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ABSTRACT 

This study explored the paternal contribution to stock reproductive potential in Northeast 

Arctic (NEA) cod (Gadus morhua L.). An equation for estimating total annual viable sperm 

production (VSP) was parameterised for NEA cod based on new and historical data 

obtained at the Lofoten spawning grounds. A principal component analysis indicated that 

there were no obvious changes in the relationships between the variable male traits each 

year which supported the use of a single equation for fitting the historical data. VSP was 

estimated in the time period the stock has been assessed (1946-2005). The parameterised 

equation resulted in approximately tenfold higher VSP than the original equation, but 

followed the same temporal changes. The VSP from the parameterised equation was used 

to predict recruitment in a Beverton-Holt model, but resulted in similar recruitment 

predictions as the traditional spawning stock biomass or total egg productions methods. 

Male characteristics were evaluated as possible important traits affecting the reproductive 

potential, including condition, GSI, drumming muscles mass, sperm motility and sperm 

density. Sperm density was positively correlated with GSI in 2007, but negatively 

correlated to fish length. No correlations were found in 2008 between sperm density and 

any of the evaluated male traits. Sperm motility correlated positively to gonad weight, GSI 

and drumming muscle mass in 2008. Some of these results may indicate that sperm quality 

is related to fish size. Indications of sperm quality related to fish size may affect the 

reproductive potential in exploited fish stocks where size selective harvesting can cause a 

lower mean fish size and potentially a lower sperm quality. More detailed experiments, 

including direct assessment of fertilisation success in NEA cod, may improve the 

parameterised equation which might narrow the gap of knowledge of reproductive 

processes at the population level.  
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1. INTRODUCTION 

1.1 BACKGROUND 

Northeast Arctic (NEA) cod (Gadus morhua L.) is one of the most productive cod stocks in 

the world and an economically important species spending most of its life in the Barents 

Sea (Mehl, 1991; Hjermann et al., 2007). For hundreds of years there has been a fishery on 

this stock with the greatest catches at the spawning grounds in the Lofoten area in Norway 

(Pomeroy and Berkes, 1997). The International Council for the Exploration of the Sea 

(ICES) extensively use Virtual Population Analysis when estimating past values of stock 

sizes (Ulltang, 1977; Christensen, 1996), but according to ICES it has been difficult to 

estimate the  recruitment of NEA cod due to underreporting of catches (ICES, 2007). In 

addition, there are difficulties associated with constructing robust equations for estimating 

the reproductive potential of fish stocks, and several attempts have been made to improve 

these estimates (Marteinsdottir and Thorarinsson, 1998; Trippel, 1999; Koster et al., 2001; 

Tomkiewicz et al., 2003; Trippel, 2003). 

 

Reproductive potential is an estimation of a fish stock’s ability to produce viable offspring 

that may recruit into the adult population (Trippel, 1999), hence it is an estimate of 

recruitment potential and an indicator of a stock’s resilience to exploitation. Traditionally, 

the stock-recruitment relationships are based on the egg production (Ricker, 1954; Beverton 

and Holt, 1957). Spawning stock biomass (SSB) is assumed to be a reasonable proxy for 

egg production, hence SSB has been used instead of spawner egg production per se in 

recruit relationships (Tomkiewicz et al., 2003). Problems associated within approached 

assumption are i.e. fish with a low condition that may skip spawning (Jørgensen et al., 

2006) and a low number of well-conditioned fish which are presumed to recruit equally 

according to the SSB. SSB is based on the biomass of mature fish and estimates the 

recruitment without reference to the condition, age or sex ratio of the fish (Marshall et al., 

1998; Marteinsdottir and Thorarinsson, 1998; Trippel, 1999).  

 

The stock-recruitment relationship based on SSB has proven to be noisy in many cases and 

it often appears to be non-existent (Ajiad et al., 1999; Trippel, 1999). It is important to 

develop methods to measure the reproductive potential of a fish stock that actually reflects 

the basis for recruitment in a realistic way. Trippel (1999) introduced the term Stock 
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Reproductive Potential (SRP) which was thought to be a more accurate representation of 

the recruitment with annual variations within a stock. The potential incorrectness with both 

SRP and SSB is the primary focus on females and fecundity (Tomkiewicz et al., 2003; 

Trippel, 2003; Nash et al., in press). The main reason that males have largely been ignored 

in these calculations is based on the assumption that there is an excess of sperm compared 

to the number of eggs available (Nash et al., in press). Egg fertilisation rate is assumed to 

be very high since there are few examples of unfertilised eggs in the wild (see Howell et al., 

1991 for common sole, Solea solea).  

 

Trippel (2003) found that using sperm production rather than SSB explains to some extent 

more of the variance in age three (age when maturity is attained) recruitment within 

Newfoundland and Labrador cod (Gadus morhua). He also suggests that there is merit in 

pursuing the concept of reproductive potential using the male portion of the population. 

There is a question of defining gamete quality in a meaningful way for both sexes, so as to 

determine the best predictors of fertilisation success and offspring survival for a population. 

What parameters to be measured for an accurate estimation of a stock’s recruitment are still 

unclear. Trippel (2003) presents an equation converting data on the numbers and sizes of 

male fish in a stock to an estimate of viable sperm production. Many of the relationships 

such as the proportion of testes weight to total weight, spermatocrit and sperm fertilisation 

potential are available in the published literature. However, these relationships may be 

stock specific. There are currently no data to determine relationships specifically for NEA 

cod.  

 

1.2 BIOLOGY AND BEHAVIOUR 

NEA cod feed in the Barents Sea and in the beginning of December they start migrating 

towards the Lofoten spawning grounds where they reach a peak spawning during March-

April (Dannevig, 1953; Hylen, 1964; Bergstad et al., 1987). Males display aggressive 

behaviour during the spawning period and a hierarchy is established in the spawning area 

with large males dominating over the smaller ones (Hutchings et al., 1999). Some studies 

have suggested that cod perform as promiscuous spawners, leaving few options for mate 

choice (Herbinger et al., 1997; Morgan et al., 1999). However, both new and old studies 

describe a lek spawning system where the females choose one or several males to mate with 

(Brawn, 1961b; Höglund and Alatalo, 1995; Hutchings et al., 1999; Nordeide and Folstad, 
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2000; Rowe and Hutchings, 2003; Windle and Rose, 2007). Lek is a polygynous mating 

system where males aggregate in one certain area for displaying themselves for the females 

(Höglund and Alatalo, 1995). This gives the females an opportunity to choose between the 

males and whilst the females will leave the lek after mating the males will continue their 

display towards other females (Höglund and Alatalo, 1995).  

 

NEA cod is a heavily exploited fish stock where size selective harvesting may have caused 

a decrease in mean length of males and females (Jorgensen, 1990; Nash et al., in press). 

Female NEA cod used to dominate the large length and older age classes, however no 

females with a mean length greater than 13 % of the male mean length have been observed 

since 1982 (Nash et al., in press). This may affect the fertilisation rate. The removal of 

large, old fish of both sexes is giving a corresponding increase in mean condition factor 

(Nash et al., 2005) which may again affect the gamete quality, behaviour and mating 

success among other attributes. As described in Brawn (1961b), male and female cod 

release their gametes during a ventral mount and Brawn (1961b) points out that it is 

important for cod to have a close alignment of the gonopores during the ventral mount to 

achieve a high fertilisation rate. Rakitin et al. (2001) found that males within 13% of the 

female length are able to sire entire batches of offspring, but they also mention that the 

small experimental tanks might prevent the males from performing as they would in the 

wild.  

 

Male body size has an effect on mating success in a variety of fish species (Maekawa et al., 

1994; Warner et al., 1995; Forsgren et al., 1996). Within sand gobies (Pomatoschistus 

minutus) and bluehead wrasse (Thalassoma bifasciatum) the females tend to choose larger 

males during spawning (Warner et al., 1995; Forsgren et al., 1996). A large body size is 

advantageous when competing for females (Maekawa et al., 1994) or nesting sites 

(Forsgren et al., 1996), but even though mating success may lead to fertilisation success, 

these two terms may not necessarily correspond with each other. Fertilisation success 

depends on, among other factors, sperm density (cells per millilitres of milt) and sperm 

motility (Trippel, 2003). When it comes to sperm motility, there is a possibility that smaller 

males have a fair chance to fertilise eggs through sperm competition (Rakitin et al., 2001; 

Vladic and Jarvi, 2001). 
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1.3 SPERM QUALITY 

 

Northeast Arctic cod was the fish stock of interest with a focus on running males and 

therefore the primary samples were collected at the spawning grounds in the Lofoten area 

during the spawning season. Trippel’s equation (2003) was the starting point for collecting 

the samples and choosing what sort of male reproductive traits to focus on, which included 

total fish length, fish weight, testes weight, age and milt samples. The purpose of the milt 

samples was to include them in Trippel’s equation, but also to look at sperm quality 

measurements.  

 

What exactly is sperm quality? As stated in Rurangwa et al. (2004) sperm quality is “a 

measure of the ability of sperm to successfully fertilise an egg”. All sorts of different 

physical parameters that could affect the sperm cells ability to fertilise an egg can 

potentially be used to measure sperm quality (Rurangwa et al., 2004). Sperm quality may 

depend on sperm density (Rakitin et al., 1999a; Tvedt et al., 2001; Trippel, 2003), sperm 

motility (Trippel, 2003; Gage et al., 2004) and it may also be affected by sperm 

competition (Ball and Parker, 1996; Stockley et al., 1997). In addition there are other male 

traits that may serve as indicators of sperm quality, such as the size of the drumming 

muscles (Engen and Folstad, 1999) or condition (Rakitin et al., 1999a; Rowe et al., 2007).  

 

The genital tract has storage of spermatozoa in seminal fluid which remains immotile until 

activation upon contact with water (Rurangwa et al., 2004). Spermatozoa density is one of 

the two most important criteria for male fertilisation potential according to Trippel (2003), 

hence it serves as an important quantitative measurement of sperm quality. Sperm density 

can be measured with two techniques; sperm counts of diluted milt samples and 

spermatocrit level (Rakitin et al., 1999b; Trippel, 2003). Rakitin et al. (1999b) found that 

spermatocrit level correlates positively to sperm density in Atlantic cod (Gadus morhua), 

but this has not been thoroughly studied in NEA cod. The second most important criteria 

for male fertilisation potential is sperm motility (Trippel, 2003), hence sperm motility was 

an interesting reproductive trait that was included in this study.  

 

As mentioned previously, drumming muscles may be an individual trait whose size may be 

an indication of sperm quality (Engen and Folstad, 1999). Brawn (1961a) describes the 
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drumming muscles of the cod (Gadus callarias L.) as three flattened external muscles on 

each side of the swim bladder. Both male and females have the possibility to make sounds, 

but in cod these drumming muscles are sexually dimorphic with males having larger 

muscles than females (Northeast Arctic cod, Engen and Folstad, 1999; Atlantic cod, Rowe 

and Hutchings, 2004). During the spawning season drumming muscles of males increase in 

size (Rowe and Hutchings, 2004) and primarily males will produce sound during this 

period (Brawn, 1961a). The males produce sound with their drumming muscles for both 

aggressive and courtship behaviour (Brawn, 1961a). As described in Brawn (1961a) a 

female showed more and more interest in a male for each of his “grunts” during courtship 

behaviour. Rowe and Hutchings (2008) found that drumming muscle mass is the only male 

reproductive trait that can explain the variability in male mating success and they suggested 

“that acoustic communication is fundamentally important to reproduction in Atlantic cod”.  

 

 

1.4 OBJECTIVES OF THIS STUDY 

Male reproductive traits have been studied in the context of aquaculture research for 

decades, but knowledge about male reproductive potential in natural populations of 

commercial species is almost non-existent (Trippel, 2003). By following up the male 

contribution to stock reproductive potential one might get a better understanding of the 

stock-recruitment relationship. Since fisheries management are based upon these estimates 

it is important to understand the stock-recruitment relationship to provide information about 

a population’s past and future dynamics (Rothschild and Fogarty, 1989). A greater 

knowledge of cod sperm quality and its effect on the recruitment are not only needed for 

the wild populations of cod, but also for broodstock management (Bell et al., 1996; Kime et 

al., 2001). There has always been a great focus on eggs and larvae quality within the fish 

farming industry and milt from different males are “mixed” to ensure a high fertilisation 

rate. However, the milt is often inadequate in quantity and quality and does not ensure 

optimal fertilisation rate or healthy larvae (Rurangwa et al., 2004). 

 

This study attempts to assess the importance of considering males while measuring the 

reproductive potential of a fish stock with an aim to increase the knowledge of male 

reproductive traits for Northeast Arctic cod in a natural population. The questions addressed 

in this thesis include:  
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� Is it representative to estimate the reproductive potential of a fish stock based only 

on the egg production?  

� Is there a relation between sperm quality and the condition of the fish?  

� Should sperm quality be included in assessments of a fish stocks reproductive 

potential?  

 

Furthermore, the objective was to use field and laboratory data to determine the parameters 

necessary to estimate the total annual viable sperm production of NEA cod. New data on 

wild NEA cod was integrated in Trippel’s (2003) equation for estimating total viable sperm 

production for the stock together with historical data on NEA cod in the time period the 

stock has been assessed (from 1946-2005). 
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2. MATERIALS AND METHODS 

2.1 SAMPLING 

 

2.1.1 SOURCE OF FISH 

The sexual characteristics of annually reproducing fish occur once a year and often over a 

relatively short period of time. In regard to both laboratory experimentation and field work 

there was a rather short time limit in which to undertake the experiments and collect the 

necessary data. Many of the protocols used in this study needed to be refined and tested 

before being applied in the field. A series of preliminary investigations were thus 

undertaken for development of methods. In regard to the field studies, these experiments 

were also necessary as preplanning was vital to ensure all equipment and protocols were in 

place since if equipment was missing or protocols inappropriate then the experimental 

design could have been compromised. The preliminary investigations are described under 

the section called “2.2 Method development”. 

 

Three field studies were undertaken and samples were taken of; 1) Pre-spawning cod at 

Andenes in 2007, 2) Cod at the spawning grounds in 2007 and 3) Cod at the spawning 

grounds in 2008. A total of 192 male cod were sampled where 70 pre-spawning males were 

collected at Andenes in 2007, 74 ripe males were collected at the spawning grounds in 2007 

and 48 ripe males were collected at the spawning grounds in 2008. The samples of the 74 

male NEA cod at the spawning grounds in 2007 are the main samples in this project. 

Standard data of fish length and weight, gonad weight and age were taken along with 

samples of milt that were fixed. The same type of data were obtained at the spawning 

grounds in 2008 of 48 male NEA cod, but at this survey there were taken additional 

samples of sperm motility measurements and drumming muscle weight. Historical data 

from the time period NEA cod has been assessed (1946 to 2005) were used when 

estimating the total annual viable sperm production for this fish stock. The processing of 

the samples and the data analysis were conducted in the time period from the 18
th
 of 

January 2007 to the 24
th
 of April 2008 at the High Technology Centre, University of 

Bergen, Norway. 
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2.1.2 SPERM QUALITY 

The milt samples from cod at the spawning grounds in 2007 were fixed in 3.6 % buffered 

formaldehyde (Appendix A, Table A.1) while the milt samples from cod at the spawning 

grounds in 2008 were fixed in a glutaraldehyde-formaldehyde fixation solution (Grotmol et 

al., 2003) (Appendix A, Table A.2) (from now on referred to as teleost fixative). The 

purpose of all the fixed milt samples was to estimate the sperm density for each male and 

correlate it to individual male traits such as body weight and length, gonad weight, 

drumming muscle weight and age. In addition, the formaldehyde fixed milt samples were 

used to find the mean volume of single spermatozoa (spermatozoon) and this again was 

used to estimate the total amount of sperm cells in one gonad when knowing the average 

volume of one gonad. The equation for the total amount of sperm cells in gonads was 

integrated in a parameterised version of Trippel’s equation.  

