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Chapter 1

Introduction.

The aim for this master thesis is to do the ground work for a statistical analysis of four dimensional data, (three spatial dimensions and
time), of fish schools, registered by the Simrad scientific multibeam sonar MS70, owned by the Institute of Marine Research (IMR) in
Bergen, Norway. The sonar emits high frequent sound in 25 · 20 narrow beams from an array of transducers, as illustrated in Figure 1.1,
and observes the echo from objects in the insonifying volume.

Havforskningsinstituttets kvalitetssystem 
Håndbok for innsamling og bearbeiding av akustikkdata 
Tittel: 

Prosedyre for operering av multistrålesonar MS70  
Godkjent av: 

Avd. dir. 

Dato: 

2007-04-16 

Forfatter(e): 

 

Hans P. Knudsen   Tilhørighet (senter, seksjon eller prosjekt):  

Seksjon elektronisk instrumentering 

 
Versjon: 

1 

Dato: 

2007-03-14 

Ansvarlig for vedlikehold og tilgjengelighet: Hans P. Knudsen
 

Ansvarlig for revisjon: Hans P. Knudsen
 

Tekstbehandler: Microsoft Word 

 

Dokument: ååååmmdd Prosedyre MS70   

inneholder  4   sider 

 

PROSEDYRE FOR OPERERING AV MULTISTRÅLESONAR 
MS70  

1. Hensikt 

Multistrålesonar MS70 er en sonar som er utviklet for å tilfredsstille Havforskningsinstituttets 

behov for å gjennomføre nøyaktige målinger av volum, tetthet og fiskemengde i fiskestimer. 

Det finnes pr. i dag kun ett eksemplar av denne sonaren, som er installert på F/F ”G.O. Sars”. 

Denne prosedyren gir en oversikt over de viktigste gjøremål som må til for at operering og 

datainnsamling med sonaren skal kunne gjennomføres på en vitenskapelig forsvarlig måte. 

2. Omfang og virkemåte 

Sonarens hovedkomponenter består av:  

!" En bredbånds svinger for frekvensområdet 70 – 112 kHz, med 800 svingerelementer. 

Svingeren er plassert i babord senkekjøl. 

!" En sender/mottakerenhet inkludert 6 PC-er.    

!" Operatørstasjon.  

 

 

 

Sender/mottaker-enheten har 25 kretskort som hvert inneholder 32 sender/mottakere. Ut fra 

de mottatte signaler på de 800 elementene blir det, ved hjelp av 6 PC-er, formet 500 stråler. 
Figure 1.1: The 500 beams from the MS70 sonar. (Figure borrowed from "Prosedyre for operering av multistrålesonar MS70", by the
Institute of Marine Research, Bergen, Norway.)
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There are many advantages with multibeam sonars such as MS70, compared to ordinary echo sounders. One is that the sonars emit
sound to the side of the research vessel, as seen in Figure 1.1, while echo sounders emit sound downwards. This allows for a larger
sampling volume than for echo sounders, because the sea floor may restrict the sampling volume of the echo sounder to a larger degree
than the sampling volume of the sonar. The insonifying volume of MS70 for the particular survey considered in this thesis, is a 45◦ by
60◦ segment of a sphere of radius approximately 500 meters. This means that we can observe schools typically at a distance 300 meters
from the research vessel, which also reduces the problem of school avoidance. This problem was documented by (Gerlotto et al., 1999),
where the density of fish schools at distances in the range (30, 60) meters from a multibeam sonar, was almost twice the density in the
range (0, 30) meters.

The most obvious advantage however, is that the MS70 provide a series of three dimensional data sets in time, allowing for four dimen-
sional observation of fish schools. This opens for a higher degree of reliability in both biomass estimation and school characterization.
Hopefully there is enough information in data from a school observed by the MS70, to identify both the species and the number of fish
to some degree of certainty.

In this thesis we consider two complementary approaches to the analysis. The first one is the individual approach (1), where we seek to
fully describe the acoustic signal from one single fish, and then generalize to n fish. The second is the group level approach (2), involving
statistical methods for characterizing the observed data, and the development in time of the data.

(1) - Individual approach.

The aim for the individual approach is to use acoustic theory to predict and explain the expected value and variation in the data values
observed by the MS70 sonar. As a basis and inspiration for (1), we consider mathematical models for fish schools, called individual
based models (IBM), consisting of a set of behaviour rules for individual fish. The first IBM was presented by (Parr, 1927), but more
a important references is (Huth and Wissel, 1992), in which the movements of fish schools of 8 individuals are simulated, based on an
IBM. The basic concept of IBMs is that the space around a fish is divided into four zones, in which a second fish affects the behaviour
of the first fish. These are named the repulsion zone (a), the alignment zone (b), the attraction zone (c) and the searching zone (d),
with increasing ranges from the reference fish. In simulations done by (Reynolds, 1987) the zone of alignment or parallel orientation, is
replaced by a zone of velocity matching. A mathematical model that utilizes behaviour rules of this kind, is an IBM.

A great challenge is to link the specifications of the IMBs to the macroscopic properties of the fish school. In (Mirabet et al., 2007) the
impact on school structure of different specifications for IBMs, were analyzed. The strength of repulsion, alignment and attraction were
modeled as functions of distance from the fish, and 5 different sets of specifications of these functions were used to simulate 100 fish.
The spatial structure of the schools were examined, and the results showed a significant impact on spatial structure from the different
sets of functions. However, the sizes of fish schools studied or simulated using IBMs, seldom exceed 100 fish, which are far from the sizes
of real fish schools. The school treated in this thesis for instance, may consist of several hundred thousand fish, so it is clear that the
link between IBMs and large schools observed by multibeam sonars is not well understood. An effort on examining the link between
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individual behaviour, and group-level properties, and encourage researchers to further explore this link, is done in (Parrish et al., 2002)

Our focus in this thesis will not be on IBMs, but rather on the acoustic signal scattered back to the receiver from individual fish. We
still bear in mind the behaviour zones (a), (b), (c) and (d), which define an expected volume occupied by one fish in a school of a certain
species. The degree of alignment of a species might also be possible to detect, through variables reflecting the parallel orientation of the
fish in the school, and the will of the school to move in one direction (the determination of the school).

(2) - Group level approach.

By the second approach we seek to describe the properties of the school by variables reflecting its shape, movement, internal structure
and development of shape and internal structure over time. Some preliminary investigations on school size and shape were performed
by (Gerlotto et al., 1999). The results showed significant differences between the variables LS/WS and LS/HS , (where LS , WS and HS

are the mean length, width and height of a school), of fish schools observed in the Adriatic sea, and in the Catalan sea. Schools in the
Adriatic sea were flatter and longer, and also had significantly larger volume. These variables and several others will be discussed as
variables characterizing fish schools, in chapter 7, "Statistical analysis".

Connecting the approaches (1) and (2) is an important issue in the thesis, and it is our belief that many results of the statistical analysis
rely on the results in the analysis of backscattering from individual fish. In particular the variance in the data from schools demand
investigation on individual backscattering for proper interpretations. We also consider the expected acoustic signal from a single fish,
and further generalized to n fish, to get an idea of which data values are to be expected from a school of a certain species. As the fish
are generally seen from the side, the orientation of the fish has great impact on the individual and mean signal from schools, which is
important in biomass estimation. We take orientation into account in the individual based analysis, and in the group level analysis, and
a promising method might be to study the development of the signal from parts of schools over time. Rapid changes in the signal from
a segment of a school is most likely to be an indication on rapid changes in the mean orientation of the fish in that segment, rather than
fish leaving or joining the segment.

Contents of chapters.

Prior to the statistic analysis we do quite an extensive analysis, in order to represent the data in a three dimensional system of elementary
unit volumes, called voxels, and transform these voxels into a global coordinate system, and finally into a coordinate system for the
school. Some noise filtering is also required, because of frequent instrument noise. The thesis consists of 9 chapters, and we now briefly
present the contents of the chapters:

Chapter 2, "Relevant acoustics", presents the acoustic variables and formulas used in later chapters, and can be seen as a chapter
aiming to give the necessary acoustic background, rather than a part of the statistical analysis. For readers familiar to acoustic theory,
the chapter may be skimmed, using it as a reference when acoustic properties are implemented later in the thesis.
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Chapter 3, "Materials", introduces the research vessel and the properties of the MS70 sonar.

Chapter 4, "Interpretation of data", establishes the system of voxels used to represent the output from the MS70 sonar, and defines
and calculates the volumes of the voxels, and the midpoints of the voxels subject to the refraction of sound in sea water.

Chapter 5, "Noise", briefly presents different types of noise encountered in the data, and especially treats high intensity instrument
noise which appears quite frequently. An algorithm for removing this type of noise is established and used on the data.

Chapter 6, "Backscattering from individual fish", is the major chapter in the thesis, and traces the acoustic signal from the transducer
to the fish, and back to the transducer for a fish of random position, size and orientation. The results are generalized to many fish, and
interference effects between the individual acoustic signals are taken into account. Finally, the acoustic signal received in specific time
intervals are simulated, and compared to the real data.

Chapter 7, "Statistical analysis", contains analyses of the data as transformed into the coordinate system of the school. The chapter
concerns preliminary spatial statistical methods for characterization, involving principal component analysis, analysis of variation in the
data, autocorrelation along beams, and analysis of the total acoustic backscattering from the school, all as variables in time.

Chapter 8, "Results", presents the results of chapter 7.

Chapter 9, "Discussion and future work", discusses the methods and results presented, as well as ideas for work that fell outside of the
time frame of this thesis.

Appendix A, "Rotation matrices", presents the matrices used to transform point vectors from one coordinate system to another
coordinate system, rotated around a mutual origin.

Appendix B, "Notation", lists all variables used in the text, sorted by the chapters in which the variables appear.

Appendix C, "Histograms of the different parts of the sonar equation from simulations", displays 7 histograms showing the randomness
in different variables linked to the acoustic intensity from a fish, from simulations done in chapter 6.

The large amounts of data treated requires efficient programming, both to reduce the time usage and to comply with the memory
limitations of the computer. For the survey treated in this there are 1319 voxels i each beam, resulting in 25 · 20 · 1319 = 659500 values
per time step. The school we will concentrate on is observed during 12 time steps (called pings), giving a total of almost 8 million values.
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Chapter 2

Relevant acoustics.

In this chapter we present all acoustic concepts and formulas that are used in the rest of the thesis. The theory presented will mainly
be used in chapters 4 and 6.

2.1 Basic acoustics.
A source radiating sound into a medium generates a pressure field in the medium that fluctuates with frequencies depending on the
radiated sound and the acoustic properties of the medium. As the source vibrates, kinetic energy is transfered to the immediate sur-
roundings so that the closest molecules are either pushed closer to its neighbours, or pulled away from its neighbours, according to the
motion of the source. This generates a fluctuating pressure field close to the source, which in the next time step is compensated by
longitudinal motion of molecules next to the directly affected molecules. In this way the sound propagates through the medium, and we
can describe this propagation by the pressure p(X, t) at the point X in space at time t.

A sound wave moving through a medium will usually be spherical, analogous to the spherical surface rings in water after a jumping fish.
Locally however, the wave can be regarded as plane, with propagation only in one direction. We express these two waves mathematically
as

p(x, t) = Ae−i(ωt−kx) (plane) (2.1)

and
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p(r, t) =
A

r
e−i(ωt−kr) (spherical). (2.2)

Here ω = 2πf is the angular frequency of the wave (f being the frequency), k = 2πf
c is the wave number, c is the speed of sound in the

medium and r and x are in spherical and cartesian coordinates respectively. We also have the obvious relation ck = ω. We name the
complex pressure ampluitude of an acoustic wave P , and for the plane and spherical wave we have that P = A and P = A/r respectively.
The complex expression can not be interpreted directly, and the real part of (2.1) and (2.2) must be used for all physical interpretations.

2.2 Acoustic intensity.
To derive an expression for acoustic intensity, we need to define specific acoustic impedance z, which is a measure of the acoustic pressure
needed to give particles in a medium the speed u:

z ≡ p

u
. (2.3)

An important equation in acoustics is the linear Euler’s equation, which is the acoustic analogy to Newton’s second law in classical
mechanics. It links the pressure gradient to the particle acceleration, and can be used to express u for a plane wave in the x-direction.
For a plane wave it can be expressed as

−∂p (x, t)
∂x

= ρ0
∂u(x, t)
∂t

,

where ρ0 is the equilibrium particle density (mass per volume). Used on (2.1), Euler’s linear equation gives

ikAe−i(ωt−kx) =
ρ0

−iω
u(x, t)

11



u(x, t) =
A

ρ0c
e−i(ωt−kx),

where we have assumed that u(x, t) has the same mathematical form as p(x, t). It is then easy to see that the specific acoustic impedance
for a plane harmonic wave is

z =
p

u
= ρ0c, (2.4)

where ρ0c is the product of equilibrium density and speed of sound. For the spherical wave more thermodynamic and fluid dynamic
equations are needed to find the particle speed u, (the equation of state and the equation of continuity). We will only present the end
result here, noting that the radial propagation makes z complex:

z(r) = ρ0c cosφre−iφr , (2.5)

cosφr =
kr√

1 + (kr)2
cotφr = kr.

We now have the tools needed to derive the expression of acoustic intensity I, which is the power of the acoustic wave divided by the
area on which work is done by the wave, averaged over one period T = f−1. In mechanics power is expressed as F · u, where F is the
force and u is the speed, while pressure is defined as the ratio of force and the area on which the force works. Considering the specific
acoustic impedance for a plane wave (2.4), we thus get

I =
1
T

∫ T

0

pu · dt =
1
T

∫ T

0

p2

ρ0c
· dt =

P 2

2ρ0c
. (2.6)

This expression is valid both for plane and spherical waves. For a spherical wave I will naturally decay by the square of distance, while
a plane wave will have constant acoustic intensity I = A2/2ρ0c (confronting (2.1) and (2.2)).
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2.3 Pressure field from a simple source.
We consider a simple source represented by a sphere of radius a. The surface of the sphere is vibrating with complex speed U0e

−iωt,
where U0 is the speed amplitude of the surface, and the specific acoustic impedance is given by (2.5). If we evaluate both the specific
acoustic impedance for a spherical wave (2.5) and the acoustic pressure from the source (2.2) at r = a, we get from (2.3) that

A

a
e−i(ωt−ka) = ρ0c cosφae−iφa · U0e

−iωt

A = ρ0cU0a cosφae−i(ka+φa)

⇓

p(r, t) = ρ0cU0
a

r
cosφae−i(ka+φa)e−i(ωt−kr)

= ρ0cU0
a

r
κae
−i(ωt−kr),

where φa refers to r = a. The constant κa = cosφae−i(ka+φa) is highly dependent on the size of the source, and the wavelength. From
the relations c = λf and k = 2πf

c , we have k = 2π
λ , which makes ka small if 2πa

λ is small. It can be shown by complex calculations that
in this case we may write κa = ka. However, in the case of the MS70 sonar, frequencies range from 75 KHz to 112 KHz, excluding this
approximation.

To account for the shape of simple sources, we introduce its source strength Q. This can be defined as the integrated surface speed of
the source,

Q =
∫
surface

u · n dS,

where dS is a small surface element, and n is the normal vector on the surface. (The source strength is actually complex, but for our
purposes we consider it real.) For the sphere with radius a, the source strength is Q = U04πa2, giving the pressure expressed in terms
of Q:
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p(r, t) = ρ0c
κa

4πa
Q

r
e−i(ωt−kr).

2.4 Pressure field from a line source.
We will later represent fish as line sources, giving a good approximation to the sound scattered from either the swim bladder, or from
the whole fish if it does not have a swim bladder. To find the pressure field from the line source, we consider many simple sources on a
line, and integrate the pressure dp from each simple source. This integration involves the angle of incidence γ to the line source, for the
vector from the midpoint of the line source to a point in space. The length of this vector is r, while the vector from the simple source of
length dx to the point in space has length r′ (Figure 2.1). The source strength of each element of the line source will be dQ = U02πadx,
where 2πadx is the surface in contact with the radiation medium. We thus get the following integral for the pressure field of the line
source:

p (r, γ, t) = ρ0cU0
κa
2

∫ L
2

−L
2

1
r′
e−i(ωt−kr

′)dx.

In the exponent, r′ must be approximated carefully by r − x sin(γ), while 1
r′ will simply be set to 1

r . This is because the difference
between r and r′ give the pressure field a beam pattern dependent on γ. Integration now yields:

p (r, γ, t) = ρ0cU0
κa
2

1
r
e−i(ωt−kr)

∫ L
2

−L
2

e−iωkx sin γdx

= ρ0cU0
κa
2
L

r
e−i(ωt−kr)

(
sin
(

1
2kL sin γ

)
1
2kL sin γ

)
.

(2.7)

The pressure can thus be decomposed in an axial factor, and a directional factor with values in [0, 1]:

p (r, γ, t) = Pax (r)H (γ) e−i(ωt−kr),

14



x

y

−L/2 L/2

r

r'

dx'

γ

Figure 2.1: Integration of simple sources representing a line source.

where

Pax (r) = ρ0cU0
κa
2
L

r
and

H (γ) =

(
sin
(

1
2kL sin γ

)
1
2kL sin γ

)
= sinc

(
1
2
kL sin γ

)
= j0

(
1
2
kL sin γ

)
.

The directional factor HF (γ) is called the sinc function, or the zeroth order spherical Bessel function of the first kind (denoted by j0(x)),
and is plotted against incident angle γ as the blue line in Figure 2.2. The nature of the Bessel function produces a surface of equal
pressure amplitude as shown in Figure 2.3. The figure displays one major lobe, and three side lobes of lower intensity.

If the acoustic intensity is treated, the squared expression in (2.6) gives us the factorization
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I (r, γ) = Iax (r)B (γ) , (2.8)

Iax (r) =

[
Pax (r)

]2
2ρ0c

and B (γ) =
[
H (γ)

]2
.

2.5 Pressure field from a baffled circular source.
The integration leading to the pressure field from a circular piston considers parallel line sources of variable length, which constitutes
the piston. Every line source is evaluated at incident angle γ = 0, because of the symmetry of the circle. The integration will not be
carried out here, and we only present the end result. It is reasonable that the directional factor will be related to a Bessel function, and
we get the same kind of expression with a function divided by the argument of the function, as for the line source.

p (r, γ, t) = ρ0cU0
κa
2
a

r
e−i(ωt−kr)

(
2J1 (ka sin γ)
ka sin γ

)
= Pax (r)H (γ) e−i(ωt−kr), (2.9)

where a is the radius of the circular piston, γ is the incident angle with acoustic maximum, and κa is evaluated at the distance a. J1(x)
is here the first order Bessel function of the fist kind, written by an upper case J , as opposed from the spherical Bessel function of the
line source, which is written by a lower case j. As for the line source, (2.8) will be valid for the circular piston.

As a function of incident angle γ, the directional factor for the circular piston has lower side lobe level than that of the line source, as
can be seen in Figure 2.2. Side lobe level for a circular piston will be approximately -17.5 bB independent on frequency f and radius a.
The surface of equal pressure amplitude from a circular piston is shown in Figure 2.4.

It is common to describe the beamwidth by the angle where the acoustic intensity is reduced by 50% compared to maximum. This is
often refered to as the -3 dB - angle.
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Figure 2.2: Directional factor for the pressure for a lines source (blue) and a circular piston (dark green) as functions of γ. Notice the
notational distinction between the Bessel function J and the spherical Bessel function j
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Figure 2.3: Surface of equal pressure amplitude from a line source.

Figure 2.4: Surface of equal pressure amplitude from a circular piston.
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2.6 Underwater acoustics.

2.6.1 Absorption and attenuation.
When traveling through a medium, the energy in a sound wave is inevitably absorbed. Different types of thermodynamic and molecular
processes cause this absorption, but as a general concept we can summarize all losses in one absorption constant ca.

The derivation of ca can be illustrated by adding terms representing absorption to the Euler’s equation (2.2). This will be analogous to
adding terms of resistance to Newton’s second law, reducing the acceleration. When solving this new lossy Euler’s equation, (Navier-
Stokes equation), with respect to the pressure p, assuming monofrequency sound, the result is pressure waves of the same form as the
plane and spherical waves in (2.1) and (2.2), but with complex wave number kcomplex = k + ica:

p(x, t) = Ae−caxe−i(ωt−kx) (plane)

and

p(r, t) =
A

r
e−care−i(ωt−kr) (spherical).

The derivation of these lossy pressure waves will not be shown here. When examining absorption and geometric attenuation, it is often
useful to consider the acoustic intensity rather than the pressure:

I (x) =
P 2

2ρ0c
=

A2

2ρ0c
e−2cax =

A2

2ρ0c
· 10−αx (plane)

and

I (r) =
P 2

2ρ0c
=

A2

2ρ0c

1
r2
e−2car =

A2

2ρ0c
· 1
r2
· 10−αr (spherical).

Here α = 2ca/ln10 ≈ 0.87ca, which is useful for decibel calculations. We see that the acoustic intensity is split into a constant factor
and an absorption factor for the plane wave, and an additional geometric attenuation factor for the spherical wave. The constant factor
A2/2ρ0c reflects the power of the source, and will be proportional to the backscattering ability of a fish, as used later in the thesis.
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2.6.2 Refraction.
The speed of sound c in water is dependent on temperature, salinity and water pressure, and can be approximated by the empiric relation

c (TW , SW , PW ) = 1449.08 + 4.57TW e
−
 
TW
86.9+

„
TW
360

«2
!

+ 1.33 (S − 35) e−
TW
120 + 0.1522PW e

„
TW
1200+

SW−35
400

«
+ 1.46 · 10−5P 2

W e
−
„
TW
20 +

SW−35
10

«
.

Here TW is temperature in the water in degrees Celsius, SW is salinity in the water in parts per thousand and PW is water pressure in at-
mospheres (1 atm=101325 Pa, where 1 Pa=1 kg per m2.). Roughly speaking the speed of sound in water is linear with respect to salinity
and pressure, and follows approximately 1.27SW and 0.17PW . Water pressure increases linearly with depth as PW (z) = ρ0gz = 10085.14z
Pa, where ρ0 = 1027 kg/m3 is the density of sea water at zero depth, and g = 9.82m/s2 is the gravitational acceleration in Norway.
Expressed in atmospheres the depth dependency is approximately −0.016z (Figure 2.5). The temperature dependence of c however, can
not be considered linear, but follows roughly 4.4TW − 0.08T 2

W . Anyhow, we see that temperature has the greatest effect on c, with a
rate of change about 20 times larger than that of pressure, and about 200 times larger than that of depth.
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Figure 2.5: Speed of sound as a function of temperature T in Celsius (left), salinity S in parts per thousand (middle) and depth z in
meters (right).
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For acoustic surveys, salinity is unlikely to change very much, and the depth dependence is always present. The crucial variable affecting
speed of sound, is thus the temperature profile with depth, which must be measured at, or close to the survey location. If we assume that
for a given depth interval, the temperature changes linearly with depth, and that this temperature change is small enough to consider c
to be linearly dependent on temperature, we can assign to the speed of sound a gradient c(z) = ηz in the interval, which can be either
negative, zero or positive with respect to depth. We will show that these three situations will result in downwards refraction, straight
sound rays, and upwards refraction respectively.

In Figure 2.6 we consider a small element of the sound ray having width b. (All symbols in the figure and the discussion based on the
figure omited in the symbols list in Appendix B.) The upper portion of the ray moves the distance l + ∆l, while the lower part only
moves the distance l, due to the difference in speed of sound between the upper and the lower part. Many such elements of a sound ray
will constitute a circular path, if the angle of the front of the element changes constantly. This will be approximately true for not too
large changes in direction of the sound ray. The linear relationship between distance and speed leads to

∆l
l

=
c1 − c2
c2

=
c0 + ηz1 − (c0 + ηz2)

c2
=
η(z1 − z2)

c2
=
ηh

c2
=
ηb cos γ
c2

,

where c0 is the speed of sound at z = 0, and other symbols are shown in Figure 2.6. As the sound ray moves along a circular path, and
the distance l is small, the angle ∆γ can be approximated by both

∆γ ≈ l

r
and ∆γ ≈ ∆l

b
,

where r is the radius of the circular path. We thus get this expression for r:

r = b
l

∆l
≈ c(z)
η cos γ

, (2.10)

where we have replaced c2 by the speed of sound c(z) for a thin sound ray at depth z. From (2.10) we see that as the angle γ between
the sound ray and horizontal approaches 90◦, or as the speed gradient η approaches zero, the circle gets infinitely large, and γ = 90◦ or
η = 0 implies no refraction. The situations with speed gradient η and −η, has the same circle, only with differently located centers.

The circular path of a sound ray is displayed in Figure ??. Using simple trigonometry, we get the following four equations, which fully
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Figure 2.6: Refraction of a small element of a sound ray. The direc-
tion of the ray changes from γ to γ+ ∆γ, from the upper part of the
ray moving ∆l further than the lower part.
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Figure 2.7: The circular path of a sound ray caused by the
constant speed gradient in the depth interval (z1, z2). Given
that we know the initial condition x1, z1 and β1, and the
speed of sound c1 and c2 at the depths z1 and z2, we can fully
describe this circular path.

describe the path in the given depth interval (variables in blue are known):

z1 = z0 + r sinβ1

z2 = z0 + r sinβ2

x1 = x0 + r cosβ1

x2 = x0 + r cosβ2
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For a sequence of depth - speed of sound combinations, we can then start out with the initial position and direction of the sound ray of
interest, and iteratively calculate the path of the ray. This will be done in chapter 4, where we define the system of voxels to be used in
the thesis.

2.7 Acoustic backscattering.
When sound from the transducer strikes an object, the object scatters the sound in all directions. If the object is not a simple source, so
that the scattered sound has a directional factor, the intensity IS(r′, θ′, φ′) of the scattered signal, (with subscript denoting the source),
is a function of distance r′ from the source, and the direction angles θ′ and φ′ in some spherical coordinate system defined for the object.
In Chapter 6 we will define the coordinate system of a fish as the spherical/cartesian coordinate system centered at the middle of the
fish, with y-axis along the direction of the fish, and with horizontal x-axis. Many variables in fisheries acoustics describe the ability of
an object to scatter sound, and consistent definitions of these variables are given in (MacLennan et al., 2002). We will refer to these
definitions when defining the variables used in this master thesis:

If we do not know the properties of the object scattering the sound, we may assume that the echo is generated by a simple source described
earlier in this chapter. A simple source radiates equally in every direction, and has thus a constant directional factor H(θ′, φ′) = 1.
Imagining a spherical simple source that radiates the same intensity in some direction as the object does, we can define the differential
scattering cross section σ(θ′, φ′) of the object. This will be the acoustic intensity from the object in the given direction, integrated on the
unit sphere centered at the object, and divided by the acoustic intensity IT (r) striking the object at the distance r from the transducer.

σ(θ′, φ′) =
4πIS(r′ = 1, θ′, φ′)

IT (r)
, (2.11)

where 4π is the area of the unit sphere. We have here assumed that no energy is lost in the signal at r′ = 1. The definition of σ(θ′, φ′)
differs from (MacLennan et al., 2002) by the factor 4π.

The acoustic power scattered by the simple source scattering the same amount of sound in the given direction as the object does, (with
subscript denoting the source), is Πs = IT (r)As(θ′, φ′), where As(θ′, φ′) is the cross sectional area of the scattering sphere (not to be
confused with the pressure amplitude of a plane wave given in (2.1)). The acoustic intensity from the simple source at the distance
r′ = 1 will thus be IS(r′ = 1, θ′, φ′) = IT (r)As(θ′, φ′)/4π. The differential scattering cross section becomes
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σ(θ′, φ′) =
4π
IT (r)As(θ′, φ′)

4π
IT (r)

= As(θ′, φ′).

We see that we can interpret σ(θ′, φ′) as the cross sectional area As(θ′, φ′) of a spherical bubble of air, scattering the same acoustic
intensity in the direction (θ′, φ′) as the object does.

From σ(θ′, φ′) we can now define the optimal scattering cross section σ0, by factorizing the acoustic intensity into an axial factor and a
directional factor as was done in (2.8):

σ(θ′, φ′) =
4π
(
IS(r′ = 1)

)
axBS(θ′, φ′)

IT (r)
= sup

(
σ(θ′, φ′)

)
BS(θ′, φ′) ≡ σ0BS(θ′, φ′), (2.12)

where
(
IS(r′ = 1)

)
ax is the intensity in the directions having γ = 0. We also define the spherical backscattering cross section σsp

according to the definition in (MacLennan et al., 2002):

σsp = σ(θ′R, φ
′
R),

where (θ′R, φ
′
R) is the direction of the receiver.

