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Abstract

Traditional illustration of three-dimensional structures, has developed techniques to
provide clear view on internal features that are otherwise hidden underneath other outer
structures. Many techniques attempt to create a better view on features of interest, while
still conveying information about surrounding contextual structures. In illustrative vol-
umetric visualization, techniques developed in early illustrations have been adopted to
increase visibility and improve the comprehension of volumetric datasets during inter-
active visualizations.

In this thesis a novel approach for peel-away visualization is presented. Newly de-
veloped algorithm extends existing illustrative deformation approaches which are based
on deformation templates and adds a new factor of view-dependency to the peeling pro-
cess. View-dependent property guarantees the viewer unobstructed view to structure of
interest. This is realized by rotating the peel-template so that the structures peeled-away
always face away from the viewer. Furthermore the new algorithm computes the under-
lying peel-template on-the-fly, which allows animating the level of peeling. This is very
helpful for understanding the original spatial arrangement. When structures of interest
are tagged with segmentation masks, an automatic scaling and positioning of peel defor-
mation templates allows guided navigation and clear view at structures in focus as well
as feature-aligned peeling. The overall performance allows smooth interaction with rea-
sonably sized datasets and peel templates as the implementation maximizes utilization
of computation power of modern GPUs.
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Chapter 1

Introduction

This work is in the research field of Illustrative Scientific Visualization. The main pur-
pose is applying methods inspired by illustrators for describing three dimensional ob-
jects, to the field of scientific volumetric visualization. Visual representations convey
information to the observer very quickly. Illustrators have provided visual representa-
tions in various fields since the stone age. Primitive men carved illustrations of animals
on the cave walls roughly 75,000 years ago describing for instance hunting methods so
that future generations could learn. Although the profession as an illustrator has changed
drastically since then, the basic purpose remains the same: convey information in a way
that is easily percepted by the human brain. Illustrators have used techniques for giving
informative representations of real world structures, but the traditional illustrations had
a very limited degree of interaction. Johann Remmelin published Catoptrum Microcos-
micum in 1613, an extensive anatomical description of the human body. Remmelin was
one of the first to incorporate peels as a means of interaction in medical illustrations.
In his illustrations one could remove each layer showing a hidden structure underneath,
this is shown in Figure[I.1]

Scientific data is only getting larger as data acquisition techniques are becoming
more advanced. In the field of scientific visualization the use of illustrative methods

such as peel-aways and cut-aways are useful for presentation of scientific datasets.

1.1 Technical lllustrations

Creating illustrations of three dimensional structures such as the human body has been

done for a long time. Leonardo da Vinci started with anatomical studies to improve his



1.1 Technical lllustrations Introduction

Figure 1.1: Johann Remmelin; Catoptrum Microscopicum. 1613, Hardin Library. An
interactive illustration of the human body.

artistic skill [15]]. Human dissection was illegal at that time, so illustrations of the human
anatomy was not very common. Even though Vinci had a very limited time with the
cadavers, he was able to create artistic representations of the human body as one of the
first medical illustrators. Figure shows an early illustration revealing a baby within
the womb. Andreas Vesalius published his work De Human Corporis Fabrica in 1542
[35]. Containing more than 300 illustrations of the human body based on observing
dissections of corpses. Da Vinci and Vesalius were pioneers in medical illustrators, and
their illustrative methods are still being incorporated in todays visualization systems
There are several restrictions an illustrator must consider when he or she wishes to
create a representation of a physical object. One can not assume that the reader has
complete knowledge of the given object. The illustrations are also limited to a two
dimensional surface for representing a three dimensional object. Thus one can not give
a complete image of the real world structure. The illustrator has to focus the attention on
the relevant information and leave out the irrelevant. Illustrating 3D structures leaves a
great challenge with showing features hidden by occluding structures while still keeping
a clear perception of the context. If one is given a layered structure, the intuitive method
of exploring is to peel away each layer to discover what is underneath. Already in the
renaissance, Andreas Vesalius illustrated how peels gives a better overview as more of
the context can be drawn while not distorting the image. In his illustrations the human
body where shown in different layers in different images. When moving from one layer
to the next, some of the occluding structures from the previous illustration were drawn

as a peel, as shown in Figure[[.3] When a physician performed the dissection he would
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Figure 1.2: Leonardo da Vinci; "The babe in the womb™”. 1511.

then retract and peel of layer of skin, fat and muscle to see the inner structures. This
is represented in Vesalius’s illustrations and it gives a better perception of the context

rather than removing the occluding structures from the image.

1.2 Explorative Visualization

While the need for illustrations of three dimensional structures is present, new technol-
ogy has made it possible to record more or less all the information of a 3D structure.
There are several techniques to acquire such data sets. Computed tomography (CT), nu-
clear magnetic resonance imaging (MRI) or positron emission tomography (PET) have
the ability to create scalar fields representing the scanned object. There are also other
techniques such as simulation and modeling to acquire volumetric data sets, however
the challenges with visualizing synthetic data sets as compared to measured data sets
remains the same. Volumetric data sets, later referred to as volumes, contain a large
amount of information. While there are several types of acquisition for such data sets
it has certain common properties. A volume contains a three dimensional structure of

one or more attributes. A volume often consists of a single three dimensional scalar
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(a) b)

Figure 1.3: Andreas Vesalius; De Humani Corporis Fabrica. 1543. An interactive
illustration of the human body. The image (b) show certain structures from image (a)
peeled away.

field, for instance a CT scan. The size of a volume is determined by its resolution and
its components. The resolution of a CT is usually higher than 256. While a CT only
contains a single scalar value (usually of 12 bit), the size of the volume become greater
than 256 x 256 x 256 x 12bit = 25165824Bytes. This is too much data to show in a
single image. Techniques for altering the representation and exploring the volume must

be used to gain insight into the data.

Traditional medical illustrations are usually a description of the human anatomy in
the general. A dataset from a CT scan, will contain information specific for the patient.
A physician needs to explore a CT data set to be able to discover anomalies and diseases.
An oil field is hidden underneath the earth and exploration of the seismic data is required
to locate it. There are many different approaches in exploring a volume. Whether it is
seismic data, MRI, simulation or modeling a very common factor is that the interesting

features are hidden underneath the surface of the scanned object.
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1.3 [Hlustrative Visualization

"Illustrative visualization is computer supported interactive and expressive visual ab-
straction motivated by traditional illustrations” [29, and references therein]. In essence
the field of illustrative visualization strive to implement techniques for illustrating data,
such as CT scans, inspired by the tools created in traditional illustration. These tools
have been designed for conveying information about interesting features and their con-
text efficiently. When methods from illustrative visualization are applied to scientific
data, one must be careful not to distort the information. For instance, small objects may
be excluded in non-photorealistic rendering and this might be crucial in a cancer diag-
nosis, as small lesions may be go undetected. A level of abstraction is required due to
the large amount of data. So in the use of abstract illustrative methods, one must con-
sider the aspect of information distortion. Non-photorealistic rendering must be used
with care so that the information contained in the data is not lost. Different abstraction
methods deal with different types of structure. For instance enhanced shading might
be applied for better perception of the feature in focus, and semi-transparency might be

applied to render the context while the focus is shown.

1.4 Occlusion in Three Dimensional Data

There are several techniques for visualizing volumes, one of the more basic rendering
methods are two dimensional slice rendering [34, and references therein]. Slice ren-
dering is a simple technique which requires little processing power, and has been one
of the main methods for volume exploration. 3D rendering has recently become more
frequently used as a means to display a volume. Techniques, such as ray-casting, first
proposed by Levoy [23]], and iso surface extraction, for instance using the marching
cubes algorithm introduced by Lorensen and Cline [24]].

Generating a 3D representation of the data and can provide a better overview of
the volume compared to the more basic techniques such as slice rendering. When 3D
representations are generated, more processing power is required to achieve interactive
framerates. Today, with the use of hardware based rendering techniques, interactive
rendering can be achieved on a regular workstation.

While both direct volume rendering and polygonal mesh rendering of iso surfaces
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can create a good overview of the data, focusing on occluded features can become diffi-
cult using the basic 3D rendering techniques. Since the features of interest in a volume
are often hidden by other structures, occlusion becomes a central issue in volume visu-
alization. Even though the tools for creating images are different, both illustrators from
the renaissance and visualization researchers today face the same problem: illustrating
occluded structures hidden underneath the surface while still providing context for the
structure in focus.

There are many existing techniques for dealing with occlusion, a common technique
is reducing the opacity of the structures in front. In rendering techniques, such as ray
casting, mapping color and opacity to each element in the volume, from now on referred
to as voxels, is essential. The mapping from intensity to color and opacity can be done
with a transfer function. Transfer functions can be difficult to handle by a non-expert
user and hidden structures might be hard to reveal as the occluding matter might have
the same value as the interesting features. In Section 2] different techniques which deal

with occluding structures in 3D volume rendering will be discussed.

1.5 Goals of this Thesis

The goal of this thesis is to provide mechanisms for volume exploration and visual
communication using peel-aways. Peel-aways have been commonly been used in both
traditional illustration and illustrative visualization. The approach, which will be pre-
sented, applies the peel-away metaphor in direct volume rendering to efficiently explore
and present features within a volume. This work aspire to extend peel-aways so that
we incorporate the view-point as an important factor. Also an intuitive user interface
for positioning and scaling peels will be presented. For presentation of features, auto-
matic scaling and positioning of the peel will be implemented. This work will then be
integrated and presented in a framework for volumetric rendering created by Bruckner
called VolumeShop [3].



Chapter 2

State of the Art in Volume

Exploration And Presentation

[lustrators have been handling occlusion of inner structures since the renaissance. To-
day computerized visualization can be applied to several types of data. This suggests
that generic methods for exploring and presenting volumetric data are desired. Volumet-
ric visualization can be divided into two major areas; Two dimensional slice rendering
and 3D volume rendering. These two types contain different challenges, but the goal

remains the same. Provide better insight in the data.