 

Sperm motility was measured in fresh milt samples from cod at the spawning grounds in 

2008. The purpose of these milt samples was to get a measurement of sperm quality and 

correlate it to the same individual male traits as mentioned previously. In order to see if 

drumming muscle weight could be used as an indicator of sperm quality both wet and dry 

weight of the muscles were measured and compared with the motility and density of 

spermatozoa. 

 

Figure 1 shows the studied areas of sperm quality of NEA cod with the spermatozoa 

density and motility as direct measurements of estimating sperm quality and male traits as 

possible indirect measurements. Male traits were tested using correlation against the direct 

measurements of sperm quality to see if these parameters could be used as an indirect and 

rapid measurement of sperm quality (marked in italic in Figure 1). 
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Figure 1: Flow diagram showing terms of interest with direct measurements of sperm quality and possible 
indirect measurements of sperm quality in male NEA cod. 

 

 

 
2.2 METHOD DEVELOPMENT  

2.2.1 CAPTIVE NORTHEAST ARCTIC COD 

From the 18
th
 to the 20

th
 of January 2007 a total of 73 (51 males and 22 females) NEA cod 

that were related to a ‘skipped spawning’ project at the IMR, Bergen, were used for practise 

before sampling at the spawning grounds. These are the methods that were tested; 1) 

collection of milt samples for estimating spermatocrit and sperm density and 2) dissection 

and mass determination of drumming muscles from both sexes. Milt samples were taken 

from eight running males by gently pressing on each side of the abdomen to squeeze out the 

milt (Fig. 2). Paper towels were used to keep the area around the genital papilla clean and 

avoid contamination with faeces and blood. The milt samples were used to measure 

spermatocrit and sperm density. Haematocrit capillary tubes (75 mm length, 1.1–1.2 mm 

inner diameter) were filled to approximately 70 % with milt and centrifuged at 7500 rpm 

from 5 - 30 minutes with a Haematokrit 210 centrifuge (Hettich Zentrifugen). The 

spermatocrit (densely packed sperm cells) value was read as percentage of the total amount 

of milt. The sperm density was measured by counts of sperm cells in a modified Neubauer 

haemocytometer. The haemocytometer is a special microscope slide with a 0.1 mm deep 
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chamber in the middle. The chamber has a grid made of 400 small squares where each 

square is 0.05 x 0.05 mm. A fixed amount of milt was diluted with a fixed amount of 

freshwater, mixed thoroughly and transferred to the haemocytometer. Pictures were taken 

using the imaging software NIS Elements F (Nikon) with a Digital Sight D55M camera 

(Nikon) attached to a BX60 microscope (Olympus). The sperm cells in the pictures were 

counted by hand and the density of cells per millilitre was estimated. Two images were 

captured, one at 200 times magnification and one at 400 times magnification for each 

sample. Drumming muscles were dissected with a scalpel (Fig. 3) from all the 73 fish. Data 

of total fish length, fish weight and the wet and dry weights of the drumming muscles were 

provided by Dr. Jon Egil Skjæraasen (University of Bergen, pers. comm.) 

 

 
Figure 2: Collecting of milt samples. 

 

 

 
A                                                                         B 
Figure 3: A) Picture of drumming muscles attached to the swim bladder and B) Picture of drumming muscles 
cut out from the fish. 

 

Drumming muscles 

 

Swim bladder 
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2.2.2 CAPTIVE COASTAL COD 

From the 14
th
 to the 15

th
 of February 2008 six males of captive coastal cod (Gadus morhua) 

were obtained from the IMR, Bergen. Drumming muscles and milt samples were only 

taken from five of the males, since one of them was not running. The milt samples were 

used for estimating sperm density, sperm motility and sperm weight. One millilitre of milt 

was fixed in ten millilitres of teleost fixative for later estimating the sperm density (same 

counting procedure as described in section 2.2.1). The sperm motility was tested to decide 

what type of motility measurements would suite best onboard the research vessel. Based on 

own unpublished experiments, Trippel (2003) considered cod milt to have a higher density 

than seawater (1.024 gram per mL at 25 
o
C) and this allocation was tested by weighing milt 

samples using two different volumes; 1 mL and 100 µl. A EW3000-2M scale (KERN) was 

used to measure the weight of one millilitre milt whilst a Genius ME235P scale (Sartorius) 

was used to measure the weight of 100 µl milt. Drumming muscles were dissected to get an 

idea of how time consuming the work would be, and deciding whether or not to use this 

method onboard the research vessel. Both wet and dry weight of the drumming muscles 

was measured on a Genius ME235P scale (Sartorius). The muscles were dried for 24 hours 

at 60 
o
C in a Termaks oven (Environmental Laboratory Equipment) before the dry weight 

was measured. 

 

2.3 PRE-SPAWNING NEA COD AT ANDENES IN 2007 

Northeast Arctic cod from the Lofoten spawning area were sampled at a fish processing 

plant at Andenes from 8
th
 to the 10

th
 of March, as part of regular sampling by IMR. 

Standard data of fish length, fish weight, gonad weight and age were taken of 70 pre-

spawning males. No milt samples were taken. 

 

2.4 COD AT THE SPAWNING GROUNDS IN 2007 

Data were provided by Ass. Prof. Martin Blom, Aalesund University College (HiAls), and 

the Institute of Marine Research (IMR), Bergen. These samples were obtained at the 

spawning grounds in the Lofoten area from the 17
th
 of March to the 7

th
 of April 2007 (see 

Fig. 4). Milt samples were collected along with data of fish length, fish weight, gonad 

weight and age (Table I). The males were stripped and one millilitre of milt was transferred 
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to scintillation tubes with a fixed amount, 15 mL, of 3.6 % buffered formaldehyde. Also 

small samples, 3 x 3 cm, of all the gonads were frozen at - 20 
o
C.  

 
 
 
 
 

 
Figure 4: Sampling area outside Lofoten in 2007 (source: earth.google.com) (station coordinates A-F in Appendix B, 
Table B.1). 
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Table I: Samples and data collected at the spawning grounds in 2007 

Sample Number of samples 

Milt in formaldehyde fixative 74 

Samples of testes (3x3 cm) 72 

Fish length 74 

Fish weight 74 

Testis weight 72 

Age 74 

 

2.4.1 SPERM DENSITY 

As an important dimension of sperm quality the spermatozoa density was estimated. It was 

measured by counts of diluted milt samples (from the formaldehyde-milt samples) in a 

modified Neubauer haemocytometer (Fig. 5) (described in section 2.2.1). The containers 

with milt and formaldehyde were thoroughly mixed for approximately two minutes. A 

plastic pipette was used to transfer the mixture to the haemocytometer. Pictures were taken 

with a Digital Sight D55M camera (Nikon) attached to a BX60 microscope (Olympus). If 

the sample was too dense it was diluted with a fixed amount of freshwater. For each sample 

of the sperm-formaldehyde mixture four pictures were taken: two pictures at 100 times 

magnification and two at 200 times magnification, and for each sample this was replicated 

three times. In summary, a total of approximately 900 pictures of the 74 sperm-

formaldehyde samples were taken for estimating sperm density. Approximately half of the 

pictures were used for sperm counts while the other half were just taken as a backup file (in 

case of bad quality in the first ones).  

 

 
Figure 5: Picture of spermatozoa in the haemocytometer (each small square equals 0.0025 mm2). 
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Thirty pictures (ten of good, ten of medium and ten of bad quality) were chosen to test the 

accuracy of the software program Image J version 1.37 (National Institutes of Health) for 

automated counting of sperm density. The cells in these pictures were counted by hand and 

compared with the automatic counting subroutine in Image J. Image J was then chosen for 

automated counting for the rest of the pictures. The image threshold level was set to mark 

only the heads of the sperm cells (Fig. 6). Then Image J counted all the marked dots within 

a selected area of 192 small squares (Fig. 7). The equation for estimating the realistic sperm 

density of a sample is given as: 

 

SD = ((Ñ * (400 squares/192 squares)) * 10
4) / DF 

 

SD = sperm density (cells/mL) 

Ñ = the average number of sperm cells in a sample counted in 192 small squares 

104 = the volume conversion factor for one mm2 

DF = the dilution factor as a combination of the dilution with both formaldehyde and water 

 

� DF = dilution one * dilution two = D1 * D2 

 

D1 = M / T 

where; 

 

M = milt volume (mL)                                   

T = total volume = milt volume (mL) + formaldehyde volume (mL) 

 

D2 = M2 / T2 

where; 

 

M2 = mix volume (mL) = milt + formaldehyde volume (mL) 

T2 = total volume (mL) = mix volume (mL) + water 

 



 

- 16 - 

 
Figure 6: Automatic counting of sperm cells with Image J within a selected area (black box) (each small 
square equals 0.0025 mm2). 

 

.  
Figure 7: Haemocytometer with the dark grey field covering the selected area in Figure 6 (each small square 
equals 0.0025 mm2). 

 

2.4.2 SPERMATOZOA WEIGHT  

Spermatozoa weight was measured to test if these estimations could be used to recalculate 

milt weight directly, which again could be used in Trippel’s equation of viable sperm 

production. Twenty scintillation tubes with sperm/formaldehyde mixture were shaken for 

two minutes. One millilitre mixture from each scintillation tube was transferred with an 

automatic micropipette to pre-weighed 1.5 ml Eppendorf tubes (Eppendorf). Then the 
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Eppendorf tubes were centrifuged at 7500 rpm for 5-30 minutes producing a smear pellet of 

sperm cells and a supernatant of seminal fluid and formaldehyde. The supernatant was 

pipetted to 20 new pre-weighed 1.5 ml Eppendorf tubes and weighed. Some of the 

supernatant was checked under a microscope for sperm cell contamination. The tubes with 

the smear pellet were centrifuged one more time to press out more supernatant. Then they 

were dried in a desiccator for 24 hours and weighed. This procedure gave an estimated 

weight of just the sperm cells, without seminal fluid or water. 

 

2.4.3 ANNUAL VIABLE SPERM PRODUCTION 

The total annual viable sperm production was estimated for the NEA cod stock from 1946 

to 2005. The general method for estimating the annual viable sperm production is laid out 

in Trippel (2003), but is reproduced here with minor variations, as given in Nash et al. (in 

press): 

 

lilililili
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where: 

VSP = Viable Sperm Production (In Trippel (2003) this is given as VSPP or Viable Sperm 

Produced by Population) 

 

i = age in years 

I = the oldest age class 

l = 5 cm length class 

L = largest length class 

ni,l = number of males in each age and length class 

pi,l = proportion of mature males in each age and length class 

ti,l = mean testes weight (kg) of males in each age and length class 

vi,l = mean volume (mL) of milt produced per kg testes in each age and length class 

si,l = mean number of spermatozoa per mL of milt for each age and length class 

fi,l = sperm fertilisation potential as a function of Fulton’s condition factor (K) see Nash et 

al. (in press) in each age and length class. 
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2.4.4 CALCULATIONS OF BODY DATA 

Condition, K-factor 

The equation for sperm fertilisation potential includes Fulton’s condition factor (Trippel, 

2003) and therefore Fulton’s equation is given here (also see Nash et al., in press): 

 

100.
3L

W
K =  

 

Where:  

W = whole fish weight (g) 

L = total fish length (cm) 

 

The GonadoSomatic Index (GSI) 

A relationship between age and GonadoSomatic Index (GSI) for NEA cod is given by Nash 

et al. (in press) (based on unpublished data of NEA cod from R. D. M. Nash and O. S. 

Kjesbu, IMR:  pers. comm.) with zero percent applied for three years olds, six percent for 

four year olds with an increase by 1 - 13 % for 12 year olds and 13 % also applied to the 

fish over 12 years old. The equation for estimating GSI is given as: 

 

%100.
W

T
GSI w=  

 

Where: 

Tw = testis weight (g) 

W = whole fish weight (g) 

 

2.4.5 TOTAL SPERM PER MALE 

The total sperm per male was estimated to find the mean volume (millilitres) of milt 

produced per kilogram of testes and the mean number of spermatozoa per millilitres of milt, 

and the equations for estimating the total sperm per male are given in Nash et al. (in press). 

Three percent of the testes weight was removed, assuming it to be connective tissue, 

primary spermatogonia and residual unspawned sperm (Trippel and Morgan, 1994b). This 
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removal gave the weight of milt, which was converted to volume using a value of 1.04 

(Trippel, 2003).  All numbers were provided by R. D. M. Nash (IMR, Bergen, pers. comm.) 

and estimated as given in Nash et al. (in press): 

 

Mw = TsW ·0.97 

  

where: 

  

Mw = milt weight  

TsW = testes weight 

 

Mv = Mw · 1.04 

 

where: 

Mv = volume of milt 

Mw = weight of milt 

 

The sperm density was estimated to be 1.16 x 10
10
 sperm per mL by using the formula of 

(Rakitin et al., 1999b) and a spermatocrit level of 0.6 (see Trippel, 2003).  

 

2.4.6 SPERM FERTILISATION POTENTIAL 

The data of the sperm fertilisation potential for the stock of NEA cod from 1946 to 2005 

was provided by R. D. M. Nash, IMR (pers. comm). The equation for estimating sperm 

fertilisation potential (f) in each length class (see Trippel, 2003 and Nash et al., in press) is 

given as: 

  

028.1)(544.1 −= ll Kf   

Where: K1 = Fulton’s condition factor for a specific length class (as described previously). 
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2.4.7 PARAMETERISED EQUATION FOR ESTIMATING THE VIABLE SPERM PRODUCTION 

Based on the new data of NEA cod from the spawning grounds in 2007 a parameterised 

variation of Trippel’s equation (2003) was formulated. An equation for estimating GSI 

based on fish length was produced as described in the following section (“2.4.8 Equation 

for estimating GSI based on fish length”) and this equation sets the basis for the 

parameterised variant of Trippel’s equation. The mean gonad volume per gram testis, the 

mean cell volume and the total sperm amount in the gonads was calculated as given in the 

chapter “2.4.9 Total sperm per male”. Data of sperm fertilisation potential (f) and yearly 

mean fish weight (Y) was provided by R. D. M. Nash (IMR, Bergen, pers. comm.) and 

Nash et al. (in press). 
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where: 

 

VSP = Viable Sperm Production 

Geq = equation for estimating GSI based on fish length (see next section) 

i = age in years 

I = the oldest age class 

l = 5 cm length class 

L = largest length class 

Y = yearly mean fish weight (g) 

G = mean gonad volume per gram testis (m3/g) 

C = mean cell volume (m3
/cell) 

S = sperm ratio in gonads (without connective tissue) 

N = number of males 

f = sperm fertilisation potential as a function of Fulton’s condition factor (K) (Nash et al., in 

press) in each age and length class. 
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2.4.8 EQUATION FOR ESTIMATING GSI BASED ON FISH LENGTH 

GSI of the 72 males was plotted against the total length of these males and a trend line was 

fitted. By displaying the slope and the intercept an equation for estimating GSI based on 

fish length was created (Fig. 8, R
2
 = 0.028). Figure 8 and its equation are introduced here 

rather than in the Results section since the equation needed to be included in the 

parameterised equation (parameterised equation, see section 2.4.7). Equation for estimating 

GSI based on fish length, Geq: 

 

Geq = (0.0004 x T) + 0.0622 = GSI 

 

T = total fish length (cm) 

The equation was used when estimating the annual viable sperm production (VSP). 
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Figure 8: Plot of the GonadoSomatic Index (GSI) based on the total fish length. 