The target strength TS is simply a logarithmic version of σsp, and is in (MacLennan et al., 2002) defined as

TS = 10 log
(
σsp
4π

)
= 10 log

(
IS(r′ = 1, θ′R, φ

′
R)

IT (r)

)
.

We see that TS is a typical decibel quantity, and for objects far from the transducer, the argument in the logarithm is the ratio of
incoming and outgoing acoustic intensity at the distance 1 meter from the object, in the direction of the transducer/receiver.

To measure echo ability per unit volume (m3), scattering strength Sv is used:
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Sv = 10 log

∑
V

IS
(
r′ = 1, θ′R, φ

′
R

)
IT (r)

/V

 = 10 log

∑
V

σ
(i)
sp

4πV

 , (2.13)

where V is some volume of interest, and σ(i)
sp is the spherical backscattering cross section of fish number i in the volume. The scattering

strength is a logarithmic density measure, and we will attempt to link this to the density of small simple sources of a certain size. If we
imagine representing the scattering strength by N bubbles of air, of cross sectional area b, we get:

Sv = 10 log
(
N · b
4πV

)
=⇒ B ≡ N

V
=

4π
b

10Sv/10. (2.14)

Combining (2.13) and (2.14) we get the connection between total spherical backscattering cross section and B-value:

∑
V

σ(i)
sp =

∑
V

σ
(i)
0 BS(θ′R, φ

′
R) = bBV, (2.15)

where BS(θ′R, φ
′
R) and B are fundamentally different, as they represent the directional factor if the acoustic intensity and the number of

bubbles of air of cross sectional area b respectively. The variable B is simply a linear measure of the density of echo ability, as opposed
to the logarithmic measure Sv. A suitable size of these bubbles would be b = 1 mm2 = 10−6 m2. In chapter 6 we will see that due to
interference effects B will only be the expected density of uniformly distributed bubbles.
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Chapter 3

Materials

3.1 Research vessel.
The data set analyzed in this master thesis is from the research vessel G.O.Sars owned by the Institute of Marine Research (IMR) and
the University of Bergen (UIB) in Norway. G.O.Sars is equiped with the MS70 scientific multibeam sonar, and the particular survey we
are investigating was done on the 25. of January 2006, outside Røst to the west of Bodø in Northern Norway. The coordinate system
of the research vessel is defined by the manufacturer of the sonar, as a right hand system with the x-axis in the direction of the vessel,
y-axis pointing straight out on the starboard side of the vessel, and z-axis in the opposite direction of the mast of the vessel. In this
thesis however, we will for simplicity define the coordinate system of the vessel as having x-axis to the starboard side of the vessel, y-axis
in the direction of the vessel, and z-axis in the direction of the mast of the vessel.

3.2 MS70 scientific multibeam sonar.
The MS70 sonar is a multibeam sonar manufactured by Simrad Horten AS, in Horten, Norway, and is mounted on the port side of the
research vessel G.O.Sars. It consists of 32 · 25 = 800 elements, radiating sound at frequencies in the range (70 kHz, 112 kHz). Using
6 computers, the elements are weighted to construct 500 narrow beams located on 25 fans, of 20 beams radiating in the same vertical
plane (vertical fans). The 25 vertical fans are rotated from −30◦ to 30◦, with 0◦ being straight out on the port side of the vessel.
Within a vertical fan, the beams are tilted downwards from 0◦ to 45◦, but the entire system of the 500 beams can be tilted up to 10◦

more downwards. We may also consider 20 horizontal fans, consisting of 25 beams, but as we will see in Chapter 4, the beams in these
horizontal fans do not radiate in the same plane, but in curved planes. All beams in a horizontal fan will radiate sound at the same
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y

Figure 3.1: The coordinate system of the research vessel, as defined in this thesis.

frequency, and the upper fan has the lowest frequency, but rising with depth.

Because of the different frequencies of the horizontal fans, it is possible to weight the elements vertically at reception as well as at
transmission, giving a narrower beam vertically than horizontally. The beam width defined at the end of section 2.5, varies among the
beams, and is dependent on frequency. For the data in this thesis the beam widths are in the range (6.111902◦, 6.962585◦) horizontally
and in the range (2.602462◦, 4.395848◦) vertically.

The vertical weighting at reception also reduces the side lobe levels. It is given by the manufacturer that the first side lobe level is
-25 dB horizontally and -35 dB vertically, relative to acoustic maximum of the beams. This implies that side lobe levels vary with θb
(subscript b denoting the beam) in a spherical coordinate system having z-axis along acoustic maximum of the beam (i.e. θb is the angle
in the x-y-plane). An ideal circular piston will have side lobe level equal to -17.5 dB, independent of θb, so it is clear that the beam
patterns in MS70 is more complex than the first order Bessel function. In chapter 6, we will approximate the directional factor for the
beams in MS70 by the first order Bessel function of the circular piston, and by a second order polynomial function, when investigating
the stochastic effect of randomness in the size, position and orientation of fish.

The 500 beams are numbered with the pairs of values (i, j), i = 1, . . . , I = 25 and j = 1, . . . , J = 20, where i is the number of the beam
in the horizontal fan, counted from left to right as seen from above, and j is the number of the beam in the vertical fan number i, as
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counted from below. This means that beam number (1,1) is located in the bottom left corner of the volume, as seen from the transducer.
The manufacturer has also assigned to the beams, a set of rotation angles (αi, βj), so that

αi = −30◦,−30◦ + ∆α, . . . ,−30◦ + (i− 1) ∆α, . . . , 30◦ and

βj = −45◦,−45◦ + ∆β, . . . ,−45◦ + (j − 1) ∆β, . . . , 0◦,
(3.1)

where ∆α = 60◦/24 and ∆β = 45◦/19. Beam number (1,1) will thus have rotation angles (α1, β1) = (−30◦,−45◦), while beam number
(13,20) has rotation angles (α13, β20) = (0, 0). If the sonar is tilted additionally, we call the tilt angle τ ∈ [−10◦, 0◦].

Sound pulse durations are specified by the manufacturer in the range 2 ms to 10 ms, but the data set examined in this master thesis
were produced using 0.512 ms. This provides higher density in the radial direction, but might have some disadvantages regarding noise.
One image produced by one sound pulse, is called a ping. The distance in time between pings vary, but is of course restricted by the
time used by the sound pulse on the way out from the transducer and back. For the data treated in this thesis, pings are separated in
time by ca 5 seconds.

3.2.1 Unit vectors of the beams.
The MS70-sonar is mounted on the port side of the research vessel, which implies that beam number (13,20) points in the oppo-
site direction as the x-axis of the vessel, and has unit vector d13,20 = −ex = (−1, 0, 0). If the sonar is tilted by the angle τ ,
d13,20 = (− cos τ, 0,− sin τ). To find the unit vector di,j for an arbitrary beam (i, j), we rotate the coordinate system of the vessel
by the angle −αi counter clockwise around the z-axis, and then by the angle βj counter clockwise around the y-axis. This is called an
z-y-rotation, and is the same as first finding the right vertical fan, and then tilt within the vertical fan. The minus sign in αi arises from
the way the angle is defined, since a beam with positive αi actually is rotated clockwise around the z-axis. In the rotated coordinate
system, the beam now has unit vector equal to −ex = (−1, 0, 0), unless the sonar is tilted additionally.

The simplest way to perform this rotation is by multiplying the unit vector di,j of the acoustic maximum of the beam in question by a
rotation matrix Azy(−αi, βj) given in Appendix A:

−ex = Azy(−αi, βj) · di,j ,

where the subscript zy refer to the z-y-rotation. To rotate back to the coordinate system of the vessel, we use the (A) to write:
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di,j = Ayz(−βj , αi) · −ex.

We have now established the unit vectors along the maximum of each beam, and by multiplying these vectors by the distance r from
the transducer, we get an arbitrary point on these maxima. This will be useful later, since we will mainly work with points on these
maxima.

3.3 Sonar Explorer.
To identify the values in the data set coming from a school, the segmentation procedure in the Sonar Explorer was used. This is an
application software for three dimensional visualization, tracking, and segmentation of fish schools observed by the MS70 sonar, and is
developed by (Balabanian et al., 2007). The algorithm used to identify the values belonging to the school, is presented in chapter 7. To
avoid high intensity noise from affecting the segmentation, median smoothing was performed on the data during the segmentation.

3.4 Statistical analysis.
For the statistical analysis, plotting and other treatment of the data, the free statistical software R was used. R contains a wide range
of statistical methods, and provides the user with a simple programming language for developing own methods.
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Chapter 4

Interpretation of data.

The acoustic signal received in a unit time interval (t, t+∆t) for a specific beam, contains primarily information about the echo ability of
objects in a volume limited by the time interval and the narrowness of the beam. In this chapter we define a system of three dimensional
unit volumes called voxels, which are mutually exclusive, and which are constructed so that the information given by the data, about
the echo ability in each voxel, is maximized. We also calculate the volume of the voxels, and the path of sound rays when accounted for
refraction in sea water.

4.1 Representation of echo ability from voxels.
The acoustic pressure experienced by one of the elements in the MS70 sonar, will be a continuous function of time, and ideally a sine
function. Acoustic intensity was defined in chapter 2, to be the time average of the product of pressure and particle speed during one
period, so we clearly need at least one period T = f−1 to get a measure of the received intensity. We will here show that intensity
received in the time intervals (0, τp), (τp, 2τp), . . . , ((k−1)τp, kτp), . . . , ((K−1)τp,Kτp) reflects the echo ability in spherical shells centered
at the sonar, where τp is the duration of the signal with subscript referring to the "ping" and k = 1, . . . ,K. The shells can further be
divided into almost rectangular voxels, using the strong directivity of the beams from the MS70 sonar. As the sonar emits spherical
waves, the acoustic intensity is reduced as the square of distance r, and the signal to noise ratio falls of accordingly. The total number
of sampling intervals are restricted to K because of this.
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4.1.1 Radial partitioning.
In Figure 4.1, we consider the backscattered signal from a small object at the distance h from the sonar. The object will experience the
sound pulse in time interval (h/c, h/c+ τp), and the echo from the object will strike the sonar in the time interval (2h/c, 2h/c+ τp). This
implies that unless we have that 2h/c = kτp, for integers k = 0, . . . ,K, the energy from the object will be shared by two consecutive time
intervals. For objects located at distances h = cτp(k − 1/2)/2, the echo will be shared equally between time intervals ((k − 1)τp, kτp)
and (kτp, (k + 1)τp). These distances define the spherical shells of the radial partitioning.

For the specific object in Figure 4.1, a proportion 1 − h′/(τp/2) of the total signal from the object is received during the second time
interval, while h′/(τp/2) is received during the third time interval, where h′ = h%(τp/2). If the object was located 3(τp/2)/2 from
the sonar, it would contribute equally to the second and the third time interval. The coloured spikes at the right of Figure 4.1 is the
proportion of the signal from an object at some distance, that is received in the time interval of the respective colour. For the object at
distance h in the figure, the dark blue interval receives a bit more of the signal from the object than the turquoise time interval does.
This allocates the object to the third spherical shell/voxel, as seen far to the right of the figure. Beginning at r = 0, we get these K + 1
surfaces defining the spherical shells constituting the radial partitioning:

0, r2 −
∆r
2
, . . . , rK −

∆r
2
, rK +

∆r
2

(4.1)

where

rk =
cτp/2

4
,
cτp
2
,

2cτp
2
, . . . ,

cτp(k − 1)
2

, . . . ,
cτp(K − 1)

2

for k = 1, . . . ,K and ∆r = cτp/2. For the data treated in this thesis, the maximum range of the sonar is set to K = 1319, but noise
dominates the data for k larger than 1000. For the speed of sound c = 1481 m/s, and pulse duration τp = 5.12 · 10−4, given for the data
set considered in this thesis, the thickness of spherical shells are ∆r = 0.379 m.

A radial partitioning of this kind will result in an overlap between the signal received in consecutive time intervals, giving a correlation
between neighbouring voxels in beams. This will be shown in chapter 6.

4.1.2 Angular partitioning.
Although incorrect, we assume that the 500 beams have the same directional factor, as a function of direction, so that we can partition
the spherical shells established above, into voxels in a simple and reasonable way. In chapter 3, we presented rotation angles αi and βj
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Figure 4.1: Backscattering received during time intervals [t1, t2), [t2, t3) and [t3, t4), from an object located a distance h from the
transducer. h′ is equal to h%(cτp/2). During the second time interval [t2, t3), the transducer receives the fraction 1− h′/(cτp/2) of the
signal scattered by the object, while the fraction h′/(cτp/2) is left to the third time interval.

for unit vectors along acoustic maximum for the 25 · 20 beams, given by (3.1). A natural way to do the partitioning would be 26 + 21
surfaces given by

α1 −
∆α
2
, α2 −

∆α
2
, . . . , αI −

∆α
2
, αI +

∆α
2

and

β1 −
∆β
2
, β2 −

∆β
2
, . . . , βJ −

∆β
2
, βJ +

∆β
2

,

(4.2)
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where

αi = −30◦,−30◦ + ∆α, . . . ,−30◦ + (i− 1) ∆α, . . . , 30◦ and

βj = −45◦,−45◦ + ∆β, . . . ,−45◦ + (j − 1) ∆β, . . . , 0◦ ,

and where i = 1, . . . , I and j = 1, . . . , J , and for the MS70 sonar I = 25 and J = 20. As before ∆α = 60◦/24 and ∆β = 45◦/19. The
partitioning from the α-surfaces and the β-surfaces are shown separately in Figure 4.2 and Figure 4.3. When combined, the r- α- and
β-surfaces defines the system of voxels. As in the radial case, the angular partitioning results in smoothing of the data.

We define the thickness of a voxel as the thickness of the respective spherical shell. The width and height of voxels will be related to
αi and βj as r sin ∆αi and r sin ∆βj . Thus the width and height of voxels range up to 21.8 meters and 20.7 meters respectively. Unless
the school is very close to the research vessel, voxels will have shapes almost like thin rectangular plates, of thickness 0.379 meters,
and width and height typically around 10 meters. The midpoints of voxels will thus be like pearls on strings radiating out from the
transducer, rather than points on a regular rectangular grid.

4.1.3 Volume of the voxels.
The volume of the voxels can be found using the surfaces above, by first considering an open spherical sector defined by the angles
αi −∆α/2 and αi + ∆α/2. Figure 4.2 shows half of such a sector, and the volume of an open spherical sector is known to be

Vsph.sct. (rk) =
2
3
πr2
k

(
zjk +

∆z
2
−
(
zjk −

∆z
2

))
=

2
3
πr3
k

(
sin
(
βj +

∆β
2

)
− sin

(
βj −

∆β
2

))
,

where zjk = rk sinβj is seen from Figure 4.2. The radial partitioning now results in a strip like part of a spherical shell with volume
Vsph. sct.(rk + ∆r/2) − Vsph. sct.(rk − ∆r/2), for two neighbouring radial distances rk − ∆r/2 and rk + ∆r/2. The α-partitioning will
simply divide the strip by the factor ∆α/2π, giving us the volume of a voxel as a function of βj and rk:

Vijk =
∆α
3

[(
rk +

∆r
2

)3

−
(
rk −

∆r
2

)3
](

sin
(
βj +

∆β
2

)
− sin

(
βj −

∆β
2

))
. (4.3)
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Figure 4.3: Partitioning by plane surfaces from βj in (4.2).

4.2 Refraction.
Ideally, sound waves move along straight lines, but as shown in chapter 2, temperature- and pressure-changes in the sea, results in
refraction of the sound beams. We have found the resulting path of the sound beams, using the iterative algorithm presented in section
2.6.2 on the data set (Røst, 25.01.2006) treated in this thesis. Some computer programming were required to implement the algorithm,
which will not be presented here. Figure 4.4 shows the actual path of the beams in the vertical fan having i = 13 (straight out on the
port side of the vessel), as estimated by the algorithm. We see that the temperature mainly changes in the interval (-25,-60) meters, so
that the beams that stay the longest in this interval will be refracted the most. The plot shows that even a small gradient in temper-
ature (1 ◦C in 35 meters) refracts the beams up to one third of the distance between beams, explaining the importance of winter surveys.
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4.3 Transformation to Sv.
The raw output from the MS70 sonar must be transformed by a procedure provided by the manufacturer. This procedure is presented
on pages 110-111 in (Eliassen et al., 2003). The resulting values, for the data set treated in this thesis, shows however inconsistencies
with what would be expected for the Sv-values (defined in section 2.7) from MS70.

Linear Sv-values seems to have a much more extreme distribution than the exponential distribution, which is what would be expected
for several small objects uniformly positioned in a voxel, as will be shown in chapter 6. In addition the logarithmic values are far to low
to be explained by known effects. The solution of this problem might be to simply scale the Sv-values by the factor 1/2. This seems to
solve the problem, as seen in Figure 4.5, but thorough investigation of the transformation procedure must be done to justify this scaling.

It is usual to limit the Sv-values to the range (0,−120) dB, which has also been done in the data treated in this thesis. Because of the
factor 1/2, our data are thus limited to the range (0,−60) dB. As we will use b = 1 mm2 = 10−6 m2, the B-values will be in the range
(1, 106), where B = 1 corresponds to one bubble of air of size b = 1 mm2 per cubic meter.
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Figure 4.5: Histograms of data from voxels identified as belonging to a school, by the segmentation procedure in the Sonar Explorer.
The upper left histogram shows poor fit to the expected variation from interference effects from several fish in a voxel. The upper right
histogram shows that most of the values are far below what would be expected for a school, which is between -40 and -50 dB. In the
lower histograms Sv-values are divided by 2.
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Chapter 5

Noise.

B-values (defined in (2.14)) from the MS70 sonar, can be considered to be of three different types: (1) values from regioins with little
or no fish, (2) values from regioins contained in schools, and (3) acoustic and instrument noise. In this chapter we briefly discuss the
types of noise that occur in data from MS70, and present an algorithm for removing unnaturally high values, caused by errors in the
data stream from the sonar.

5.1 Acoustic noise.
The most obvious sources of acoustic noise are the surface, the bottom, and the transducer itself and the propeller of the vessel. At
large distances from the transducer, the attenuation and absorption of the sound reduce the signal so much that the general background
noise becomes dominant (see section 2.6.1 for definition of attenuation and absorption).

Noise from the surface.

Because of waves, the surface of the sea is highly irregular, so a sound ray that hits the surface will have a significant noise component
in the reflection angle. We thus lose track of the rays, both on the way out from the transducer, and on the way back. The motion of
the surface waves also produce bubbles of air in a layer of some thickness depending on the restlessness of the sea. A school located
near the surface would thus be subject to significant noise, and might be very difficult to analyze. As described in section 2.6.2 and
simulated in the end of the previous chapter, the path of sound rays from MS70 depends on the refraction on the sea, and the depth
and tilt angle of the sonar. Based on the resulting depth of the school, we then decide whether the entire school should be excluded
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from the analysis. The school treated in this thesis has a minimum depth of ≈ 70 meters, based on the segmentation of the school done
by the Sonar Explorer, so surface noise will be insignificant in the analysis.

Bottom noise.

Because of the irregularity of the sea bed, some of the sound will be reflected towards the transducer, giving a bottom noise. An example
of this noise is given in Figure 5.1, where the school is plotted in green, and the bottom noise is plotted in orange. As for the surface
noise, we decide whether the entire school should be analyzed or not, by its distance to the sea bed. Values from voxels within some
distance from the sea bed should not be trusted, but as seen in Figure 5.1, the bottom noise and the school treated in this thesis are
clearly separated.

Vessel and transducer noise.

The engine and propeller of the vessel produce noise, which may reflect back to the receiver from fish and other objects in the sea.
However, the noise from the vessel is likely to affect the behaviour of fish, rather than the acoustic signal itself. Hence, we rather
consider the noise from the transducer, which is caused by the extremely high sound level radiated (more than 206 dB). In Figure 5.1
this is displayed in red. We see that the transducer noise does not extend far into the sound volume, so an exclusion of the nearest 50
meters will be sufficient for avoiding this type of noise.

Background noise at large distances from the transducer.

In Figure 5.1 we clearly see the long distance background noise, caused by the weakening of the signal on the way out from the transducer
and on the way back. This is most apparent for the first plots, which are of beams with greater angle with horizontal (more downwards
pointing beams). This is because these beams are reflected from the sea bed on the way out from the transducer. The reflection results
in a wakening and scattering of the signal, and values for ranges beyond the the bottom, should anyhow not be trusted.

5.2 Instrument noise.
Having excluded the surface zone, the bottom zone, the zone closest to the transducer and values beyond the sea bed, we can concentrate
on noise caused by the instrument itself. Sometimes packets are lost in the data stream, which causes voxels to get unnaturally high
values. These artificial values appear mainly as sequences along beams, which we call high intensity beams (HIB), but can also appear
as walls. In this chapter we only consider HIBs, and in the next section we present an algorithm for removing these HIBs.
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Figure 5.1: An example of noise from the transducer (red) and bottom noise (orange) in the data from MS70. Beams number
(13, 1), (13, 2), . . . , (13, 12) for ping number 71 are plotted. B-values are on the y-axes, and the numbers k of the voxels in the beams are
on the x-axes. The school is plotted in green.
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5.3 Removal of high intensity beams.
There exists methods developed by the Institute of Marine Research in Bergen, Norway, that consider the ratios of voxels to the mean or
median of the voxels in the neighbouring beams at the same distance from the transducer. When this ratio is larger than some predefined
level, the value is replaced by the corresponding mean or median of neighbour values. The method we will present here is of a somewhat
simpler nature, as it considers ordinary values and not ratios to the neighbouring values. We name the method the "HIB-algorithm".

5.3.1 The HIB-algorithm.
As a premiss for the HIB-algorithm, we have that the nature of the instrument noise is that it involves extremely high B-values. We
thus assume that the HIBs differ clearly from ordinary school values. The algorithm involves the following three steps:

1. For the total number N of voxels in question, define a cut point C, and the corresponding empirical probability q that a value is
larger than C:

q = Ȳ =
1
N

∑
i

Yi , where Yi =

{
1 Bi > C

0 Bi ≤ C
,

and Bi is the B-value for voxel number i, i = 1, . . . , N . The cut point C must be chosen large enough so that ordinary b-values
from schools are not detected. The lower C the greater chance of identifying school values as HIBs, and the larger C the greater
chance of missing values that actually are HIBs. If HIBs are not too frequent, the value of q will be low.

2. Define a minimum number h of consecutive events Bi > C along beams, that permits the sequence of B-values to be classified as
a HIB.

To do this we consider the two variables Z and W , which for an integer n, and a beam of L voxels, are defined as:

Z =
L∑
i=1

Yi

W = Number of sequences of B-values > C, of lengths ≥ n.
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We have that Z ∼ binomial(L, q), but we need to find the conditional distribution of W given that Z = z:

When z < n, the only option is W = 0. If z = n, sequences of n consecutive B-values larger than C, can appear in L − n + 1
different ways. The total number of ways the B-values can be distributed throughout the beam, gives us the probability that
W = 1 when z = n:

P(W = 1|Z = n) =
L− n+ 1(

L
n

) .

For z > n we consider the probability that W ≥ 1. If we have a sequence of exactly n consecutive B-values larger than C, we can
say that these values occupy n + 2 voxels. This is true everywhere along the beam except at the two ends, where the sequence
occupy only n+1 voxels. We assume that L is large, and approximate by saying that the sequence occupy n+2 voxels everywhere.
The rest of the B-values that are larger than C, which we call s, are free to be positioned anywhere else than in the occupied
voxels. The number of voxels not occupied by the sequence is L− n− 2. This scenario can happen in L− n+ 1 ways, as before.

However, generally there can be n+ d consecutive B-values that are larger than C, where d = 0, . . . , s. In this case the sequence
occupies n + d + 2 voxels (everywhere else than on the ends), and the s − d remaining B-values that are larger than C, are free
to be positioned anywhere throughout the L − n − d − 2 remaining voxels. Summed up we get the conditional probability that
W ≥ 1 given Z = z as:

P(W ≥ 1|Z = z) ≈
s∑
d=0

(L− n+ 1− d)
(
L− n− 2− d

s− d

)
(

L
n+ s

) , z ≥ n.

To find the marginal probability that W ≥ 1, we multiply with P(Z = z) and sum up to get:

P(W ≥ 1|n) ≈
∞∑
z=n

P(W ≥ 1|Z = z)P(Z = z).
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If we have that z ≥ 2n, the probability that we get more than one sequence of n or more consecutive B-values that are larger than
C, will be much smaller than the probability of having only one such sequence. This is because the value of q usually is small,
unless there are many HIBs. We thus approximate the expected number EW of sequences in an arbitrary beam by P(W ≥ 1|n).
For a series of pings that we wish to use the HIB-algorithm on, we let NB be the number of beams, so that the total expected
number of sequences is NBP(W ≥ 1|n)

If we define a maximum number M of sequences that we accept as incorrectly classified HIBs, we get

h = min(n : NBP(W ≥ 1|n) < M).

3. Identify all non partial sequences along beams, of voxels satisfying Bi > C, and if the length of a sequence is ≥ h, identify it as
HIBs.

4. For a predefined number b, replace all detected HIBs and the b values on both sides of the HIBs, by the median or mean of the
voxels in the neighbouring beams, at the same distance from the transducer.

Although HIBs are recognized by large B-values, the voxels in a HIB may start from normal values, and grow into large values, so
that a HIB might contain normal values. An example of this is shown in Figure 5.2. The red graph is the beam having a HIB, while
neighbouring beams are plotted in other colours. At k ∈ (450, 590) B-values of the neighbours are below the limit B = 1, (see section
4.3), so B-values are set to 1. The HIB starts at k ≈ 470, and has small B-values until it blends in with the school, and accelerates into
extremely high B-values. We thus see the need for the "overlap number" b.

Choosing an appropriate cut point C is a crucial matter, and involves the risk of either passing HIBs through the filter, or classifying
normal values as HIBs. Based on Figure 5.2, the value C = 10000 would discover the HIB, and accept the school, so we will use this
cut point in our filtering of HIBs. The overlap number b also affects the performance of the HIB-algorithm. A large value will have
better chance of removing the entire HIB if it also contains moderate values that still are large compared to the neigbouring beams. In
Figure 5.2 we see that the HIB extends almost 200 voxels to the left, so for this particular HIB the appropriate value of b would be 200.
In the following implementation of the HIB-algorithm, we used b = 100 since a value of 200 might be unnecessary large for other HIBs.

The choice of the value of M also has an effect on the performance of the HIB-algorithm. A low value results in a large value of h, so
that shorter HIBs may not be detected. A large value of M causes the number h to be small, so that high values that are caused by
randomness in the B-values are wrongly identified as HIBs. When implementing the HIB-algorithm we used M = 0.1.
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5.3.2 Using the HIB-algorithm.
We implemented the HIB-algorithm on the data treated in this thesis, using cut point C = 10000, which gave q = 0.000132. The overlap
number b was set to 100, and M was set to 0.1. We concentrated on the 12 pings which contains the school treated in later chapters,
and only the voxels having k ∈ (101, 1100) were treated, to avoid the transducer noise and the massive background noise at the far
end of the sonar volume. The resulting minimum identification length h was 2, so that single B-values larger than 10000 were passed
through the filter, but sequences of more than one B-value larger than 10000 were identified as HIBs, and replaced by the median of the
neighbouring B-values. Figure 5.3 displays HIBs before and after filtration, in black and red respectively. Beam number (18,9) for ping
71 is plotted with the y-axis limited to the range (0,500), to show the result of the HIB-algorithm.
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Figure 5.2: A HIB in beam number (18,9) for ping number 71, plotted in red. The 8 surrounding beams are plotted in other colours. The
HIB starts outside of the school, and extends throughout the school. We see that the HIB blends in with the school for k ∈ (610, 650).
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Figure 5.3: The HIB-algorithm used on data from MS70. Values before filtering are plotted in black, and values after are plotted in red.
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Chapter 6

Individual backscattering model.