For 2D slice rendering, the information is easily represented on a 2D screen. How-
ever, a major challenge is to provide a good overview of the surrounding structures.
3D rendering of volumetric data can provide a good overview, but focusing on certain
features might become more challenging. The structure in volumetric data can often
be described as convex layered structures. The outer layers often occlude the inner
structures which might be the feature of interest. For instance the human head consists
of skin being the outer layer covering the skull, which in turn covers the brain. Thus

occlusion becomes a major topic in volumetric rendering.

In this chapter we will discuss methods which deal with challenges for both 2D slice
rendering and 3D rendering. Since this thesis is in the scope of volumetric visualization,

the main focus in this chapter will be on occlusion handling in 3D volume rendering.
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(a) LIFTCHART of a neck region. (b) The halos guide the surgeon to the
desired location.

Figure 2.1: Images from Enhancing Slice-based Visualizations of Medical Volume Data
(34].

2.1 Slice Rendering

For medical visualization, 2D slice rendering is a very important topic. Most medical
visualization frameworks have a slice renderer, it is one of the main rendering methods
for medical diagnosis. The basis for 2D slice rendering is a plane which intersect with
the volume and the values in the volume at the intersection are rendered on the plane. A
common slice rendering scenario have three slices which are orthogonally aligned with
the x, y and z axis. To explore the volume one would control the depth of the plane
within the volume. Another scenario might be to have a plane at an arbitrary angle, the
user would then control the angle and the depth of the plane. A slice at an arbitrary

angle might be more difficult to read, but it offers a greater flexibility.

The basic slice renderer only shows the current slice and determining the extent of
certain structure might be difficult. Due to the low computational cost of rendering a
2D plane, several planes might be rendered simultaneously and might create a better
overview. Structures which are not on either plane are not rendered and in a medical
scenario this might be important for diagnosis or pre-operative planning. In the scenario
of a neck dissection, the surgeon must consider a lot of structures and the spatial rela-
tionship between then. This is difficult on a basic slice renderer. A better overview of all
the structures within the neck can help the surgeon to make the surgery as little evasive

as possible.
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(a) MIP rendering of the intensity function (b) Rendering of the contours of the skin
I(p,V). with the skull underneath.

Figure 2.2: Images from Fast Visualization of Object Contours by Non-Photorealistic
Volume Rendering [10].

Tietjen et al. introduced a novel approach called LIFTCHART [34]] for enhancing
slice-based visualization in medical data sets. LIFTCHART, see Figure shows
the anatomical structures in separate bars according to their position. This provides a
better overview and helps localization of the features within the data. Tietjen et al. also
introduced halos which were used within the rendering to provide a better perception

of the distance from the current slice to targets above or below the current position, as
shown in Figure

2.2 Semi-Transparency and Contours

When rendering 2D slices, the structures in front of the plane is not included in the
image. However, when generating 3D representation of a volume, the outermost surface
will cover the inner structures. For instance, in a CT scan of a patient with a bone
fracture, there is a need to see the bone underneath the skin. An approach is to make
everything except the bone transparent. The spatial relationship between the feature of
interest and the outer surface, in the latter case the bone and the skin, can be crucial
in pre-operative planning, thus context preservation is an important topic in 3D volume

rendering.
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(a) Regular contours (b) Suggestive contours

Figure 2.3: Images from Suggestive Contours for Conveying Shape [11].

Non-photorealistic rendering has been used to simplify the surfaces which are of
low interest. Contours are a common tool for dealing with occluding surfaces and is a
very sparse and effective representation of 3D structures. This technique is often used
in traditional illustration. The contours of an object can be defined as where the normal
of a surface is orthogonal to the viewing direction. Contours describe the basic outline
of a surface while keeping occlusion to a minimum. A novel technique for fast contour
rendering was introduced by Csébfalvi et al. [10]. The contours in volume rendering
can be calculated from the normalized gradient of the sampling function and the view-
direction. Csébfalvi et al. used the following functions: s(p,V) = (1 —|<7 (p)- V|)",
where p is any give position within the volume, and V is the view direction. This
provides a view-dependent function which assigns higher values to voxels which are on
a contour of the surface. An intensity function is then given as: I(p,V) = g(| 7 (p)|) -
s(p,V). The function g is a function depending on the magnitude of the gradient at
position P. Having this intensity function sampling in the renderer is done according to
I(p,V), as shown in Figure Using few control parameters, contours of inner and

outer structures becomes clearly visible.

Other techniques like Suggestive Contours, presented by Doug Decarlo et al. [11]
has been suggested for enhancing the shape perception. The suggestive contours are
the locations which almost defines a true contour, true contour being where the dot
product between the normal and the view direction are 0. They also correspond to
the true contours calculated from a nearby view point. The suggestive contours are

combined with the true contours to generate the final image. The difference between

10
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(a) Regular transparency (b) View-dependent transparency

Figure 2.4: Images from Transparency in Interactive Technical Illustrations [12].

regular contours and suggestive contours are illustrated in Figure 2.3]

While contours convey shape information, some of the information of the context
are lost. Semi-transparency is also a commonly used tool for occlusion handling and
presenting hidden structures. Compared to contours which makes most of the surface
completely transparent, semi-transparency show the structure directly in front of the
feature of interest. Dieptraten et al. presented a novel approach, Transparency in In-
teractive Technical Illustrations [12]], for automatic view-dependent semi-transparency,

as shown in Figure [2.4] The opacity at a position p on the semi-transparent object is
dmin
ob ject ,max

to the projected silhouette of the semi-transparent object and dyp jecr, max 18 the maximum

calculated as the @ = 1 — ( )k, where d,;, is the minimum distance from the p

distance from the center of the object to the surface.

Hllustrative context preserving illustrative volume rendering (2], inspired by ghost-
ing from traditional artistic illustrations, is a novel approach to volume exploration. The
opacity, a, for each sample point is calculated from the following function o;(p) =
ofp,) - \gpi](k"s(l’i)'(l_|Pi_e|)'(1_°‘i*1))§, where 1 — |p; —e| is the distance from the eye
to the sample, |g,| is the gradient magnitude, s(p;) a shading intensity function. and
two user controlled factors. A result of this approach can be seen in Figure 2.5] This
techniques is also related to clipping and cutting described in section[2.3]

Transfer functions are often used to generate semi-transparent surfaces. As men-
tioned in Section[I.4] transfer functions map color and opacity for each value within the
volume but can be difficult to define. More sophisticated transfer functions has been

developed. Bruckner and Groller introduced Style Transfer Functions for Illustrative

11
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Figure 2.6: Rendering us-
ing different styles for dif-

(a) Direct volume rendering (b) Context-preserving volume
rendering ferent structures. Image

from Style Transfer Func-
Figure 2.5: Images from Illustrative Context-Preserving  tions for Illustrative Vol-
Volume Rendering [2]. ume Rendering [3].

Volume rendering [3]]. Regular shading of a sample in ray-casting is based on a the view
point, a light source and the normal at the sample position. The shading of a sphere will
sample an opacity value and a color for all possible normals which are visible to the
viewer. Style transfer functions use a pre-generated lit sphere texture. The calculated
normal at each voxel will then serve as a lookup for the lit sphere. Since the lit sphere
is not restricted to one basic color, one can now combine different rendering styles for
different structures within the data. Since the shading is decided by a pre-rendered tex-
ture, the different styles can be changed easily, to for instance contour shading, for the
outer structures. This makes occlusion easier to handle than a using regular a transfer
function. The contours can be created from a sphere which only contain values at the
outline. Applying this style to the outer structures will reveal inner structures which
can be rendered in a separate style. Figure [2.6] show how different styles for different

features provide a clear distinction between the features.

12
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2.3 Clipping and Cut-Aways

A solution to the problem with occluding objects is to remove the data which are cover-
ing the feature of interest in the final image. This technique is called clipping. Clipping
is a metaphor derived from the traditional illustrators toolbox. In essence a geometrical
shape is removed from the rendering scene. The most basic approach for clipping is
using a plane to define what is clipped away. A plane is positioned within the volume
and the data which is above the plane is not rendered. This technique can provide the
fast and easy exploration from slice rendering while still containing the context and is
a popular tool for volume exploration. With the use of only clipping planes, complex
clippings becomes difficult. Weiskopf et al. [39] introduced a clipping technique where
geometrical structures served as the clipping tool. Examples of different clipping struc-

tures can be seen in Figure

Technical illustrators have used cut-aways for presenting features hidden within
solid structures. In computer graphics the basic cut-away tool is an automated clip-
ping technique mainly used for presenting features within the data. Diepstraten et al.
presented some of the first automated computerized cut-away techniques [13]. In Fig-
ure [2.8|a cut-away is applied to reveal the previously occluded structure.

Viola et al. introduced a novel approach for automated focus + context rendering,
by automatically generating cut-aways in direct volume rendering. Importance Driven
Volume Rendering [36] incorporates an “importance dimension” for various structures.
Structures, such as internal organs, which often are more interesting than skin and bone
will have a higher importance factor. Creating cut-aways for the important features can
be done using Maximum Importance Projection (MImP). With MImP only the features

Figure 2.7: Image from Volume Clipping via Per-Fragment Operations in Texture-Based
Volume Visualization showing different types of clipping geometries [39].

13
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Figure 2.8: Image from Interactive Cutaway Illustrations [13]] using cut-aways to reveal
hidden structures.

of highest importance are visible. Other composition techniques was also presented
such as Average Importance compositing. Cutting out only what is directly in front
of the interesting feature does not give a good depth perception, and localization can
be a problem. Viola et al. propose a conical shaped cut-away. Conical shaped cut-
outs, compared to cylindrical shaped cut-outs, make the sides of the cut visible to the
viewer. Visible layers on the sides of the cut enhance the visible depth cue, as shown in
Figure[2.9] Cut-aways similar to Viola et al. approach was also implemented in Stephan

Bruckner’s VolumeShop [2].