 

2.4.9 TOTAL SPERM PER MALE 

A mean spermatozoon volume was estimated based on light microscope and field emission 

scanning electron microscope pictures of the milt. Then the volume of testis was estimated. 

The total amount of sperm cells in each gonad was found by dividing the gonad volume by 

the mean spermatozoon volume. 
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2.4.10 MEAN CELL VOLUME 

Pictures of sperm cells were taken with both a light microscope and a field emission 

scanning electron microscope. These pictures were used to estimate a mean spermatozoon 

volume, which again was used to estimate the total amount of spermatozoa in testes and 

thereby total sperm production per male.  

 

Light microscope pictures and cell volume 

A few drops from one of the sperm-formaldehyde samples were placed on a slide and a 

Vanox AHBT3 light microscope (Olympus) with phase contrast was used to get clear 

pictures of the cells. Pictures were taken at 400 times magnification with a ProgRes C14 

camera (JenOptik). The pictures were used for estimating a mean cell volume. A line was 

drawn around single sperm cells and then Image J (version 1.37) calculated the width and 

length (minor and major) of the cells (Fig. 9). The cell volume was then calculated from 

this equation, as described in Geffen (2002): 

 

CV = 1.333π (0.5CL) (0.5CW)
2 

 

Where: 

CV = cell volume 

CL = cell length (mm) 

CW = cell width (mm) 

A mean cell volume was estimated:  
N

C
C

V

V

∑
= , where: N = the number of specimens 

used to estimate the mean cell volume. 

 

Field emission scanning electron microscope pictures and cell volume 

Precipitate of sperm taken from one of the sperm-formaldehyde samples was transferred to 

an Eppendorf tube with 96 % ethanol. The Eppendorf tube was then centrifuged and some 

of the sperm precipitate was transferred to a plug of aluminium. The plug was placed under 

a hood until the ethanol evaporated. The sperm cells were then coated (to reflect electrons) 

in gold/palladium (Au/Pd) with a Polaron SC 502 Sputter Coater (Fisons Instruments) and 

pictures were taken in a Supra 55 field emission scanning electron microscope (Zeiss). 
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These pictures were also used to estimate a mean cell volume (see Fig. 10), as described 

previously (see “Light microscope”). 

 

 
Figure 9: Length and width of sperm cells found by using Image J.  

 

 

 
Figure 10: Length and width of sperm cells found by using Image J (yellow curve around one cell). 
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2.4.11 TESTIS VOLUME AND TOTAL AMOUNT OF SPERM CELLS 

The 72 samples of testes were chopped into smaller pieces and weighed on a EW3000-2M 

(KERN) (Fig. 11A). A 25 mL glass cylinder was filled up with 15 mL of freshwater and the 

weighed pieces of testes were transferred to this cylinder. The volume of the chopped 

amount of testes was then noted as the displaced amount of water in the cylinder (Fig. 

11B).  

 

Tv = Dw / Tp 

 

Tv = volume per gram testis (m
3
/g) 

Dw = displaced amount of water (mL) 

Tp = weight of chopped testes (g) 

 

A mean volume per gram testis, Tm, was estimated;  
N

Tv
Tm

∑
=   , where: N = the number 

of specimens used to estimate the mean volume per gram testis. 

 

 

   
A                                                                                     B 
Figure 11: A) Weight of testis and B) Volume of testis due to displaced water in a cylinder.  

 

 

To find the whole volume of each testis the mean volume per gram testis, Tm, was 

multiplied with the total weight of each testis: 
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TV = Tm* TW  

 

Where: 

TV = testis volume (m
3
) 

TW = total testis weight (gram) 

Tm = mean volume per gram testis  

The total amount of sperm cells in each testis was estimated by dividing the volume of each 

testis by the average volume of one sperm cell: 

 

TS = TV / CA  

 

Where: 

TS = total amount of sperm cells 

TV = testis volume (m
3
) 

CA = average volume of a sperm cell (m
3
/cell) 

 

Testes composition was analysed as a part of the NFR project “Produvann” (Meier et al., 

2007) and provided by Dr. Øystein Sæle (Nifes, pers. comm.). Based on these given 

histology data of coastal cod the content of connective tissue was set to 3.6 %, and this 

percentage was removed when estimating the total amount of sperm cells in the testes: 

 

Realistic total amount of sperm cells = TS * (1 – 0.036) 

 

2.4.12 SEX RATIO PER STATION 

For each station in the Lofoten area, fish lengths were measured for the whole catch of cod 

or a representative subsample of ten fish from each five cm length group. Sex and age 

determination were done for each length group. A frequency distribution of fish length per 

station was done in Excel (Microsoft Office 2003) and multiplied with the sex ratio for 

each length group per station.  
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2.5 COD AT THE SPAWNING GROUNDS IN 2008 

From the 17
th
 of March to the 5

th
 of April 2008, 48 samples of male NEA cod were 

obtained in the spawning area around Lofoten (Fig. 12). Table II gives an overview of the 

collected samples at the spawning grounds. Milt was collected with a ten millilitres syringe 

and transferred to an empty container and then recollected with a one millilitre syringe and 

fixed in ten millilitres of teleost fixative in scintillation tubes. The rest of the milt in the 

container was stored on a box of ice in a refrigerator (3.5 
o
C) for later determination of 

motility. Ten of the one millilitre syringes were weighed on a M2000 scale (Marel) before 

and after the milt collection, to test if NEA cod milt was heavier than seawater. 

 
Table II: Samples and data collected at the spawning grounds in 2008 

Sample Number of samples 

Milt in teleost fixative 48 

Motility measurements 48 

Drumming muscle weight 48 

Fish length 48 

Fish weight 48 

Testis weight 47 

Milt weight 10 

Age 48 

 



 

- 27 - 

 

 
 

 

 

 

 
Figure 12: Sampling area outside Lofoten in 2008 (source: earth.google.com) (station coordinates A-J in 
Appendix B, Table B.2). 
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2.5.1 MOTILITY  

The motility measurements were done onboard the research vessel with a S8APO binocular 

(Leica). Percentage of moving sperm cells (vibrating cells not included) was checked at 80 

times magnification immediately after activation, after ten minutes and after one hour.  

 

2.5.2 SPERM DENSITY  

Sperm density of the samples fixed in teleost fixative was estimated in the laboratory at the 

High Technology Centre, Bergen, after the cruise (see 2.2.1 for details on the 

haemocytometer and section 2.4.1 for details on Image J (1.37v)). However, due to time 

limitations only two pictures were taken from one dilution per milt sample.  

 

2.5.3 DRUMMING MUSCLES 

Drumming muscles were cut out with a scalpel and the wet weight was measured onboard 

the vessel with a M2000 scale (Marel). Then the drumming muscles were frozen onboard 

the vessel for later determination of the dry weight on land. The drumming muscles were 

dried for 24 hours at 60
o
C in a Termaks oven (Environmental laboratory equipment), and 

then the dry weight was measured on a Genius ME235P scale (Sartorius). 

 

2.5.4 SEX RATIO PER STATION 

The same method was applied as described in section 2.4.12. 
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2.6 STATISTICAL ANALYSIS 

The software program R version 2.6.0 (R Development Core Team) was used for the 

majority of statistical analysis. All data were tested for a normal distribution with a 

Shapiro-Wilk test before any analysis was done. If the data were not normally distributed 

they were log transformed, and again tested for a normal distribution with a Shapiro-Wilk 

test. 

 

A paired t-test was done in R (version 2.6.0) to test the null hypothesis; H0: There is no 

difference in mean spermatozoa density when counted by hand versus counted by the 

software program Image J version 1.37 (National Institutes of Health). An ANCOVA test 

was done in R (version 2.6.0) to test if there was a significant difference in mean drumming 

muscle weight between males and females when body weight was adjusted for. To test if 

the sperm quality, in form of sperm density, varied through the different dates of sampling 

an ANOVA was done in R (2.6.0) to test the null hypothesis, H0: There is no difference in 

mean sperm density collected at different dates. A Tukey Honestly Significantly Different 

(HSD) test was used to see if there was any significant difference between pair wise 

comparisons.  

 

Pearson’s product-moment correlation analysis between sperm density, total sperm amount, 

total fish length, total fish weight, gonad weight, GSI, condition, drumming muscle weight 

and motility were also done in R (2.6.0) to test if there was a significant linear relationship 

between the variables. The visualisation of Pearson’s analysis was done in Statistica 7.0 

software (StatSoft
 
Inc, Tulsa, OK).  

 

Principal components analysis was done in Statistica 7.0 software (StatSoft
 
Inc, Tulsa, OK) 

to illustrate how similar or dissimilar the different variables of the male cod were when 

looking at the variances in an ordination, with the greatest variance by any projection of the 

data laying on the first coordinate (first principal component), the second greatest variance 

laying on the second coordinate and so on. Only the three first principal components (factor 

one, factor two and factor three) were used for the illustrations since these factors explain 

the majority of the variances. 

 

Mean values are given with ± standard deviation. 
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3. RESULTS 

3.1 METHOD DEVELOPMENT  

3.1.1 SPERMATOCRIT 

The r value indicated a tendency for a negative relationship between spermatocrit and the 

spermatozoa density in captive male NEA cod (Fig. 13: Pearson’s product-moment 

correlation test; r = -0.596, p = 0.053, n = 8, raw data in Appendix C, Table C.1). However, 

the p value was not significant (p = 0.053). 
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Figure 13: Relation between spermatozoa density and spermatocrit in captive NEA cod 2007. 

 

3.1.2 DRUMMING MUSCLES 

Drumming muscles were cut out of all the 73 fish related to the ‘skipped spawning’ project 

at IMR at the 18
th
 to the 20

th
 of January 2007. However, examination of the otoliths 

determined that 18 of the fish were coastal cod (O.S. Kjesbu, IMR, Bergen: pers. comm.), 

hence they were excluded from further calculations. Therefore, only 55 fish, with 17 

females (Appendix C, Table C.2) and 38 males (Appendix C, Table C.3), were used for 

comparisons. A significant correlation was found between wet and dry weight of the 

drumming muscles (Paired t-test: p < 2.2x10
-16
, n = 55). Drumming muscle mass and sperm 

density were not correlated (Pearson’s product-moment correlation: r = 0.125, p = 0.715, n 

= 11). The body weight of the fish was significantly correlated with both dry weight 
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(Pearson’s product-moment correlation: r = 0.646, p = 9.9x10
-8
, n = 55) and wet weight 

(Pearson’s product-moment correlation, r = 0.652, p = 6.7x10
-8
, n = 55) of the drumming 

muscles. Relative to body mass, males had larger drumming muscle wet weight than 

females (ANCOVA: F (2,52) = 23.07,  p = 0.042), but this was not the case when using dry 

weight (ANCOVA: F (2,52) = 21.69, p = 0.066). The mean ratio of drumming muscle to 

the fish weight was estimated as 0.042 % (± 0.018 %) for the females and 0.061 % (± 0.036 

%) for the males.  

 

Drumming muscle samples were also taken from five captive cod males at the 14
th
 of 

February 2008, as a preparation of methods before a cruise at the spawning grounds in 2008 

(Appendix C, Table C.4). In these experiments there was also a significant relationship 

between the wet and dry weight of the drumming muscles in males (Paired t-test; p = 

1.6x10
-7
, n = 8). Drumming muscle mass and sperm density did not correlate (Pearson’s 

product-moment correlation: r = -0.164, p = 0.793, n = 8). The body weight of the fish was 

not significantly correlated to either dry weight (Pearson’s product-moment correlation: r = 

0.701, p = 0.188, n = 8) or wet weight (Pearson’s product-moment correlation, r = 0.630, p 

= 0.254, n = 8) of the drumming muscles. Measurements of sperm motility were only done 

as a small practice of methods and measurements were not recorded or used in any 

correlations. 

3.1.3 MILT WEIGHT 

To investigate the potential importance of sample volume and if milt had a higher density 

than seawater, two sample volumes were utilised; 1 mL and 100 µl (Appendix C, Table 

C.5). The average weight of milt per millilitres from the one millilitre samples, measured 

on EW3000-2M scale (KERN), was 1.07 ± 0.041 g/mL. The average weight per millilitres 

of milt when measuring 100 µl milt, measured on a Genius ME235P scale (Sartorius), was 

0.921 ± 0.085 g/mL. There was a significant difference between the two methods of weight 

measurements of the milt (One-way ANOVA: F (1,12) = 11.67, p = 0.005) with the highest 

mean weight estimated using a milt volume of one millilitre (Tukey HSD; p = 0.005). 
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3.2 PRE-SPAWNING NEA COD AT ANDENES IN 2007 

A total of 70 males were sampled at Andenes in 2007. Unfortunately, the males were in a 

pre-spawning state and none of them were running. Syringes were used to get the sperm out 

of the gonads, but all methods applied were unsuccessful. Analyses of the otoliths 

determined that seven of the 70 males were coastal cod (O.S. Kjesbu, IMR, Bergen: pers. 

comm.), hence these were excluded from any further analyses.  

 

The fish length of the 63 males ranged from 62 - 105 cm. The condition factor ranged from 

0.72 to 1.18, and the GonadoSomatic Index (GSI) ranged from 3.2 – 16.4 %. A significant 

relationship was found between GSI and the weight of the fish (Pearson’s product-moment 

correlation; r = 0.32, p = 0.01, n = 63) and between GSI and the length of the fish 

(Pearson’s product-moment correlation; r = 0.27, p = 0.03, n = 63). These males were in a 

pre-spawning state with large and white gonads, but no running milt (Appendix C, Table 

C.6 and C.7). 

 

 

3.3 COD AT THE SPAWNING GROUNDS IN 2007 

Examination of the otoliths determined that 13 of the total catch of 74 male cod were 

coastal cod (O.S. Kjesbu, IMR, Bergen: pers. comm.), hence these fish were excluded from 

further calculations. In addition, gonad weight data were lacking from two of the males so 

comparisons were done with 59 male NEA cod (Appendix C, Table C.8 and C.9). The fish 

length ranged from 55 – 118 cm. The condition factor ranged from 0.76 – 1.07 and the GSI 

ranged from 5.2 – 19.1 %.  

 

3.3.1 SPERMATOZOA DENSITY 

There was no significant difference in mean spermatozoa density between counts of cells 

with Image J (1.37v) and manual counts (Paired t-test: p = 0.049), hence Image J was 

chosen for further estimations of sperm density (Appendix C, Table C.10). The density of 

sperm cells ranged from a minimum of 1.68 x 10
8
 (± 5.37 x 10

7
) to a maximum of 1.15 x 

10
10
 (± 7.90 x 10

8
) cells per mL. Milt collected at different dates had different means of 

spermatozoa density (Fig. 14: ANOVA; F (3,57) = 5.13, p = 0.003, n = 59). However, the 
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only significant difference was between samples collected at the 24
th
 of March and the 31

st
 

of March 2008 (Fig 14: Tukey HSD: p = 0.001, n = 59). 
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Figure 14: Mean spermatozoa densities from milt samples in NEA cod collected at different dates at the 
spawning grounds 2007. 

