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Chapter 1

Introduction

The concept of the derivative is at the core of calculus and modern mathe-
matics, and is consequently also at the core of many fields of science. The
derivatives can of course be calculated by hand, but even for problems of
modest size this is a time-consuming task which is prone to errors. Divided
differences can also be used to calculate derivatives, but truncating errors
may lead to significant errors in the derivatives as well as cancellation errors.

Automatic differentiation avoids all of the drawbacks associated with the
techniques above. The main drawback with symbolic differentiation is low
speed, and the difficulty of converting a computer program into a single ex-
pression. Moreover, many functions grow quite complex as higher derivatives
are calculated. Two important drawbacks with finite differences are round-off
errors in the discretization process and cancellation. Both classical methods
have problems with calculating higher derivatives, where the complexity and
errors increase.

Automatic differentiation exploits the fact that any computer program
that implements a vector function can generally be decomposed into a se-
quence of elementary assignments. The elemental partial derivatives are
combined in accordance with the chain rule from calculus. This can be used
to form some derivative informations for the function such as gradients, Ja-
cobians, Hessians.

1.1 Literature and tools

The concept of automatic differentiation has been invented and re-invented
independently by many authors. A very comprehensive and authorative ref-
erence on automatic differentiation is the book of Griewank [5]. A very good
starting point for information on the web would be the website autodiff.org,



a free and non-commercial community portal to automatic differentiation
available to researchers with a standing interest in AD and its applications.

Automatic differentiation is also starting to appear in literature which
does not specifically deal with automatic differentiation, such as [15]. Au-
tomatic differentiation is also covered in [1], calling its implementation of
multicomponent objects Rall numbers and naming Louis B. Rall "the math-
ematician who developed the automatic differentiation technique for com-
puters [19]".

A number of good software tools appeared as the field of automatic dif-
ferentiation grew, particularly during the 1990s. ADIFOR |[3], ADOL-C [6],
and TAPENADE [17] are but a few of the many tools freely available. Com-
mercial tools are also available, such as those from FastOpt.

1.2 Implementing automatic differentiation

Automatic differentiation is a technique for augmenting computer programs
with derivative computations. It exploits the fact that every computer pro-
gram, no matter how complicated, executes a sequence of elementary arith-
metic operations such as additions or elementary functions such as exp(). By
applying the chain rule of derivative calculus repeatedly to these operations,
derivatives of arbitrary order can be computed automatically, and accurate
to working precision.

Traditionally, two approaches to automatic differentiation have been de-
veloped: the so-called forward and reverse modes. Forward accumulation
traverse the chain rule of calculus from right to left, while reverse accumula-
tion traverse the chain rule from left to right. These two modes of automatic
differentiation are just two extreme ways of traversing the chain rule, and
an implementation may incorporate both forward and reverse into a hybrid
mode. The problem of computing the full Jacobian of F': R” — R™ with a
minimum number of arithmetic operations is proven to be NP-complete [14].

Automatic differentiation can be implemented using several techniques
depending on the requirements of the implementation. Generally, one of two
strategies are used: source transformation or operator overloading.

With source transformation, a function is replaced by automatically gen-
erated source code that includes statements for calculating the derivatives.
This code is interleaved within the original instructions. Source transforma-
tion can be implemented for all programming languages, and it might make
compile time optimizations easier. However, the implementation of the au-
tomatic differentiation tool itself is more difficult. Tools such as ADIFOR
and TAPENADE performs source transformation of Fortran programs, the



latter also on programs written in C.

Operator overloading is another possibility for source code written in
a language that supports it, such as C, C++ or Fortran, where operator
overloading was introduced in Fortran90. With operator overloading, objects
for real numbers and mathematical operations are overloaded to cater for
an augmented arithmetic. There are several implementations of automatic
differentiation using operator overloading freely available, two of which are
ADOL-C [6] and FADBAD+-+ [2].

In this thesis we will focus on the forward mode of automatic differen-
tiation, implemented using operator overloading in C+4+-+. Forward mode
automatic differentiation is accomplished by augmenting the algebra of real
numbers and obtaining a new arithmetic. This new arithmetic consists of or-
dered pairs (z,z') with ordinary arithmetic on the first component, and first
order differentiation arithmetic on the second component. We will extend
this arithmetic to calculate the first, second, and third derivatives automati-
cally. While we in this thesis will use optimization as the field of choice for a
practical application, using third order derivatives is also interesting in other
fields, such as sensitivity analysis [10].