Cut-aways is a powerful tool for presenting data, but the cut-aways require some
form of pre-defined structures, for instance segmentation. Segmentation is the process
of defining structures within a dataset and can be time-consuming. Other methods for
cutting away different occluding structures without the need of pre-defined structures
are desired. Volumetric data are often structured as several layers covering each other.
To gain visibility of the features within the volume, the layers can be peeled away. A
problem might occur when the feature of interest and an occluding layer has the same
value. This may turn opacity modulation in the form of a transfer function insufficient
as a means for exploration. To solve this problem Rezk-Salama and Kolb introduced
opacity peeling [30]. The basic algorithm goes as follows: a ray accumulates color and
opacity, o, through the volume. When o reaches a certain threshold, color and opacity
is set to zero, the ray is moved through the current layer, then the ray starts accumulating
again. The user defines how many times this process should repeat itself. Figure [2.10]

show how opacity peeling can be used to reveal inner structures.

14
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(a) Cylinder shaped cut-away. (b) Cone shaped cut-away

Figure 2.9: Images from Importance-Driven Volume Rendering [36]. Cone shaped cut-
aways provide a better perception of how deep the feature in focus is inside the volume.

(a) Orginal volume. (b) Semantic layer peeled away us-
ing opacity peeling.

Figure 2.10: Images from Opacity Peeling for Direct Volume Rendering [30).

2.4 Splitting

Volume splitting is a useful tool for both volume exploration and presentation. As an
extension of the volume clipping technique discussed in Section[2.3] the idea is to divide
the volume into two or more separate parts. Each part can then be transformed and
rendered separately. Extensive research has been done in splitting and can be considered
as a form of rigid transformation of each part. In focus and context rendering, splitting

has been used to deal with occlusion.

15
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(a) Geomterical splitting. (b) Logical splitting.

Figure 2.11: Images from Volume Splitting and Its Applications [20] showing the two
types of splitting.

Splitting can be applied to several areas in computer graphics, for instance for spe-
cial effects. Dividing an object into several separate parts can be used to simulate explo-
sions. Splitting is often divided in to two separate types; Geometrical splitting, where
each part has a certain geometrical shape. Logical splitting is combining splitting with
pre-defined structures. The split is then aligned with the surfaces of the pre-defined fea-
tures. The difference between the two splitting types are shown in Figure 2.T1] Islam et
al. [19,20] discuss various types of splitting, using spatial transfer functions introduced

by Chen et al. [6] for volume animation, volume visualization and special effects.

Splitting does not automatically solve the problem of occlusion. The different parts
can still cover the feature of interest. Exploded views is an illustration technique based
on splitting which solve the problem of occluding parts. Traditional illustrators has
used exploded views for a long time, da Vinci illustrated a baby within the womb using

a form of exploded views as early as 1511, as shown in Figure[I.2]

lustrations are static images. the view point is fixed and interaction is very limited.
In volume rendering the view point can be changed. This generates a challenge with
exploded views. The line of sight to the object in focus must be kept clear from the other
parts. Bruckner and Groller presented exploded views incorporating view-dependency
as a crucial factor [4]. When splitting a volume into separate parts, objects that are
normally occluded by outer structures can become visible. If the scene is rotated, a

part can get in front of another and the occlusion has not been solved. In Bruckner

16
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(a) Original volume. (b) Exploded view.

Figure 2.12: Images from Exploded Views for Volume Data [4].

and Groller’s exploded views each part is inserted into a physics system. The separate
pieces apply a force onto each other. To solve the occlusion parts problem, a view-force
is introduced. The view-force is orthogonal out from the view direction. This force
creates a line of sight to the object in focus. An example of exploded views created by

Bruckner and Groller’s technique can be seen in Figure [2.12]

2.5 Deformation

Deformation is an illustration technique which has been used in traditional illustrating
for a time. Deformation is the process of altering the shape of an object to enhance
or reveal certain features. This process can be divided into four major areas; Contin-
uous shape deformation, in essence altering the shape of the structure, discontinuous
deformation, for instance creating cuts and peels, image based deformation, altering
the representation of the object in the rendering process and object based deformation,
reorganizing the structure of the object before rendering.

Altering the shape of an object can lead focus from one feature to another. The idea
is to have a distortion effect, for instance a magic lense at the mouse cursor, to improve
the details at the object of interest, similar to a magnifying glas over a map. This can also

be done in volumetric visualization through shape deformation. Non-linear ray casting

17
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Figure 2.13: Image from Space Deformation using Ray Deflectors [21] showing the
deformed shape using ray deflectors.

can be used for image based, shape deformation. Kurzion and Yagel introduced ray
deflectors [21] as a mean for altering the representation within the rendering process. A
simple deformation using ray deflectors are shown in Figure [2.13] Ray deflector serve
as a gravity field within the ray caster, bending the path of the rays going through the
data. Ray deflectors are a fast deformation technique, but complex deformations can
become difficult with the use of simple gravity fields.

Object based deformation is the process of altering the structure of the object be-
fore rendering. An endoscopy is performed to investigate the colon for abnormalities.
However, a ordinary endoscopy has certain limitations. It is difficult to obtain a good
overview of the colon when the camera can not be turned around to see structures from
another angle. Also the procedure is intrusive for the patient. Another solution is to take
an image of the colon using a CT. The colon can be segmented out and the data can be

investigated as many times as needed. To obtain a good overview of the colon, one can

Figure 2.14: Colon segment stretched out onto a plane. Image from Virtual Colon
Unfolding [1]].

18
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stretch the colon out on a plane. Batroli et al. presented a technique for virtual colon
unfolding [I]]. In virtual colon unfolding the idea is to show the entire colon in one
image, see Figure[2.14] This is done by resampling a colon segment to fit on a plane.

In the research field of surgical planning and simulation, deformation is an impor-
tant tool. When performing a endoscopy, the physician can move structures with the
instrument to get a better view. When preforming virtual endoscopy, simulation of the
instrument interacting with the colon can be desired. Schulze presented a technique for
simulating endoscopic views [32]. using a shape deformation to allow the viewer to
alter the structure of the colon, Figure |T_1_5| show how the user can alter the shape of
the colon to simulate the interaction of the instrument. Deformation was done on the
voxel level with the combination of a 3D ChainMail and a relaxation technique. The
3D ChainMail algorithm [[17] was introduced for fast volume deformation by Gibson.
ChainMail has low computational cost and is suited for large data sets. Florian Schulze
et al. extended their technique for deformation of large volume dataset [31]].

Defining deformations in volume space can be challenging, and intuitive methods
for volume deformation is desired. Walton and Jones extended the use of wires [33] to
create volume wires as means for shape deformation. The volume wire creates an
attribute field which contains information about the deformation for each voxel. Walton
and Jones extended their work [38]] to include support for multiple wires which allowed
discontinuous deformations. Different types of deformations using volume wires are
shown in Figure [2.16]

(a) Original volume. (b) Deformed volume.

Figure 2.15: Images from Direct Volume Deformation [32]].
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(a) Images from Volume Wires : A Framework for Empirical Non- (b) Image from Interact-

linear Deformation of Volumetric Datasets [37]]. Image on the left ing with Volume Data:

show original volume. Deformations using For-
ward Projection [38]].

Figure 2.16: Deformations using volume wires.

There has also been done extensive research in physics-based shape deformation.
This may not be crucial in exploration and presentation, however it could give a bet-
ter feel of how structures are linked together. More accurate techniques than Chain-
Mail has been implemented for physics-based deformation. Finite Element Method and
Mass-Spring models are well established algorithms for physics simulation [40, 28} and

references therein]

The use of shape deformation can provide novel tools for volume exploration and
presentation. Continuous deformations do not solve the problem with occlusion. Dis-
continuous deformations, such as cuts and peels can reveal structures hidden under-
neath outer layers. Discontinuous deformation is an important area in volume defor-
mation. Discontinuity in a deformation raise a new challenge in volume rendering.
Revoxelization is not always preferred since the original state of the volume is lost after
the deformation has been applied. Rendering iso-surfaces is often done by generating
polygonal structures, for instance with the marching cubes algorithm. The shape of a
polygonal structure is easily distorted by transforming the vertices, but to illustrate a

cut, re-meshing would be needed which can be a complex task.

Previously, in Section [2.4] splitting was discussed as a simple form for cutting the
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Figure 2.17: Image from Using Defor-  Figure 2.18: A cut generated using ray
mations for Browsing Volumetric Data  deflectors. Image from Continuous and
[25]. The image quality suffers when a  Discontinuous Deformation using Ray
point based rendering scheme is used. Deflectors [22].

volume, but direct discontinuous shape deformation can be used to simulate more fa-
miliar deformations such as peel-aways. As mentioned earlier in Section[I} illustrating
peel-aways have been used to show both feature of interest and occluding structures
without the compromise of semi-transparency. Peel-aways provide a powerful tool for
exploration and presentation in volumetric visualization. McGuffin et al. published an
extensive research in various types of deformation for browsing volumetric data [235]].
In the approach of McGuffin et al., points were used as primitives for rendering. This
simplifies the problem of discontinuity because the empty space is not rendered and
a forward transformation of each sample point can be used. A point based rendering

scheme penalize the image quality, as shown in Figure 2.17]

Complex deformation in direct volume rendering is challenging. Discontinuous re-
gions must be handled differently than in polygonal or point based rendering. Often
direct volume rendering is done on dedicated graphics hardware and there are restric-
tions on what types of data one can store in the memory to the graphics processing
unit (GPU). Many different approaches has been presented to handle discontinuous de-
formations in direct volume rendering. Kurzion and Yagel extended their work on ray

deflectors to include discontinuous deformation [22], see Figure @ The discontinu-
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Figure 2.19: Discontinuous deformation created by deforming the proxy geometry. Im-
ages from Real-Time Deformation for Illustrative Medical Volume Rendering [26].

ous region was created using a gravity field as the center of the cut, and only allowing
points to sample points from the same side of the field. If a point sampled a point from
the other side of the field it would be treated as a hole.

