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Chapter 1

Introduction

One of the oldest topics of complex analysis, is the study of the class S of univalent (holomor-
phic and injective) functions f : D — C normalised by

f(z)=z+ Z ap—12"
n=2

Here, and in the rest of this thesis, D represents the unit disk D = {z € C||z| < 1} and we
will denote the exterior of I in the Riemann sphere C, by D* (i.e. D* = C\ D, where D is the
closure of D). Let f be a map in S, with the image f(ID) = €, such that 9 splits C into two
domains 2 and Q* = C\Q, with co € Q*. By the well known Riemann mapping theorem, there
exists a unique univalent mapping g of D* onto Q*, fixing the inequality lim, . g(z)/z > 0.
This function has an expansion

b_
g(z) =biz+ by + 71 + ..

about oo, where by > 0. We say that the mappings f and g are matching. In this thesis,
we will be focused on how the properties of f influence properties of the adjoint function g
matching it, and vice versa.

The relationship between these two mappings are poorly understood. Knowledge about
one of the maps, for instance f, does not give us any clear analytic characteristic of the other
one except for the knowledge of the existence of g, and even less hope of constructing g as
an explicit function. This problem becomes even more difficult by a general impression that
if either one of the functions is given by a seemingly simple formula and is not the identity,
then the matching function is rather complicated. Let us consider, as an example, the case
where (2 is an ellipse with foci at 1. The map from D* to the exterior of €2 is given by the
Joukowski map

z - %(cz + é) c>1
The matching function from D to €2, however, is given by difficult elliptic integrals, as we will
show in section 2.3. Since the problem is so complex, any partial result in this direction would
be an asset.
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1.1 Conformal radii of matching domains

We consider a property that seems to be obscure by some geometric reasons. Let v be a
simple closed, analytic contour, splitting C into two domains Q and Q*, neighbourhoods of 0
and oo, respectively. How is the conformal radius of {2 with respect to the origin controlled
by the logarithmic capacity of « or equivalently by the coefficient b; in the expansion of
g :D* — Q*7 This question is addressed in section 3.5, where we look at a special case where
v is quasisymmetric, which for example guarantees that Q2 and * are both domains.

1.2 Connections to mathematical physics

Recently several modern developments in the theory of conformal maps in relation with math-
ematical physics have been seen. This, in particular, applies to conformal field theory (CFT),
where conformal maps and Riemann surfaces play an important role in parametrisation of
a string worldsheet. Non-linear physics is a natural user of conformal maps. Such sample
non-linear processes as Laplacian growth, KdV and mKdV hierarchies use matching functions
as ‘coordinates’ on a phase space. The matching functions appear also in the inverse potential
problem of construction of a domain by its harmonic moments. If we calculate the interior
moments of 2, given by

Cn://w"dudv w=u-+iv, néeN,
Q
it turns out that the corresponding exterior moments

C’n:// w"du dv w=u+iv, neN

can (under some normalisation) be embedded into the Toda (dispersinless) hierarchy, or more
precisely, their derivatives with respect to C),. This integrable hierarchy, solvable by the
so-called 7-function, is important in the study of integrable models in CFT. The embedding
becomes possible, due to the fact that if  is an analytic contour, then there exists the Schwarz
function S(w), analytic in a neighbourhood of v and satisfying the condition S(w) = w on 7.
This function glues 2 with Q* through + and the harmonic moments C,,, are coefficient in the
formal Laurent expansion of S(z).

Another formulation of CFT is based on the path integral and leads to the Lagrangian
and Hamiltonian formulations. The Virasoro algebra plays an important role in this model.
It arises as an operator algebra in the formal Laurent expansion of the analytic component
of the momentum-energy tensor. Its mathematical representation is based on the Kirillov

homogeneous manifold
Diff, S'/Rot S*

where Diff . S? is the Lie group of orientation preserving diffeomorphism of S*, and Rot S!
is the subgroup of sense preserving rotations. The Virasoro algebra is the central (C or R)
extension of the Lie algebra of the vector fields on S!, the tangent algebra to Diff , S1.

The Kirillov manifold has many equivalent representations (in the space of unitary proba-
bilistic measures, the Teichmiiller space, etc.). We will be focused on the representation given
by the matching functions f and g discussed earlier. We have that

fﬁlg|51 € D1H+Sl
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and every element from Diff  S'/Rot S! can be represented by such a composition of mappings
in a unique way. In this model, the link between f and g are given implicitly by positive and
negative indexed Virasoro generators considered in section 4.1.

Recently, it became clear that the Virasoro generators appear in the Lowner theory as the
first integrals of a partially integrable Hamiltonian system for the coefficients of the Taylor
expansion of f € S.

1.3 Precognitions

The reader is assumed to be familiar with theory of real manifolds and constructions on them,
as well as some representation theory, in particular the Lie theory. Useful information can
be found in, e.g., [8], [32], [17], [13]. Apart from this, and some basic properties taken from
topology and complex analysis, we tried to keep the thesis as self-contained as possible. Some
language from category theory, and the notion of sheaf will be used, but the thesis is easily
understood without any knowledge of these.

1.4 Some notations

We will denote the composition of two functions without o (i.e. fog is written fg). When two
functions are multiplied, we will explicitly denote it by f-g. If U is a subset of a topological
space X, then the closure, interior and exterior of U will be denoted by U, int U and ext U.

For a mapping f : X — Y, then the composition U C X 4, Y, is written fly. If X =[], Xa,
then prx, denotes the projection from X onto X,. The identity map from X to itself is
denoted idy . If A is a matrix, the transpose is denoted A7 .

If M is a manifold, then we denote the (real) tangent space at r € M by T,.M , the tangent
bundle by T'M and cotangent bundle by T*M. If f : M — N is a smooth mapping, we write
Tf and T* f for the induced mapping on tangent and contangent bundles respectively. If
¢ F — X is a smooth vector bundle, then I'(E) is the space of smooth sections on the
bundle. If V is a vector space, then V* is the dual space,

k
/\V =V {v; @ - ® v|v; = v forsomel # j}
is the exterior product and
Sym’“V = V®k/{7)1 @ QU = Vo) @+ @ Ug(k)}

is the k’th symmetric product, where v; € V and o is a permutation. We will use the same
symbols for the corresponding action on bundles.

We denote the integers by Z , positive integers by N | non-negative integers by Ny , real
numbers by R, and complex numbers by C . D will be the unit disk in C and C will be the
Riemann sphere. 5" = {z € R"*!||z| = 1} is the n-sphere, and unless otherwise is mentioned,
S is viewed as a subset of C. Apart from that, we define

R = {z = (z1,22,...,2,) € R"|z,, > 0}

7—11— = {C = (Clvg%"')cn) € Cn‘lmgn > 0}
The projection from either R” or C” to its k’th coordinate is denoted pry, . If ¢ € C, then ¢
is its complex conjugate. If Q C C, then we use Q* = ext (2.
A complete index of notation is found at the end of this thesis.
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1.5 Purpose and own results

The present thesis contains an overview of some special topics of Complex Analysis and
Differential Geometry, e.g., Chapter 2, some advanced and modern known results concerning
Hamiltonian systems, Virasoro algebra as well as our own results. In particular, we consider
in details the simplest non-trivial model of matching univalent functions which map D and
D* onto interior and exterior of an ellipse. The conformal radius of an ellipse with respect
to its centre is calculated in terms of elliptic integrals. The problem of the range of the
conformal radius of a domain whose exterior has fixed capacity is considered and partial
results are obtained for quasiconformal case in sections 3.3 and 3.5. In particular, we used
a version of Lowner theory developed by Becker for quasiconformally extendable conformal
maps. Then we considered applications of matching univalent functions to the representation
of the Virasoro algebra. In particular, we calculate an element of in Diff  S' corresponding
to the ellipse. Considering manifolds of coefficients in S, a Hamiltonian interpretation of the
Léwner equation is given in section 4.4. Further, the group action of the non-commutative
group Diff | S! induces a non-Riemannian geometry on the manifold of univalent functions,
which is best described through Sub-Riemannian geometry. Generalising results by Markina,
Prokhorov, and Vasiliev [25] we construct a sub-Riemannian manifold based on a distribution
generated by more than two of the truncated Kirillov operators (section 4.7).



Chapter 2

Complex manifolds and Riemann
surfaces

This chapter is dedicated to some theoretical background about spaces and some constructions
on them. Our intention is not to go deeply in the theory of complex manifolds, but only to
get some clear definitions and notions for further use. Especially we will be interested in the
one-dimensional case, i.e. Riemann surfaces. We end this chapter with a whole section on
quadratic differentials. They are connected to problems regarding moduli of families of curves,
which will be treated in the next chapter. Using these, we will also construct a conformal
mapping from the disk D onto an ellipse, that will reapear as an example in the later theory,
and will also be used in chapter 3.

Thoughout this chapter ¢ will denote a point in C", r and s will always be points on a
manifold, and z and w will denote charts (this reservation of characters will not be kept in
later chapters).

2.1 Complex manifolds

We will call a mapping biholomorphic, if it is both holomorphic and bijective (this implies
that the inverse is holomorphic too).

Definition 2.1. Let M be a real, differentiable manifold, on which there exists an open cover
{Uqa} with homeomorphisms zo : Uy — 2o(Uy) € C", such that for any pair of these mappings

8% sa(UanUy) * 2a(Ua N Ug) = 2(Ua N Up)

1s biholomorphic. The collection B = {(za, Ua)} 1s called a complex atlas. This atlas generates
a unique mazimal atlas A, and we define the pair (M, A) as a complex manifold.

The maximal atlas of B is generated in the following way:
A={w:V — w({V) C C"|wisahomeomorphism, wz"" |.(unv) is biholomorphic for any (2, U) € B}

Such maximal atlases are called complex structures. As usual, the manifold is denoted only
by M, and we say that the elements of A are (complex) charts or local coordinate systems.

11
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From the definition it is clear that M must be a real manifold of even dimension, and it
also turns out to be orientable. We define a bordered complexr manifold in a similar way, only
with charts given by homeomorphisms 2z, : Uy — 2o € Ct. The boundary of M is defined as

OM = {r € M|thereisachartw : M — C%, such that pryw(r) = 0}

Example 2.2. e C" and any open subsets of C™ are complex manifolds. Generally, any
open nonempty subset of an n-dimensional complex manifold is an n-dimensional com-
plex manifold.

e M,,«»C , the space of all m xn matrices with complex entries is a manifold by identifying
it with C™". GL,,C , the space of all invertible n X n matrices is a manifold because it
is an open subset M,,x,C (since GL,C = det ™1 (C\ {0})).

e Let
CP" = (C"*1\ {0})/ ~

where r ~ Ar, r € C"*1\ {0}, A € C\ {0}. This is the space of all (complex) lines
in C"*1. We denote the equivalence class of r by [r]. Using the charts {2z : Uy —

Cn}k:1727...7n+1, with Uk = {[’I”l,?“g, e 77”n+1”7“k 75 0} and
1
Zk([’l”]) = a(rlu ooy T—1yTk+1y- - - 7rn+1)7

CP"™ becomes a complex manifold of dimension n. In particular, CP! = C is a complex
manifold.

A mapping f: M — N of two complex manifolds, is holomorphic if, for any charts (z,U)
and (w, V) on M and N respectively, the mapping

wfz " wnp-ivy 2UNFHV)) = w(f(U)NV)

is holomorphic in the usual way. Taking complex manifolds as objects, and holomorphic map-
pings as morphisms, we get a category. Isomorphisms in this category will be biholomorphic
mappings, and we write M = N , when such a mapping exists between M and N. We denote

Hol(M,N) ={f: M — N| f holomorphic},

and in particular, we denote holomorphic functions by &M = Hol(M,C) . This is a ring
under pointwise addition and multiplication. By definition, for any mapping f: M — N,

Of: ON — OM

o pf,

and ¢ becomes a contravariant functor. Since every open subset of a complex manifold is a
complex manifold, & also forms a sheaf of rings. If r € M, we call

lim O0U = O,
rev
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the holomorphic function germs at r (the limit is taken over all open sets U C M containing
r). This is a ring, and we denote its field of fractions .#, . These are called the meromorphic
function germs at r. We say that a meromorphic function on M, is a mapping

f:M—>H///r

reM

r= [l

such that [f], € #, for any » € M, and such that any s € M has an open connected
neighbourhood U, with the property that there are functions ¢,y € OU, b # 0 with images
[©]r, [¢]r in O, such that [f], = [¢],/[¢], for every r € U. Hence, a meromorphic function on
M as a function that locally can be represented by a quotient of two holomorphic functions with
the denominator being not identically zero. We denote the set of all meromorphic functions
on M, by .# M . This is a field if and only if M is connected [28].

A subset N C M is called a k-dimensional submanifold, if about any r € N, there is a
chart (z,U), such that z(UNY) C C¥x {0} ¢ C". A difference between the theory of complex
manifolds and real manifolds, is that there is no theorem similar to the Whitney embedding
theorem. That is, whereas any real manifold may be embedded as a submanifold of RY, very
few complex manifolds may be embedded into CV. For example, by Liouville’s theorem, all
holomorphic functions f : M — C for a compact manifold M, are constant on each connected
component, so an embedding can only exist if M is a discrete set.

Now let us turn to the complex vector bundles, and then in particular, to the tangent
bundles. Observe, that they may exist on any differentiable manifold, not just on the complex
ones.

Definition 2.3. Let M be o differentiable manifold. An m-dimensional complex vector bundle
of M, is a surjective continuous mapping & : E — M, with the following properties

o For anyr € M, £1(r) has the structure of a complex vector space.

o There is an open cover U of M, such that for any U € U, there is a homeomorphism
h: & YU) — U x C™ satisfying the following conditions:

1. f‘g—l(U) :pT'Uh.
2. The map h, = pr@mh|§f1(7,) s an 1somorphism of complex vector spaces.