 
 

3.3.2 CORRELATIONS OF MALE TRAITS IN 2007 

Larger fish were heavier (Table III; n = 59, Fig. 15; n = 59) and there was a significant 

correlation between the condition and the weight of the fish (Table III; n = 59, Fig. 16; n = 

59). No correlation was found between the sperm density and the gonad weight (Table III; 

n = 59). However, there was a significant, but weak, negative correlation between the 

sperm density and the total length of the fish (Table III; n = 59). Even so, this was offset by 

a significant correlation between GSI and density indicating that sperm density increases 

with GSI (Table III; n = 59). Significant correlations are in italic in Table III. Total sperm 

amount was not included in any of the correlations since it was estimated based on gonad 

weight and it gave the exact same output as correlations with gonad weight. No correlation 

was found between the age of the fish and any of the male traits. However, age has been 

excluded from the Results section due to the low variation in age, with the majority of the 

males having an age between seven or eight years. 
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Table III: Summary table of Pearson’s product-moment correlation and plots (Statistica) between 

the different traits of 59 male cod from the Lofoten Survey 2007. 

Traits Sperm  

density 

Total fish 

length 

Total fish 

weight 

Gonad 

weight 

K factor 

 

GSI 

Sperm 

density 
 

r= -0.274 
p= 0.035 

r= -0.253 

p= 0.053 

r= -0.005 

p= 0.969 

r= 0.062 

p= 0.639 
r= 0.346 
p= 0.007 

Total fish 

length 

 

 
r= 0.985 
p< 2.2e-16 

r= 0.771 
p= 9.4e-13 

r= 0.140 

p= 0.290 

r= -0.069 

p= 0.606 

Total fish 

weight 

  

 
r= 0.810 
p= 8.2e-15 

r= 0.308 
p= 0.018 

r= -0.023 

p= 0.863 

Gonad 

weight 

  

 
r= 0.399 
p= 0.002 

r= 0.568 
p= 2.7e-6 

K factor 

   

 
r= 0.247 

p= 0.059 

GSI 
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Figure 15: Relationship between fish weight and fish length in NEA cod at the spawning grounds in 2007. 
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Figure 16: Relationship between fish condition and fish weight in NEA cod at the spawning grounds in 2007. 

 

3.3.3 MILT WEIGHT 

The spermatozoa cells spun down from the mixture of formalin and milt had an average 

weight of 0.125 g/mL. This represented the weight of just the spermatozoa cells, without 

water and seminal fluid. Unfortunately this result could not be used to calculate the original 

milt weight as the supernatant containing seminal fluid and formalin was contaminated with 

spermatozoa cells. Therefore, these data were not used in any equations. 

 

3.3.4 SPERM CELL VOLUME 

Light microscope (LM) and cell volume: The LM pictures were used to estimate the volume 

of single cells and the mean length and width of a cell was estimated to 3.46 ± 0.35 µm and 

1.92 ± 0.14 µm, respectively (Appendix C, Table C.11). Average sperm cell volume (CV) 

was, CV = 6.75 µm
3
/cell.  

 

Field emission scanning electron (SEM) microscope and cell volume: The SEM pictures 

were also used to estimate the volume of single cells and the mean length and width of a 

cell was estimated as 2.47 ± 0.24 µm and 1.17 ± 0.07 µm, respectively (Appendix C, Table 

C.12). Average sperm cell volume (CV) was, CV = 1.77 µm
3
/cell. 
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3.3.5 TESTIS VOLUME 

The average testis volume per gram testes of 72 males, ranging in length from 52 to 118 

cm, was estimated to be 0.996 ± 0.058 mL/gram (Appendix C, Table C.13). 

 

3.3.6 PERCENTAGE OF SPERM CELLS IN TESTIS 

Based on the given histology data of coastal cod testes (Meier et al., 2007) the percentages 

of sperm cells in different stages of spermatogenesis (spermatozoa, elongated spermatids, 

round spermatids, spermatocytes and spermatogonia) were added together as a total amount 

of sperm cells (96.6 %), whilst the percentage of open space, blood vessels and lobula were 

considered as connective tissue (3.4 %) and removed from the estimated total amount of 

sperm cells in the gonads (Appendix C, Table C.14, Fig. C.1). 

 

 

3.4 COD AT THE SPAWNING GROUNDS IN 2008 

Examination of the otoliths determined that five of the total catch of 48 male cod were 

coastal cod (O.S. Kjesbu, IMR, Bergen: pers. comm.) and therefore these fish were 

excluded from further calculations. In addition, one of the NEA males was lacking data of 

gonad weight so only 42 of the male cod are presented in the results (Appendix C, Table 

C.15 and C.16).  

 

The fish length ranged from 64 – 114 cm. The condition factor ranged from 0.70 – 1.21 

while the GSI in 2008 ranged from 4.8 – 21.8 %. No significant difference was found in 

mean fish length (Fig. 17; One-way ANOVA: F (2,161) = 1.33, p = 0.268), fish weight 

(One-way ANOVA; F (2,161) = 0.97, p = 0.380), condition (Fig 18; One-way ANOVA: F 

(2,161) = 0.16, p = 0.851) or GSI (Fig. 19; One-way ANOVA: F (2,161) = 1.24, p = 0.293) 

between the samples of pre-spawning cod in 2007, cod at the spawning grounds in 2007 

and cod at the spawning grounds in 2008. 
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Figure 17: Distributions of fish length for pre-spawning cod in 2007 (n = 63), cod at spawning grounds in 
2007 (n = 59) and cod at spawning grounds in 2008 (n = 42). 
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Figure 18: Distributions of condition factor for pre-spawning cod in 2007 (n = 63), cod at spawning grounds 
in 2007 (n = 59) and cod at spawning grounds in 2008 (n = 42). 
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Figure 19: Distributions of GSI for pre-spawning cod in 2007 (n = 63), cod at spawning grounds in 2007 (n 
= 59) and cod at spawning grounds in 2008 (n = 42). 

 



 

- 38 - 

3.4.1 SPERMATOZOA DENSITY 

The spermatozoa densities ranged from a minimum of 3.8x10
9
 to a maximum of 4.2x10

10
 

cells per mL. There was a significant difference between mean spermatozoa densities in 

2007 and 2008 (One-way ANOVA; F (1,99) = 38.39,  p = 1.3x10
-8
) with the highest mean 

densities estimated in 2008 (Tukey HSD; p = 0.0). However, no significant difference in 

mean sperm density were found between the different collection dates in 2008 (Fig. 20: 

One-way ANOVA; F (5,36) = 0.22, p = 0.954, n = 42).  
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Figure 20: Mean spermatozoa densities of milt samples from NEA cod collected at different dates at the 
spawning grounds 2008. 

 

3.4.2 MILT WEIGHT 

NEA cod milt weight was measured to see if the density was higher than seawater. 

However, all of the milt samples that were measured onboard the research vessel weighed 

exactly one gram per millilitre milt when measured with a M2000 scale (Marel).  

 

3.4.3 MOTILITY 

The sperm motility was measured immediately after activation (time zero) and after ten and 

60 minutes after activation (Fig. 21, n = 42) (see Appendix C, Table C.17 for raw data). 

The motility decreased rapidly from zero to ten minutes and almost no activity was 
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recorded after 60 minutes of exposure in seawater. One sample increased with 15 % in 

spermatozoa motility after ten minutes of exposure in seawater. 
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Figure 21: Sperm motility measured after 0, 10 and 60 minutes after activation in NEA cod at the spawning 
grounds in 2008. 

 

3.4.4 DRUMMING MUSCLES 

A large variation in drumming muscle mass was found in male NEA cod caught at the 

spawning grounds in 2008 (see Fig. 22 for qualitative comparison of dry weight between a 

small and a large drumming muscle). There was a significant correlation between the wet 

and the dry weight of the drumming muscles (Paired t-test: p < 2.2x10
-16
, n = 42). The dry 

weight of the drumming muscles was also correlated with different variables of the male 

cod using Pearson’s product-moment correlation (Table IV, n = 42). The dry weight of the 

drumming muscles was significantly correlated with 1) fish length (r = 0.509, p = 0.001), 2) 

fish weight (r = 0.531, p = 0.000), 3) gonad weight (r = 0.414, p = 0.006) and 4) motility 

measured after ten minutes (r = 372, p = 0.015) (Table IV, n = 42). These results showed 

that larger males have larger drumming muscle mass. No correlation was found between 

drumming muscle dry weight and sperm density (Table IV; r = 0.028, p = 0.858, n = 42). 

The mean ratio of drumming muscle to the fish weight was estimated to be 0.073 % (± 

0.046 %). 
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Figure 22: Dried drumming muscles from two NEA cod with A) dry weight; 0.27 g (wet weight; 1.60 g), B) 
dry weight; 4.16 g (wet weight; 13.00 g). 

 

3.4.5 CORRELATIONS BETWEEN MALE TRAITS IN 2008 

Larger fish were heavier (Table IV; n = 42, Fig. 23; n = 42) and there was a significant 

correlation between the condition and the weight of the fish (Table IV; n = 42, Fig. 24; n = 

42). No correlation was found in 2008 between sperm density and fish length (Table IV; n 

= 42). However, no correlation was found between the sperm density and any of the 

variables. The dry weight of the drumming muscles was significantly correlated with the 

motility measured after ten minutes (Table IV; r = 0.372, p = 0.015, n = 42). Even so, the 

scatter plot does not reflect this correlation (Table IV, n = 42). There exists a positive and 

significant relationship between motility measured after ten minutes and GSI (Table IV; r = 

0.310, p = 0.046, n = 42), and also with the same motility measurement and gonad weight 

(Table IV; r =0.371, p = 0.015, n = 42). By looking at the scatter plot of these two 

correlations, this relationship seems to be significant, when ignoring all the motility 

measurements that were measured as zero percent (straight line in scattered plots) (Table 

IV, n = 42). All significant correlations are marked in italic in Table IV (n = 42). Total 

sperm amount was not included in any of the correlations since it was estimated based on 

gonad weight and it gave the exact same output as correlations with gonad weight. No 

correlation was found between the age of the fish and any of the male traits. However, age 

has been excluded from the Results section due to the low variation in age, with the 

majority of the males having an age between seven and eight years. 

A B 



 

- 41 - 

Table IV: Summary table of Pearson’s product-moment correlation and plots (Statistica) between the different variables in the 42 male NEA cod at the spawning 

grounds in 2008. 

Traits Sperm 

density 

Total 

fish length 

Total 

fish weight 

Gonad 

weight 

K factor GSI Mot. 

at zero 

Mot. 

at ten 

Drum 

muscle dry 

Sperm 

density 

 r=0.003 

p=0.985 

r=0.049 

p=0.756 

r=0.155 

p=0.327 

r=0.185 

p=0.240 

r=0.244 

p=0.119 

r=0.226 

p=0.150 

r=0.039 

p=0.806 

r=0.028 

p=0.858 

Total 

fish length 

 

 r=0.968 
p<2.2e-16 

r=0.826 
p=1.6e-11 

r=0.139 

p=0.381 

r=0.211 

p=0.179 

r=0.040 

p=0.799 

r=0.262 

p=0.094 

r=0.509 
p=0.001 

Total 

fish weight 

 

 r=0.886 
p=6.4e-15 

r=0.381 
p=0.013 

r=0.286 

p=0.066 

r=0.036 

p=0.823 

r=0.296 

p=0.057 

r=0.531 
p=0.000 

Gonad 

weight 

 

 r=0.455 
p=0.002 

r=0.698 
p=2.8e-7 

r=0.077 

p=0.630 

r=0.371 
p=0.015 

r=0.414 
p=0.006 

K factor  r=0.352 
p=0.022 

r=-0.009 

p=0.957 

r=0.205 

p=0.192 

r=0.222 

p=0.158 

GSI 

 

 r=0.103 

p=0.516 

r=0.310 
p=0.046 

r=0.035 

p=0.826 

Mot. at 

zero 
 r=0.160 

p=0.311 

r=0.087 

p=0.582 

Mot. at 

ten 

      

 r=0.372 
p=0.015 

Drum.muscle 

dry 
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Figure 23: Relationship between fish weight and fish length in Northeast Arctic cod at the spawning grounds in 
2008. 
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Figure 24: Relationship between fish condition and fish weight in NEA cod at the spawning grounds in 2008. 

 

3.4.6 SEX RATIO PER STATION IN 2007 AND 2008 

Both 2007 and 2008 showed a dominance of males in the selected stations at the spawning 

area in Lofoten, with 87.6 % males and 12.4 % females in 2007 (Appendix C, Table C.18, 

Fig. C.2) and 66.7 % males and 33.3 % females in 2008 (Appendix C, Table C.19, Fig. C.3).  
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3.5 PRINCIPAL COMPONENTS ANALYSIS (PCA) 

The variances of the variables (Eigenvalues) describing male cod at the spawning grounds in 

2007 and 2008 are given in Figure 25 (n = 59) and Figure 26 (n = 42), respectively. In 2007 

factor one dominated with 50 % variance of the data, factor two contained 26 % while factor 

three contained 13 % of the variance (Fig. 25, n = 59). In 2008 factor one dominated with 44 

% variance of the data, factor two contained 16 % while factor three contained 12 % of the 

variance (Fig. 26, n = 42). The variance contributors in male cod at spawning grounds in 2007 

were fish length, fish weight and gonad weight in factor one, sperm density and GSI in factor 

two and condition in factor three (see factor loadings in Figure 27, n = 59). The variance 

contributors in male cod at spawning grounds in 2008 were fish length, fish weight and gonad 

weight in factor one, sperm density and GSI in factor two and condition and motility after ten 

minutes of activation in factor three (see factor loadings in Figure 28, n = 42). Total sperm 

amount was dropped from the principal components analysis since it is estimated based on the 

gonad weight, hence gave the exact same result as the gonad weight did.  

 

Almost the same position of factor loadings were given when combining the variances from 

both years, except that the motility and drumming muscle mass contributors were excluded 

since none of these were measured in 2007 (Table V, n = 101, greatest factor contributors are 

in italic). A scatter plot of the two dominating factors (factor one and two) in a combination of 

variances from both years is shown in Figure 29 (n = 101). This plot shows a good mixture of 

the fish and indicates that no specific trait of the males differed between the spawning 

seasons. Only one group, marked with a red ring, show indications of differences from the 

rest of the group (Fig. 29). These fish were much smaller (in weight, length and gonad 

weight) and also had a lower sperm density, which excluded them from the general cluster of 

the rest of the variances. 
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Figure 25: Eigenvalues from cod at spawning grounds in 2007. 
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Figure 26: Eigenvalues for cod at spawning grounds in 2008. 
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Figure 27: Factor loadings in cod at spawning grounds in 2007. 

 
Figure 28: Factor loadings in cod at spawning grounds in 2008. 
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Table V: Factor contributions of variances in cod at spawning grounds in 2007 and 2008. 
Contributor Factor 1 Factor 2 Factor 3 

Fish weight 30 % 6 % 0 % 

Fish length 26 % 10 % 6 % 

Gonad weight 31 % 2 % 1 % 

Sperm density 0 % 35 % 18 % 

GSI 5 % 38 % 1 % 

Condition 8 % 9 % 73 % 

 

 

 
Figure 29: Scatter plot of factor 1 and factor 2 in cod at spawning grounds in 2007 and 2008. Red circle marks 
a separation of six fish from the mass of points. 
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3.6 ANNUAL VIABLE SPERM PRODUCTION 

 

The annual viable sperm production (VSP) was estimated with Trippel’s equation (2003) 

(Fig. 30) and with the parameterised equation (Fig. 31) (Appendix C, Table C.20). The viable 

sperm production from the years 1981 to 1984 are stippled red in Figure 30 and Figure 31 

since these years are only based on limited length and weight data (see Marshall et al. (2004), 

Figure 4, page 1908), consequently giving suspect results. There were no significant 

difference in the means between the annual viable sperm production estimated with the two 

equations (Fig. 32; Paired t-test: p = 1.537 x 10
-10
, R

2
 = 0.993) (Appendix C, C.20). However, 

adding a trend line to the plot of the two equations gives an equation of; Y = 0.08X + 2*10
18
, 

which gives a slope of 0.08 indicating that there is a scalar in the relationship (Fig. 32, R
2
 = 

0.993). This scalar indicates that the VSP estimated with the new equation always have higher 

values than the VSP estimated with Trippel’s equation. 

