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Chapter 1Introdu
tionOne of the oldest topi
s of 
omplex analysis, is the study of the 
lass S of univalent (holomor-phi
 and inje
tive) fun
tions f : D → C normalised by
f(z) = z +

∞
∑

n=2

an−1z
nHere, and in the rest of this thesis, D represents the unit disk D = {z ∈ C

∣

∣ |z| < 1} and wewill denote the exterior of D in the Riemann sphere C̄, by D∗ (i.e. D∗ = C̄\ D̄, where D̄ is the
losure of D). Let f be a map in S, with the image f(D) = Ω, su
h that ∂Ω splits C̄ into twodomains Ω and Ω∗ = C̄\Ω̄, with∞ ∈ Ω∗. By the well known Riemann mapping theorem, thereexists a unique univalent mapping g of D∗ onto Ω∗, �xing the inequality limx→∞ g(z)/z > 0.This fun
tion has an expansion
g(z) = b1z + b0 +

b−1

z
+ ...about ∞, where b1 > 0. We say that the mappings f and g are mat
hing. In this thesis,we will be fo
used on how the properties of f in�uen
e properties of the adjoint fun
tion gmat
hing it, and vi
e versa.The relationship between these two mappings are poorly understood. Knowledge aboutone of the maps, for instan
e f , does not give us any 
lear analyti
 
hara
teristi
 of the otherone ex
ept for the knowledge of the existen
e of g, and even less hope of 
onstru
ting g asan expli
it fun
tion. This problem be
omes even more di�
ult by a general impression thatif either one of the fun
tions is given by a seemingly simple formula and is not the identity,then the mat
hing fun
tion is rather 
ompli
ated. Let us 
onsider, as an example, the 
asewhere Ω is an ellipse with fo
i at ±1. The map from D∗ to the exterior of Ω is given by theJoukowski map

z 7→ 1

2

(

cz +
1

cz

)

c > 1The mat
hing fun
tion from D to Ω, however, is given by di�
ult ellipti
 integrals, as we willshow in se
tion 2.3. Sin
e the problem is so 
omplex, any partial result in this dire
tion wouldbe an asset. 7



8 Introdu
tion1.1 Conformal radii of mat
hing domainsWe 
onsider a property that seems to be obs
ure by some geometri
 reasons. Let γ be asimple 
losed, analyti
 
ontour, splitting C̄ into two domains Ω and Ω∗, neighbourhoods of 0and ∞, respe
tively. How is the 
onformal radius of Ω with respe
t to the origin 
ontrolledby the logarithmi
 
apa
ity of γ or equivalently by the 
oe�
ient b1 in the expansion of
g : D∗ → Ω∗? This question is addressed in se
tion 3.5, where we look at a spe
ial 
ase where
γ is quasisymmetri
, whi
h for example guarantees that Ω and Ω∗ are both domains.1.2 Conne
tions to mathemati
al physi
sRe
ently several modern developments in the theory of 
onformal maps in relation with math-emati
al physi
s have been seen. This, in parti
ular, applies to 
onformal �eld theory (CFT),where 
onformal maps and Riemann surfa
es play an important role in parametrisation ofa string worldsheet. Non-linear physi
s is a natural user of 
onformal maps. Su
h samplenon-linear pro
esses as Lapla
ian growth, KdV and mKdV hierar
hies use mat
hing fun
tionsas `
oordinates' on a phase spa
e. The mat
hing fun
tions appear also in the inverse potentialproblem of 
onstru
tion of a domain by its harmoni
 moments. If we 
al
ulate the interiormoments of Ω, given by

Cn =

∫∫

Ω
wndu dv w = u+ iv , n ∈ N,it turns out that the 
orresponding exterior moments

C−n =

∫∫

Ω∗

w̄ndu dv w = u+ iv , n ∈ N
an (under some normalisation) be embedded into the Toda (dispersinless) hierar
hy, or morepre
isely, their derivatives with respe
t to Cn. This integrable hierar
hy, solvable by theso-
alled τ -fun
tion, is important in the study of integrable models in CFT. The embeddingbe
omes possible, due to the fa
t that if γ is an analyti
 
ontour, then there exists the S
hwarzfun
tion S(w), analyti
 in a neighbourhood of γ and satisfying the 
ondition S(w) = w̄ on γ.This fun
tion glues Ω with Ω∗ through γ and the harmoni
 moments Cn, are 
oe�
ient in theformal Laurent expansion of S(z).Another formulation of CFT is based on the path integral and leads to the Lagrangianand Hamiltonian formulations. The Virasoro algebra plays an important role in this model.It arises as an operator algebra in the formal Laurent expansion of the analyti
 
omponentof the momentum-energy tensor. Its mathemati
al representation is based on the Kirillovhomogeneous manifold
Diff+S

1/RotS1where Diff+S
1 is the Lie group of orientation preserving di�eomorphism of S1, and RotS1is the subgroup of sense preserving rotations. The Virasoro algebra is the 
entral (C or R)extension of the Lie algebra of the ve
tor �elds on S1, the tangent algebra to Diff+S

1.The Kirillov manifold has many equivalent representations (in the spa
e of unitary proba-bilisti
 measures, the Tei
hmüller spa
e, et
.). We will be fo
used on the representation givenby the mat
hing fun
tions f and g dis
ussed earlier. We have that
f−1g|S1 ∈ Diff+S

1



1.3 Pre
ognitions 9and every element from Diff+S
1/Rot S1 
an be represented by su
h a 
omposition of mappingsin a unique way. In this model, the link between f and g are given impli
itly by positive andnegative indexed Virasoro generators 
onsidered in se
tion 4.1.Re
ently, it be
ame 
lear that the Virasoro generators appear in the Löwner theory as the�rst integrals of a partially integrable Hamiltonian system for the 
oe�
ients of the Taylorexpansion of f ∈ S.1.3 Pre
ognitionsThe reader is assumed to be familiar with theory of real manifolds and 
onstru
tions on them,as well as some representation theory, in parti
ular the Lie theory. Useful information 
anbe found in, e.g., [8℄, [32℄, [17℄, [13℄. Apart from this, and some basi
 properties taken fromtopology and 
omplex analysis, we tried to keep the thesis as self-
ontained as possible. Somelanguage from 
ategory theory, and the notion of sheaf will be used, but the thesis is easilyunderstood without any knowledge of these.1.4 Some notationsWe will denote the 
omposition of two fun
tions without ◦ (i.e. f ◦g is written fg). When twofun
tions are multiplied, we will expli
itly denote it by f · g. If U is a subset of a topologi
alspa
e X, then the 
losure, interior and exterior of U will be denoted by Ū , intU and extU .For a mapping f : X → Y , then the 
omposition U ⊆ X

f→ Y , is written f |U . If X =
∏

αXα,then prXα denotes the proje
tion from X onto Xα. The identity map from X to itself isdenoted idX . If A is a matrix, the transpose is denoted AT .IfM is a manifold, then we denote the (real) tangent spa
e at r ∈M by TrM , the tangentbundle by TM and 
otangent bundle by T ∗M . If f : M → N is a smooth mapping, we write
Tf and T ∗f for the indu
ed mapping on tangent and 
ontangent bundles respe
tively. If
ξ : E → X is a smooth ve
tor bundle, then Γ(E) is the spa
e of smooth se
tions on thebundle. If V is a ve
tor spa
e, then V ∗ is the dual spa
e,

k
∧

V = V ⊗k/{v1 ⊗ · · · ⊗ vk|vj = vl for some l 6= j}is the exterior produ
t and
SymkV = V ⊗k/{v1 ⊗ · · · ⊗ vk − vσ(1) ⊗ · · · ⊗ vσ(k)}is the k'th symmetri
 produ
t, where vi ∈ V and σ is a permutation. We will use the samesymbols for the 
orresponding a
tion on bundles.We denote the integers by Z , positive integers by N , non-negative integers by N0 , realnumbers by R, and 
omplex numbers by C . D will be the unit disk in C and C̄ will be theRiemann sphere. Sn = {x ∈ Rn+1

∣

∣ |x| = 1} is the n-sphere, and unless otherwise is mentioned,
S1 is viewed as a subset of C. Apart from that, we de�ne

Rn
+ = {x = (x1, x2, . . . , xn) ∈ Rn|xn ≥ 0}

Cn
+ = {ζ = (ζ1, ζ2, . . . , ζn) ∈ Cn| Im ζn ≥ 0}The proje
tion from either Rn or Cn to its k'th 
oordinate is denoted prk . If ζ ∈ C, then ζ̄is its 
omplex 
onjugate. If Ω ⊆ C̄, then we use Ω∗ = ext Ω.A 
omplete index of notation is found at the end of this thesis.



10 Introdu
tion1.5 Purpose and own resultsThe present thesis 
ontains an overview of some spe
ial topi
s of Complex Analysis andDi�erential Geometry, e.g., Chapter 2, some advan
ed and modern known results 
on
erningHamiltonian systems, Virasoro algebra as well as our own results. In parti
ular, we 
onsiderin details the simplest non-trivial model of mat
hing univalent fun
tions whi
h map D and
D∗ onto interior and exterior of an ellipse. The 
onformal radius of an ellipse with respe
tto its 
entre is 
al
ulated in terms of ellipti
 integrals. The problem of the range of the
onformal radius of a domain whose exterior has �xed 
apa
ity is 
onsidered and partialresults are obtained for quasi
onformal 
ase in se
tions 3.3 and 3.5. In parti
ular, we useda version of Löwner theory developed by Be
ker for quasi
onformally extendable 
onformalmaps. Then we 
onsidered appli
ations of mat
hing univalent fun
tions to the representationof the Virasoro algebra. In parti
ular, we 
al
ulate an element of in Diff+S

1 
orrespondingto the ellipse. Considering manifolds of 
oe�
ients in S, a Hamiltonian interpretation of theLöwner equation is given in se
tion 4.4. Further, the group a
tion of the non-
ommutativegroup Diff+S
1 indu
es a non-Riemannian geometry on the manifold of univalent fun
tions,whi
h is best des
ribed through Sub-Riemannian geometry. Generalising results by Markina,Prokhorov, and Vasiliev [25℄ we 
onstru
t a sub-Riemannian manifold based on a distributiongenerated by more than two of the trun
ated Kirillov operators (se
tion 4.7).



Chapter 2Complex manifolds and Riemannsurfa
esThis 
hapter is dedi
ated to some theoreti
al ba
kground about spa
es and some 
onstru
tionson them. Our intention is not to go deeply in the theory of 
omplex manifolds, but only toget some 
lear de�nitions and notions for further use. Espe
ially we will be interested in theone-dimensional 
ase, i.e. Riemann surfa
es. We end this 
hapter with a whole se
tion onquadrati
 di�erentials. They are 
onne
ted to problems regarding moduli of families of 
urves,whi
h will be treated in the next 
hapter. Using these, we will also 
onstru
t a 
onformalmapping from the disk D onto an ellipse, that will reapear as an example in the later theory,and will also be used in 
hapter 3.Thoughout this 
hapter ζ will denote a point in Cn, r and s will always be points on amanifold, and z and w will denote 
harts (this reservation of 
hara
ters will not be kept inlater 
hapters).2.1 Complex manifoldsWe will 
all a mapping biholomorphi
, if it is both holomorphi
 and bije
tive (this impliesthat the inverse is holomorphi
 too).De�nition 2.1. Let M be a real, di�erentiable manifold, on whi
h there exists an open 
over
{Uα} with homeomorphisms zα : Uα → zα(Uα) ⊆ Cn, su
h that for any pair of these mappings

zβz
−1
α |zα(Uα∩Uβ) : zα(Uα ∩ Uβ) → zβ(Uα ∩ Uβ)is biholomorphi
. The 
olle
tion B =

{

(zα, Uα)
} is 
alled a 
omplex atlas. This atlas generatesa unique maximal atlas A, and we de�ne the pair (M,A) as a 
omplex manifold.The maximal atlas of B is generated in the following way:

A = {w : V → w(V ) ⊆ Cn
∣

∣w is a homeomorphism, wz−1|z(U∩V ) is biholomorphic for any (z, U) ∈ B}Su
h maximal atlases are 
alled 
omplex stru
tures. As usual, the manifold is denoted onlyby M , and we say that the elements of A are (
omplex) 
harts or lo
al 
oordinate systems.11



12 Complex manifolds and Riemann surfa
esFrom the de�nition it is 
lear that M must be a real manifold of even dimension, and italso turns out to be orientable. We de�ne a bordered 
omplex manifold in a similar way, onlywith 
harts given by homeomorphisms zα : Uα → zα ⊆ Cn
+. The boundary of M is de�ned as

∂M = {r ∈M | there is a chartw : M → Cn
+, such that prnw(r) = 0}Example 2.2. • Cn and any open subsets of Cn are 
omplex manifolds. Generally, anyopen nonempty subset of an n-dimensional 
omplex manifold is an n-dimensional 
om-plex manifold.

• Mm×nC , the spa
e of allm×nmatri
es with 
omplex entries is a manifold by identifyingit with Cmn. GLnC , the spa
e of all invertible n× n matri
es is a manifold be
ause itis an open subset Mn×nC (sin
e GLnC = det−1(C \ {0})).
• Let

CPn = (Cn+1 \ {0})/ ∼where r ∼ λr, r ∈ Cn+1 \ {0}, λ ∈ C \ {0}. This is the spa
e of all (
omplex) linesin Cn+1. We denote the equivalen
e 
lass of r by [r]. Using the 
harts {zk : Uk →
Cn}k=1,2,...,n+1, with Uk = {[r1, r2, . . . , rn+1]|rk 6= 0} and

zk([r]) =
1

rk
(r1, . . . , rk−1, rk+1, . . . , rn+1),

CPn be
omes a 
omplex manifold of dimension n. In parti
ular, CP1 = C̄ is a 
omplexmanifold.A mapping f : M → N of two 
omplex manifolds, is holomorphi
 if, for any 
harts (z, U)and (w, V ) on M and N respe
tively, the mapping
wfz−1|z(U∩f−1(V )) : z(U ∩ f−1(V )) → w(f(U) ∩ V )is holomorphi
 in the usual way. Taking 
omplex manifolds as obje
ts, and holomorphi
 map-pings as morphisms, we get a 
ategory. Isomorphisms in this 
ategory will be biholomorphi
mappings, and we write M ∼= N , when su
h a mapping exists between M and N . We denote

Hol(M,N) = {f : M → N
∣

∣ f holomorphic},and in parti
ular, we denote holomorphi
 fun
tions by OM = Hol(M,C) . This is a ringunder pointwise addition and multipli
ation. By de�nition, for any mapping f : M → N ,
Of : ON → OM

ϕ 7→ ϕf,and O be
omes a 
ontravariant fun
tor. Sin
e every open subset of a 
omplex manifold is a
omplex manifold, O also forms a sheaf of rings. If r ∈M , we 
all
lim−−→
r∈U

OU = Or



2.1 Complex manifolds 13the holomorphi
 fun
tion germs at r (the limit is taken over all open sets U ⊆M 
ontaining
r). This is a ring, and we denote its �eld of fra
tions Mr . These are 
alled the meromorphi
fun
tion germs at r. We say that a meromorphi
 fun
tion on M , is a mapping

f : M →
∐

r∈M
Mr

r 7→ [f ]rsu
h that [f ]r ∈ Mr for any r ∈ M , and su
h that any s ∈ M has an open 
onne
tedneighbourhood U , with the property that there are fun
tions ϕ,ψ ∈ OU , ψ 6≡ 0 with images
[ϕ]r, [ψ]r in Or, su
h that [f ]r = [ϕ]r/[ψ]r for every r ∈ U . Hen
e, a meromorphi
 fun
tion on
M as a fun
tion that lo
ally 
an be represented by a quotient of two holomorphi
 fun
tions withthe denominator being not identi
ally zero. We denote the set of all meromorphi
 fun
tionson M , by MM . This is a �eld if and only if M is 
onne
ted [28℄.A subset N ⊆ M is 
alled a k-dimensional submanifold, if about any r ∈ N , there is a
hart (z, U), su
h that z(U ∩Y ) ⊆ Ck×{0} ⊂ Cn. A di�eren
e between the theory of 
omplexmanifolds and real manifolds, is that there is no theorem similar to the Whitney embeddingtheorem. That is, whereas any real manifold may be embedded as a submanifold of RN , veryfew 
omplex manifolds may be embedded into CN . For example, by Liouville's theorem, allholomorphi
 fun
tions f : M → C for a 
ompa
t manifold M , are 
onstant on ea
h 
onne
ted
omponent, so an embedding 
an only exist if M is a dis
rete set.Now let us turn to the 
omplex ve
tor bundles, and then in parti
ular, to the tangentbundles. Observe, that they may exist on any di�erentiable manifold, not just on the 
omplexones.De�nition 2.3. Let M be a di�erentiable manifold. An m-dimensional 
omplex ve
tor bundleof M , is a surje
tive 
ontinuous mapping ξ : E →M , with the following properties

• For any r ∈M , ξ−1(r) has the stru
ture of a 
omplex ve
tor spa
e.
• There is an open 
over U of M , su
h that for any U ∈ U , there is a homeomorphism
h : ξ−1(U) → U × Cm satisfying the following 
onditions:1. ξ|ξ−1(U) = prUh.2. The map hr := prCmh|ξ−1(r) is an isomorphism of 
omplex ve
tor spa
es.3. For any other V ∈ U , with g being the asso
iated homeomorphism, the mapping

s 7→ gsh
−1
sis a C∞ map from U ∩ V to GLm(C).We will often denote a bundle just by E. Similarly to the real 
ase, we 
all ξ−1(r) the �breover r, the (h,U) and (g, V ) are 
alled (
omplex) bundle 
harts or trivialisations. A 
olle
tionof bundle 
harts 
overing M and satisfying 
ondition 1.-3. is 
alled a (
omplex) smooth bundleatlas. A fun
tion s 7→ gsh

−1
s , for a 
hosen pair of bundle 
harts, is 
alled a transition fun
tion.A 
omplex bundle morphisms of 
omplex bundles ξ1 : E1 →M1 to ξ2 : E2 →M2, is givenby a pair of mappings F : E1 → E2, and f : M1 →M2, su
h that fξ1 = ξ2F , and F |ξ−1(r) is a

C-linear map for every r ∈M . If M1 = M2 and f is the identity, we will just think of bundlemorphism F : E1 → E2. In general, a 
omplex ve
tor bundle ξ : E → M over a 
omplexmanifold, does not give E the stru
ture of a 
omplex manifold. For that, we need some morerequirements.