6.1 Backscattering from individual fish.
One approach to analyzing the B-values (confront (2.13)) in datasets from multibeam sonars, is to look at the individual backscattering
from fish. In this chapter we reveal the sources of variation in the data from schools, aiming to explain the variation in the real data
from a school observed by the MS70 sonar. The histogram of all B-values identified as belonging to the school treated in this thesis is
shown in Figure 6.1. The shape of the plot has similarities with the exponential distribution (plotted in red), but appears more extreme
than this distribution. Without knowledge of the acoustics behind the B-values, one could believe that this shape of the histogram was
caused only by the distribution of fish in the school. We would then have few fish in most of the voxels, and many fish in just a few of
the voxels. However, this conflicts with the individual based models (IBMs) discussed in Chapter 1, where fish has preferred distances
to neighbouring fish in a school. To explain this inconsistency we will analyze the randomness in the B-values, caused by random size,
position and orientation of individual fish, and interference between acoustic signals from several fish. We will see that the interference
generally dominates the randomness, providing a probability distribution for the B-values close to the exponential distribution.

Figure 6.2 shows the plot of the randomly chosen beam number (6, 10) for ping 12, together with the moving average of 15 values along
the beam centered at each voxel. The beam cuts through the school at an angle 23.68◦ with horizontal, as calculated from (3.1). Because
of the randomness in the B-values, the moving average values will estimate the acoustic backscattering ability of the objects in the voxles
better than the individual B-values. The variations in the moving average values must be caused either by (i) changes in the number of
fish in the voxels, by (ii) changes in size, position and orientation of the fish, by (iii) randomness in the moving average values, or by
a combination of the three. Because of the angle 23.68◦, the beam will gradually encounter the school, and gradually leave the school,
so lower values are expected at the beginning and at the end of the beam in Figure 6.2. If we assume that fish in the school interact
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Figure 6.1: Histogram of all B-values in the school. The red line is the exponential distribution of mean equal to mean of the B-values.
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Figure 6.2: Plot of the values identified as belonging to the school in beam number (6, 10) for ping number 12. Moving average values
of 15 values along the beam centered at each voxel are plotted in blue.
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according to the rules defined in an IBM, as given in Chapter 1, other variations must be related to (ii) and (iii). Assuming that the
B-values are exponentially distributed, the coefficient of variation (ratio of standard deviation and mean) of the moving average values
is 1/15, so that variations larger than this randomness must be caused by (ii). However, a school might be patchy, so that (i) may still
contribute to the variations in the moving average values, even inside the school.

In this chapter we will first concentrate on the backscattering from one fish, and then generalize to more than one fish, taking interference
effects into account. Using a model for the acoustic backscattering from more than one fish, and the specification of voxels done in
chapter 4, we will perform computer simulations aiming to quantify the randomness in the B-values from the MS70 sonar. We also
simulate the autocorrelation between neighbouring voxels in beams, based on this model.

6.1.1 One fish in the sound field of a transducer.
The acoustic intensity from a fish at the receiver is a function of the acoustic properties of the transducer, the acoustic properties of the
fish, the position of the fish with respect to the transducer, and the position of the receiver with respect to the fish. The intensity that
strikes the fish produces a scattered sound field radiating from the fish, with a specific beam pattern, as seen in Chapter 2. Figure 6.3
shows a situation where a transducer radiates sound that is scattered by a an object formed as a line. This gives a beam pattern from
the line source which suggests that the orientation of the fish is relevant for the intensity at the receiver. We will in this section try to
create a stochastic model describing the intensity received from the backscattering produced by a single fish.

fish

transducer

Figure 6.3: Beam pattern for the acoustic pressure from the transducer and beam pattern for the acoustic pressure of the scattered
sound from a line source representing the fish. In the figure, maximum pressure will strike the fish, but the maximum of the pressure
from the fish will miss the receiver.
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One may claim that every species has its own specific beam pattern. Given the acoustic energy striking the fish per second, the length
S of the fish and the frequency f of the sound, this will be a spatial function of orientation Ω = (αF , βF ) of the fish, specific for each
species. We define orientation as the angles θ = αF and φ = βF of the unit vector in the direction of the fish (from the tail to the nose),
as represented in the coordinate system of the vessel (Figure 6.5). This definition might be a bit unnatural, since the fish primarily
moves in the global coordinate system of the sea, but calculations are simpler with this definition, and transformations from the global
coordinate system to the coordinate system of the vessel will be done in Chapter 7. The acoustic energy striking the fish per second will
in turn be a function of the length S of the fish, the position X = (XX , YX , ZX) = (r, θ, φ) of the fish, and the orientation Ω of the fish.
We wish to describe these two functions, regarding them as stochastic functions of the the stochastic variables S, X and Ω.

Firstly we define the two coordinate systems to be used in the discussion, one for the research vessel and one for the fish, displayed in
Figure 6.4 and Figure 6.5. The coordinate system of the vessel is simply the cartesian/spherical coordinate system with the direction of
the vessel along the y-axis, and with a horizontal x-axis. The fish has a similarly defined coordinate system (indexed with prime), where
the orientation Ω defines the y′-axis, and the x-axis is horizontal. This means that the fish is unable to roll, which simplifies the transfor-
mations between the two coordinate systems. Both the directions of the vessel and the fish has spherical angles (θ, φ) = (π/2, π/2), and
(θ′, φ′) = (π/2, π/2) respectively. The rotation of the coordinate system of the fish with respect to that of the vessel, is an z-x-rotation,
and we call the rotation angles (a, b).

Since the y′-axis is defined to be in the direction of the fish, we need some attention to find a relation between the angles (a, b) of the
rotation, and the angles (αF , βF ) of the orientation of the fish. Because the fish has orientation (π/2, π/2) when heading in the same
direction as the vessel, additional rotations a and b give us the orientation (αF , βF ) of the fish. However, the rotation b is defined in
the opposite direction of φ in the coordinate system of the vessel, so we end up with the connection (αF , βF ) = (π/2, π/2) + (a,−b).
Summed up, the coordinate system of the fish is a translation X and an z-x-rotation by the angles (a, b) = (αF − π/2, π/2− βF ) of the
coordinate system of the vessel. A point vector v in the coordinate system of the vessel, transformed into the coordinate system of the
fish, is thus

v′ = Azx
(
αF − π/2, π/2− βF

)
(v−X) , (6.1)

where the rotation matrix Azx (a, b) is defined in Appendix A.

Applying this transformation we can find the angles θ′ and φ′, from the angles θ and φ. We consider the unit direction vector d = (1, θ, φ)
of the position of the fish, which in the coordinate system of the fish, before the fish has been rotated, will be d′0 = −d (looking at the
vessel from the fish). Rotation then gives us:

49



x

z

yrφ

θ

Figure 6.4: The coordinate system with respect to the research ves-
sel. The position vector X = (XX , YX , ZX) = (r, θ, φ) is located in
the air for illustrative purposes. Unless X is the position of a flying
fish, ZX will be negative.
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Figure 6.5: The orientation Ω = (αF , βF ) of the fish.
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d′ = Azx
(
αF − π/2, π/2− βF

)
d′0

⇓

θ′ = atan

(
d′y
d′x

)
φ′ = atan


√
d′2y + d′2y

d′z

 . (6.2)

If the fish has a swim bladder, this will be the main source of the echo from the fish. Swim bladders are usually oblong, along with
the rest of the fish, so in any case we may consider the echo from the fish to be the result of an oblong object. In the next section we
will thus look at the theoretical pressure field from a line source, representing the fish. In this case we need the angle γ′ of incidence to
the line source, which is the angle between a point vector, and the plane perpendicular to the direction of the fish/swim bladder. We
solve this task by rotating the coordinate system of the fish an additional −π/2 around the x-axis, thus representing the point vector
d0 in a system with z-axis along the direction of the fish. The resulting rotation matrix Aγ = Azx

(
αF − π/2,−βF

)
gives us then the

point vector d?, which transformed from cartesian to spherical coordinates provides us with the angle between the fish direction, and
the point vector in question (direction of the sonar). Subtracting this angle from π/2 then results in γ′:

d? = Aγd′0 ⇒ γ′ =
π

2
− atan


√

(d?x)2 + (d?y)2

d?z

 . (6.3)

For a fish with swim bladder, there may be a tilt angle τ between the swim bladder and the direction of the fish, so that we need to add
τ to the angle βF in all rotations.

6.1.2 Directional factor.
The main source of acoustic echo from a fish is the swim bladder. Because of the large difference in density to the surrounding flesh of
the fish, there is almost total reflection at this boundary. For fish without swim bladder the flesh and bones produce a much weaker
echo.

Because the swim bladder/fish is an oblong object, we may represent the fish as a cylindrical line source, with pressure amplitude given
by (2.7):
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p
(
r′, γ′

)
= ρ0cU0

κa
2
L

r

(
sin
(

1
2kL sin γ′

)
1
2kL sin γ′

)
,

for the distance r and the angle γ′ with the plane orthogonal to the line source (with prime referring to angle with respect to the fish/line
source), where ρ0c is the specific acoustic impedance of the ocean, U0 is the speed amplitude of the surface of the pulsating line source,
a and L are the radius and length of the line source and κa = cosφae−i(ka+φa) is explained in section 2.3. Since the transducer in the
MS70 sonar is also the receiver, we will use r to represent distances in the coordinate system of the fish (instead of r′).

The directional factor defined in section 2.4, (with subscript denoting the fish),

HF

(
γ′
)

=
sin
(

1
2kL sin γ′

)
1
2kL sin γ′

, (6.4)

produces a beam pattern as the one from the line source in Figure 6.3, and increases in complexity as the length of the fish or/and the
wave number k = 2πf

c increases. This increase in complexity of the sound field is documented by (Towler et al., 2003), where 425 mm
walleye pollock, and 134 mm capelin was exposed to sound of 38 kHz and 120 kHz frequency. Smaller fish and lower frequency results
in a less complex directional factor, and the fish increasingly resembles a point source.

To represent the fish by the simple line source model would however not be completely accurate. The beam pattern could instead be
found numerically, by integrating the contributions from many small plane surface elements on the swim bladder. In this chapter we
will still use the line source model, since it is simple, and reflects much of the acoustic properties of the fish/swim bladder. In general,
the oblongness of the fish/swim bladder provides higher intensity perpendicular to the direction of the fish/swim bladder, as provided
by the line source model.

As claimed in the beginning of section 6.1.1, every species has a specific beam pattern. The differences between species are caused by
differences in the tilt angle τ of the swim bladder, by differences in the shape and size of the fish/swim bladder, and by the fact that
some species do not have a swim bladder. We thus consider the directional factor as being an empirical function HF (θ′, φ′) of the angles
θ′ and φ′ in the spherical coordinate system of the fish displayed in Figure 6.5. As in the theoretical case, HF (θ′, φ′) should be dependent
on wave number k and length S of the fish. In practice one would like to simplify the directional factor, maybe by some combination of
polynomial functions.

For fish with swim bladders there is also a depth dependence. The swim bladder volume has been shown to decrease with depth, due to
compression from the hydrostatic pressure and diffusion through the walls of the swim bladder. We will later show that this dependence
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follows Boyle’s law for volume and pressure in an enclosed system at constant temperature. The compression will of course reduce the
amount of acoustic energy scattered by the fish, but may also affect the directional factor of the fish. However, we will here assume that
the effect of depth compression on the directional factor is negligible, as (Ona, 2003) provide evidence that the endpoints of the swim
bladder are fixed.

Throughout the thesis we mainly consider the acoustic intensity, so referring to (2.8) we express the directional factor in terms of the
acoustic intensity:

BF
(
θ′, φ′

)
= BF

(
θ′, φ′, k, S

)
=
[
HF

(
θ′, φ′, k, S

)]2
(empirically). (6.5)

BF
(
γ′
)

= BF
(
γ′, k, S

)
=
[
HF

(
γ′, k, S

)]2
(theoretically). (6.6)

where the length S of the fish represents the length of the line source. Obviously every fish of the same size and species may not have the
exact same directional factor, because of individual differences in the configuration of the fish. However we assume that these differences
are negligible.

6.1.3 Maximum amplitude.
We turn our attention to the line source representing the fish, and examine the axial pressure amplitude at a distance r from the fish:

Pax (r) =
−i
2
ρ0cU0

a

r
kL.

The axial pressure Pax(r) can be regarded as the strength of the source compared to the radiation medium, divided by the distance r
from the source. The analogous interpretation of the axial intensity will be the power of the source compared to the medium, divided
by the squared distance r2 from the source. If we name the acoustic energy scattered per second from a real fish as E/∆t = Π (the
power), this will be equal to the surface integrated intensity from the fish on the sphere having r = 1:

Π =
∮
r=1

IF
(
r, θ′, φ′

)
ds = Imax(1)

∮
r=1

B
(
θ′, φ′, k, S

)
ds = ψ(k, S)Imax(1), (6.7)
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where IF
(
r, θ′, φ′

)
is the acoustic intensity from the fish, Imax(1) is the maximum acoustic intensity from the fish on the unit sphere in

the lossless case (where we have dropped the subscript F for simplicity), and ψ(k, S) is the surface integral of the directional factor at
r = 1. Since the directional factor B

(
θ′, φ′, k, S

)
for the fish is dependent on the wave number k and the size S of the fish as given in

(6.5) and (6.6), ψ(k, S) also poses these dependencies. For a simple source ψ is simply the area 4π of the unit sphere (where we omit
the dependency on k and S to ease notation), and for all other beam patterns ψ < 4π.

The maximum acoustic intensity at the distance r from the fish will thus be

Imax (r) =
Imax (1)
r2

=
Π
ψr2

.

This expression for the maximum acoustic intesity is only true in the lossless case. As stated in section 2.6.1 the transmission loss due
to absorption in the sea will reduce intensity exponentially. We write this as

Imax (r) =
Π
ψr2
· 10−αr,

where α is the absorption coefficient specific for the properties of the radiation medium (as defined in section 2.6.1).

The energy scattered by the fish per second, will be equal to the product of acoustic intensity at the fish from the transducer, and cross
sectional area As(ZX ,Ω) of an imaginary object of air scattering the same amount of sound as the fish does. Because the fish/swim
bladder is an oblong object, As(ZX ,Ω) is dependent on orientation Ω. If the fish has a swim bladder, there will also be a dependency on
depth ZX due to compression of the swim bladder. If we define an optimal cross sectional receiving area A0 at depth ZX = 0, a depth
compression factor ηc, and an orientation factor ηΩ, we can write As(ZX ,Ω) = A0ηcηΩ:

Π = ITAs(ZX ,Ω) = IT (r)A0ηcηΩ, (6.8)

where IT is the intensity from the transducer at the fish. Combining (6.7) and (6.8), we get
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A0ηcηΩ

ψ
=
Imax(1)
IT

.

From the definition of optimal scattering cross section in (2.12), we see that the ratio Imax(1)/IT (r) is equal to σ0/4π, so we can express
the maximum acoustic intensity from the fish in terms of σ0:

Imax (r) =
ITA0ηcηΩ

ψ

10−αr

r2
=
ITσ0

4π
10−αr

r2
, (6.9)

where the optimal scattering cross section is

σ0 =
4πA0ηcηΩ

ψ
. (6.10)

In the following section we will express ηc as a function of depth ZX , ηΩ as a function of position X and orientation Ω, and A0 as a
function of size S of the fish, all related to the species of the fish.

6.1.4 Acoustic intensity scattered by the fish.
A0 as a function of size S.

The fish size has an important effect on the optimal cross sectional receiving area A0 of the imaginary object of air scattering the same
amount of sound as the fish does. Since the swim bladder is the main source of acoustic scattering, we will concentrate on this in the
following.

Acoustic scattering from the swim bladder is dependent on the frequency and intensity of the received sound, the shape of the swim
bladder, and the size of it compared to the wavelength of the received sound. The effect on scattering from frequency and size, is different
for frequencies below, at or above resonance frequencies. For herring with swim bladder dimensions a=0.5 cm and L=4 cm, the first
resonance frequency will be approximately f1 = cswimbladder

2
L ≈ 4200 Hz, which is far below the frequencies used in the MS70 sonar (75

- 112 KHz). (This can be shown by examining a rectangular cavity, but will not be done in this thesis). We will thus concentrate on
the size dependency for high frequencies, where the frequency itself has little effect on the acoustic scattering.
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As a simple relation, we propose that as the size S of the fish changes, the volume of the swim bladder changes threefold, and the
optimal cross sectional area of the swim bladder changes twofold. A fish of size twice the size of another fish, will have four times the
cross sectional swim bladder area as the little fish. If the fish in question lacks swim bladder, the optimal cross sectional area of the fish
changes twofold as S changes, so generally we have that

A0 = εS2,

where ε is a proportional coefficient specific for each species. This relation is a special case of the empirical equation (1) in (Love, 1977)
(setting the exponent of the ratio of fish length and wavelength equal to 2).

ηc as a function of depth ZX .

As mentioned above, there is a depth dependence on the size of swim bladder due to compression and diffusion. (Gorska and Ona,
2003a) proposes that this dependence, in the case off herring, follows Boyle’s law,

pV = constant =⇒ V (ZX) = V0
p0

p (ZX)
,

with p0 = 101325 Pa (Pascal) being pressure at sea level and V0, volume of the swim bladder for a fish at the surface. If we assume that
the swim bladder is cylindrical, with radius a and length L, we can write this as

π a (ZX)2
L (ZX) = πa2

0 L0
p0

p (ZX)
.

The compression can be decomposed to length compression and radial compression, so we rewrite the ratio p0/p (ZX). The pressure in
sea water follows the relation p(ZX) = p0 + ρ0gZX , where gravity outside the coast of Norway is approximately g = −9.82m/s, and
where ρ0, the density of sea water, is 1027kg/m3 on average, but depending on salinity and temperature. We end up with

a (ZX)2
L (ZX) = a2

0 L0
p0

p0 + ρgZX
= a2

0

(
1

1− 0.0995ZX

)2γa

· L0

(
1

1− 0.0995ZX

)γL
, (6.11)
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where a0 and L0 are the radius and length of the swim bladder at depth ZX = 0, and γa and γL are compression factors satisfying
2γa + γL = 1.

The Boyle’s law relationship was investigated by (Ona, 1990), where herring was traced at varying depths. The results displayed a
reduction in swim bladder volume that exceeded what would be expected from Boyle’s law. This deviation from theory was explained as
diffusion through the walls of the swim bladder, but in this discussion we will discard that effect, and assume the strict depth dependence
stated in (6.11).

The cylinder assumption assures us that the depth compression is independent on φ′ in the coordinate system of the fish. In practice an
ellipsoid might be more accurate, giving different compression factors in all three directions. Using the cylinder model we get the factor
to compensate for depth compression

ηc =
(

1
1− 0.0995ZX

)γA
, (6.12)

where γA = γa + γL. If we assume that γa = γL = 1/3, (6.12) becomes

ηc =
(

1
1− 0.0995ZX

)2/3

.

For fish without swim bladder the compression due to hydrostatic pressure will of course not have an effect, resulting in γA being close
to 0.

ηΩ as a function of position X and orientation Ω.

Since the swim bladder as well as the fish, is an oblong object, orientation of the fish affect the cross sectional area of either the swim
bladder, or the fish itself if it does not have a swim bladder. We discuss the case were the fish has a swim bladder, and as before we
assume that it is cylindrical, but in addition we say that the ends of the cylinder are rounded by hemispheres. This way the cross
sectional area of the swim bladder will always be the cross sectional area of the sphere with radius a, added a projected rectangle of
width 2a and length depending on the orientation. If we project the vector between the two centers in these hemispheres, called h, onto
the plane perpendicular to the position vector X, we get the length of this rectangle.

As mentioned before, the swim bladder can make a tilt angle τ with respect to the orientation of the fish. We define this tilt angle to
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increase as the swim bladder points downwards compared to the orientation of the fish. The spherical coordinates of the vector h are
thus (L− 2a, αF , βF + τ).

The simplest way to get the length of the desired projected rectangle is to project h onto X, and then use the resulting triangle to find
the length of the projection (see Figure 6.6). Projection of h onto X is given by the dot product:

h

h
h

Figure 6.6: Projection of a vector h, onto the plane perpendicular to the vector X.

proj (h on X) =
h ·X
|X|

=
(Xh, Yh, Zh) · (XX , YX , ZX)√

X2
X + Y 2

X + Z2
X

=
(L− 2a) sin

(
βF + τ

)
cosαF · r sinφ cos θ + (L− 2a) sin

(
βF + τ

)
sinαF · r sinφ sin θ + (L− 2a) cos

(
βF + τ

)
· r cosφ

r
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= (L− 2a)
[
sin
(
βF + τ

)
cosαF sinφ cos θ + sin

(
βF + τ

)
sinαF sinφ sin θ + cos

(
βF + τ

)
cosφ

]
.

Pythagoras leads us then to the relation

proj (h on plane ⊥ to X)2 + proj (h on X)2 = (L− 2a)2
,

with the result

proj (h on plane ⊥ to X) = (L− 2a)

√
1−

(
sin
(
βF + τ

)
cosαF sinφ cos θ + sin

(
βF + τ

)
sinαF sinφ sin θ + cos

(
βF + τ

)
cosφ

)2

.

We now assume that the cross sectional swim bladder area corresponds to AS(ZX ,Ω) of the imaginary object of air scattering the same
amount of sound as the fish does, so that

AS(αF , βF , τ, θ, φ) = πa2 + 2a · (L− 2a)

√
1−

(
sin
(
βF + τ

)
cosαF sinφ cos θ + sin

(
βF + τ

)
sinαF sinφ sin θ + cos

(
βF + τ

)
cosφ

)2

,

where we have omitted the dependency on depth ZX . If we express the length L of the swim bladder as a multiple of the radius a,
L = b · a, we end up with a factor ηΩ for the projection of the swim bladder onto the plane perpendicular to the position vector X:

ηΩ =
π + 2 (b− 2)

√
1−

(
sin
(
βF + τ

)
cosαF sinφ cos θ + sin

(
βF + τ

)
sinαF sinφ sin θ + cos

(
βF + τ

)
cosφ

)2

π + 2 (b− 2)
, (6.13)

which only holds for b ≥ 2, and where we have divided by A0 = πa2 + 2a (L− 2a) = a2(π + 2 (b− 2)), the cross sectional area of the
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swim bladder at optimal incidence. We call this factor the "aspect factor".

For fish without swim bladder we assume that this factor has an analog form, but where A0 is the cross sectional area of an the imaginary
swim bladder object of air scattering the same amount of sound as the fish does (imaginary swim bladder).

6.1.5 Acoustic intensity from the transducer at the fish.
The position of the fish strongly affects the acoustic intensity experienced by the fish. In section 2.5, we presented the pressure from a
circular piston in (2.9):

p (r, γ) = ρ0cU0
κa
2
a

r

(
2J1 (ka sin γ)
ka sin γ

)
= Pax (r)H (γ) ,

for the distance r and the angle γ to the normal vector of the piston. U0 is the speed amplitude of the surface of the piston, ρ0c is the
specific acoustic impedance of the ocean, a is the radius of the circular piston, and J1 is the Bessel function of the first kind.

However, the beams in the MS70 sonar are created by weighting neighbouiring elements, in order to get narrow beams and weak side-
lobes. The resulting directional factor will be a function of θT and φT (with superscript T referring to the transducer), in a spherical
coordinate system centered at the transducer (one of the 500 elements of the sonar), with z-axis along acoustic maximum, and horizontal
x-axis. Accounting for the absorption of the sea and geometric attenuation, we write the acoustic intensity in a beam as

IT

(
r, θT , φT

)
= I0BT

(
θT , φT

) 10−αr

r2
, (6.14)

where I0 is the acoustic intensity at the distance r = 1 on the axis defined by φT = γ = 0, and BT (θT , φT ) = [HT (θT , φT )]2.

The real directional factor BT
(
θT , φT

)
will differ from the theoretical directional factor BT (γ) by much lower side lobe levels, and by

the fact that it is dependent on both θT and φT . If the position X of the fish is known we get θT and φT for the beam number (i, j)
by the rotation matrix Ayxy(−π/2,−αi, βj), where αi and βj are defined in (3.1), and the notation for the rotation matrix is explained
in Appendix A. In this chapter we will concentrate on the theoretical directional factor, as it possesses the same qualities as the real
directional factor does. A useful approximation to the directional factor of a circular piston is the parabola shown in Figure 6.7.
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Figure 6.7: The theoretical directional factor of a beam in MS70, together with a polynomial function found to match the Bessel function
by visual ispection.

6.1.6 Summary for one fish.
We have now established all relations concerning the acoustic intensity IE(S,X,Ω) of the signal from the fish at the receiver, as functions
of the size S, the position X, and the orientation Ω of the fish. From the product of maximum acoustic intensity and directional factor
in (2.8), and from (6.9) and (6.14), we have that

IE(S,X,Ω) = Imax (r)BF
(
θ′, φ′

)
,

where

Imax (r) =
ITA0ηcηΩ

ψ

10−αr

r2
and IT = I0BT

(
θT , φT

) 10−αr

r2
.

Combined, these three relations give us the sonar equation
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IE(r, θ′, φ′) = I0
10−2αr

r4
BT

(
θT , φT

)
BF

(
θ′, φ′

)
ηΩ
A0

ψ
ηc, (6.15)

where

A0 = εS2,

ηc =
(

1
1− 0.0995ZX

)γA
,

ηΩ =
π + 2 (b− 2)

√
1−

(
sin
(
βF + τ

)
cosαF sinφ cos θ + sin

(
βF + τ

)
sinαF sinφ sin θ + cos

(
βF + τ

)
cosφ

)2

π + 2 (b− 2)
,

and

ψ = ψ(k, S) =
∮
r=1

B
(
θ′, φ′, k, S

)
ds.

The elements in the sonar equation that are related to the fish, can be regarded as stochastic, even if S, X and Ω are known exactly. The
beam pattern BF

(
θ′, φ′, k, S

)
from the fish is dependent on the shape, size and tilt of the swim bladder, and physiological configuration

of the rest of the fish, which all vary among fishes of similar size and species. The depth dependence of the fish may also involve
individual differences, affecting the depth relation to the acoustic cross sectional area given by ηc. The optimal receiving cross sectional
area A0 may vary among fishes of similar size and species, and finally, the response to orientation may involve some noise, mainly due
to differences in the tilt angle τ of the swim bladder.

In the following however, we will look at what happens when S, X and Ω are indeed stochastic variables. The aim is to identify the
largest sources of variation from this randomness.
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6.2 Randomness in the backscattering from one fish.
In this section we seek to examine the effect of randomness in S, X and Ω, on the variability of the total signal from one fish. This can
later be generalized to more than one fish, and the aim for the discussion is to reveal the randomness in the B-values defined in (2.14),
from the MS70 sonar. We consider the different parts of the sonar equation (6.15), and examine the squared coefficient of variation
v2 = σ2/µ2 related to each part, where σ2 is the variance and µ is the expected value of each part.

6.2.1 Subvolume for a random fish.
We consider the acoustic intensity received by beam number (i, j), in the kth time interval, which reflect the echo ability of the objects
located in voxel number (i, j, k). Voxel number (i, j, k) is spatially defined by the surfaces in (4.1) and in (4.2), but as seen in Figure 4.1
in Chapter 4, the specific beam receives signals from objects located in the radial range [rk −∆r, rk + ∆r], which is twice as wide as the
radial range of a voxel. The fraction of acoustic energy received in time interval number k, from a small object at the distance r from
the transducer, is given by

ηr =

{
1− |r − rk| r ∈ [rk −∆, rk + ∆r]
0, else

, (6.16)

so that ηr ∈ (0, 1). The factor ηr can be added to the sonar equation (6.15).

The strong directivity of the beams of the MS70 sonar allowed us to define the system of voxels in Chapter 4. It will also allow us to limit
the volume of interest when talking about the acoustic intensity received in the kth time interval. Even though the real beam pattern is
wider horizontally than vertically, we will consider the theoretical directional factor BT (γ), given by (2.8) and (2.9). We approximate
the directional factor by a parabola function as shown in Figure 6.7, given by

g(γ) =

1− εγ2 γ ∈
[
0, ε−1/2

]
0 else

. (6.17)

This expression defines the range of γ of interest, where ε must be chosen from some criterion of goodness of fit. As seen in Figure 6.7,
this range may not cover the side lobes of the beam, and even not the main lobe entirely. We will bear in mind that there can be
fish with γ outside of [0, ε−1/2], contributing to the signal received in time interval k, for beam number (i, j). In Figure 6.7 the Bessel
function was found using frequency f = 75000Hz, speed of sound in sea water c = 1500m/s, and length of the line source L = 0.195m,
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producing a -3 dB opening angle close to 3◦. By visual inspection a was chosen to be 0.18, giving the range γ ∈ [0, 2.36◦]. We will use
these choices when simulating the signal from one fish, later in this chapter.