 

Figure 33 shows the temporal trend from 1946 to 2005 of SSB, VSP (estimated with the 

parameterised equation) and age three recruits, where SSB and VSP follows approximately 

the same trend except for a high peak in VSP around 1992 to 1995 (the data from 1981 to 

1984 are removed from Figure 33 due to the poor data within these years, see Marshall et al., 

2004). The viable sperm production should increase with increasing spawning stock biomass. 

However, this was not always the case. Between 1992 and 1996 there was a vast increase in 

VSP (Fig. 33). The SSB and recruitment was low between 1992 and 1996. Even so, the 

fertilisation potential was high which means that the condition of the fish must have been high 

(Fig. 33) and this may affect the VSP. There were some interannual differences in the total 

sperm production, which were reflected in the plot of viable sperm production and spawning 

stock biomass (Fig. 34). Even so, there was a significant correlation between SSB and VSP 

(Pearson’s product-moment correlation; r = 0.745,  p = 4.6x10
-11
). A Beverton-Holt curve was 

fitted to the plot of viable sperm production versus age three recruits in Figure 35, showing a 

classical asymptotic relationship between a measure of population reproductive effort and 

subsequent recruitment. 
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Figure 30: Annual viable sperm production for NEA cod (1946-2005) based on Trippel’s (Trippel, 2003) 
equation.  
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Figure 31: Annual viable sperm production for NEA cod (1946-2005) based on the parameterised equation. 
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Figure 32: Comparing the annual viable sperm production from both equations. 
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Figure 33: Spawning stock biomass (SSB), viable sperm production (VSP) and age three recruits (recruits) in 
the years 1946-2005 (1981-1984 are excluded). 
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Figure 34: Relation between spawning stock biomass and total viable sperm production (parameterised 
equation) for NEA cod with a fitted linear curve. 
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Figure 35: Relation between total viable sperm production and age three recruits for NEA cod with a fitted 
Beverton - Holt curve. 
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4. DISCUSSION 

Sperm quality has been thoroughly studied in humans and it is well-known that it has a great 

influence on fertilisation success (Testart et al., 1983; Bhattacharya et al., 2001; Braude and 

Rowell, 2003), with only a fraction of the released spermatozoa having the ability to fertilise 

an egg (Chang and Pincus, 1951). In regard to fish and reproductive potential at both the 

individual and the population level the male contribution has been more or less ignored 

(Trippel, 2003). Fish with external fertilisation shed gametes in open water with males 

releasing an enormous amount of sperm cells compared to the release of eggs from females 

(Ball and Parker, 1996). One obvious question is why focus on the males when there is plenty 

of sperm to fertilise all eggs? Unlike mammal sperm, which are motile before ejaculation and 

remain motile for hours (Kime et al., 2001), fish sperm activates and become motile in 

contact with water (Gilkey, 1981; Kime and Nash, 1999; Rurangwa et al., 2004) and usually 

the motility only last for a couple of minutes (Kime et al., 2001). However, cod sperm can 

achieve fertilisation of eggs after 60 minutes exposure in seawater (Trippel and Morgan, 

1994b). Regardless of the long lasting motility of cod eggs the sperm cells have to be released 

relatively close to the eggs to ensure fertilisation before water movement disperses the 

gametes (Pennington, 1985; Howell et al., 1991; Marconato et al., 1997). For these reasons, 

there has been a slight shift of focus in the recent years towards the study of males and sperm 

production when trying to find a better explanation of the stock-recruitment relationships 

(Trippel, 2003). 

 

To address the imbalance in the available information on female versus male contribution to 

the reproductive potential of a stock the present study examined a variety of traits in males 

and their sperm production with the intent of being able to estimate the total annual viable 

sperm production of the population. In addition, the population sperm production was 

explored as a potential contribution of explaining variability in recruitment. Data of male 

NEA cod was collected at the spawning grounds with the aim of increasing the knowledge of 

the male contribution to the stock dynamics. Data of fish weight, fish length, gonad weight, 

drumming muscle mass and milt (density and motility) were collected and processed to 

investigate possible relationships between male traits and sperm quality. Such relationships 

could influence the stock-recruitment relationships. Whilst Nash et al. (in press) raised the 

question of male contribution to stock reproductive potential in NEA cod there have not been 
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any specific studies to evaluate male traits of NEA cod and their potential contribution to 

recruitment. Trippel (2003) originally presented viable sperm production (VSP) as an 

alternative for egg production, with data derived from different cod stocks. In this study data 

specific to NEA cod have been obtained, thus parameterising Trippel’s equation with 

relationships specific to this stock. Furthermore, different relationships were constructed 

where a more logical methodology was available. In Trippel’s original formulation he was 

forced to use available data and relationships thus the formulation of the equation for 

estimating VSP was most probably not the best solution. In this study data were compiled to 

estimate the annual viable sperm production for NEA cod in the time period the stock has 

been assessed (1946 to 2005). 

 

4.1 CRITIQUE OF METHODS 

In Trippel (2003) the volume of milt is estimated from the weight of milt by multiplying with 

a factor of 1.04, considering milt is heavier than seawater (based on unpublished data by 

Trippel). To test if milt was actually heavier than seawater, milt from captive Atlantic cod in 

2008 was weighed utilising two sample volumes (1 mL and 100 µl). The milt weighed both 

less and more than seawater depending on the volume utilised. The weight of the milt was 

significantly larger when weighing one millilitre of milt instead of 100 µl. This might be due 

to the scales that were used. The Sartorius scale is more sensitive than the scale from KERN 

and might measure the weight more correctly. However, the volume unit of 100 µl weighed 

on the Sartorius might be too small and artefacts such as air bubbles might have a large 

impact when utilising such small quantities. Also milt from NEA cod at the spawning grounds 

in 2008 was weighed to test if it was heavier than seawater. However, measurements taken 

onboard a vessel at sea, even using a motion compensating balance, were not as accurate as 

measurements undertaken on land and this is why all the milt samples from 2008 weighed 

exactly one gram per millilitre milt. The measurements of milt weight undertaken in this 

study were considered not to improve the estimate of Trippel (2003) and so a factor of 1.04 

was used when estimating the VSP with Trippel’s equation.     

 

The equation for estimating GSI based on fish length was only based on 72 male cod that 

were collected at the spawning grounds in 2007. These cod may not be representative for the 

stock. It could be discussed whether the historical data of NEA cod should be used for 

estimating this equation or not. Even so, the historical database of the IMR does not include 
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data of male traits such as gonad weight or sperm characteristics, hence cod from the 

spawning grounds in 2007 were used since data of male traits were obtained from these fish. 

It was expected that larger males would invest significantly more in gonads than the smaller 

males. However, the equation revealed that the relative weight of gonads is approximately the 

same for a large and a small male.  

 

Trippel (2003) assumes that three percent of the cod testes are connective tissue, primary 

spermatogonia and residual sperm based on findings in Trippel and Morgan (1994a). The 

percentage of testis that was assumed to be connective tissue and residual sperm in this study 

was set to 3.6 % based on the given histology data. The histology data were of coastal cod 

testis and might not be representative for NEA cod. This will then affect the estimated annual 

sperm production for the stock of NEA cod. New data of histology in testes of NEA cod are 

suggested for further investigations. 

 

All the milt samples in this study that were taken for density estimations were fixed in 3.6 % 

buffered formaldehyde or teleost fixative (glutaraldehyde-formaldehyde fixation solution, see 

Grotmol et al., 2003) immediately after collection and counted within five months of 

sampling in 2007 and within one month of sampling in 2008. There were no possibilities of 

undertaking cell counts at sea, therefore preservation of sperm for later processing and 

estimation of sperm density was necessary. The milt samples from 2007 tended to dissolve in 

the formalin after approximately six months of storage, therefore the teleost fixative (Grotmol 

et al., 2003) was chosen as a fixative for the milt samples in 2008 to ensure optimal 

preservation of the sperm cells. Due to time limitations sperm densities were estimated from a 

smaller number of pictures of milt from the cod at the spawning grounds in 2008 than from 

cod at the spawning grounds in 2007. The counts in 2008 were only based on two pictures 

taken from the same diluted sample of milt, whereas the density estimations from 2007 were 

based on five or six pictures from two dilutions of each sample. The estimations of 

spermatozoa density in 2008 should therefore be treated with some caution. 

 

The scintillation tubes that were used for storage of fixed milt during the Lofoten survey 2007 

were supposed to be filled with exactly 15 mL of buffered formaldehyde before the cruise, but 

unfortunately the amount of fixative was not accurate. This was not discovered until after the 

sampling, when 40 unused scintillation tubes had an unequal volume of buffered 
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formaldehyde. How this could occur is unclear. One reason may have been because 3.5 mL 

disposable plastic pipettes were used to transfer formaldehyde to the scintillation tubes instead 

of the automatic micropipettes that were used in 2008. Another explanation might be that the 

lids were not tight enough, allowing formaldehyde to evaporate, but this is not likely since the 

screw caps on the scintillations tubes are of good quality. The milt samples from 2007 were 

also collected with 3.5 mL disposable plastic pipettes before they were fixed in formaldehyde, 

and these pipettes may not be as accurate as the one millilitre syringes that were used during 

the Survey cruise in 2008. In addition, air bubbles were carefully removed to get an exact 

volume in 2008, but this was not done in 2007. These errors could greatly affect the sperm 

density and might be the reason why the mean spermatozoa density in 2008 was significantly 

higher than the mean density in 2007. 

 

The estimated mean spermatozoa volume was based on the microscope pictures of milt from 

cod at spawning grounds in 2007. The mean cell volume estimated from the light microscope 

(LM) pictures was almost twice as large as the mean volume estimated from the field 

emission scanning electron microscope (SEM) pictures, even though the pictures were taken 

of the same milt sample. The reason for this dissimilarity in volume is most probably because 

the spermatozoa cells in the SEM pictures were dried in ethanol as a part of the sample 

preparation procedure, which may result in dehydration of the cells and cause shrinkage. The 

SEM pictures are best suited for estimating the diameter of a cell due to the great 

magnification and high resolution of the pictures, but the cell size was surprisingly small. For 

Atlantic cod mean spermatozoa diameter is found to range between 2.70 ± 0.29 and 3.70 ± 

0.42 µm, with observed no seasonal change in size (Rakitin et al., 1999b), so these values 

were more similar to the width and length of the cells estimated from the LM pictures (which 

ranged between 1.92 ± 0.14 and 3.46 ± 0.35 µm) than with the SEM pictures (which ranged 

between 1.17 ± 0.07 and 2.47 ± 0.24 µm). Even though the SEM pictures gives the best image 

of the spermatozoa the LM pictures were chosen for estimating the spermatozoon volume. 

The buffered formaldehyde probably caused some shrinkage to the cells in the LM pictures 

and this might be the reason why the mean size of the cells were slightly smaller than found in 

Rakitin et al. (1999b) The small cell size will also result in a larger amount of sperm when 

estimating the viable sperm production with the parameterised  equation. However, even if 

the mean cell volume was twice as big, the total sperm production would still be higher when 

estimating with the new parameters than with Trippel’s parameters. The recommendation is 
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that the diameter of NEA cod spermatozoa cells should be measured with a light microscope 

when samples are fresh to avoid any problems associated with fixatives, i.e. cell shrinkage. 

 

4.2 MALE TRAITS AND SPERM QUALITY 

Sperm motility is an important factor of sperm quality (Chauvaud et al., 1995; Kime et al., 

1996; Trippel, 2003). Gage et al. (2004) found that male Atlantic salmon (Salmo salar) with 

rapid sperm motility obtain a higher fertilisation success. Rurangwa et al. (2001) found that 

there is a strong positive correlation between the hatching rate and sperm motility when 

fertilisation is obtained using a minimal sperm:egg ratio in African catfish (Clarias 

gariepinus). Even though fish sperm cells generally are known to remain motile for a short 

period of time (Kime and Nash, 1999), especially among freshwater species (Christen et al., 

1987), Westin and Nissling (1991) found that a majority of sperm cells in Baltic cod (Gadus 

morhua) remains motile for approximately 16 minutes while Trippel and Morgan (1994b) 

found that approximately 50 % fertilisation rate can be achieved for Newfoundland cod 

(Gadus morhua) sperm after 60 minutes exposure in seawater. Sperm quality declines rapidly 

and experiments with sperm should begin a within few hours after stripping (Detweiler and 

Thomas, 1998; Trippel, 2003). The measurements of motility in this study occurred with 

some large time variations after collection (from one hour up to two days) due to occasional 

bad weather conditions, which made it difficult to estimate spermatozoa motility with a 

binocular microscope. Even so, milt samples stored on ice in a refrigerator (+ 3.5 
o
C) for more 

than three days still reached a motility of 60-80 % (personal observation). In addition, 

DeGraaf and Berlinsky (2004) found that cod sperm achieves > 80 % motility after two days 

of storage and 11 % motility after ten days of storage in a refrigerator (+ 3
o
C). 

 

Spermatozoa motility is significantly enhanced in the presence of ovarian fluid and eggs 

(Atlantic cod, Litvak and Trippel, 1998; Arctic charr, Salvelinus alpinus, Turner and 

Montgomerie, 2002). When cod spermatozoa cells are activated in the presence of eggs the 

spermatozoa cells will swim towards the eggs as long as the eggs are unfertilised (V. 

Makhotin, Institute of Ichthyology, Moscow State University, Russia: pers. comm.). No eggs 

were added to the motility measurements in this study, which may negatively affect the 

motility. However, the seawater that was used for activation of the sperm cells was taken 

from the spawning grounds, hence there may have been a presence of ovarian fluid which 

again may have a positive effect on the motility. In addition, seawater from the spawning 
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grounds was used to obtain the proper salinity when activating the sperm cells, since 

spermatozoa motility is proven to be greatly affected by salinity in Atlantic cod (Litvak and 

Trippel, 1998). 

  

In a study by Rakitin et al. (1999b) spermatocrit correlates with sperm density in Atlantic cod 

when sperm density is estimated with a Coulter counter, but no correlation is found when 

density is estimated using a haemocytometer. One of the reasons why Rakitin et al. (1999b) 

rejects the sperm counts with the haemocytometer is due to the high coefficient of variation 

(27.7 %) among replicated diluted sperm counts in a haemocytometer. The density of the milt 

samples in this study was estimated based on replicated diluted sperm counts in a 

haemocytometer and gave an average coefficient of 15.3 % of milt samples from cod at the 

spawning grounds in 2007 and 3.4 % in milt samples from cod at the spawning grounds in 

2008, which indicated that using a haemocytometer and automatic counting of sperm cells 

with Image J may be considered a reliable method for estimating sperm density. Estimating 

spermatozoa density with a haemocytometer is time consuming and therefore the Coulter 

counter would have been a good alternative in reducing sample processing time in this study. 

However, the Coulter counter that was available had a 100 µm nozzle and a noise threshold of 

4.0 µm which required a minimum cell volume of 30 µm
3
. The spermatozoa were too small 

(6.75 µm
3
) to be measured with the Coulter counter. The estimated spermatozoa density in 

Atlantic cod reported by Rakitin et al. (1999b) ranged between 3.92 and 11.76 x 109 cells per 

mL when using a haemocytometer and between 7.33 and 20.25 x 10
9
 cells per mL when using 

a Coulter counter. The estimated spermatozoa density in this study based on counts in a 

haemocytometer ranged between 1.68 and 115.44 x 10
8
 cells per mL in 2007 and between 

3.85 and 13.93 x 10
9
 cells per mL in 2008. The large variance in sperm density in this study 

could be due to differences in the spawning state of the males. 