14 Complex manifolds and Riemann surfa
esDe�nition 2.4. Let M be a 
omplex manifold. Then a 
omplex ve
tor bundle is 
alled aholomorphi
 ve
tor bundle if there is a bundle atlas, in whi
h all transition fun
tions areholomorphi
.The total spa
e E will now be a n +m 
omplex manifold of its own right, by using thatif (z, U) and (h, V ) is a 
hart and bundle 
hart, respe
tively, then
(z × idCm)h|ξ−1(U∩V )is a 
hart on E. The fa
t that su
h 
harts overlap holomorphi
ally is guaranteed by theholomorphi
 transition fun
tions. The most interesting ve
tor bundles are, of 
ourse, thetangent bundles. If M is a di�erentiable manifold with TM as a real tangent spa
e, then the
omplex tangent bundle is simply the 
omplexi�
ation of TM . To 
lear this up, we de�ne

TCM := TM ⊗R (C ×M) ,where C × M is seen as a one-dimensional trivial bundle over M . Complex stru
ture isgiven in a usual way (i.e., TrM ⊗R C be
omes a 
omplex ve
tor spa
e by de�ning s
alarmultipli
ation with a 
omplex number by α(X ⊗ ζ) := X ⊗ αζ, and introdu
ing 
onjugationby X ⊗ ζ = X⊗ ζ̄). An alternative des
ription of this 
omplexi�
ation, is to let X ∈ TrM a
ton 
omplex valued C∞ fun
tion germs about r. If [ψ]r : (M, r) → (C, ψ(r)) is su
h a germ, wede�ne X(ψ) = X(Reψ) + iX(Imψ), and introdu
e s
alar multipli
ation in the obvious way.If M is a 
omplex manifold and (z, U) is a 
hart, where z = (z1, z2, . . . , zn), and zj =
xj + iyj, then TM is spanned lo
ally by the ve
tor �elds

{ ∂

∂x1
,
∂

∂y1
,
∂

∂x2
,
∂

∂y2
, . . . ,

∂

∂xn
,
∂

∂yn

}

.Note that on any 
omplex manifold, there exists a bundle morphism 
orresponding to multi-pli
ation by i
J : TM → TM,su
h that

J(
∂

∂xj
) =

∂

∂yj
, J(

∂

∂yj
) = − ∂

∂xj
, (2.1)whi
h means that being applied twi
e we get the minus identity: J2|TrM = −idTrM . Ingeneral, any di�erentiable manifold together with a bundle morphism on its tangent bundlewith this property is 
alled an almost 
omplex manifold. The operator is 
alled an almost
omplex stru
ture. All almost 
omplex manifolds are even-dimensional (real dimension) andorientable. An almost 
omplex stru
ture may be extended to a 
omplex bundle morphism on

TCM by de�ning J(X ⊗ ζ) := J(X) ⊗ ζ.The 
omplex tangent bundle is lo
ally spanned by
{ ∂

∂z1
,
∂

∂z̄1
,
∂

∂z2
,
∂

∂z̄2
, . . . ,

∂

∂zn
,
∂

∂z̄n

}

,where ∂
∂zj

= 1
2( ∂
∂xj

− i ∂
∂yj

) and ∂
∂z̄j

= 1
2 ( ∂
∂xj

+ i ∂
∂yj

). The 
omplex tangent bundle then splitsinto two parts
TCM = T 1,0M ⊕ T 0,1M



2.2 Riemann surfa
es 15
alled the holomorphi
 and antiholomorphi
 tangent bundles, respe
tively. T 1,0M then isspanned by { ∂
∂zj

}nj=1, and T 0,1M by { ∂
∂z̄j

}nj=1. The extension of J in (2.1) to TCM is givenby
J(

∂

∂zj
) = i

∂

∂zj
J(

∂

∂z̄j
) = −i ∂

∂z̄jThen T 1,0M and T 0,1M are the eigenspa
es for J with respe
t to i and −i respe
tively (sothat if X ∈ Γ(TCM), then Γ(T 1,0M) = ker{X → X + iJ(X)} and Γ(T 0,1M) = ker{X →
X − iJ(X)}). T 1,0M is a holomorphi
 ve
tor bundle, and therefore a 
omplex manifold.
T 0,1M is not in general a holomorphi
 bundle, so we 
an only be sure that is T 0,1M an almost
omplex manifold. The dual bundles (T 1,0M)∗ and (T 0,1M)∗ are lo
ally spanned by 
otangentve
tor �elds dzj = dxj + idyj and dz̄j = dxj − idyj for j = 1, . . . , n.IfM is a 
omplex manifold with a 
omplex stru
ture J , then there is a Riemannian metri

ρ that satis�es the following relation

ρ(JX, JY ) = ρ(X,Y ), X, Y ∈ Γ(TM)is 
alled an Hermitian metri
, and (M,ρ) an Hermitian manifold. The metri
 ρ 
an beextended to TCM , and may be thought of as an element in Γ((T 1,0M ⊗ T 0,1M)∗) (i.e., ρ =
∑

j,k=1,...n ρjkdzj ⊗ dz̄j) with the properties
• ρ(X, Ȳ ) = ρ(Y, X̄);
• ρ(X, X̄) > 0 ,wheneverX 6= 0,forX,Y ∈ Γ(T 1,0M). To ea
h Hermitian metri
 we asso
iate the fundamental form Φ(X,Y ) =

ρ(JX, Y ). If dΦ = 0, the manifold is 
alled Kählerian.2.2 Riemann surfa
esWe will take a 
loser look at the one-dimensional 
ase where we 
an use some results fromone dimensional 
omplex analysis.De�nition 2.5. A Riemann surfa
e is a 1-dimensional, 
onne
ted 
omplex manifold.Sin
e we are now in the one dimensional 
ase, all biholomorphi
 mappings are 
onformal,and if M ∼= N , we say that the Riemann surfa
es are 
onformally equivalent.Example 2.6. • D,C, C̄, and open 
onne
ted subsets of them, are Riemann surfa
es. Bythe Riemann mapping theorem, we have that if an open simply 
onne
ted subset U ⊆ C̄has more than two boundary points, then U ∼= D. It is 
alled a hyperboli
 domain. Moreabout 
lassi�
ation of Riemann surfa
es will be found later.
• The domains CR = {ζ ∈ C

∣

∣ 1 < |ζ| < R} , where R > 1, are all Riemann surfa
es.Although they are di�eomorphi
 as real manifolds, CR1
6∼= CR2

, when R1 6= R2. (seese
tion 3.1, example 3.3).
• Let M be a 
ompa
t Riemann surfa
e. Sin
e it is a 
ompa
t orientable surfa
e, it ishomeomorphi
 to S2 or a sum of tori. We say that a surfa
e homeomorphi
 to thesphere has genus 0, and that it has genus g if it is the sum of g tori. S2 admits only
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esone 
omplex stru
ture, the one given by C̄. However, there are in�nitely many 
ompa
tRiemann surfa
es with genus g. If we 
onsider the 
ase of 
ompa
t Riemann surfa
esof genus one (whi
h we will 
all 
omplex tori), then all su
h Riemann surfa
es are
onformally equivalent to a surfa
e on the form
C/(Z + τZ),where τ ∈ C+ with Im τ 6= 0. Futher more, if τ ′ is another su
h element, then

C/(Z + τZ) ∼= C/(Z + τ ′Z)if and only if τ ′ = aτ+b
cτ+d , with a, b, c, d ∈ Z and ad− bc = 1 (see [12℄ for more details).

• A Riemann surfa
e M is 
alled �nite if π1(M) , the �rst homotopy group, is �nitelygenerated. Ea
h �nite Riemann surfa
e is 
onformally equivalent to a domain on a
ompa
t Riemann surfa
e. They are 
lassi�ed in the following way. We generalise thenotion of genus to non-
ompa
t surfa
es by saying that a surfa
e is of genus g if g isthe maximal number, su
h that there is a simple 
losed 
urve γ1 in M , and 
urves γj in
M \ (γ1 ∪ · · · ∪ γj−1), su
h that M \ (γ1 ∪ · · · ∪ γg) is 
onne
ted (i.e., we 
an make some
g �
ir
ular� 
uts on M , keeping it 
onne
ted). An equivalent way of this de�nition is asfollows. If M̄ is the 
losure of M , as a subset of a 
ompa
t manifold and the boundaryof M̄ has d 
omponents then

g :=
1

2
(2 − χ(M) − d)where χ is the Euler 
hara
teristi
 of M . The orientability of all Riemann surfa
esimplies that

g = rankH1(M ; Z) − rankH0(∂M̄ ; Z),where Hj is the j'th singular homology group. A surfa
e is said to be of type (g, n, l) if� M has genus g;� M has n pun
tures: M has n disjoint open neighbourhoods 
onformally equivalentto D\{0}, with only one of its boundary 
omponents inM , and this one is a 
urve;� M has l hyperboli
 boundary 
omponents: M has l disjoint open neighbourhoods
onformally equivalent to CR (for some R) with only one of its boundary 
ompo-nents in M .So C̄ is of type (0,0,0), C is of type (0,1,0), D \ {0} is of type (0,1,1) and the CR is oftype (0,0,2).The Riemann mapping theorem has the following generalisation to Riemann surfa
es.Theorem 2.7 ([9℄). Let M be a simply 
onne
ted Riemann surfa
e. Then M is 
onformallyequivalent to either C̄ , C, or D.We want to use this theorem to 
lassify all Riemann surfa
es. First we need some 
on
eptsfrom Topology.De�nition 2.8. Let X and Y be topologi
al spa
es. A 
ontinuous map p : Y → X is 
alled
overing if, for any x ∈ X, there is an open neighbourhood U of x su
h that p−1(U) =
∐

j∈J Vjand p|Vj
is a homeomorphism for any j.
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es 17The 
overing map p : Y → X is 
alled universal if it ful�ls the following property. If
q : Z → X is another 
overing map, then there is a 
overing map f : Y → Z, su
h that p = qf .The spa
e Y is then 
alled the universal 
over of X, and is unique up to a homeomorphism.If in addition X is Hausdor� and 
onne
ted, then it is su�
ient to require that Y is simply
onne
ted for p to be a universal 
overing map. Su
h a 
over always exists for any Riemannsurfa
e (see [11℄), and the surfa
e 
an be given a 
omplex stru
ture in order to guarantee thatit is a simply 
onne
ted Riemann surfa
e and p is holomorphi
. By theorem 2.7, the followingde�nition is 
onsistent.De�nition 2.9. Let M be a Riemann surfa
e and let N be its universal 
over. Then M is
alled

• ellipti
 if N is 
onformally equivalent to C̄.
• paraboli
 if N is 
onformally equivalent to C.
• hyperboli
 if N is 
onformally equivalent to D.If we have two 
overings p : N → M and q : L → M , then a 
ontinuous map f : N → Lis �bre preserving if p = qf . We will denote by Deck(N/M) the group of �bre preservingautomorphism on N under 
omposition, with respe
t to some 
overing map p : N → M .The elements of Deck(N/M) are 
alled de
k transformations. If N is 
onne
ted, then anynontrivial element ofDeck(N/M) has no �x points. IfN is the universal 
overing of a Riemannsurfa
e M , then Deck(N/M) is isomorphi
 to π1(M), and

N/Deck(N/M) ∼= M.Denote by Aut(M) = {f ∈ Hol(M,M)
∣

∣ f is bijective}. IfM is an ellipti
 Riemann surfa
e,then Deck(C̄/M) is a subgroup of Aut(C̄). Aut(C̄) is the group of Möbius transforms
ζ 7→ aζ + b

cζ + d
,where ad− bc = 1, whi
h may be identi�ed with PGLnC = GLnC/ ∼ , where the equivalen
erelation is given by A ∼ λA, for A ∈ GLnC and λ ∈ C\{0}. Sin
e all nontrivial Möbius trans-forms has at least one �xed point, there is no possibility for any nontrivial de
k transformationto exist and hen
e, C̄ is the only ellipti
 Riemann surfa
e.Similar observations for

Aut(C) = {ζ 7→ λζ + κ
∣

∣λ, κ ∈ C, λ 6= 0},show that the only interesting subgroup of de
k transformations is the group generated by
ζ 7→ ζ + 1 and the ones generated by ζ 7→ ζ + 1 and ζ 7→ ζ + τ , with τ ∈ C+, Im τ 6= 0 (andgroups generated by a 
onstant times these elements). It follows that C, C \ {0}, and thetorus with di�erent 
omplex stru
tures are the only paraboli
 Riemann surfa
es.The rest are hen
e hyperboli
 Riemann surfa
es. Aut(D) 
onsists of Möbius transforma-tions on the form

ζ 7→ λ
ζ − κ

1 − κ̄ζwhere |λ| = 1 and κ ∈ D. This group may be identi�ed with PSLnR = SLnR/ ∼, where
A ∼ −A for A ∈ SLnR. Dis
rete subgroups G of Aut(D) are 
alled Fus
hian. It turns outthat if G is a torsion free Fus
hian group, then D/G is a hyperboli
 Riemann surfa
e, and anyhyperboli
 Riemann surfa
e is of this form. See [9℄ for more details.
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esExample 2.10. For the simplest 
ase, where π1(M) is abelian, we only have the followingpossibilities.
• If π1(M) = 0, then M is D, C or C̄.
• If π1(M) = Z, then M is D \ {0}, C \ {0} or CR for some value of R. Note that D \ {0}and CR for di�erent values of R, are all given by the quotient of D by a group isomorphi
to Z, yet none of them are 
onformally equivalent.
• If π1(M) = Z × Z, then M is a 
omplex torus.2.3 Quadrati
 di�erentials on a Riemann surfa
eWe remark that for a Riemann surfa
e M , MM may be identi�ed with Hol(M, C̄) \ {∞},where ∞ denotes a fun
tion 
onstantly equal to in�nity.De�nition 2.11. A holomorphi
 (resp. meromorphi
) quadrati
 di�erential on a Riemannsurfa
e (M,A), is a mapping φ on A, su
h that for every 
hart (zα, Uα), a mapping φzα ∈

Ozα(Uα) (resp. M zα(Uα) ) is asso
iated, so that
φzβ

(zβ(r)) = φzα(zα(r)) ·
(dzα
dzβ

(r)
)2
, ∀ r ∈ Uα ∩ Uβ.We often denote a quadrati
 di�erential by φ(z)dz2 with respe
t to some 
hart z. Aholomorphi
 quadrati
 di�erential may also be seen as an element in Γ

(

Sym2(T 1,0M)∗
). Unlessotherwise mentioned, the quadrati
 di�erentials below are meromorphi
. We 
all points onthe Riemann surfa
e regular regarding to a di�erential φ, if they are neither poles nor zeroesof φ.De�nition 2.12. A traje
tory of a quadrati
 di�erential φ, is a maximal regular (i.e., C1with non-vanishing derivative) 
urve γ on M , su
h that φ(z)dz2 > 0 on γ, i.e., for any lo
alrepresentation φzα of φ, we have

φzαzαγ(t) ·
(

(zαγ)
′(t)

)2
> 0.A maximal regular 
urve η, su
h that φ(z)dz2 < 0 on η, is 
alled an orthogonal traje
toryGeometri
 interpretation of the behaviour of traje
tories is expressed in the followingtheorem.Theorem 2.13. Let φ be a quadrati
 di�erential on M . For any regular point r ∈ M , thereexists a 
hart (w, V ) about r, su
h that φw ≡ 1. Moreover, if w̃ is another su
h 
hart, then

w̃ = ±w + constant.Proof. Let φz(z)dz2 be a lo
al representation in a neighbourhood around r. Sin
e r is regular,there is a neighbourhood V , where we may 
hoose a single valued bran
h of √

φz(z) (the sign
± 
omes from the 
hoi
e of a bran
h). Let w =

∫ √

φz(z)dz be the natural parameter, whi
his de�ned up to some 
hoi
e of 
onstant, and independent of the lo
al parameter z 
hosen (bythe de�nition of the quadrati
 di�erential). We know that
φw(w) =

φz(z)

(dwdz )2
=
φz(z)

φz(z)
≡ 1.
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 di�erentials on a Riemann surfa
e 19We 
all a θ-ar
 a maximal regular 
urve along whi
h
arg dw2 = arg φz(z)dz

2 = θ (constant).A traje
tory is 
learly a 0-ar
, and an orthogonal traje
tory a π-ar
, and it is easy to seethat using w as a lo
al parameter, traje
tories and orthogonal traje
tories form horizontaland verti
al straight lines respe
tively. Sin
e the 
hange of 
harts is 
onformal, we get that nomatter what lo
al parametrisation we use, the orthogonal traje
tories are indeed orthogonalto traje
tories, whenever they interse
t. We also remark that orthogonal traje
tories be
ometraje
tories when we 
onsider −φ.Traje
tories may be also seen as solutions to the di�erential equation φ(z)
(

dz
du

)2
= 1 for areal parameter u.The following example is important in our further 
onsiderations.Example 2.14. Let Ea;λ = {ζ ∈ C