1.3 Choice of programming language

C-++ is a language with many features which make it attractive for scientific
computing. Templates for generic programming, operator overloading and
object-orientation are but a few of the many useful features of C++. The
concepts of operator overloading and object-orientation are of particular in-
terest when we want to implement automatic differentiation. A variety of
compilers and supporting libraries are also freely available.

Despite these features, the scientific computing community has been re-
luctant to adopt C-++, partly due to performance problems. In the early
1990s, C+—+ programs were much slower than their Fortran counterparts,
but the performance of C++ programs has improved markedly due to a
combination of better optimizing compilers and new library techniques [23].

Even though memory management was not a deciding factor in the choice
of programming language for this thesis, a very important feature of a lan-
guage is how it handles memory. Many languages, such as Java and C#,
provide automated memory handling, or garbage collection. This can save
a lot of time for the developers by automatically deciding when memory is
ready to reuse, rather than the programmer having to write code to do it.
C—++ is one of the languages that require the programmer to handle mem-
ory allocation and deallocation explicitly. While this provides the skilled



programmer with a very high level of control over how the program uses
memory, loosing track of said memory tends to cause all sorts of bugs which
are hard to solve and slow down further development.



Chapter 2

Operator Overloading

Operator overloading provides an intuitive interface to our code. It allows
C/C++ operators to have user-defined meanings based on user-defined types.
The C++ language itself overloads several operators, for instance the opera-
tor «. This operator is built into C++ and can be used both as as the stream
insertion operator as well as the the bitwise left shift operator. The » opera-
tor is overloaded similarly for stream output and bitwise right shift. Both of
these operators are overloaded in the C++ Standard Library. Operators like
+ and - perform differently depending on their context in integer, floating
point or pointer arithmetic. Function calls may of course perform the same
jobs as overloaded operators, but as we will soon find out, the operator no-
tation is often clearer.

The names of, precedence of, associativity of, and arity of operators is
fixed by the language. We will not get any additional functionality to the
code by using operator overloading, and it will still compile to function calls.
Operators may be overloaded by writing a non-static member-function or a
global function where the function name is the keyword operator followed by
the symbol of the operator being overloaded. Operators overloaded as mem-
ber functions must be non-static because they must be called on an object
of the class and operate on that object.

It is worth mentioning that it is not possible to create new operators. Only
operators existing in the C++ language can be overloaded. Neither is it pos-
sible to alter the meaning of how an operator works on fundamental types.

There are a few possible pitfalls in using operator overloading in your
code. The most important part to have in mind is not to confuse the users
of your code. Tt might be tempting to overload the ~ -operator to work
for to-the-power-of, except it has the wrong precedence and associativity.
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You would be much better off by overloading pow(base, exponent), a double
precision version of which is in the <cmath> library.

Most operators in C++ can be overloaded. Operators . and ¢: are the only
two C operators which can not be overloaded. Neither can sizeof, which is
technically an operator. C++ adds a few of its own operators, most of which
can be overloaded except :: and *.

2.1 Complex numbers

Using complex numbers is a very good example to illustrate the intuitive
interface operator overloading will provide for the users of our code. Complex
numbers are often written on the form a + bi where a and b are real numbers
and 7 the imaginary unit with the property i = —1. It is also possible to
represent complex numbers as ordered pairs of real numbers. The complex
number a + bi corresponds to the unique ordered pair (a,b). It is easy to
imagine ordered pairs of real numbers as its own class where constructors
handle the initial value of the ordered pair. The algebraic operations on these
ordered pairs are also easily implemented from following example formulas:

(a,b) + (¢,d) = (a+c¢,b+d) (2.1)
(a,b) * (¢,d) = (ac—bd,bc+ ad) (2.2)

The following example will show how to overload c++ operators to deal
with the addition and multiplication of complex numbers defined in its own
class. Object oriented programming, function inlining and other language
specific topics will not be discussed. These topics are of course important
for implementation details and performance, but we will keep focus on the
operators themselves throughout this thesis.