In ray-casting, entry and exit points need to be calculated as start and end positions
for each ray into the volume. When ray-casting is done on the GPU, the most simple
calculation of the entry and exit points is done by rendering the front faces of a cube to
one texture, and the back faces to another. Rendering time can be reduced by generating
more complex structures for front and back faces of the volume. This is often referred
to as the proxy-geometry of the volume. Mensmann [26] introduced a technique for
deforming the proxy-geometry to obtain real-time illustrative deformation. The proxy-
geometry was built using a surface extraction technique designed explicitly for the 3D
ChainMail algorithm. Then cuts where created using a pre-defined cutting template.

Discontinuous deformation by Mensmann are shown in Figure [2.19]

Deformation can be obtained using a technique called displacement mapping. Dis-
placement maps was introduced by Cook [7] as means for shape-deformation of a sur-
face. Traditionally displacement maps are represented as 2D textures. The texture con-
tains the displacement of each fragment of the surface of which it is mapped to, basically
it is a 2D vector field. See Multiresolution rendering with displacement mapping (18]
and Adaptive view dependent tessellation of displacement maps [14] for more informa-

tion on regular displacement mapping.
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Carlos D. Correa et al. introduced an extension of displacement mapping to include
discontinuous deformation in volume graphics [9], as shown in Figure For sur-
faces, only 2D displacement maps are required to create deformations. However, when
dealing with volumes, 2D displacement maps may become insufficient because volumes
contain information underneath the visible surface. Volumetric displacement maps are
required to deform both the visible surface and the inner structures in a volume.

Volumetric displacement maps can be considered as a 3D vector field. Traditionally
displacement is considered as the forward transformation of each sample. In direct vol-
ume rendering the origin of a sample position must be defined. For this problem Correa
et al. suggests inverse displacement maps to handle discontinuities. A forward displace-
ment function B(x, y,z) is the displacement of a point p = (x,y,z) top’ = (x',y’, 7). This
leads to the equation:

p'=p+D(p). 2.1)

— —
The transformation D is specified procedurally, then the inverse transformation D
is sampled as a texture of size w x h x d at discrete positions {x,y,z|x =0,1,...w;y =

H
0,1,...h;z=0,1,....d}. The inverse transformation D satisfies the equation:

p=p'+D(p). 2.2)

Discontinuous areas can be defined as where <l_) = ©. When rendering, the transfor-
mation for each sample is retrieved from the discrete inverse transformation and sample
data can be retrieved from the original position.

In Discontinuous Displacement Mapping for Volume Graphics [9]] displacement
maps are pre-defined templates which illustrate cuts, peels and other deformations. In
the following chapter an approach for creating view-dependent peel-away based on the

deformation technique given by Correa et al.
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(a) Original volume. (b) Peel created using a template
based deformation scheme.

Figure 2.20: Images from Discontinuous Displacement Mapping for Volume Graphics

[9].
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Chapter 3

View-Dependent Peel-Away in

Direct Volume Rendering

In chapter 2] several different techniques for exploring and presenting structures within a
volumetric data set was presented. The problem with occlusion was discussed, and how
it can be solved using different kinds of techniques. In Section deformation was
discussed as a way to handle the problem with occluding structures. In this chapter, an
approach for intelligent positioning peels according to the view-point will be presented.

When exploring data for diagnosis or other purposes, the surrounding structures
of a certain feature might be as interesting as the feature itself. Compared to semi-
transparency and other non-photorealistic rendering techniques, peel-aways has the
property of preserving information of the occluding structures. While techniques like
cut-aways and contour rendering leave out much information, peels transform the oc-
cluding structures to a non-occluding position.

In this chapter, the techniques for generating view-dependent illustrative peel-aways
in direct volume rendering will be presented. The approach in this work is based on the
illustrative deformation technique presented by Correa et al. [9, 8]. This approach is
suited for view-dependent peel since physics simulation is deemed unnecessary. With
pre-defined templates, rendering time can be reduced significantly.

Figure [3.1]show the steps required for visualizing peels with a template based defor-
mation scheme. In the first step after retrieving the data, the user controls the parameters
which are used in the renderer and the degree of displacement in the peel-template. The
peel-template is then generated and rendering without any displacement can be per-

formed. Before rendering peels, the peel-template has to be positioned within the ren-
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(Sceneinteraction i
User Control Final Image

Positioning and scaling peel-template

(Automatic) ( Manual

Generating
peel-template

Figure 3.1: The process pipeline; After the data has been acquired, the user specifies the
necessary parameters for rendering, and generating the peel-template. After an image
has been rendered, the user can either position the peel-template within the rendering
scene using simple mouse gestures or select a feature to be revealed. Rendering is then
performed, including the peel in the final image.

dering scene. This can be done with two different techniques. Manual positioning and
scaling of the peel-template allows the user to explore the desired areas of the volume,
and automatic positioning and scaling provides fast presentation of features of interest.
After the peel-template is positioned, volume rendering using discontinuous displace-
ment maps can be performed. In Section [3.1] the steps needed for visualizing peels
using discontinuous displacement maps will be presented. Furthermore, in Section[3.2]
the techniques for creating view-dependent peels by positioning, orienting and scaling
the peel-template are introduced.

The basic inputs for our approach are volumetric data and a segmentation mask
which describe features of interest within the data. CT and MRI scans are the main
source for data the peel-aways are demonstrated on. However, the technique described
are not limited to medical data and could be applied to volumes from alternative sources.
The segments are represented in a binary segmentation mask and is stored as a separate

volume. This is required for automatically generating peel-aways to present data pre-
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3.1 Visualization Pipeline  View-Dependent Peel-Away in Direct Volume Rendering

defined structures within the volume.

3.1 \Visualization Pipeline

The pipeline for using vector field transformations for visualizing peel-aways in direct

volume rendering can be divided into three major steps:

1. Generation of the peel-template: A peel-template is generated procedurally. The
template is the inverse of the transformation for each voxel which are peeled away.
The template is stored as a 3D texture. Setting up and generating templates in
general will be described in[3.1.1]

2. Peel placement: The vector field is scaled, oriented and placed within the ren-
dering scene using a transformation matrix. The orientation of the peel is always
away from the viewer. This assures that the peel itself does not occlude the feature

of interest. Interaction for both scaling and positioning is described in Section

3. Rendering: The scene is rendered with a ray-caster using front-to-back color com-
positing. The ray-caster contains several steps to handle transformation, disconti-

nuities and peel-alignment. This is described in Section [3.1.2]

A fourth step is required for guided navigation. The size, position and depth of the
vector field has to be calculated according the view-point in order to reveal features of
interest. This step is performed between the first and second step in the visualization
pipeline and is described in Section

3.1.1 Peel-Template Setup

The peel-template is a map, which contain the inverse displacement vector for each el-
ement in a peel. If a vector field is of the same size as the volume, each voxel in the
volume would get a unique displacement value. This imposes a problem with perfor-
mance since volumes usually have a high resolution, and generating the vector field at
interactive rates becomes difficult. The solution is to have a displacement map of a res-
olution low enough to maintain interactivity. In our approach the size of the vector field
1s set to 64 x 64 x 64, regardless of the size of the volume.
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Ray - ‘ 2 Ray
b
XN NN E B B B E N
Peeled volume Original volume

Figure 3.2: The vector field contains the transformation back to the original position.

To realize deformation in hardware based direct volume rendering there are certain
restrictions which must be considered since the ray-casting is done on the fragment
shader on the GPU. A volume coordinate,(x,y,z) in volume space is in the range of
{x € [0,w);y € [0,h);z € [0,d)}, where w, h and d are the width, height and depth
of the volumetric dataset. However, since the volume is stored as a 3D texture, the
volume coordinates in the fragment shader is in the range [0,1]. This means that the
displacement vectors must be normalized to from a transformation in volume space, to

a transformation which is valid on the fragment shader.

The fragment shader renders each pixel separately. This means that a voxel can not
be transformed to another position within the ray-caster. The shader retrieves samples
from the volume at positions along the ray. Because of this limitation the inverse dis-
placement is required. This is required because the shader needs the original position of

the voxel.

The first step in generating displacement vectors is to define a transformation func-
tion T¢(p). This is the transformation from p to p’. To build the the vector field (5, the

inverse transformation function Tf’1 is calculated, to obtain the following equation:

p=T;"'(0")=p'+ D) (3.1)

The inverse gives us the original position each sample within the vector field. This

means that the displacement vectors can be calculated as follows:
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D(p)=T;'(p) -V (3.2)

The inverse displacement function D of size w x h d, D is sampled at discrete
positions {x,y,z|x=0,1,...w—1;y=0,1,....h—1;z=0,1,....d — 1}. This is illustrated
in Figure 3.2

The cut-region in a peel is defined as empty space. In mesh-based and mesh-less
rendering [27], the cut-region is handled implicitly, since empty space is not rendered.
This is not the case in direct volume rendering since empty space often is rendered as
voxels with a value of 0. The cut region must be explicitly defined in the displacement
map. In a peel, the cut region is the area between the cutting plane, and the peel. For

rendering, this area must be marked as discontinuous.

Handling Discontinuity

Correa et al. suggested several approaches for defining non-continuous areas. One
solution is the Out-of-bounds displacement, the cut region can be defined as non-valid
displacement. For instance a displacement outside volume-space is a invalid position
and can be interpreted as a discontinuous area in the shader. This can create problems
due to texture interpolation. Another solution is to use binary ¢&t-mask which defines the

cut-region. The a-mask is a separate function, A(p’), which can be defined as follows:

0 if p is not displaced
A(p)=< 1  ifpisdisplaced (3.3)

2 if p’ is in a discontinuous area.

A(p’) can be stored in the a-channel in the vector field texture. The a-mask will
then become a representation of the surface of the cut. Since the vector field is not
differentiable on the surface of the cut and the resolution of the vector field is quite low,
stair-case artifacts might appear. Correa et al. suggests a solution for creating a smooth
surface of the peeled structure by smoothening the a-mask and using the gradient of the
o-mask, S7A(p') [9]. The smoothening process is time-consuming, however and has

not been implemented in this thesis in order to achieve interactive framerates.
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3.1.2 Ray-Casting through Vector Fields

| Start and end points from proxy-geometry i
Rays

<

Viewer

—

Sample peeled | Sample cut-region i
structure

Sample original
volume

Figure 3.3: The story of a ray; The first step is to acquire the start and end points
from the proxy geometry. Then the ray retrieves samples using the extended sampling
function which handle the three different cases.