 

When comparing spermatozoa densities of milt samples collected at different dates in 2007, a 

significant difference was found in sperm density between the dates. This may be because the 

males are at the peak of their spawning in the beginning of the sampling period and get more 

or less spent in the end, eight days later. No significant difference was found between sperm 

density and day of collection in 2008, which was probably due to the relatively small sample 

sizes on the different collection dates. However, even if there was no significant difference in 

sperm densities on the different collecting dates in 2008, the cod at the spawning grounds 
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were very ripe in the beginning of the cruise and getting into a post-spawning state at the end 

of the cruise. This could make a considerable impact when correlating spermatozoa densities 

to the variable traits of the male, without taking account for the different dates of collection. 

The variability in the timing of the samples in relation to the progression of the spawning 

period may influence the perception of the dynamics of the sperm densities, hence giving a 

misleading result of i.e. a large post-spawning male with a low spermatozoa density or a small 

ripe male with a high spermatozoa density.  

 

A variety of studies in different fish species have shown a positive significant relationship 

between spermatocrit and spermatozoa density (Atlantic halibut, Hippoglossus hippoglossus, 

Tvedt et al., 2001; haddock, Melanogrammus aeglefinus, Rideout et al., 2004b; Atlantic cod, 

Rakitin et al., 1999b). Some base their studies on the assumption that there exists a 

relationship between spermatozoa density and spermatocrit in cod, hence they only measure 

spermatocrit level (Engen and Folstad, 1999; Rudolfsen et al., 2005). However, no correlation 

between spermatozoa density and spermatocrit in captive NEA cod was found in the 

preliminary investigations. This result is not intuitively correct since spermatocrit is the 

amount of spermatozoa in milt and hence the level should increase when density increases. 

There are some important points that should be highlighted when evaluating the results of the 

spermatocrit-sperm density relationship in captive cod; 1) the sample size should have been 

larger, 2) the cod that were used were involved in a ‘skipped spawning’ project at the IMR 

and hence had been starved for several months, 3) the cod were kept captive for several 

months which might have affected their natural behaviour. However, earlier (unpublished) 

studies from 2005 and 2006 show no correlation between spermatocrit and sperm density in 

Atlantic cod (Audrey J. Geffen, University of Bergen: pers. comm.). Unfortunately, it was not 

possible to obtain spermatocrit data during the surveys on the spawning grounds to obtain 

information on wild cod. 

 

Even though the captive NEA cod from the ‘skipped spawning project’ had been exposed to 

periods of poor feeding conditions they were not in particularly poor condition at the time of 

spawning (O.S. Kjesbu, IMR, Bergen, unpublished data: pers. comm.). However, the 

nutritional regime may have affected the mass of the drumming muscles as well as the milt 

characteristics. Engen and Folstad (1999) found that drumming muscle mass was sexually 

dimorphic in NEA cod with males having larger muscle mass than females. This was further 
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supported by Rowe and Hutchings (2004) who found that males have larger drumming 

muscle mass than females in Atlantic cod, and that the drumming muscles increase in mass 

prior to spawning with a decline thereafter. In the captive NEA cod in this study there was 

found a significant, but weak, tendency of males having larger drumming muscle mass than 

females when correlating with the wet weight of the muscles. On the contrary, males did not 

have larger drumming muscle mass than females when correlating with the dry weight. 

However, the p values for males having relatively larger drumming muscle mass than females 

were just above and below a value of 0.05 when correlating to wet and dry drumming muscle 

mass, respectively. The mean ratio of the drumming muscle weight to the fish weight was 

higher in male cod at the spawning grounds in 2008 than in the captive male cod from the 

preliminary investigations in 2007. Again, this may be a result of starvation of the cod from 

the ‘skipped spawning’ project at the IMR. The only correlation that was found between the 

variables of drumming muscle mass, sperm density and fish size in captive coastal cod in 

2007 was wet and dry weight of drumming muscles. Moreover, five specimens are likely to 

be a sampling size too small for valid comparisons.  

 

Engen and Folstad (1999) reports that males with larger drumming muscles have lower 

spermatocrit levels which they suggest can be explained by e.g. frequent ejaculate 

characteristics. In addition, Rowe and Hutchings (2008) found a significant relationship 

between drumming muscle mass and mating success in Atlantic cod. In this study there was 

no direct assessment of mating success so the relationship of mating success to drumming 

muscle size could not be assessed. The drumming muscle mass was not significantly 

correlated to sperm density or to spermatocrit level in captive NEA cod from the preliminary 

investigations of this study. Neither was drumming muscle mass and sperm density correlated 

in cod at spawning grounds in 2008. It was expected that larger males would invest more 

energy in drumming muscle mass, as described in Engen and Folstad (1999), and as expected 

larger fish at the spawning grounds had larger drumming muscles mass. Gonad weight was 

also significantly related to the weight of the drumming muscles. Drumming muscle mass 

correlated positively with sperm motility measured after ten minutes of activation. In addition, 

the motility measured after ten minutes of activation was correlated positively with GSI and 

gonad weight. This may indicate that large males, who have large gonads and large drumming 

muscles, have better sperm quality in form of longer lasting spermatozoa motility. Even so, 
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the plot of the variables does not indicate a clear relationship and is not substantial enough as 

a predictive tool.  

 

Trippel (2003) suggests that gonad weight data of mature, but not running, gonads should be 

recorded each year to evaluate the annual amount of energy spent on reproduction. The data 

of the pre-spawning cod in this study were from fully mature, but not running, fish. It was 

expected that the GSI of pre-spawning cod at Andenes, north-western Norway, would be 

significantly larger than gonads in cod at the spawning grounds in 2007 and 2008, since the 

pre-spawning males had not spawned any milt. However, no significant differences were 

found. The distributions of fish weight, fish length, condition and GSI from both 2007 and 

2008 seems to be fairly normal distributed when looking at the histograms, hence a 

representative assortment of NEA cod. Even so, none of the data were normal distributed 

when testing with Shapiro-Wilk test for normality. This may be due to the relatively small 

sampling sizes or that the stock may consist of a non normal distribution of males. 

 

A number of the fish parameters in the correlation analysis were consistent between years, 

namely larger fish were heavier and condition increased with fish weight. A significant 

correlation was found between sperm density and GSI in 2007 which indicated that males 

with large GSI have more dense sperm. However, a negative, but weak, correlation between 

sperm density and fish length in cod at spawning grounds in 2007 indicated that larger fish 

have less dense sperm than smaller fish. Bekkevold et al. (2002) found that larger males sire 

larger batches of eggs than smaller male Atlantic cod. On the contrary, Rakitin et al. (2001) 

found that smaller male Atlantic cod have a higher reproductive success than males who are 

larger than females. In 2008, no correlation was found between sperm density and any of the 

traits. This may be due to the fact that density does not correlate to any traits or it can be due 

to errors in methods, for example that the sperm density was only measured based on two 

pictures from the same dilution of milt, as mentioned previously.  

 

The mean size of male and female NEA cod has decreased in the recent years and while 

females used to dominate the large length and older age classes no females with a mean 

length greater than 13 % of the male mean length have been observed since 1982 (Nash et al., 

in press). Brawn (1961b) pointed out that it is important to have a close alignment of the 

gonopores during the ventral mount to achieve fertilisation and based on this statement it is 
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reasonable to think that a shift towards similar size between the sexes will give an even closer 

alignment between the gonopores. A large male body size might be advantageous when 

competing for females (Maekawa et al., 1994; Warner et al., 1995; Forsgren et al., 1996), and 

so a decrease in mean size of NEA cod might induce a higher competition for females among 

a larger amount of similar sized and smaller males. However, if large male size indicates high 

sperm quality then the fertilisation potential of NEA cod might have decreased in the latter 

years due to the decrease in size. 

 

When estimating the stock reproductive potential based on the biomass of the stock the sex 

ratio should be included in the calculations, however males are often assumed to represent 

approximately 50 % of the population (Trippel, 2003). There was a clear dominance of male 

NEA cod on all the selected stations in both 2007 and 2008. Morgan and Trippel (1996) 

found indications that the skewed sex ratio within spawning shoals of Atlantic cod remains 

skewed for most of the spawning season. The dominance of males at the selected stations of 

this study might be a consequence of the lek mating system in cod (as described in Höglund 

and Alatalo, 1995), with females leaving the spawning grounds immediately after mating 

while males continue their display towards other females.  It is important to point out that 

these stations are only the stations of interest in this study, but more samples of NEA cod 

were obtained at other stations which form the larger database of the IMR, Bergen.  

 

The results from the principal components analysis showed that the highest variance 

(approximately 50 %) in variables from cod at the spawning grounds from both years was 

related to fish size. Sperm traits dominate factor two and condition dominates factor three. 

Variances of variables that are positioned at almost the exact same place in the ordination, 

like fish weight and fish length, may indicate that one of these variables could be excluded 

from further analysis. This was also consistent for wet and dry weight of drumming muscles, 

which is why it is not necessary to use more than one of these variables for correlation 

analysis.  Even if there was a diverse distribution of the importance of the variances from the 

different variables of the male cod, there was no clear division of groups when looking at the 

variances from both years in the scatter plot. Six males were separated from the general 

cluster, and these male differed from the others due to their small size and somewhat low 

spermatozoa density. The fact that there was no clear effect of the variances indicates that 

there was no major differences between males from one spawning season to the next, which 
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was an appreciated result for undertaking estimates using historical record of NEA cod (1946 

to 2005) since it appears there was no obvious trends between the variables each year. 

 

4.3 ANNUAL VIABLE SPERM PRODUCTION 

Trippel’s equation (2003) is explained in detail in this study to highlight what parameters to 

focus on when estimating annual viable sperm production. The equation of Trippel (2003) 

utilises population data of Newfoundland and Labrador cod and data based on experimental 

findings on captive cod. He mentions that the estimated viable sperm production is a 

preliminary investigation where several assumptions had to be made since there are gaps in 

the available data (Trippel, 2003). In this study, Trippel’s equation was fitted to population 

data of NEA cod while the parameterised equation was fitted to the same population data 

together with the new data of male cod from the spawning grounds in 2007. The VSP from 

the parameterised equation in this study were almost tenfold higher than the VSP estimated 

from Trippel’s equation but the relation between them was positively and significantly 

correlated. However, a slope of relationships between VSPs was 0.08 when adding a linear 

regression trend line to the plot, indicating that there was a scalar in this relationship which 

means that the VSP estimated with the parameterised equation was always higher than the 

VSP estimated with Trippel’s equation. The linear plot of SSB and VSPs showed that the 

parameterised equation had a relatively larger output of VSP in the recent years (1992-2005), 

while it had a relatively smaller VSP in the latter years (1946-1990) when comparing to the 

VSP estimated with Trippel’s equation. This might be caused by the fact that the sperm 

numbers from the parameterised equation were based on volume estimations from microscope 

pictures of spermatozoa cells instead of spermatocrit and sperm weight as in Trippel’s 

equation (2003). 

 

As shown in Marshall et al. (2004) the weight-length data of NEA cod in 1981-1984 are only 

based on Russian surveys, since there were no samplings from Norwegian vessels these years, 

hence the data are very limited and may be less reliable. The reason for estimating the VSP 

only to 2005 and not to the present (2008) is that the VSP is set up as a predictor of age three 

recruits which means that these fish are not estimated until they appear in the fishery, i.e. the 

2006 year class appears in 2009, and the Virtual Population Analysis (VPA) is generally 

unreliable in the most recent years (Kell and Bromley, 2004). 
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A significant, positive linear relationship was found between SSB and VSP. There were some 

interannual differences between these two predictors of recruitment, however the significant 

relationship indicated that it would not make a large difference with using SSB compared to 

using VSP when explaining the age three recruitment. When comparing the plot of age three 

recruits, SSB and VSP, the recruitment seemed to follow the sperm production some years 

and the spawning stock biomass some other years, or both years together. However, neither 

SSB nor VSP predicted the recruitment very well. There was a peak in VSP between 1992 

and 1995 that did not correlate to any of the other temporal trends, and the recruitment was 

also remarkably low in these years. The reason for this peak was due to the high fertilisation 

rate within these years, which again was due to high male condition.  

 

A Beverton-Holt curve was fitted to the age three recruits and VSP data, which is a density-

dependent curve that tends toward a finite recruitment at a given amount of viable sperm (or 

spawning stock biomass) (Beverton and Holt, 1957). This was not a particularly good fit but 

did indicate that the numbers of age three recruits increase rapidly with an increasing amount 

of viable sperm until it reaches equilibrium maximum. As mentioned in Trippel (2003) the 

SSB (and VSP) may not be suitable for estimating recruitment levels in the form of age three 

recruits, however it might be more suitable for describing the abundance of larvae. Chambers 

and Leggett (1992) found that maternal effects rather than paternal effects explains the 

variation in metamorphosis from the larval to the juvenile stage in winter flounder 

(Pseudopleuronectes americanus), and based on this study combined with newer results, 

Chambers and Leggett (1996) concluded that early life size variations within marine fishes 

are due to maternal influences. However, other studies have concluded that males do also 

have an effect on early life traits in fishes, i.e. Evans and Geffen (1998) who found that larval 

length tends to increase with motility duration in Atlantic herring (Clupea harrengus) and 

Rideout et al. (2004a) who found paternal effects to have a significant influence on larval 

morphology, especially on larval length, in haddock. Several other studies have also found a 

significant paternal effect on early life traits (Atlantic herring, Bang et al., 2006; Atlantic 

halibut, Ottesen and Babiak, 2007; Atlantic cod, Trippel and Neilson, 1992). However, all of 

these studies also include the importance of maternal effects on early life history traits. This 

indicates that the stock-recruitment relationship cannot be explained by the traits of only one 

of the sexes, and that the relationship is a complex composition of both sexes and their 

influence on early life traits. 
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4.4 CONCLUDING REMARKS 

Three questions were raised in the introduction; 1) Is it representative to estimate the 

reproductive potential of a fish stock based only on the egg production? 2) Is there a relation 

between sperm quality and the condition of the fish? 3) Should sperm quality be included in 

assessments of a fish stocks reproductive potential? The answers to these questions are as 

followed:  

 

The egg production per se is not a good descriptor of the reproductive potential of a fish 

stock. Annual viable sperm production can be used as a predictor of recruitment, but it does 

not describe the recruitment better than spawning stock biomass or even the egg production.  

 

Condition factor did not correlate with sperm quality, but indications were found of larger 

males having higher sperm quality. Spermatozoa motility correlated positively to gonad 

weight, GSI and drumming muscle mass. In addition, the positive relationship between GSI 

and sperm density in cod at spawning grounds in 2007 indicated that males with a high GSI 

have high sperm quality. However, also a negative, but weak, correlation was found between 

sperm density and fish length.  