#include <iostream>

class Complex {
public:
// A couple of comnstructors.
Complex () { real = 0; imag = 0;}
Complex(double r; double i) { real = r; imag = i;}
// get/set and other member functions omitted

// Operators

Complex operator + (const Complex& x);

friend operator — (const double& x, const Complex& y);
Complex operator * (const Complex& x);

Complex operator * (const double& x);

Complex operator / (const Complex& x);
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private:
double real; // Real part
double imag; // Imaginary part

}s

Complex :: Complex operator + (const Complex& x) {
Complex temp () ;
double r = real + x.real;
double i = imag + x.imag;
temp.setValues(r,i);
return temp;

}

Complex :: Complex operator * (const Complex& x) {
Complex temp () ;
double r = realx*x.real — imag*x.imag;
double i = imag*x.real + realxx.imag;
temp.setValues(r,i);
return temp;

Listing 2.1: Excerpt of Complex.h

As the listing above will show, it is not especially difficult to start using
operator overloading. The jobs performed by the operators are easily un-
derstood and the end result is a class which is easy to use. Now that we
know how to defined our class of complex numbers along with the necessary
operators, we can very quickly begin doing some interesting computation.

One function which should be familiar to anyone who has studied calcu-
lus is the Newton-Raphson iteration. It is a method for finding roots of a
function by using the derivative of the function to improve on an approxi-
mation to the root. To perform a Newton-Raphson approximation, we will
need a function f(z), its derivative f’(z) and a an approximation to a root of
the function. The Newton-Raphson procedure works by calculating a closer
approximation to the root by calculating 2’ = = — ]{,((?). This procedure will
typically be repeated until the successive values are close together. When
the difference between these values are within a certain tolerance we con-
clude that we have a very good approximation to the actual value x* for

which f(2*) = 0.

Consider the function

fz)=2*-1 (2.3)
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and its derivative
f'(z) = 32 (2.4)

where z is a complex number. This function has three roots in the com-
plex plane. The first root is located at the point (1,0), the second at
(—0.5, —sin(%)) and the third at (—0.5,sin(%)). To be able to use this func-
tion we need the multiplication, division and subtraction operators of our
complex number class to be overloaded. The updated approximations will
be calculated by

f(zn)

T T )
n

(2.5)

where the initial guess z is a point in the complex plane. Assuming our class
of complex numbers implements these operators, consider the following

#include <iostream >
#include <fstream>
#include "math.h"
#include "Complex.h"

int main () {
const double sin60 = 0.866025; //Constant variable.
const double cos60 = 0.5; //Constant variable.
const double eps = 1.0e—4; //Convergence tolerance
const int maxit = 20; //Mazimum number of iterations
ofstream fil;
fil .open("newton.dat"); // Data file for our plot points.
Complex z;
double zr;
double zi;
int it;
for (double r=2; r>-2; r—=0.001) {
for (double i=2; i>-2; i —=0.001) {
z.setValues(r,i);
it = 0;
while (it <) {
zr = z.getReal () ;
zi = z.getImag() ;

if (fabs(zr —1)<eps && fabs(zi) < eps)
break; // converged to root (1,0)

else if(fabs(zr+cos60)<eps && fabs(zi+sin60) < eps)
break; //converged to root (—0.5,—0.866025)

10
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else if(fabs(zr+cos60)<eps && fabs(zi—sin60) < eps)
break; //converged to root (—0.5,0.866025)

z = 7z — (zxzxz—1)/(3%zxz);
it++;
}

fil << r << " " << i << " " << it << endl;
}
}
fil.close();
return O0;

}

Listing 2.2: Using our complex number class

The above listing 2.2 will traverse the complex plane from —2 to 2 on
both axis. It will use the points in the plane as the starting guess of a root of
f(x) = 23 — 1. Then it performs the Newton-Raphson iteration and updates
the guess of a root until one of the three roots are found or the maximum
number of iterations is reached. When either of the stopping criteria is met,
the point along with the counted number of iterations is then printed to a file.
The following image is made by using Gnuplot to plot the data contained in
our data file produced by listing 2.2.