In our approach a basic front-to-back ray-caster is used for volume rendering. Since
dedicated graphics hardware is suited for vector calculations, the ray-caster can be effi-
ciently executed on the GPU. A proxy geometry is required for the entry and exit points
of each ray. The basic proxy geometry is a geometrically defined structure which con-
tains the volume. As shown in Figure[3.4] when handling deformations the basic proxy
geometry is not sufficient. This is because structures can be transformed outside the
original geometry. The proxy geometry is then extended to include both the original
volume and the displaced structures.

The first step in retrieving a sample is to check if the sample is within the vector
field. If the sample is outside the vector field, the sample can be retrieved from the
current position. If the sample is within the vector field, another technique must be
applied. Below, the general technique for retrieving samples within the peel-template is
given.

Every sample is checked for displacement according to the function A(p), see equa-

tion A volume can be represented by a sampling function f;(x,y,z). When a dis-

30



3.1 Visualization Pipeline  View-Dependent Peel-Away in Direct Volume Rendering

=

K

Proxy-geometry of original volume Orginal proxy-geometry of peeled volume Extended proxy-geometry

Figure 3.4: The proxy geometry must be extended to contain the peeled structures.

placement map is applied to a scene the sampling function changes to f}(x,y,z), where

() ifAp)==
L) =14 fip) ifA@P)== (3.4)
0 if A(p’) == 2.

The three separate cases are illustrated in Figure [3.3]

The peel can be aligned in two different ways. It can either be aligned with the axis
of the vector field, or it can be aligned with a feature of interest. When aligning the peel
with the feature of interest, the voxels from the feature should not be displaced. This

changes the sampling function to the following:

fs(p')  if A(p’) == 0 or p’ is within the feature of interest

K0) =4 filp)  ifAP)==1 (3.5)
0 if A(p’) == 2 or p is within the feature of interest.

In volume rendering the normals are often defined as the gradient of the sample
function,s/ f;. If a volume only contains a single scalar and is represented as a 3D tex-
ture, the gradient, or normal, can be stored in the RGB channel while the density is
stored in the a-channel. However, pre-calculated normals must be recalculated when
the volume is deformed. This is a complex task and different solutions must be imple-

mented for different types of peels and peel-alignments.

The central differences algorithm can be used to calculate the gradient on-the-fly in
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Peel-template

Add dlsplacement p=p'+d Get Sample —— —"
Fp)

Get dlsplacement Calculate normal N

d=M.D(M-Lp) ViHp)

Apply lighting

Rendering scene

Figure 3.5: The pipeline for sampling within the ray-caster.

direct volume rendering. The central differences approximates the gradient by calcu-
lating the difference between the neighboring voxels in the positive x,y and z direction
and the neighboring voxels in the negative x, y and z direction, as illustrated in Fig-
ure [3.6] Using the central difference calculation to approximate gradients on-the-fly
is time-consuming since several samples has to be retrieved for each position in the
ray-caster. Due to the increase in computational resources on dedicated graphics hard-
ware, the normals can be calculated on-the-fly while still achieving interactive frame
rates. When the gradient is calculated from the sampling function within the ray-caster,
the process for normal calculation for both feature-aligned peels and axis-aligned peels

becomes the same because the sampling function changes for both processes.

Current voxel

DI
Neighboring
voxels

Figure 3.6: The central differences algorithm approximates the gradient by calculat-
ing the difference between the values of the neighboring samples in the positive axis-
direction (green) and the negative axis-direction (grey).
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Outer Normals

surface \

(a) (b) (c)

Figure 3.7: Normals change differently when the two types of peel-alignements are
applied. Figure (a) show the original volume. Figure (b) show an axis-alligned peel. In
Figure (c) a feature aligned peel is applied.

3.2 Interaction

Interaction is an important aspect for exploring volumetric datasets or presenting pre-
defined features in 3D volume rendering, a common type of interaction is altering the
orientation of the scene. To investigate the surface of an object, the viewer can observe it
from different angles. Another type of scene interaction is altering the representation of
the rendering. This is often done with an interaction interface for the transfer function.

For deformation-based exploration, the first step is to position the deformation to a
user specified location. In surgical simulation systems, a highly sophisticated interac-
tion technique needs to be implemented to simulate a scalpel making a cut. In a template
based deformation scheme, a simpler, less computationally expensive interaction is de-
sired.

The goal is to make an intuitive interaction interface. This means that a user only has
to specify the location and the degree of the peel itself, the orientation is then calculated
automatically according to the view-point. With an already defined peel-template, the
template can be scaled, positioned and oriented with a transformation matrix. Costly
re-calculation of the displacement vectors is then avoided.

Although a peel-template only needs to be generated once, animating the peel can
provide a stronger spatial relationship between the peeled structures and the structures
underneath. Since the resolution of the peel-template is lower than the volume, it is
therefore only necessary with a single traversal through the template to generate the
displacement vectors. The vectors in a peel-template can be generated on-the-fly. This

enables user controlled animation of the peel.
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3.2.1 Peel-Template Positioning and Scaling

The process of explorative interaction using pre-defined peel-templates can be outlined
in the following way: a peel-template contains a position orientation and a scale. The
user can define a position by clicking on the rendered structure. The position is then
set to be on the surface of the rendered object. The normal vector for the peel-template
is then calculated to be the normalized gradient in the volume ,5/ f;. After positioning
the template, the user scales it to a desired size. Translating, rotating and scaling can
all be combined into a single transformation matrix, M. Since the peel-template itself is
scaled and rotated, the lookup position in the vector field and the displacement vectors
need to be scaled and rotated accordingly. The scaled and rotated displacement vector,

TD)’ (p’), is calculated as follows:

D'(p))y=M-D(M~"-p'). (3.6)

A specific problem with peel-aways is that the peel itself can occlude structures
underneath. If the peel direction is towards the view point, the peel can cover the cut.
The view point must therefore be considered when orienting the peel to ensure the best
line of sight to the feature in focus. Figure [3.§] illustrates how a peel can cover the

structures of interest.

Vi
ewer Feature of interest Viewer Feature of interest

(a) b)

Figure 3.8: As the scene is rotated, the peel occludes the underlying structures (a).
Rotating the peel ensures the maximum visibility of the underlying structures while
minimizing the transformation of the peel (b).

The peel can always be transformed into a position revealing the features of interest.
However, the closer two items are to each other the stronger the correlation between
those items become. Rotating the peel to always bend away from the viewer minimizes

the transformation needed for exposing the feature of interest. The orientation of the
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peel is set to the difference between the inverse view-vector and the normal vector to

the peel-template, projected on the plane defined by the normal vector.

3.2.2 Automatic Placement Orientation and Scaling

Automtically generating cut-aways for features of interest have been done for a long
time in volume visualization [36, [13]. This provides a fast, easy method for presenting
structures within the data. View-dependent cut-ways for illustrative rendering generate
cuts from an arbitrary view-point to expose features within the data. The goal is to
generate peel-aways which have the same criteria as view-dependent cut-aways. This
means that a peel must go as deep as the feature of interest. Since sampling through the
peel-template is more costly than sampling in the original volume, the vector field must
be scaled down to the minimal size, while still revealing the entire feature.

To automatically position the peel-template, the logical center for the feature of
interest must be calculated. The center can approximated with a three dimensional
distance transform [16]]. The distance transform generates a map of the shortest distance
from any given voxel within a feature to the surface, see Figure 3.9] The center of an
object would then be classified as the voxel with the highest distance to the surface of

the object.

Figure 3.9: Distance transform, the value at each position is the shortest distance to the
surface. The position with the highest value can be interpreted as a logical center.

The distance transform approximation is a sufficient approximation for convex struc-
tures. In medicinal CT, many structures are close to convex and the chamfer system

works well for structures such as a brain or a liver. However, there are important non-
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convex structures, such as blood vessels and bone. Using the distance transform for
approximating the center on such structures would characterize the thickest area as the
center. This is not a good approach for positioning the peel-template, as it would require
a larger scale to make the entire feature visible.

Another solution for approximating the center, is using the outer bounds of the fea-
ture of interest projected on the screen, and calculate the mean between the extreme x
and y positions of the projected image, as shown in Figure[3.10] To generate the projec-
tion of a feature onto the screen, a first-hit ray-caster can be used. Since this image is
never viewed, shading and other effects can be ignored and faster rendering is acquired.
The first-hit coordinates for both the minimum and maximum x-values and the mini-
mum and maximum y-values need to be retrieved in order to calculate the extension of
the projected feature in volume space. This can be done by first marking the a-value
in the output texture at the current texture coordinate when the feature is hit by the ray
and then store the volume coordinate in the RGB-channel. A linear search through the
output texture is then performed to determine the minimum and maximum positions for

the segment.

Screen

(a) (b)

Figure 3.10: A feature are projected onto the screen(a). Then the four extreme positions
are combined to calculate an approximate center(b).

To calculate the approximation of the feature center, an average between the four ex-
treme positions are computed. This algorithm is not restricted to convex shaped struc-

tures and is a sufficient approximation of the center for automatically positioning the
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vector field. The difference between a distance transform center and an outer bounds
center is illustrated in Figure [3.11]

Distance transform center ' Outer bounds center '

Figure 3.11: Using the distance transform would detect A as the logical center. Calcu-
lating the center from the outer bounds would result in an approximate center at B.

After positioning the vector field, the deformation needs to be oriented in such a way
such that the segment in focus becomes visible. This is done by setting the up-vector
for the template to point towards the view point. The next step is then to rotate the
vector field so that the peel always bends out in the same direction. The consistent peel
direction provides an easier view of the peel since it remains almost at the same position
in the image.