The subvolume defined by (6.16) and (6.17) is named Sijk. Observe that Sijk is larger than the volume of the corresponding voxel,
defined in Chapter 4, leading to a smoothing of the data discussed later in this chapter. Fish outside of Sijk, which are not considered
by the parabola approximation, will enhance this smoothing.

6.2.2 Probability distribution of X, S and Ω.
Distribution of X.

If the entire subvolume Sijk is inside the school, it will be completely surrounded by fish. In individual based models of fish schools,
fish react to the behaviour of neighbouring fish according to certain rules described in Chapter 1. Because there is a limited range of
communication between fish, it is common in IBMs to limit the number of neighbours affecting the behaviour of one fish. (Huth and
Wissel, 1992) performed simulations of a school of 8 fish, behaving in accordance to an IBM, in addition to some randomness in the
movement and orientation of the fish. One result was that the number of fish affecting the behaviour of one fish, had little effect on
the structure of the school, once this number exceeded 4. This means that fish inside the school pays little attention as to which fish
densities that exist beyond the 4 nearest neighbours. According to this it would be a reasonable assumption that fish are distributed
quite regularly within Sijk, as long as the subvolume is completely surrounded by fish, so that we can approximate the position of a fish
by the uniform distribution.

This assumption will be valid when considering only one of the fish in the subvolume. When there are more than one fish present in
Sijk, fish number m will have a smaller and more complex volume to position itself in than the previous fish, since the volume of choice
is restricted by the desire to avoid collision with other fish. However, the space occupied by a fish would be small compared to the rest
of the subvolume Sijk, unless the school is very dense, so the uniform distribution of the three dimensional position vector X of a given
fish, will be considered generally valid.

If only parts of the subvolume contains the school, the assumption of uniformly distributed position will not be valid. This situation
will be quite frequent in the case of the MS70 sonar, and especially for fish schools located far out in the insonified volume. For the
parabola approximation used in the previous section, and for the school treated in this thesis, which is located around 300 meters from
the sonar, the height and width of the subvolumes will be typically 20 meters. The beam plotted in Figure 6.2, makes the angle 23.68◦

with horizontal, so that it gradually will intercept the school. For this reason the assumption of uniformly distributed spatial positions
of fish will be invalid for parts of the beam. In the discussion of randomness in the signal from one fish we will still assume fish positions
to be uniformly distributed, as this simplifies the discussion.

In the sonar equation the variables related to X are distance the r from the transducer, depth ZX and angles (θT , φT ) of the fish.
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Because of the short range in r for Sijk (2∆r ≈ 0.78 meters), and the narrow range of angle γ, we assume r to be uniformly distributed
between rk −∆r/2 and rk + 3∆r/2. The other two variables needs a bit more attention.

If the shape of the subvolume Sijk were an upright cuboid (vertical side walls, and horizontal top and bottom sides), the horizontal
cross sectional area would be constant, and the depth ZX of a fish would clearly be uniformly distributed given that X is uniformly
distributed. However, Sijk is shaped like a cylinder with with slightly curved top and bottom sides, and small height (0.379 meters), as
seen in Figure 6.8. The 500 cylinders are tilted by angles found from the unit vectors of the beams, defined in Chapter 3. The probability

Figure 6.8: The subvolume Sijk as seen from the side (left), and the square approximation to the circle (right).

that ZX ≤ z, in the subvolume Sijk, will be the volume of the part of the subvolume corresponding to ZX ≤ z, divided by the volume
of the entire subvolume. However, we will approximate this distribution with the uniform distribution, corresponding to approximating
the circle with the square, as shown in Figure 6.8. The fit is poor for the upper and the lower part of the subvolume, but at these parts
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the acoustic intensity from the transducer is at the lowest, so the effect of the mismatch will be small.

To find the probability distribution of the angle γ with the axis of acoustic maximum of the beam, we consider the area of a circle of
radius γ, centered at this axis. We define the range of γ as [0, γmax], where γmax = ε−1/2 in case of the parabola approximation. The
cumulative probability distribution of γ will then be the area of the circle of radius γ, divided by the area of the circle of radius γmax.
Differentiation provides us with the probability density function of γ:

F (γ) =
πγ2

πγ2
max

→ f(γ) =
2

γ2
max

γ, γ ∈ [0, γmax]. (6.18)

Distribution of S.

The length S of a schooling fish is usually assumed as being normally distributed. In (Ona, 2003) the empirical mean and standard
deviation for the length of herring were found to be 31.8 cm and 1.4 cm, from 28 trawl samples taken in 1997, and 33.2 cm and 2.4
cm, from 19 trawl samples taken in 2000, both in the Vestfjord/Ofotfjord area in northern Norway. A Gaussian distribution with a
characteristic mean length for each species, and coefficient of variation vS = σS/µS not larger than 0.1, would thus be adequate for the
length S of fish in schools. If one only looks at one school, the variance in fish length might be smaller, since fish tend to join schools of
fish with similar length, when two schools encounter (Krause et al., 1987).

Asuming that A0 is at least nearly proportional to S2, we conclude that A0 can be described by the non-central chi-square distribution
with k = 1 degree of freedom and non-centrality parameter λ = µ2

S/σ
2
S not smaller than 100, using the results in (Ona, 2003).

Distribution of Ω = (αF , βF ).

In an ideal school fish should be highly syncronized, so that the variance in the orientation distribution is small. In large schools, (as the
school discussed in this thesis which spans more than 100 meters), the orientation of a fish at one end is unlikely to directly affect the
orientation of the fish at the other end very much. There is a range in which the fish are able to see each other, or feel the movement
of neighbouring fish with the lateral line (motion sense organ along the side of the fish). If the school moves, there must clearly be
more fish with orientation in the direction of the school, than in other directions, but polarization might not be very high. A natural
assumption would be the normal distribution for the orientation angle αF , with mean in the direction of the fish, and variance reflecting
the polarization. The vertical orientation angle βF will also be assumed gaussian, but with smaller variance than α.

6.2.3 Randomness in the sonar equation.
We now wish to translate the randomness in X, A0 and Ω into randomness in the acoustic intensity from one single fish, which is given
by the sonar equation. Generalization of the results in this section to the signal from more than one fish, will be done in the following
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sections. The effect of the stochastic variables r, ZX , γ, A0 and Ω, will be treated one by one, and we restate (6.15) for practical reasons as

IE(r, θ′, φ′) = I0
10−2αr

r4
BT

(
θT , φT

)
BF

(
θ′, φ′

)
ηΩ
A0

ψ
ηc ηr

= (A) (B) (C) (D)(E)(F),

(6.19)

where we have added the radial weighting given in (6.16).

To measure the variability in the 6 different parts of (6.19), we consider the squared coefficient of variation v2 = σ2/µ2, where σ2 is the
variance, and µ is the expected value of an arbitrary stochastic variable. We will explain the use of v2 by computing v2 = v2

XY for the
product of two independent variables X and Y :

Var(XY ) =
∫
x

∫
y

x2y2f(x)f(y)dydx−
∫
x

∫
y

xyf(x)f(y)dydx

=
∫
x

x2f(x)dx
∫
y

y2f(y)dy −
∫
x

xf(x)dx
∫
y

yf(y)dy

=
(
σ2
X + µ2

X

)(
σ2
Y + µ2

Y

)
− µ2

Xµ
2
Y = σ2

Xσ
2
Y + σ2

Xµ
2
Y + σ2

Y µ
2
X .

(6.20)

Expressed in terms of v2, (6.20) becomes

v2
XY =

Var(XY )
E(XY )2

=
σ2
Xσ

2
Y

µ2
Xµ

2
Y

+
σ2
X

µ2
X

+
σ2
Y

µ2
Y

= v2
Xv

2
Y + v2

X + v2
Y . (6.21)

In the case of 6 independent variables we would have one part containing all 6 ratios, 6 parts containing 5 ratios, and so on, where the
number of parts are taken from the 7’th line in Pascal’s Triangle of numbers, which is 1 6 15 20 15 6 1. We see this from the last line in
(6.20), generalized to the 6 variables (A), (B), (C), (D), (E) and (F ) inn (6.19):
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Var
(
(A) (B) (C) (D) (E) (F )

)
=
(
σ2
A + µ2

A

)(
σ2
B + µ2

B

)(
σ2
C + µ2

C

)(
σ2
D + µ2

D

)(
σ2
E + µ2

E

)(
σ2
F + µ2

F

)
− (µAµBµC µDµEµF )2

.

Dividing the variance of the product of the 6 variables expressed above, by the product of the mean of the 6 individual variables, we get
the total squared coefficient of variation named v2

A:F . We now wish that the individual squared coefficients of variation v2
A, . . . , v

2
F are

smaller than one, and small enough that most of the products of two or more squared coefficients of variation can be neglected in the
total v2

A:F

In the following we analyze the squared coefficient of variation for the 6 variables (A) through (F ) separately. The final calculation of
v2
A:F requires independency between the 6 parts of (6.19), which to a large extent is true. A discussion of independency is done at the
end of this section.

(A).

Because of the short range [rk − ∆r,rk + ∆r] compared to rk, variation in the backscattering from one fish in Sijk due to absorption
and geometric attenuation is negligible. A computer simulation of 10000 fish with uniformly distributed distances to the transducer in
the given range, resulted in v2

A ≈ 7.9 · 10−5.

(B).

In (6.18) we presented the probability distribution of the angle γ between the axis of acoustic maximum of a beam, and the position
vector of a uniformly positioned fish. Since the acoustic intensity of the sound from a particular beam, is dependent on γ through the
beam pattern BT (γ), we wish to transform from the distribution of the random variable γ to the distribution of BT (γ). To ease notation
we write B = BT (γ) with the realization b. We use the parabola approximation for the beam pattern of the transducer given in (6.17),
which defines the range of interest of γ to γ ∈ [0, ε1/2]:
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fΓ(γ) =
2

γmax
γ = 2εγ and b = 1− εγ2

⇓

γ(b) =
(

1− b
ε

)1/2

⇓

|J | = 1
2ε

(
1− b
ε

)−1/2

which gives the transformation from γ to B:

fB (b) = fΓ

(
γ (b)

)
· |J | = 2ε

(
1− b
ε

)1/2

· 1
2ε

(
1− b
ε

)−1/2

= 1

=⇒ BT (γ) ∼ Uniform(0, 1).

The variance and expectation of uniformly distributed variables then gives us v2
B = 1

12 · 0.5
2 = 1

3 .

Since the parabola approximation is zero at the side lobes and at the weak parts of the main lobe, it neglects fish which experience weak
intensity from the beam, thus overestimating the expectation µB . This may lead to a too low v2

B . Still, we can defend the approximation
by the fact that it neglects only weak signals, which when summing up all fish in Sijk, will have little contribution to the total signal.

(C).

The beam pattern of the pressure field from a fish has a great influence on the acoustic intensity scattered towards the receiver. This
beam pattern is the product of the directional factor of the fish, and the cross sectional area of the swim bladder/imaginary swim
bladder, as seen from the transducer, called aspect factor. The directional factor of the fish is dependent on the product of wave number
k and length l of the swim bladder/imaginary swim bladder (as seen (6.4) for the directional factor of the line source). Since frequencies
vary between horizontal fans in the MS70 sonar, the directional factor for all fish changes accordingly. The length L is dependent on
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size S of the fish so we need to add the dependency of S to the directional factor of the fish as done in (6.5) and (6.6).

The angles θ′ and φ′ were found in (6.2), and depends on the five angles θT , φT (angles in the coordinate system of the transducer as
defined in section 6.1.5), αF , βF (orientation of the fish) and τ (tilt angle of the swim bladder), which all can be considered stochastic.
Variance of θT and φT is small, since the width of the subvolume Sijk as seen from the transducer is narrow. The subvolume chosen by
the parabola approximation of BT (θ, φ) is defined by γmax = a−1/2 = 2.36◦, so the width of Sijk is clearly narrow and we thus neglect
the randomness of θ and φ. Variations in τ can be incorporated in the orientation angle βF , giving this a larger variance. We thus end
up with 3 stochastic variables affecting the beam pattern of the pressure field from the a fish: αF , βF and S.

There is an important difference in how orientation angles αF and βF affect the acoustic intensity at the receiver, and the effect of S.
While size influence the beam pattern of the fish, αF and βF decide the direction. As we have established that the variance in S is
not very large (coefficient of variation ≈ 0.05), we only consider the effect of αF and βF on the randomness of the beam pattern. To
model the product BF

(
θ′, φ′

)
ηΩ, we consider the theoretical directional factor of a line source, given in (6.4). We wish to smoothen

the directional factor BF
(
γ′
)
, by taking the mean of BF

(
γ′
)
from a number of fish of random Gaussian length, giving B̄F

(
γ′
)
. The

purpose of this smoothing is that directional factors found in research papers involve smoothing of this kind. An important documen-
tation on the directional factor of fish is (Love, 1977), where fish of 12 different species and lengths in the range (0.015,1) meters, with
or without swim bladder, were insonified with sound frequencies in the range (0.015,1.5) MHz. Target strengths were measured for a
set of transducer/receiver aspects, and the data were analyzed by the least squares method, performed on a logarithmic version of an
empirically found relation in (Love, 1969):

σsp
λ2

= a

(
L

λ

)b
, (6.22)

where λ is the wavelength of the sound, and a and b are regression coefficients. These regression coefficients are not the same as the
radius a of the line source and the ratio b = L/a of swim bladder length and swim bladder radius, used in section 6.1.4.

We consider the case φ′ = 90◦, which corresponds to seven of the aspects at which the fish are viewed in (Love, 1977), specified by
φ′ ∈ (75◦, 105◦), and θ ∈ {(−105◦,−75◦), (−75◦,−45◦), . . . , (75◦, 105◦)}. We do the smoothing for three different mean lengths of the
line sources, 0.005 m, 0.015 m and 0.05 m, and coefficient of variation σ/µ = 1/5. Figure 6.9 shows the smoothed directional factors
B̄F

(
γ′
)
, aspect factors ηΩ, and the product of these (beam pattern), for swim bladder models produced by averaging 50 directional

factors from line sources of lengths from the Gaussian distribution given above. Estimated regression parameters a from (6.22), for the
seven aspects mentioned above and scaled so that max(a) = 1, are plotted in black dashed lines.

The figure displays the great effect of changes in length µL on the smoothed directional factor B̄F
(
γ′
)
. By visual inspection, it seems
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Figure 6.9: Theoretically estimated BF
(
γ′
)
(beam pattern), ηΩ (aspect factor) and the product of these two (directional factor), for

fish with swim bladders, plotted against angle of incidence γ′ to the line source representing the swim bladder. The beam patterns were
produced by averaging the beam pattern from 50 line sources of Gaussian length with means µ = 0.005 m, µ = 0.015 m and µ = 0.05
m, and with coefficient of variation σ/µ = 1/5, representing three species of different lengths. Frequency of the sound is set to f = 76
kHz. The pink line is the aspect factor ηΩ for the cross sectional area of the cylinder representing the swim bladder. The dashed lines
are BF

(
γ′
)
, while solid lines are the product of ηΩ and BF

(
γ′
)
. The fish model is seen from the side, so φ′ = π/2. Results from (Love,

1977) are plotted in black for comparision.
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reasonable that mean length of the line sources producing the smoothed beam pattern B̄F
(
γ′
)
should be between 0.015 m and 0.05 m.

This is of course a very inaccurate estimate, but considering the high sensitivity of B̄F
(
γ′
)
regarding the product kL, and the fact that

the directional factor is found from theoretical line sources, a narrower specification might be unwise. In (Gorska and Ona, 2003b) a
picture of a 32 cm herring is shown, and the swim bladder length is found to be 83 mm. However, the thickness of the swim bladder
varies, and if we only consider the thick part, this makes up less than half of the swim bladder length. A line source approximation of
length L > 50 mm thus seems unwise, while L < 15 mm is probably to short, so µL ∈ (0.015, 0.05) m appears to be a safe estimate.
This is of course based on an assumption that the school in question is of herring. Other fish with shorter or longer swim bladders, will
have directional factor changed accordingly.

We examined the effect on v2
C of the mean µL of the 50 objects drawn to produce the smoothed directional factor B̄F

(
γ′
)
, and of the

ratio b used in ηΩ (6.13). All 6 combinations of b = (5, 10) and µL = (0.005, 0.015, 0.05), were used to generate 6 numeric functions
B̄F

(
γ′
)
ηΩ, which were applied to 1000 "fish" with randomly chosen orientations (αF , βF ). The angles αF were drawn from the uniform

distribution between 0 and 2π, while βF was set to π/2. This process was repeated 10 times, with a new set of orientations each time.
The results of the simulations are shown in Figure 6.10. The lines have colours orange, green and blue for µL = 0.005, 0.015 and 0.05
respectively. We see that the greatest effect on v2

C is from differences in mean length µL, of the 50 "fish" drawn to produce the smoothed
directional factor B̄F

(
γ′
)
. This represents the size of the fish, and affects kL in the same way as the frequency does. The larger fish,

the more polarized directional factor. The ratio b seems to have a limited effect on the smoothed directional factor. Since the frequency
is f = 76 kHz in the top fan and f = 111 kHz in the bottom fan, v2

C changes accordingly, giving larger coefficient of variance in the
bottom fan.

From the specification that µL ∈ (0.015, 0.05), Figure 6.10 gives us a squared coefficient of variation approximately v2
C ∈ (0.5, 7).

(D).

The optimal receiving cross sectional area A0, was found in section 6.2.2 to be nearly non-central chi-square distributed with k = 1
degree of freedom and non-centrality parameter λ = µ2

S/σ
2
S > 100. The mean and variance of a non-central chi-square distributed

variable are k + λ and 2(k + 2λ), so for a large λ, v2
D will we approximately 4/λ < 0.04.

(E).

The variance contribution from depth compression of the swim bladder, is highly dependent on the distance r from the transducer. We
consider the subvolume S13,20,1319, which has the widest range of ZX -values. (This subvolume may be partially above the surface of the
sea, depending on how deep the sonar is lowered.) Computer simulations of 10000 fish with swim bladders having γA = 2/3, with ZX
drawn from the uniform distribution between 0 and 1319∆r sin(2γmax) ≈ 41 meters, resulted in v2

E ≈ 0.1. Compared to the estimated
γA in (Ona, 2003), the assumption that γA = 2/3 involves no risk of underestimating v2

E .
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Figure 6.10: Estimated squared coefficient of variation v2
C for the product of smoothed directional factor and cross sectional
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ηΩ, of (imaginary) swim bladders. 1000 fish were drawn for each of the 10 repetitions, with orientation angles

αF ∼ Uniform(0, 2π), and βF = π/2. The orange, green and blue lines represent fish with swim bladder lengths 0.005, 0.015 and
0.05 meters respectively, as in Figure 6.9. Dashed and solid lines are for b = 5 and b = 10 respectively. The plot to the left is of fish
insonified by a beam in the bottom horizontal fan (Sijk j = 1, and f = 111 kHz), while the left plot is of fish in the top horizontal fan
(Sijk j = 20, and f = 76 kHz).
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(F).

As stated before, r can be considered uniformly distributed in the range of the subvolume Sijk. Transformation from r to ηr leads
immediately to ηr ∼ Uniform(0, 1), so as for BT (γ) we get v2

F = 1
3 .

Overall variance.

We sum up the previous discussions by a table of squared coefficients of variation:

I0
10−2αr

r4 BT
(
θT , φT

)
BF

(
θ′, φ′

)
ηΩ

1
4πA0 ηc ηr

v2
A ≈ 7.9 · 10−5 v2

B =
1
3

v2
C ∈ (0.5, 7) v2

D < 0.04 v2
E ≈ 0.1 v2

F =
1
3

The largest source of variation in the signal from a single fish is clearly the beam pattern of the fish. TFrom the discussion around (6.21)
we get that the largest contributions to v2

A:F are

v2
A:F ≈ v2

B + v2
C + v2

E + v2
F + v2

C(v2
B + v2

E + v2
F ) ∈ (1.65, 13.1). (6.23)

This way to calculate the variability in the sonar equation assumes independency between the 6 elements, which is nearly true. Part
(A) and (F) are dependent, but (A) contributes so little to the total variation, that we neglect this dependency. (C) depends on both
size affecting (D) and depth affecting (E), but given the large uncertainty in the randomness in (C) we du not bother to investigate this
dependency. Hence we stick with the independency assumption.

The nature of the variability in the sonar equation is mainly resulting from the nature of the variability in the directional factor of
the fish. The distribution will thus be high for low values of the acoustic intensity, and lower for larger values, since the beam pattern
B̄F

(
γ′
)
ηΩ is low for most directions and high for angles near optimal incidence.

Remark about the expected backscattering from one fish.

A fundamental difference between echo sounders radiating vertically, and the MS70 sonar radiating at angles with horizontal in the
range (0◦, 45◦), is that a fish of uniformly distributed orientation angle αF will have larger mean directional factor in the direction of
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the transducer for echo sounders than for the MS70 sonar. This is because the angle of incidence of the transducer/receiver of an echo
sounder, respective to the fish, will have mean 0. If we consider two fish of the same species, but with different lengths S, the beam
pattern of the large fish will be more polarized than the beam pattern of the small fish. This will result in a smaller surface integrated
beam factor ψ(k, S) for the large fish than for the small fish. Referring to (6.10) this results in a larger optimal backscattering σ0 from
the large fish, than would be expected only from the enhanced size of the fish. However, averaging the beam factor over uniformly
distributed orientation angles αF , will be close to integrating the beam factor over all directions, which is what we do to obtain ψ(k, S).
Thus the larger fish will have mean spherical backscattering cross section σ̄sp nearly proportional to fish length, for fish with uniformly
distributed αF . We will use this when analyzing the total backscattering from the school in section 7.2.1. For echo sounders this
approximation might not be valid.

6.3 Backscattering from more than one fish.
We will now use the results from the previous section, where we estimated the squared coefficient of variation for one single fish in the
subvolume Sijk, as a basis when discussing the randomness in the total signal from an arbitrary number n of fish in the subvolume.
This will be a discussion of the randomness in the actual values from a school observed by the MS70 sonar. Through simulations we will
estimate the squared coefficient of variation of the values from the sonar, for different numbers of fish in the subvolumes, for different
fish lengths, and for different orientation distributions of the fish. Later we will also estimate the autocorrelation between voxels along
beams, caused by the radial overlap described in section 4.1.1.

The generalization from one fish to more than one fish involves interference effects between the acoustic signals, resulting in either a
weakening or a strengthening of the signal received in time interval k, for beam number (i, j). We will discuss these effects based on the
findings in (Stanton, 1984). The interference effects between the fish in the subvolume Sijk, will be shown to dominate the randomness
in the total signal from Sijk.

6.3.1 Model for superimposed backscattering from n fish.
The basic assumption when examining interference between fish in a subvolume Sijk, is that the phases of acoustic pressure (the sound)
from the fish, are uniformly distributed between 0 and 2π. This is satisfied by the short wavelength of the insonified sound, ranging
from 1.3 cm to 2.1 cm, for frequencies from 112000 Hz to 70000 Hz, and speed of sound c = 1481 m/s. Even with an extremely rigid
structure of the school, individual fluctuations in position would result in uniform phase. When many sine waves having uniform phase
and random amplitude are superimposed, the total wave has Rayleigh distributed pressure amplitude (Stanton, 1984):

fX(x) =
x

σ2
e−x

2/2σ2
, σ2 =

n∑
l=1

A2
l /2. (6.24)
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Here X is the amplitude of the total signal, Al is the amplitude of the l’th fish, and n is the number of fish in the subvolume Sijk. As the
sonar equation (6.15) considers acoustic intensity, we need to look at the squared amplitude. A known result is that if X ∼ Rayleigh(σ2),
then the variable Y = X2/2σ2λY has the exponential distribution with parameter λY :

fY (y) = fX(h(y)) |J | h(y) =
√

2σ2λY y

⇓

=

√
2σ2λY y

σ2
exp

[
−2σ2λY y

2σ2

]
· σ2λY√

2σ2λY y
= λY e

−λY y |J | =

∣∣∣∣∣ σ2λY√
2σ2λY y

∣∣∣∣∣ .
We have here that X represents the acoustic pressure amplitude, and Y represents the acoustic intensity. If we now compare
Y = X2/2σ2λY with the expression I = A2/2ρ0c for acoustic intensity, presented in (2.6) and with (6.24), we need to have

σ2λY = ρ0c

λY =
2ρ0c
n∑
l=1

A2
l

,

which leads us to

EY =
1
λY

=
n∑
l=1

A2
l

2ρ0c
=

n∑
l=1

Il.

The total acoustic intensity is thus exponentially distributed, with expected value λY equal to the sum of the individual acoustic in-
tensities. The squared coefficient of variation of an exponentially distributed variable is σ2/µ2 = 1, which will be used when discussing
simulations in the nest section. Figure 6.11 shows the sum of 10 sine waves with amplitude 1, giving the expected total intensity 10.

The sum of the individual acoustic intensities λY =
∑n
l=1 Il is itself stochastic, with squared coefficient of variation v2

A:F /n, since the
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Figure 6.11: The sum of ten sine waves having uniform phase but common amplitude equal to 1. The plot to the right shows the squared
sine waves, and the squared total sine wave.

individual acoustic intensities are stochastic. As mentioned at the end of section 6.2.3, the probability distribution of the acoustic
intensity from individual fish, will be large for small values of Il and small for large values of Il. Using the central limit theorem, the
sum of individual acoustic intensities approaches the Gaussian distribution as the number n of fish contributing to a B-value rises. We
thus have the hierarchical model of the total intensity Y :

Y |λY ∼ exp(λY )
1
λY

=
n∑
l=1

Il
n→ Gaussian.

6.3.2 Simulations of the backscattering from n fish.
Based on the discussion of randomness in the signal from one fish and the effect of interference between fish, done in the previous
section, we wish to performe simulations of the total intensity from n fish in the specific subvolume S13,12,500. The aim is to specify the
randomness in the B-values, given the number of fish in the subvolumes. We base the simulations on the following variables:
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r ∼ unif(rk −∆r, rk + ∆r) Distance from the transducer.

γ from (6.18) Angle with acoustic maximum of the beam.

θT ∼ unif(0, 2π) Angle in the plane parallel to acoustic maximum of the beam.

ZX from X= (r, γ, θT ) Depth.

L = µL Length of the swim bladder.

σ0 ∝ L2 Optimal scattering cross section.

αF ∼ N(µαF , σ2
αF ) Orientation angle.

βF ∼ N(π/2, (π/12)2) Orientation angle.

τ = 0 Tilt angle.

γ′ from αF , βF and τ , according to (6.3) Angle of incidence to swim bladder.

We draw values from the specified distributions of these variables, and apply the values to the sonar equation (6.15), in order to produce
the amplitude of the "fish". Phases are drawn from the uniform distribution between 0 and 2π, so that interference between fish would
be expected. The theoretical directional factor of the transducer given in (2.9) will be used. As the beam pattern of the fish, we use
the line source model described in the previous section and displayed in Figure 6.9, where 50 line sources of length L ∼ N(µL, σL) were
averaged to produce the desired directional factor B̄(γ′). For every simulated fish, we generate a new B̄(γ′). The maximum beam width
γmax is chosen to be 3.5◦, in order to to cover the first side lobe of the theoretical beam pattern of the transducer.

Simulations of 1000 intensities from subvolume number (13, 12, 500) will be done, using the three different numbers of fish 1, 30 and 120.
We repeat the simulations 6 times, for the different fish lengths and orientation angles:

µL σL µαF σαF
(a) 0.015 0.003 π/2 π/12
(b) 0.015 0.003 π/3 π/12
(c) 0.015 0.003 π/2 π
(d) 0.05 0.01 π/2 π/12
(e) 0.05 0.01 π/3 π/12
(f) 0.05 0.01 π/2 π
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The two mean swim bladder lengths µL = 0.015 and µL = 0.05 in the line source model of the swim bladder, are the same lengths we
used for estimating the total squared coefficient of variation in (6.23). Comparison with the swim bladder of herring studied in (Gorska
and Ona, 2003b) also indicated that a line source of length between these two values might be suitable. In the cases (c) and (f), we use
Gaussian orientation angles αF with standard deviation σαF = π to represent no polarization of the simulated school. This will almost
correspond to the uniform distribution for αF used in the derivation of expression (6.23). The reason for the use of Gaussian αF instead
of uniformly distributed αF , in the cases (c) and (f), is to make these cases consistent with (a), (b), (d) and (e).