∣

∣ (Re
a )2 + ( Im

a
√

1−λ2
)2 = 1} be the ellipse with the majoraxis a along the real line, and with the e

entri
ity λ. We �nd a 
onformal map from the unitdisk onto this ellipse. Let us 
onsider the quadrati
 di�erentials

dz2

(z2 − r−2)(z2 − r2)
and

−dw2

w2 − 1
,where 0 < r < 1, so that the unit 
ir
le and ellipses with fo
i at ±1, respe
tively, aretraje
tories. In order to verify this, let us take z = eiθ, θ ∈ [0, 2π]. Then

dz2

(z2 − r−2)(z2 − r2)
=

−e2iθdθ2

(e2iθ − r−2)(e2iθ − r2)
=

dθ2

(r2 + r−2) − (e2iθ + e−2iθ)

=
dθ2

r2 + r−2 − 2 cos 2θ
≥ 0due to r2 + r−2 − 2 cos 2θ ≥ r2 + r−2 − 2 = (1/r − r)2 > 0. For the other di�erential, let ustake w = a cos θ + ib sin θ, where a2 − b2 = 1. Then

−dw2

w2 − 1
=

(−a sin θ + ib cos θ)2dθ2

1 − (a cos θ + ib sin θ)2
=

(a2 sin2 θ − b2 cos2 θ − 2abi sin θ cos θ)dθ2

a2 − b2 − a2 cos2 θ + b2 sin2 θ − 2abi sin θ cos θ

=
(a2 sin2 θ − b2 cos2 θ − 2abi sin θ cos θ)dθ2

a2 sin2 θ − b2 cos2 θ − 2abi sin θ cos θ
= dθ2Hen
e we may solve the equation

κ2dz2

(z2 − r−2)(z2 − r2)
=

−dw2

w2 − 1
,where κ ∈ R+ \ {0} and the solution will be the desirable 
onformal mapping of the unitdisk onto the ellipse. The reason for the 
onstant κ appearing, is traje
tory stru
ture of aquadrati
 di�erential is invariant under multipli
ation by su
h positive 
onstants. It will befound when satisfying additional normalising 
onditions. We solve the equation for w = f(z)with initial 
onditions f(z) = 0, f(r) = 1. We will let F(x, k) denote the ellipti
 integral

F(x, k) =

∫ x

0

dt
√

(1 − t2)(1 − k2t2)
,
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esand let F(1, k) = K(k). We get
∫ f(z)

0

idw√
w2 − 1

= i log(−i(f(z) +
√

f(z)2 − 1) =

∫ z

0

κdz
√

(z2 − r−2)(z2 − r2)

= κ

∫ z

0

dz
√

(r2z2 − 1)(z
2

r2
− 1)

= κr

∫ z/r

0

dt
√

(1 − t2)(1 − r4t2)
= κrF(

z

r
, r2)Applying the 
ondition f(r) = 1, we get that κr = π

2K(r2) . Let ς(z) =
πF( z

r
,r2)

2K(r2) . Then weobtain the equation f(z) +
√

f(z)2 − 1 = ie−iς(z), solving whi
h we get
f(z)2 − 1 = −e−2iς(z) − 2ie−iς(z)f(z) + f(z)2,and �nally,
f(z) =

1

2i
(eiς(z) − e−iς(z)) = sin

(πF(zr , r
2)

2K(r2)

)This 
an be easily generalised to that an arbitrary ellipse. Expli
itly, let
r−1(x) =

1

sin(
πF( 1

x
,x2)

2K(x2)
)
.Then the univalent mapping of the unit disk onto an ellipse with the major axis a, ande

entri
ity λ is given by

Ea;λ(z) = aλ sin
(πF(zr , r

2)

2K(r2)

)

, where r = r(λ)The di�
ult part of this formula, is that, there is no simple way to derive r as a fun
tion of
λ by an expli
it formula. This mapping will be used in further examples.The lo
al traje
tory stru
ture about a regular point is trivial, but 
an be more 
omplexabout the 
riti
al points of our di�erential (its zeroes and poles). The natural parameterproved to be useful for study of the traje
tory stru
ture about a regular point. We 
ontinueto use it in a similar way for singular points.Theorem 2.15 ([33℄). Let s ∈M be a 
riti
al point of order n ∈ Z of the quadrati
 di�erential
φ.a) Let n be odd. Then there exists a 
hart w̃ about s, su
h that φ has the lo
al representation

φw̃(w̃) =
(n+ 2

2

)2
w̃n.b) Let n be even and positive. Then there exists a 
hart w̃ about s, su
h that φ has the lo
alrepresentation

φw̃(w̃) =
(n+ 2

2

)2
w̃n.
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Figure 2.1: A graph of r(λ) (bla
k) 
ompared to the identity (grey)
) Let n = −2. Let z be any 
hart about s, and let φz(z) = a−2

z2
+ a−1

z + a0 + · · · . Then thereexists a 
hart w̃ about s, su
h that φ has the lo
al representation
φw̃(w̃) =

a−2

w̃2
.d) Let n ≤ −4 and even. Then there exists a 
hart w̃ about s, su
h that φ has the lo
alrepresentation

φw̃(w̃) =
(n+ 2

2
w̃n/2 +

b

w̃

)2for some 
onstant b.Proof. We will use the natural parameter w =
∫

√

φz(z)dz. In the following proof, w willnot always be a single valued fun
tion, and never a 
hart, but we will still use it for pra
ti
alreasons, sin
e formally dw2 = φz(z)dz
2 is still valid.a) Let z be some 
hart about the singular point s. We may assume z(s) = 0. Then φ maybe represented as

φz(z) = zn(an + an+1z + · · · )where n is odd and an 6= 0. We may lo
ally 
hoose a bran
h of the square root of
an + an+1z + . . . . Let it be equal to

(an + an+1z + . . . )1/2 = b0 + b1z + · · ·Let us put √

φz(z) = zn/2(b0 + b1z + · · · ), with a 
hosen bran
h of zn/2. We integrateand put
w = z

n+2

2 (c0 + c1z + · · · ), ck =
2bk

n+ 2(k + 1)
.
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esLet d0 + d1z + d2z
2 + · · · = (c0 + c1z + c2z

2 + · · · ) 2

n+2 , and let w̃ = z(d0 + d1z + · · · ).Then w = w̃
n+2

2 , for the 
hosen bran
h of the square root. After di�erentiating andsquaring, we end up with a single valued expression
dw2 =

(n+ 2

2

)2
w̃ndw̃2b) We pro
eed in a similar way to a) without bran
hing problems on the way.
) Assume √

φz(z) = z−1(a−2 + a−1z + a0z
2 + · · · )1/2 = z−1(b0 + b1z + b2z

2 + · · · ), (sin
ewe may 
hoose a bran
h of (a−2 + a−1z + a0z
2 + · · · )1/2 lo
ally). Integrating, we get

w = b0 log z + b1z + b2
2 z

2 + · · · . Let w̃ = z · exp
(

b1
b0
z + b2

2b0
z2 + · · ·

). Then
dw2 =

(b0
w̃
dw̃)2 =

a−2

w̃2
dw̃.d) We may de�ne a single valued bran
h as before √

φz(z) = zn/2(b0+b1z+ · · · ). Integrating,we get w = zn/2+1(c0 + c1z + · · · ) + b log z, where (b−n/2−1 = b). Choose w̃ = z(d0 +

d1z + · · · ), su
h that w = w̃n/2+1 + b log(w̃). This ends the proof.

(a) (b)Figure 2.2: The lo
al traje
tory stru
ture near (a) simple zero, (b) simple pole

Figure 2.3: The lo
al traje
tory stru
ture near a pole of 5-th orderNow let us pro
eed with the global traje
tory stru
ture.
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 di�erentials on a Riemann surfa
e 23De�nition 2.16. A 
onformally invariant metri
 on a Riemann surfa
e (M,A), is a mapping
ρ on A, that to every 
hart (zα, Uα), asso
iates a measurable fun
tion ρzα : zα(Uα) → [0,∞),satisfying the relation

ρzβ
(zβ(r)) = ρzα(zα(r))

∣

∣

dzα
dzβ

(r)
∣

∣ ∀ r ∈ Uα ∩ UβWe often denote a 
onformally invariant metri
 by ρ(z)|dz| with respe
t to some 
hart
z. To a quadrati
 di�erential φ, we asso
iate a 
onformally invariant metri
 √

|φ(z)||dz|. Atraje
tory is 
alled �nite, if it has �nite length in this metri
.We say that an oriented traje
tory is a traje
tory ray.De�nition 2.17. For a traje
tory ray γ+ : I →M , where I is an interval with b = sup I, wedenote It = {u ∈ I|u > t} and asso
iate the limit set
Aγ+ = lim

t→b
γ+(It)Let γ be a traje
tory of a quadrati
 di�erential on M , with traje
tory rays γ+ and γ−.

• If Aγ+ = ∅, then γ+ is 
alled a boundary ray. If both γ+ and γ− are boundary rays, γis 
alled a 
ross 
ut.
• If Aγ+ = s for some s ∈ M , then γ+ is 
alled a 
riti
al ray and s is then either a zeroor a pole. If γ+ or γ− are 
riti
al rays, γ is 
alled a 
riti
al traje
tory.
• If Aγ+ 
onsists of more than one point, then γ+ is 
alled a divergent ray. If Aγ+ = γ(I),then γ is 
alled a spiralThese 
riti
al traje
tories form di�erent kinds of global stru
ture on the Riemann surfa
e.De�nition 2.18. Let φ be a quadrati
 di�erential on a bordered Riemann surfa
e M , andlet U be a domain in M . Then we de�ne the following types of domains asso
iated to φ (alltraje
tories and singularities des
ribed are with respe
t to φ).Ring Domain: U is a maximal doubly 
onne
ted domain, su
h that any non-
riti
al 
losedtraje
tory interse
ting U , is 
ontained in U .Cir
ular Domain: U is a maximal hyperboli
 domain whi
h 
ontains a se
ond order pole s0,su
h that U \ {s0} is a ring domain.Strip Domain: U is a maximal hyperboli
 domain su
h that ∂U 
ontains two se
ond orderpoles s1 and s2, and any traje
tory passing through some point r ∈ U , 
onne
ts s1 and
s2.Ending Domain: U is a maximal hyperboli
 domain su
h that ∂U 
ontains a third or higherorder pole s0, and any traje
tory that starts and ends at s0, and interse
ts U is 
ontainedin U .Spiral Domain: U 
an be des
ribed in the following way. Let γ be a spiral whi
h is not
losed. Then U = intAγ+ .
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esQuadrangle: U is a maximal hyperboli
 domain su
h that it 
ontains no singularities, anytraje
tory that interse
ts U is in U , and ∂U 
ontains two non-interse
ting 
onne
ted
omponents that lie in ∂MTriangle: U is a maximal hyperboli
 domain su
h that ∂U 
ontains a se
ond order pole s0,and it interse
ts ∂M . This interse
tion is 
onne
ted, and any traje
tory that interse
ts
U is in U and 
onne
ts s0 and ∂M .

−1 1 c a b

Figure 2.4: The traje
tory stru
ture of the di�erential (c−z)dz2
(z−b)2(z2−1)(z−a) on the Riemannsurfa
e S0 = C \ {−1, 1, a, b}, 1 < c < a < bFrom the de�nitions we know that

• Ex
ept for parts that 
oin
ide with ∂M , ∂U 
onsists of 
riti
al traje
tories for any ofthe domains above.
• Ring domains 
ontain no singularities.
• Ring domains, Cir
ular domains, Strip domains, and Quadrangles may be 
onformallymapped on to an annulus, a 
ir
le, a strip, and a re
tangle respe
tively.If the traje
tory stru
ture of a quadrati
 di�erential gives spiral domains, we say that itpossesses dense stru
ture. Dense stru
ture happens more often than other types.Example 2.19. Consider quadrati
 di�erential

φα(z) =
eiαdz2

(z2 − 1)(z2 − 2)Then it is known that the set {α ∈ R|φα does not have dense structure} is 
ountable [34℄.For a general Riemann surfa
e, we have very little 
ontrol over the global stru
ture. How-ever, for the 
ase of 
ompa
t and �nite Riemann surfa
es (i.e., 
ompa
t Riemann surfa
es andtheir subsurfa
es) we 
an, by some extra requirement, get some knowledge of what kind ofdomains may o

ur and how many they are.Theorem 2.20 ([34℄). If φ is a quadrati
 di�erential on a 
ompa
t Riemann surfa
e M , thenall domains mentioned in de�nition 2.18 (ex
ept for quadrangles and triangles) may o

ur.However, if we require that the di�erential
• φ has a �nite L1-norm, then only ring and spiral domains may o

ur.
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 di�erentials on a Riemann surfa
e 25
• φ has only �nite traje
tories, then only ring, strip, 
ir
ular, and ending domains mayo

ur.
• φ has a �nite L1-norm and have only �nite traje
tories, then only ring domains mayo

ur.Theorem 2.21 (Basi
 Stru
ture Theorem). Let M be a �nite Riemann surfa
e, and M̄ its
losure, when seen as a subset of a 
ompa
t manifold. Let φ be a quadrati
 di�erential on M ,su
h that its extension to M̄ satis�es φz(z(s)) ≥ 0 for any s ∈ ∂M̄ and some (hen
e any)
hart z. Let C be the union of all 
riti
al traje
tories. If (M,φ) is not 
onformally equivalentto the following 
ases
• M = C̄ and φz = 1, where z is the identity 
hart on C.
• M = C̄ and φz = κeiα

z2
, α, κ ∈ R, κ > 0, where z is the identity 
hart on C \ {0}.

• M is a torus, and φ is regular on M (φ has no singular points).Then1. M - C̄ 
onsists of a �nite number of ending, strip, 
ir
ular, and ring domains. Any su
ha domain, is bounded by the boundary 
omponents of M and a �nite number of 
riti
altraje
tories. Ea
h boundary 
omponent of 
riti
al traje
tories 
ontains a 
riti
al point.2. Every pole of order m > 2 has a neighbourhood 
overed by the inner 
losure of m − 2end domains and a �nite number (may be zero) of possible strip domains. A se
ondorder pole has a neighbourhood whi
h is 
ontained in a 
ir
ular domain or it is 
overedby int
⋃k
j=1 V̄j , where the Vj are strip domains.3. int C̄ 
onsists of a �nite number of domains, with a �nite number of boundary 
ompo-nents.Proof of theorem may be found in [18℄.

a−2 < 0 a−2 > 0 Im a−2 6= 0Figure 2.5: The lo
al traje
tory stru
ture near a double pole illustrates part of 2. in theorem2.21
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Chapter 3Quasi
onformal mappings and theredu
ed modulusThe famous length-area prin
iple (see. e.g., [15℄) permits us to 
onsider families of 
urvestaking into a

ount both the length of these 
urves and the area of the surfa
e they sweep out.This prin
iple impli
itly formulated by Grötzs
h in earlier 30's then took a form of extremallength by Ahlfors and Beurling and of the modulus of a family of 
urves by Jenkins. The latter
onsidered a dual problem of the modulus of a family of 
urves and the extremal partitioningof a Riemann surfa
e by non-interse
ting domains of 
ertain size. In order to de�ne su
h sizeone uses the 
on
epts of the 
onformal modulus of an annulus and the 
onformal radius of asimply 
onne
ted domain. First they were de�ned for plane domains and then, developed forarbitrary Riemann surfa
es. The 
onformal radius (or the redu
ed modulus) is not a 
onformalinvariant unlike 
onformal modulus. But its distortion under 
onformal map is well de�ned.It 
hanges proportionally to the derivative of the mapping at the point where we measure this
onformal radius. The distortion of the 
onformal radius under a quasi
onformal map is notknown and we will try to 
lear up this 
ase. First we will 
onsider the general 
ase of moduliof families of 
urves and 
onformal maps, and then, turn to the quasi
onformal mappingsadmitting 
onformal extension. In parti
ular, we shall 
onsider quasi
onformally extendable
onformal maps given by the Löwner-Kufarev equations. These equations where originallyintrodu
ed by Löwner in order to study the behaviour of slit mappings. They were furthergeneralised by Kufarev and later by Pommerenke to study general subordination 
hains.3.1 Modulus of a family of 
urvesDe�nition 3.1. Let N be a Riemann surfa
e and let Γ be a family of re
ti�able 
urves in N .Let P be a 
olle
tion of 
onformally invariant metri
s that are L2 on N and su
h that, forany ρ ∈ P , we have that ∫

γ ρ ≥ 1 for any γ ∈ Γ. Then the modulus of N with respe
t to Γ, is
m(N,Γ) = inf

ρ∈P

∫∫

N
ρ2(z)dσz (3.1)where dσz is an element of area.An alternative way to de�ne the modulus is the following. Let P ′ be the set of 
onformally27
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onformal mappings and the redu
ed modulusinvariant metri
s whi
h are L2. De�ne Lρ(Γ) := infγ∈Γ

∫

γ ρ(z)|dz|. Then the modulus is
m(N,Γ) = inf

ρ∈P ′

∫∫

X ρ
2(z)dσz

(

Lρ(Γ)
)2 .The �rst de�nition is more 
onvenient for us to work with, but we mention the se
ond be
auseit illustrates how the length of 
urves and the area in some metri
 interplay in the de�nitionof the modulus.Moduli de�ned on Riemann surfa
es have the following properties.Proposition 3.2. Let Γ be a family of 
urves on N , and let P be the 
olle
tion of admissiblemetri
s on Γ1. If Γ ⊆ Γ′, then m(N,Γ) ≤ m(N,Γ′).2. If N ⊆ N ′, then m(N,Γ) = m(N ′,Γ). In this sense, the modulus only depends on Γ.3. If there is an extremal metri
 ρ∗ ∈ P su
h that

m(N,Γ) =

∫∫

N
ρ∗2dσz, (3.2)then ρ∗ is almost everywhere unique, and Lρ∗(Γ) = 1.4. If f : N → L is an inje
tive 
onformal mapping, then m(N,Γ) = m(f(N), f(Γ)).Proof. 1. From the simple observation that if P and P ′ are the sets of admissible metri
sfor Γ and Γ′, then Γ ⊆ Γ′ implies P ′ ⊆ P .2. Sin
e all 
urves are 
ontained inN , all metri
s in P 
an be extended to admissible metri
sin N ′ with respe
t to Γ, by letting them vanish on N ′ \N . Clearly, for determining thein�mum over all integrals ∫∫

N ′ ρ
2, it is su�
ient to 
onsider metri
s that vanish on

N ′ \N .3. Assume that there are two admissible metri
s ρ1 and ρ2 satisfying (3.2). Then 1
2(ρ1 +

ρ2)|dz| is admissible, and we have that ∫∫

N (ρ1(z)+ρ2(z)
2 )2dσz ≥ m(N,Γ), but also

0 ≤
∫∫

N

(ρ1(z) − ρ2(z)

2

)2
dσz =

∫∫

N

ρ2
1(z) + ρ2

2(z)

2
dσz −

∫∫

N

(ρ1(z) + ρ2(z)

2

)2
dσz

= m(N,Γ) −
∫∫

N

(ρ1(z) + ρ2(z)

2

)2
dσz ≤ 0whi
h 
an only hold if ρ1 = ρ2 almost everywhere.In order to prove the se
ond statement, let Lρ∗(Γ) = l ≥ 1. Then 1

l ρ
∗(z)|dz| is admissi-ble, and

m(N,Γ) ≤ 1

l2

∫∫

N
(ρ∗(z))2dσz =

1

l2
m(N,Γ) ≤ m(N,Γ)implies that l = 1.