The final stage in creating an automatic peel is to scale the peel such that the entire
feature is revealed. To create less distraction from the peel shifting position the peel
is oriented to the right of the feature, orthogonal to the cartesian rendering grid. Since
the peel is aligned with the grid, the outer positions calculated from the projection of
the feature can be used as a measure for the size of the peel in the x and y direction.
The distance between the minimum and maximum y-positions are then set to be the
y-scale of the vector field. The same process is performed to calculate the x-scale. To
keep the peel from becoming distorted the x and z scale must be equal. A problem with
this approach is that the feature of interest might be deeper within the volume than the
projection is wide. A small peel-template can disappear within the volume and will lead
to a non-visible peel. To solve this problem, the depth of the calculated position to the
surface of the volume is calculated. The x and z scale is then set to the maximum of the
feature projected x-size, and the feature depth. This ensures that the vector field does

not disappear within the volume.
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In this chapter the general technique for generating view-dependent peel-aways has
been presented. In the following chapter, the specific implementation techniques will

be presented.
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Chapter 4

Implementation

Techniques for implementing deformations, such as peel-aways, varies from different
rendering schemes. In this chapter the different techniques and solutions for achiev-
ing real-time rendering of view-dependent peel-aways will be described in detail. In
Section [4.T] the setup and algorithm for generating a peel-template map is described. In
Section[4.2] the process of rendering and sampling using a ray-casting rendering scheme

will be presented. Further more, in Section[4.3] the algorithm for projecting the segment

Figure 4.1: Screenshot of the VolumeShop framework.
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onto the screen is described and in Section {.4] the detail for explorative interaction is
presented.

The proof-of-concept has been implemented in the C++ programming language,
with support of the OpenGL graphics library and integrated into an existing framework

called VolumeShop [3]]. A screenshot of the framework VolumeShop can be seen in

Figure

4.1 Building the Peel-Template

The peel-template is contains the inverse transformation of the displaced structures. In
essence, it is a vector field containing the displacement vectors back to the original
position of the sample. The vector field is a 64 x 64 x 64 set of floating point four-
dimensional vectors. This is then represented as a 3D RGBA texture with floating point
precision. The displacement vectors are stored in the red, green and blue channels, and
the definition of the discontinuous region is stored in the o-channel. The discontinuous
region is the or-mask described in Equation

To procedurally generate the vector field, an invertible transformation function is
required. In this thesis, a rigid peel is chosen. The reason for this is that a rigid peel can
be defined as a simple transformation matrix. This is an advantage, because matrices can

easily be inverted. For a rigid peel the following transformation function is generated:

cos¢p 0 sing O X
0 I 0 O
Th(xy0)=| « |7 (4.1)
—sing 0 cos¢ O Z
0 0O 0 1 1

This is the transformation matrix for rotating an arbitrary point around the Y-axis in
an euclidean coordinate system. Tffl, from Equation can then be calculated analyt-
ically.

A challenge with directly building the inverse displacement map, representing the
peel-template, is to define which points the inverse transformation should be applied
to. To solve this problem the normal vector of the plane intersecting with the vector

field, N, is defined. Then the transformed normal is calculated by applying the forward
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4.1 Building the Peel-Template Implementation

transformation on the plane normal, N’ = T;(N). Then the inverse transformation is
calculated on all the points which are above the transformed plane according to the
transformed normal. The discontinuous region is then defined as the points between the

original plane and the transformed plane.

With these conditions the peel-template can then be generated procedurally at dis-
crete positions with the following procedure; for all the positions in the vector field,
detect if the current position is a valid transformed position. This is defined as true if
the dot-product between the vector created from origo to the current position, and the
transformed normal of the plane intersecting the vector field is greater than zero. If the
current position has an inverse position, displacement vector is calculated as the dif-

ference between the current position and the inverse position. If the current position is

Algorithm 1: Algortihm for generating peel-template

Input:

Transformation functions, Ty and Tf_ 1;

Normal of the intersecting plane, N;

N, = Tf(N);

foreach Position P' = (x,y,7) in the inverse displacement map D do
if P’- N’ > 0 then

P=T7,(P)
H
D (x,y,z)=P—P
AP) =1
end

else if P-N” < 0and P-N > 0 then
//Mark position as a discontinuous region

A(P’) =2
end

else
//Mark position as not transformed

AP)=0
end
end
Output:
Inverse displacement map 5()6, ¥,2)
o-mask A(x,y,z)
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4.2 Template-Aware Ray-Casting Implementation

between the original plane and the transformed plane, the position is marked as a dis-
continuous region. Finally, if the previous conditions are not fulfilled, current position
is marked as a non-transformed position. This procedure is shown in Algorithm|I}
After the peel-template is generated it is then loaded as a 3D texture and bound to a
sampler3D in the fragment shader. In the next section we will describe how ray-casting
and sampling is done on the GPU when using the generated peel-template to define the

deformation.

4.2 Template-Aware Ray-Casting

After the template has been generated an bound to the fragment shader, template-aware
rendering is required. For rendering an extended front-to-back ray-caster is used. The
main loop in the ray-caster is described in Algorithm[2| The color and opacity accumu-
lation process remains the same for both standard GPU-based ray-casting and template-
aware ray-casting.

The rendering scene is defined by bounding structure which stores the entry and exit
points for each ray. This structure is often referred to as the proxy geometry.

The process for each ray goes as follows; start and end points for each ray are re-
trieved from the proxy geometry and the ray traverses through the volume compositing
color and opacity. If the current fragment becomes completely opaque, the ray is termi-
nated, since no information beyond this point contribute to the final image.

A problem might occur for deformations outside the already existing proxy geome-
try since sampling is only performed within the rendering scene. To include displace-
ments outside the normal rendering scene, the geometry of the peel-template is added to
the proxy-geometry. The difference between the original and extend proxy geometries
are shown in Figure

The main difference between the template-aware ray-caster and a standard ray-caster
is the sampling function, which is described in Algorithm [3] The standard sampling
function retrieves the value from the volume at the current position. Using discontinuous
displacement maps the position changes and discontinuous regions must be handled.
Aligning the peel according the feature in focus is also handled in the sampling function.

Gradients at each position are calculated on-the-fly using the central differences

method and the gradient is used as the normal for each sample.
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4.2 Template-Aware Ray-Casting Implementation

(a) (b)

(© (d)

Figure 4.2: Entry and exit buffers of the proxy geometry generated for the hand with
and without the peel-template. (a) and (b) show the original entry and exit buffers. (c)
and (d) show the extended entry and exit buffers.
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4.2 Template-Aware Ray-Casting Implementation

Algorithm 2: Main ray casting algorithm

while vecRayColor.a < 1.0 and vecRayPosition not at end do
vecSampleColor = GetColor(vecRayPosition);

if vecSampleColor.a > 0.0 then
vecSampleColor.a = 1.0 - pow(1.0-vecSampleColor.a,fSampleDistance);

vecSampleColor.a *= (1.0 - vecRayColor.a);
vecSampleColor.rgb *= vecSampleColor.a;
vecRayColor += vecSampleColor;

end

vecRayPosition += vecRaylIncrement;

end

glFragColor = vecRayColor ;

The sampling process goes as follows; the first step is to determine if the current
position is within the the peel-template. If this is true, the sample is retrieved from the
current position. If this is false the next step is to handle peel alignment, the sample
function handles feature alignment by detecting whether or not the current position is
within the feature in focus. If this condition is true, sampling is done from the cur-
rent position. Otherwise, it returns zero, since the feature should not be rendered at a

transformed position. For axis aligned peels, the last step is ignored.

The next step has three different cases, the current position is not affected by the
displacement, the current position is the transformed position of a voxel, or the current
position is in a discontinuous region. These three cases are decided by the value of
the a-mask, where 0, 1 and 2 defines the three cases respectively. In the first case,
the sampling function returns the value form the current position. If the position is in
a discontinuous region, the return value is zero. However, if the current position is
the transformed position of a voxel, the displacement vector retrieved from the peel-
template and multiplied with the transformation matrix to the peel-template. The vector
is then added to the current position to calculate the original position. The sample is then
retrieved from the new position. The algorithm for the sampling function is presented
in Algorithm 3]

The peel-template transformation matrix are calculated from the scale, position and
orientation. In the next section, the main process for calculating the position and scale

for automatic feature presentation will be presented.
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4.2 Template-Aware Ray-Casting Implementation

Algorithm 3: Sample retrieval
Data: peel-template transformation,M
GetSample(vecPosition)

if vecPosition is not within the peel-template then
| return sample from current position

end

vecVectorFieldPosition = M- vecPosition;
vecVectorFieldSample = M- texture3D(D, vecVectorFieldPosition);
if performing a feature aligned peel then

if vecPosition is within feature then
| return sample from current position;
end
if vecPosition + vecVectorFieldSample.xyz is within segment then
| return O;
end
end
if vecVectorFieldSample.a == 2 then
| return O
end

else if vecVectorFieldSample.a == I then
| return sample from transformed position;

end

else if vecVectorFieldSample.a == O then
| return sample from current position;

end
end
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4.3 Feature Projection Implementation

4.3 Feature Projection

For the purpose of presenting features of interest, automatically creating a peel which
removes the occluding structures is needed. Two steps are required; The first step is
to position the peel according to the location of the feature in focus. Second, the peel-
template has to be scaled according the size of the feature. Both scale and position
are calculated from the projected feature onto the screen. Creating the projection of
a specific feature can be done by a simple first-hit ray-caster. In essence, a ray stops
traversing through the volume as soon as it hits the selected feature. The position is then
stored in the RGB-channel of the output texture. To efficiently generate a texture of the
projected segment we implement the simplified ray-caster on the GPU. See Algorithm[4]
The result can be seen in Figure [4.3]

4.4 Interaction

Complete manual positioning, scaling and orienting can obtain the same results as the
techniques presented in this thesis. A goal is to reduce the number of unnecessary low-
level interaction, by suggesting a high-level interaction scheme.

To explore the data using peel-aways, the peel-template must to be positioned within
the rendering scene. This is defined by the user with a simple mouse click on the ren-
dered object. To locate the position, a single ray is cast towards the volume, the position

is then set to the first surface hit by the ray.