The resulting histograms of simulated acoustic intensities are plotted in Figure 6.12 and Figure 6.13, along with the exponential density
function with mean equal to the average of the acoustic intensities. We see clearly that the histograms for the number of fish n = 1,
are too extreme to be explained by the exponential distribution. At n = 30 the fit is much nicer, but we can still see some exaggeration
of the lower values compared to the moderate values, in the cases (e) and (f). This is also reflected by the high squared coefficient of
variation for one fish in the cases (e) and (f), affecting the total signal when there are only 30 fish in the subvolume, so that the squared
coefficients of variation is equal to 1.621 and 1.895 respectively when n = 30. When fish number is 120 however, there is no apparent
deviation from the exponential distribution in any of the cases (a) through (f).

Since the volumes of the subvolumes increase with increasing k (radial number), the density of fish when the number of fish in the
subvolume is for instance 30, is dependent on k. These volumes will be approximately π(k∆r sin(3.5◦))2 · 2∆r. For the school treated
in this thesis, the minimum value of k is 527, which gives the volume ≈ 350 m3. If the number of fish in this volume is 30, the fish have
more than 10 cubic meters each, which conflicts with the rules of attraction given in IBMs (confront Chapter 1). We thus conclude that
the randomness in the signal from individual fish does not affect the B-values in the real data from this school, but that the interference
between the individual signals causes the B-values to be exponentially distributed.

However, for a school located 50 meters from the sonar, the size of a subvolume will be approximately 20 m3, giving a fish density of 1.5
fish per m3 when n = 30, which is more realistic. In future multibeam sonars the beamwidth might be narrower, so that the randomness
in the B-values is significantly affected by the randomness in the acoustic intensity from one fish.

Remark about the calibration of the beams.

Because of the angular overlap between beams from the sonar, the neighouring beams of beam number (i, j) contribute to the amount
of acoustic energy experienced by a fish in this beam. The beam width was given to be in the range (6.111902◦, 6.962585◦) horizontally
and in the range (2.602462◦, 4.395848◦) vertically, depending on the position of the beam in the sonar. The corresponding angles for
the beams of voxels are ∆α = 2.5◦ and ∆β = 2.37◦ respectively. At the edges of the sonar volume, a fish would thus experience lower
acoustic intensity than in the middle of the sonar volume. This needs to be taken into account when calibrating the MS70 sonar.
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Figure 6.12: Histograms of the simulated acoustic intensity from n = 1, 30, 120 fish. Length of swim bladder is set to 0.015 meters.

80



0 10 20 30 40 50

0.0
0.2

0.4
0.6

0.8
1.0

0 200 400 600 8000.0
00

0.0
04

0.0
08

0.0
12

0 500 1000 1500 2000 25000.0
00

0
0.0

01
0

0.0
02

0

0 10 20 30 40 50

0.0
0.5

1.0
1.5

0 50 100 150

0.0
0

0.0
2

0.0
4

0.0
6

0 100 200 300 400 500 6000.0
00

0.0
04

0.0
08

0.0
12

0 10 20 30

0.0
0.5

1.0
1.5

0 50 100 150 200

0.0
0

0.0
2

0.0
4

0.0
6

0 200 400 600 8000.0
00

0.0
04

0.0
08

Acoustic intensity

De
ns

ity

n=1
μ =π/2α

Acoustic intensity

De
ns

ity

n=30
μ =π/2α

Acoustic intensity

De
ns

ity

n=120
μ =π/2α

Acoustic intensity

De
ns

ity

n=1
μ =π/3α

Acoustic intensity

De
ns

ity

n=30
μ =π/3α

Acoustic intensity

De
ns

ity

n=120
μ =π/3α

Acoustic intensity

De
ns

ity

n=1
μ =π/2α

Acoustic intensity

De
ns

ity
n=30
μ =π/2α

Acoustic intensity

De
ns

ity

n=120
μ =π/2α

σ =π/12α σ =π/12α σ =π/12α

σ =π/12α σ =π/12α σ =π/12α

σ =πα σ =πα σ =πα

μ  = 0.05mL σ  = 0.01mL

Figure 6.13: Histograms of the simulated acoustic intensity from n = 1, 30, 120 fish. Length of swim bladder is set to 0.05 meters.
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Number of fish
1 30 120

(a) 2.868 0.996 1.010
(b) 3.726 1.009 0.969
(c) 5.295 1.089 1.035
(d) 4.817 1.112 0.954
(e) 28.860 1.621 1.083
(f) 19.209 1.895 1.212

Table 6.1: Squared coefficient of variation of simulated acoustic intensities.

6.3.3 Simulations of the correlation between voxels along beams.
As presented in section 4.1.1, there is an overlap between voxels along bemas in the MS70 sonar, due to the radial partitioning. To
quantify the effect of this overlap on the autocorrelation between voxels along beams, we performed simulations of 1000 beams of 100
voxels, taking radial overlap into account:

As opposed to the previous simulations, we now only drew the radial positions of fish, and assigned the same acoustic intensity to all
fish, except for the radial weighting ηr given in (6.16). We thus considered fish positioned on the axis of acoustic maximum of a beam,
and gave the fish equal sizes, depths and orientations. Fish positions were drawn from the uniform distribution in 102 voxels, with 100
fish in each voxel. The reason for drawing fish positions in 102 voxels, is that the intensity assigned to a voxel comes from fish in the
respective voxel, and from fish in the two neighbouring voxels, as seen in Figure 4.1. The B-values for the center 100 voxels were thus
calculated. Phases of the fish were drawn from the uniform distribution between 0 and 2π.

For each of the 100 voxels in a beam, we summed up all sine waves from the fish contributing to the respective B-values, using (6.16).
The resulting amplitudes were then squared to give values of the intensity. The autocorrelations of lags up to 20, were calculated for all
the 1000 simulated beams. Figure 6.14 shows the mean of the correlations at each lag, giving us that a mean autocorrelation between
two neighbouring voxels at 0.13 due to the overlap between voxels presented in section 4.1.1. The mean of the autocorrelations for all
other lags are negative and small (< 0.016 in absolute value). In the next chapter we will compare this to the autocorrelations in the
real data.

Because a voxel is correlated to the neighbouring voxels at the same distance from the transducer from the overlap between beams, there
will be an additional indirect correlation between voxels along beams. We did not model this additional autocorrelation, as it needs to
go through 3 steps to reach the next voxel along the beam, which probably makes the effect of it small.
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Chapter 7

Statistical analysis.

While the discussion in Chapter 6 considered the stochastic nature of backscattering from a school on the individual level, we will now
focus on revealing patterns in the Sv-values from the entire school, trying to describe the school by some set of stochastic parameters.
Most of the methods we present in this chapter are implemented in Chapter 8 ("Results"). We will make use of the results from Chapter
6 in this analysis. In the previous chapter we defined the coordinate system of the fish, respective to the coordinate system of the vessel,
but in this discussion, we need three coordinate systems, one global (G), one for the vessel (V) and one for the school (S), and we start
by defining these.

7.1 Coordinate systems.

7.1.1 Global coordinate system (G)
For a given sequence of pings p = 1, . . . , P subject to analysis, we define (G) to be centered at the first position of the vessel in
this sequence, with the x-y-plane on the surface of the sea. We give the vessel a set of time, position and rotation values Dv

p =
(tp, xvp, y

v
p , z

v
p , a

v
p, b

v
p, c

v
p), p = 1, . . . , P , where the superscript v denotes position and orientation of the vessel with respect to the global co-

ordinate system. Orientations are defined as avp = counter clockwise rotation around the z-axis, bvp = counter clockwise rotation around the x-axis
and cvp = counter clockwise rotation around the y-axis (z-x-y-rotation). For time t1 = 0 we will have Dv

1 = (0, 0, 0, zv1 , a
v
1, b

v
1, c

v
1).

The position and orientation of the vessel at the point tp in time, are given in the data set as in this example:

[Volume 1]
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TimeCode: 53169.3
Heading: 4.126482
Roll: -0.016929694
Pitch: 0.055676006
Heave: -0.58
Latitude: 67.8408103
Longitude: 11.740668683333332

Here, "TimeCode" is seconds elapsed the given day of the survey; "Heading" is angle clockwise with north in radians, South being π;
"Roll" is rotation in radians counter clockwise around the direction of the vessel; "Pitch" is upwards angle with horizontal of the direction
of the vessel (counter clockwise around the x-axis), given in radians; "Heave" is elevation of the vessel in meters; and "Latitude" and
"Longitude" is the position in the global coordinate system of Earth.

The transformation from these dynamics to Dv
p needs a bit of attention. We consider Earth to be a circular ball, although it really has

approximately 20 meters longer radius at the Equator than at the poles. The coordinates x and y in (G) will thus have the following
connection to "Latitude" and "Longitude":

yp = (Latitudep − Latitude1)
π

180
· r

and

xp = (Longitudep − Longitude1)
π

180
· r cos(Latitudep).

To complete the transformation from the dynamics given in the data set to Dv
p , we observe that "Heading" is defined clockwise in the

data set, while it is defined counter clockwise in Dv
p . We thus complete the connection between dynamics data and Dv

p :

tp = TimeCodep
zvp = Heavep
avp = −Headingp
bvp = Pitchp
cvp = Rollp
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7.1.2 Coordinate system of the vessel (V)
B-values in the data set (defined in (2.14)) represent the density of objects scattering sound in voxels positioned in the coordinate system
of the vessel. We define this coordinate system as centered at the position (xvp, y

v
p , z

v
p), and rotated (avp, b

v
p, c

v
p) relative to the global

coordinate system. We need positions in (V) to be translated and rotated into (G), and will use the transformation matrices presented
in Appendix A, to do this.

It is given in product specification of the MS70 sonar (AS, 2006), that the sonar compensates for roll motion in the range (−10◦, 10◦).
However, this roll motion is not defined in the product specification, and is easily confused with the roll angle of the vessel defined in
Dv
p . By visual analysis of the bottom noise, displayed in Figure 7.6, we were able to identify the roll compensation as being linked to

a coordinate system of the sonar, having roll motion defined as roll around the axis of maximum acoustic intensity of beam number
(13, 20), corresponding to the negative x-axis in (V). Figure 7.6 is a plot of regenerated fish/bottom positions presented in section 7.2.3,
and in the figure the regenerated positions are rotated into (G) by taking heading avp and pitch bvp into account. We can see from the
figure, that the bottom noise has a fluctuating slope (plotted as blue lines), corresponding to the pitch of the vessel (shown in the lower
right corners of the frames). Thus the roll compensation of the sonar involves a pitch compensation of the vessel, corresponding to
bvp = 0 for all pings. In the beginning of chapter 8 we investigate the motion compensation of the system further, based on the centers
of mass of the school.

If we name a position vector in (G) vG, and give the vessel the position vector s = (xvp, y
v
p , z

v
p), a point vV in the coordinate system of

the vessel will then have the following connection to vG:

vV = AG→V · (vG − s) ,

where AG→V = Azy(avp, c
v
p) is presented in Appendix A. The reversed operation will be

vG = A−1
G→VvV + s = AV→GvV + s, (7.1)

so that we need to rotate first, and then add the vessel position. The rotation matrix from (V) to (G) is found from (A) to be
AV→G = Ayz(−cvp,−avp).
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7.1.3 Coordinate system of the school (S) - analysis of the center of mass.
The center of mass ξp of the school will serve as the origin in the coordinate system (S) of the school at each ping p = 1, . . . , P . If we
are able to estimate the center of mass at several following time steps, we can calculate an estimated velocity of the school, and use this
as the direction of the y-axis of (S). We define the x-axis of (S) to be horizontal prior to the analysis.

Calculation of ξp will be done by two methods; one crude and one accurate. The crude method considers only the centers of the voxels
belonging to the school, assuming that differences in volume and acoustic backscattering from voxels are negligible. The accurate one,
takes these differences into account, weighing the voxels by the product of volume and acoustic intensity, represented by Vijk · Bijk for
voxel number (i, j, k).

In either method we need to identify the voxels that belong to the school. This is in itself a great statistical challenge, and will not
be analyzed in this master thesis. Maybe such a statistical identification routine should consider the average of the result from several
methods, as noise and variability might lead to different conclusions depending on the method. In the following however, we will use
identification values from the Sonar Explorer (Balabanian et al., 2007), found using a flood-fill algorithm on a median-smoothed version
of the data set:

A seed point in the middle of the school is chosen by visual inspection, from which the Sonar Explorer calculates identification values
by the function

f = 1−
(
d

t

)2

.

Here d is the difference between the value in a voxel and the seed point value, and t is the tolerance, at which the difference d results in
f = 0. Voxels having d > t is set to f = 0. The set of voxels with f greater than or equal to some desired limit in the range (0, 1), at
ping p is called Mp. One can object to this flood-fill algorithm, that it contains no automatic detection process. The user must manually
set the seed point where there appears to be a school. There is also no statistical justification for the algorithm, as would be natural
for such a problem. We will later see that the segmentation of the school treated in this master thesis, found by the algorithm flood-fill
algorithm, seems to have limited accuracy.

Once this identification procedure has been performed, we calculate the center of mass ξp of the school by the more accurate method
through these three steps:

1. Find the centers of the voxels identified as belonging to the school, which represents the centers of mass of the voxels.

2. Calculate the volume of the voxels and multiply it by the corresponding B-values.
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3. Sum up the x- y- and z-coordinates, weighted by the products Vijk · Bijk for all voxels (i, j, k), i = 1, . . . , I, j = 1, . . . , J, k =
1, . . . ,K, and divide by the total mass of the school,

∑
school(Vijk ·Bijk).

In the crude method step 2 and 3 is replaced by the simple average of the midpoints from step 1.

The use of centers of voxels as the centers of mass of the voxels, is motivated from the assumption that fish are distributed uniformly
throughout a voxel (as claimed in section 6.2.2). Although this probably is not quite true generally, any other assumption would displace
the center of mass of a uniformly distributed school in some systematic way. If B-values from the sonar were to exactly give the density
of fish in the voxels, we could develop an interpolation method to find a probable density distribution in each voxel (other than uniform).
However, since a single B-value is exactly or nearly exponentially distributed, with squared coefficient of variation larger than or equal
to 1, as displayed in Table 6.3.2, Bijk will be a very inaccurate measure of the fish density in voxel number (i, j, k).

Since the voxels, as defined in Chapter 4, are not exactly rectangular, the center of a voxel is not an entirely meaningful concept. The
definition we will use here is the midpoint of a voxel in the system of voxels (rmid, αmid, βmid), rotated into (V). This gives a midpoint
positioned slightly further out from the sonar, than the center of mass of the voxel. The volumes of the voxels were calculated in Chapter
4, so the rest of the weighted calculation of ξ is straight foreward.

For a sequence of P subsequent estimated centers of mass of the school, ξ = (ξ1, . . . , ξP ) given in the global coordinate system (G), we
will now estimate the direction of the school. The simplest representation of the direction of the school would be the straight line giving
the minimum sum of squared distances between ξ1, . . . , ξP and the line. This will of course only hold for a school in motion, and where
there are no clear evidences that the school turns or splits into fractions. Such difficulties are left to future analysis.

The distance vector from a point to a line in 3D is simple to calculate. If we name a point p in (G), and a unit vector u along the line
L running through p (Figure 7.1), the shortest vector d, from L to a point q is

d = (q− p)× u.

For the sequence ξ of centers of mass, the sum of squared distances from ξ to a line Lj is

Sj =
P∑
p=1

[(
ξp − pj

)
× uj

]
·
[(
ξp − pj

)
× uj

]
,
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Figure 7.1: The distance from a point q to a line L, where the line is defined by the point p and the unit vector u.

where pj and uj are the point and the unit vector defining the j-th line to be checked. To find the line of minimum sum of squared
distances (at least to a desired accuracy), we start by checking among j = 1, . . . , n4 lines defined by a grid of n x-values and n y-values
on the x-y-plane of (G), and n θ-values and n φ-values for each x-y-combination. The line of best fit among these n4 lines will then
serve as the midpoint of a new, but narrower four dimensional grid. We continue this iteration until the previous line is as good as the
next one.

There is of course a risk that the iteration procedure ”misses” the best line, so to have a good starting point we pick the line through
the first and the last center of mass, or preferably the first and the last of a moving average smoothed version of (ξ1, . . . , ξP ).

From the line of minimum sum of squared distances, we now get the direction (θξ, φξ) of the school. Since the coordinate system of
the school is defined in the same way as the coordinate system of the fish in Chapter 6, the direction (θξ,φξ) implies a z-x-rotation
(θξ − π/2, π/2− φξ) of (S) relative to (G).

There can however be a movement in ξ, even if the school is at rest compared to its surroundings. If there is a current in the sea affecting
the school, we need to know the direction and strength of this current to find the movement of the school relative to the surrounding.
For the data treated in this master thesis we have not compensated for the current, as we did not have information about it. This might
have led to an error in the direction of the fish.
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We now have the necessary tools to transform a point in the coordinate system (V) of the vessel, to the coordinate system (S) of the
school, where (S) is defined with horizontal x-axis. For a position vector vV in (V), we get the representation vS in (S) from

vS = AV→S
(
vV − ξp

)
,

where ξp is the center of mass for a given ping. The rotation matrix AV→S consists of two separate rotations AV→G and AG→S, so that

AV→S = AG→SAV→G,

where AG→S = Azx(θξ − π/2, π/2− φξ), and AV→G = Ayz(−cvp,−avp) was defined in (7.1).

7.2 Variables reflecting the properties of the school.
We here present a set of 6 classes of variables aiming to describe the properties of the school. These variables will, as far as possible, be
analyzed in three settings: (1) the entire school, (2) segments of the school, which will be the school divided by planes parallel to the
x-y-plane, the x-z-plane and the y-z-plane of (S) and (3) the school regenerated as individual fish positions, from the B-values of the
voxels identified as belonging to the school. The 6 variables to be examined are:

7.2.1 Analysis of the total school.
(a) ξp
The centers of mass ξp, for pings p = 1, . . . , P , of the school, has already been discussed as a means for finding the coordinate system
(S) of the school. However, there is more information in ξp than the direction of the school. The trace of ξp can be considered as a three
dimensional time series, which can be decomposed into the three orthogonal directions that best explain the variance in ξp. This is done
by principal component analysis (PCA). We briefly describe the theory behind PCA:

Principal components of the random vector X = X1, . . . , Xg, are the uncorrelated linear combinations ai1X1 + . . .+ aigXg, i = 1, . . . , g,
whose variances are successively taken as large as possible. It is a common result that the eingenvectors e1, . . . , eg of the empirical
covariance matrix Σ of m observations of the random vector X, give the principal components Yi = ei1X1 + . . . + eigXg, i = 1, . . . , g.
The corresponding eigenvalues provide the amounts of the total variance of the random vector X, that are explained by the principal

90



(a) ξp Center of mass of the school at ping p.

(b) V
(T )
p Total volume of the school at ping p.

(c) σ
(T )
p =

∑
Mp

VijkBpijk and B
(T )
p = σ

(T )
p /V

(T )
p Total backscattering ability of the set Mp of voxels in the school, and ratio to

total volume of the school at ping p.

(d) PCAp Principal component analysis at ping p.

(e) B̄p, Var(B)p and Var(B)p/B̄2
p Empirical mean, empirical variance, and empirical squared coefficient of

variation of B-values at ping p.

(f) ρ̂ijp(h) Empirical autocorrelation for lags h along beam number (i, j) at ping p, if the
beam has length > some predefined value.

where p = 1, . . . , P , i = 1, . . . , I and j = 1, . . . , J . Note that B(T )
p and B̄p are two different variables, one being the ratio of total

backscattering to total volume of the school, while the second is simply the mean of B-values of the school.

components found from eigenvectors of Σ. Summed up we get:

Eigenvectors: e1, . . . , eg
Eigenvalues: λ1, . . . , λg

Principal components: Yi = ei1X1 + . . .+ eigXg, i = 1, . . . , g
Amount of total variance explained by Yi: λi/

∑g
i=1 λi i = 1, . . . , g

We can now perform PCA on the centers of mass ξp, p = 1, . . . , P . In the general set-up, this corresponds to g = 3 and m = P . If
the school moves in some direction, the variance in the positions of centers of mass, as projected onto this direction, will be large. We
can thus use the eigenvector associated to the largest eigenvalue, as a measure of the direction of the school. If the school does not
move significantly, no direction can be found from the centers of mass, so there should thus be a minimum acceptance ratio λξ1/λ

ξ
2 (with

superscript denoting the centers of mass) of the largest eigenvalue compared to the second largest eigenvalue, that separates moving
schools from non-moving schools. In this discussion we will only consider moving schools, so such an acceptance ratio is left to future
work.
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If we project the centers of mass onto the direction found from the eigenvector corresponding to the largest eigenvalue, we will have a
time series ξ(d)

p of one dimensional positions along this direction (with superscript denoting the direction of the school). The projected
time series will be the y-component of the rotated centers of mass AG→Sξ = Azx(θξ − π/2, π/2 − φξ)ξ, and will consist of a trend
component, and a stationary noise process:

ξ(d)
p = mp + ζp, (7.2)

where mp is a trend component and ζp are the random fluctuations in ξ(d)
p . Assuming linear trend mp = vξtp for time points tp of the

pings, ordinary linear regression reveals the speed vξ of the school in the given direction. The stationary noise can then be estimated
by subtracting mp from ξ

(d)
p , giving ζ̂p. If the assumption of linear trend is correct, ζ̂p will have expected value 0, and some variance

describing the degree of fluctuations in the center of mass of the school. We thus propose that both the estimated linear trend, and the
variance in ζ̂p, may describe the properties of the school.

There is a weakness in the analysis of the centers of mass linked to the method for identifying the voxels that belong to the school. If this
segmentation does not cover the entire school, or if it identifies voxels outside of the school as belonging to the school, ξp may involve
errors which will be hard to identify unless a more accurate segmentation procedure is used. As we will see in Chapter 8 ("Results"),
such errors in the segmentation might be the case for the school treated in this thesis. Along the discussion of variables describing the
properties of the school in this chapter, we will thus aim to identify the variables that describe the school without being affected by the
segmentation procedure.

As fish of some species are likely to prefer certain depths more than other depths, we can consider the mean depth of ξp, which we call
Zp, as a variable describing the school. Given the time of day, and the depth of the sea, Zp might suggest, or rule out certain species.

(b) V (T )
p

The total volume V (T )
p of the school might very well be a variable for species identification, and it is anyhow important in biomass

estimation. Using the expression for the volume of voxels found in (4.3) in Chapter 4, we get V (T )
p simply by summing up the voxels

identified as belonging to the school. Doing this for consecutive pings, we can detect any trend and random fluctuations of the total
volume, using the method described for the analysis of ξ(d)

p . An increase or decrease in the total volume, can only happen if the school
spreads of contracts, or if groups of fish join of leave the school. Random fluctuations between pings, say of time difference 5 seconds, can
hardly be described by fish leaving and joining the school, but must be caused by expansion and contraction. For a perfectly segmented
school, the estimated trend in V (T )

p , the variance in the random fluctuations of V (T )
p , and the average of V (T )

p itself, can all be used as
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variables describing properties of the school. As the centers of mass, the total volume V (T )
p is sensitive to errors in the segmentation of

the school.

(c) σ(T )
p =

∑
Mp

VijkBpijk and B(T )
p = σ

(T )
p /V

(T )
p

A measure of the total ability of the school to scatter sound will be the variable σ(T )
p =

∑
Mp

VijkBpijk, where Mp is the set of voxels
identified as belonging to a school at ping p. Defining Bpijk to be the number of bubbles of air of cross sectional area b = 1mm2 = 10−6m2

in voxel number (i, j, k) at ping p, as in (2.14), σ(T )
p will be the total number of such bubbles in the school, as seen from the transducer.

This will be a better measure of biomass than V
(T )
p , but it requires knowledge of the size and type of fish, and the distribution of

orientation of the fish. If for instance the observed school is mackerel, which lacks swim bladder, the backscattering would be much less
than that of an equally sized school of herring.

As the total backscattering σ(T )
p is dependent on the size of the school, we consider the ratio B(T )

p = σ
(T )
p /V

(T )
p to be a variable that

might describe the properties of the school. If a good segmentation exists, the size S of the fish may be detected using this ratio. We
then assume that the space expected to be occupied by one fish, V (F ), is known as a function of fish length. This can for instance be
V (F ) = (κS)3, where κ is a value specific for each species. (Pitcher and Partridge, 1979) showed through experiments for saithe, herring
and cod, that κ is dependent on the fish type and speed of the school, but can generally be set to 1. Because all schools of a species are
not the same, we may consider κ to be a random variable of some kind, with mean and variance specific for each species. In addition
we assume that the mean backscattering cross section σ̄sp of the fish, is proportional to the square of mean fish length S̄2, referring to
the remark at the end of section 6.2.3. We write this as σ̄sp = εS̄2, where ε too is a random coefficient, with mean and variance specific
for each species. The coefficient ε will be dependent on the frequency f , and the depth z if the species have a swim bladder.

If we for ping number p consider a school of Np fish, at a certain depth z, we will have total volume V (T )
p = NpV̄

(F ), and total backscatter-
ing σ(T )

p = Npσ̄spĪ, where Ī is the mean of BT
(
θT , φT

)
BF

(
θ′, φ′

)
ηΩηc of all the fish in the school (referring to the sonar equation (6.15)).

For two different species both having swim bladders, and with mean fish lengths S̄′ and S̄ satisfying S̄′ = νS̄ for some constant ν, we get:

B(T )
p =

σ
(T )
p

V
(T )
p

=
εĪ

κ3S̄
and B′(T )

p =
σ
′(T )
p

V
′(T )
p

=
ε′Ī ′

(κ′)3S̄′

=⇒ B
′(T )
p

B
(T )
p

=
ε′

ε

(
κ

κ′

)3
Ī ′

Ī

1
ν
.
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If we consider two schools of fish having the same orientation distribution, the ratio Ī ′/Ī will be 1. For two fish types having somewhat
similar ε and κ, and ν = 2, the smaller fish would scatter twice as much sound as the larger. In the case where the fish in one of
the schools lack swim bladders, σ(T )

p for the fish without swim bladder will be much smaller, and B
′(T )
p /B

(T )
p might contain enough

information to identify the school with fish lacking swim bladders.

The ratio B(T )
p = σ

(T )
p /V

(T )
p , as an indication of fish length, can of course be unreliable if there are errors in the segmentation of the

school. In addition, the knowledge of ε and κ as random variables, might be limited, so that the information in B
(T )
p about size, is

inaccessible. Instead one could get knowledge of which B
(T )
p -values that are expected from a school of a given species at depth z,

registered by the MS70 sonar, with a corresponding standard deviation. By this we will know which species are hard to distinguish and
which are easier to distinguish, based on the variable B(T )

p .

If the ratio B(T )
p varies in time, the reason is most likely to be at least one of the these three reasons: Changes in the density of fish

in the school, changes in the mean orientation of the fish in the school, and errors in the segmentation of the school. Since the fish are
spatially restricted by the behaviour zones presented in the IBMs in chapter 1, and are more free to change the orientation, we would
expect rapid changes to be due to changes in the mean orientation, rather than density changes. The effect of segmentation errors is
unknown, so unless an error free segmentation exists, the fluctuations in B(T )

p should not be trusted as a describing variable.

(d) PCAp

The theory behind principal components have already been explained. An immediate approach would be to use PCA on the three-
dimensional midpoints of the voxels identified as belonging to the school. However, this would be useless, since these midpoints are
highly correlated, as they are dense points on rays pointing outwards from the transducer. As mentioned in Chapter 4, the voxels are
typically 10 meters in height and width, but only 0.379 meters thick, so we can consider pearls on strings attached to the transducer,
when picturing the midpoints of voxels. This gives high correlation between midpoints, forcing us to project onto planes, and analyze
the resulting two-dimensional covariance matrix. The natural planes to project onto are the x-y-plane, the x-z-plane and the y-z-plane
of (S).