3. For any other V€ U, with g being the associated homeomorphism, the mapping
5 gshs_1
is a C* map from UNV to GL,,(C).

We will often denote a bundle just by E. Similarly to the real case, we call £~!(r) the fibre
over r, the (h,U) and (g, V') are called (complex) bundle charts or trivialisations. A collection
of bundle charts covering M and satisfying condition 1.-3. is called a (complez) smooth bundle
atlas. A function s — gsh; !, for a chosen pair of bundle charts, is called a transition function.

A complex bundle morphisms of complex bundles & : £y — Mj to & @ Es — My, is given
by a pair of mappings F': By — Ep, and f : My — My, such that f§ = §F, and Fle-1(,) is a
C-linear map for every r € M. If M1 = M5 and f is the identity, we will just think of bundle
morphism F' : F; — FE5. In general, a complex vector bundle £ : E — M over a complex
manifold, does not give E the structure of a complex manifold. For that, we need some more
requirements.
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Definition 2.4. Let M be o complex manifold. Then a complex vector bundle is called a
holomorphic vector bundle if there is a bundle atlas, in which all transition functions are
holomorphic.

The total space E will now be a n + m complex manifold of its own right, by using that
if (2,U) and (h,V) is a chart and bundle chart, respectively, then

(z X idem )h|e-1wnv)

is a chart on E. The fact that such charts overlap holomorphically is guaranteed by the
holomorphic transition functions. The most interesting vector bundles are, of course, the
tangent bundles. If M is a differentiable manifold with T'M as a real tangent space, then the
complex tangent bundle is simply the complexification of T'M. To clear this up, we define

TeM :=TM ®g (C x M),

where C x M is seen as a one-dimensional trivial bundle over M. Complex structure is
given in a usual way (i.e., T,M ®r C becomes a complex vector space by defining scalar
multiplication with a complex number by a(X ® () := X ® a(, and introducing conjugation
by X ® ( = X ®(). An alternative description of this complexification, is to let X € T, M act
on complex valued C* function germs about r. If [¢], : (M,r) — (C,(r)) is such a germ, we
define X (¢) = X(Rev) 4+ iX(Im1), and introduce scalar multiplication in the obvious way.
If M is a complex manifold and (z,U) is a chart, where z = (21,22,...,2y), and z; =

xj + 1y;, then T'M is spanned locally by the vector fields

{i 9 9 9 0 i}
Ox1’ Oy’ Oz Oyo’ Oz Oyn )

Note that on any complex manifold, there exists a bundle morphism corresponding to multi-
plication by ¢

J:TM — TM,
such that 5 5 5 5
o) "y ey T ey 2y
which means that being applied twice we get the minus identity: J2|TT M = —idr.. In

general, any differentiable manifold together with a bundle morphism on its tangent bundle
with this property is called an almost complex manifold. The operator is called an almost
complex structure. All almost complex manifolds are even-dimensional (real dimension) and
orientable. An almost complex structure may be extended to a complex bundle morphism on
TcM by defining J(X ® () := J(X) ® (.

The complex tangent bundle is locally spanned by

{i 92 9 90 9 i}
82’17 821’ 82’27 8527.”’82717 0z, ’
where B%j = %(% - z'aiyj) and B%j = %(% + ia%j). The complex tangent bundle then splits
into two parts

TeM =T"M & 7% M
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called the holomorphic and antiholomorphic tangent bundles, respectively. T1OM then is
spanned by {%}?:1, and T%'M by {(%_ %_1. The extension of J in (2.1) to TcM is given
by
0 0 0 0
(55 = 5z 55) = 53
Then T'OM and T%'M are the eigenspaces for J with respect to i and —i respectively (so
that if X € T'(TcM), then T(TYOM) = ker{X — X +iJ(X)} and T(T"' M) = ker{X —
X —iJ(X)}). T'9M is a holomorphic vector bundle, and therefore a complex manifold.
T9%1M is not in general a holomorphic bundle, so we can only be sure that is 7% M an almost
complex manifold. The dual bundles (TV°M)* and (T%!M)* are locally spanned by cotangent
vector fields dz; = dx; +idy; and dz; = dx; —idy; for j =1,...,n.
If M is a complex manifold with a complex structure J, then there is a Riemannian metric
p that satisfies the following relation

p(JX,JY)=p(X,Y), XY eT(TM)

is called an Hermitian metric, and (M, p) an Hermitian manifold. The metric p can be
extended to TcM, and may be thought of as an element in T'(TY'M @ T%'M)*) (i.e., p =
> ik=1, nPikdz; ® dz;) with the properties

o p(X,¥) = (¥, X);
e p(X,X) > 0,whenever X # 0,

for X, Y € T(T*°M). To each Hermitian metric we associate the fundamental form ®(X,Y) =
p(JX,Y). If dP = 0, the manifold is called Kéhlerian.

2.2 Riemann surfaces

We will take a closer look at the one-dimensional case where we can use some results from
one dimensional complex analysis.

Definition 2.5. A Riemann surface is a I-dimensional, connected complex manifold.

Since we are now in the one dimensional case, all biholomorphic mappings are conformal,
and if M = N, we say that the Riemann surfaces are conformally equivalent.

Example 2.6. e D, C,C, and open connected subsets of them, are Riemann surfaces. By
the Riemann mapping theorem, we have that if an open simply connected subset U C C
has more than two boundary points, then U = D. It is called a hyperbolic domain. More
about classification of Riemann surfaces will be found later.

e The domains Cr = {¢ € C|1 < [¢| < R} , where R > 1, are all Riemann surfaces.
Although they are diffeomorphic as real manifolds, Cr, 2 Cg,, when Ry # Ra. (see
section 3.1, example 3.3).

e Let M be a compact Riemann surface. Since it is a compact orientable surface, it is
homeomorphic to S? or a sum of tori. We say that a surface homeomorphic to the
sphere has genus 0, and that it has genus ¢ if it is the sum of g tori. S? admits only
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one complex structure, the one given by C. However, there are infinitely many compact
Riemann surfaces with genus g. If we consider the case of compact Riemann surfaces
of genus one (which we will call complex tori), then all such Riemann surfaces are
conformally equivalent to a surface on the form

C/(Z+ 7Z),
where 7 € C4 with Im7 # 0. Futher more, if 7" is another such element, then

C/(Z+7Z)=C/(Z+T'Z)

if and only if 7/ = Z:ig, with a,b,c,d € Z and ad — be = 1 (see [12] for more details).

e A Riemann surface M is called finite if m1(M) , the first homotopy group, is finitely
generated. Each finite Riemann surface is conformally equivalent to a domain on a
compact Riemann surface. They are classified in the following way. We generalise the
notion of genus to non-compact surfaces by saying that a surface is of genus g if g is
the maximal number, such that there is a simple closed curve v; in M, and curves ~; in
M\ (y1U---U~j_1), such that M \ (71 U---U~,) is connected (i.e., we can make some
g “circular” cuts on M, keeping it connected). An equivalent way of this definition is as
follows. If M is the closure of M, as a subset of a compact manifold and the boundary
of M has d components then

1

gi= 52— x(M) - d)

where x is the Euler characteristic of M. The orientability of all Riemann surfaces
implies that -
g =rank Hy(M;Z) — rank Hy(OM;Z),

where H; is the j’th singular homology group. A surface is said to be of type (g,n,1) if

— M has genus g;

— M has n punctures: M has n disjoint open neighbourhoods conformally equivalent
to D\ {0}, with only one of its boundary components in M, and this one is a curve;
— M has [ hyperbolic boundary components: M has [ disjoint open neighbourhoods

conformally equivalent to Cr (for some R) with only one of its boundary compo-
nents in M.

So C is of type (0,0,0), C is of type (0,1,0), D\ {0} is of type (0,1,1) and the Cf is of
type (0,0,2).

The Riemann mapping theorem has the following generalisation to Riemann surfaces.

Theorem 2.7 ([9]). Let M be a simply connected Riemann surface. Then M is conformally
equivalent to either C , C, or D.

We want to use this theorem to classify all Riemann surfaces. First we need some concepts
from Topology.

Definition 2.8. Let X and Y be topological spaces. A continuous map p : Y — X 1is called
covering if, for any x € X, there is an open neighbourhood U of x such that p~1(U) = HjeJ V;
and ply; is a homeomorphism for any j.
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The covering map p : Y — X is called universal if it fulfils the following property. If
q : Z — X is another covering map, then there is a covering map f : Y — Z, such that p = ¢f.
The space Y is then called the universal cover of X, and is unique up to a homeomorphism.
If in addition X is Hausdorff and connected, then it is sufficient to require that Y is simply
connected for p to be a universal covering map. Such a cover always exists for any Riemann
surface (see [11]), and the surface can be given a complex structure in order to guarantee that
it is a simply connected Riemann surface and p is holomorphic. By theorem 2.7, the following
definition is consistent.

Definition 2.9. Let M be a Riemann surface and let N be its universal cover. Then M s
called

o clliptic of N is conformally equivalent to C.
e parabolic if N is conformally equivalent to C.

e hyperbolic if N is conformally equivalent to D.

If we have two coverings p: N — M and ¢ : L — M, then a continuous map f: N — L
is fibre preserving if p = qf. We will denote by Deck(N/M) the group of fibre preserving
automorphism on N under composition, with respect to some covering map p : N — M.
The elements of Deck(N/M) are called deck transformations. If N is connected, then any
nontrivial element of Deck(N/M) has no fix points. If IV is the universal covering of a Riemann
surface M, then Deck(N/M) is isomorphic to (M), and

N/Deck(N/M) = M.

Denote by Aut(M) = {f € Hol(M, M)‘ f is bijective}. If M is an elliptic Riemann surface,
then Deck(C/M) is a subgroup of Aut(C). Aut(C) is the group of Mébius transforms

aC +b
CH—cngd’

where ad — bc = 1, which may be identified with PGL,,C = GL,,C/ ~ |, where the equivalence
relation is given by A ~ AA, for A € GL,,C and A € C\ {0}. Since all nontrivial M6bius trans-
forms has at least one fixed point, there is no possibility for any nontrivial deck transformation
to exist and hence, C is the only elliptic Riemann surface.

Similar observations for

Aut(C) = {¢ = A + K| Ak € C, A # 0},

show that the only interesting subgroup of deck transformations is the group generated by
¢ — ¢ + 1 and the ones generated by ( — ¢+ 1 and ( — (+ 7, with 7 € C4, Im7 # 0 (and
groups generated by a constant times these elements). It follows that C, C \ {0}, and the
torus with different complex structures are the only parabolic Riemann surfaces.
The rest are hence hyperbolic Riemann surfaces. Aut(D) consists of Mébius transforma-
tions on the form
(—k

1 —RC

where |A| = 1 and x € D. This group may be identified with PSL,R = SL,R/ ~, where
A~ —A for A € SL,R. Discrete subgroups G of Aut(D) are called Fuschian. It turns out
that if G is a torsion free Fuschian group, then D/G is a hyperbolic Riemann surface, and any
hyperbolic Riemann surface is of this form. See [9] for more details.

=
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Example 2.10. For the simplest case, where 71 (M) is abelian, we only have the following
possibilities.

e If 1 (M) =0, then M is D, C or C.

o If (M) =12Z,then M is D\ {0}, C\ {0} or Cg for some value of R. Note that D\ {0}
and Cp for different values of R, are all given by the quotient of D by a group isomorphic
to Z, yet none of them are conformally equivalent.

o If (M) =17 xZ, then M is a complex torus.

2.3 Quadratic differentials on a Riemann surface

We remark that for a Riemann surface M, .# M may be identified with Hol(M,C) \ {oo},
where oo denotes a function constantly equal to infinity.

Definition 2.11. A holomorphic (resp. meromorphic) quadratic differential on a Riemann
surface (M, A), is a mapping ¢ on A, such that for every chart (z24,Uy), a mapping ¢, €
Ozo(Uy) (resp. M zo(Uy) ) is associated, so that

62 (25(r)) = b2, (o)) - (F2(1)", Vr € Uan U,

dzg

We often denote a quadratic differential by ¢(z)dz? with respect to some chart z. A
holomorphic quadratic differential may also be seen as an element in I‘(Sym2 (THOM )*) Unless
otherwise mentioned, the quadratic differentials below are meromorphic. We call points on
the Riemann surface regular regarding to a differential ¢, if they are neither poles nor zeroes

of ¢.

Definition 2.12. A trajectory of a quadratic differential ¢, is a mazimal regular (i.e., C!
with non-vanishing derivative) curve v on M, such that ¢(z)dz? > 0 on 7, i.e., for any local
representation ¢, of ¢, we have

2
(bzaza’)/(t) : ((Za’)/)/(t)) > 0.
A mazimal regular curve 1, such that ¢(2)dz?> < 0 on n, is called an orthogonal trajectory

Geometric interpretation of the behaviour of trajectories is expressed in the following
theorem.

Theorem 2.13. Let ¢ be a quadratic differential on M. For any reqular point r € M, there
exists a chart (w, V') about r, such that ¢, = 1. Moreover, if W is another such chart, then
w = +w + constant.

Proof. Let ¢.(z)dz? be a local representation in a neighbourhood around r. Since r is regular,
there is a neighbourhood V', where we may choose a single valued branch of y/¢.(z) (the sign
+ comes from the choice of a branch). Let w = [ y/¢.(2)dz be the natural parameter, which
is defined up to some choice of constant, and independent of the local parameter z chosen (by
the definition of the quadratic differential). We know that

(bw(w) _ (bz(z) o (bz(z) _

(dwy2  g.(2)
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We call a f-arc a maximal regular curve along which
arg dw? = arg ¢.(2)dz*> = 0 (constant).

A trajectory is clearly a 0-arc, and an orthogonal trajectory a m-arc, and it is easy to see
that using w as a local parameter, trajectories and orthogonal trajectories form horizontal
and vertical straight lines respectively. Since the change of charts is conformal, we get that no
matter what local parametrisation we use, the orthogonal trajectories are indeed orthogonal
to trajectories, whenever they intersect. We also remark that orthogonal trajectories become
trajectories when we consider —¢.

Trajectories may be also seen as solutions to the differential equation qb(z)(g—i)Q =1 for a
real parameter u.

The following example is important in our further considerations.