Algorithm 4: Segment projection algorithm

while vecRayPosition not at end and feature not hit do
| vecRayPosition += vecRayIncrement;

end

if feature of interest hit then
glFragColor.rgb = vecRayPosition.xyz;

glFragColor.a = 1;
end

else
| glFragColor.a = 0;

end

b
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4.4 Interaction Implementation

Figure 4.3: Projection of the bone segment from the Monster Study data set. The color
encoding is the first-hit positions from the ray-caster.

Animating the displacement can provide a better understanding of the original posi-
tion of the peel. This is done by updating the amount of degrees which the peel is rotated
and recalculating the displacement vectors. The degree of displacement is adjusted with
a slider in the graphical user interface. In essence this is the number of degrees the
points are rotated around the y-axis.

For exploring the structures underneath the visible surface, the peel needs to be of
a desired thickness. After the vector field has been positioned, thickness of the peel is
determined by how deep the peel-template is in the volume. The user can adjust the
depth according to the normal of the vector field with a slider.

If the feature of interest is larger than the peel-template itself or too deep within the
surrounding structure, the peel may need to be resized. The size of the deformation
can be adjusted by scaling the peel-template to a desired size. For an intuitive scale
interaction, the scaling is done by left clicking on the template with the cursor and scaled
by moving the cursor. The scaling direction is then defined by the position clicked on the
peel-template and the center of the template. Positive or negative scaling is decided from
the dot product between the scale direction and the direction of the cursor movement.

In this chapter, the implementations of the major processes for realizing view-
dependent peel-aways on a real-time rendering system has been presented. In the next

chapter the results and draw backs from the specified techniques will be discussed.
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Chapter 5

Results

In the previous chapters, the techniques for generating peels dependent on the position
of the viewer have been presented in both high-level and in detail. These techniques

will be, in this chapter, demonstrated on several datasets from the medical domain.

e The hand dataset, see Figure[5.1]

e The Monster Study dataset, see Figure[5.3]

e The Bert dataset, see Figure

Figure 5.1: Inside the Metacarpal bone of the middle finger.
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e The Head dataset, see Figure [5.4]

The hand, Monster Study and Head dataset are in courtesy of the AGFA develop-
ment team in Vienna. The Bert dataset is obtained from the FreeSurfer distribution.

The purpose for the techniques described in this thesis can be divided into two dif-
ferent scenarios. One scenario is where the user seeks to gain insight into the data
and to retrieve information about the structures within. A different scenario is where
knowledge about the features within the dataset exists, for instance separate structures
represented in a segmentation mask. Fast and easy presentation of these features is then
desired.

The images created for the two different scenarios share certain specific character-
istics. A blue box is rendered in the final images. This box represents the outline of the
peel-template. This is included in the images to provide a better understanding about
the position, size and orientation of the peel-template.

Different representations of different structures is useful to separate the structures
from each other. For instance, the peel may become difficult to separate from the orig-
inal volume. To provide an easier perception of the peel, a different transfer function

can be chosen to render the transformed structures, as shown Figure [5.2] The same

(b)

Figure 5.2: Different transfer functions for the peel and the original volume ensures the
differentiation between them.
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(a) Peeling away the muscles pro- (b) Positioning the peel within the
vides a clear view of the bone struc- lunge allows the inner surface of the
tures underneath. lunge to be visible.

Figure 5.3: Explorative peels.

problem can occur for presenting feature of interest. The feature can blend in with
the surrounding structure. Thus, changing the representation of the feature of interest
provides a better separation between the object in focus and the surrounding context.
In Figure the different representation of the bone structures, clearly separates it

from the surrounding structures.

(a) Axis-alligned peel. (b) Segment-alligned peel.

Figure 5.4: Different alignments

51



5.1 Peel-aways for Exploration Results

The alignment of the peel can enhance the perception features selected by the user.
In Figure [5.4] the two types of alignment are rendered. While the axis-aligned peel
allows the user to cut through the object, the feature-aligned peel enables investigation
of both the surface of the object and the surface connected to the object.

5.1 Peel-aways for Exploration

Figure 5.5: Explorative peel of the hand. Animating the peel provides better under-
standing of the original position to the peeled structure.

Exploration using peel-aways can be compared to exploration using a clipping ge-
ometry. The vector field work as a cutting geometry shaped like a cube. An advantage
with peel-aways is that the structures clipped out are not removed. The peeled struc-
tures are in close proximity of their original position. In Figure [5.1] the inside of the
Metacarpal bone in the middle finger is clearly visible. The inside of the bone is diffi-
cult to show using a regular transfer function. Also the back side of the cut is visible,
which provide a good overview of the bone structure.

Since the resolution of the displacement map is small, the peel can be animated
interactively. In Figure [5.5]the peel is animated from a small degree to a large degree.
The animations provide a better spatial coherence between the original and transformed

position of the peel.
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5.2 Peel-aways for Presentation Results

(a) The peel can occlude the (b) Rotating the peel ensures
structures underneath. line of sight to the features of
interest

Figure 5.6: Rotating the peel ensures visibility of the features underneath.

With a static peel, changing the view-point can make the peel itself occlude the
structures underneath. To prevent this the peel is rotated in such a way that the peel is
facing away from the view-point. This is illustrated in Figure [5.6] The peels for both
images are at the same position. When the scene is rotated the peel is oriented in such a

way that it does not occlude the underlying structures.

5.2 Peel-aways for Presentation

Presenting structures using peel-aways is a method which has been used for a long
time in traditional illustration. In scientific visualization, the automatic positioning and
orientation of the peel allows for fast presentation of both the feature of interest and the
surrounding structures. In Figure the peel is scaled to include the entire left side
of the brain. To show the left kidney a smaller peel is required, see Figure [5.7(b)] The

scaling function based on the size of the projection of the feature.
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5.3 Performance Results

(a) Revealing the entire left cortex of the (b) Left kidney in the Monster
brain in the Bert dataset. Study dataset made visible.

Figure 5.7: Automatically generated peels to reveal features of interest.

5.3 Performance

In Section [1.5] one goal was that implementation of the techniques presented in this
thesis should obtain interactive framerates. For a system to feel smooth and responsive
it should at least obtain a framerate greater than five frames per second (FPS).

The prototype has been implemented on the visualization framework VolumeShop

and the benchmark was done on the following system:

Windows Vista Operating system

Intel Core 2 Duo 6700, 2.66 GHz

Nvidia GTX 280 w/1GiB dedicated memory.

2 GiB System memory

For this benchmark, rendering with different properties activated has been tested. A
combination between the two different peel alignments and the two different interaction
modes. Sampling distance was set to 1.0 for the performance testing and the size of

the rendered image was set to 1328 x 852. For comparison the column on the right
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Axis Segment

Hand
244 x 124 x 257

Framerate 6-7 FPS

Head
256 x 256 x 230

7 FPS

Framerate

Table 5.1: Benchmark of manually positioned peel-aways.

shows images created using a regular sampling function in the ray-caster. The images
in Table 5.1l and Table [5.2l have been resized to fit in the tables.

Table[5.T|show the benchmark results of manually positioning and scaling peels. The
scale of the peel-template is set to (0.6,0.5,0.6) for all images. This table shows that
utilizing reasonable sized peels as a means for exploration can be achieved at interactive
framerates. Segment aligned peels provide a good overview of the feature in focus,
however it comes with a small reduction in performance.

In the images in Table the automatic feature-aligned peel-away technique was
used. Sampling within the peel-template is very time-consuming compared to sampling
outside the template. This implies that the scale of the vector field has a great impact on
the performance. From the table it is clear that scaling down the vector field, interactive
framerates can be achieved for smaller features. However, for large features, such as the
bone structure, interactive framerates are difficult to achieve due to the large scale of the
template.
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Small peel Large peel DVR

Brain
256 x 256 x 256

Framerate

Monster
256 x 256 x 557

z 5 - o
Framerate 5-6 FPS 1 FPS 15 FPS

Table 5.2: Benchmark of automatically generated peel-aways.

56



Chapter 6

Summary and Conclusions

Traditional illustrators have invented a great selection of tools to better convey the in-
formation about 3D structures to the viewer. When displaying 3D structures it is often
the case that one structure occludes the other, where as the occluded one can often be
of higher interest to the viewer. This creates the challenge of visualizing the features
of interest, while providing an understandable representation of the surrounding struc-
tures. Techniques, such as peel-aways, cut-aways and exploded views, have been used
by illustrators since the renaissance to solve the problem of occluding structures. In
Figure Figure[I.2]and Figure [I.3|early illustrations describing the human anatomy
are shown.

Today, 3D structures can be scanned digitally and investigated on computers. A
challenge, with for example anatomical CT scans, is to visualize the information in an
easily perceptible way. Volumetric datasets are usually large, and a good overview can
be difficult to obtain by 2D slicing. 3D representation of volumetric data can provide
a better overview as compared to 2D slice rendering, however when providing a 3D
representation of an object, the features inside can get occluded by the outer structures.

In recent years, traditional illustrations have inspired the field of illustrative volu-
metric visualization to incorporate the metaphors created by illustrators, into the field of
scientific visualization to resolve the problem of occlusion. Various techniques in vol-
umetric visualization can be used to explore volumetric datasets or present interesting
features hidden within the data. 2D slice rendering is one of the main rendering types
used in the field of medical visualization. Extracting a slice out of a CT scan at a given
position, reveals all information at the specified area. However, overview is difficult to

obtain with regular 2D slice rendering. Providing more information of the surrounding
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structures can be helpful for various tasks in the medical scene. Figure [2.1] shows how
extended 2D slice rendering can provide a better overview of the surrounding structures.

In 3D rendering, insights can be obtained by adjusting the opacity of the outer struc-
tures. Making outer surfaces completely transparent will show structures within the
data. A challenge is to provide information about the spatial relationship between the
outer surfaces, and the features of interest. In direct volume rendering, a transfer func-
tion is often used for mapping opacity and color to each voxel in the volume. With direct
control over the opacity, the outer surfaces can be made semi-transparent and both the
outer surfaces and structures previously hidden can be made visible.