3.1 Modulus of a family of 
urves 294. Let Q be the set of admissible metri
s on f(Γ). Then for every µ ∈ Q we asso
iate ametri
 ρ(z)|dz| = µ(f(z))|f ′(z)||dz|. Sin
e
∫

γ∈Γ
ρ(z)|dz| =

∫

f(γ)∈f(Γ)
µ(f(z))|df(z)| ≥ 1by the 
hange of variable formula, ρ ∈ P . Sin
e also

∫∫

N

(

ρ(z)
)2
dσz =

∫∫

f(N)

(

µ(f(z))
)2
dσf(z),we have m(N,Γ) ≤ m(f(N), f(Γ)). Re
ipro
al statement follows from similar argument,by 
onsidering f−1.We present here some important examples.Example 3.3. • Let Ql = {ζ ∈ C

∣

∣ 0 < Re ζ < l, 0 < Im ζ < 1} be a re
tangle, and let Γbe the set of 
urves that 
onne
t its horizontal sides. Then m(Ql,Γ) = l.Proof. The metri
 |dz| is admissible, so l =
∫∫

Ql
dx dy ≥ m(Ql,Γ). We know that forany ρ ∈ P , ∫ 1

0 ρ(x+ iy)dy ≥ 1, so we have
∫∫

Ql

ρ(z)dx dy =

∫ l

0

(

∫ 1

0
ρ(x+ iy)dy

)

dx ≥ l.Finally,
0 ≤

∫∫

Ql

(ρ− 1)2dx dy =

∫∫

Ql

ρ2dx dy − 2

∫∫

Ql

ρ dx dy + l

≤
∫∫

Ql

ρ2dx dy − l,so we 
on
lude that l ≤ m(Ql,Γ).
• More generally, let V be a simply 
onne
ted domain on a Riemann surfa
e, with ∂Vto be a simple 
losed 
urve. Let r1, r2, r3, r4 be four di�erent points on ∂V , indexed inthe 
ounter
lo
kwise order. Let γij be the part of ∂V 
onne
ting ri and rj . We pair
γ12 with γ34. Then (

V, (γ12, γ34)
) is 
alled a quadrilateral. We will 
all (γ12, γ34) theprimary sides of the quadrilateral (remark that this is not a standard term). To anyquadrilateral, there is only one Ql, su
h that there is an inje
tive 
onformal fun
tionmapping V onto Ql, and the primary sides onto the horizontal edges of the re
tangle.If Γ is the family of all 
urves 
onne
ting these primary sides, then m(V,Γ) = l. Sin
ethe modulus of quadrilateral is often in use we shall denote it by M(V ) .

• Let Γ be the set of 
urves in CR, that separate the boundaries. Then
m(CR,Γ) =

1

2π
logR (3.3)
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onformal mappings and the redu
ed modulusProof. The metri
 |dz|
2π|z| is admissible, so 1

2π logR =
∫∫

CR

1
(2π|z|)2dxdy ≥ m(CR,Γ). Forany ρ ∈ P and 1 < r < R, we have 1

r < 1 ≤
∫ 2π
0 ρ(reiθ)dθ. So

logR ≤
∫ R

1

(

∫ 2π

0
ρ(reiθ)dθ

)

dr =

∫∫

CR

ρ(z)

|z| dσz,and
0 ≤

∫∫

CR

(
1

2π|z| − ρ(z))dσz =
1

2π
logR− 1

π

∫∫

CR

ρ(z)

|z| dσz +

∫∫

CR

ρ2(z)dσz

≤
∫∫

CR

ρ2(z)dσz −
1

2π
logR.Therefore, 1

2π logR ≤ m(CR,Γ).We observe that CR1
6∼= CR2

whenever R1 6= R2, be
ause the modulus is a 
onformalinvariant by Prop 3.2.
• More generally, for any doubly 
onne
ted hyperboli
 Riemann surfa
e V , there is aunique R ∈ (1,∞], su
h that V may be mapped 
onformally onto CR (note that C∞ ∼=

D \ {0}). Then if Γ is the set of 
urves that separate the boundaries, then m(V,Γ) =
1
2π logR. This is also one the most used modulus for doubly 
onne
ted domains, we willdenote it by M(V ).De�nition 3.4. Let Ω be a simply 
onne
ted hyperboli
 domain in C̄. Let f : Ω → D bethe Riemann mapping of Ω with respe
t to s ∈ Ω, s 6= ∞ (i.e. f is bije
tive and 
onformal,

f(s) = 0 , f ′(s) > 0). Then we de�ne the 
onformal radius of Ω with respe
t to s by
R(Ω, s) =

1

f ′(s)In other words, R(Ω, s) is de�ned su
h that there is a bije
tive 
onformal map g : Ω → {ω ∈
C

∣

∣ |ω| < R(Ω, s)}, with the Taylor expansion g(ζ) = (ζ−s)+a2(ζ−s)2 + · · · . We may extendthis de�nition to the 
ase s = ∞ by de�ning R(Ω,∞) so that there exists a bije
tive 
onformalmap g : Ω → {ω ∈ C̄
∣

∣ |ω| > R(Ω,∞)} with the Taylor expansion g(ζ) = ζ + b0 + b1
ζ + · · · .Conformal radius is 
onne
ted with a limiting 
ase of the modulus of a doubly 
onne
teddomain in the following way.De�nition 3.5. Let Ω be a simply 
onne
ted hyperboli
 domain in C̄. and let s ∈ Ω, |s| <∞.Let Ωε = Ω \ {ζ ∈ C

∣

∣ |s − ζ| ≤ ε} be de�ned for ε small enough, su
h that Ωε is doubly
onne
ted. We de�ne the redu
ed modulus of Ω with respe
t to s by
m(Ω, s) = lim

ε→0

(

M(Ωε) +
1

2π
log ε

)

.If s = ∞ , then we de�ne
m(Ω,∞) = m(ϕ(Ω), 0)where ϕ : Ω → C̄ is given by ζ 7→ 1
ζ .



3.1 Modulus of a family of 
urves 31Theorem 3.6. Let Ω be a simply 
onne
ted hyperboli
 domain, s ∈ Ω, |s| <∞. If R(Ω, s) isthe 
onformal radius of Ω with respe
t to s, then the redu
ed modulus m(Ω, s) exists and
m(Ω, s) =

1

2π
logR(Ω, s).If s = ∞, then

m(Ω,∞) = − 1

2π
logR(Ω,∞).Proof. We have to prove the theorem only for |s| <∞. Let ζ = f(z) = z− s+ b2(z− s)2 + · · ·be the Riemann mapping from Ω onto the disk of radius R(Ω, s). Then

{ζ ∈ C
∣

∣ ε(1+|b2|ε+o(ε)) < |ζ| < R(Ω, s)} ⊆ f(Ωε) ⊆ {ζ ∈ C
∣

∣ ε(1−|b2|ε−o(ε)) < |ζ| < R(Ω, s)}.From (3.3) we have that
1

2π
log

R(Ω, s)

ε(1 + |b2|ε+ o(ε))
≤M(Ωε) = M(f(Ωε)) ≤

1

2π
log

R(Ω, s)

ε(1 − |b2|ε− o(ε))
.Adding 1

2π log ε to all sides of this inequality and taking the limit as ε → 0, this leads to theresult.From these results, it follows immediately that the redu
ed modulus is not 
onformallyinvariant.Corollary 3.7. Let f : Ω → C̄ be an inje
tive 
onformal map. Let s ∈ Ω be su
h that
|s| <∞ , |f(s)| <∞. Then,

m(f(Ω), f(s)) = m(Ω, s) +
1

2π
log |f ′(s)|.We use this formula to de�ne the redu
ed modulus for a general simply 
onne
ted domainon a Riemann surfa
e.Example 3.8. • Clearlym(D, 0) = 0. For any other s ∈ D, we 
an use a Möbius transform

τs(z) = z+s
1+s̄z of the unit disk, mapping 0 to s. Sin
e τs(z)′ = 1−|s|2

(zs̄+1)2
, we 
on
lude that

m(D, s) =
1

2π
log |τ ′s(0)| =

1

2π
log(1 − |s|2). (3.4)

• Let us 
onsider the redu
ed modulus of the ellipse with the major axis a, and thee

entri
ity λ. From (3.4) we get that
m(Ea;λ, s) =

1

2π
log(1 − |ω|2)E ′

a;λ(ω)

=
1

2π
log a+

1

2π
log

πλ(1 − |ω|2)
2rK(r2)

∣

∣

∣

cos
(

πF(ω
r
,r2)

2K(r2)

)

√

(1 − (r−2 + r2)ω2 + ω4)

∣

∣

∣,where ω = E−1
a;λ(s) and r = r(λ). Note that given s in the expression above, the �rst termdepends only on a and the se
ond one only on λ. In parti
ular, the redu
ed moduluswith respe
t to the 
entre and fo
i (ω equal to respe
tively 0 and r) be
omes

m(Ω, 0) =
1

2π
log a+

1

2π
log

πλ

2rK(r2)
,
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onformal mappings and the redu
ed modulusand
m(Ω, aλ) =

1

2π
log a+

1

2π
log

( π

2K(r2)

)2 λ

r(1 + r2)
.We in
lude here, one of the most important tools when working with moduli.Theorem 3.9 (Gröts
h Lemmas). 1. Let V1, ..., Vn be non-interse
ting quadrilaterals in Qlwith primary sides on the opposite horizontal sides of V . Then,

M(Ql) ≥
n

∑

j=1

M(Vj).The equality is attained if and only if ⋃n
j=1 Vj = Ql and every Vj is a re
tangle.2. Let V1, ..., Vn be non-interse
ting doubly 
onne
ted domains in CR, separating the bound-ary 
omponents of CR. Then

M(CR) ≥
n

∑

j=1

M(Vj).The equality is attained if and only if ⋃n
j=1 Vj = CR, and all ∂Vj are 
on
entri
 
ir
lesfor any j.The proof 
an found, e.g., in [34℄ . Letting R→ ∞ in the se
ond Gröts
h Lemma, we geta 
orollary.Corollary 3.10. Let V be a disk 
entred at the origin, split into domains V1, ..., Vn by 
urvesseparating the boundary and 0. Let V1 be the domain whi
h 
ontains 0. Then,

m(V, 0) ≥ m(V1, 0) +

n
∑

j=2

M(Vj).The equality is attained if and only if ∂Vj are 
on
entri
 
ir
les for 2 < j < n.The de�nition of the modulus 
an also be extended to several families of 
urves. We willuse the sign ≃ to denote free homotopy of 
urves.De�nition 3.11. Let N be a (bordered) Riemann surfa
e, with ∂N 
onsisting of hyperboli
boundaries. Then:
• A 
urve γj in N is said to be of type I if it is a simple loop not null homotopi
.
• A 
urve γj in N is said to be of type II if it is a simple ar
 ending on boundary and notnull homotopi
.
• A 
olle
tion of 
urves γ = {γ1, ...γn} is said to be an admissible system of 
urves, if all
urves are disjoint, γj 6≃ γk for any j 6= k, and all 
urves are either of type I or type II.



3.2 Quasi
onformal mappings 33Given su
h an admissible system, and a non-zero ve
tor α = (α1, . . . , αm), let Γj = {η|η ≃
γj}, and let Γ = {Γ1, . . . ,Γm}. Admissible metri
s 
onsist of all L2 metri
s whi
h, for all jand any γ ∈ Γj, satisfy the inequality

∫

γ
ρ(z)|dz| ≥ αj .Let P be the 
olle
tion of all admissible metri
s. Then the modulus of Γ with respe
t to Nand α is de�ned by

m(N,Γ, α) = inf
ρ∈P

∫∫

N
ρ2(z)dσz .Observe that if we let α be a ve
tor with 1 at the j'th pla
e, and the resting 
oordinates zero,then m(N,Γ, α) = m(N,Γj).It is known that in these types of problems, there is always a unique extremal metri
. Thismetri
 is on the form ρ∗(z)|dz| =

√

φ(z)|dz|, where φ(z)dz2 is a quadrati
 di�erential with�nite traje
tories.To ea
h su
h problem, we may asso
iate 
olle
tions of domains. If N be a Riemann surfa
eand if Γ is a 
olle
tion of homotopy 
lasses, as above, then we may asso
iate a 
olle
tion of non-interse
ting 
onne
ted domains V = {V1, V2, . . . , Vn} whi
h satis�es the following properties:
• if Γj is of type I, then Vj is a doubly 
onne
ted domain with ∂V 
onsisting of 
urvesfrom Γj;
• if Γj is of type II, then Vj is a quadrilateral with primary sides on the boundary of Nand the other pair of sides are from Γj.The following important result make a 
onne
tion between two dual problems: the modulusproblem as the in�mum of 
ertain redu
ed area, and the problem of extremal partition of aRiemann surfa
e by non-interse
ting domains of 
ertain type.Theorem 3.12 ([34℄). If V is any 
olle
tion of domains asso
iated with Γ and if α =

(α1, ..., αn) is a non-zero ve
tor, then
n

∑

j=1

αjM(Vj) ≤ m(N,Γ, α).Equality is given by an extremal 
olle
tion V ∗, 
onsisting of domains whi
h are either ringdomains or quadrangles of the extremal quadrati
 di�erential.3.2 Quasi
onformal mappingsWe will give two equivalent de�nitions of a K-quasi
onformal (shortened to K-q.
.) mapping,where K ∈ [1,∞).De�nition 3.13. (geometri
 de�nition) A homeomorphism f : Ω → Ω′, where Ω and Ω′ aredomains in C̄, is 
alled K-q.
. if, for every quadrilateral Q ⊆ Ω, the following inequality
M(f(Q)) ≤ KM(Q) (3.5)holds.



34 Quasi
onformal mappings and the redu
ed modulusThis de�nition is ni
e for determining some properties of quasi
onformal maps.
• Composition of a K1-q.
. map and a K2-q.
. map, is a K1K2-q.
. map.
• The inequality (3.5) implies that K−1M(Q) ≤ M(f(Q)) ≤ KM(Q). This follows fromthe fa
t that if Q is any quadrilateral and Q̃ is the same quadrilateral, with permutatedprimary sides, then M(Q̃) =

(

M(Q)
)−1. From this, it follows that the inverse to a

K-q.
. map is K-q.
.
• A 1-q.
. map is 
onformal.
• If a mapping f is su
h that for every point in Ω there is a neighbourhood where f is
K-q.
., then f is a K-q.
. map on Ω.

• If V is a doubly 
onne
ted domain, then K−1M(V ) ≤M(f(V )) ≤ KM(V ).However, this geometri
 de�nition 
an often in pra
ti
e, be hard to 
he
k. Let us thereforepresent the notion of quasi
onformality from a more analyti
 point of view.De�nition 3.14. A fun
tion g(x) is absolutely 
ontinuous on an interval I = [a, b], if forevery ǫ > 0, there exists a δ > 0, su
h that for any �nite set of disjoint intervals {(ai, bi)}ni=1in I, we have
n

∑

i=1

(bi − ai) < δ ⇒
n

∑

i=1

|f(bi) − f(ai)| < ǫ.Clearly absolute 
ontinuity implies 
ontinuity. Apart from this de�nition, absolute 
onti-nuity 
an be 
he
ked in the following way.Theorem 3.15 ([30℄). Let I = [a, b], and let f : I → R be 
ontinuous and non-de
reasing.Then the following statements are equivalent:a) f is absolutely 
ontinuous on I;b) If K ⊂ I has measure 0, then f(K) has measure 0 (both with respe
t to the Lebesguemeasure);
) f is di�erentiable a.e. on I, f ′ ∈ L1(I), and for any x ∈ I,
f(x) − f(a) =

∫ x

a
f ′(t)dtA fun
tion u(x, y) is 
alled absolutely 
ontinuous on lines (ACL) in Ω, if for every 
losedre
tangle R ⊆ Ω, with the sides parallel to the x- and y-axes, then u(x, y) is absolutely
ontinuous on a.e. horizontal and verti
al lines in R. Note that ACL implies the existen
e ofpartial derivatives a.e. in Ω.De�nition 3.16. (Analyti
 de�nition) Let Ω and Ω′ are domains. A homeomorphism f :

Ω → Ω′ is a K-q.
. map if
• f is ACL in Ω;
• |fz̄|

a.e.
≤ K−1

K+1 |fz|.