Example 2.14. Let E, = {¢ € C| (Bey? 4 (a\}%)Q = 1} be the ellipse with the major

axis a along the real line, and with the eccentricity A. We find a conformal map from the unit
disk onto this ellipse. Let us consider the quadratic differentials
dz? —dw?

(22 —r=2)(22 —r2) and w2 —1’

where 0 < r < 1, so that the unit circle and ellipses with foci at +1, respectively, are
trajectories. In order to verify this, let us take z = €, # € [0,2n]. Then
dz? —e20dp? do*

(22 _ 7“_2)(2’2 _ ?”2) - (€2i0 _ T—2)(€2i0 _ 7“2) - (7”2 + ?”_2) _ (€2i0 + 6—22'9)

do?
= >
r2+7r2—2cos20 —
due to 72+ 772 —2cos20 > r2 + 772 -2 = (1/r —r)? > 0. For the other differential, let us
take w = acos 8 + ibsin 0, where a® — b*> = 1. Then

—dw?  (—asinf +ibcosf)*d6?  (a?sin® 6 — b* cos® § — 2abi sin 6 cos 0)dh>
w2 —1 1—(acos®+ibsinf)2 a2 — b2 — a2cos? + b2sin? 0 — 2abi sin 6 cos b

_ (a?sin®  — b* cos? 0 — 2abisin  cos 0)d6? 402
 a2sin?60 — b2 cos20 — 2abisinfcos

Hence we may solve the equation

K2dz> —dw?

(22 —r2)(22—1r2)  w?2-1

where x € Ry \ {0} and the solution will be the desirable conformal mapping of the unit
disk onto the ellipse. The reason for the constant x appearing, is trajectory structure of a
quadratic differential is invariant under multiplication by such positive constants. It will be
found when satisfying additional normalising conditions. We solve the equation for w = f(2)
with initial conditions f(z) =0, f(r) = 1. We will let F(x, k) denote the elliptic integral

: dt
Fla,k) = /0 N EE0)
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and let F(1,k) = K(k). We get

@ idw . . : rdz
e = st () + VTP ) = [ o

o V-1 =)
z z/r
= Ii/ dz = m“/ ;Zt — = m“F(E,TQ)
0 \/(TQZQ_l)(i_;_l) o V@ —=)(1-ri2) r
z .2
Applying the condition f(r) = 1, we get that kr = %(7”2) Let ¢(z) = W;;gz;g)). Then we
obtain the equation f(z) +/f(2)2 — 1 = ie~*(), solving which we get

F)? = 1= —e 00 — 20O () 4 ()7,

and finally,
Lo —1 . WF(E, 7”2)
1= B0 i )
This can be easily generalised to that an arbitrary ellipse. Explicitly, let

1
. orFR(L a2
sin( 21&”&2)))

v (z) =

Then the univalent mapping of the unit disk onto an ellipse with the major axis a, and
eccentricity A is given by

mF(Z, 7‘2))’

Ear(2) = aXsin ( K (17)

where 7 =1t()\)

The difficult part of this formula, is that, there is no simple way to derive r as a function of
A by an explicit formula. This mapping will be used in further examples.

The local trajectory structure about a regular point is trivial, but can be more complex
about the critical points of our differential (its zeroes and poles). The natural parameter
proved to be useful for study of the trajectory structure about a regular point. We continue
to use it in a similar way for singular points.

Theorem 2.15 ([33]). Let s € M be a critical point of order n € Z of the quadratic differential
o.

a) Letn be odd. Then there exists a chart w about s, such that ¢ has the local representation

n+ 2
2

)2

ds(w) = (

b) Let n be even and positive. Then there exists a chart W about s, such that ¢ has the local
representation

nE2ygn

P () = ( 5
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lambda

Figure 2.1: A graph of t(\) (black) compared to the identity (grey)

c) Letn = —2. Let z be any chart about s, and let ¢.(z) = 5 + *L +ag+---. Then there
exists a chart W about s, such that ¢ has the local representation

~ a_2
P (W) = 2
d) Let n < —4 and even. Then there exists a chart @ about s, such that ¢ has the local
representation
- +2 b
P (W) = (n wn/2+5)2

for some constant b.

Proof. We will use the natural parameter w = [\/¢.(z)dz. In the following proof, w will
not always be a single valued function, and never a chart, but we will still use it for practical
reasons, since formally dw? = ¢,(2)dz? is still valid.

a) Let z be some chart about the singular point s. We may assume z(s) = 0. Then ¢ may
be represented as

¢.(z) = 2"(an + apy12+--+)
where n is odd and a, # 0. We may locally choose a branch of the square root of
Gn + Apy12+ . ... Let it be equal to

(an + anp1z+ .. )2 =bo+brz+---

Let us put \/¢.(z) = 2/2(bg + byz + - -+ ), with a chosen branch of z™/2. We integrate

and put
2by

n+2(k+1)

n+

2
w=z2 (co+cr1z+---), o
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2
Let dy +diz+dez? +--- = (co + c1z+ co2? +---)7+2, and let @ = 2(dg + dyz +---).
Then w = w"T“, for the chosen branch of the square root. After differentiating and
squaring, we end up with a single valued expression

5 ) " dir?

b) We proceed in a similar way to a) without branching problems on the way.

c) Assume \/¢.(z) = z Y a_g +a_12 + apz® +---)"/2 = 27 (bg + byz + ba2® + -+ ), (since
we may choose a branch of (a_y + a_1z + agz® + - - )1/? locally). Integrating, we get

w:bologz+b1z+b§z2+~~. Letw:z~exp(2—éz+2%z2+~'). Then

b
dw?® = (=dw)? =
w

a—2 . .
— dw.
W

d) We may define a single valued branch as before \/¢,(z) = 2/2(bg+b1z+- - - ). Integrating,
we get w = 2"/?*1(co + c12 + -+ ) + blog z, where (b_pnj2—1 = b). Choose w = z(dp +
dyz + ---), such that w = @"/?*! 4 blog(w). This ends the proof.

O

Y

(b)

Figure 2.2: The local trajectory structure near (a) simple zero, (b) simple pole

Figure 2.3: The local trajectory structure near a pole of 5-th order

Now let us proceed with the global trajectory structure.
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Definition 2.16. A conformally invariant metric on a Riemann surface (M, A), is a mapping
p on A, that to every chart (2o,Uy,), associates a measurable function p,, : zo(Uy) — [0, 00),
satisfying the relation

dz

pz(2(r)) = pzo (2a(r)| ()| V1€ UanUs

dzg
We often denote a conformally invariant metric by p(z)|dz| with respect to some chart
z. To a quadratic differential ¢, we associate a conformally invariant metric \/|p(2)||dz]. A
trajectory is called finite, if it has finite length in this metric.
We say that an oriented trajectory is a trajectory ray.

Definition 2.17. For a trajectory ray v : I — M, where I is an interval with b = sup I, we
denote Iy = {u € I|lu >t} and associate the limit set

Ayt = %i_rfll)'y—’—([t)
Let v be a trajectory of a quadratic differential on M, with trajectory rays v and ™.

o If Ay =0, then vt is called a boundary ray. If both v+ and v~ are boundary rays, ~
15 called a cross cut.

o If A\ =s for some s € M, then v is called a critical ray and s is then either a zero
or a pole. If v© or v~ are critical rays, 7y is called a critical trajectory.

o If A,y consists of more than one point, then v" is called a divergent ray. If A,y = ~(I),
then ~ s called a spiral

These critical trajectories form different kinds of global structure on the Riemann surface.

Definition 2.18. Let ¢ be a quadratic differential on a bordered Riemann surface M, and
let U be a domain in M. Then we define the following types of domains associated to ¢ (all
trajectories and singularities described are with respect to ¢).

Ring Domain: U is a mazimal doubly connected domain, such that any non-critical closed
trajectory intersecting U, is contained in U.

Circular Domain: U is a maximal hyperbolic domain which contains a second order pole s,
such that U \ {so} is a ring domain.

Strip Domain: U is a mazimal hyperbolic domain such that OU contains two second order
poles s1 and sz, and any trajectory passing through some point r € U, connects s1 and
S9.

Ending Domain: U is a maximal hyperbolic domain such that OU contains a third or higher
order pole sg, and any trajectory that starts and ends at sg, and intersects U is contained
in U.

Spiral Domain: U can be described in the following way. Let v be a spiral which is not
closed. Then U =int A, .
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Quadrangle: U is a mazimal hyperbolic domain such that it contains no singularities, any
trajectory that intersects U is in U, and OU contains two non-intersecting connected
components that lie in OM

Triangle: U is a mazimal hyperbolic domain such that OU contains a second order pole sq,
and it intersects OM . This intersection is connected, and any trajectory that intersects
U isin U and connects sg and OM .

O,

C a b

Figure 2.4: The trajectory structure of the differential (sz)(Qc(; 2z)7d1z)2(Z7a) on the Riemann

surface So = C\ {—1,1,a,b}, 1 <c<a<b

From the definitions we know that

e Except for parts that coincide with M, OU consists of critical trajectories for any of
the domains above.

e Ring domains contain no singularities.

e Ring domains, Circular domains, Strip domains, and Quadrangles may be conformally
mapped on to an annulus, a circle, a strip, and a rectangle respectively.

If the trajectory structure of a quadratic differential gives spiral domains, we say that it
possesses dense structure. Dense structure happens more often than other types.

Example 2.19. Consider quadratic differential

ezadZQ

Cba(z) = (22 — 1)(22 — 2)

Then it is known that the set {a € R|¢, doesnot have dense structure} is countable [34].

For a general Riemann surface, we have very little control over the global structure. How-
ever, for the case of compact and finite Riemann surfaces (i.e., compact Riemann surfaces and
their subsurfaces) we can, by some extra requirement, get some knowledge of what kind of
domains may occur and how many they are.

Theorem 2.20 ([34]). If ¢ is a quadratic differential on a compact Riemann surface M, then
all domains mentioned in definition 2.18 (except for quadrangles and triangles) may occur.
However, if we require that the differential

e ¢ has a finite L'-norm, then only ring and spiral domains may occur.
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e ¢ has only finite trajectories, then only ring, strip, circular, and ending domains may
occur.

e ¢ has a finite L'-norm and have only finite trajectories, then only ring domains may
occur.

Theorem 2.21 (Basic Structure Theorem). Let M be a finite Riemann surface, and M its
closure, when seen as a subset of a compact manifold. Let ¢ be a quadratic differential on M,
such that its extension to M satisfies ¢,(2(s)) > 0 for any s € OM and some (hence any)
chart z. Let C be the union of all critical trajectories. If (M, ¢) is not conformally equivalent
to the following cases

o M =C and ¢. = 1, where z is the identity chart on C.

e M =C and ¢, = ”féa, a,k € R, k>0, where z is the identity chart on C\ {0}.

o M is a torus, and ¢ is reqular on M (¢ has no singular points).

Then

1. M - C consists of a finite number of ending, strip, circular, and ring domains. Any such
a domain, is bounded by the boundary components of M and a finite number of critical
trajectories. Fach boundary component of critical trajectories contains a critical point.

2. Bwvery pole of order m > 2 has a neighbourhood covered by the inner closure of m — 2
end domains and a finite number (may be zero) of possible strip domains. A second
order pole has a neighbourhood which is contained in a circular domain or it is covered
by int U§:1 Vj, where the V; are strip domains.

3. intC consists of a finite number of domains, with a finite number of boundary compo-
nents.

Proof of theorem may be found in [18].

a_9 <0 a_9 >0 Ima_s 75 0

Figure 2.5: The local trajectory structure near a double pole illustrates part of 2. in theorem
2.21
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Chapter 3

Quasiconformal mappings and the
reduced modulus

The famous length-area principle (see. e.g., [15]) permits us to consider families of curves
taking into account both the length of these curves and the area of the surface they sweep out.
This principle implicitly formulated by Grotzsch in earlier 30’s then took a form of extremal
length by Ahlfors and Beurling and of the modulus of a family of curves by Jenkins. The latter
considered a dual problem of the modulus of a family of curves and the extremal partitioning
of a Riemann surface by non-intersecting domains of certain size. In order to define such size
one uses the concepts of the conformal modulus of an annulus and the conformal radius of a
simply connected domain. First they were defined for plane domains and then, developed for
arbitrary Riemann surfaces. The conformal radius (or the reduced modulus) is not a conformal
invariant unlike conformal modulus. But its distortion under conformal map is well defined.
It changes proportionally to the derivative of the mapping at the point where we measure this
conformal radius. The distortion of the conformal radius under a quasiconformal map is not
known and we will try to clear up this case. First we will consider the general case of moduli
of families of curves and conformal maps, and then, turn to the quasiconformal mappings
admitting conformal extension. In particular, we shall consider quasiconformally extendable
conformal maps given by the Lowner-Kufarev equations. These equations where originally
introduced by Lowner in order to study the behaviour of slit mappings. They were further
generalised by Kufarev and later by Pommerenke to study general subordination chains.

3.1 Modulus of a family of curves

Definition 3.1. Let N be a Riemann surface and let I' be a family of rectifiable curves in N.
Let P be a collection of conformally invariant metrics that are L?> on N and such that, for
any p € P, we have that pr > 1 for any v € I'. Then the modulus of N with respect to T, is

m(N,T) = inf / /N P2(2)do (3.1)

peP
where do, is an element of area.

An alternative way to define the modulus is the following. Let P’ be the set of conformally

27
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invariant metrics which are L?. Define L,(I) := inf,er f7 p(z)|dz|. Then the modulus is
ffX p*(2)do,
m(N,I') = inf ==———>—.
b2 (L,(T)

The first definition is more convenient for us to work with, but we mention the second because
it illustrates how the length of curves and the area in some metric interplay in the definition
of the modulus.

Moduli defined on Riemann surfaces have the following properties.