Investigating the feature of interest can become difficult if a semi-transparent surface
is rendered on top of the feature in focus, as shown in Figure Other techniques
suggests using the orientation of the surface as measure to determine the opacity of
a structure. Contour rendering creates a representation of the outline of a surface by
only rendering the areas where the normal of the surface is orthogonal to the viewer.
This provides a clear view to features underneath the outer surface while providing
information about the shape of the outer surface. Much research is done within the
field of semi-transparency and contours to provide better insight in the data. Figure
show how contour rendering can provide information about shape of the surrounding
structures, while revealing features inside.

While the use of transparency can gain insight into volumetric dataset, using global
parameters for adjusting transparency does not always provide satisfying results. Using
geometrical structures can be used to select certain areas in the rendering scene to be
represented differently or removed from the image entirely. This process is known as
clipping and cut-aways, which are used for exploration and visual communication re-
spectively. Clipping is the process of removing structures, often defined by geometrical
shapes, from the final image, as shown in Figure[2.7] Cut-away is the automated process
of removing structures to reveal features of interest. The idea is to remove everything
in front of the feature, according to the view-point. In Figure 2.9 cut-aways are used to
show the liver.

Volume splitting is another technique for handling the problem of occlusion. Split-
ting is a technique inspired by clipping, where the volume is divided into several dif-
ferent parts. Each part can then be transformed and rendered separately. However, the

different parts can still occlude the features of interest. Exploded views utilize the con-
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cept of splitting to transform each part so that the feature in focus becomes visible, as
shown in Figure [2.12

Deforming an object can also be used to give focus to or to reveal, interesting areas.
Deformation can be divided into to separate types which deal with different problems,
continuous and discontinuous deformation. Continuous deformation, also called shape
deformation, is distorting the shape of an object to enhance or reveal the interesting
features on the surface of the object. Discontinuous deformation extends continuous
by introducing cuts as a means to explore features underneath the surface. Realization
of the two types of deformation can be divided into two. Object based deformation, in
essence restructuring the data before the rendering process is started, and image based
deformation, where the altering the shape is done in the rendering process. The latter
type of deformation holds an advantage by keeping the original state of the data. Fig-
ure show how object based deformation is applied to a colon for simulating a colon
unfolding.

Defining deformations can be realized in several different ways. A novel approach
developed by Correa et al. is using discontinuous displacement maps to define the defor-
mation in the rendering process. Pre-defined templates which represent the deformation
are positioned into the rendering scene to illustrate peels, separators and other types of
deformation. In Figure [2.20] peeling is performed using a discontinuous displacement
map. In this thesis, a template based deformation technique is utilized for fast explo-
ration and automatically generating peels to reveal interesting features. The process is
inspired by automatic cut-aways, where the feature of interest is automatically made
visible from a user selected viewpoint.

Occlusion in volumetric rendering is handled with the use of various techniques
inspired by traditional illustration methods. In this thesis, the peel-away metaphor is
applied to volumetric datasets to explore and present features within the data. The two
main goals are to make an intuitive method for exploring the data using peel-aways, and
generating automatic view-dependent peel-aways for visual communication.

The peels are represented as pre-defined peel-templates. This is advantage for cre-
ating view-dependent peels compared to a physics-based peeling system, since time-
consuming physics calculations are avoided. The peel-templates can be positioned, ori-
ented and scaled to create the desired peel, without recalculating the displacement.

Visualizing peels using a pre-defined template can be divided into three major steps.
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The first step for visualizing peels is to generate the peel-template. Second, the template
needs to be positioned, scaled and oriented in the virtual environment, and third, the
peeling must be handled in the rendering process to create the final image.

The peel-template is in essence a vector field which contain the inverse transforma-
tion of the peeled structure, as shown in Figure To generate an inverse vector field,
an invertible transformation function is required. The vector field is sampled at each
point with the inverse transformation function according to Equation [3.2] For defining
discontinuous regions in the rendering process, a binary o-mask is generated. The dis-
placement vectors are then stored in the RGB-channel and the a-mask is stored in the
A-channel of a 3D RGBA texture. Algorithm |l|describe how the process of generating
a template representing a rigid peel.

The second step is to position, scale and orient the peel. This is divided into two
parts; manual positioning and scaling for explorative peel-aways, and automatic po-
sitioning and scaling for presenting features of interest. The features of interest are
defined by a pre-generated segmentation-mask which are stored as a separate volume.

For manual positioning the user positions and scales the peel with simple mouse
gestures. However, to ensure a clear view of the peeled structures and the structures
underneath, the peel is oriented in a way to always bend away from the viewer. This is to
ensure that the peel itself does not occlude the interesting areas, as shown in Figure

To reveal features of interest, the user does not control the position, scale or the bend
of the peel. The user selects a feature of interest and the peel is automatically positioned
and scaled according to the position and size of the feature. Size is determined by a
projection of the feature, see Figure onto the screen, and the position is calculated
out of the extreme x and y positions of the projection.

The final step to visualize view-dependent peel-aways is rendering. The rendering
is done by using a front-to-back ray-caster with an extended sampling function. Regular
sampling retrieves values from the volume at the current position. For template-based
peel-aways, the sampling function must consider the displacement of the peel. The
sampling function first looks up the value of the a-mask for the current position in the
peel-template. The value says if the current position has a valid inverse displacement.
If the displacement is valid, the sample is retrieved from the original position, if the
o-value suggests a discontinuous region, empty space is rendered. In Figure [3.5] the

pipeline of the sampling function is described.
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The sampling function also deals with peel alignment. The surface of the peel has
two types of alignments. It can be aligned with the axis of the peel-template, or it can
be aligned with a pre-defined feature. Axis aligned peels enable the user to cut through
objects and examine the inner structures, while feature aligned peels provide a better

overview of the structure in focus.

In volumetric visualization normals are used for shading 3D representations. The
normal are approximated by the gradients. Gradients are calculated on-the-fly within
the ray-caster using the central differences method. Previously this have been consid-
ered to be too time-consuming. However, due to the increase in performance of dedi-
cated graphics hardware, the gradients can be calculated on-the-fly while still achieving
interactive framerates. These three step combined enables visualization of peel-away,

where the position, size and orientation of the peel consider the view point.

In this thesis, the peel-template represents a rigid peel. The rigid peel can be con-
sidered as plane cutting through the volume, and rotating all points around an axis. The
rigid peel has an advantage with not preserving the spatial relationship for the structures
within the peel. There are certain limitations with the approach described in this the-
sis. Stair-case artifacts appear on the cut-surface of the peeled structure. These artifacts
appear because of the low resolution of the peel-template compared to the volume and
because the discontinuous region is defined by a binary o.-mask. Correa et al. suggested
a solution for aliasing, by smoothing the a-mask. However, smoothing the mask is time

consuming and reduce performance.

Because of the low resolution of the template, a template can be generated on-the-
fly. This means that the peel can be animated. Animating the peel provides a better

correlation between the peel and its original position, as shown in Figure[5.5]

Automatic peeling provides fast and easy presentation of features of interest, se-
lected by the user. Figure show peels created automatically to reveal the features
selected by the user. While explorative peels provide a simple exploration technique for
both the features of interest and surrounding structures.

Performance is an topic for consideration when creating interactive visualization
systems. The general performance for explorative peels are high enough for a smooth
interaction. For automatic peels, there is a reduction in performance due to the calcula-

tion of both the size and the position of the feature in focus.
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6.1 Conclusions

The work presented in this thesis was done to satisfy the goals presented in Section[I.5]
Techniques for generating illustrative peel-aways in volumetric visualization has been
presented. The major focus has been to create peels which consider the position of the
viewer. In the field of medical education, illustrative renderings are helpful to under-
stand the human anatomy. Locating and investigating structures within the human body

can be difficult using basic rendering methods.

The displacement method in the presented system utilizes discontinuous displace-
ment maps to generate peels within the rendering process. Since this work did not aim at
simulating physical interaction with the rendered objects, the pre-defined peel-template
suites the purpose of positioning and orienting peels according to the view-point. The
template based peeling has been proved to be capable of visualizing reasonable sized

peels in direct volume rendering at interactive framerates.

The template used in this system represents a rigid peel. A rigid peel is generated
by transforming the points around the y-axis. The forward transformation can be rep-
resented by a simple transformation matrix. In a GPU-based template-aware ray-caster,
the inverse transformation is required for sampling from the original position in the vol-
ume. The transformation matrix can be inverted and the inverse transformation can be
calculated. Because of the simple transformation calculation, and the low resolution of
the peel-template and the corresponding a-mask, the peel-template can be calculated

on-the-fly. Interactively generating the peel-template enables animation of the peel.

Due to the discrete binary o-mask for defining discontinuous regions, and the low
resolution of the peel-template, stair-case artifacts appear at the surface of the peeled
structure. Stair-case artifact distorts the view of the peeled structure, however it clearly

conveys that the peel was artificially transformed.

The create more advanced and refined deformations additional work is required.
Smoothening of the peel-surface and deforming the peel itself are fields which can
improve the visual results for explorative and automatic peeling. In the next section,

possible future extensions of the presented system are discussed.
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6.2 Future Work

The techniques presented in this thesis provides a basis for exploration and visual com-
munication using illustration techniques defined as templates. Although a rigid peel was
selected in this thesis, different templates can be defined and applied using the same po-
sitioning and scaling system, and thus making it a very flexible illustration technique.

The work presented in this thesis does not support more than one peel at a time. A
future endeavor would be to extend the system to handle multiple displacement tem-
plates.

For animation, the size of the template needs to be small enough to be able to gen-
erate the displacement vectors interactively. Todays hardware contains of usually of
more than one CPU core, and generating templates is a paralellizable process since the
displacement vectors does not influence each other. This means that a multi threaded
process of generating templates can be implemented for larger, more sophisticated dis-

placement templates.
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