3.3 Distortion of the redu
ed modulus under q.
. mappings 35The equivalen
e of these de�nitions is shown in [1℄. It is also 
ommon to 
all su
h a mapping
k-q.
., where k = K−1

K+1 , instead of K-q.
. Obviously, k ∈ [0, 1), and k = 0 implies that themapping is 
onformal. If a mapping is C1, it is quasi
onformal if |fz̄|
|fz| ≤ k. We say that µf = fz̄

fz(whi
h is almost everywhere de�ned for a quasi
onformal mapping) is the Beltrami 
oe�
ientfor the quasi
onformal mapping. For the 
omposition of two quasi
onformal mappings wehave the following relation for the Beltrami 
oe�
ient:
µgf =

∂
∂zf
∂
∂z̄ f̄

· µgf − µf
1 − µf · µgf

. (3.6)If g is 
onformal (µg = 0), then µgf = µf , so the solution to the Beltrami equation
hz̄ = µf · hz (3.7)is equal to f 
omposed with a 
omformal map. Moreover, for any measurable 
omplex valuedfun
tion µ on the domain Ω, with ‖µ‖∞ ≤ k < 1, there is a k-q.
 mapping of Ω, satisfying(3.7). Quasi
onformal maps transform in�nitesimal 
ir
les to in�nitesimal ellipses with theratio of the major and minor axis less than K.3.3 Distortion of the redu
ed modulus under q.
. mappingsLet f be a C1 K-q.
. inje
tive mapping from the unit disk D, onto Ω, with f(0) = 0. Weknow that it is possible to �nd estimates for the modulus of doubly 
onne
ted domains underq.
. maps, and we also know, that if f is 
onformal, it is su�
ient to know f ′(0), to de�ne

m(Ω, 0). It seems to be reasonable to expe
t that knowing |fz|(0) or perhaps the Ja
obian
Jf (0) = |fz|2(0) + |fz̄|2(0), we will be able to determine an interval for m(Ω, 0), dependingonly on K.We will try to use the Grötzs
h Lemma to estimate m(Ω, 0). Let us split D into two parts
Dε = {z ∈ D

∣

∣ |z| > ε} and Eε;0 as de�ned in example 2.14. Let Ωε = f(Dε). The domain
f(Eε;0) approa
hes an ellipse for small ε. Let K0 = |fz |(0)+|fz̄ |(0)

|fz |(0)−|fz̄ |(0) . As ε be
omes smaller,
f(Eε;0) approa
hes the ellipse with the major axis a0(ε) and the e

entri
ity λ0 =

√

1 +K−2
0 .We 
an use the fa
t that the Ja
obian is a lo
al enlargement fa
tor to determine a0(ε). Thisgives us

Jf (0)πǫ2 = (|fz|2(0) + |fz̄|2(0))πǫ2 =
πa2

0

K0
,so that a0 = (|fz|(0)+ |fz̄ |(0))ε and λ0 = 2

√
|fz|(0)|fz̄ |(0)

|fz |(0)+|fz̄ |(0) . Using the Grötzs
h Lemma for small
ε, we get

m(Ω, 0) ≥M(Ωε) +m(Ea0;λ0
, 0) = M(Ωε) +

1

2π
log ε+

1

2π
log

πλ0(|fz|(0) + |fz̄|(0))
2r(λ0)K((r(λ0))2)

.We see that the last part is independent of ε. The problem is that log ε−K
−1 ≤ M(Ωε) ≤

log ε−K and we 
an not 
ontrol the distortion as ε→ 0.Proposition 3.17. For any non-zero a ∈ R+, any K > 1, and for any κ ∈ R, there is a
K-q.
. map f , with |fz|(0) = a su
h that m(f(D), f(0)) = κ.
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onformal mappings and the redu
ed modulusProof. Assume a = 1. The K q.
. mapping
f(z; ε) = z(

|z|
ε

)K−1 z ∈ Dε,is su
h that the image of the domain Dε has modulus −K
2π log ε. It may be extended to thewhole unit disk by

f(z; ε) =

{

z( |z|ε )K−1 if 1 > |z| > ε,
z if |z| ≤ ε,for 0 < ε < 1. We further de�ne f(z; 1) = idD(z), and f(z; 1

ε ) = εK−1f−1(zε1−K ; ε), su
hthat for any ε > 0

m(f(D, ε), 0) =
1 −K

2π
log εSo we only need to show that all these mapping are quasi
onformal, and it is su�
ient to provethis for 0 < ε < 1. f(z; ε) is a homeomorphism (may be extended to a bije
tive mapping in the
losed unit disk), and |∂f∂z̄ (z; ε)| ≤ K−1

K+1 |
∂f
∂z (z; ε)| where they are de�ned (in D\{z

∣

∣ |z| = ε) . Thefun
tion f(z; ε) is 
learly absolutely 
ontinuous on line segments lying entirely in Dε or Eε,0.Let I = [a, b] + ic be a horizontal line segment in �rst quadrant, su
h that √ε2 − c2 ∈ [a, b],that is, it 
rosses the 
ir
le |z| = ε. Let φ1(x) = Re (f |I) and φ2(x) = Im (f |I). We have
φ1(x) =

{

(
√
x2+c2

ε )K−1x if x >
√
ε2 − c2,

x if x ≤
√
ε2 − c2,and

φ′1(x) =

{

(x2+c2)
K−3

2

εK−1 (Kx2 + c2) if x >
√
ε2 − c2,

1 if x <
√
ε2 − c2.Sin
e the derivative of φ1 is positive, φ1 is in
reasing. We 
learly have that φ1(x) − φ1(a) =

∫ x
a φ

′
1(t)dt, so φ1(x) is absolutely 
ontinuous on I. Similar argument works for

φ2(x) =

{

c(
√
x2+c2

ε )K−1 if x >
√
ε2 − c2,

c if x ≤
√
ε2 − c2,and

φ′2(x) =

{

cx(K − 1) (x2+c2)
K−3

2

εK−1 if x >
√
ε2 − c2,

0 if x <
√
ε2 − c2.For I 
rossing |z| = ε and lying in another quadrant we use the same arguments (swit
hingorientation on I when ne
essary). The arguments for verti
al lines are similar. Hen
e all themappings are K-quasi
onformal.Observe that these maps 
an even be made C∞ by using a bump fun
tion.3.4 The Löwner-Kufarev equationWe 
onsider a 
hain of simply 
onne
ted hyperboli
 domains {Ω(t)}τt=0 in C, with τ ∈ (0,∞],su
h that



3.4 The Löwner-Kufarev equation 37
• t1 < t2 ⇒ Ω(t1) ( Ω(t2) (that is {Ω(t)}τt=0 is a subordination 
hain)
• 0 ∈ Ω(0)

• R(Ω(t), 0) = et (for an arbitrary subordination 
hain, this 
an be a
hieved by a repara-metrisation)From Riemann mapping theorem we know, that for any �xed t, there exists a unique holo-morphi
 univalent f(ζ, t) : D → C,
ζ 7→ et(ζ + α2(t)ζ

2 + α3(t)z
3 + · · · ),su
h that f(D, t) = Ω(t). A ne
essary 
ondition for for a fun
tion to represent su
h a subor-dination 
hain, is that there exists an analyti
 regular fun
tion

p(ζ, t) = 1 + p1(t)ζ + p2(t)ζ
2 + ... ζ ∈ D,with Re p(ζ, t) > 0 for almost every (ζ, t) ∈ D× [0, τ), su
h that f is a solution to the equation

∂f(ζ, t)

∂t
= ζ

∂f(ζ, t)

∂ζ
p(ζ, t) for ζ ∈ D and for almost all t ∈ [0, τ). (3.8)This equation is 
alled the Löwner-Kufarev equation. Let us denote the 
lass of all su
h p(z, t)by C . We introdu
e a parameter s, to solve the the above equation by the 
hara
teristi
method with the initial 
ondition f(ζ, 0) = f0(ζ), asso
iated to some initial domain Ω(0) = Ω0.Then

dt

ds
= 1,

dζ

ds
= −ζ p(ζ, t), df0

ds
= 0, (3.9)with initial 
onditions t(0) = 0, ζ(0) = z, f(z, 0) = f0(z) where z ∈ D. Clearly t = s.However, we may only get solutions for ζ in some subdomain of D. We therefore use w(z.t)instead of ζ for solutions of (3.9). We end up with the following di�erential equation

dw

dt
= −wp(w, t) w(z, 0) = z (3.10)Solving this for w, we get that f0(w
−1(ζ, t)), as a solution for (3.8) in parts on the unit disk. Inthe attempts to extend this solutions to the entire unit disk, we may loose inje
tivity. However,is was shown by Pommerenke [26℄, that for every fun
tion f ∈ S, there is a p(z, t) ∈ C, su
hthat the solution w(z, t) to (3.10) with this p(z, t), we have
f(z) = lim

t→∞
etw(z, t) (3.11)We say in this 
ase that f is generated by p (this is not a standard term). The 
hoi
e of p isnot unique, but every p ∈ C generate a fun
tion in S. If a fun
tion f generated by p(z, t), istaken as the initial 
ondition in (3.8) with the same p(z, t), then the solution is univalent forany t.Example 3.18. Let S′ be the sub
lass of S, whose image is C \ γ, where γ is a Jordan 
urvestarting at a point in the 
omplex plane and ending at in�nity. These mappings are 
alled slit
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onformal mappings and the redu
ed modulusmappings and they are dense in S with respe
t to the lo
al uniform 
onvergen
e. Any f ∈ S′is generated by p(z, t) ∈ C in the form
p(z, t) =

eiu(t) + z

eiu(t) − z
,where u : R+ → R is a 
ontinuous fun
tion. (3.8) was originally studied by Löwner [24℄ with

p on this form, and then later generalised Kufarev [22℄. If f is a multislit mapping, whoseimage in the 
omplex plane has a tree with m− 1 tips as 
omplement, then it f is generatedby elements from C in the form
p(z, t) =

m
∑

k=1

λk(t)
eiuk(t) + z

eiuk(t) − z
.Here, uk(t) : R+ → R are 
ontinuous, and λk(t) : R+ → [0, 1] are measurable fun
tions with

∑m
k=1 λk(t) = 1. For a general mapping f , it is di�
ult to know whi
h p ∈ C that generate it.We de�ne, for k ∈ [0, k) a sub
lass Sk ⊆ S , extra
ting the 
lass of fun
tions generated bysome p(z, t) ∈ C satisfying

∣

∣

∣

p(z, t) − 1

p(z, t) + 1

∣

∣

∣ ≤ k (3.12)for all (z, t) ∈ D×R+. We denote by S̃ the sub
lass of S 
onsisting of fun
tions whose imageis bounded by a C∞ Jordan 
urve. If f ∈ S̃, then both f(D), and ext f(D) are domains withthe 
ommon boundary. Note that Sk ( S̃ for any k ∈ [0, 1).By the analogy with S, we 
an de�ne the 
lass of univalent fun
tions f in D∗ normalisedby g(z) = z + b0 + b1
z + . . . by Σ . We denote the sub
lass of fun
tions with b0 = 0 by Σ0,and the sub
lass of fun
tions su
h that 0 6∈ g(D∗) by Σ′. . Any g ∈ Σ is equal to a 
onstantplus some element in Σ′ (or Σ0). There is a one-to-one 
orresponden
e mapping Ξ : S → Σ′,whi
h, for f with the expansion f(z) = z + a1z

2 + a2z
3 . . . , is given by

Ξ : f(z) 7→ 1

f(1
z )
.For this 
lass we have a similar way to generate its elements. Let C∗ = {p(z, t) : D∗ →

C
∣

∣ p(1
z , t) ∈ C}. Then we have that for any g ∈ Σ, there is p ∈ C∗, su
h that

g(z) = lim
t→∞

e−tw(z, t), (3.13)where w is a solution to
dw

dt
= wp(w, t) (3.14)We also de�ne the sub
lass Σk = Ξ(Sk) .3.5 Conformal maps with quasi
onformal extensionSin
e there is no 
onsistent estimate for the distortion of the 
onformal radius under generalquasi
onformal map, we will look at quasi
onformal fun
tions in D, that have a univalentextension into the exterior D∗, and use the properties of the exterior fun
tion, to determineproperties of the interior one.



3.5 Conformal maps with quasi
onformal extension 39De�nition 3.19. A 
urve γ is 
alled a k-quasi
ir
le, if γ = f(∂D) for a k-q.
. mapping
f : C̄ → C̄In parti
ular, a C∞ 
losed Jordan 
urve is a quasi
ir
le. We 
onsider a quasi
onformalmapping f : C̄ → C̄ su
h that f |D∗ is univalent. To normalise, we require that f |D∗ ∈ Σkand f(0) = 0. For any g0 ∈ Σk, there is a k-q.
. mapping f : C̄ → C̄, with f(0) = 0 and
f |D∗ = g0 :Theorem 3.20. Let g(z, t) be a univalent solution to

∂g

∂t
= −zp(z, t)∂g

∂z
, (3.15)with the initial 
ondition g(z, 0) = g0(z), and let

∣

∣

∣

p(z, t) − 1

p(z, t) + 1

∣

∣

∣ ≤ k < 1.Then g(D, t) is a Jordan domain bounded by a k-quasi
irle for ea
h t ≥ 0, and f de�ned by
f(z) =

{

g(z, 0) if z ∈ D∗,
g( z

|z| ,− log |z|) if z ∈ D̄,is a k-q.
. extension of g(z, 0) into C̄ with f(0) = 0.This follows from similar theorem for fun
tions in Sk, found in [4℄. It is important to noti
e,that although all elements in Σk admits an quasi
onformal extension, that does not ne
essarilymean that all fun
tions that have a k-quasi
onformal extension is in Σk. For example, themappings later 
onsidered (3.17), has a k2-q.
. extension, but there is no obvious 
hoi
e for psatisfying inequality (3.12) for k2. The reason we mention this, is to avoid 
onfusion, sin
e inmu
h literature on Complex Analysis, the symbol Σk denotes fun
tions in Σ or Σ0 that admit
k-q.
. extension.We will try to look at the distortion of the redu
ed modulus under mapping given by theabove theorem. From the 
lassi
al area theorem we have that the area of the 
omplement to
f(D∗) is less than π. Of all domains of 
onstant area, the disk has the maximal 
onformalradius. A
tually, for any simply 
onne
ted domain Ω, with R = maxs∈ΩR(Ω, s),

πR2 ≤ Area(Ω),with equality if and only if Ω is a disk (see e.g. [16℄). Therefore, m(f(D), 0) ≤ 0. Let f |D∗be generated by p(z, t), with ∣

∣

∣

p(z,t)−1
p(z,t)+1

∣

∣

∣
≤ k for almost every (z, t) ∈ D∗ × R+. From SwartzLemma, we have that

∣

∣

∣

p(w, t) − 1

p(w, t) + 1

∣

∣

∣
≤ k

|w| , (3.16)whi
h gives
|w| − k

|w| + k
≤ |p(w, k)| ≤ |w| + k

|w| − k
.Using the latter inequality, we get

Re p(z, t) = Re (
∂
∂tw

w
) = Re (

∂

∂t
logw) =

∂

∂t
log |w| =

∂
∂t |w|
|w| ≤ |w| + k

|w| − k
.
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onformal mappings and the redu
ed modulusRearanging and integrating the inequality with respe
t to t, we get
∫ t

0
dt = t ≥

∫ |w|

|z|

x− k

(x+ k)x
dx = log

(|w| + k)2|z|
|w|(|z| + k)2

,and further
0 ≥ log

(|w| + k)2|z|
|w|(|z| + k)2

− log et = log
(|w| + k)2|z|
et|w|(|z| + k)2

= log
e−2t(|w| + k)2|z|
e−t|w|(|z| + k)2

.Letting t→ ∞ we get (

|f(z)| = limt→∞ e−t|w(z, t)|
)

|f(z)| ≤ (|z| + k)2

|z|and doing similar operations for the lower estimate, we get
(|z| − k)2

|z| ≤ |f(z)| ≤ (|z| + k)2

|z| z ∈ D∗.From this, we have that f(D) will always 
ontain (1 − k)2D, and it is always 
ontained in
(1 + k)2D. If we have equality in (3.16), then, if α ∈ R

f(z) =
(z + eiαk)2

z
z ∈ D∗ (3.17)and we see, that in this 
ase, f(D) in an ellipse, with the 
entre at 2keiα, with the major axis

1 + k2, the minor axis 1 − k2, rotated by an angle α. These mappings do appear as extremalfun
tions in other areas of 
omplex analysis (see e.g. [23℄).The mappings have an obvious k2-q.
. extension
f(z) =

{

(z+eiαk)2

z if z ∈ D∗,
z + 2keiα + k2e2iαz̄ if z ∈ D̄,but we do not have the normalisation f(0) = 0. We try to �nd another extension by thetheorem 3.20, and solving (3.15) with the initial 
ondition g0(z) = (z+eiαk)2

z , z ∈ D∗. Thesolution is f(z, t) = (z+eiαk)2

z e−t, and we get the following extension
f(z) =

{

(z+eiαk)2

z if z ∈ D∗

z + 2keiα|z| + k2e2iαz̄ if z ∈ D̄,whi
h as we 
an see satis�es the equality
|fz̄|
|fz|

a.e.
= k

∣

∣

k + z
|z|

1 + k z̄
|z|

∣

∣ = k,and f(0) = 0.The investigation above ends up with the following result.