Proposition 3.2. Let I' be a family of curves on N, and let P be the collection of admissible
metrics on I’

1. If T CTV, then m(N,T) < m(N,I").
2. If N C N', then m(N,T') = m(N',T"). In this sense, the modulus only depends on T.

3. If there is an extremal metric p* € P such that

m(N,T) = //N p*ido, (3.2)

then p* is almost everywhere unique, and L,-(I') = 1.
4. If f: N — L is an injective conformal mapping, then m(N,T') = m(f(N), f(T)).

Proof. 1. From the simple observation that if P and P’ are the sets of admissible metrics
for I and I, then I' C I implies P’ C P.

2. Since all curves are contained in IV, all metrics in P can be extended to admissible metrics
in N’ with respect to ', by letting them vanish on N’ \ N. Clearly, for determining the
infimum over all integrals [y, p?, it is sufficient to consider metrics that vanish on
N'\ N.

3. Assume that there are two admissible metrics p; and p satisfying (3.2). Then 3(p1 +
p2)|dz| is admissible, and we have that ffN(W)QdUZ > m(N,T), but also

0<// Pl —/72 daz // Pi(z) +p3(2) daz // Pl +P2 ))dz
:m(N,I‘)—//N (M)%wgo

which can only hold if p; = p2 almost everywhere.

In order to prove the second statement, let L,-(I') =1 > 1. Then {p*(2)|dz| is admissi-
ble, and

m(N,T) <_// daz—llm(N,F)gm(N,I‘)

implies that [ = 1.
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4. Let @ be the set of admissible metrics on f(I'). Then for every u € @ we associate a
metric p(z)|dz] = p(f(2))|f(2)||dz|. Since

/ p(2)ldz] = / () ()] > 1
yer FEf(T)

by the change of variable formula, p € P. Since also

J[ oo~ [ /f . )2do s,

we have m(N,T') < m(f(N), f(I')). Reciprocal statement follows from similar argument,
by considering f~*
O

We present here some important examples.

Example 3.3. o Let @ ={C € (C| 0 <Re( < 1,0 <Im( < 1} be a rectangle, and let I'
be the set of curves that connect its horizontal sides. Then m(Q;,T') = I.

Proof. The metric |dz| is admissible, so | = [[, dzdy > m(Q;,T'). We know that for
any p € P, fol p(x +iy)dy > 1, so we have

//lp(z)dxdyzfol (/Olp(xﬂy)dy)deL

0<// (p—l)dedy:// p2da:dy—2// pdrdy +1
1 Q1 Qi
<// pPdx dy — 1,
Qi

so we conclude that [ < m(Q,T). O

Finally,

e More generally, let V' be a simply connected domain on a Riemann surface, with oV
to be a simple closed curve. Let rq,r9,73,74 be four different points on V', indexed in
the counterclockwise order. Let +;; be the part of OV connecting r; and r;. We pair
~v12 with ~34. Then (V, (712,734)) is called a quadrilateral. We will call (y12,734) the
primary sides of the quadrilateral (remark that this is not a standard term). To any
quadrilateral, there is only one J;, such that there is an injective conformal function
mapping V onto );, and the primary sides onto the horizontal edges of the rectangle.
If T is the family of all curves connecting these primary sides, then m(V,T') = [. Since
the modulus of quadrilateral is often in use we shall denote it by M (V) .

e Let I' be the set of curves in Cp, that separate the boundaries. Then

1
m(Cg,T) = %logR (3.3)
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Proof. The metric % is admissible, so 5= log R = ffCR Wda:dy > m(Cg,T"). For

any p € Pand 1 <7 < R, we have 2 <1 < fo% p(re®)df. So

log R < /lR (/027r p(re’)df)dr = //CR %daz,

and
1 1 1
o< [[ - sendo. = soowr— 1 [[ 2o+ [[ i,
Cr 27T‘Z| 27 T Cr ‘Z| Cr
2 1
< p°(z)do, — —log R.
Cr 27T
Therefore, 5-log R < m(Cg,T). O

We observe that Cr, 2 Cpr, whenever Ry # Rs, because the modulus is a conformal
invariant by Prop 3.2.

e More generally, for any doubly connected hyperbolic Riemann surface V', there is a
unique R € (1,00], such that V may be mapped conformally onto Cr (note that Cy, =
D\ {0}). Then if I" is the set of curves that separate the boundaries, then m(V,T") =
% log R. This is also one the most used modulus for doubly connected domains, we will
denote it by M (V).

Definition 3.4. Let Q be a simply connected hyperbolic domain in C. Let f : Q — D be
the Riemann mapping of Q with respect to s € Q, s # oo (i.e. f is bijective and conformal,
f(s)=0, f'(s) >0). Then we define the conformal radius of Q with respect to s by

1

89 = 775

In other words, R(€2, s) is defined such that there is a bijective conformal map g : Q@ — {w €
C||w| < R(%, 5)}, with the Taylor expansion g(¢) = (( —s)+a2({ —s)?+---. We may extend
this definition to the case s = co by defining R(£2, c0) so that there exists a bijective conformal
map g : @ — {w € C||w| > R(,00)} with the Taylor expansion g(¢) = ¢ + by + % +-e-
Conformal radius is connected with a limiting case of the modulus of a doubly connected
domain in the following way.

Definition 3.5. Let Q be a simply connected hyperbolic domain in C. and let s € ), |s| < oo.
Let Q. = Q\ {C € C| |s — ¢| < e} be defined for € small enough, such that Q. is doubly
connected. We define the reduced modulus of ) with respect to s by

1
m(Q,s) = il_r)r(l) (M(Qe) + Py loge).

If s =00 , then we define
m(§2,00) = m(¢(2),0)

where ¢ : Q — C is given bbe—>%.
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Theorem 3.6. Let Q2 be a simply connected hyperbolic domain, s € Q, |s| < co. If R(Q,s) is
the conformal radius of Q0 with respect to s, then the reduced modulus m(S2, s) exists and

1
m(Q,s) = o log R(2, s).

If s = 0o, then

1
m(§2,00) = —or log R(£2, 00).

Proof. We have to prove the theorem only for |s| < co. Let ¢ = f(2) = z—s+ba(z —8)2+- -
be the Riemann mapping from Q onto the disk of radius R(€2,s). Then

{C e Cle(l+|baleto(e)) < [¢] < R(2,5)} C f(Q) C {¢ € Cle(l—|bale—o(e)) < [¢] < R(2, 5)}-
From (3.3) we have that

1 R(Q,s) . 1 o R(Q,5)
2 BT bale +oe) e MU = o o8 S oy

Addlng —log e to all sides of this inequality and taking the limit as € — 0, this leads to the
result. O

From these results, it follows immediately that the reduced modulus is not conformally
invariant.

Corollary 3.7. Let f : Q — C be an injective conformal map. Let s €  be such that
|s| < oo, |f(s)| < oo. Then,

(), £(s)) = m(@,8) + 5 log | 1/()].

We use this formula to define the reduced modulus for a general simply connected domain
on a Riemann surface.

Example 3.8. e Clearly m(DD,0) = 0. For any other s € D, we can use a Mobius transform

a2
7s(2) = fj‘;z of the unit disk, mapping 0 to s. Since 75(z) = %,

we conclude that

1 1
(D, 5) = o log |74(0)] = 5 log(1 — |s[?). (3.4)

e Let us consider the reduced modulus of the ellipse with the major axis a, and the
eccentricity A. From (3.4) we get that

1
m(Ea;)nS) = %log(l - ‘w|2) (/1;)\(("})

mF(%,r?)
L +11 A1 — |w]?) ‘ COS(QK(TQ)) ‘
= — loga — 10 9

o 0 o 0 2K(r2) 11— (r2+r2)w? +uh)
where w = £, (s) and r = t()\). Note that given s in the expression above, the first term
depends only on a and the second one only on A. In particular, the reduced modulus
with respect to the centre and foci (w equal to respectively 0 and r) becomes

TA

2rK(r?)’

1 1
m(£2,0) = o loga + 7 log
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and
A

(2K7(rr2) ) 2 r(1+7r2)’

1 1
m(Q,a\) = o loga + o log

We include here, one of the most important tools when working with moduli.

Theorem 3.9 (Grotsch Lemmas). 1. Let Vq,...,V,, be non-intersecting quadrilaterals in Q)
with primary sides on the opposite horizontal sides of V. Then,

M(Q) > > M(V).
j=1

The equality is attained if and only if U;T;IV]- = Q1 and every V; is a rectangle.

2. Let V1,...,V,, be non-intersecting doubly connected domains in Cr, separating the bound-
ary components of Cr. Then

M(Cr) = ) M(Vj).

=1

The equality is attained if and only if U;T;IV]- = CR, and all OV} are concentric circles
for any 7.

The proof can found, e.g., in [34] . Letting R — oo in the second Grotsch Lemma, we get
a corollary.

Corollary 3.10. Let V be a disk centred at the origin, split into domains V1, ..., V, by curves
separating the boundary and 0. Let Vi be the domain which contains 0. Then,

m(V,0) = m(Vi,0) + 3" M),
Jj=2

The equality is attained if and only if OV} are concentric circles for 2 < j < n.

The definition of the modulus can also be extended to several families of curves. We will
use the sign ~ to denote free homotopy of curves.

Definition 3.11. Let N be a (bordered) Riemann surface, with ON consisting of hyperbolic
boundaries. Then:

o A curve v; in N is said to be of type I if it is a simple loop not null homotopic.

o A curve yj in N s said to be of type II if it is a simple arc ending on boundary and not
null homotopic.

o A collection of curves v = {v1,...7n} is said to be an admissible system of curves, if all
curves are disjoint, v; % v for any j # k, and all curves are either of type I or type II.
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Given such an admissible system, and a non-zero vector o = (a1, ..., ), let I'; = {n|n ~
v}, and let T' = {T'y,..., I\, }. Admissible metrics consist of all L? metrics which, for all j
and any «y € I';, satisfy the inequality

/7 p()ldz] = .

Let P be the collection of all admissible metrics. Then the modulus of I" with respect to N
and « is defined by

m(N,T',a) = inf //NpQ(z)dUZ.

peP

Observe that if we let o be a vector with 1 at the j’th place, and the resting coordinates zero,
then m(N,TI', o) = m(N,T).

It is known that in these types of problems, there is always a unique extremal metric. This
metric is on the form p*(2)|dz| = \/¢(2)|dz|, where ¢(2)dz? is a quadratic differential with
finite trajectories.

To each such problem, we may associate collections of domains. If N be a Riemann surface
and if I is a collection of homotopy classes, as above, then we may associate a collection of non-
intersecting connected domains ¥ = {Vi, Va,...,V,,} which satisfies the following properties:

o if I'; is of type I, then V; is a doubly connected domain with 9V consisting of curves
from I';;

e if I'; is of type II, then V; is a quadrilateral with primary sides on the boundary of N
and the other pair of sides are from T';.

The following important result make a connection between two dual problems: the modulus
problem as the infimum of certain reduced area, and the problem of extremal partition of a
Riemann surface by non-intersecting domains of certain type.

Theorem 3.12 ([34]). If ¥ is any collection of domains associated with I' and if o =
(a1, ..., ) @8 a non-zero vector, then

> a;M(V;) < m(N,T, ).
j=1

Equality is given by an extremal collection ¥, consisting of domains which are either ring
domains or quadrangles of the extremal quadratic differential.

3.2 Quasiconformal mappings

We will give two equivalent definitions of a K-quasiconformal (shortened to K-q.c.) mapping,
where K € [1,00).

Definition 3.13. (geometric definition) A homeomorphism [ : Q — ', where Q and ' are
domains in C, is called K-q.c. if, for every quadrilateral QQ C 2, the following inequality

M(f(Q)) < KM(Q) (3.5)
holds.
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This definition is nice for determining some properties of quasiconformal maps.
e Composition of a Kq-q.c. map and a Ks-q.c. map, is a K7 Ks-q.c. map.

e The inequality (3.5) implies that KM (Q) < M(f(Q)) < KM(Q). This follows from
the fact that if Q is any quadrilateral and Q is the same quadrilateral, with permutated
primary sides, then M(Q) = (M(Q))_l. From this, it follows that the inverse to a
K-q.c. map is K-q.c.

e A 1-g.c. map is conformal.

e If a mapping f is such that for every point in Q there is a neighbourhood where f is
K-q.c., then f is a K-qg.c. map on €.

e If V is a doubly connected domain, then KM (V) < M(f(V)) < KM (V).

However, this geometric definition can often in practice, be hard to check. Let us therefore
present the notion of quasiconformality from a more analytic point of view.

Definition 3.14. A function g(z) is absolutely continuous on an interval I = [a,b], if for
every € > 0, there exists a 6 > 0, such that for any finite set of disjoint intervals {(a;, b;)}1,

i I, we have
n

> bi—a)<s = Z\f f(ay)| < e

=1

Clearly absolute continuity implies continuity. Apart from this definition, absolute conti-
nuity can be checked in the following way.

Theorem 3.15 ([30]). Let I = [a,b], and let f : I — R be continuous and non-decreasing.
Then the following statements are equivalent:

a) f is absolutely continuous on I;

b) If K C I has measure 0, then f(K) has measure 0 (both with respect to the Lebesgue
measure);

¢) f is differentiable a.e. on I, f' € L*(I), and for any x € I,

@) - sl = | oL

A function u(x,y) is called absolutely continuous on lines (ACL) in Q, if for every closed
rectangle R C ), with the sides parallel to the x- and y-axes, then u(x,y) is absolutely
continuous on a.e. horizontal and vertical lines in R. Note that ACL implies the existence of
partial derivatives a.e. in €.

Definition 3.16. (Analytic definition) Let Q and Q' are domains. A homeomorphism f :
Q— Q isa K-q.c. map if

e fis ACL in Q;

a.e.
o |fz| < RISl
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The equivalence of these definitions is shown in [1]. It is also common to call such a mapping
k-q.c., where k = g—ﬂ, instead of K-q.c. Obviously, k € [0,1), and k£ = 0 implies that the

mapping is conformal. If a mapping is C!, it is quasiconformal if B%I < k. We say that puy = ;Z
(which is almost everywhere defined for a quasiconformal mapping) is the Beltrami coefficient
for the quasiconformal mapping. For the composition of two quasiconformal mappings we
have the following relation for the Beltrami coefficient:

f_ Hgf — Iy

ol = (3.6)
= Ef V=g pgr
If g is conformal (pq = 0), then pg¢ = pf, so the solution to the Beltrami equation
hz = pg - h, (3.7)

is equal to f composed with a comformal map. Moreover, for any measurable complex valued
function g on the domain €, with ||ul|cc < k < 1, there is a k-q.c mapping of €2, satisfying
(3.7). Quasiconformal maps transform infinitesimal circles to infinitesimal ellipses with the
ratio of the major and minor axis less than K.