Using the eigenvectors associated to the largest eigenvalues of the covariance matrix of midpoints projected onto the x-y-plane, and onto
the y-z-plane, we define the direction (θ′po , φ

′p
o ) of the oblongness of the school in (S), for each ping p. The prime refers to the school

and is consistent with the use of primes in chapter 2 and 6, for angles with respect to a fish. To find (θ′po , φ
′p
o ) we simply transform

from cartesian to spherical coordinates of the two eigenvectors in the x-y-plane, and in the y-z-plane of (S). The angles (θ′po , φ
′p
o ) imply

a rotation of the y-axis of (S), which has the direction (π/2, π/2). The rotation will thus be (θ′po , φ
′p
o )− (π/2, π/2). In section 7.1.3 we

defined the direction (θξ, φξ) of the school in the global coordinate system (G), found from the centers of mass. The direction (θpo , φ
p
o)

of the oblongness for each ping p, represented in (G) will thus be:
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(θpo , φ
p
o) = (θξ, φξ) + (θ′po , φ

′p
o )− (π/2, π/2). (7.3)

If the direction (θξ, φξ) found from ξ is valid, it would be natural but not necessary, to expect that (θpo , φ
p
o) and (θξ, φξ) do not differ very

much. This would mean that the direction of the school coincide with the largest axis in a three dimensional ellipsoid representing the
school. We assume here that the school has oblong shape in the direction of the school (Pitcher, 1980). The rotation (θ′po , φ

′p
o )−(π/2, π/2)

may thus serve as a describing variable reflecting how determined the school is to move in a defined direction (the determination of the
school). The oblongness itself may also be used to describe the school. Defining the largest eigenvalue in the x-y-plane, the x-z-plane
and the y-z-plane of (S), to be λxy1 , λxz1 and λyz1 , the oblongness may be described by the mean of the ratios λxy1 /λxz1 and λyz1 /λxz1 , or
simply just one of them, since the two will be fairly similar.

Necessary conditions for using the rotation (θ′po , φ
′p
o )−(π/2, π/2) as a describing variable of the school, are that the current in the sea has

been accounted for, and that the segmentation of the school is free of errors. As we will see in Chapter 8, none of these conditions are
fulfilled in the case of the school treated in this thesis. We thus define a second coordinate system (S’) of the school, which is a counter
clockwise zx-rotation of (S), by the angles (θ̄′oφ̄

′
o) − (π/2, π/2) defined by the sum of the P eigenvectors corresponding to the largest

eigenvalues in the xy-plane and in the yz-plane respectively. We here assume that the direction of the oblongness of the school, does not
change during the observation. The rotation is done through multiplying by the rotation matrix AS→S’ = Azx(θ̄′o − π/2, φ̄′o − π/2). The
mean direction of the school in (G), as defined by the eigenvectors, will according to (7.3) be (θ̄o, φ̄o) = (θξ, φξ) + (θ̄′o, φ̄

′
o)− (π/2, π/2).

For the data treated in this master thesis, (S’) will be used as the the coordinate system of the school, because the conditions mentioned
above are violated.

In the beginning of section 7.1.3 we defined the x-axis of (S) to be horizontal. The idea behind this is that there is no collective
consciousness of the school, that knows wether the school as a whole tilts on one side or another. Any such deviation from a horizontal
x-axis, must be random, or due to the school shifting direction or shape. A roll angle cs of this kind can be found from the the eigenvector
associated to the largest eigenvalue of the covariance matrix of midpoints projected onto the x-z-plane of (S). If cs differs much from
zero, this might be an indication on some unusual state of the school, as a turn or that two schools of different depth joins.

From the midpoints represented in (S’) we find the smallest rectangular box that contains all midpoints for each ping p, defining the
length LpS , width W p

S and height Hp
S of the school (with subscripts denoting the school). Interesting variables will in then be the

degree of centrality of the school in the x-direction, y-direction and z-direction at each ping, denoted by Cpx, Cpy and Cpz . The degree of
centrality in the x-direction will be the distance from x-coordinate the center of mass to the front end of the rectangular box, divided
by the distance from x-coordinate the center of mass to the tail end of the rectangular box, for each ping. In the y-direction and in the
z-direction the degree of centrality is defined similarly. This variable is presented in (Hemelrijk and Kunz, 2004).
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(e) B̄p, Var(B)p and Var(B)p/B̄2
p

The mean B̄p of all B-values from voxels identified as belonging to the school, is nearly the same variable as B(T )
p = σ

(T )
p /V

(T )
p treated

in part (c) of this section. The difference lies in the fact that the volume of a voxel is dependent on its number (i, j, k). If voxels were
identical, B̄p and B(T )

p would be equal. The mean and variance of B-values, and shape of the histogram of B-values, are still important,
and may reflect properties of the school.

At the end of section 6.3.1, we showed that B-values are exponentially distributed with expected value equal to the sum
∑n
l=1 Il of the

n individual acoustic intensities contributing to the respective B-value. This sum is in turn stochastic, as it is a function of the sizes,
positions and orientations of the n fish, which all are random variables. The expected B-values are most sensitive to randomness in
the orientation, as shown in Table 6.2.3. We thus get a specter of expected B-values even if the fish in a school are regularly spaced,
and have similar sizes. Such a specter of expected values may cause the squared coefficient of variation Var(B)p/B̄2

p of the B-values to
increase, and as seen in Table 6.3.2, this happens for number of fish n = 30 and size of the swim bladder model µL = 0.05. For nearly
uniformly distributed orientation angles αF of the fish, the simulations resulted in v2

B ≈ 1.9. An increasing number of fish contributing
to a B-value, reduces the variance in

∑n
l=1 Il, and the squared coefficient of variation approaches 1.

An increase in Var(B)p/B̄2
p may also be caused by changes in the number of fish contributing to the B-values, or changes in the mean

orientation of the fish throughout the school. We thus have two reasons for an increased Var(B)p/B̄2
p : (1) randomness in the individual

acoustic intensities, and (2) changes in the number of fish or the mean orientation of the fish. Reason (1) is only likely if the numbers
of fish contributing to the B-values are small, and the sizes of the fish are large. If we consider the cylindrical subvolume defined in
section 6.2.1, where γmax = 2.36◦ as used in the simulations resulting in (6.23), and where k = 697 which is the mean radial number
of the B-values identified as belonging to the school, a number of fish n = 30 in this subvolume implies more than 9 square meters per
fish. This conflicts with the desire of the fish to stay together in schools, so we will focus on relating any large values of Var(B)p/B̄2

p to
changes in fish density and orientation throughout the school.

Calculating the squared coefficient of variation of the B-values, for all pings where the whole school is inside the sonar volume, we get a
series of values whose mean and variance both are interesting variables, possibly describing the school. However, the use of Var(B)p/B̄2

p

requires an error free segmentation of the school. If many B-values from voxels outside the school are considered when calculating the
squared coefficient of variation, both the mean and the variance of B-values are affected.

(f) ρ̂ijp(h)

Since a voxel in the middle of the sonar volume will have width and height typically 10 meters, and radial thickness 0.379 meters, the
resolution is much higher along beams than across beams. We will thus examine the empirical autocorrelations of sequences along beams,
identified as belonging to the school, and we only look at sequences of length greater than a minimum length, to ensure some accuracy
in the empirical autocorrelations. This minimum length will be set to 40, which gives us a total of 684 sequences of interest. For each
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of the lags h = 0, . . . , 20 we average empirical autocorrelations for all 684 sequences, giving ρ̂(T )(h), h = 0, . . . , 20. This will also be an
average over the 12 pings at which the school is observed, so no development in time is examined. Analysis of the time development of
autocorrelations is left to future work.

In Chapter 6, section 6.3.3, we calculated the autocorrelations of 1000 simulated beams of lengths 100 voxels, taking the radial overlap
between voxels described in section 4.1.1 into account. A number of 100 radial fish positions were drawn, and the "fish" were given equal
backscattering ability, except for the radial weighting ηr given in (6.16). The resulting mean autocorrelations are plotted in Figure 7.2,
along with the empirical autocorrelations described above. We see that the simulated autocorrelations do not explain the mean of the
empirical autocorrelations very well. The simulated autocorrelations were based on an equal number of fish with equal backscattering
ability in each voxel, which is unlikely to happen in a real school. In section 7.1.3 we showed that a beam radiating through the school
treated in this thesis, gradually enter and leave the school, so that gradual changes in B-values for a sequence of a beam identified as
belonging to the school must be expected. In addition there may be changes in fish density and orientation throughout the school.
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Figure 7.2: Left: Mean autocorrelation of the beams simulated in section 6.3.3. Right: Mean autocorrelation of all sequences along
beams, identified as belonging to the school, of lengths > 40.

97



Figure 7.3 displays ρ̂12,i,10(h), i = 1, . . . , 12, (the horizontal fan having j = 10 for ping p = 12). We observe that there are large deviations
between the plots, with generally larger autocorrelations for the beams that radiate through the main parts of the school. The mean
empirical autocorrelation ρ̂(T )(h) indicate that neighbouring voxels are on average highly correlated (ρ̂(T )(1) = 0.67), and that there
is also some correlation to the next to nearest neighbour (ρ̂(T )(2) = 0.25), but that for lags h > 2 the correlation is not very large on
average (ρ̂(T )(h) < 0.14, h = 2, . . . , 20). Since the thickness of the voxels are only 0.379 meters, lag h corresponds to h · 0.379 meters,
so voxels that are more than one meter away, seems to be not very much correlated. However, as Figure 7.3 shows, there are large
differences between the beams, and beams that radiate through the outskirts of the school might contribute to a lower ρ̂(T )(h).

As for many other variables presented in this chapter, ρ̂(T )(h) may react to errors in the segmentation of the school.
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Figure 7.3: Autocorrelations of 12 beams in horizontal fan number j = 10 for ping number p = 12. 95 % confidence bounds
±1.96/

√
length of sequence are plotted in blue dashed lines.
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7.2.2 Analysis of parts of the school.
We wish to analyze parts of the school, to describe the symmetry or "shape" of the school. Of the classes of variables listed in the
beginning of section 7.2 we only consider (b), (c) and (d). This is because the center of mass (a) of a part of the school is dependent
on the part, and because considering parts only, makes beams shorter, largely ruling out the autocorrelations (f). In addition we do
not believe that the squared coefficients of variation of the B-values of parts of the school will give any additional information on the
properties of the school, unless the part considered is small so that the number of B-values is small. We thus do not consider the variable
presented in part (e) of section 7.2

To define the partitioning of the school we consider the ranges of x-, y- and z-values in (S) or (S’), but to make the partitioning less
sensitive to errors in the segmentation of the school, and less sensitive to the overlap between voxels, we define these ranges using
quantiles of the products of volume and B-value for the voxels in the school. These quantiles will be specified by the value cq, so that
in the x-direction, the range (x(1)

p , x
(2)
p ) is defined by:

x(1)
p : sup

x
(1)
p

 1

σ
(T )
p

∑
xpijk<x

(1)
p

BpijkVijk ≤ cq

 and x(2)
p : inf

x
(2)
p

 1

σ
(T )
p

∑
xpijk>x

(2)
p

BpijkVijk ≥ 1− cq

 , (7.4)

where xpijk is the midpoint of voxel number (i, j, k) for ping number p, and the numbers (p, i, j, k) are restricted to the set Mp of voxels
identified as belonging to the school for ping p. Similar expressions define the ranges in the y-direction and in the z-direction. By this
method we ignore parts at the ends of the school that do not seem to be fully integrated in the school. We propose that an appropriate
value for cq is 0.01, so that the middle 98% of the school is considered in all three directions x, y and z.

We now consider all voxels having x-values of midpoints in the lower half and in the upper half of the range of x-values, labeling them
left side voxels (LS) and right side voxels (RS) respectively. Similarly we use this scheme for partitioning with regard to y-values and
z-values of midpoints of voxels. We define these 7 parts: (LS), (RS), tail part (T), middle part (M), front part (F), lower part (L) and
upper part (U). The parts (T), (M) and (F) are defined by the planes 0, 0.25, 0.75 and 1, where the range of y-values is modified to
(0,1).

Modified to the 7 parts q =(LS),(RS),(T),(M),(F),(L),(U) of the school, we get the classes of variables to be analyzed:
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(bq) V
(T )
p,q Volume of part q of the school at ping p.

(cq) σ
(T )
p,q =

∑
Mp,q

VijkBpijk and B
(T )
p,q = σ

(T )
p,q /V

(T )
p,q Total backscattering ability of the set Mp,q of voxels in part q the school,

and ratio to total volume of the school at ping p.

(dq) PCAp,q Principal component analysis of part q of the school at ping p.

(b)q V
(T )
p,q

From the 7 values of V (T )
p,q for each ping p, we propose that the interesting variables to examine are the ratios V (T )

p,U /V
(T )
p,L , V (T )

p,F /V
(T )
p,T

and V
(T )
p,M/(V

(T )
p,T + V

(T )
p,F ). The reason why the ratio of volume of the left side, to volume of the right side, is not considered as being

interesting, is that this ratio is subject to high randomness, because a free fish has no restrictions in the orientation angle αF . The tilt
angle of a free fish, βF , is however restricted by the desire of the fish to swim horizontally, and not to much up and down.

The use of the ratio V (T )
p,F /V

(T )
p,T between front and tail part of the school, and the ratio V (T )

p,M/(V
(T )
p,T + V

(T )
p,F ) of the middle part and the

sum of the front and tail parts, is inspired by (Hemelrijk and Kunz, 2004). The paper refers to the findings of (Bumann et al., 1997),
where the density of moving fish groups are shown to be higher in the front of the group. This is explained by a positive predation risk
gradient along the direction of the school. In (Hemelrijk and Kunz, 2004), an individual based model (IBM), as described in Chapter 1,
was used to simulate schools, showing a higher fish density in the front. The reason for this was that fish in the front are attracted to
its neighbours to the side, since there are no fish in front of them. School sizes were approximately 9 in (Bumann et al., 1997), and 100
in (Hemelrijk and Kunz, 2004).

The 3 ratios of total volume in the 7 parts of the school, will not directly reflect the density of fish, but rather the shape of the school.
In the following we consider the total backscattering σ(T )

p,q in each part, which reflect the number of fish, and the ratio B(T )
p,q = σ

(T )
p,q /V

(T )
p,q

reflecting the fish density.

(c)q σ
(T )
p,q =

∫
V

(T )
p,q

B and B(T )
p,q = σ

(T )
p,q /V

(T )
p,q

By the variables σ(T )
p,q and B(T )

p,q we wish to see if the same pattern appears in the data for our school observed by the MS70 sonar, as
was described in (Hemelrijk and Kunz, 2004) and (Bumann et al., 1997). Here the density of real (Bumann et al., 1997) or simulated
(Hemelrijk and Kunz, 2004) fish schools we observed to have greater density in the front part than in the tail part. However, the size of
our school is probably several hundred thousand fish, so that similar results for the big and the small school might not have the same
reasons. If we observe a higher density in the upper part than the lower part of the school, the reason might be pure chance. Analyzing
the three ratios B(T )

p,U/B
(T )
p,L , B

(T )
p,F /B

(T )
p,T and B(T )

p,M/(B
(T )
p,T +B

(T )
p,F ) and the ratios σ(T )

p,U/σ
(T )
p,L , σ

(T )
p,F /σ

(T )
p,T and σ(T )

p,M/(σ
(T )
p,T + σ

(T )
p,F ), for many
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schools is needed to find out if these variables are suited for describing school properties, and to work out a test for deciding wether the
ratios results from pure chance or not.

(d)q PCAp,q

The natural planes to project the 7 parts of the school onto, are the y-z-plane, for the parts (RS) and (LS), the x-z-plane, for the parts
(T), (M) and (F), and the x-y-plane, for the parts (L) and (U). If the eigenvectors of the covariance matrixes of connected parts differ,
(i.e parts that are projected onto the same plane), this must either be caused by randomness in the shape of the school, or by some
property linked to the species. In this thesis we only graphically analyze the principal components of the projected midpoints in the 7
parts of the school.

7.2.3 Regeneration of the school.
In this section we present a method for regenerating the school, which involves recreating artificial fish positions from the data. For a
voxel (i, j, k), we use the corresponding moving average value B̂ijk, of 15 B-values along beam number (i, j), to estimate the number
of fish in the voxel. This is done to reduce the random fluctuations between voxels, caused by the interference between acoustic signals
from fish, and involves an assumption that the actual fish density does not change too much throughout the 15 voxels (15 · 0.38 meters
= 5.7 meters). The regeneration has these 6 steps:

1. Define an expected spherical backscattering cross section σfish of the fish. A large value reduces the amount of data regenerated.

2. Calculate the products bB̂ijkVijk, i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . ,K, of all voxels belonging to the school, and divide the
products by σfish. Here b = 10−6 m2 and the calculation is according to (2.15). Rounding of the results provide the numbers nijk,
i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . ,K, of fish in the voxels.

3. For the number of fish nijk in a voxel, draw α-, β- and r-values, in the range of voxel number (i, j, k), defined in (4.1) and in (4.2).
These angles are not the same as the orientation angles Ω = (αF , βF ) of a single fish, introduced in section 6.1.1.

4. Rotate all drawn fish positions from the specifications of the beams, to the cartesian coordinate system of the vessel (V), and
further into the global coordinate (G) system if required.

5. Using the mean of the eigenvectors associated to the largest eigenvalue for all pings, of the three dimensional covariance matrix
of regenerated fish positions, redefine the direction of the school. Use this as the y-axis in a new coordinate system of the school
(S”), having horizontal x-axis.

6. Transform all regenerated fish positions into (S”).
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The resulting data set will still consist of blocks of fish positions, so that the school shape is edgy instead of smooth. One option might
be to draw fish positions in the subvolumes Sijk presented in section 6.2.1, so that the fish positions related to neighbouring voxels
overlap. This would smoothen the regenerated school, and may be more in accordance with the acoustic theory. In this section however,
we stick to the regeneration algorithm presented above.

The acoustic refraction discussed in chapter 4, is not taken into account in the regeneration algorithm. This might be something that
needs to be done in future work. However, compensating for the refraction can be a time consuming process, if one which to do this for
all the regenerated fish positions, so a way of defining voxels based on the midpoints calculated from the procedure presented in section
2.6.2, and based on the direction of the beam at that midpoint, might be a solution. One would then draw fish positions uniformly in
the refracted voxels.

Because we after the fourth step in the regeneration algorithm, will have fish positions filling the volume of the school, as opposed to the
midpoints positioned densely on rays pointing outwards from the transducer, we can perform the three dimensional principal component
analysis of the fish positions. This will give the most precise definition of the oblongness and direction of the shape of the school, defining
(S”). We use the mean of the eigenvectors associated to the largest eigenvalue for all pings as the direction, because we assume that
in the brief time interval that the school is observed, (1 minute for the school in this thesis), it is natural to think that the direction
does not change, unless the school is under immediate attack by a predator. As discussed previously in the chapter, the centers of mass
provide the translational direction of the school, which define (S). Comparing these two directions will reflect the determination of the
school (defined in part (d) of section 7.2.1), and will be more accurate than comparing (S) to (S’), as discussed in part (d) of section
7.2.1.

The regenerated school requires a different set of describing variables than the ordinary data. The direction for each ping, found from the
three dimensional principal component analysis, is itself an interesting variable. Deviation from the translational direction, found from
the centers of mass, have already been mentioned, and variations in the direction of the shape between pings might also be interesting,
possibly reflecting orientation changes locally and globally in the school. A robust estimate of the length, width and height of the school
for each ping, is provided by the ranges of y-, x- and z-values in (S”), because the B-values are taken into account. We may use a similar
modification of the ranges as in (7.4).

Using the regenerated school we may also analyze arbitrary segments of the school more accurately than if we consider midpoints and
corresponding B-values. We can choose the segment to be analyzed so that it is completely inside the school, thus being unaffected by
errors in the segmentation of the school. An example of such a segment is a sphere of radius 5 meters centered at the centers of mass
of the school. Since we are using moving average values B̂, of 15 consecutive B-values along beams when regenerating the school, and
because an arbitrary segment will contain several voxels or parts of voxels, the squared coefficient of variation of the number NS

p of
artificial fish in the segment at ping p will reduced accordingly. We will try to find a very rough estimate on this squared coefficient of
variation, in order to be able to evaluate observed values:
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Considering the school treated in this thesis, we have that the voxels are approximately 11 meters in width and height, and 0.379 meters
deep. If the sphere of radius 5 meters is centered along the eigenvector of a beam, it will thus intercept 10/0.379 ≈ 26 voxels. The total
number of artificial fish in the sphere will thus be a weighted sum of the 26 voxels, where the voxels closest to the sonar, or farthest from
the sonar, will have smaller volume of intersection, thus being weighted less. Because of this weighting, we may say that the sum will
correspond to the sum of 26/(π/2) ≈ 16 equally weighted voxels (dividing by the area of the unit half sphere). The smoothing done by
considering the moving average values B̂ when calculating the number of fish in regeneration algorithm, will only affect the contribution
from the voxels closest to the sonar and farthest from the sonar, since we anyway sum up the B̂-values from consecutive voxels. We thus
propose that the effect of the moving average filter is negligible, as it is only important in for the least weighted voxels.

Another situation occur when the sphere is centered at the borderline between 4 beams, thus intercepting approximately 100 voxels.
We then say that the weighted sum corresponds to approximately 100/(π/2) ≈ 64 equally weighted voxels. A very rough estimate of
the number of equally weighted voxels in a sum corresponding to the intersection of the sphere, may thus be (16 + 64)/2 = 40 voxels.
If the real fish are not too large and not too densely distributed, the B-values will be exponentially distributed with squared coefficient
of variation equal to 1 (confront Table 6.3.2). For the voxels intercepted by the sphere of radius 5 meters, we may also assume that the
number of real fish, and the mean orientation of the fish deciding the expected value of the exponential distribution in the voxels, is
largely unchanged. A wide specter of expected values may increase the squared coefficient of variation, but we assume here that this is
not the case for the voxels intercepted by the sphere.

When summing up 40 equally weighted voxels for the sphere of radius 5 meters, we thus get the squared coefficient of variation of the
number of artificial fish in the sphere roughly estimated by 1/40 ≈ 0.162. Invoking the central limit theorem we thus claim that there
is a 95 % probability that the number of artificial fish in the sphere at an arbitrary ping, will roughly be within 1− 1.96 · 16% ≈ 70 %
and 1 + 1.96 · 16% ≈ 130 % of the previous number of artificial fish in the sphere. If we wish to consider a sphere of radius 10 meters,
we may assume that the number of intercepted voxels is 8 times as high as for the sphere of radius 5 meters, thus narrowing the above
confidence interval to between 1− 1.96 · 16%/

√
8 ≈ 79 % and 1 + 1.96 · 16

√
8% ≈ 111 %. We will make use of these intervals in section

8.3 of the next chapter.

If the centers of mass of the school contains errors inherited from errors in the segmentation of the school, we might have a situation
where the spherical segment "moves around" in the school. It might thus be wise to smoothen ξp, or simply assign to ξp equally spaced
positions on the straight line describing the translational direction of the school, found in section 7.1.3. A robust method for identifying
the movement of the school should be a key subject in future work with data from the MS70 sonar. We propose an alternative method
in section 8.1.

In Figure 7.4 and Figure 7.5, the school treated in this thesis has been regenerated using σfish = 350 mm2, and projected onto the
xz-plane of (V) and (G) respectively. We have here regenerated B-values for voxels number (i, j, k), i = 1, . . . , 25, j = 3, . . . , 13 and k =
527, . . . , 888, which is the smallest three dimensional box in the system of voxels, containing the school at all pings. Positions in voxels
that are identified as belonging to the school, are plotted in red, and all other positions are plotted in black. The bottom is visible, as the
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major cluster of black points. In the plots, some instrument noise is apparent for pings 6, 9 and 11. The edgy regeneration mentioned
earlier, is clearly seen in Figure 7.4, where the beams are seen from the side.

Figure 7.6 refers to the discussion in section 7.1.1, concerning the motion compensation of the system of the sonar and the vessel.
The difference in slope of the bottom is clearly seen as variations in the blue lines of the plot, and corresponds to the given pitch
values shown in the lower right corners. The rotation of the regenerated positions in Figure 7.6 were done using a rotation matrix
AV→G = Axz(−bvp,−avp), assuming that roll motion cvp of the vessel has been compensated for in the sonar. The rotation used in
Figure 7.4 and Figure 7.5 were done using the rotation matrix AV→G = Ayz(−cvp,−avp), , assuming that the pitch bvp of the vessel has
been compensated for in the sonar.

Remark about the choice of σfish.

For the school treated in this thesis, we have already claimed that there are hundreds of thousands of fish. If fish positions are given in
8 digits, we can approximate the memory usage of one fish position in text formate by 3 · 8 = 24 bytes (B). For a school of 500 000 fish,
observed for 10 pings, we thus get a total memory usage of the regenerated school of more than 100 MB. It is therefore natural to define
σfish to be large, so that the data set is reduced. Mark that this procedure is only a way of representing the data as points in space,
rather than voxels assigned to B-values that represent the ability to scatter sound, of the objects in the respective voxels. There is thus
no strict need for using values of σfish that are realistic. However, σfish should not be chosen too high, as this could result in too many
voxels with zero regenerated fish positions.
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Figure 7.4: Plots of the regenerated school projected onto the xz-plane in (V). "Fish" positions from voxels identified as belonging to
the school, are plotted in red, and all other regenerated positions are plotted in black. The big cluster of black positions is the sea bed.
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Figure 7.5: Plots of the regenerated school projected onto the xz-plane in (G). "Fish" positions from voxels identified as belonging to
the school, are plotted in red, and all other regenerated positions are plotted in black. The big cluster of black positions is the sea bed.
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Figure 7.6: Plots of the regenerated school projected onto the xz-plane in (G). "Fish" positions from voxels identified as belonging to
the school, are plotted in red, and all other regenerated positions are plotted in black. The big cluster of black positions is the sea bed,
and the blue lines represent the slope of the sea bed. Pitch angles of the vessel are shown in the bottom left corners of the 12 frames.
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Chapter 8

Results.

In this chapter we present the results of the methods for statistical analysis discussed in Chapter 7. These methods involve the 6 classes
of variables (a) through (f) for the entire school, defined in the beginning of section 7.2; the 3 classes of variables (bq) through (dq) for
the 7 parts of the school, defined in section 7.2.2, and the methods suggested for the regenerated school described in section 7.2.3. We
go through the classes of variables in the same order as in Chapter 7.

8.1 Results for the total school.
(a) ξp
We calculated the centers of mass ξ = ξp, p = 1, . . . , 12, in the crude way and in the more accurate way, as described in section 7.1.3.
The two versions of ξ were rotated from (V) into (G) and further into (S), thus being represented in all three coordinate systems. As
presented in section 7.1.2, the sonar compensates for the pitch of the vessel (defined in section 7.1.1). However, based on the possible
confusion regarding which rotations have been compensated for in the system of the MS70 sonar and the research vessel, we rotated the
centers of mass into (G) in three ways, using the rotation matrices AV→G = Ayxz(−cvp,−bvp,−avp), corresponding to no motion compen-
sation in the system, AV→G = Axz(−bvp,−avp), corresponding to compensation for the roll motion of the vessel, and AV→G = Az(−avp),
corresponding to compensation for the roll motion and the pitch of the vessel. The x-, z- and z-coordinates of ξ in (G) are plotted in
Figure 8.1.

From the plot to the right, of z-coordinates of the centers of mass, we see that the black line corresponding to no motion compensation of
the system of sonar and vessel, is unlikely to be the correct one. Since the school is observed on the port side of the vessel, the roll motion
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Figure 8.1: Rotation of the centers of mass ξ into (G) using three different rotation matrices. The three plots are of x-, z- and
z-coordinates of ξ in (G), where the origin is defined at the first position of the vessel.

of the vessel has potentially great effect on the depth of the school, and a random roll motion would add noise to the z-coordinates of ξ.
The probability that this added noise causes the variance in the depth coordinates to be smaller, as in the plot to the right in Figure 8.1,
is intuitively small, so we conclude that the roll motion is compensated for in the system of sonar and research vessel. We could perform
a test on wether this change in variance is likely to occur, by analyzing the random roll motion of the vessel, and adding the variance of
the roll motion to the variance of the z-coordinates based on no motion compensation. However, here we confine ourselves to the visual
inspection.