3.5 Conformal maps with quasi
onformal extension 41Theorem 3.21. Let f : C̄ → C̄ be a quasi
onformal automorphism with f(0) = 0, f(∞) = ∞.Let f |D∗ ∈ Σk and let f |D be k -q.
. Then,
ℓk ≤ m(f(D, 0) ≤ 0,where ℓk is the uniform lower boundary of the modulus of all su
h maps and

1

2π
log(1 − k)2 ≤ ℓk ≤

1

2π
log

( π

K(r2)

)2 k

2r(1 + r2)
,where r = r( 2k

1+k2 ).Proof. For ℓk, the left inequality follows be
ause all su
h maps 
ontain (1 − k)2D, and theright-hand inequality is from the formula for the redu
ed modulus of the ellipse.
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Figure 3.1: The bounds for the 
onformal radius. The �step down� at the end of the upperbound (ellipse), is be
ause of numeri
al error.
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Chapter 4Class S and the 
oe�
ient manifoldWe will now study some properties of the 
lass S of univalent fun
tions f : D → C normalisedby
f(z) = z + c1z

2 + c2z
3 + · · ·One of the most important result for this 
lass is the de Branges theorem proving the famousBieberba
h 
onje
ture [7℄. This result states that for any n, |cn| ≤ n + 1 with the equalityonly for rotations of the Koebe fun
tion. A natural next step is to �nd out what elements of

CN being inside the bounded domain given by the de Branges theorem 
an be the 
oe�
ientsequen
e of a univalent fun
tion. To do this we study manifold of 
oe�
ients of S and S̃.We will begin this 
hapter with the de�nition of the Witt and Virasoro algebras, as they willlater appear in se
tion 4.2, when working on a manifold of 
oe�
ients. Then we shall deal inmore details with the 
oe�
ient manifolds by 
onstru
ting di�erent Hamiltonian systems forthe 
oe�
ients in S based on the Löwner-Kufarev equation.4.1 Virasoro algebraDe�nition 4.1. The Virasoro algebra vir is a Lie algebra 
onsisting of a ve
tor spa
e over Cspanned by basis elements {Ln}n∈Z and c with Lie bra
kets de�ned by the relations
[Lm, Ln] = (m− n)Lm+n +

c

12
m(m2 − 1)δ−m,n,

[c, Ln] = 0 ∀n ∈ Z,where δm,n is the Krone
ker delta.The element c is 
alled the 
entral 
harge, and in most representations it works as amultipli
ation by s
alar. This algebra usually appears as a 
entral extension of the Wittalgebra.De�nition 4.2. If f, g, h are Lie algebras, then h is the 
entral extension of g by f, if there isan exa
t sequen
e of Lie algebras
0 → f → h → g → 0,su
h that f is 
ontained in the 
entre of h. 43



44 Class S and the 
oe�
ient manifoldTreated as ve
tor spa
es we 
an write h ∼= g ⊕ f. If h = g ⊕ f as Lie algebras, (the Liealgebra g ⊕ f is de�ned to be the ve
tor spa
e g ⊕ f with bra
kets given by
[(g1, f1), (g2, f2)] =

(

[g1, g2], [f1, f2]
)and the last bra
kets will always be 0 in 
ase of a 
entral extension, sin
e f has to be 
ontainedin the 
entre) we say that h is a trivial 
entral extension of g by f.A ve
tor �eld on a Riemannian manifold, is 
alled a Killing ve
tor �eld if it preserves themetri
 (i.e. given a Riemannian metri
 ρ, then LXρ = 0, where LX is the Lie derivative). TheWitt algebra is the Lie algebra of holomorphi
 Killing ve
tor �elds on C \ {0}, with bra
ketsgiven by the 
ommutators. This has basis elements {Ln = −zn+1 ∂

∂z}n∈Z of this algebra, andthe bra
kets of these two ve
tor �elds are given by
[Lm, Ln] = (n−m)zm+n+1 ∂

∂z
= (m− n)Lm+n.The Virasoro algebra is then a nontrivial 
entral extension of the Witt algebra by C (a
tually,there exists no other nontrivial extension by C, see, e.g., [14℄).To get some details on this extension, we �rst need some de�nitions. A Fré
het spa
e Vis a Hausdor� topologi
al 
omplete ve
tor spa
e, in whi
h its topology may be indu
ed by a
ountable family of seminorms {‖ · ‖k}k∈N (i.e., the sets Ux,k,ε = {y ∈ V

∣

∣ ‖x−y‖k < ε}, where
x ∈ V, k ∈ N, ε > 0 form a basis for the topology). Fré
het spa
es are always lo
ally 
onvex[10℄. Derivation of a fun
tion between two Fré
het spa
es is de�ned by the Gâteaux derivative.A fun
tion f : U → W , where V and W are lo
ally 
onvex topologi
al ve
tor spa
es, and Uis open in V , is said to have Gâteaux derivative in x ∈ U in the dire
tion y ∈ V if

dfx(y) = lim
t→0

f(x+ ty) − f(x)

texists. If dfx(y) exists for any y ∈ V , then f is said to be di�erentiable at x. A fun
tion f is
ontinuously di�erentiable (a C1-mapping) in an open subset U ⊆ V , if df : U × V → W is
ontinuous. Note that dfx(y) needs not, in general, be linear with respe
t to y. This de�nition
an easily be extended to Cn -mappings for any n ∈ N ∪ {∞}. A Fré
het manifold M (overa model spa
e V , where V is a Fré
het spa
e) is then a topologi
al Hausdor� spa
e M witha maximal atlas A = {xα : Uα → V }, (as usual Uα are open sets 
overing M , and ea
h xα ishomeomorphi
 on its image) where x−1
β xα|x(Uα∩Uβ) now is required to be C∞ as mappings ofFré
het spa
es for any xα, xβ ∈ A. We further de�ne di�erentiable mappings between Fré
hetmanifolds and tangent spa
es in an analogous way of what is done for real manifolds. ALie-Fré
het group G, is a topologi
al group on a Fré
het manifold, su
h that multipli
ationand inversion are C∞-mappings.An important sub
lass of the Lie-Fré
het groups, are the Lie-Bana
h groups, de�ned simi-larly, only with �Fré
het spa
e� inter
hanged with �Bana
h spa
e�, and the Gâteaux derivativeinter
hanged with the Fré
het derivative. If V,W are Bana
h spa
es, and U is open in V , then

f : U → V , is Fré
het di�erentiable at x if there exists a bounded linear operator Ax : V →W ,su
h that
lim
y→0

‖f(x+ y) − f(x) −Ax(y)‖
‖y‖ = 0,and 
ontinuously di�erentiable in U , if dfx(y) = Axy is 
ontinuous in U × V .
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k to the general 
ase, if G is a Lie Fré
het group (over model spa
e V ), TGis a Fré
het manifold (over model spa
e V × V ), and if e is the identity element in G, themultipli
ation on G, indu
es a bra
ket operation on g = TeG in the usual way, and g is
alled the Lie algebra of G. A Fré
het (resp. Bana
h) spa
e with a skew symmetri
 bilinear
ontinuous map [·, ·], satisfying the Ja
obi identity is 
alled a Lie-Fré
het (resp. Lie-Bana
h)algebra. While the Lie algebra of a Lie-Fré
het or Lie-Bana
h group, is a Lie-Fré
het or Lie-Bana
h algebra, respe
tively, the 
onverse is not ne
essarily true (both in Bana
h and Fré
het
ase). For instan
e, ifM is a real non
ompa
t manifold, then Γ(TM) is a Lie-Fré
het algebra,but it is not the Lie algebra of any Lie-Fré
het Group.The 
ase of Lie-Bana
h groups is mostly studied, sin
e its Lie-algebra always have anexponential map to a lo
al Lie-Bana
h group. We have no su
h knowledge of the existen
eof a exponential map from any general Lie algebra of a Lie-Fré
het group. Studies are oftentherefore restri
ted to Lie-Fré
het group that are regular, where some sort of exponential mapmay be de�ned. For the de�nition of a regular Lie-Fré
het group, and more details, see [21℄.If M is any real 
ompa
t manifold, then Γ(TM) is a Fré
het spa
e with seminorms givenby supremum over partial derivatives. The spa
e of di�eomorphism of M , Diff M , is then aFré
het manifold over model spa
e Γ(TM), and it is a Lie-Fré
het group under 
omposition(in fa
t, a regular one). Its Lie algebra will be Γ(TM). The simplest 
ase of this, but also oneof the most important, is Diff+S
1 , the 
olle
tion of C∞-sense preserving di�eomorphisms ofthe unit 
ir
le. These are all of the form

γ : eiθ 7→ eiα(θ),where α : R → R is a monotoni
ally in
reasing fun
tion, with α(θ + 2π). We denote its Liealgebra by VectS1 , whi
h is just Γ(TS1) with usual 
ommutator bra
kets. This Lie algebrahas a non-trivial unique 
entral extension by R with bra
kets given by
[X1 + ac,X2 + bc] = [X1,X2] +

c

12
ω(ϕ1, ϕ2) ,where Xi(θ) = ϕi(θ)

d
dθ ∈ VectS1, a, b ∈ R, c is a basis ve
tor for R, and ω is the so-
alledGelfand-Fu
hs 
o
y
le

ω(ϕ1, ϕ2) =
1

2π

∫ 2π

0
(ϕ′

1 · ϕ′′
2 − ϕ′′

1 · ϕ′
2)dθ.Note that integration by parts, gives the 2-
y
le 
ondition:

ω(ϕ1, [ϕ2, ϕ2]) + ω(ϕ2, [ϕ3, ϕ1]) + ω(ϕ3, [ϕ1, ϕ2]) = 0and a reformulation of ω
ω(ϕ1, ϕ2) = − 1

4π

∫ 2π

0
(ϕ′

1 + ϕ′′′
1 ) · ϕ2dθ.This will be a real version of the Virasoro algebra whi
h we denote virR . Complexi�
ationof virR gives us vir. To see that this is indeed the 
ase, we write VectS1 as S1 × Vect0S

1,where here S1 represent the 
onstant ve
tor �elds on S1, Vect0 S
1 is the quotient of all ve
tor�elds out by these 
ontant elements. All elements in Vect0 S

1 we may identify with with
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ient manifold
C∞ fun
tions ϕ : S1 → R of vanishing mean value over S1. This gives for ea
h fun
tion anexpansion

ϕ(θ) =
∞

∑

n=1

(

an cosnθ + bn sinnθ
)

.We 
an de�ne almost 
omplex stru
ture by operator
J : ϕ =

∞
∑

n=1

(

an cosnθ + bn sinnθ
)

7→
∞
∑

n=1

(

− an sinnθ + bn cosnθ
)

.Clearly, J2 = −idVect S1 . Holomorphi
 elements are are of the form
1

2
(ϕ− iJ(ϕ)) =

∞
∑

n=1

(an − ibn)e
inθ ,whi
h 
an be extended to holomorphi
 fun
tions into the unit disk. The antiholomorphi
elements are of the form 1

2 (ϕ+ iJ(ϕ)) =
∑∞

n=1(an + ibn)e
−inθ.We 
hoose the basis {Ln = −ieinθ ∂∂θ}n∈Z of VectC S

1, given by the restri
tion of the basiselements in the Witt algebra to the unit 
ir
le. By the above dis
ussion, we know that theseelements does in fa
t span VectS1 ({Ln}n≥1 for the holomorphi
 elements, {Ln}n≤−1 for theantiholomorphi
 elements, and L0 for the 
onstant elements). Computing the bra
kets for thisbasis, we have the following
[Lm + ac, Ln + bc] = [Lm, Ln] +

c

12
ω(−ieimθ,−ieinθ)

= (m− n)Ln+m +
c

12
m(m2 − 1)δ−m,n,whi
h shows that this is indeed the Virasoro algebra.

Diff+S
1 also has a unique nontrivial 
entral extension by R, whi
h has the Virasoro algebraas Lie algebra (the de�nition of 
entral extension for Lie groups, or any group, is de�ned similarto that of Lie algebras). This 
entral extension is 
alled the Virasoro-Bott group V ir and itis given by the manifold Diff+S

1 × R equipped with the produ
t
(γ1, a)(γ2, b) =

(

γ1γ2, a+ b+
c

12
Ω(γ1, γ2)

)where γ1, γ2 ∈ Diff+S1, a, b ∈ R, and Ω is the Thurston-Bott 
o
y
le
Ω(γ1, γ2) =

1

2π

∫ 2π

0
log((γ1γ2)

′) d log(γ′2).

V ir is a regular Lie-Fré
het group, so there exists an exponential map exp : virR → V ir,however, this is not a lo
al di�eomorphism (in fa
t, there are points arbitrary 
lose to identityelement, whi
h are not in the image of the exponential map, see [6℄ Appendix C).4.2 The Coe�
ient manifold and 
onne
tions to Kirillov's man-ifoldLet us 
onsider the 
lass S and its sub
lass S̃ from a more geometri
al point of view. For any
f ∈ S and for 0 < κ < 1, 1

κf(κz) is in S̃. We may therefore look at any f , as a limit of fun
tions
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ient manifold and 
onne
tions to Kirillov's manifold 47in S̃, by letting κ→ 1. Let us embed S and S̃ in CN by identifying f(ζ) = ζ +
∑∞

n=2 cn−1ζ
nwith the point (c1, c2, c3, . . . ). We will denote these embeddings by N and M respe
tively.They 
an be seen as limits of 
oe�
ient bodies

Mn =
{

(c1, c2, . . . , cn)|∃f ∈ S̃, with f = ζ +

∞
∑

n=2

cn−1ζ
n
}

Nn =
{

(c1, c2, . . . , cn)|∃f ∈ S, with f = ζ +

∞
∑

n=2

cn−1ζ
n
}Naturally, Mn is dense in Nn. Generally, for 
oe�
ient bodies it is known that

• Nn homeomorphi
 to D2n−2 = {r ∈ R2n−2
∣

∣ |r| ≤ 1}.
• ∂Nn homeomorphi
 to S2n−3.
• Any x ∈ ∂Nn 
orresponds to exa
tly one f ∈ S, whi
h is 
alled a boundary fun
tionfor Nn. All boundary fun
tions map. D onto C minus a pie
ewise analyti
 Jordanar
s forming a tree with a root at in�nity and having at most n tips. It follows that
∂Nn ∩ Mn = ∅.

• With ex
eption for a set of smaller dimension, for any x ∈ Nn, there is a normal ve
torsatisfying Lips
hitz 
ondition .
• There is a 
onne
ted open subset X1 on ∂Nn, su
h that ∂Nn is an analyti
 hypersurfa
eat every point of X1. Points of ∂Nn, 
orrespond to fun
tions giving extremum to alinear fun
tional belonging to X̄1.
• By the de Branges theorem Nn ⊆ ∏n

i=1(i+ 1)D̄.Not very mu
h else is known ex
ept of the simplest 
ases:
• N1 = 2D̄, that is an 
losed disk of radius 2. M1 = 2D.
• N2 was in 1950 
ompletely des
ribed by S
ha�er and Spen
er [31℄.We also have an alternative des
ription of the manifold M. Given any mapping f ∈ S̃,it has a 
ontinuation to the unit 
ir
le. Sin
e the exterior of f(D) = Ω is also a domain, bythe Riemann mapping theorem, there is a 
onformal map of D∗ onto Ω∗ with g(∞) = ∞, andthis mapping also has an extension to the unit 
ir
le. Let

f−1g|S1 ∈ Diff+S
1 (4.1)and we will denote this di�eomorphism by γ. Given any mapping f ∈ S̃, the di�erent 
hoi
esof g di�er only by rotation (in the sense that g̃ is any other su
h fun
tion, then g̃(z) = g(eiαz),with α ∈ R), thus, by di�erent 
hoi
es of g, f generates a subgroup γRotS1. RotS1 heredenotes the subgroup of Diff+S

1 by sense preserving rotations. De�ne fun
tion
K : S̃ → Diff+S

1/RotS1

f 7→ [γ] = γRotS1
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oe�
ient manifoldwhere γ is 
onstru
ted as in (4.1). Kirillov [19℄ showed that K bije
tion, and this givesidenti�
ation
M = Diff+S

1/RotS1.The inverse map may be 
onstru
ted in the following way.
• Given equivalen
e 
lass γRotS1, pi
k a representative. De�ne w : D∗ → D∗ by

w(ζ) = |ζ|γ( ζ|ζ|).

• We 
onstru
t a quasi
onformal mapping f : C̄ → C̄ in the following way� f |D and fw has to be 
onformal.� f |D ∈ S̃ and f(∞) = ∞.
• [γ] 7→ f |D is then the inverse of F (the fun
tion mat
hing f |D will be fw).The above mapping f is a quasi
onformal automorphism of C̄. Using that fw is 
onformal,the relation (3.6) for the mapping f = fww−1, tells us that

µf = µw−1.in D∗. Note that, if we denote z = reiθ, then w−1(reiθ) = rγ−1(eiθ), and from ∂
∂z = z̄

2|z|
(

∂
∂r −

i
|z|

∂
∂θ

) and ∂
∂z̄ = z

2|z|
(

∂
∂r + i

|z|
∂
∂θ

) we get that f is the solution to a Beltrami equation, withBeltrami 
oe�
ient
µf (z) =







∂
∂z̄
w−1

∂
∂z
w−1

= z2

|z|2 · 1−Vγ−1( z
|z|

)

1+Vγ−1( z
|z|

)
z ∈ D∗

0 z ∈ Dand initial 
onditions f(0) = 0, f(∞) = ∞ and fz(0) = 0. Here we de�ne the operator V by
Vγ(eiθ) = 1

iγ(eiθ)
d
dθγ(e

iθ). Note that if γ(eiθ) = eiα(θ), then Vγ(eiθ) = α′(θ).This manifold Diff+S
1/RotS1 is 
alled Kirillov's manifold, and it is a homogeneous (ho-mogeneous means that Diff+S

1 a
t transitively) Kählerian 
omplex manifold.Example 4.3. Let us 
onsider, as an example, the mapping from the unit disk D onto anellipse. From earlier, we know that
E ′
a;λ(0) =

πaλ

2rK(r2)
.To get a normalised mapping, let a = a(λ) = 2r(λ)K(r2(λ))

πλ . fλ := Ea(λ);λ is then a mapping in
S, and the mat
hing mapping is given by

gλ(z) =
λa(λ)

2

(1 +
√

1 − λ2

λ
z +

λ

1 +
√

1 − λ2
z−1

)

.Sin
e these are one of the few nontrivial examples of mat
hing fun
tions, we try to do the 
or-responden
e with di�eomorphisms of the 
ir
le in this 
ase. We will look at the image γλRot S1
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ient manifold and 
onne
tions to Kirillov's manifold 49of fλ under K, and then try to use the 
onstru
tion above for K−1 on the di�eomorphism γλ.We note that gλ(z)−1 =
z+

√
z2−λ2a(λ)2

a(λ)(1+
√

1−λ2)
, so if we let ς(z) = πF(z/r,r2)

2K(r2)
then

γ−1
λ (z) := (g−1

λ fλ)(z) =
λa(λ) sin ς(z) +

√

λ2a(λ) sin2 ς(z) − λ2a(λ)2

a(λ)(1 +
√

1 − λ2)
.