3.3 Distortion of the reduced modulus under q.c. mappings

Let f be a C! K-q.c. injective mapping from the unit disk I, onto €, with f(0) = 0. We
know that it is possible to find estimates for the modulus of doubly connected domains under
g.c. maps, and we also know, that if f is conformal, it is sufficient to know f’(0), to define
m(§2,0). It seems to be reasonable to expect that knowing |f,[(0) or perhaps the Jacobian
Jr(0) = |f:]?(0) + |fz|*(0), we will be able to determine an interval for m(,0), depending
only on K.

We will try to use the Grotzsch Lemma to estimate m(€2,0). Let us split D into two parts
D. ={z ¢ D! |z| > €} and E. as defined in example 2.14. Let Q. = f(D.). The domain
f(Ez0) approaches an ellipse for small e. Let Ko = %. As e becomes smaller,

f(E-) approaches the ellipse with the major axis ag(e) and the eccentricity g = /1 + K 2.

We can use the fact that the Jacobian is a local enlargement factor to determine ag(g). This

gives us

2

Tp(0)me® = (|£:17(0) + |fz*(0))me® = i

so that ag = (|f.](0) +|f2|(0))e and Ay = 2 |“f‘{z|(i“j:z‘ . Using the Grotzsch Lemma for small
€, we get

mo(1/1(0) + £2[(0))
2t(A0)K((x(X0))?)

1 1
m(Q2,0) > M () + m(Egp:ng,0) = M(Q) + o loge + o log
We see that the last part is independent of €. The problem is that log e~K < M(Q) <
loge™® and we can not control the distortion as ¢ — 0.

Proposition 3.17. For any non-zero a € Ry, any K > 1, and for any k € R, there is a
K-g.c. map f, with |f.](0) = a such that m(f(D), f(0)) = k.
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Proof. Assume a = 1. The K g.c. mapping

fae =By em,
is such that the image of the domain D, has modulus —% loge. It may be extended to the
whole unit disk by
2E)EL i 1S 2 > e,
z if |2 <e,

f(Z;E)Z{

for 0 < ¢ < 1. We further define f(z;1) = idp(z), and f(z;2) = X1 f71(zel 7K ¢), such
that for any € > 0
1-K

m(f(D7 5)7 0) =

So we only need to show that all these mapping are quasiconformal, and it is sufficient to prove

this for 0 < ¢ < 1. f(z;¢) is a homeomorphism (may be extended to a bijective mapping in the
S 9. 0 —1,0 3

closed unit disk), and \8—2(7;; g)] < g—ﬁ 8—{:(7:; ¢)| where they are defined (in D\{z| |z| = ¢) . The

function f(z;¢) is clearly absolutely continuous on line segments lying entirely in D, or E. o.

Let I = [a,b] + ic be a horizontal line segment in first quadrant, such that V&2 — ¢2 € [a, b,

that is, it crosses the circle |z| = €. Let ¢1(z) = Re (f|r) and ¢2(z) = Im (f|7). We have

o) = | EED e i o> VT,
! x if x<+VeZ—c2,

loge

and
K-3
&, (z) = %(Kﬁ—k@) if x> +ve2—c2,
1 if < Ve?—c2

Since the derivative of ¢; is positive, ¢ is increasing. We clearly have that ¢1(z) — ¢1(a) =
[ ¢ (t)dt, so ¢1(x) is absolutely continuous on I. Similar argument works for

£

bo(z) = o Y= “32*'62)]{*1 if x> Ve2—¢2,
2 c if x<VeZ—c2,

and
K—3
o) = | (K = DI i g V2 o2,
0 i r< VTR

For I crossing |z| = ¢ and lying in another quadrant we use the same arguments (switching
orientation on I when necessary). The arguments for vertical lines are similar. Hence all the
mappings are K-quasiconformal. O

Observe that these maps can even be made C'*° by using a bump function.

3.4 The Lowner-Kufarev equation

We consider a chain of simply connected hyperbolic domains {Q(t)}]_, in C, with 7 € (0, oo},
such that
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o t1 <ty= Qt1) C Qt2) (that is {Q(t)}/_, is a subordination chain)
e 0€Q(0)

e R(Q(t),0) = €' (for an arbitrary subordination chain, this can be achieved by a repara-
metrisation)

From Riemann mapping theorem we know, that for any fixed ¢, there exists a unique holo-
morphic univalent f({,t): D — C,

¢ e (C+az(t)C? +as(t)e’ + ),

such that f(ID,t) = Q(t). A necessary condition for for a function to represent such a subor-
dination chain, is that there exists an analytic regular function

p(¢,t) =1+ pi ()¢ +pa()C® + ... (€D,
with Rep((,t) > 0 for almost every ((,t) € D x [0, 7), such that f is a solution to the equation

of(¢,t) of(¢,t)
ot aC

This equation is called the Lowner-Kufarev equation. Let us denote the class of all such p(z,t)
by C'. We introduce a parameter s, to solve the the above equation by the characteristic
method with the initial condition f({,0) = fo({), associated to some initial domain Q(0) = €.

Then p ac of
t 0
Co1 Ze-on o (39)
with initial conditions ¢(0) = 0, ¢(0) = z, f(2,0) = fo(z) where z € D. Clearly t = s.
However, we may only get solutions for ¢ in some subdomain of D. We therefore use w(z.t)
instead of ¢ for solutions of (3.9). We end up with the following differential equation

=( p(¢,t) for( € D and for almost all ¢ € [0, 7). (3.8)

d
d_ltu = —wp(w,t) w(z,0) =z (3.10)
Solving this for w, we get that fo(w™'((,t)), as a solution for (3.8) in parts on the unit disk. In
the attempts to extend this solutions to the entire unit disk, we may loose injectivity. However,
is was shown by Pommerenke [26], that for every function f € S, there is a p(z,t) € C, such
that the solution w(z,t) to (3.10) with this p(z,t), we have

f(2) = lim elw(z,t) (3.11)
t—o0
We say in this case that f is generated by p (this is not a standard term). The choice of p is
not unique, but every p € C generate a function in S. If a function f generated by p(z,t), is
taken as the initial condition in (3.8) with the same p(z,t), then the solution is univalent for
any t.

Example 3.18. Let S’ be the subclass of S, whose image is C\ v, where 7 is a Jordan curve
starting at a point in the complex plane and ending at infinity. These mappings are called slit
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mappings and they are dense in S with respect to the local uniform convergence. Any f € S’
is generated by p(z,t) € C in the form

et 4z

p(z:1) = etult) — 2’

where v : R; — R is a continuous function. (3.8) was originally studied by Léwner [24] with
p on this form, and then later generalised Kufarev [22]. If f is a multislit mapping, whose
image in the complex plane has a tree with m — 1 tips as complement, then it f is generated
by elements from C'in the form

Here, ug(t) : Ry — R are continuous, and Ag(¢) : Ry — [0, 1] are measurable functions with
> peq Ak(t) = 1. For a general mapping f, it is difficult to know which p € C that generate it.

We define, for k € [0, k) a subclass S C S, extracting the class of functions generated by
some p(z,t) € C satisfying
(pi(z’t) — 1‘ <k (3.12)
p(z,t)+1
for all (z,t) € D x Ry. We denote by S the subclass of S consisting of functions whose image
is bounded by a C* Jordan curve. If f € S, then both f(ID), and ext f(ID) are domains with
the common boundary. Note that S C S for any k € [0,1).
By the analogy with S, we can define the class of univalent functions f in D* normalised
by g(z) = z 4+ by + b71 + ... by ¥ . We denote the subclass of functions with by = 0 by X,
and the subclass of functions such that 0 ¢ g(D*) by ¥/. . Any g € ¥ is equal to a constant
plus some element in ¥’ (or Xg). There is a one-to-one correspondence mapping = : S — ¥/,

which, for f with the expansion f(z) = z + a12® + a22? ..., is given by
1
E:f(z) = ——.
e

For this class we have a similar way to generate its elements. Let C* = {p(z,t) : D* —
(C‘ p(i,t) € C'}. Then we have that for any g € ¥, there is p € C*, such that

g(z) = lim e ‘w(z,t), (3.13)
t—o0
where w is a solution to
L (3.14)
i wp(w, }

We also define the subclass ¥y = Z(Sk) -

3.5 Conformal maps with quasiconformal extension

Since there is no consistent estimate for the distortion of the conformal radius under general
quasiconformal map, we will look at quasiconformal functions in D, that have a univalent
extension into the exterior D*, and use the properties of the exterior function, to determine
properties of the interior one.
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Definition 3.19. A curve v is called o k-quasicircle, if v = f(OD) for a k-q.c. mapping
f:C—C

In particular, a C'*° closed Jordan curve is a quasicircle. We consider a quasiconformal
mapping f : C — C such that f|p is univalent. To normalise, we require that f|p- € ¥
and f(0) = 0. For any gg € Xy, there is a k-q.c. mapping f : C — C, with f(0) = 0 and

flpe = go:
Theorem 3.20. Let g(z,t) be a univalent solution to

dg

_ 9g
5 = —zp(z,t)g, (3.15)

with the initial condition g(z,0) = go(z), and let
‘P

— <1
lsee

Then g(D,t) is a Jordan domain bounded by a k-quasicirle for each t > 0, and f defined by

9(z,0) it zeD*,
f(z):{ g(Z.—log|z]) if zeD,

is a k-q.c. estension of g(z,0) into C with f(0) =

This follows from similar theorem for functions in Sy, found in [4]. It is important to notice,
that although all elements in 3; admits an quasiconformal extension, that does not necessarily
mean that all functions that have a k-quasiconformal extension is in Y. For example, the
mappings later considered (3.17), has a k%-q.c. extension, but there is no obvious choice for p
satisfying inequality (3.12) for k2. The reason we mention this, is to avoid confusion, since in
much literature on Complex Analysis, the symbol X; denotes functions in 3 or Xy that admit
k-q.c. extension.

We will try to look at the distortion of the reduced modulus under mapping given by the
above theorem. From the classical area theorem we have that the area of the complement to
f(D*) is less than 7. Of all domains of constant area, the disk has the maximal conformal
radius. Actually, for any simply connected domain €2, with R = maxscq R(€2, s),

TR?* < Area(Q),
with equality if and only if Q is a disk (see e.g. [16]). Therefore, m(f(D),0) <

be generated by p(z,t), with ‘pgi +1‘ < k for almost every (z,t) € D* x Ry. From Swartz

Lemma, we have that
pw ‘ < 3.16
‘ wt +1 - | (3.16)
which gives
|w| + k

jw| =k

w| —
|lw| +k —
Using the latter inequality, we get

< [p(w, k)| <

Fl
Rep(z, 1) = Re (2L2) = Re(g log w) = (f;)t log [w| =

w

0
gl _ wl +k
lw|  ~ |w| -
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Rearanging and integrating the inequality with respect to ¢, we get

t |w| _ 2
/dt:tz/ Tk 1og LRI |22‘,
0 2 (@ + k) lwl([z] + k)

and further

(lw] + &)?|z] ¢ (|w] + k)?|z] e (Jw| + k)*|2]
0>log—F——— —loge' =log————— =1o
= Tl (e + k2 T T (R T e ul (] + k)
Letting t — oo we get (|f(2)| = limy—o e Hw(z, )| )
1F(2)] < M
]
and doing similar operations for the lower estimate, we get
z| — k)? 2| + k)2
CRL PP CEL

From this, we have that f(D) will always contain (1 — k)2, and it is always contained in
(14 k)?D. If we have equality in (3.16), then, if o € R
iak. 2
flo) = BEERT (3.17)
z
and we see, that in this case, f(ID) in an ellipse, with the centre at 2ke’®, with the major axis
1 + k2, the minor axis 1 — k2, rotated by an angle a. These mappings do appear as extremal
functions in other areas of complex analysis (see e.g. [23]).
The mappings have an obvious k?-q.c. extension

=] BT itseDy
2 4 2kei® 4+ K220z if »eD,

but we do not have the normalisation f(0) = 0. We try to find another extension by the

theorem 3.20, and solving (3.15) with the initial condition go(z) = M, z € D*. The

(2+eik)?
z

(Z+6ia]€)2 f D*
f(z) = i 2 i : 2ol
z + 2ke'|z| + k*e”**z if z €D,

solution is f(z,t) = et and we get the following extension

which as we can see satisfies the equality

|f2] . Kl +|z|‘
Ty

and f(0) =

The investigation above ends up with the following result.



3.5 Conformal maps with quasiconformal extension 41

Theorem 3.21. Let f : C — C be a quasiconformal automorphism with f(0) = 0, f(c0) = oco.
Let flp € Xk and let f|p be k -q.c. Then,

tp < m(f(D,0) <0,

where Ly, is the uniform lower boundary of the modulus of all such maps and

s )2 k
K(r2)” 2r(1+r2)’

1 1
—log(l1—k)?2 </t < —1
5-log(l — k)" <l < o og (

2k
1+k2)'

where r = (

Proof. For {},, the left inequality follows because all such maps contain (1 — k)?D, and the
right-hand inequality is from the formula for the reduced modulus of the ellipse. O

ellipse
(1-K)* ||

0 I I I |
0 0.2 04 0.6 0.8 1

k

Y

Figure 3.1: The bounds for the conformal radius. The “step down’
bound (ellipse), is because of numerical error.

at the end of the upper
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Chapter 4

Class S and the coefficient manifold

We will now study some properties of the class S of univalent functions f : D — C normalised
by
f(z)=2z+c12* + a2+

One of the most important result for this class is the de Branges theorem proving the famous
Bieberbach conjecture [7]. This result states that for any n, |¢,| < n + 1 with the equality
only for rotations of the Koebe function. A natural next step is to find out what elements of
CN being inside the bounded domain given by the de Branges theorem can be the coefficient
sequence of a univalent function. To do this we study manifold of coefficients of S and S.
We will begin this chapter with the definition of the Witt and Virasoro algebras, as they will
later appear in section 4.2, when working on a manifold of coefficients. Then we shall deal in
more details with the coefficient manifolds by constructing different Hamiltonian systems for
the coefficients in S based on the Lowner-Kufarev equation.