In section 7.1.2 we claimed that the compensation of roll motion in the MS70 sonar, specified by the manufacturer in (AS, 2006),
corresponded to compensation of the pitch of the vessel. This was discovered by visual inspection of the bottom noise in Figure 7.6. The
same conclusion can be drawn from the left frame in Figure 8.1, where the x-coordinates of ξ are plotted for the three different motion
compensation situations:

Because the school is observed at angles with horizontal in the range (16.57895, 40.26316), the pitch will have an influence on the
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y-coordinates of the school in (V). The heading of the vessel is approximately 76◦, as defined in section 7.1.1, so y-coordinates in (V)
will largely correspond to x-coordinates in (G). If the case was that the pitch had not been compensated for in the system, we would
expect the random pitch motion of the vessel to add noise to the x-coordinates in (G) of the school. However, the contrary seems to be
the case if we consider the left frame in Figure 8.1. The green line, corresponding to compensation of both roll and pitch of the vessel,
seems to be a smoothed version of the red and the black lines, justifying the assumption that the pitch of the vessel has been corrected
for in the system of sonar and vessel. In the following, we thus consider the centers of mass rotated into (G) and further into (S), under
the assumption that both roll and pitch of the vessel has been accounted for in the system.

The depth of the school may be represented by the z-component of ξ, called Zp. As seen in Figure 8.1, the fluctuations in the depth of
the school are not very large, with mean Z̄ = −123.5 and standard deviation equal 1.6 meters. As we will see several times throughout
this chapter, there are reasons to believe that there are errors in the segmentation of the school, but the small value of the standard
deviation of Zp suggests that this variable is insensitive to such errors.

The traces of the centers of mass, calculated in the accurate and in the crude way, using AV→G = Az(−avp) for the rotation from (V)
to (G), are plotted in the global coordinate system (G) in Figure 8.2. We see that there a mismatch between the two traces (up to 20
meters in x and up to 10 meters in y but little in z). If we are sure that all significant noise has been removed, the more accurately
found ξ is the one we should use, as we account for the B-values and the volumes of voxels in that method. However, the movement of
the centers of mass from the two methods seem correspond, and at least for the last 6 pings, there seems to be a movement in somewhat
the same direction for both traces of ξ.

The y-axis in the coordinate system (S) of the school, was proposed in section 7.1.3 to be found from ξ, by the line having the smallest
sum of quadratic distances to the centers of mass. We performed these iterations on ξ, giving

Direction found from fitted line to ξ: (θξ, φξ)acc = (−9.2◦, 88.9◦) and (θξ, φξ)cru = (−14.6◦, 88.2◦),

where the subscripts "acc" and "cru" denotes directions extracted from ξ found by the accurate and the crude method respectively.
We assume that the direction found in the accurate way is the most precise, and thus define (S) as the orthogonal coordinate system
centered at ξp for each ping, with y-axis along this direction, and with horizontal x-axis. Midpoints in the voxels can then be rotated
and translated into (S).

Another way of finding the direction of the school from the centers of mass is to extract the angles θξ and φξ from the largest eigenvector
of the covariance matrix of ξ, as explained in part (a) of section 7.2.1. The resulting directions found in this way from the accurate and
crude centers of mass of the school treated in this thesis are:
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Figure 8.2: Centers of mass ξ of the school calculated in the crude way (red) and in the more accurate way (green). Coordinates are in
the global system (G), and dashed lines are normal lines onto the plane z = min(ξ). Colours move from orange to red, and from light
blue to green as p increases.

Direction from PCA of ξ: (θξ, φξ)acc = (−11.6◦, 88.2◦) and (θξ, φξ)cru = (−14.0◦, 87.5◦).

Comparing the different directions of the school, we see that θξ is the angle that is most sensitive to the method used to obtain the
direction.

As suggested in part (a) of section 7.2.1 there should be a minimum acceptance ratio of the largest eigenvalue to the next to largest,
separating moving schools from nonmoving schools. This ratio must be a functions of the number of pings P at which we have observed
the school. We do not suggest any such ratio here, but only present the square root of the eigenvalues of the covariance matrix of ξ
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found in the accurate way and in the crude way:

Square root of the eigenvalues of ξ: (10.86, 2.20, 1.51)acc and (14.66, 1.80, 1.09)cru.

These will be the axes in an ellipse representing the centers of mass, so the oblongness is quite satisfying.

We now continue with the centers of mass found in the accurate way, and wish to rotate ξ into a coordinate system having y-axis
along the direction (θξ, φξ)acc found from the eigenvector corresponding to the largest eigenvalue of the covariance matrix of ξ, and with
horizontal x-axis. This will be the global coordinate system (G) rotated by in a zx-fashion by the angles (θξ − π/2, π/2− φξ)acc, as in
section 7.1.3. We can then project the centers of mass onto the y-axis, to get the time series ξ(d)

p presented in (7.2):

ξ(d)
p = vξtp + ζp, (8.1)

where vξ is the speed of the school, tp are the time points for the pings, and ζp is a noise term with expected value 0. To estimate
vξ, we perform a simple linear regression on the time series, with tp as explanatory variable, giving v̂ξ. The variance of the residuals
ζ̂p = ξ

(d)
p − v̂ξtp will represent the degree of fluctuations of the centers of mass of the school:

v̂ξ = 0.58 m/s and Var(ζ̂p) = 13.2.

Figure 8.3 displays ξ(d)
p plotted against the time points for the pings, together with the fitted line v̂ξtp. We see that the center of mass

of the school does not seem to move along the direction found, for the first 7 pings. It looks as if there are two different states of ξ(d)
p .

The centers of mass of the school, either found by the accurate way or by the crude way, are sensitive to errors in the segmentation
done to identify the voxels that belong to the school, and as we will see in the nest section, there are evidence that there actually are
errors in the segmentation of the school in our case. In addition we have not accounted for the sea current in our calculations, so that
the transformation from (V) to (G) might contain errors. This is something that needs to be done in future work, but since we did not
have the data for the sea current at the particular survey site, we accept the transformation from (V) to (G) in this thesis.
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Figure 8.3: Projected centers of mass ξ(d)
p (found by the accurate method), onto the direction extracted from the eigenvector corresponding

to the largest eigenvalue of the covariance matrix of ξ. The blue line is the fitted line of (8.1). The values of ξ(d)
p are values on the y-axis

of the global coordinate system, rotated by (θξ, φξ)acc.

(b) V (T )
p and (c) σ(T )

p =
∑
Mp

VijkBijkp and B(T )
p = σ

(T )
p /V

(T )
p

An important indication on errors in the segmentation of the school is the total volume V (T )
p of the school at ping p. As seen in Figure 8.4

there is a change in the volume of the school, increasing to more than four times the value at ping p = 1. As the 12 pings at which the
school is observed span a time interval of length 53.1 seconds, the change in total volume is drastic. There can only be 3 reasons for
such a development: (i) Expansion of the school, (ii) other schools of fish joining the school and (iii) of errors in the segmentation. We
wish to find out which of these three cases might cause the change in V (T )

p .

To decide wether or not (i) might be the case, we need to look at the variables σ(T )
p and B(T )

p , representing the total amount of bubbles of
cross sectional area 1 mm2, defined in (2.14), and the total density of such bubbles per m3. These are plotted in Figure 8.5. If expansion
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Figure 8.4: Total volume of the school plotted against time, according to the segmentation method presented in (Balabanian et al.,
2007).

was the reason for the increasing total volume, we would expect no significant changes in σ
(T )
p , and a reduction in B

(T )
p according to

the expansion. As seen in Figure 8.5 the total density B(T )
p appears to be unchanged, while the total number of bubbles σ(T )

p changes
according to the increase in total volume V (T )

p . We thus conclude that expansion can not be the reason for the increased total volume
of the school.

There is however the possibility that the increase in σ(T )
p is caused by the a gradual change in mean orientation angle ᾱF of the fish in

the school, causing the mean beam factor to increase, but the probability of such an event must be very small.

We are thus left with the three possibilities (ii), (iii), and a combination of the two. To decide which situation is the most plausible, we
perform a visual inspection of the plot in Figure 7.5, which displays the regenerated school presented in section 7.2.3. The figure shows
the regenerated school plotted in red, while all other regenerated values are plotted in black. For the first few frames a number of black
dots close to or integrated in the red school is seen, indicating that the segmentation procedure have not performed satisfyingly for these
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Figure 8.5: Left: Total total amount of bubbles of cross sectional area 1 mm2 of the school plotted against time, according to the
segmentation method presented in (Balabanian et al., 2007). Right: Total B-value of the school, i.e. number of bubbles of cross
sectional area 1 mm2 per m3.

pings. For pings number 5 through 10, there seems to be a group of fish joining the school, so that we might believe that both (ii) and
(iii) are contribute to the increase in V (T )

p .

The mean and variance of B(T )
p for all pings p = 1, . . . , P can both be used as describing variables. However, since we have detected

errors in the segmentation of the school, we do not interpret the variance in B
(T )
p (referring to the end of part (c) of section 7.2.1),

but only consider the mean. As we do not have information about the calibration of the MS70 sonar, we do not wish to interpret the
observed mean, but only present the result as mean(B(T )) = 167.0 given as the number of bubbles of cross sectional area 1 mm2 per m3.

(d) PCAp

As presented in part (d) of section 7.2.1, we need to project the midpoints onto planes in order to analyze the covariance structure of the
school by PCA. We projected the midpoints onto the x-y-plane, the x-z-plane and the y-z-plane, in (S), and calculated the eigenvectors
and eigenvalues of the covariance matrices of the projected midpoints in the three planes. The resulting eigenvectors, weighted by the
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square root of the corresponding eigenvalues, are plotted in Figure 8.6. An apparent feature in the plot of the eigenvectors from the
x-y-plane (left) is that the eigenvalues of the first 6 pings are unstable compared to the eigenvalues of the last 6 pings. In addition the
eigenvectors of ping 1 and ping 3 clearly deviates from the rest of the eigenvectors. We propose that this is connected to the change in
total backscattering σ(T )

p displayed in Figure 8.5. We have before linked this change to a combination of errors in the segmentation of
the school and groups of fish joining the school. When calculating the mean of the eigenvectors, to obtain the rotation angles θ̄′o and φ̄′o
of the mean oblongness of the school, presented in (d) of section 7.2.1, we thus only consider the last 6 pings, hoping to minimize the
effect of the assumed errors in the segmentation of the school. The mean direction of the oblongness of the school represented in (S)
and (G) was found to be:

(θ̄′o, φ̄
′
o) = (89.0◦, 86.0◦)

and

(θ̄o, φ̄o) = (θξ, φξ) + (θ̄′o, φ̄
′
o)− (π/2, π/2) = (−10.2◦, 84.9◦),

where (θξ, φξ) was chosen to be the direction found from fitting the closest line to the centers of mass derived in the accurate way.

Using the rotation (θ̄′o, φ̄
′
o)− (π/2, π/2) of the direction of the oblongness of the school with respect to the y-axis of (S), we now define

the second coordinate system (S’) of the school by the rotation matrix AS→S’ = Azx(θ̄′o − 90◦, φ̄′o − 90◦) = Azx(−1.0◦,−4.0◦), according
to the notation defined in Appendix A.

In part (d) of section 7.2.1 the roll angle cs, found from the eigenvectors of the covariance of the midpoints projected onto the x-z-plane,
was suggested as a variable possibly describing the state of the school. We calculated the mean c̄s of this angle for the 6 last pings, as
we did for the two other rotation angles θ̄o and φ̄o:

c̄s = 15.2◦,

where c̄s is defined as the counter clockwise rotation around the y-axis of (S). Wether or not this angle has significance in the statistical
analysis, is left to future work.

The variables length LpS , width W p
S and height Hp

S of the school and the variables Cpx, Cpy and Cpz reflecting the degree of centrality
of the school, was defined in part (d) of section 7.2.1 from the ranges of x-, y- and z-values in (S’). We modified ranges of x-, y- and
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Figure 8.6: Eigenvectors of the midpoints projected onto the x-y-plane, the x-z-plane and the y-z-plane, in (S), with lengths weighted
by the square root of the corresponding eigenvalues.
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z-values using (7.4) in section 7.2.2 for cq = 0 and cq = 0.01. The results are presented in Figure 8.7. From the left frame we clearly see
the difference between the ranges defined from the different values of cq. The dashed lines are ranges defined by the center 98 % of the
total backscattering from the school in the x-, y- and z-direction. If the school had clearly defined outskirts, and if the segmentation of
the school was free of errors, we would expect that the two ranges differed by much less than what is seen in Figure 8.7. When analyzing
the shape and degrees of centrality of the school, we thus suggest that the modified range specified by cq = 0.01 should be used.

The most striking feature of the plots of the degree of centrality in the x-, y- and z-direction is the large values of Cpy , implying larger
weight in the tail parts of the school than in the front parts. This conflicts with the result that small schools usually have larger weight
in the front, documented in (Hemelrijk and Kunz, 2004) and (Bumann et al., 1997). We discuss this further in part (b)q and (c)q of
section 8.1.
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Figure 8.7: Length LpS , width W
p
S and height Hp

S of the school and degrees of centrality Cpx, Cpy and Cpz of the school, defined for the
full range and the modified range corresponding to cq = 0 and cq = 0.01 in (7.4).

(e) B̄p, Var(B)p and Var(B)p/B̄2
p

We calculated the squared coefficient of variation of the B-values for each ping p = 1, . . . , 12, and the results are displayed in Figure 8.8.
We have that the mean and variance of the squared coefficients of variation for all pings are 4.03 and 0.86. Wether or not these variables
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can be used for describing the school is left to future work, but we mark that the mean of the squared coefficients of variation is 4 times
higher than what is provided by the exponential distribution of B-values. As explained in section 6.1, the number of fish contributing to
the B-values is expected to change as a beam enters and leaves the school. It is thus possible that the value of the mean of the squared
coefficients of variation of B-values found for the school in this thesis, can be explained by these effects.
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Figure 8.8: Squared coefficient of variation Var(B)p/B̄2
p of B-values identified as belonging to the school, for each ping p = 1, . . . , 12.

(f) ρ̂(T )(h)

The mean autocorrelation ρ̂(T )(h) for lags h = 0, . . . , 20 of sequences of lengths larger than 40 along beams identified as belonging to the
school treated in this thesis, have already been presented in part (f) of section 7.2.1. The result is displayed in Figure 7.2. Comparing
ρ̂(T )(h) from several observed fish schools of different species is needed to evaluate the significance in this variable.
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8.2 Results for parts of the school.
Using the modified ranges of x-, y- and z-values defined according to (7.4) for cq = 0.01, we define the 7 parts to be considered in this
section, q =(LS),(RS),(T),(M),(F),(L),(U), as explained in section 7.2.2. Figure 8.9 shows the modified ranges of cq = 0.01 compared to
the original ranges corresponding to cq = 0. We see that there is a rather significant difference between the two types of ranges, and for
the last ping the range in x when cq = 0.01 is only 60 % as wide as the full range. This justifies the use of the modified range, rather
than the full range.
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Figure 8.9: Modified ranges of x-, y- and z-values (blue) compared to the original ranges of x-, y- and z-values (black) in the coordinate
system (S’) of the school.

(b)q V
(T )
p,q and (c)q σ

(T )
p,q =

∑
Mp,q

VijkBijkp and B(T )
p,q = σ

(T )
p /V

(T )
p,q

We present the results for the 3 ratios between the parts (U) and (L), (F) and (T), and (M) and the sum (T)+(F), for the three variables
V

(T )
p,q , σ(T )

p,q and B(T )
p,q , as suggested in part (b)q and part (c)q in section 7.2.2. All 9 ratios for the 12 pings at which the school is observed,

are displayed in Figure 8.10. As shown in section 8.1, there is reason to believe that the segmentation of the school used in this thesis
contains errors, and that the last 6 pings are the most reliable. We thus focus on the pings 7 through 12 when analyzing Figure 8.10.
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The 3 ratios concerning total volume V (T )
p,q of the different parts, primarily reflect the shape of the school, and not necessary the number

of fish in those parts. The 3 ratios concerning total backscattering σ(T )
p,q might reflect the number of fish in the parts, but differences in

mean orientation of the fish in the different parts may affect the total backscattering to a large degree. Similarly the 3 ratios of B(T )
p,q

intuitively reflect the fish density, but differences in mean orientation of the fish may affect these ratios too. As the orientation structure
of the school is unknown at this point, we will in the following interpret results as reflecting the number of fish in different parts, bearing
in mind that this may be a wrong assumption.

We consider the ratios of upper half (U) to lower half (L) for the three variables first. From Figure 8.10 we see that based on the modified
ranges defined in the beginning of section 7.2.2, the upper half of the school seems to be larger and containing more fish than the lower
half. The fish density also seems to be slightly lower in the upper half than in the lower. Wether these observations are properties of the
particular school, or results of errors in the segmentation of the school, or simply results of random changes in the school, is undecided
until more schools have been analyzed.

The ratios of front and tail of the school, defined by the first and the last quarters of the modified ranges of y-values, are interesting
in comparison to the findings of (Hemelrijk and Kunz, 2004) and (Bumann et al., 1997), where groups of fish are documented through
simulations and observations to have higher density in the front part than in the tail part. This result however, was registered for schools
of 100 (Hemelrijk and Kunz, 2004) and 9 (Bumann et al., 1997) fish, which are very small schools compared to the school treated in
this thesis. We propose that if the same pattern is to be found in our results, it would translate to larger total backscattering in the
front part compared to the tail part. The variable σ(T )

p,q will be less sensitive to errors in the segmentation, because if voxels are wrongly
identified as belonging to the school, these will normally have low B-values, thus contributing little the total backscattering.

Considering Figure 8.10 we obsesrve that the contrary of the findings of (Hemelrijk and Kunz, 2004) and (Bumann et al., 1997) seems
to be the case. Both B(T )

p,q and σ(T )
p,q is lower than 1 for all 12 pings. We can however not be certain that the number of fish is larger in

the tail part of the school than in the front part. As mentioned in section 7.1.3 there might be a current in the sea, which has not been
accounted for in our calculations. Combined with the possible errors in the segmentation of the school, this opens for the possibility
that the school actually moves opposite the direction of the centers of mass, found in part (a) of section 8.1. In that case the results in
Figure 8.10 for the ratio (F) to (T) would be in consistency with (Hemelrijk and Kunz, 2004) and (Bumann et al., 1997).

We wish to examine the front end and the tail end of the school, assuming that the movement of the school may be detected by the
position of these points. In the same way that the rotation from (S) to (S’) was done in part (d) of section 8.1, we rotate the midpoints
from (G) to a coordinate system having horizontal x-axis, and y-axis in the direction of the school, found from PCA of the midpoints
projected onto the x-y-plane and the y-z-plane of (G). We then modify the ranges in x-, y- and z-direction by the procedure presented
in section 7.2.2. The middle frame of Figure 8.11 shows that the blue points to the left of the plot, which represent the rare end of
the school as identified by the movement of ξ, actually moves slightly backwards when considering all 12 pings, but shows no apparent
movement for the last 6 pings. The front end moves up to 60 meters forwards during the first 7 pings, but shows no apparent movement
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during the last 5 pings. In section 8.1 we observed by studying Figure 7.5, that there appears to be a group of fish joining the school
at the front end (as defined by the movement of ξ). We thus rely mainly on the lower ranges of y-values, as seen in the middle frame
of Figure 8.11. Since we concentrate on the last 6 pings, we actually have no evidence that the school moves at all based on the tail
end and the front end. If any such assumption of the movement of the school should be made, it must be that it moves opposite the
direction found by the centers of mass, thus corresponding to the findings of (Hemelrijk and Kunz, 2004) and (Bumann et al., 1997).

The above argument shows the danger of analyzing the centers of mass and other variables that are sensitive to errors in the segmentation
of the school. If the assumption of oblongness in the direction of the school (Pitcher, 1980) can be made generally without high risk of
errors, PCA of the projected midpoints onto the x-y-plane and the y-z-plane of (G), combined with an analysis of the two ends of the
school in this direction, might give us the safest estimate of the direction of the school. In the rest of the thesis, we will however use the
directions found from ξ, and adjusted for the oblongness of the projected midpoints, defining (S) and (S’).
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Figure 8.11: Modified ranges of x-, y- and z-values (blue) compared to the original ranges of x-, y- and z-values (black) in the global
coordinate system rotated by the direction of the school found from PCA of the midpoints projected onto the x-y-plane and the y-z-plane
of (G).
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(d)q PCAp,q

We only visually analyze the eigenvectors of the covariance matrix of the projected midpoints in the 7 parts presented in section 7.2.2.
The projections are made onto the y-z-plane, for the parts (RS) and (LS), the x-z-plane, for the parts (T), (M) and (F), and the x-y-
plane, for the parts (L) and (U). The resulting eigenvectors with lengths according to the square root of the corresponding eigenvalues,
are plotted in Figure 8.12. There are two apparent features of the plots. Firstly, in the left frame we observe that the upper and the
lower part, represented by the green and the red lines, have generally different directions. Secondly we observe that the front part seems
to have larger tilt angle than the tail part and the middle part. We do not propose any explanation on the first feature, but the second
might be linked to the errors in the segmentation and the group of fish joining the school at the front. Wether PCA of parts of the
school is useful for describing the properties of the school, is left to future analysis.
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Figure 8.12: Eigenvectors of the midpoints in the 7 parts (RS), (LS), (T), (M), (F), (L) and (U) of the school, projected onto the
x-y-plane, the x-z-plane and the y-z-plane, in (S). Lengths of the eigenvectors are weighted by the square root of the corresponding
eigenvalues.
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8.3 Regeneration of the school.
Plots of regenerated fish positions for the school treated in this thesis was presented in section 7.2.3. From the regenerated school we
calculate the eigenvectors and the eigenvalues of the covariance matrix of regenerated positions identified as belonging to the school. As
we have established so far, the last 6 pings are the most reliable because of the probable errors in the segmentation of the school. We
thus average the eigenvectors corresponding to the largest eigenvalues for the last 6 pings when estimating the direction of the oblongness
of the school, defining (S”). We name the directions for each ping (θpo , φ

p
o), while the direction found from averaging the last 6 pings will

be named (θ̄o, φ̄o), both referring to the oblongness. The individual directions and the total direction are listed next:

Ping nr 1 2 3 4 5 6 7 8 9 10 11 12

θ
(p)
o -13.2◦ 1.2◦ -19.3◦ -18.4◦ 9.3◦ -21.3◦ -17.1◦ -12.9◦ -10.1◦ -10.0◦ -12.3◦ -6.8◦

φpo 84.7◦ 80.6◦ 86.4◦ 85.6◦ 84.4◦ 85.6◦ 86.8◦ 86.0◦ 83.9◦ 81.7◦ 85.1◦ 80.9◦

Direction found from three dimensional PCA of the last 6 pings: (θ̄o, φ̄o) = (−12.8◦, 84.8◦)

Comparing to the direction found from fitting the closest line to the centers of mass ξ, (θξ, φξ)acc = (−9.2◦, 88.9◦), we see that the
difference is no more than 4◦. The variation in θpo is quite large compared to the difference between θpo and θξ, while φξ seems to be
significantly different from φpo. The comparison between the directions found from the movement of the centers of mass, and PCA of the
projected midpoints or the regenerated fish positions, might be useful for the description of the school. The determination of the school,
defined in part (d) of section 7.2.1 to be the desire of the school to move in a defined direction, might be reflected by the difference
between (θ̄o, φ̄o) and (θξ, φξ). In our case the determination appears to be high, but the possible errors in the centers of mass prohibit
us to relying on this conclusion.

In section 7.2.3 we presented the concept of counting the number NS
p of regenerated fish positions at ping p, in a sphere completely

contained in the school. We considered three such spheres of radius 5 meters, centered at the positions ξ12 + (−10, 0, 0), ξ12 and
ξ12 + (10, 0, 0), and three spheres of radius 10 meters, centered at the positions ξ12 + (−20, 0, 0), ξ12 and ξ12 + (20, 0, 0). We have here
assumed that the school does not move significantly during the 12 pings at which it is observed, inspired by the discussion in part (b)q
and (c)q of section 8.1. The use of ξ12 is because the errors in the segmentation appears to decrease with the number of the pings. The
resulting number of regenerated fish positions are plotted in Figure 8.13.

Comparing with the expected variation in NS
p found in section 7.2.3, we observe that the fluctuations displayed in Figure 8.13 are to
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large to be explained by random fluctuations. Changes are specially large between the last 6 pings, and for the spheres of radius 5 meters,
the changes between pings sometimes exceed 100%, which compared to the 95% confidence interval of (70%,130%) is quite significant.
We thus conclude that there are changes between consecutive pings, in the total acoustic backscattering from the spheres of radius 5
meters. Since the time difference between pings are on average 5 seconds, the changes in acoustic backscattering are rapid and can only
be explained by changes in mean orientation of the fish in the spheres. This is an important result, as it reflects the local behaviour of
the fish in the school. As opposed to many other variables discussed in this chapter, the number of regenerated fish positions in segments
of the school that are completely enclosed in the school, will be largely unaffected by errors in the segmentation of the school.
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lines represent three neighbouring spheres around the center of mass of the school.
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Chapter 9

Discussion and future work.

In chapters 7 and 8 we found variables that may describe the properties of the school. We will in this chapter list the most important
of these variables, and identify those that are sensitive to errors in the segmentation of the school. We also present problems that might
occur in the statistical analysis, based on the our own experiences, and suggest subjects for future analysis. In the statistical analysis,
5 coordinate systems have been introduced, where 3 of them are versions of the coordinate system of the school. We firstly present an
overview of the definitions of these 5 coordinate systems.

(G) The global coordinate system, defined as having the x-y-plane on the surface of the sea, with y-axis in the direction North, and
with origin at the first position of the vessel in the geographic coordinate system of the Earth.

(V) Coordinate system of the vessel, defined by horizontal x-axis, with y-axis in the direction of the vessel, and with origin at the
position of the vessel in the x-y-plane of (G) for each ping p.

(S) Coordinate system of the school, defined by horizontal x-axis, with y-axis in the direction of the school defined by the movement
of the centers of mass, and with origin at the center of mass of the school at each ping p.

(S’) Coordinate system of the school, defined by horizontal x-axis, with y-axis in the direction of the school defined by PCA of the
midpoints of voxels identified as belonging to the school, projected onto the x-y-plane and the y-z-plane, and with origin at the
center of mass of the school at each ping p.

(S”) Coordinate system of the school, defined by horizontal x-axis, with y-axis in the direction of the school defined by PCA of the
regenerated school presented in section 7.2.3, and with origin at the center of mass of the school at each ping p.
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While (S) is based on the motion of the centers of mass, which for a synchronized school represents the motion of the school, the two
other coordinate systems (S’) and (S”) are based on the direction of the oblongness of the school, as detected by PCA. Because of the
errors in the segmentation of the school, we primarily used (S’) in the statistical analysis, but for the particular school treated in this
thesis there vas only a minor deviation between (S) and (S’). The most accurate direction of the oblongness of the school is however
provided by PCA of the regenerated fish positions, defining (S”). The regenerated school is an inviting way of representing the data set,
but demands some time consuming computer processing.

Variables for describing schools.

We now present the variables that we consider to the be most important, labeling them by the degrees 0, 1 and 2 of the sensibility to
errors in the segmentation of the school, representing "no sensitivity", "some sensitivity" and "crucial sensitivity":

Symbol Description Sensitivity

ξp Centers of mass of the school at ping p. 2

Zp Depth of the school represented by the z-component of ξp 0

(θξ, φξ) Direction of the school based on the motion of ξp 2

λξ1/λ
ξ
2 Ratio of the first two eigenvalues of ξp 2

v̂ξ Speed of the school estimated from the centers of mass ξp projected onto the direction (θξ, φξ) 2

Var(Ẑp) Variance in the centers of mass ξp projected onto (θξ, φξ) 2

V
(T )
p Total volume of the school at ping p. Mean and variance are both interesting. 2

σ
(T )
p Total acoustic backscattering of the school at ping p. Mean and variance are both interesting. 1

B
(T )
p Total B-value of the school at ping p. Mean and variance are both interesting. 2

(θ̄o, φ̄o) Direction of oblongness of the school based on PCA . 1

(θ̄o, φ̄o)− (θξ, φξ) Difference between directions based on ξ and on PCA, reflecting the determination of the school. 2

c̄s Mean roll angle of the school. 1

LpS , W
p
S and Hp

S Length, width and height of the school at ping p, found for the range specified by the range
parameter cq defined in section 7.2.2.

1
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Symbol Description Sensitivity

Cpx, Cpy and Cpz Degrees of centrality of the school in x-, y- and z-direction. 1

Var(B)p/B̄2
p Squared coefficients of variation of B-values at each ping p. 1

ρ̂(T )(h) Mean empirical autocorrelations of sequences of length> 40 along beams, for lags h = 1, . . . , 20. 1

V
(T )
p,q Total volume of part q of the school at ping p. Ratios of upper part (U) to lower part (L), front

part (F) to tail part (T) and middle part (M) to the sum (T)+(F) are especially interesting.
2

σ
(T )
p,q Total acoustical backscattering of part q of the school at ping p. Ratios of upper part (U) to lower

part (L), front part (F) to tail part (T) and middle part (M) to the sum (T)+(F) are especially
interesting.