=
λ

1 +
√

1 − λ2
ei(ς(z)−π/2).The di�eomorphisms are therefore of the form

γ−1
λ (eiθ) =

iλ

1 +
√

1 − λ2
eiς(e

iθ) .Using that γλ(1) = 1, we get
γ−1
λ (eiθ) = exp

( iπ

2

F̃(θ + π
2 ,

2r
1+r2

) − K( 2r
1+r2

)

K(r2)(1 + r2)

)

,where F̃(θ, κ) =
∫ θ
0

dθ√
1−κ2 sin2 θ

= F(sin θ, κ). In the above formula, we have used that
F̃(π2 , κ) = K(κ). Using relation K(2

√
κ

1+κ ) = (1 + κ)K(κ) and 
al
ulating the inverse, we�nd
γ−1
λ (eiθ) = exp

( iπ

2
(
F̃(θ + π

2 ,
2r

1+r2
)

K(r2)(1 + r2)
− 1)

)

= −i exp
( iπF̃(θ + π

2 ,
2r

1+r2
)

2(1 + r2)K(r2)

)

,

γλ(e
iθ) = exp

(

− i cos−1
sn

(

(1 + r2)(
2

π
θ + 1)K(r2),

2r

1 + r2

)

)

.

sn(ω, k) is here the inverse fun
tion of ω = F(x, k) with respe
t to x (sn is 
alled the Ja
obi'sellipti
 sine). Now assume that we know γλ, and try to �nd the Beltrami 
oe�
ient of thequasi
onformal extension of fλ
Vγ−λ 1 =

π

2(1 + r2)K(r2)
√

1 − ( 2r
1+r2 )2 cos2 θ

,

µfλ
(z) =

z

z̄
·

√

(1 + r2) − (2rz+2rz̄
|z| )2 − π2

2K(r2)
√

(1 + r2) − (2rz+2rz̄
|z| )2 + π2

2K(r2)

z ∈ D∗.To in pra
ti
e solve this Beltrami equation with this 
oe�
ient (whi
h has solution fλ(z) in Dand gλ(|z|γλ( z|z|) outside) is very hard, and we 
an probably not expe
t that it is mu
h easierfor a general di�eomorphism of the 
ir
le. However, if the Beltrami equation was solved forsome γ ∈ Diff+S
1, it has the advantage, that the solution would give us a pair of mat
hingfun
tions simultaneously.The a
tion of Diff+S

1 on itself, indu
es a left a
tion on S̃. That is, if we denote K−1(γRotS1) =
fγ , we 
an de�ne γ1 · fγ2 = fγ1γ2 . Again, it is hard to see what this a
tion does expli
itly, butthe 
orresponding in�nitesimal a
tion is given by variation

δνf(z) =
f(z)

2πi

∫

S1

(ζf ′(ζ)
f(ζ)

)2 ν(ζ)dζ

ζ(f(ζ) − f(z))
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oe�
ient manifoldfor any ν(eiθ) ddθ ∈ VectCS
1 [20℄. The in�nitesimal a
tion of the basis ve
tors {Lk}k∈Z, whi
hwe will denote by the same letter, is for k > 0

Lk(f)(z) = δ−izkf(z) = zk+1f ′(z)whi
h means that Lk work on M with the a
tion
Lk =

∂

∂ck
+

∞
∑

j=1

(j + 1)cj
∂

∂ck+j
∈ Γ(T 1,0M). (4.2)For k = 0

L0(f)(z) = zf ′(z) − f(z) or L0 =

∞
∑

j=1

jcj
∂

∂cj
∈ Γ(T 1,0M)re�e
ting that L0 is a rotation (we have variation eiεf(e−iεz) = f(z)+ε(zf ′(z)+f(z))+o(ε)).The a
tion of Lk for k < 0 is mu
h more 
ompli
ated [2℄. As an example

L−1(f)(z) = f ′(z) − 1 − 2c1f(z)

L−2(f)(z) = z−1f ′(z) − 1

f(z)
− 3c1 + (c21 − 4c2)f(z)However, they all may be des
ribed by elements in Γ(T 1,0M). {Lk}k≥1 forms a basis for thisspa
e. Their a
tion restri
ted to Mn is given by the trun
ated Kirillov's operators

Lk =
∂

∂ck
+
n−k
∑

j=1

(j + 1)cj
∂

∂ck+j
∈ Γ(T 1,0Mn). (4.3)4.3 Hamiltonian me
hani
s on a 
omplex manifoldWe will �rst re
all the de�nition of a Hamiltonian system for real manifolds based on [3℄, andthen generalise it to 
omplex manifolds. A motion in a real manifold M is a smooth fun
tion

ζ : I → M , where I is a interval in R. Dot will indi
ate partial derivative with respe
tto real variable t (i.e. ζ̇ = ∂ζ
∂t ), whi
h we will 
all time. To avoid 
onfusion in the followingpresentation, the image of a se
tion η at r, is denoted η|r (so for example, the 
otangent ve
tor�eld dxj ∈ Γ(T ∗M) evaluating tangent ve
tor X ∈ Tr(X), is denoted dxj |r(X)). If M is an

n-dimensional real manifold, then it has lo
al 
oordinates x = (x1, . . . , xn). This indu
es lo
al
oordinates (x, p) on T ∗M , that is η ∈ T ∗M has 
oordinates (x̃, p̃) if η =
∑n

j=1 p̃jdxj |x̃ ∈ Tx̃M .De�ne one-form on T ∗M by
ϑ =

n
∑

j=1

pjdxj .By the 
hange of variable formula this is independent the 
hart x, and is therefore ϑ may bede�ned as a global se
tion on the bundle T ∗T ∗M → T ∗M . ϑ is 
alled the 
anoni
al one-form.If we let ω = dϑ ∈ Γ(
∧2 T ∗T ∗M), then the pair (T ∗M,ω) be
omes a symple
ti
 manifold(an even-dimensional manifold with a 
losed nondegenerate two-form). For any two fun
tions
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hani
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omplex manifold 51
f, g : T ∗M → R, we may de�ne the Lie-Poisson bra
kets, by [f, g] = ω(Tf, Tg). Expli
itely,in lo
al 
oordinates

ω =
n

∑

j=1

dpj ∧ dxj ,

[f, g] =

n
∑

j=1

( ∂f

∂pj

∂g

∂xj
− ∂f

∂xj

∂g

∂pj

)

.

ω also indu
es an isomorphism Ψ given by
Ψ : TT ∗M

∼=→ T ∗T ∗M

X → ηXwhere ηX(Y ) = ω(X,Y ).De�nition 4.4. A (real) Hamiltonian fun
tion on a manifold M is a di�erentiable fun
tion
H : T ∗M → R. A motion ζ : I →M is the solution to a Hamiltonian system if

ζ̇ = Ψ−1(TH)|ζfor any t ∈ I. We 
all su
h a 
urve a geodesi
.If we again look at this lo
ally, we noti
e that
Ψ−1

(

n
∑

j=1

(ajdxj + bjdpj)
)

=

n
∑

j=1

(bj
∂

∂xj
− aj

∂

∂pj
)and letting ζ = (x1, . . . , xn, p1, . . . , pn) and ζ̇ =

∑n
j=1(ẋj

∂
∂xj

+ṗj
∂
∂pj

), we get the more 
lassi
alformulation
ẋj =

∂H

∂pj
, ṗj = −∂H

∂xj
j = 1, . . . , n . (4.4)IfM is an n-dimensional 
omplex manifold, thenM is a 2n-dimensional real manifold, andwe may de�ne a Hamiltonian fun
tion H : T ∗M → R mentioned above. We give T ∗M 
omplex
oordinates formally, by denoting (xn+1, . . . , x2n) = (y1, . . . , yn) and similarly pn+j = qj, andlet zj = xj + iyj , and ψj = pj + iqj. Then the equations above be
omes

ż = 2
∂H

∂ψ̄
˙̄ψ = −2

∂H

∂z
(4.5)and, o� 
ourse also, ˙̄z = 2∂H∂ψ , ψ̇ = −2∂H∂z̄ .A 
omplex Hamiltonian fun
tion, is a fun
tion H ∈ O(T 1,0M)∗. If we let (z, ψ̄) be 
o-ordinates on the holomorphi
 
otangent bundle (to denote the last n 
oordinates by ψ̄j , isjust a matter of 
onvention, we 
ould also have used ψ). De�ning 
omplex symple
ti
 2-formform by ω =

∑n
j=1 ψ̄j ∧ dzj , and using similar te
hnique as in the real 
ase, we 
an �nd ananalogous de�nition of geodesi
. In lo
al 
oordinates

żj =
∂H
∂ψ̄j

˙̄ψj = −∂H
∂zj

, (4.6)
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oe�
ient manifold(and o� 
ourse, ∂H∂ψ = ∂H
∂z̄ = 0). We 
all z generalised 
oordinates and ψ̄ generalised momenta.The Lie-Poisson bra
kets asso
iated to ω lo
ally given by

[f, g] =

n
∑

k=1

( ∂f

∂ζk

∂g

∂ψ̄k
− ∂f

∂ψ̄k

∂g

∂ζk

)

.A fun
tion I : (T 1,0M)∗ → C is 
alled a �rst integral if [I,H] = 0. From (4.6) Hamiltonianfun
tion will always be a �rst integral.De�nition 4.5. A Hamiltonian system is 
ompletely integrable (in sense of Louville) if we
an �nd n fun
tionally independent �rst integrals I1, I2 . . . , In whi
h are pairwise involuntary(i.e. [Ii, Ij ] = 0).If the system admits only 1 ≤ k < n independent involuntary integrals, then it is 
alledpartially integrable.The Hamiltonian fun
tions we have des
ribed above are independent of time. In this 
ase,the value of the Hamiltonian fun
tion is 
onstant along geodesi
s. We will later also 
onsiderHamiltonian fun
tions on the form H(z, ψ̄, t), and in this 
ase, H 
hanges with ∂
∂tH alonggeodesi
s.4.4 Hamiltonian interpretation of the Löwner equationIn se
tion 3.4 we looked at the Löwner-Kufarev equation, and how every fun
tion in S isrepresented as a limit

f(z) = z + a1z
2 + a3z

3 + · · · = lim
t→∞

etw(z, t),where w(z, t) is the solution to
dw

dt
= −wp(w, t), w(z, 0) = 0 (4.7)for some p ∈ C. Surprisingly, there is a 
onne
tion with this more �
lassi
al� method andthe a
tion of the Kirillov operators on M. This 
onne
tion �rst appeared in an arti
le onslit mappings (p as in example 3.18) by Prokhorov and Vasiliev [27℄, and a more general
ase was 
onsidered by Markina, Prokhorov and Vasiliev in [25℄. The 
onne
tion 
omes fromHamiltonian systems on the 
oe�
ient bodies, in whi
h geodesi
s give solutions to (4.7).Expli
itely, let g(z, t) = etw(z, t) = z + c1(t)z

2 + c2(t)z
3 + · · · . This will be a 
urve in S,with g(z, 0) = z and limt→∞ g(z, t) = f(z), and inserted in (4.7), with p(z, t) = 1 + p1(t)z +

p2(t)z
2 + · · · , we have the following

ġ = g − gp(e−tg, t) (4.8)or as a series
∞
∑

m=1

ċmz
m+1 = −

∞
∑

m=1

pme
−mtgm+1 = −

∞
∑

m=1

(

m
∑

j=1

pje
−jtdj+1,m+1

)

zm+1



4.4 Hamiltonian interpretation of the Löwner equation 53where gm =
(
∑∞

j=1 cj−1z
j
)m

=
∑∞

j=1 dm,jz
j . If we de�ne the 
oe�
ients are given by:

dm,j =
∑

k1+k2+···+km=j−m−1

ck1ck2 . . . ckm
,where we de�ne c0 ≡ 1 and k1, . . . , km are all required to be nonnegative integers (note that thesum over the empty set is 0, so this equation holds also for m > j). For the �rst 
oe�
ients,for example

ċ1 = −p1e
−t

ċ2 = −2c1p1e
−t − p2e

−2t

ċ3 = −(2c2 + c21)p1e
−t − 3c1p2e

−2t − p3e
−3t .If we identify z with

Z =















0 0 0 0 . . .
1 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .... ... ... ... . . .













then
G :=

∞
∑

n=1

cn−1Z
n =



















0 0 0 0 . . .
1 0 0 0 . . .
c1 1 0 0 . . .
c2 c1 1 0 . . .
c3 c2 c1 1 . . .... ... ... ... . . .



















(4.9)we get a matrix formulation
Ġ = −

∞
∑

m=1

pme
−mtGm+1 .Both sides are uniquely determined by their �rst 
olumn, so we get

ċ = −
(

∞
∑

m=1

pme
−mtGm

)

cwhere cT = (0, 1, c1, c2, . . . ). The latter formula are pra
ti
al for 
omputations in 
on
rete
ases.We introdu
e formal variables {ψk}k∈N as generalised momenta, and make an Hamiltoniansystem, su
h that the equations for ċ are solutions. We restri
t ourself to a �nite number of
oe�
ient, and de�ne the following Hamiltonian on Mn:
H(c, ψ̄, t) = −

n
∑

j=1

(

j
∑

m=1

pme
−mtdm+1,j+1

)

ψ̄j = −ψ̄T
(

∞
∑

m=1

pme
−mtGm

)

c (4.10)and we de�ne a ve
tor ψT = (0, 0, ψ1, ψ2, . . . , ψn).



54 Class S and the 
oe�
ient manifoldThe Hamiltonian give the following derivatives of the generalised momenta
˙̄ψk =

n
∑

j=1

(

j
∑

m=1

pme
−mt(m+ 1)dm,j+1−k

)

ψ̄j = ψ̄T
(

n
∑

m=1

(m+ 1)pme
−mtGm−1Zk

)

c . (4.11)For instan
e, for three 
oe�
ients
˙̄ψ1 = 2e−tp1ψ̄2 + (2e−tp1c1 + 3e−2tp2)ψ̄3

˙̄ψ2 = 2e−tp1ψ̄2

˙̄ψ3 = 0 .Now let us de�ne a series in the following way
n−1
∑

j=0

vn−jz
j = g′

(

n−1
∑

j=0

ψ̄n−jz
j +

∞
∑

j=n

bj(t)z
j
) (4.12)where the 
oe�
ients bk depends on t, su
h that all derivatives of higher order than n− 1 onthe right-hand term vanish. Using that

ġ′ = g′(1 − p(e−tg, t) − e−tgp′(e−tg, t) = −g′
∞

∑

m=1

(m+ 1)pme
−mtgm,we get that

d

dt

n−1
∑

j=0

vn−jz
j = g′

(

−(

∞
∑

m=1

(m+1)pme
−mtgm)(

n−1
∑

j=0

ψ̄n−jz
j+

∞
∑

j=n

bj(t)z
j)+

n−1
∑

j=0

˙̄ψn−jz
j+

∞
∑

j=n

ḃj(t)z
j
)

= g′
(

n−1
∑

j=0

( ˙̄ψn−j − ψ̄n−j

∞
∑

m=1

(m+ 1)pme
−mtgm)zj +

∞
∑

j=n

(ḃj(t) − bj

∞
∑

m=1

(m+ 1)pme
−mtgm)zj

)From (4.11) we know that the terms of degree less or equal to the n−1 �rst terms vanish, andthe rest vanishes from the de�nition of the series. If we view the vk as fun
tions of c, ψ̄ and t,we see that terms 0 to n− 1 depend only on c and ψ̄, so ∂
∂tvk = 0. From this we get that

[vk,H] =
n

∑

j=1

(∂vk
∂cj

∂H
∂ψ̄j

− ∂vk
∂ψ̄j

∂H
∂cj

)

=
n

∑

j=1

(∂vk
∂cj

ċj +
∂vk
∂ψ̄j

˙̄ψj
)

= v̇k = 0So all vk are the �rst integrals of the Hamiltonian system (4.10). Expli
itly, they are given by














v1
v2
v3...
vn















= (ψ̄1, ψ̄2, ψ̄3, . . . , ψ̄n)















1 0 0 . . . 0
2c1 1 0 . . . 0... ... . . .