4.1 Virasoro algebra

Definition 4.1. The Virasoro algebra viv is a Lie algebra consisting of a vector space over C
spanned by basis elements { Ly }nez and ¢ with Lie brackets defined by the relations

(Lo, L] = (m — 1) Loy + —=m(m2 — 1)6_pmn,

12
[e, L] =0 Vn € Z,
where Op, p, s the Kronecker delta.

The element c is called the central charge, and in most representations it works as a
multiplication by scalar. This algebra usually appears as a central extension of the Witt
algebra.

Definition 4.2. Iff, g, b are Lie algebras, then by is the central extension of g by f, if there is
an exact sequence of Lie algebras

0—=f—h—9g—0,
such that § is contained in the centre of b.

43
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Treated as vector spaces we can write h = g@ f. If h = g @ f as Lie algebras, (the Lie
algebra g & f is defined to be the vector space g @ f with brackets given by

[(g1, f1), (92, f2)) = (91, 921, [f1, fo])

and the last brackets will always be 0 in case of a central extension, since f has to be contained
in the centre) we say that b is a trivial central extension of g by f.

A vector field on a Riemannian manifold, is called a Killing vector field if it preserves the
metric (i.e. given a Riemannian metric p, then Lxp = 0, where Lx is the Lie derivative). The
Witt algebra is the Lie algebra of holomorphic Killing vector fields on C\ {0}, with brackets
given by the commutators. This has basis elements {L,, = —z"‘“%}nez of this algebra, and
the brackets of these two vector fields are given by

(L, Lyp] = (n — m)zm+”+1% = (m —n)Lpyin.

The Virasoro algebra is then a nontrivial central extension of the Witt algebra by C (actually,
there exists no other nontrivial extension by C, see, e.g., [14]).

To get some details on this extension, we first need some definitions. A Fréchet space V
is a Hausdorff topological complete vector space, in which its topology may be induced by a
countable family of seminorms {|- || }xen (i-e., the sets Uy - = {y € V| |lz — y[|x < €}, where
x € V,k € Nje > 0 form a basis for the topology). Fréchet spaces are always locally convex
[10]. Derivation of a function between two Fréchet spaces is defined by the Gateaux derivative.
A function f: U — W, where V and W are locally convex topological vector spaces, and U
is open in V, is said to have Gateaux derivative in x € U in the direction y € V if

o Fa ) — £ (@)

t—0 t

df2(y)

exists. If df,(y) exists for any y € V, then f is said to be differentiable at . A function f is
continuously differentiable (a C'-mapping) in an open subset U C V, if df : U x V — W is
continuous. Note that df,(y) needs not, in general, be linear with respect to y. This definition
can easily be extended to C™ -mappings for any n € NU {oo}. A Fréchet manifold M (over
a model space V', where V is a Fréchet space) is then a topological Hausdorff space M with
a maximal atlas A = {z,, : Uy, — V'}, (as usual U, are open sets covering M, and each z, is
homeomorphic on its image) where $El$a|$(UamUﬁ) now is required to be C°° as mappings of
Fréchet spaces for any z,,x3 € A. We further define differentiable mappings between Fréchet
manifolds and tangent spaces in an analogous way of what is done for real manifolds. A
Lie-Fréchet group G, is a topological group on a Fréchet manifold, such that multiplication
and inversion are C'*°-mappings.

An important subclass of the Lie-Fréchet groups, are the Lie-Banach groups, defined simi-
larly, only with “Fréchet space” interchanged with “Banach space”, and the Gateaux derivative
interchanged with the Fréchet derivative. If V, W are Banach spaces, and U is open in V, then
f U — V, is Fréchet differentiable at x if there exists a bounded linear operator A, : V. — W,

such that
) — )~ A
y—0 [yl

=0,

and continuously differentiable in U, if df,(y) = Apy is continuous in U x V.
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Going back to the general case, if G is a Lie Fréchet group (over model space V), TG
is a Fréchet manifold (over model space V' x V), and if e is the identity element in G, the
multiplication on G, induces a bracket operation on g = T.G in the usual way, and g is
called the Lie algebra of G. A Fréchet (resp. Banach) space with a skew symmetric bilinear
continuous map [-, -], satisfying the Jacobi identity is called a Lie-Fréchet (resp. Lie-Banach)
algebra. While the Lie algebra of a Lie-Fréchet or Lie-Banach group, is a Lie-Fréchet or Lie-
Banach algebra, respectively, the converse is not necessarily true (both in Banach and Fréchet
case). For instance, if M is a real noncompact manifold, then I'(T'M) is a Lie-Fréchet algebra,
but it is not the Lie algebra of any Lie-Fréchet Group.

The case of Lie-Banach groups is mostly studied, since its Lie-algebra always have an
exponential map to a local Lie-Banach group. We have no such knowledge of the existence
of a exponential map from any general Lie algebra of a Lie-Fréchet group. Studies are often
therefore restricted to Lie-Fréchet group that are regular, where some sort of exponential map
may be defined. For the definition of a regular Lie-Fréchet group, and more details, see [21].

If M is any real compact manifold, then T'(T'M) is a Fréchet space with seminorms given
by supremum over partial derivatives. The space of diffeomorphism of M, Diff M, is then a
Fréchet manifold over model space I'(T'M), and it is a Lie-Fréchet group under composition
(in fact, a regular one). Its Lie algebra will be I'(T'M). The simplest case of this, but also one
of the most important, is Diff | S* , the collection of C*°-sense preserving diffeomorphisms of
the unit circle. These are all of the form

~ 619 — eia(@)’
where a : R — R is a monotonically increasing function, with «(6 + 27). We denote its Lie
algebra by Vect S' | which is just I'(T'S!) with usual commutator brackets. This Lie algebra
has a non-trivial unique central extension by R with brackets given by

C
[X1 + ac, Xo + bc] = [ X1, Xo] + EW(SDL ®2),

where X;(0) = goi(ﬁ)% € Vect St, a,b € R, c is a basis vector for R, and w is the so-called
Gelfand-Fuchs cocycle

1 27
w(ep1,p2) = %/0 (@1 - 5 — ¢ - py)db.

Note that integration by parts, gives the 2-cycle condition:

w(e1, (2, p2]) + w(p2, (@3, 01]) + w(ps, (1, @2]) =0

and a reformulation of w

1 27
w(p1,p2) = _E/o (@) + &) - padb.

This will be a real version of the Virasoro algebra which we denote virg . Complexification
of vitg gives us vit. To see that this is indeed the case, we write Vect S' as S x VectoS?,
where here S! represent the constant vector fields on S!, Vecty S' is the quotient of all vector
fields out by these contant elements. All elements in Vectg S' we may identify with with



46 Class S and the coefficient manifold

C® functions ¢ : S' — R of vanishing mean value over S!. This gives for each function an

expansion
o0

w(0) = Z (an cosnb + by, sin n@).

n=1

We can define almost complex structure by operator

o o
J:ng:Z(ancosn9+bnsinn«9)|—> (—ansinnH—i—bncoan).
n=1 n=1
Clearly, J? = —idye g1- Holomorphic elements are are of the form
1 > A
S0 —il(p)) = Zl(an — ibp)e™?
n=

which can be extended to holomorphic functions into the unit disk. The antiholomorphic
elements are of the form (¢ + zJ(go)) = 3% (an + iby)e~ .

We choose the basis {L,, = —iemg%}nez of Vectc S!, given by the restriction of the basis
elements in the Witt algebra to the unit circle. By the above discussion, we know that these
elements does in fact span Vect S* ({L,,},>1 for the holomorphic elements, {L, },<_1 for the
antiholomorphic elements, and L for the constant elements). Computing the brackets for this
basis, we have the following
0 -in%

c w
—w(—ie"", —ie

[Ly, + ac, Ly, + bc] = [Ly,, L] + D

c
=(m—n)Lptm + Em(m2 —1)0—mn,

which shows that this is indeed the Virasoro algebra.

Diff | S! also has a unique nontrivial central extension by R, which has the Virasoro algebra
as Lie algebra (the definition of central extension for Lie groups, or any group, is defined similar
to that of Lie algebras). This central extension is called the Virasoro-Bott group Vir and it
is given by the manifold Diff ; S1 x R equipped with the product

C
(71,a) (2, 0) = (My2,0+ b+ EQ(%’ 72))

where 71,7, € Diff '.S1, a,b € R, and € is the Thurston-Bott cocycle

1 2
Q) = 5 [ 0w dlo(a))

Vir is a regular Lie-Fréchet group, so there exists an exponential map exp : vitg — Vir,
however, this is not a local diffeomorphism (in fact, there are points arbitrary close to identity
element, which are not in the image of the exponential map, see [6] Appendix C).

4.2 The Coefficient manifold and connections to Kirillov’s man-
ifold

Let us consider the class S and its subclass S from a more geometrical point of view. For any
feSandfor0 <k <1, %f(/ﬂz) isin §. We may therefore look at any f, as a limit of functions
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in S, by letting & — 1. Let us embed S and S in CY by identifying f(¢) = ¢ + 3207, cp1("
with the point (¢1,¢2,¢3,...). We will denote these embeddings by A and M respectively.
They can be seen as limits of coefficient bodies

My ={(c1,¢2,...,c0)|3f € S, with f = ¢ + ch,lgn}

n=2

No = {(c1,¢2,...,¢0)|3f € S, with f =+ ch,lgn}

n=2

Naturally, M,, is dense in N,,. Generally, for coefficient bodies it is known that
e N, homeomorphic to D**~2 = {r € RQ”*2| Ir] <1}
e ON,, homeomorphic to §%"3.

e Any x € ON, corresponds to exactly one f € S, which is called a boundary function
for A,. All boundary functions map. D onto C minus a piecewise analytic Jordan
arcs forming a tree with a root at infinity and having at most n tips. It follows that

ON, N M, = 0.

e With exception for a set of smaller dimension, for any x € N,,, there is a normal vector
satisfying Lipschitz condition .

e There is a connected open subset Xy on ON,,, such that ON,, is an analytic hypersurface
at every point of Xi. Points of ON,,, correspond to functions giving extremum to a
linear functional belonging to Xj.

e By the de Branges theorem N, C [Tl (i + 1)D.
Not very much else is known except of the simplest cases:
e N = 2D, that is an closed disk of radius 2. M; = 2D.
e N5 was in 1950 completely described by Schaffer and Spencer [31].

We also have an alternative description of the manifold M. Given any mapping f € S ,
it has a continuation to the unit circle. Since the exterior of f(D) = Q is also a domain, by
the Riemann mapping theorem, there is a conformal map of D* onto 2* with g(co) = oo, and
this mapping also has an extension to the unit circle. Let

flg|s1 € Diff . S* (4.1)

and we will denote this diffeomorphism by . Given any mapping f € S, the different choices
of g differ only by rotation (in the sense that § is any other such function, then §(z) = g(e**2),
with o € R), thus, by different choices of g, f generates a subgroup yRot S'. RotS! here
denotes the subgroup of Diff; S' by sense preserving rotations. Define function

K : S — Diff, S*/Rot S*

f =[] =~Rot S’
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where v is constructed as in (4.1). Kirillov [19] showed that K bijection, and this gives
identification
M = Diff, S*/Rot S'.

The inverse map may be constructed in the following way.

e Given equivalence class yRot S!, pick a representative. Define w : D* — D* by

<

w(() = \C\’Y(m

).

e We construct a quasiconformal mapping f : C — C in the following way

— flp and fw has to be conformal.
— flp € S and f(c0) = 0.

e [v] — f|p is then the inverse of F' (the function matching f|p will be fw).

The above mapping f is a quasiconformal automorphism of C. Using that fw is conformal,
the relation (3.6) for the mapping f = fww™!, tells us that

Hf = Hop—1-

in D*. Note that, if we denote z = re', then w™!(re??) = ry~1(¢), and from % = ﬁ(% -
‘—2‘%) and % = ﬁ(% + |—2|%) we get that f is the solution to a Beltrami equation, with
Beltrami coefficient

2 1 -y~ (&) —

0z _ 22 T T ¥

up(z) =4 Gwt  BPTmIG 2 €D
0 zeD

and initial conditions f(0) =0, f(co) = oo and f,(0) = 0. Here we define the operator U by
By (e?) = md%y(ew). Note that if v(e?) = ') then By (e'?) = o/(h).

This manifold Diff; S'/Rot S is called Kirillov’s manifold, and it is a homogeneous (ho-
mogeneous means that Diff | S! act transitively) Kihlerian complex manifold.

Example 4.3. Let us consider, as an example, the mapping from the unit disk D onto an
ellipse. From earlier, we know that

TaA
Eain(0) = 2K

To get a normalised mapping, let a = a(\) = w fx = Eaon); is then a mapping in

S, and the matching mapping is given by

Aa(A) 14+ v1— A2 A _
g (z) = B ( h z+1+mz 1).

Since these are one of the few nontrivial examples of matching functions, we try to do the cor-
respondence with diffeomorphisms of the circle in this case. We will look at the image yyRot S!
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of fy under /C, and then try to use the construction above for =1 on the diffeomorphism 7y.

