 2000.

[14] R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK Users’ Guide:
Solution of Large-scale Eigenvalue Problems with Implicitly Restarted
Arnoldi Methods. SIAM, 1998. ISBN 0-89871-407-9.

[15] J. J. Moré and D. C. Sorensen. Computing a trust region step. SIAM
Journal on Scientific and Statistical Computing, 4(3):553–572, 1983.

[16] S. Morigi, L. Reichel, and F. Sgallari. An interior-point method for
large constrained discrete ill-posed problems. J. Comput. Appl. Math.,
in press, 2008.

[17] J. Nocedal and S. J. Wright. Numerical Optimization. Springer series
in operations research. Springer-Verlag, second edition, 2006. ISBN 0-
387-30303-0.

[18] C. C. Paige and M. A. Saunders. LSQR: An algorithm for sparse linear
equations and sparse least squares. ACM Trans. Math. Software, 8(1):
43–71, 1982.

[19] J. B. Rawlings. Tutorial overview of model predictive control. Control
Systems Magazine, IEEE, 20(3):38–52, 2000.

[20] M. Rojas and D. C. Sorensen. A trust-region approach to the regular-
ization of large-scale discrete forms of ill-posed problems. SIAM J. Sci.
Comput., 23(6):1843–1861, 2002.

[21] M. Rojas and T. Steihaug. An interior-point trust-region-based method
for large-scale non-negative regularization. Inverse Problems, 18(5):
1291–1307, 2002.

[22] M. Rojas, S. A. Santos, and D. C. Sorensen. A new matrix-free algorithm
for the large-scale trust-region subproblem. SIAM J. Optim., 11(3):611–
646, 2000.

[23] M. Rojas, S. A. Santos, and D. C. Sorensen. LSTRS: MATLAB software
for large-scale trust-region subproblems and regularization. ACM Trans.
Math. Software, 34(2):11, 2008.

68

[24] D. C. Sorensen. Newton’s method with a model trust region modifica-
tion. SIAM Journal on Numerical Analysis, 19(2):409–426, April 1982.

[25] T. Steihaug. The conjugate gradient method and trust regions in large
scale optimization. SIAM Journal on Numerical Analysis, 20(3):626–
637, 1983. ISSN 00361429.

[26] A. N. Tikhonov. Solution of incorrectly formulated problems and the
regularization method. Soviet Math. Dokl., 4:1035–1038, 1963.

[27] L. N. Trefethen and D. Bau, III, editors. Numerical Linear Algebra.
SIAM, Philadelphia, PA, 1997. ISBN 0-89871-361-7.

[28] A. G. Weber. The USC-SIPI image database version 5. USC-SIPI
Report, 315:1–24, 1997.

69