 

Some indications of larger males having high sperm quality were found. Variation in sperm 

quality related to fish size could therefore be important for reproductive potential in exploited 

fish stocks where size selective harvesting can cause a lower mean fish size and potentially a 

lower sperm quality. More knowledge concerning paternal traits in wild and captive cod, 

including direct assessment of fertilisation success, should also be considered as a subject for 

further research. The stock-recruitment relationships are complex and a combination of both 

female and male traits might be the key to the door of recruitment mystery. 
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6. APPENDICES 

APPENDIX A: FIXATIVES 

 

MILT FIXATIVES 

 

Table A.1: Recipe for one litre of 3.6 % buffered formaldehyde (provided by IMR, Bergen, Norway) 

Chemicals Molecular weight Final concentration (M) Mol Amount needed (g) 

NaH2PO4*H2O 137.99 0.02948 0.02948 4.068 

Na2HPO4*2H2O 177.99 0.04601 0.04601 8.189 

     

Formaldehyde Stock solution Final concentration (M)  Amount needed (litres) 

 37 3.6  0.097 

 

 

 
Table A.2: Recepy of glutaraldehyde-formaldehyde fixation solution (teleost fixative), as given in 

Grotmol et al. (2003): 
Chemicals Amount needed 

PBS (adjusted pH 7.35) 600 mL 

0.2 M cacodylate buffer 200 mL 

25 % glutaraldehyde 100 mL 

10 % formaldehyde (from paraformaldehyde) 100 mL 
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APPENDIX B: STATION COORDINATES 

 

STATION COORDINATES ON SPAWNING GROUNDS 

 
Table B.1: Coordinates for sampling stations at the spawning grounds in 2007 

 

 

 

 

 

 

 

 

 
Table B.2: Coordinates for sampling stations at the spawning grounds in 2008 

Station Latitude Longitude 

A 69.93 16.78 

B 69.23 14.82 

C 68.97 13.97 

D 68.79 13.01 

E 68.26 12.62 

F 68.34 11.56 

G 67.82 12.62 

H 67.60 12.03 

I 67.35 11.54 

J 67.45 11.63 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Station Latitude Longitude 

A 68.40 13.31 

B 68.38 11.77 

C 67.80 12.32 

D 68.33 11.89 

E 67.45 12.21 

F 68.16 14.15 
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APPENDIX C: RAW DATA 

 

CAPTIVE NORTHEAST ARCTIC COD 2007 

 

Table C.1: Sperm density and spermatocrit level in eight captive male NEA cod 

Fish number Sperm density (cells/mL) Spermatocrit level 

19 4.2E+07 94.1 % 

25 5.3E+07 83.4 % 

18 1.3E+08 77.3 % 

42 6.2E+07 89.4 % 

29 4.6E+07 81.5 % 

26 7.3E+07 86.7 % 

23 1.9E+07 100.0 % 

27 2.4E+07 81.8 % 

 

 

 
Table C.2: Data of fish weight, fish length, drumming muscle dry and wet weight in female captive 

NEA cod in 2007, with fish number 1 to 17. 

Fish number Sex Fish weight (g) Fish length (cm) Drum. wet weight (g) Drum. dry weigth (g) 

1 Female 4575 96 1.85 0.27 

2 Female 7101 95 3.67 0.66 

3 Female 7785 91 3.57 0.69 

4 Female 6748 91 1.94 0.34 

5 Female 7518 88 3.01 0.59 

6 Female 5872 87 3.60 0.68 

7 Female 3757 86 0.78 0.10 

8 Female 5078 85 2.03 0.33 

9 Female 5232 84 1.85 0.31 

10 Female 4297 83 2.06 0.34 

11 Female 3898 82 1.29 0.20 

12 Female 4510 80 3.69 0.69 

13 Female 2070 78 0.36 0.05 

14 Female 3450 74 2.38 0.42 

15 Female 3354 71 1.98 0.35 

16 Female 1710 64 0.38 0.05 

17 Female 1635 60 0.43 0.08 
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CAPTIVE NORTHEAST ARCTIC COD 2007 

 

Table C.3: Data of fish weight, fish length, drumming muscle dry and wet weight in male captive 

NEA cod in 2007, with fish number 18 to 55. 

Fish number Sex Fish weight (g) Fish length (cm) Drum. wet weight (g) Drum. dry weigth (g) 

18 Male 6390 98 2.32 0.38 

19 Male 8251 93 5.35 1.00 

20 Male 7555 90 2.58 0.46 

21 Male 4727 88 1.09 0.17 

22 Male 3687 86 1.66 0.25 

23 Male 3925 86 1.83 0.28 

24 Male 5489 84 3.93 0.74 

25 Male 4077 83 0.75 0.11 

26 Male 4023 82 2.69 0.47 

27 Male 4632 82 1.95 0.35 

28 Male 5105 81 1.52 0.28 

29 Male 4890 81 3.43 0.66 

30 Male 2742 80 1.31 0.16 

31 Male 3357 80 1.29 0.20 

32 Male 4257 78 4.18 0.74 

33 Male 2416 78 0.93 0.13 

34 Male 3989 78 2.70 0.43 

35 Male 2760 77 1.16 0.17 

36 Male 3451 77 2.39 0.39 

37 Male 3529 76 1.45 0.25 

38 Male 4096 76 1.29 0.20 

39 Male 5084 75 5.06 1.00 

40 Male 3020 75 3.16 0.57 

41 Male 4175 74 1.27 0.22 

42 Male 3032 72 1.70 0.30 

43 Male 2257 72 0.60 0.09 

44 Male 3030 71 5.87 1.14 

45 Male 2150 69 1.16 0.17 

46 Male 2490 68 3.73 0.68 

47 Male 1930 67 0.69 0.11 

48 Male 2065 66 0.83 0.13 

49 Male 1780 66 1.04 0.15 

50 Male 2075 62 1.59 0.26 

51 Male 1975 61 1.13 0.19 

52 Male 1720 59 1.35 0.23 

53 Male 1810 59 2.34 0.41 

54 Male 1505 58 0.97 0.15 

55 Male 1530 58 0.54 0.08 
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CAPTIVE COASTAL COD 2008 

 
Table C.4: Data of fish weight, fish length, gonad weight, drumming muscle wet and dry weight and 

spermatozoa density in five male captive coastal cod in 2008. 

 

 

 

 
Table C.5: Milt weight in captive coastal cod estimated using different milt volumes, using 100 µl or 1 

mL. 

Milt volume Weight (g/mL milt) 

100 µl 0.989 

100 µl 0.956 

100 µl 0.963 

100 µl 0.988 

100 µl 0.879 

100 µl 0.980 

100 µl 0.964 

100 µl 0.805 

100 µl 0.761 

1 mL 1.083 

1 mL 1.060 

1 mL 1.020 

1 mL 1.133 

1 mL 1.070 

 

Fish 
number 

Fish weight 
(g) 

Fish length 
(cm) 

Gonad 
weight (g) 

Drum wet 
weight (g) 

Drum dry 
weight (g) 

Sperm density 
(cells/mL) 

1 6570 77 796 6.59 1.37 9.9E+09 

2 3640 63 489 3.83 0.73 8.5E+09 

3 3402 56 427 4.64 0.85 1.4E+10 

4 2988 65 327 3.70 0.70 3.6E+09 

6 3686 63 418 2.28 0.44 1.7E+10 
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PRE-SPAWNING NEA COD IN 2007 

 

 
Table C.6: Data of fish length, fish weight, gonad weight, GSI and condition in pre-spawning male 

NEA cod in 2007, fish number 1 to 30. 

Fish number Fish length (cm) Fish weight (g) Gonad weight (g) GSI K factor 

1 69 2940 95 3.2 % 0.89 

2 94 7080 813 11.5 % 0.85 

3 76 4020 292 7.3 % 0.92 

4 75 3660 293 8.0 % 0.87 

5 97 6580 884 13.4 % 0.72 

6 76 4120 516 12.5 % 0.94 

7 77 4220 368 8.7 % 0.92 

8 72 3260 246 7.5 % 0.87 

9 65 2500 250 10.0 % 0.91 

10 73 3140 417 13.3 % 0.81 

11 80 4600 572 12.4 % 0.90 

12 65 2140 109 5.1 % 0.78 

13 81 4740 401 8.5 % 0.89 

14 98 7400 772 10.4 % 0.79 

15 72 3160 308 9.7 % 0.85 

16 71 3220 420 13.0 % 0.90 

17 79 3900 305 7.8 % 0.79 

18 81 4540 401 8.8 % 0.85 

19 79 4180 432 10.3 % 0.85 

20 74 3380 242 7.2 % 0.83 

21 72 3400 393 11.6 % 0.91 

22 98 10020 822 8.2 % 1.06 

23 100 10080 1236 12.3 % 1.01 

24 84 4800 203 4.2 % 0.81 

25 74 3800 478 12.6 % 0.94 

26 101 9660 932 9.6 % 0.94 

27 72 3380 263 7.8 % 0.91 

28 92 7660 1176 15.3 % 0.98 

29 101 8720 750 8.6 % 0.85 

30 85 5220 360 6.9 % 0.85 
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PRE-SPAWNING NEA COD IN 2007 

 

Table C.7: Data of fish length, fish weight, gonad weight, GSI and condition in pre-spawning male 

NEA cod in 2007, fish number 31 to 63. 

Fish number Fish length (cm) Fish weight (g) Gonad weight (g) GSI K factor 

31 85 5240 807 15.4 % 0.85 

32 95 7300 1086 14.9 % 0.85 

33 85 6120 676 11.0 % 1.00 

34 88 7740 870 11.2 % 1.14 

35 79 4200 366 8.7 % 0.85 

36 79 4440 563 12.7 % 0.90 

37 80 4820 334 6.9 % 0.94 

38 82 5160 387 7.5 % 0.94 

39 72 3900 498 12.8 % 1.04 

40 94 9120 1148 12.6 % 1.10 

41 72 3500 470 13.4 % 0.94 

42 82 5480 497 9.1 % 0.99 

43 71 3460 476 13.8 % 0.97 

44 75 3740 355 9.5 % 0.89 

45 76 4440 505 11.4 % 1.01 

46 65 2320 166 7.1 % 0.84 

47 78 3880 341 8.8 % 0.82 

48 62 2420 243 10.0 % 1.02 

49 70 3020 288 9.5 % 0.88 

50 96 9620 1496 15.6 % 1.09 

51 84 5460 604 11.1 % 0.92 

52 94 7520 897 11.9 % 0.91 

53 90 8600 1189 13.8 % 1.18 

54 90 5960 593 9.9 % 0.82 

55 105 12080 1661 13.7 % 1.04 

56 81 5400 433 8.0 % 1.02 

57 77 4180 684 16.4 % 0.92 

58 64 2420 222 9.2 % 0.92 

59 83 5340 681 12.7 % 0.93 

60 70 3140 321 10.2 % 0.92 

61 67 2660 313 11.8 % 0.88 

62 71 3040 327 10.7 % 0.85 

63 67 2500 276 11.0 % 0.83 
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COD AT THE SPAWNING GROUNDS IN 2007 

 
Table C.8: Data of spermatozoa density, fish length, fish weight, gonad weight, GSI and condition in 

male NEA cod at the spawning grounds in 2007, from fish number 1 to 30. 
Fish 

number 
Sperm density 
(cells/mL) 

Fish length 
(cm) 

Fish weight 
(g) 

Gonad weight 
(g) GSI K factor 

1 4.6E+09 65 2570 287 11.2 % 0.9 

2 8.0E+09 78 4030 338 8.4 % 0.8 

3 8.0E+09 68 2725 250 9.2 % 0.9 

4 4.4E+09 74 3995 247 6.2 % 1.0 

5 2.2E+09 74 4125 273 6.6 % 1.0 

6 2.3E+09 71 3720 572 15.4 % 1.0 

7 2.6E+09 81 5590 652 11.7 % 1.1 

8 4.8E+09 83 5115 938 18.3 % 0.9 

9 6.8E+09 72 3400 510 15.0 % 0.9 

10 8.0E+09 101 9620 1239 12.9 % 0.9 

11 2.0E+09 95 6705 797 11.9 % 0.8 

12 4.5E+09 88 7270 1392 19.1 % 1.1 

13 5.1E+09 103 9790 1046 10.7 % 0.9 

14 4.0E+09 90 6580 467 7.1 % 0.9 

15 8.1E+09 89 7090 870 12.3 % 1.0 

16 3.6E+09 68 2585 298 11.5 % 0.8 

17 6.3E+09 74 3650 383 10.5 % 0.9 

18 3.3E+09 81 4980 571 11.5 % 0.9 

19 9.1E+09 68 3075 344 11.2 % 1.0 

20 9.2E+09 72 3075 376 12.2 % 0.8 

21 6.1E+09 71 3115 241 7.7 % 0.9 

22 6.7E+09 70 3505 395 11.3 % 1.0 

23 4.5E+09 55 1493 190 12.7 % 0.9 

24 1.2E+10 74 3430 304 8.9 % 0.8 

25 6.5E+09 77 3965 366 9.2 % 0.9 

26 5.5E+09 79 4300 416 9.7 % 0.9 

27 2.0E+09 67 2324 106 4.6 % 0.8 

28 2.7E+09 80 4530 396 8.7 % 0.9 

29 6.6E+09 74 3535 243 6.9 % 0.9 

30 1.8E+09 84 5110 621 12.2 % 0.9 
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COD AT THE SPAWNING GROUNDS IN 2007 

 
Table C.9: Data of spermatozoa density, fish length, fish weight, gonad weight, GSI and condition in 

male NEA cod at the spawning grounds in 2007, from fish number 31 to 59. 
Fish 

number 
Sperm density 
(cells/mL) 

Fish length 
(cm) 

Fish weight 
(g) 

Gonad weight 
(g) GSI K factor 

31 2.0E+09 63 1910 107 5.6 % 0.8 

32 2.3E+09 113 11530 847 7.3 % 0.8 

33 3.1E+09 82 4875 383 7.9 % 0.9 

34 5.9E+08 79 4210 424 10.1 % 0.9 

35 8.1E+08 86 5290 730 13.8 % 0.8 

36 2.6E+09 75 4135 323 7.8 % 1.0 

37 6.4E+09 93 7315 711 9.7 % 0.9 

38 5.6E+08 112 11550 548 4.7 % 0.8 

39 5.9E+09 92 6540 392 6.0 % 0.8 

40 1.1E+10 80 4665 555 11.9 % 0.9 

41 3.0E+09 108 13150 2985 22.7 % 1.0 

42 8.4E+09 94 6300 329 5.2 % 0.8 

43 7.3E+09 75 4345 324 7.5 % 1.0 

44 1.7E+09 77 3685 343 9.3 % 0.8 

45 4.4E+09 76 3645 261 7.2 % 0.8 

46 2.0E+08 77 4355 210 4.8 % 1.0 

47 2.9E+09 76 3740 296 7.9 % 0.9 

48 5.0E+09 109 13490 1422 10.5 % 1.0 

49 1.6E+09 113 15110 585 3.9 % 1.0 

50 4.6E+08 100 7890 573 7.3 % 0.8 

51 1.7E+08 107 12860 898 7.0 % 1.0 

52 3.9E+09 91 6990 822 11.8 % 0.9 

53 3.8E+09 64 2156 286 13.3 % 0.8 

54 3.3E+08 104 9370 546 5.8 % 0.8 

55 4.7E+09 118 17510 2003 11.4 % 1.1 

56 5.3E+09 113 12760 1819 14.3 % 0.9 

57 2.4E+09 86 5910 424 7.2 % 0.9 

58 3.6E+09 71 3575 495 13.8 % 1.0 

59 2.5E+09 81 5140 193 3.8 % 1.0 
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COD AT THE SPAWNING GROUNDS IN 2007 

 
Table C.10: Coefficient of variation between spermatozoa counts using the software program Image J 

(1.37v) versus manually counts by hand. 