— z+4/22=X2a(X)? 7F (2 /72
We note that gy(z)~! = W\/lii(v))’ F2£{{r2) ) then

Aa(N\) sin¢(z) + v/ A2a(\) sin? ¢(2) — A2a())?
a(A) (L + V1= 2A2)

_ A i) /).
1+ VI N

The diffeomorphisms are therefore of the form

so if we let ¢(z) =

T (2) = (g ) (2) =

19) _ 2)\ eig(ew)
14+ v1—\2

’Y)\(

Using that y)(1) = 1, we get

. inFO+Z,25) — K(2,
75 H(e?) = exp ( 5 ( Ii( H)r(1)+ TQ)(HT )) :

where F(0,r) = fo —2— = F(sinb,x). In the above formula, we have used that

Vi1- 52 sin? 0
E(E,ﬁ) = K(k). Using relation K(i_ii) = (1 + k)K(k) and calculating the inverse, we
n

1,4 i F(‘9+ ) rz) . iﬂf‘(9+£v2—rﬂ)
() = exp ( 2 (W N 1)) e ( 2(1 + r2§K1(J7r"2) ) :

(€)= exp ( i Sn((l T )(%0 +DK(), %>>

sn(w, k) is here the inverse function of w = F(z, k) with respect to = (sn is called the Jacobi’s
elliptic sine). Now assume that we know -y, and try to find the Beltrami coefficient of the
quasiconformal extension of f)

Ly, 1=

2(1+1r2) 00829

2

\/(1 + TQ) _ (2rz|1—|2r§)2 _ 2[?(73)
\/(1 + 7,2) . (2rz|JZr|2r2)2 + 2;(12)

To in practice solve this Beltrami equation with this coefficient (which has solution fy(z) in D
and gA(|z\’y>\(ﬁ) outside) is very hard, and we can probably not expect that it is much easier
for a general diffeomorphism of the circle. However, if the Beltrami equation was solved for
some v € Diff; S!, it has the advantage, that the solution would give us a pair of matching
functions simultaneously.

z € D*.

ISR IRS

iy (2) =

The action of Diff | S* on itself, induces a left action on S. That is, if we denote K~ (yRot S!) =
[, we can define v, - f,, = f,,4,- Again, it is hard to see what this action does explicitly, but
the corresponding infinitesimal action is given by variation

CHE) [ CPON rOdC
i) =52 [ ( 70 O )
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for any y(ew)% € VectcS! [20]. The infinitesimal action of the basis vectors { Ly }xez, which
we will denote by the same letter, is for £ > 0

Li(f)(2) = 0_in f(2) = 2111 (2)

which means that L; work on M with the action

oo

k_f?ck Z]-i—l

j=1

e T(THOM). (4.2)
el

For k=0
L)) = ()~ J(2) or  Lo=Y ey € D(TYM)
i=1 7

reflecting that Lg is a rotation (we have variation ? f (e ~%2) = f(2)+e(zf'(2)+ f(2)) +o(e)).
The action of Ly for k < 0 is much more complicated [2]. As an example

L1(f)(2) = f'(2) = 1 = 2c1f(2)
% —3c1 + (2 —4e9) f(2)

However, they all may be described by elements in T'(T19M). {Ly}x>1 forms a basis for this
space. Their action restricted to M,, is given by the truncated Kirillov’s operators

9
L 1) NG 4.
k= ak+jzj+ Cjﬁckﬂe ( M,,). (4.3)

4.3 Hamiltonian mechanics on a complex manifold

We will first recall the definition of a Hamiltonian system for real manifolds based on [3], and
then generalise it to complex manifolds. A motion in a real manifold M is a smooth function
¢ : I — M, where I is a interval in R. Dot will indicate partial derivative with respect
to real variable ¢ (i.e. ¢ = %), which we will call time. To avoid confusion in the following
presentation, the image of a section 7 at r, is denoted 7|, (so for example, the cotangent vector
field dx; € I'(T*M) evaluating tangent vector X € T,(X), is denoted dx;|,(X)). If M is an
n-dimensional real manifold, then it has local coordinates = (x1,...,x,). This induces local
coordinates (x,p) on T*M, that is n € T* M has coordinates (Z,p) if n = 2?21 pidx;|z € Tz M.
Define one-form on T*M by
n
Y= ijdd?j.
j=1

By the change of variable formula this is independent the chart =, and is therefore 1 may be
defined as a global section on the bundle T*T*M — T*M. 1 is called the canonical one-form.
If we let w = d € T(A\>T*T*M), then the pair (T*M,w) becomes a symplectic manifold
(an even-dimensional manifold with a closed nondegenerate two-form). For any two functions
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fyg: T*M — R, we may define the Lie-Poisson brackets, by [f,g] = w(T'f,Tg). Explicitely,
in local coordinates

n
w = dej Ndzx;,
j=1

N~ (999 9f 9
[fag] - Jz:; (apj 833]' al.j apj)'

w also induces an isomorphism W given by
U TT*M = T*T*M
X —nx
where nx (V) = w(X,Y).

Definition 4.4. A (real) Hamiltonian function on a manifold M is a differentiable function
H:T"M — R. A motion ¢ : I — M 1is the solution to o Hamiltonian system if

¢=V"NTH)
for any t € I. We call such a curve a geodesic.

If we again look at this locally, we notice that

Wﬁl(Z(aa’d@“a’ + bjdpj)> = E:I(bjaTj - aj@)

=1 i=
. : .9 - .
and letting ¢ = (z1,...,Zn,p1,...,Pn) and = Z?Zl(xjgj—i-pj%), we get the more classical
formulation OH OH
If M is an n-dimensional complex manifold, then M is a 2n-dimensional real manifold, and
we may define a Hamiltonian function H : T*M — R mentioned above. We give T* M complex
coordinates formally, by denoting (zn+1,...,22,) = (Y1, ..,¥yn) and similarly p,1; = ¢;, and

let z; = z; +iy;, and ¢; = p; + ig;. Then the equations above becomes

Lj

p=2—  Yp=-2— (4.5)

z oH ] OH
and, off course also, z = 2%’ b =-2%.

A complex Hamiltonian function, is a function H € O(TYOM)*. If we let (z,7) be co-
ordinates on the holomorphic cotangent bundle (to denote the last n coordinates by v, is
just a matter of convention, we could also have used v). Defining complex symplectic 2-form
form by w = Z?:l Yj A dzj, and using similar technique as in the real case, we can find an
analogous definition of geodesic. In local coordinates

I

j



52 Class S and the coefficient manifold

(and off course, ‘gz; = %72 = 0). We call z generalised coordinates and 1) generalised momenta.

The Lie-Poisson brackets associated to w locally given by

_N~(0f 99 Of 99
£:91= 2 (G B0~ i 0,

A function I : (TH°M)* — C is called a first integral if [I,’H] = 0. From (4.6) Hamiltonian
function will always be a first integral.

Definition 4.5. A Hamiltonian system is completely integrable (in sense of Louwville) if we
can find n functionally independent first integrals I, 15 ..., I, which are pairwise involuntary

If the system admits only 1 < k < n independent involuntary integrals, then it is called
partially integrable.

The Hamiltonian functions we have described above are independent of time. In this case,
the value of the Hamiltonian function is constant along geodesics. We will later also consider
Hamiltonian functions on the form H(z,,t), and in this case, H changes with %H along
geodesics.

4.4 Hamiltonian interpretation of the Lowner equation

In section 3.4 we looked at the Lowner-Kufarev equation, and how every function in S is
represented as a limit

f(2) =24 a12® +azz® + --- = lim elw(z,t),

t—o0
where w(z,t) is the solution to

% = —wp(w, t), w(z,0) =0 (4.7)
for some p € C'. Surprisingly, there is a connection with this more “classical” method and
the action of the Kirillov operators on M. This connection first appeared in an article on
slit mappings (p as in example 3.18) by Prokhorov and Vasiliev [27], and a more general
case was considered by Markina, Prokhorov and Vasiliev in [25]. The connection comes from
Hamiltonian systems on the coefficient bodies, in which geodesics give solutions to (4.7).
Explicitely, let g(z,t) = elw(z,t) = 2z 4+ c1(t)2% + co(t)z> + ---. This will be a curve in S,
with g(z,0) = z and lim; o g(2,t) = f(2), and inserted in (4.7), with p(z,t) = 1+ p1(t)z +
pa(t)z? + -+ -, we have the following

g=g-gp(e'g,t) (4.8)

or as a series

o0 m

Z Cm 2™ Z Pme -t m+1 - Z Zp] ]+1 m+1) mtl

m=1 m=1 j=1
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where g™ = (352, ¢j129)™ = 3222 dy,j27. If we define the coefficients are given by:

de’ = E Ck1Cky - - Chyp »
k1-+katetkm=j—m—1

where we define ¢y = 1 and k1, . .., ky, are all required to be nonnegative integers (note that the
sum over the empty set is 0, so this equation holds also for m > j). For the first coefficients,

for example
¢

¢1 = —pie
by = —2cipre " — poe
é3 = —(2c0 + c})pre — 3erpae™ — pye 3t
If we identify z with
00 00
1 0 0 O
z_lo100
0 01 0
then
0O 0 0 O
1 0 0 0
o0 cgc 1 0 O
G=) e1Z"=| ¢, ¢, 1 0 (4.9)
n=1 1

we get a matrix formulation

00
G’ - _ Z pme—thm-i-l )
m=1

Both sides are uniquely determined by their first column, so we get

c=— ( mzlpmethm) c

where c
cases.

T = (0,1,¢1,c9,...). The latter formula are practical for computations in concrete

We introduce formal variables {1 }ren as generalised momenta, and make an Hamiltonian
system, such that the equations for ¢ are solutions. We restrict ourself to a finite number of
coefficient, and define the following Hamiltonian on M,,:

n J ()
H(c,,t) = — Z ( Z Pme M dpy1j41)05 = —?Z_)T< Z pme_thm)c (4.10)
m=1

j=1 m=1

and we define a vector ¥7 = (0,0,91, ¢, ..., ).
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The Hamiltonian give the following derivatives of the generalised momenta

n

@Zk—z mee " m 4 1) dy jr1-k) ) = &T(Z(m—kl)pme_mt(}m_le)c. (4.11)
j=1 m=1

m=1

For instance, for three coefficients
1 = 2e""p1iy + (2¢ " prer + 3¢ pa)ils

Yy = 2e 1)y
3 =0.

Now let us define a series in the following way

n—1 ' n—1 ~ ' 0 ‘
Zvn_jzj = g'(zwn_jzj + ij(t)zj) (4.12)
j=0 j=0 Jj=n

where the coefficients b, depends on t, such that all derivatives of higher order than n — 1 on
the right-hand term vanish. Using that

o
g =g -plegt)—elgpc g, t) = =g > (m+ Dpme ™y,
m=1

we get that

d n—1 ‘ 00 n—1 - .. .
azvn—j"ﬂ ( Z (m+1)pe™g™) an % —I—Zb zj)—l—ZQ/)n_sz—l—Z bj(t)zj)
7=0 m=1 j=n 7=0 j=n

n—1 00

= g/( (w — Py Z m 4+ Dpme ™ g™) 27 + Z —b; Z(m—i— 1)pme*mtgm)zj>

j=0 = j=n m=1

From (4.11) we know that the terms of degree less or equal to the n — 1 first terms vanish, and
the rest vanishes from the definition of the series. If we view the vy, as functions of ¢, ¢ and ¢,
we see that terms 0 to n — 1 depend only on ¢ and %, so %vk = 0. From this we get that

B e, R VU RSN
[Uk7H]_jz;(8cj81/Jj 81/13563) Z(ﬁcj +81/—}j1/}3)—vk—0

So all vy are the first integrals of the Hamiltonian system (4.10). Explicitly, they are given by

U1 1 0 0
V2 201 1 0

U3 | = (Y1, 02,3, .. ) : : (4.13)
: (n—1)cn—2 (n—2)cp—3 (N —3)cp_4

Un, Nep-1 (n—1)ch—2 (n—2)cp_3

_ o o OO



4.5 Hamiltonian with p; as generalised momenta 95

Note that the matrix given here is the restriction to the n first rows and columns of the
matrix corresponding to the function ¢’ in the way of (4.9). If we take the brackets for
different combinations of v, we obtain

) G- k)UkJrj whenk +j <n
[UJ’Uk] B { 0 else ’ (4.14)

similar to that of the Witt algebra. This makes the Hamiltonian system partially integrable
since (Vjp41/9), - - -, Vn) are pairwise involuntary ([-] means integer part). The brackets from
(v1,...v[p—1)/2) generate all the other first integrals. Notice that if we identify 1; with aicj,
then v; correspond to the truncated Kirillov operators in (4.3). It is not known why there is
such a connection.

Generally, it is very hard to find any solutions to this system, because of the complicated
formula for 1.

4.5 Hamiltonian with p; as generalised momenta

Part of the reason for introducing the Hamiltonian system mentioned above, was to get a
better understanding of the problem of, for a given f € S, finding p € C which generate
f. The idea that this should appear as geodesics of a Hamiltonian systems, comes from the
connections of univalent functions with Diff ; S!, which is important in mathematical physics.
Another motivation is that curves in N that arises from the Lowner-Kufarev equation, never
leaves coefficient manifold, so if a Hamiltonian system was constructed with such curves as
solutions, we would be able to study N through geodesics. The Hamiltonian system in the
previous section has the weakness that it depends on pg, however, these are neither generalised
coordinates or momenta. In some sense, we get one Hamiltonian for every choice of p. It would
be better if we could find a system, in which the coefficients of p are generalised momenta.
Off course, it will not be possible to put p; = 1; in (4.10), since H = —ﬁ( S pmeMtGm)
is obviously not holomorphic with respect to p.