. . . 0
(n− 1)cn−2 (n− 2)cn−3 (n − 3)cn−4 . . . 0
ncn−1 (n− 1)cn−2 (n − 2)cn−3 . . . 1















(4.13)



4.5 Hamiltonian with pj as generalised momenta 55Note that the matrix given here is the restri
tion to the n �rst rows and 
olumns of thematrix 
orresponding to the fun
tion g′ in the way of (4.9). If we take the bra
kets fordi�erent 
ombinations of vk, we obtain
[vj, vk] =

{

(j − k)vk+j when k + j ≤ n
0 else

, (4.14)similar to that of the Witt algebra. This makes the Hamiltonian system partially integrablesin
e (v[n+1/2], . . . , vn) are pairwise involuntary ([ · ] means integer part). The bra
kets from
(v1, . . . v[n−1]/2) generate all the other �rst integrals. Noti
e that if we identify ψ̄j with ∂

∂cj
,then vi 
orrespond to the trun
ated Kirillov operators in (4.3). It is not known why there issu
h a 
onne
tion.Generally, it is very hard to �nd any solutions to this system, be
ause of the 
ompli
atedformula for ˙̄ψ.4.5 Hamiltonian with pj as generalised momentaPart of the reason for introdu
ing the Hamiltonian system mentioned above, was to get abetter understanding of the problem of, for a given f ∈ S, �nding p ∈ C whi
h generate

f . The idea that this should appear as geodesi
s of a Hamiltonian systems, 
omes from the
onne
tions of univalent fun
tions with Diff+S
1, whi
h is important in mathemati
al physi
s.Another motivation is that 
urves in N that arises from the Löwner-Kufarev equation, neverleaves 
oe�
ient manifold, so if a Hamiltonian system was 
onstru
ted with su
h 
urves assolutions, we would be able to study N through geodesi
s. The Hamiltonian system in theprevious se
tion has the weakness that it depends on pk, however, these are neither generalised
oordinates or momenta. In some sense, we get one Hamiltonian for every 
hoi
e of p. It wouldbe better if we 
ould �nd a system, in whi
h the 
oe�
ients of p are generalised momenta.O� 
ourse, it will not be possible to put pj = ψj in (4.10), sin
e H = −p̄

(
∑∞

m=1 pme
mtGm

)is obviously not holomorphi
 with respe
t to p̄.We will make an attempt to make another Hamiltonian system, by 
hoose di�erent 
oor-dinates on Mn. In simplest 
ase when n = 2, the system above is a
tually integrable, and wetake advantage of this. Let q1 = c1 and q2 = c2 − c21. This gives derivatives
q̇1 = −p1e

−t ,

q̇2 = −p2e
−2t ,and taking p as generalised momenta in a real Hamiltonian system, we obtain the Hamiltonian

H(c, p̄, t) = −1

2

(

e−t|p1|2 + e−2t|p2|2
)

.This gives ṗ1 = ṗ2 = 0. If we denote ṗj = bj, and solve the system for initial 
onditions
c(0) = 0, limt→∞ c(t) = (a1, a2), we obtain

q1 = −b1(1 − e−t)and then taking the limit, we get that b1 = −a1, and similar 
al
ulation gives that q2 =
− b2

2 (1 − e−2t), with b2 = −2(a2 − a2
1). Hen
e the solutions to the system is given by
c1 = a1(1 − e−t)



56 Class S and the 
oe�
ient manifold
c2 = a2(1 − e−2t) − 2a2

1e
−t(1 − e−t)whi
h if a1 6= 0, gives c2 = (2 − a2

a1
)c21 − 2(a1 − a2

a1
)c1Does these solutions 
orrespond to an a
tually 
hoi
e of p? Even if this is the 
ase, wehave no dire
t way 
ontinue this to more than two 
oe�
ients. For instan
e, there exist no
hoi
e of q = (q1, q2, q3) as 
ombinations of c1, c2, c3 (and not their derivatives), su
h that

q̇j = −ejtpj. However, we will investigate if this is possible to extend this Hamiltonian tomore 
oe�
ients using Sub-Riemannian geometry.4.6 Sub-Riemannian geometryLet M be a n-dimensional smooth manifold. We say that a distribution D of a M (i.e. asubbundle of it's tangent bundle) ful�ls the bra
ket generating 
ondition if there exist ve
tor�elds X1, . . . ,Xk, with k ≤ n in D, su
h that they and their bra
kets generate TM . By �theirbra
kets�, we mean not only [Xi,Xj ], but also [Xi, [Xj ,Xk]] and so on.De�nition 4.6. Let M be an n-dimensional di�erentiable manifold, then a sub-Riemannianmanifold is a triple (M,D, ρ), where D is a distribution of M satisfying the bra
ket generating
ondition, and ρ is a Riemannian metri
 on D (i.e. a positive de�nite se
tion on the bundle
Sym2D∗ →M)As usual, we will only denote the sub-Riemannian manifold by M . We have the followingnotions 
onne
ted to sub-Riemannian manifolds:

• ρ is 
alled a sub-Riemannian metri
. We will use the usual inner produ
t notation 〈·, ·〉for ρ.
• If the D is a k-dimensional distribution, we say that M has dimension (k, n). If M hasdimension (n, n), then it is o� 
ourse just a Riemannian manifold.
• A horizontal path is an absolutely 
ontinuous path γ : [0, 1] →M su
h that γ̇ is in D
• If r, s ∈M , we de�ne the Carnot-Caratheodory distan
e by

d(r, s) = inf
γ∈Γr,s

∫

[0,1]

√

〈γ̇(t), γ̇(t)〉dtwhere Γr,s = {γ : [0, 1] →M | γ is a horizontal path, γ(0) = r, γ(1) = s}.If a manifold is 
onne
ted, then there always exist at least one smooth horizontal path 
on-ne
ting any two points (this is 
alled Chow's theorem, see [5℄ and [29℄).4.7 Results for sub-Riemannian HamiltonianWe 
onsider the trun
ated Kirillov's operators
Lj =

∂

∂cj
+
n−m
∑

m=1

(m+ 1)cm
∂

∂cj+m
∈ Γ(T 1,0Mn).From the relations in (4.14) and the fa
t that {Lj}nj=1 form a basis for T 1,0Mn, we get that

D = span(L1, L2, . . . , Lk) is a bra
ket generating distribution for k = 2, 3, . . . , n. This will



4.7 Results for sub-Riemannian Hamiltonian 57enable us to to den�ne sub-Riemannian geometry on Mn, whi
h in turn will be used this tode�ne a Hamiltonian, requirering that any geodesi
 has to be horizontal, with respe
t to thisgeometry. Some results for k = 2 was done in [25℄, and we try to generalise this to arbitrary
k, and look at the geodesi
s for some values (k, n).Proposition 4.7. A path γ(t) = (c1(t), . . . , cn(t)) in Mn is horizontal with respe
t to distri-bution D as des
ribed above, if and only if

ċj =
k

∑

m=1

(j + 1 −m)cj−mum j = k + 1, k + 2, . . . , n ,where
uj = ċj −

j−1
∑

m=1

(j + 1 −m)cj−mum j = 1, 2, . . . k .Proof. The whole result is done by 
hanging basis from ∂j = ∂
∂cj

to Lj by formula
∂m = Lm −

n
∑

j=m+1

(j −m+ 1)cj−m∂j .We obtain
γ̇ =

n
∑

j=1

ċj∂j

(u1 = ċ1) = u1L1 +

n
∑

j=2

(ċj − jcj−1u1)∂j

(u2 = ċ2 − 2c1u1) = u1L1 + u2L2 +
n

∑

j=3

(ċj − jcj−1u1 − (j − 1)cj−2u2)∂j

. . .

= u1L1 +u2L2 + · · ·+ukLk +
n

∑

j=k+1

(ċj − jcj−1u1 − (j− 1)cj−2u2 − · · · − (j− k+ 1)cj−kuk)∂j .In order to be horizontal, every term in the last sum must be 0.We makeMn a sub-Riemannian manifold, by restri
ting the usual Hermitian innerprodu
tto D, multiplied by 1
2 for simpli
ity. We let ξ̄j = ∂

∂cj
be the generalised momenta and for

j = 1, . . . , k let lj(ξ̄, c) be the fun
tion of these variables 
orresponding to Lj, that is
lj = ξ̄j +

n−j
∑

m=1

(m+ 1)cmξ̄j+m .We obtained the following real Hamiltonian
H(ξ̄, c) =

1

2

(

|l1|2 + |l2|2 + · · · + |lk|2
)

. (4.15)



58 Class S and the 
oe�
ient manifoldSolutions is then given by
ċ1 = l̄1

ċ2 = 2c1 l̄1 + l̄2...
ċk−1 = (k − 1)ck−2 l̄1 + (k − 2)ck−3 l̄2 + · · · + 2c1 l̄k−2 + l̄k−1

ċk = kck−1l̄1 + (k − 1)ck−2 l̄2 + (k − 2)ck−3 l̄3 + · · · + 2c1 l̄k−1 + l̄kand further
ċk+1 = (k + 1)ck l̄1 + kck−1 l̄2 + · · · + 3c2 l̄k−1 + 2c1 l̄k...

ċn = ncn−1l̄1 + (n − 1)cn−2 l̄2 + · · · + (n− k + 2)cn−k+1 l̄k−1 + (n− k + 1)cn−k l̄k .As expe
ted, the equations for ċj is just the horizontally 
onditions. From the �rst k termswe obtain that lj = uj, and the n − k next terms just give the statement in proposition 4.7.For the generalised momenta, we have
ξ̇j = −(j + 1)(ξj+1l1 + ξj+2l2 + · · · + ξj+klk) j = 1, 2, . . . , n− kand further

ξ̇n−k+1 = −(n− k + 2)(ξn−k+2l1 + ξn−k+3l2 + · · · + ξn−1lk−2 + ξnlk−1)

ξ̇n−k+2 = −(n− k + 3)(ξn−k+3l1 + ξn−k+4l2 + · · · + ξnlk−2)...
ξ̇n−2 = −(n− 1)(ξn−1l1 + ξnl2)

ξ̇n−1 = −nξnl1

ξ̇n = 0 .In addition we have the following relations with the derivatives of the lj .Proposition 4.8. Let
lj =

n−j
∑

m=0

(m+ 1)cmξ̄j+mfor j = 1, . . . , n, where the derivatives of ξj and cj are given by Hamiltonian system (4.15),and let lj ≡ 0 for j > n. Then
l̇j =

k
∑

ν=1

(ν − j)l̄ν lν+jfor any j ∈ N



4.7 Results for sub-Riemannian Hamiltonian 59Proof. To simplify notation, we will say that any sum ∑b
ν=a βν , with b < a, will be zero (asum over the empty set). Then for any j ∈ N

lj =

n−j
∑

n=0

(m+ 1)cmξ̄j+mDi�erentiating we get
l̇j =

min(k,n−j)
∑

m=1

(m+ 1)ξ̄j+m

m
∑

ν=1

(m− ν + 1)cm−ν l̄ν +

n−j
∑

m=k+1

(m+ 1)ξ̄j+m

m
∑

ν=1

(m− ν + 1)cm−ν l̄ν

−
n−j−k
∑

m=0

(m+1)cm(j+m+1)

k
∑

ν=1

ξ̄m+j+ν l̄ν−
n−j−k
∑

m=max(n−j−k+1,0)

(m+1)cm(j+m+1)

k
∑

ν=1

ξ̄m+j+ν l̄ν

=
k

∑

ν=1

l̄ν

(

n−j
∑

m=ν

(m+ 1)(m− ν + 1)ξ̄j+mcm−ν −
n−j
∑

m=ν

(m− ν + 1)(m− ν + j + 1)ξ̄j+mcm−ν
)

=

k
∑

ν=1

(ν − j)l̄ν

(

n−j
∑

m=ν

(m− ν + 1)ξ̄j+mcm−ν
)

=

k
∑

ν=1

(ν − j)l̄ν lν+jAlthough this system might be interresting, it has its problems. Most importantly, thereis nothing insuring us that a solution to this system will stay in Mn. The des
ription aboveis therefore merely lo
al.Example 4.9. We try to get some sense into what the geodesi
s are for this Hamiltonianwhen Mn is is a (k, n)-dimensional sub-Riemannian manifold. To simplify, we will look at ageodesi
 c in Mn, from c(0) = 0 to c(τ) = a. We will denote ξ(0) = l̄(0) = b, and if we lookat geodesi
s with H 
onstantly equal to 1, this means that |b1|2 + · · · + |bk|2 = 1.
• For k = 2, n = 2, we have the solutions for H given by

c1 = b1t

c2 = b21t
2 + b2t

ξ1 = b1 − 2b2c̄1

ξ2 = b2 .Geodesi
s are hen
e on the form c2 = c21 + b2
b1
c21 or straight lines c2 = b2t. From H = 1,we get that b1 = a1√

|a1|2+|a2−a21|
, b2 =

a2−a21√
|a1|2+|a2−a21|

and τ =
√

|a1|2 + |a2 − a2
1|. Thereis hen
e a unique 
hoi
e of geodesi
s in this 
ase.

• More generally, geodesi
s in the 
ase k = n, cj is given by a j'th order polynomial, andthe there is a unique geodesi
 from c(0) = 0 to c(1) = a.



60 Class S and the 
oe�
ient manifold
• For k = 2, n = 3, the solutions to H are

ξ3 = b3

ξ2 = b2 − 3b3c̄1

ξ1 = b1 − 2b2c̄1 + 5b3c̄
2
1 − 2b3c̄2 .From this and the fa
t that c̈1 = ˙̄l1 = l2 l̄3 = b̄2b3 − |b3|2c1, we get that for b3 6= 0

c1 =
1

b̄3
(b̄2 − b̄2 cos |b3|2t+

b̄1
b3

sin |b3|2t)

c2 = c21 +

∫ t

0
l̄2dt = c21 −

1

|b3|2
(b2 sin |b3|2t+

b1
b̄3

cos |b3|2t−
b1
b̄3

)

c3 = 3c1c2 − c31 −
∫ t

0
c1 l̄2dt

= 3c1c2 − c31 +
1

b̄3|b3|2
(1

4
(
b̄1b2
b3

− 3b1b̄2
b̄3

)− |b2b3|2 + |b1|2
2

t+ |b2|2 sin |b3|2t+
b1b̄2
b̄3

cos |b3|2t

−|b2b3|2 − |b1|2
4|b3|2

sin 2|b3|2t−
1

4
(
b̄1b2
b3

+
b1b̄2
b̄3

) cos 2|b3|2t
)and for b3 = 0

c1 = b1t

c2 = b21t
2 + b2t

c3 = b31t
3 +

5

2
b1b2t

2To �nd a general geodesi
 is hard, so let us pi
k a point (0,0,a3), with a3 6= 0, as anexample. c1(τ) = c2(τ) = 0 just gives us the information that |b3|2τ = 2πν for some
ν ∈ N (note that b3 must be nonzero). From c3(τ) = a3, we get

4a3b̄3|b3|2 =
b̄1b2
b3

− b1b̄2
b̄3

− 2|b2|2|b3|2τ − 2|b1|2τ +
4b1b̄2
b̄3

− b̄1b2
b3

− b1b̄2
b̄3

= −2|b2|2|b3|2τ − 2|b1|2τ

a3b̄3 must therefore be real negative. Inserting b3 = − a3
|a3|

√

2πν
τ and |b2|2 = 1− |b1|2, wehave the relation

|b1|2 =
2πν(τ3/2 − 2|a3|

√
2πν)

(2πν − τ)τ3/2
, (4.16)whi
h have a solution for 
hoi
es of ν, τ su
h that the right hand equation is in theinterval [0, 1]. From this we get that there are un
ountable many geodesi
s:� The solution is 
ompletely independent of the arguments of b1 and b2.



4.7 Results for sub-Riemannian Hamiltonian 61� We may also freely 
hoose any value of ν > 1 and 0 ≤ |b1| ≤ 1. To see this, let usdenote the right hand side of (4.16) by
bν(τ) =

2πν(τ3/2 − 2|a3|
√

2πν)

(2πν − τ)τ3/2
.This is a 
ontinuous fun
tions with respe
t to τ in (0, 2πν). Sin
e, we know that

|a3| ≤ 4 < 2π, we get that for any 
hoi
e of ν ≥ 2

lim
τ→0+

bν(τ) = −∞ and lim
t→2πν−

bν(τ) = ∞.From this we get that the image of the interval (0, 2π) under bν is the real line, andin parti
ular, for any 
hoi
e of ν > 1 and |b1|, there is a τ su
h that |b1|2 = bν(τ).(if |a3| < π, this is also guaranteed when ν = 1).� From the dis
ussion above, it also follows that the geodesi
 that rea
h (0, 0, a3) inminimal time, for �xed ν, has b1 = 0 (whi
h imply b2 = eiα). In this 
ase
c1 = −a3e

iα

|a3|

√

τ

2πν
(1 − cos

2πνt

τ
)

c2 − c21 = −τe
iθ

2πν
sin

2πνt

τ

c3 − 3c1c2 + c31 =
a3

|a3|

√

πν

2τ
t− 4a3

|a3|

√

τ

2πν
(4 sin

2πνt

τ
− sin

4πνt

τ
)and it follows that τ = 2|a3|2

πν is the minimal time to rea
h (0,0,|a3|).The general 
ase is mu
h more di�
ult, sin
e |b3| appear both inside and outside thetrigonometri
 fun
tions. We 
an however expe
t there to be fewer geodesi
s in this 
ase,sin
e we get more �information� from c1 and c2 in this 
ase.Sin
e there have been very few investigations into this sub-Riemannian Hamiltonian sys-tem, in is still un
ertain how to interpret solutions. We end this 
hapter dis
ussing somepossible 
onne
tions.
• Starting with the Löwner-Kufarev equation for subordination
hains

∂

∂t
f(z, t) = zp(z, t)

∂

∂z
f(z, t)for f(z, t) = et(z+ · · · ). Let η(z, t) = e−tf(z, t) = z+ c1z

2 + c2z
3 + · · · be a 
urve in S.Assume that its image is 
ontained in S̃. Then, if we denote ∂

∂zη(z, t) = η′(z, t)

η̇ = zη′p(z, t) − η = L0(η) + p1L1(η) + p2L2(η) + · · ·and pj = uj , where uj are the 
oe�
ients in the horizontally 
ondition (both followfrom the same 
hange of basis). If η is a also a solution to the (k, n) sub-RiemannianHamiltonian system, this means that ∑k
j=1 |pj|2 is 
onstant.

• The Hamiltonian system H̃ = e−t|l1|2 + e−2t|l2|2 give the same solutions as the Hamil-tonian des
ribed in 4.5 for n = 2. This means that, in some sense, we 
an extend thissimple Hamiltonian using sub-Riemannian geometry. The simpli
ity will not be kept,thought. For instan
e, for n = 3, c1 is given by solution
c̈1 − ċ1 − b3b̄2e

−tc1 = |b3|2 .
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