Fish number Coefficient of variation 

1 0.4 % 

2 3.0 % 

3 2.0 % 

4 2.6 % 

5 3.6 % 

6 5.0 % 

7 0.7 % 

8 2.8 % 

9 3.3 % 

10 2.1 % 

11 2.8 % 

12 8.8 % 

13 1.7 % 

14 5.8 % 

15 5.3 % 

16 4.0 % 

17 10.8 % 

18 0.0 % 

19 0.9 % 

20 0.6 % 

21 0.3 % 

22 6.5 % 

23 0.9 % 

24 5.5 % 

25 11.1 % 

26 1.0 % 

27 1.8 % 

28 0.2 % 

29 3.9 % 

30 4.4 % 
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Table C.11: Width and length of spermatozoa cells estimated in Image J (1.37 v) with pictures taken in 

a light microscope (n = 36) 

Picture Cell length/Major (um) Cell width/Minor (um) Cell volume (um^3) 

LM 1 3.73 2.04 8.13 

LM 2 3.27 1.81 5.61 

LM 3 2.84 1.85 5.09 

LM 4 3.37 2.01 7.13 

LM 5 3.40 1.77 5.58 

LM 6 3.41 2.01 7.21 

LM 7 3.10 1.85 5.55 

LM 8 3.15 2.06 7.00 

LM 9 2.96 1.89 5.53 

LM 10 3.59 1.79 6.02 

LM 11 3.10 1.97 6.30 

LM 12 3.90 1.77 6.40 

LM 13 3.70 2.06 8.22 

LM 14 3.08 1.78 5.11 

LM 15 3.76 2.23 9.79 

LM 16 3.95 2.08 8.95 

LM 17 3.11 1.83 5.45 

LM 18 3.52 2.08 7.97 

LM 19 3.33 1.99 6.90 

LM 20 3.09 1.86 5.60 

LM 21 3.52 1.86 6.37 

LM 22 3.24 1.97 6.58 

LM 23 2.55 1.84 4.52 

LM 24 3.60 1.80 6.11 

LM 25 3.62 2.14 8.68 

LM 26 3.37 1.74 5.34 

LM 27 3.96 1.91 7.56 

LM 28 3.91 2.01 8.27 

LM 29 3.54 2.01 7.49 

LM 30 3.73 1.73 5.84 

LM 31 3.99 1.68 5.89 

LM 32 3.26 2.15 7.89 

LM 33 3.88 2.08 8.79 

LM 34 3.74 1.83 6.56 

LM 35 3.80 2.01 8.04 

LM 36 3.39 1.79 5.69 

    

Mean 3.46 1.92 6.75 

    
Standard 
deviation 0.35 0.14 1.30 
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Table C.12: Width and length of spermatozoa cells estimated in Image J (1.37 v) with pictures taken in 

a field emission scanning electron microscope (n = 11) 

Picture Cell length/Major (um) Cell width/Minor (um) Cell volume (um^3) 

SEM 1 2.23 1.23 1.77 

SEM 2 2.07 1.24 1.67 

SEM 3 2.33 1.21 1.79 

SEM 4 2.52 1.12 1.65 

SEM 5 2.61 1.12 1.71 

SEM 6 2.13 1.18 1.55 

SEM 7 2.74 1.02 1.49 

SEM 8 2.77 1.13 1.85 

SEM 9 2.65 1.2 1.10 

SEM 10 2.54 1.29 2.21 

SEM 11 2.61 1.14 1.78 

    

Mean 2.47 1.17 1.77 

    

Standard 
deviation 0.24 0.07 0.20 
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Table C.13: Testis volume estimated from pieces of testis (3 x 3 cm) from all the male cod collected at 

the spawning grounds in 2007 (n = 72). 

Sample number Volume/gram (mL/g) Sample number Volume/gram (mL/g) 

1 1.053 37 1.000 

2 1.033 38 1.029 

3 0.818 39 0.997 

4 0.959 40 0.983 

5 0.955 41 1.008 

6 1.024 42 0.978 

7 1.019 43 0.849 

8 1.004 44 1.073 

9 0.994 45 1.042 

10 1.003 46 1.028 

11 0.905 47 0.955 

12 0.941 48 0.996 

13 0.996 49 1.034 

14 1.020 50 0.982 

15 0.958 51 1.014 

16 0.992 52 0.956 

17 1.000 53 0.998 

18 0.930 54 1.048 

19 0.988 55 0.992 

20 1.000 56 1.062 

21 0.964 57 1.070 

22 0.926 58 1.071 

23 0.947 59 0.952 

24 1.064 60 1.068 

25 0.952 61 1.027 

26 0.980 62 1.038 

27 1.030 63 0.993 

28 0.971 64 1.275 

29 0.998 65 0.949 

30 0.942 66 0.983 

31 0.949 67 1.042 

32 0.997 68 1.008 

33 0.969 69 1.046 

34 0.940 70 1.037 

35 0.982 71 0.973 

36 0.951 72 0.989 
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COASTAL COD HISTOLOGY DATA 

 

 
Table C.14: Histology data of coastal cod (Gadus morhua) provided by Dr. Øystein Sæle (Nifes). 
Different stages of sperm cells in the testes are represented as mean percentages under “sperm counts”. 

The parts that were considered to be connective tissue, and hence removed when estimating the total 

amount of sperm cells in the testes of Northeast Arctic cod (Gadus morhua), are mentioned under the 
“non sperm counts” as a mean percentage of the total content in testes. Cell stadiums are illustrated a 

figure of the spermatogenesis (Fig. C.1). 

 
Sperm counts Percentage 

content 
Non sperm 
counts 

Percentage 
content 

A: Spermatozoa  

50.8 % 

Blood vessle 0.1 % 

B: Elongated spermatids  
11.7 % 

Lobula 2.7 % 

C: Round spermatids  
17.9 % 

Open space 0.8 % 

D: Spermatocytes  
15.3 % 

  

E: Spermatogonia  
≈ 0.0 % 

  

Total 95.7 % Total 3.6 % 
 

 

   
 

Figure C.1: Spermatogenesis. 

A: Spermatozoa 

 

Lumen 

 

B: Elongated 

spermatids 

 

C: Round spermatids 

 

D: Spermatocytes 

E:Spermatogoonia 

Membrane 
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Table C.15: Data sperm density, fish weight, fish length, gonad weight, GSI, condition, drumming muscle dry and wet weight in male NEA at spawning 

grounds in 2008, fish number 1 to 20. 
Fish 
number 

Sperm density 
(cells/mL) 

Fish weight 
(g) 

Fish length 
(cm) 

Gonad 
weight (g) GSI  K factor 

Drum. muscle wet 
weight (g) 

Drum. muscle dry 
weight (g) 

1 8.4E+09 3914 71 372 9.5 % 1.09 1.80 0.30 

2 5.9E+09 5404 84 454 8.4 % 0.91 2.20 0.41 

3 7.1E+09 6739 88 578 8.6 % 0.99 2.90 0.46 

4 1.0E+10 4699 76 458 9.7 % 1.07 4.70 0.97 

5 1.1E+10 3554 72 302 8.5 % 0.95 3.60 0.74 

6 9.0E+09 2630 69 260 9.9 % 0.80 1.20 0.24 

7 9.1E+09 2477 68 250 10.1 % 0.79 0.90 0.16 

8 7.5E+09 2378 65 179 7.5 % 0.87 1.10 0.21 

9 8.7E+09 2204 64 249 11.3 % 0.84 1.15 0.23 

10 1.0E+10 4030 75 551 13.7 % 0.96 2.90 0.59 

11 7.3E+09 3200 77 279 8.7 % 0.70 0.95 0.14 

12 6.2E+09 8255 95 711 8.6 % 0.96 4.25 0.91 

13 9.5E+09 5995 88 589 9.8 % 0.88 3.50 0.63 

14 1.4E+10 6420 90 688 10.7 % 0.88 5.30 1.11 

15 1.0E+10 5550 84 420 7.6 % 0.94 4.10 0.79 

16 1.1E+10 5460 85 482 8.8 % 0.89 6.80 1.48 

17 5.8E+09 5035 84 510 10.1 % 0.85 2.75 0.49 

18 7.6E+09 4050 80 395 9.8 % 0.79 2.00 0.36 

19 9.2E+09 5360 82 643 12.0 % 0.97 2.60 0.46 

20 6.5E+09 3485 70 475 13.6 % 1.02 2.20 0.37 
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Table C.16: Data of sperm density, fish weight, fish length, gonad weight, GSI, condition, drumming muscle dry and wet weight in male NEA at spawning 

grounds in 2008, fish number 21 to 42. 
Fish 
number 

Sperm density 
(cells/mL) 

Fish weight 
(g) 

Fish length 
(cm) 

Gonad weight 
(g) GSI K factor 

Drum. muscle wet 
weight (g) 

Drum. muscle dry 
weight (g) 

21 7.4E+09 4370 78 459 10.5 % 0.92 3.00 0.62 

22 9.8E+09 4680 79 490 10.5 % 0.95 3.40 0.67 

23 8.6E+09 7695 94 974 12.7 % 0.93 6.60 1.44 

24 4.0E+09 6805 92 521 7.7 % 0.87 3.40 0.64 

25 1.1E+10 8185 95 852 10.4 % 0.95 1.90 0.29 

26 8.1E+09 12450 114 1233 9.9 % 0.84 6.10 1.88 

27 7.6E+09 9030 102 957 10.6 % 0.85 7.80 1.60 

28 1.4E+10 13400 108 1795 13.4 % 1.06 9.30 2.04 

29 1.0E+10 5240 84 592 11.3 % 0.88 3.20 0.61 

30 7.4E+09 8630 96 1882 21.8 % 0.98 7.60 1.62 

31 6.8E+09 5215 83 443 8.5 % 0.91 13.00 4.16 

32 5.7E+09 3950 79 232 5.9 % 0.80 2.40 0.40 

33 1.2E+10 4680 83 400 8.5 % 0.82 1.60 0.27 

34 7.6E+09 6430 87 652 10.1 % 0.98 4.30 0.81 

35 8.9E+09 6560 92 907 13.8 % 0.84 2.20 0.36 

36 3.8E+09 5170 81 642 12.4 % 0.97 2.65 0.48 

37 6.2E+09 2510 68 121 4.8 % 0.80 1.80 0.32 

38 1.3E+10 3585 69 360 10.0 % 1.09 2.00 0.36 

39 7.4E+09 5240 86 646 12.3 % 0.82 2.00 0.36 

40 9.0E+09 8220 88 1530 18.6 % 1.21 5.00 0.96 

41 6.6E+09 9340 97 527 5.6 % 1.02 9.70 2.10 

42 8.3E+09 6040 85 699 11.6 % 0.98 3.00 0.53 
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Table C.17: Motility measurements, given in percent, after initial time of activation (T = 

zero), ten minutes (T = ten) and 60 minutes (T = 60) of activation. 

Sample number Motility (%) at T = zero Motility (%) at T = ten Motility (%) at T = 60 

1 95 0 0 

2 0 0 0 

3 80 0 0 

4 80 0 0 

5 60 0 0 

6 80 0 0 

7 100 0 0 

8 95 0 5 

9 50 0 5 

10 50 40 0 

11 80 10 10 

12 60 10 5 

13 90 5 0 

15 50 0 0 

16 70 20 0 

17 60 5 0 

18 80 0 0 

19 65 0 0 

20 90 0 0 

21 60 0 1 

22 95 60 0 

23 90 0 1 

24 100 20 0 

25 40 0 0 

26 70 0 0 

27 100 0 0 

28 100 10 0 

29 90 40 0 

30 95 70 0 

31 80 40 0 

33 70 75 0 

35 95 0 0 

37 100 5 0 

38 95 30 0 

39 80 45 0 

41 50 65 0 

42 80 5 0 

43 65 15 0 

45 100 0 0 

46 95 10 0 

47 85 5 0 

48 95 40 0 
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SEX RATIOS AT PER STATION ON SPAWNING GROUNDS IN 2007 

 

 
Table C.18: Sex ratios of NEA cod in selected stations at the spawning grounds 2007. 
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Figure C.2: Sex ratios of NEA cod in selected stations at the spawning grounds 2007. 

 

Station Females % Males % 

70616 10.0 90.0 

70619 31.4 68.6 

70621 40.3 59.7 

70625 34.5 65.5 

70638 6.4 93.6 

70641 9.1 90.9 

   

Total 12.4 87.6 
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SEX RATIOS AT PER STATION ON SPAWNING GROUNDS IN 2008 

 

 
Table C.19: Sex ratios of NEA cod in selected stations at the spawning grounds 2008. 
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Figure C.3: Sex ratios of NEA cod in selected stations at the spawning grounds 2008. 

 

Station Females % Males % 

71002 40.5 59.5 

71003 0.0 100.0 

71004 18.1 81.9 

71005 38.3 61.7 

71008 36.1 63.9 

71011 47.9 52.1 

71013 25.0 75.0 

71018 25.9 74.1 

71020 43.2 56.8 

71021 37.8 62.2 

   

Total 33.3 66.7 
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ANNUAL VIABLE SPERM PRODUCTION 

 
Table C.20: Annual viable sperm production of Northeast Arctic cod, estimated with the 

parameterised equation and Trippel’s equation (1946-2005) 

Year 
Parameterised eq. 
(VSP) 

Trippel's eq. 
(VSP) Year 

Parameterised eq. 
(VSP) 

Trippel's eq. 
(VSP) 

1946 4.2E+20 4.2E+19 1976 2.1E+20 1.9E+19 

1947 1.3E+21 1.3E+20 1977 5.9E+20 4.9E+19 

1948 5.8E+20 5.9E+19 1978 3.8E+20 3.4E+19 

1949 1.0E+21 1.0E+20 1979 2.1E+20 1.9E+19 

1950 4.6E+20 4.5E+19 1980 2.3E+20 2.1E+19 

1951 7.2E+20 6.8E+19 1981 7.9E+20 6.8E+19 

1952 4.0E+20 3.9E+19 1982 1.9E+21 1.6E+20 

1953 3.4E+20 3.3E+19 1983 7.9E+17 4.6E+16 

1954 9.0E+20 8.6E+19 1984 4.2E+19 3.8E+18 

1955 5.2E+20 4.8E+19 1985 5.0E+20 4.0E+19 

1956 2.7E+20 2.4E+19 1986 3.7E+20 2.9E+19 

1957 8.6E+19 7.6E+18 1987 1.3E+20 1.0E+19 

1958 3.0E+20 2.7E+19 1988 4.7E+20 3.7E+19 

1959 8.1E+20 7.4E+19 1989 6.5E+20 5.3E+19 

1960 7.2E+20 6.6E+19 1990 8.8E+20 7.3E+19 

1961 1.7E+20 1.5E+19 1991 4.1E+21 3.6E+20 

1962 3.7E+20 3.3E+19 1992 2.8E+21 2.4E+20 

1963 6.9E+19 6.0E+18 1993 2.1E+21 1.8E+20 

1964 3.6E+20 3.2E+19 1994 1.1E+21 8.6E+19 

1965 8.0E+19 7.2E+18 1995 1.5E+21 1.2E+20 

1966 2.7E+20 2.4E+19 1996 1.7E+21 1.3E+20 

1967 1.8E+20 1.6E+19 1997 2.1E+21 1.8E+20 

1968 3.1E+20 2.6E+19 1998 1.1E+21 9.7E+19 

1969 2.4E+20 2.2E+19 1999 8.7E+20 7.6E+19 

1970 4.0E+20 3.5E+19 2000 4.8E+20 4.0E+19 

1971 6.5E+20 5.7E+19 2001 1.2E+21 9.3E+19 

1972 6.5E+20 5.8E+19 2002 1.5E+21 1.2E+20 

1973 5.4E+20 5.0E+19 2003 2.0E+21 1.6E+20 

1974 2.2E+20 2.1E+19 2004 1.7E+21 1.4E+20 

1975 1.8E+20 1.7E+19 2005 1.5E+21 1.2E+20 

 

 