We will make an attempt to make another Hamiltonian system, by choose different coor-
dinates on M,,. In simplest case when n = 2, the system above is actually integrable, and we
take advantage of this. Let ¢ = ¢1 and ¢ = ¢co — c%. This gives derivatives

G =—pie ",

G2 = —pae™ ™",
and taking p as generalised momenta in a real Hamiltonian system, we obtain the Hamiltonian

_ 1, _ _
H(e,pt) = =5 (e Ip1* + e pal”) -
This gives p1 = po = 0. If we denote p; = b;, and solve the system for initial conditions
c(0) =0, limy_.0 c(t) = (a1, az), we obtain
@=-b(l-e

and then taking the limit, we get that by = —a;1, and similar calculation gives that ¢» =
—%2(1 —e2!), with by = —2(az — a?). Hence the solutions to the system is given by

c1=ay(l1—e")
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co = ag(l — e ) —2afe (1 —e7?)

which if a; # 0, gives ¢ = (2 — Z—f)c% —2(a1 — E)a

Does these solutions correspond to an actually choice of p? Even if this is the case, we
have no direct way continue this to more than two coefficients. For instance, there exist no
choice of ¢ = (q1,¢2,q3) as combinations of c¢1,ca,c3 (and not their derivatives), such that
q; = —ejtpj. However, we will investigate if this is possible to extend this Hamiltonian to
more coefficients using Sub-Riemannian geometry.

4.6 Sub-Riemannian geometry

Let M be a n-dimensional smooth manifold. We say that a distribution D of a M (i.e. a
subbundle of it’s tangent bundle) fulfils the bracket generating condition if there exist vector
fields X1,..., Xy, with £ < n in D, such that they and their brackets generate T'M. By “their
brackets”, we mean not only [X;, X;|, but also [Xj, [X;, Xj]] and so on.

Definition 4.6. Let M be an n-dimensional differentiable manifold, then a sub-Riemannian
manifold is a triple (M, D, p), where D is a distribution of M satisfying the bracket generating
condition, and p is a Riemannian metric on D (i.e. a positive definite section on the bundle
Sym?D* — M)

As usual, we will only denote the sub-Riemannian manifold by M. We have the following
notions connected to sub-Riemannian manifolds:

e pis called a sub-Riemannian metric. We will use the usual inner product notation (-, )
for p.

e If the D is a k-dimensional distribution, we say that M has dimension (k,n). If M has
dimension (n,n), then it is off course just a Riemannian manifold.

e A horizontal path is an absolutely continuous path 7 : [0,1] — M such that 7 is in D

o If r.s € M, we define the Carnot-Caratheodory distance by

diros) = nf [ VEOAO)
[0,1]

’YEFT,S
where I'; s = {7 : [0, 1] — M|~isahorizontal path, v(0) = r, y(1) = s}.
If a manifold is connected, then there always exist at least one smooth horizontal path con-
necting any two points (this is called Chow’s theorem, see [5] and [29]).

4.7 Results for sub-Riemannian Hamiltonian

We consider the truncated Kirillov’s operators

=2y Tlf(m + e e T(TOM,,).
J 80]' =1 8Cj+m

From the relations in (4.14) and the fact that {L;}_; form a basis for TYOM,,, we get that
D = span(Lq, Lo, ..., L) is a bracket generating distribution for k¥ = 2,3,...,n. This will
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enable us to to denfine sub-Riemannian geometry on M,,, which in turn will be used this to
define a Hamiltonian, requirering that any geodesic has to be horizontal, with respect to this
geometry. Some results for k = 2 was done in [25], and we try to generalise this to arbitrary
k, and look at the geodesics for some values (k,n).

Proposition 4.7. A path v(t) = (c1(t),...,cn(t)) in M, is horizontal with respect to distri-
bution D as described above, if and only if

k
G=> G+1l-—mcjmm  j=k+1k+2,.
m=1

where

Proof. The whole result is done by changing basis from 9; = a - to L; by formula

n
Om = Ly — Z (j —-—m + 1)Cj_maj .

j=m+1

We obtain
n
7= Z €0
j=1
(u1 = él) = U1L1 + Z - ]C] 1U1 8
n
(’LLQ = ég — 261U1) = ’LL1L1 + U2L2 + Z(CJ - jCj,1U1 - (j - 1)63',21@)8]'
§=3
n
= u1L1 + UQLQ +-- —l—ukLk + Z (éj —jCj,1u1 - (j - 1)cj,2u2 — (j —k+ 1)Cj_kuk)aj .
Jj=k+1

In order to be horizontal, every term in the last sum must be 0. O

We make M,, a sub-Riemannian manifold, by restricting the usual Hermitian innerproduct
to D, multiplied by 5 1 for simplicity. We let § = (%_ be the generalised momenta and for

i=1,....klet [;(, ) be the function of these variables corresponding to L;, that is

n—j

lj = gj + Z (m + 1)cmgj+m .

m=1

We obtained the following real Hamiltonian

H(Ec) = 5 (10 + 1l + -+ |i]?). (4.15)

DN =
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Solutions is then given by
é1=10h

Cy = 201[1 + Z_Q

ép1 = (k—1)ep_oly + (k= 2)cp_3lo+ -+ 2c1lp_o + lp_1
L = kck,1Z_1 + (k- 1)Ck,2l_2 + (k — 2)Ck,3l_3 + -+ 2611_]@71 + l_k

and further
¢ = (k4 1)Ckl_1 + k‘Ck,N_Q + -4 302l_k,1 + 2Cll_k

en=ncp_1l1 +(n—1)cyalyg +-+ (n—k+2)ch_prilp_1+ (n—k+ eyl -

As expected, the equations for ¢; is just the horizontally conditions. From the first £ terms
we obtain that [; = u;, and the n — k next terms just give the statement in proposition 4.7.
For the generalised momenta, we have

and further
ki1 = —(n —k +2)(Enkalt + Enprale + -+ En1lo—a + Enli—1)

nkro=—(n—k+3)(Enrislt + Enkyalz + -+ Enlpa)

fn2=—(n =D&l +&b)
€1 = —néaly
€ =0.
In addition we have the following relations with the derivatives of the /;.

Proposition 4.8. Let

n—j
Z m+1 cm§]+m

m=0

for j =1,...,n, where the derivatives of & and c; are given by Hamiltonian system (4.15),
and let l; =0 for j > n. Then

l lu+]

IIM«’T

forany j €N
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Proof. To simplify notation, we will say that any sum Zﬁ:a By, with b < a, will be zero (a
sum over the empty set). Then for any j € N

n—j
lj = Z(m + 1)Cm§j+m
n=0
Differentiating we get
min(k,n—j) m n—j m
L= Y m+D&mY (m—v+Deml+ Y (m+1D&um > (m—v+Dem oyl
m=1 v=1 m=k+1 v=1

n—j—k

k k
m+1 Cm ]+m+1 Z +g+u v (m+1>cm ]+m+1 Z +g+u v

m=0 m=max(n—j—k+1,0)
k - n—j B n—j B
= Z l,,( (m+1)(m—v+1&j1mem— — Z (m—v+1)(m—-—v+j+ 1)§j+mcm,,,>
v=1 m=v m=v
k n—j k B
:Z v—j)l (Z v+ )& 1mCm— ,,) :Z(V—j)l,,l,,ﬂ-
v=1 m=v v=1

O

Although this system might be interresting, it has its problems. Most importantly, there
is nothing insuring us that a solution to this system will stay in M,,. The description above
is therefore merely local.

Example 4.9. We try to get some sense into what the geodesics are for this Hamiltonian
when M,, is is a (k,n)-dimensional sub-Riemannian manifold. To simplify, we will look at a
geodesic ¢ in M,,, from ¢(0) = 0 to ¢(7) = a. We will denote £(0) = [(0) = b, and if we look
at geodesics with H constantly equal to 1, this means that [by|2 +--- + |b]? = 1.

e For k =2, n = 2, we have the solutions for H given by
c1 = byt
co = bt + bot
& =b1 — 2y
§2=ba.

Geodesics are hence on the form cy = 01 + 22 c1 or straight lines ¢y = bot. From H =1,

_ . a az— a1 _ ) —
we get that by \a1\2+|a27a§\’ m and 7 = v/]a1|? + Jag — a?|. There

is hence a unique choice of geodesms in this case.

e More generally, geodesics in the case k = n, ¢; is given by a j’'th order polynomial, and
the there is a unique geodesic from ¢(0) =0 to ¢(1) = a.
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e For k£ = 2,n = 3, the solutions to H are
§3 =03
§o = by — b3y
€1 = by — 2bo¢) + Bbzes — 2b3cy .

From this and the fact that ¢; = il = Iyl3 = bob3 — |b3|?c1, we get that for b3 # 0

1 - - b
1 = —(by — by cos |bs|*t + — sin |bs|*t)
bs b3

b b1 b1
CQ:C%—i—/O lodt = ¢ — s |2(bgsm|b3| t—l—b—cos\b 3)? t—g)

t
C3 = 30162 — Czl‘) — / Cll2dt
0

1 1 ble 3b152 ‘b2b3‘2+‘b1|2 9 . 2 b152 2
=3 ( 102y t+ b by |2t + 22 cos [bs[?t
I TN E 7 by by ) 5 + |b2|” sin [bg|t + b cos |bs]
‘b2b3‘2—|b1|2 . 2 1 b1b2 b1b2 2
- sin2|b3|°t — = (——= = 2|b t)

PTNE sin 2|bs] 4( by + by —=) cos 2|bs|

and for b3 =0
Ccl = blt

Co = b%tQ + bot

5
c3 = b:l‘)tg + §b1b2t2

To find a general geodesic is hard, so let us pick a point (0,0,a3), with ag # 0, as an
example. c1(7) = ca(7) = 0 just gives us the information that |b3|?T = 27wv for some
v € N (note that bs must be nonzero). From c3(7) = a3, we get

= b1b2 b1b2 2 2 4b1[32 Elbg bli)g
4azbs|bs|* = == — == — 2|bo|2|bs|*T — 2/b ELC -4
azbs|bs| ™ b |ba| b3 [T — 261 [T + by by b
= —2|b2|2‘b3|27' — 2‘[)1‘27'
asbs must therefore be real negative. Inserting b3 = |Z3‘ 2% and \b2\2 =1- |b1|2, we
have the relation ,
2 3/2 — 2]az|Vv2

by = 22 las|v2mv) (4.16)

(2mv — 1)73/2 ’

which have a solution for choices of v,7 such that the right hand equation is in the
interval [0, 1]. From this we get that there are uncountable many geodesics:

— The solution is completely independent of the arguments of by and bs.
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— We may also freely choose any value of v > 1 and 0 < |b1]| < 1. To see this, let us
denote the right hand side of (4.16) by

b, () 2v (132 — 2)as|v/2mv)
T) = .
v (2mv — 7)73/2
This is a continuous functions with respect to 7 in (0,27v). Since, we know that
las| <4 < 27, we get that for any choice of v > 2

Tll,%l+ b,(T) = —0c0 and t_grg/_ b,(T) = 0.

From this we get that the image of the interval (0,27) under b, is the real line, and
in particular, for any choice of v > 1 and |by|, there is a 7 such that |by|> = b, (7).
(if |ag| < m, this is also guaranteed when v = 1).

— From the discussion above, it also follows that the geodesic that reach (0,0,a3) in
minimal time, for fixed v, has by = 0 (which imply by = €'®). In this case

ase’™ T 2t
g =- —(1 — cos )
las| V 27y T
9 Tet? . 2mvt
cy—c]=— sin
v T
4 2nut 4drut
03—30102—#0?:& Wy 243 T (4sin v — sin 7w)
las| V 27 Jas| V 27w T T

2|az|?
v Z

and it follows that 7 = is the minimal time to reach (0,0,|as|).

The general case is much more difficult, since |b3| appear both inside and outside the
trigonometric functions. We can however expect there to be fewer geodesics in this case,
since we get more “information” from c¢; and ¢y in this case.

Since there have been very few investigations into this sub-Riemannian Hamiltonian sys-
tem, in is still uncertain how to interpret solutions. We end this chapter discussing some
possible connections.

e Starting with the Lowner-Kufarev equation for subordinationchains

0 3}

£ ) = 2z, )5 (2,1

for f(z,t) = e'(z+---). Let n(z,t) = e 'f(2,t) = z+c122 + 23+ beacurvein S.
Assume that its image is contained in S. Then, if we denote %77(2, t) =1n'(z,1)

n = zn'p(z,t) —n = Lo(n) + p1L1(n) + p2La(n) + - --

and p; = u;, where u; are the coefficients in the horizontally condition (both follow
from the same change of basis). If 1 is a also a solution to the (k,n) sub-Riemannian

Hamiltonian system, this means that 25:1 Ip;|? is constant.

e The Hamiltonian system H = e*|l;|> + e~ 2!|l3|? give the same solutions as the Hamil-
tonian described in 4.5 for n = 2. This means that, in some sense, we can extend this
simple Hamiltonian using sub-Riemannian geometry. The simplicity will not be kept,
thought. For instance, for n = 3, ¢y is given by solution

51 - él - b352€_t61 = |b3|2 .
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AT 9 >~ 12

Ay, 23 ¢, 50
Aut(M), 17 C,9

C, 37 CP", 12
C*, 38 cn, 9

Cr, 15 D, 7

D™, 47 D*, 7
Deck(N/M), 17 N, 9

Eux, 19 No, 9
Hol(M,N), 12 R”, 9
M(V), 29 7,9

Q1, 29 Eain, 20
R(,s), 30 Jg, 35

S, 7 IC, 47

S’ 37 M, 47

Sm 9 M, 47
Sy, 38 N, 47
TM,9 Ny, 47
T*M, 9 0, 48

T*f, 9 t()), 20
T%1M, 15 vit, 43
TYOM, 15 vitg, 45
TeM, 14 Diff M, 45
T,.M, 9 Diff | S, 45
Tf,9 GL,C, 12
V*, 9 MpxnC, 12
Vir, 46 PGL,C, 17
[-], 55 PSL,R, 17
I'(E), 9 Rot S1, 47
Q9 Sym*V, 9
¥, 38 Vect S1, 45
Y. 38 Vectg ST, 45
Yo, 38 extU, 9
Yk, 38 intU, 9
U,9 MMM, 13
C,7 My, 13

¢, 9 OM, 12
AV, 9 o,, 13
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fif, 35
7T1(M), 16
~ 32

S, 38

hy, 13

idx, 9
m(N,T), 27
m(N,T',«), 33
m(Q,a), 30
pri, 9
prx,., 9
F(z, k), 19
K(k), 20
F(0, k), 49
sn(w, k), 49
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