1

B
(T )
p,q Total B-value of part q of the school at ping p. Ratios of upper part (U) to lower part (L), front

part (F) to tail part (T) and middle part (M) to the sum (T)+(F) are especially interesting.
2

NS
p Number of artificial fish positions in a segment enclosed in the school at ping p. Variance is

especially interesting.
0

The variables that are classified with "crucial sensitivity" (sensitivity= 2), are the variables linked to the x- and y-value of the centers
of mass ξp, and the variables linked to the total volume of the whole school or parts of the school. In part (b)q and (c)q of section 8.1,
we provided indications on the possibility that the school actually moves in the opposite direction of the centers of mass, which qualifies
for labeling all variables linked to ξp as sensitivity 2-variables. In section 8.1 we also showed that the ranges when considering only the
center 98 % of the backscattering of the school in the x-, y- and z-direction, are reduced drastically. We thus believe that the effect
on the variables related to the volume of the school or parts of the school, from errors in the segmentation, qualifies for a sensitivity
2-labelling. However, the depth of the school, represented by the z-component of ξp, was shown in part (a) of section 8.1 to have small
variance, so that we may consider this variable unaffected by errors in the segmentation of the school.

Variables classified as having "some sensitivity" (sensitivity= 1) are the ones that may or may not have been affected by errors in the
segmentation of the school. If the errors are that too many voxels have been identified as belonging to the school, this will not affect the
total backscattering represented by σ(T )

p and σ(T )
p,q to a large degree, as voxels outside of the school are characterized by low B-values. The

direction (θ̄o, φ̄o) of the oblongness of the school can be found by three dimensional PCA of the regenerated school, which accounts for
the low B-values of voxels that are wrongly identified as belonging to the school, thus being less sensitive to errors in the segmentation.
The same holds for the mean roll angle c̄s. By defining the ranges of x-, y- and z-values according to (7.4), for instance with cq = 0.01
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as used in chapter 8, we also avoid accounting for voxels that are wrongly identified as belonging to the school, so that the variables
LpS , W

p
S , H

p
S , C

P
x , CPy and CPz are less sensitive to the errors in the segmentation. The squared coefficient of variation in the B-values

does not show any significant change from the first 6 ping to the last 6 pings, as other variables like the V (T )
p do, so we assume that

the effect on Var(B)p/B̄2
p of errors in the segmentation is limited to "some sensitivity". Finally, the mean autocorrelation of sequences

along voxels might not change if only a part of the school is identified in the segmentation.

Analyzing these variables for many schools of known or unknown species is needed to establish which of the variables, if any, that can
be used to identifying the species.

Future analysis.

The problems encountered in the statistical analysis, linked to the errors in the segmentation of the school, show the importance of a
segmentation procedure that is as robust and accurate as possible. From a statistical point of view, the flood-fill algorithm presented
in (Balabanian et al., 2007), and used in this thesis, might be too crude. Developing an algorithm based on statistical theory, with the
ability to detect errors in the segmentation, should be one of the key subjects for future analysis. All the variables labeled sensitivity= 2
are not to be trusted completely, until such a robust segmentation exists.

However, there is a possibility that the errors in the segmentation of the school can be partially blamed on the instrument itself. In
Figure 7.5 the regenerated school is plotted together with regenerated positions not identified as belonging to the school. Retracing the
school from ping 12 backwards to ping 5, there seems to be a fading of the right third of the school, also when assuming that the black
dots at the right end of the school actually belong to the school. Such a fading is hard to explain, and might possibly be linked to errors
in the data from the instrument. The particular survey treated in this thesis was done using a pulse duration τp = 5.12 · 10−4 s, which
is outside the recommended range of pulse durations given in (AS, 2006) to be (2 · 10−3, 10−2) s. There is thus reason to believe that
the data treated in this thesis actually are not trustworthy.

The MS70 sonar provide a resolution in acoustic school data that is high enough to possibly allow for the detection of local properties of
the school. Examining the time development of segments of the regenerated school, is a tool that may prove to be useful when analyzing
local changes. Sudden local fluctuations in the acoustical backscattering can only be explained by changes in mean orientation, which
gives information to the behaviour of individual fish in the given segment. In section 8.3 we saw that sudden local changes actually do
occur, to a degree that cannot be explained by natural random changes. An overall goal in fisheries acoustics is to link the individual
behaviour rules in IBMs to group level features of schools, or even populations. The analysis of data from the MS70 multibeam sonar
might be a step towards this goal.
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Appendix A

Rotation matrices.

Transformation of a point vector v from a cartesian coordinate system C to another cartesian coordinate system C ′, rotated around the
mutual origin of C and C ′ can be done by multiplying v by an orthogonal rotation matrix A:

v′ = Av, ATA = I.

If C ′ is rotated by an angle γ around the x-axis, we call the rotation matrix Ax(γ), and a similarly for y- and z-rotations:

Ax(γ) =

 1 0 0
0 cos γ sin γ
0 − sin γ cos γ



Ay(γ) =

 cos γ 0 − sin γ
0 1 0

sin γ 0 cos γ



Az(γ) =

 cos γ sin γ 0
− sin γ cos γ 0

0 0 1
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A combination of rotations is done by multiplying single rotation matrices from right to left. For instance, we write a z-x-y-rotation by
the angles a, b and c as

Azxy(a, b, c) = Ay(c)Ax(b)Az(a).

An example of a z-x-y-rotation is shown in Figure A.1.

Figure A.1: Euler rotation (a, b, c) of the coordinate system of the fish with respect to the vessel.
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Using the orthogonality of the rotation matrices, we can reverse the rotation of a point vector v given by

v′ = Azxy(a, b, c)v.

We first solve for v:

v = A−1
zxy(a, b, c)v′,

and then use the orthogonality to obtain

v =
[
Ay(c)Ax(b)Az(a)

]T v′ = A−1
z (a)A−1

x (b)A−1
y (c)v′ = Az(−a)Ax(−b)Ay(−c)v′ = Ayxz(−c,−b,−a)v′.

A reversed rotation is thus a rotation in the reversed order by the inverse angles:

A−1
zxy(a, b, c) = Ayxz(−c,−b,−a). (A.1)
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Appendix B

Notation.

This appendix contains a full list of the variables used in the thesis, devinded into the chapters in which they appear. Variables that are
defined in previous chapters but important enough to be restated, are written in grey. Vectors are written in bold face, and matrices
are written in blackboard bold face. Throughout the thesis ˆ(hat) is used to denote estimates.

Chapter 1, Introduction.
Variable Description

LS Length of schools observed by (Gerlotto et al., 1999).
WS Width of schools observed by (Gerlotto et al., 1999).
HS Height of schools observed by (Gerlotto et al., 1999).

Chapter 2, Relevant acoustics.
Variable Description

X = (x, y, z) Position in space.
r Distance from the source.
p(X, t) Pressure as a function of space and time.
P Pressure amplitude.
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Variable Description

A Pressure amplitude for a plane wave.
f Frequency of the sound.
ω Angular frequency of the sound.
λ Wavelength of the sound.
c Speed of sound.
T Period of the wave.
k Wave number of the sound.
z Acoustic Impedance.
u Particle speed.
U0 Particle speed amplitude.
ρ0 Equilibrium density of the radiation medium.
φr Argument to complex acoustic impedance for a spherical wave. Subscript referring to the distance r.
I Acoustic intensity.
F Force in mechanics.
a Radius of a simple source, a cylindrical source or a circular piston.
φa Argument to complex acoustic impedance for a spherical wave evaluated at r = a.
κa = cosφae−i(ka+φa) Constant involving the complex acoustic impedance.
Q Source strength.
n Unit normal vector of the surface of the source.
L Length of the line source.
γ Incident angle to the line source or the circular piston.
Pax (r) Axial pressure from a line source or a circular piston.
H (γ) Directional factor from a line source or a circular piston.
I (r, γ) Acoustic intensity from the line source/circular piston.
Iax (r) Axial acoustic intensity, i.e. acoustic intensity for γ = 0.
B (γ) Directional factor for the acoustic intensity.
j0(x) Zeroth order spherical Bessel function of the first kind.
J1 First order Bessel function.
ca Absorption constant for acoustic pressure.
kcomplex = k + ica Complex wave number.
α = 2ca/ln10 ≈ 0.87ca Absorption constant for acoustic intensity.
c (TW , SW , PW ) Speed of sound in sea water as a function of temperature TW , salinity SW and hydrostatic pressure PW

of the sea.
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Variable Description

g Gravitational acceleration in Norway.
c(z) = ηz Linear approximation of the depth dependency of speed of sound, with slope η.
IS(r′, θ′, φ′) Acoustic intensity from an object in the direction (θ′, φ′) at the distance r′ from the source.
IT (r) Acoustic intensity from the trasducer, striking an object at the distance r.(
IS(r′ = 1)

)
ax Axial acoustic intensity (γ′ = 0) from the source at the distance r′ = 1.

BS(θ′, φ′) Directional factor for the acoustic intensity from the source.
σ(θ′, φ′) Differential scattering cross section in m2.
σ0 Optimal scattering cross section in m2.
σsp = σ(θ′R, φ

′
R) Spherical backscattering cross section in m2.

(θ′R, φ
′
R) Angles in the direction of the receiver.

TS = 10log(σsp/4π) Target strength of an object.
As(θ′, φ′) The cross sectional area of the scattering sphere replacing the object.
Πs = ITAs(θ′, φ′) The acoustic power scattered by the simple source.
V A volume from which backscattering is measured.
Sv Logarithmic density of backscattering cross section in the volume V .
b Cross sectional area of small bubbles of air representing the backscattering ability in a volume.
N Number of bubbles of cross sectional area b in the volume V .
B ≡ N/V = 4π/b · 10Sv/10 Linear Sv-values or density of bubbles of size b.

Chapter 3, Materials.
Variable Description

x, y, z Point in the coordinate system of the research vessel.
αi, i = 1, . . . , I = 25 Horizontal rotation angle for the beams.
∆α = 60◦/24 Resolution in α.
βj , j = 1, . . . , J = 20 Vertical rotation angle for the beams.
∆β = 45◦/19 Resolution in β.
τ Tilt angle of the sonar.
di,j Unit vector for the axis of maximum acoustic intensity of beam number (i, j),
−ex = (−1, 0, 0) Unit vector in the negative direction of the x-axis.
Azy(−αj , βj) Rotation matrix for the z-y-rotation from vessel to beam.
Ayz(−βj , αi) Rotation matrix for the y-z-rotation from beam to vessel.
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Chapter 4, Interpretation of data.
Variable Description

Sv Logarithmic density of backscattering cross section in the volume V .
b Cross sectional area of small bubbles of air representing the backscattering ability in a volume.
B = 4π/b · 10Sv/10 Linear Sv-values.
(t, t+ ∆t) Arbitrary time interval.
τp Duration of the acoustic pulse (ping) from the MS70 sonar.
h Distance from the sonar to an arbitrary object.
h′ = h%(cτp/2) Distance for convenience.
rk, k = 1, . . . ,K = 1319 Distance from the sonar of midpoints in voxels.
∆r = cτp/2 Radial resolution.
αi, i = 1, . . . , I = 25 Horizontal rotation angle for the beams.
∆α = 60◦/24 Resolution in α.
βj , j = 1, . . . , J = 20 Vertical rotation angle for the beams.
∆β = 45◦/19 Resolution in β.
zjk = rk sinβj Depth of spherical strip.
Vsph.sct.(rk) Volume of an open spherical sector of radius rk and opening (sin(βj + ∆β/2), sin(βj −∆β/2)).
Vijk Volume of voxel number (ijk).

Chapter 5, Noise.
Variable Description

Sv Logarithmic density of backscattering cross section in the volume V .
b Cross sectional area of small bubbles of air representing the backscattering ability in a volume.
B = 4π/b · 10Sv/10 Linear Sv-values.
Y , Z and W Stochastic variables in the HIB-algorithm.
C Cut point for identifying high intensity beams (HIBs).
q = Ȳ Empirical probability of having a B-value > C.
N Total number of voxels examined by the HIB-algorithm.
Bi, i = 1, . . . , N B-value for voxel number i.
h Minimum number of consecutive events Bi > C along beams, classifying the sequence as HIB.
L Length of beams.
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Variable Description

n Length of the considered part of sequences of B-values > C.
s Additional voxels in sequences of B-values > C.
NB Number of beams.
M Maximum accepted number of sequences incorrectly classified as HIBs.
b Overlap value for the replacement of HIBs.

Chapter 6, Backscattering from individual fish.
Variable Description

Sv Logarithmic density of backscattering cross section in the volume V .
b Cross sectional area of small bubbles of air representing the backscattering ability in a volume.
B = 4π/b · 10Sv/10 Linear Sv-values.
(t, t+ ∆t) Arbitrary time interval.
(r, θ, φ) = (X,Y, Z) Point in the coordinate system of the vessel.
γ Incident angle with respect to the transducer.
X = (XX , YX , ZX) Position of the fish.
(r′, θ′, φ′) = (X ′, Y ′, Z ′) Point in the coordinate system of the fish.
γ′ Incident angle with respect to the fish.
Ω = (αF , βF ) Orientation of the fish.
τ Tilt angle of the swim bladder.
S Length of the fish.
(a, b) Rotations of the fish.
v Vector in the coordiane system of the vessel.
v′ Vector in the coordiane system of the fish.
Azx

(
αF − π/2, π/2− βF

)
Rotation matrix from the coordinate system of the vessel to the coordinate system of the fish.

d = (1, θ, φ) Unit direction vector of the fish in the coordinate system of the vessel.
d′0 = −d Unit direction vector of the vessel in the coordinate system of the fish.
d? Point vector for finding the angle of incident γ′ with respect to the fish.
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Variable Description

Aγ Rotation matrix for finding the angle of incident γ′ with respect to the fish.
p
(
r′, γ′

)
Acoustic pressure field from a line source or a circular piston.

ρ0 Equilibrium density.
c Speed of sound.
U0 Particle speed amplitude.
ω Angular frequency of the sound.
k Wave number of the sound.
a Radius of the line source (as a cylinder).
L Length of the line source.
κa = cosφae−i(ka+φa) Constant involving the complex acoustic impedance.
φa Argument to complex acoustic impedance for a spherical wave evaluated at r = a.
HF

(
γ′
)

Theoretical directional factor of the line source representing the fish.
HF (θ′, φ′) Empirical directional factor of the fish.
P Acoustic pressure amplitude
I = P 2/ρ0c Acoustic intensity.
BF (θ′, φ′) Empirical directional factor for the acoustic intensity of the fish.
BF (γ′) Theoretical directional factor for the acoustic intensity of the fish.
Pax (r) Axial pressure of line source or a circular piston.
E Acoutic energy striking the fish in the time interval ∆t.
Π = E/∆t Power of the sound scattered in the fish.
IF
(
r, θ′, φ′

)
The acoustic intensity from the fish.

Imax(r) Maximum intensity in the scattered sound from the fish (optimal direction).
ψ(k, S) =

∮
r=1

B(θ′, φ′, k, S)ds Scaling for integrated directional factor on r=1.
α Absorption constant for acoustic intensity.
IT (r) Acoustic intensity from the transducer at the fish.
As(ZX ,Ω) = A0ηcηΩ Cross sectional area of an object of air scattering an equal amount of sound as the fish.
A0 Optimal cross sectional receiving area at depth ZX = 0.
ηc Depth compression factor.
ηΩ Orientation factor or aspect factor.
σ0 = 4πA0ηcηΩ/ψ Optimal scattering cross section.
f1 First resonance frequency of the swim bladder.
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Variable Description

cswimbladder Speed of sound in the swim bladder.
ε Coefficient linking squared fish length S2 and A0.
V (ZX) Volume of the swim bladder at depth ZX .
V0 Volume of the swim bladder at zero depth
p(ZX) Hydrostatic pressure at depth ZX
p0 Hydrostatic pressure at zero depth.
a(ZX) Radius of a cylindrical swim bladder at depth ZX .
a0 Radius of a cylindrical swim bladder at zero depth.
L(ZX) Length of a cylindrical swim bladder at depth ZX .
L0 Length of a cylindrical swim bladder at zero depth
g Gravitational acceleration in Norway.
γa Transverse compression factor.
γL Longitudinal compression factor.
γA = γaγL Cross sectional compression factor.
h = (Xh, Yh, Zh) Vector representing the length of the cylindrical part of a swim bladder.
b = L/a Oblongness of the swim bladder.
A(αF , βF , τ, θ, φ) Cross sectional area of the swim bladder.
J1 First order Bessel function.
IT = IT

(
r, θT , φT

)
Acoustic intensity from the transducer at the fish position.

θT and φT Angles in the spherical coordinate system of the transducer.
BT (θT , φT ) = [HT (θT , φT )]2 Directional factor for the acoustic intensity of the transducer.
BT (γ) = [HT (γ)]2 Theoretical directional factor for the acoustic intensity of the transducer.
I0 Acoustic intensity at the distance 1 m from the transducer.
IE(S,X,Ω) Acoustic intensity in the echo at the receiver from the fish.
σ2 and µ Variance and expected value of a stochastic variable.
v2 = σ2/µ2 Squared coefficient of variation of a stochastic variable.
αi, i = 1, . . . , I = 25 Horizontal rotation angle for the beams.
∆α = 60◦/24 Resolution in α.
βj , j = 1, . . . , J = 20 Vertical rotation angle for the beams.
∆β = 45◦/19 Resolution in β.
rk, k = 1, . . . ,K = 1319 Distance from the sonar of midpoints in voxels.
∆r = cτp/2 Radial resolution.
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Variable Description

ηr Factor for radial weighting.
g(γ) Parabola approximation of the directional factor of the transducer.
ε Coefficient in the parabola approximation of BT (γ).
Sijk Subvolume number (ijk).
γmax Maximum angle γ of a fish in subvolume Sijk.
F (γ) and f(γ) Cumulative and probability density function of γ.
vS = σS/µS Squared coefficient of variation of the length S of the fish.
λ = µ2

S/σ
2
S Non-centrality parameter in the non-central chi-squared distribution of A0.

k Degrees of freedom in the non-central chi-squared distribution of A0.
(A) Factor in the sonar equation for absorption and attenuation.
(B) Factor in the sonar equation for the beam pattern of the transducer.
(C) Factor in the sonar equation for the product of beam pattern and aspect factor of the fish.
(D) Factor in the sonar equation for the backscattering cross section.
(E) Factor in the sonar equation for the depth compression.
(F) Factor in the sonar equation radial weighting.
µA, . . . , µF Expected value of the 6 factors (A) through (F) in the sonar equation.
σ2
A, . . . , σ

2
F Variance of the 6 factors (A) through (F) in the sonar equation.

v2
A, . . . , v

2
F Squared coefficient of variation of the 6 factors (A) through (F) in the sonar equation.

vA:F Total squared coefficient of variation of the sonar equation.
B̄F

(
γ′
)

Smoothed directional factor of line sources representing the fish.
σ2
L Variance of the line sources used to produce the smoothed directional factor B̄F

(
γ′
)
.

µL Expected value of the line sources used to produce the smoothed directional factor B̄F
(
γ′
)
.

σ̄sp Mean spherical backscattering cross section of the fish in a school.
n Number of fish in subvolume Sijk.
X Superimposed acoustic pressure.
Y Superimposed acoustic intensity.
Al Pressure amplitude of the l’th superimposed fish.
λY =

∑
l Il Expected value of the acoustic intensity from superimposed fish.

µαF and σ2
αF Expected value and variance when drawing the orientation angle αF .
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Chapter 7, Statistical analysis.
Variable Description

Sv Logarithmic density of backscattering cross section in the volume V .
b Cross sectional area of small bubbles of air representing the backscattering ability in a volume.
B = 4π/b · 10Sv/10 Linear Sv-values.
(G) Global coordinate system.
(V) Coordinate system of the vessel.
(S) Coordinate system of the school.
Dv
p = (tp, xvp, y

v
p , z

v
p , a

v
p, b

v
p, c

v
p) Time, position and orientation angles of the vessel for pings p = 1, . . . , P .

vG Position vector in (G).
vV Position vector in (V).
vS Position vector in (S).
s = (xvp, y

v
p , z

v
p) Vessel position at ping p.

AG→V = Azy(avp, c
v
p) Rotation matrix from (G) to (V).

AV→G = Ayz(−cvp,−avp) Rotation matrix from (V) to (G).
AG→S = Azx(θξ − π/2, π/2− φξ) Rotation matrix from (V) to (S).
AV→S = AG→SAV→G Rotation matrix from (G) to (S).
f , d and t Variables in the flood-fill algorithm in (Balabanian et al., 2007).
ξ = (ξ1, . . . , ξP ) p = 1, . . . , P Center of mass of the school at the different pings.
Vijk Volume of voxel number (ijk).
Bijk B-value of voxel number (ijk).
v Coefficient of variation.
(rmid, αmid, βmid) Midpoints of voxels.
p and q Points in (G).
Lj Line number j, running through pj along the unit vector uj .
d Distance vector from q to L.
Sj Sum of squared distances from (ξ1, . . . , ξP ) to line number j to be fitted to (ξ1, . . . , ξP ).
n4 Number of lines to fitted to (ξ1, . . . , ξP ).
(θξ, φξ) Angles for the direction of the school found from ξ, in the spherical global coordinate system (G).
V

(T )
p Total volume of the school at ping p.
Bpijk B-value number (i, j, k) for ping number p.
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Variable Description

σ
(T )
p =

∑
Mp

VijkBpijk Total backscattering ability of the school at ping p.
B

(T )
p = σ

(T )
p /V

(T )
p Ratio of total backscattering ability and total volume of the school at ping p.

B̄p Empirical mean of all B-values of the school at ping p.
Var(B)p Empirical variance of all B-values at ping p.
Var(B)p/B̄2

p Empirical squared coefficient of variation of all B-values at ping p.
ρ̂ijp(h) Empirical autocorrelation for lags h along beam number (i, j) for ping p.
X = X1, . . . , Xg Arbitrary random vector to be analyzed by principal component analysis (PCA).
e1, . . . , eg Eigenvectors of the covariance matrix of the arbitrary random variables X1, . . . , Xg.
λ1, . . . , λg Eigenvalues of the covariance matrix of the arbitrary random variables X1, . . . , Xg.
Yi = ei1X1 + . . .+ eigXg Principal component number i of X, i = 1, . . . , g.
ξ

(d)
p = mp + ζp Centers of mass projected onto e1.
mp = vξtp Linear trend component of ξ(d)

p .
vξ speed of ξ(d)

p .
ζp Random fluctuations in ξ(d)

p .
Zp Depth of the school at ping p, found from ξp.
Mp The set voxels identified as belonging to the school at ping p.
V (F ) = (κS)3 Volume occupied by one fish.
V̄ (F ) Mean volume occupied by one fish.
κ Coefficient specific for each species.
S̄2 Mean squared length of all fish in the school.
σ̄sp = εS̄2 Mean spherical backscattering cross section of all fish in the school.
ε Coefficient specific for each species.
f Frequency of the sound.
Np Number of fish in the school at ping p.
Ī Mean of BT

(
θT , φT

)
BF

(
θ′, φ′

)
ηΩηc of all the fish in the school.

ν Ratio of mean fish lengths S̄′ and S̄.
(θ′po , φ

′p
o ) Direction of the oblongness of the school in (S) at ping p.

(θpo , φ
p
o) Direction of the oblongness of the school in (G) at ping p.

(θ̄′o, φ̄
′
o) Mean direction of the oblongness of the school in (S) at ping p.

(θ̄o, φ̄o) Mean direction of the oblongness of the school in (G) at ping p.
(S’) Coordinate system of the school rotated according to eigenvectors of projected midpoints.
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Variable Description

AS→S’ = Azx(θ̄′o − π/2, φ̄′o − π/2) Rotation matrix from (S) to (S’).
cs Roll angle of the school compared to horizontal, found from the eigenvectors of the projected midpoints of voxels.
LpS , W

p
S and Hp

S Length, width and height of the school at ping p.
Cpx, Cpy and Cpz Degrees of centrality of the school in the x-, y- and z-direction at ping p.
ρ̂(T )(h) Average autocorrelations of all beam of length > 40.
(x(1)
p , x

(2)
p ) Modified range of x-values.

cq Specification value of the modified range (x(1)
p , x

(2)
p ).

q =(LS) Left half of the school.
q =(RS) Right half of the school.
q =(T) Tail part of the school (0,1/4).
q =(M) Middle part of the school (1/4,3/4).
q =(F) Front part of the school (3/4,1).
q =(L) Lower half of the school.
q =(U) Top half of the school.
V

(T )
p,q Total volume of part q of the school at ping p, (q written without parenthesis).
σ

(T )
p,q =

∑
Mp,q

VijkBpijk Total backscattering ability of part q of the school at ping p.
B

(T )
p,q = σ

(T )
p,q /V

(T )
p,q Ratio of total backscattering ability and total volume of part q of the school, at ping p.

B̄p,q Empirical mean of all B-values in part q of the school, at ping p.
Var(B)p,q Empirical variance of all B-values in part q of the school, at ping p.
Var(B)p,q/B̄2

p,q Empirical squared coefficient of variation of all B-values in part q of the school, at ping p.
B̂ijk Moving average over 15 B-values along beam number (ijk).
σfish Value representing the mean backscattering cross section from the fish in the school.
(S”) Coordinate system of the school rotated according to eigenvectors of the regenerated school.
NS
p Number of artificial fish in a spherical segment at ping p.
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Chapter 8, Results.
Variable Description

Sv Logarithmic density of backscattering cross section in the volume V .
b Cross sectional area of small bubbles of air representing the backscattering ability in a volume.
B = 4π/b · 10Sv/10 Linear Sv-values.
(G) Global coordinate system.
(V) Coordinate system of the vessel.
(S) Coordinate system of the school.
ξ = (ξ1, . . . , ξP ) p = 1, . . . , P Center of mass of the school at the different pings.
Z̄ Mean depth of the school, found from ξ.
(θξ, φξ)acc Angles of the direction of the school found from ξ, by the accurate method.
(θξ, φξ)cru Angles of the direction of the school found from ξ, by the crude method.
c̄s Mean roll angle of the school.

Some expressions.
MS70 Multibeam sonar manufactired by Simrad.
Ping A three dimensional observation by the MS70 sonar.
IBM Individual based model, concerning behaviour rules for individual fish in schools.
Segmentation Indicator values deciding wether voxels are part of the school.
HIB High intensity beam or a sequence of high intensity instrument noise.
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Appendix C

Histograms of the different parts of the sonar
equation from simulations.
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Figure C.1: Histogram of the directional factor BF (γ′) in the direction of the transducer, of 5000 simulated fish with random size,
position and orientation, as presented in chapter 6. The six plots are for the six situations in Table 6.3.2.
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Figure C.2: Histogram of the directional factor BT (γ) in the direction of the fish, of 5000 simulated fish with random size, position and
orientation, as presented in chapter 6. The six plots are for the six situations in Table 6.3.2.
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Figure C.3: Histogram of the aspect factor ηΩ of 5000 simulated fish, as seen from the transducer, having random size, position and
orientation, as presented in chapter 6. The six plots are for the six situations in Table 6.3.2.
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Figure C.4: Histogram of the depth factor ηZ of 5000 simulated fish with random size, position and orientation, as presented in chapter
6. The six plots are for the six situations in Table 6.3.2.
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Figure C.5: Histogram of the radial overlap factor ηr of 5000 simulated fish with random size, position and orientation, as presented in
chapter 6. The six plots are for the six situations in Table 6.3.2.
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Figure C.6: Histogram of the backscattering cross sectional area at optimal incidence σ0 of 5000 simulated fish with random size, position
and orientation, as presented in chapter 6. The six plots are for the six situations in Table 6.3.2.
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Figure C.7: Histogram of the angle of incidence γ′ of the direction to the transducer with respect to the fish, of 5000 simulated fish with
random size, position and orientation, as presented in chapter 6. The six plots are for the six situations in Table 6.3.2.

154



Bibliography

Simrad Horten AS. Simrad ms70 scientific multibeam sonar system. Technical report, Simrad Horten AS, 2006.

Jean-Paul Balabanian, Ivan Viola, Egil Ona, Ruben Patel, and Eduard Gröller. Sonar explorer: A new tool for visualization of fish
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