2

1.5

F 7 28

=2 =1.5 -1 =8.9 a 8.9 1 1.9 2

real

The colours in the plot above runs from dark blue to white signifying
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the number of Newton-Raphson iterations needed to reach one of the three
roots of (2.3). The three roots can be seen as the darks spots at (1,0),

(—0.5,—sin(3)), and (—0.5,sin(3)).

2.2 The ADouble class

Now that we have covered basics of operator overloading we can begin to
produce some code to calculate our derivatives in earnest. We will start
coding a new class of numbers called ADouble. For now we will only consider
univariate functions such as

f(z) =2+ 3z +4

Just as we did with complex numbers, our class will at its core consist
of the ordered pair (u,u’) where both u and u' are of type double. In our
ordered pair v will represent the variable’s real value and ' will represent the
variable’s derivative value. This derivative value will be initialized to 1. The
key to calculate our derivatives lies in the fact that any computer program
that implements a function can (generally) be decomposed into a sequence
of elementary assignments. These elemental partial derivatives are combined
in accordance with the rules of calculus to form the derivative information,
such as that done in [19] to provide a convenient list of first and second dif-
ferentials.

Consider the function

fl@) ==z
Using Leibniz notation the product rule may be stated as

i(u v)—u@—i—vd—u
dx - dx dx

which can also be written in ’prime notation’ as
(w-v) =u - v4+u-v. (2.6)

If u and v are implemented as the ordered pair we will use in our ADou-
ble class, only the operator needs to be overloaded to be able to produce

the derivative of the function. Now consider the following header file for our
ADouble class.

12
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#ifndef ADOUBLE H
#define ADOUBLE H

class ADouble {
private:
double value;
double deriv;

public:
ADouble(double v);

ADouble operator* (const ADouble& x);

ADouble& operator= (const ADouble& x);
double getVal() { return value; }
double getDer() { return deriv; }

};

#endif // ADOUBLE H

Listing 2.3: Header file for our ADouble class

The class data is nothing more than two doubles.

One double repre-

senting the value and the other representing the derivative value. A simple
constructor is provided to intitialize the ADouble variable to a certain (real)
value. The derivative value is initialized to 1 because the derivative of the

single variable z is %x =1.

In the source file for our ADouble class we will define the multiplication
operator to work in accordance with the product rule as stated in (2.6). A

simple assignment operator is also provided.

#include <iostream >
#include <iomanip>
#include "ADouble.h"

ADouble:: ADouble(double v) {
value = v;
deriv = 1;

}

ADouble ADouble:: operator «(const ADouble& x) {
ADouble temp(0) ;
temp.value = value * x.value;
temp.deriv = deriv % x.value + value * x.deriv;
return temp;

}

ADouble& ADouble:: operator= (const ADouble& x) {

13




18 value = x.value;
19 deriv = x.deriv;
20 return xthis;
21|}
Listing 2.4: Source file of our ADouble class
And that is all we need to start calculating some derivatives, at least as far
as simple multiplication goes. By using operator overloading we are able to
code our functions to be strikingly similar to their mathematical definitions.
now consider the very simple function
flz)=x-2-x
We will choose the independent variable x to have the value 2.0. The func-
tion value at x = 2 will be f(2) = 8 and its derivative will be f'(2) = 12.
l|#include <iostream >
2|#include "ADouble.h"
3
4/ int main() {
5| ADouble x(2.0); //Initialize z to 2.0
6/ ADouble f = x % x * x;
7| std::cout << "f(x) = x % x *x x\n";
8| std::cout << "x=2.0\n";
9] std::cout << "f(x) =" << f.getVal() << std::endl;
10|  std::cout << "f’(x) =" << f.getDer() << std::endl;
11 return 0;
12|}

Listing 2.5: The first small steps of automatic differentiation
This very simple example will produce the following output:

f(x) = x *x x *x
x = 2.0
f(x) =8
f2(x) = 12

which is of course exactly what we expected. The function value along
with its derivative at the given point is calculated without any special com-
mands or function calls.

14




Chapter 3

Automatic Differentiation of
multivariate functions

3.1 Extending ADouble to multivariate func-
tions

We will start our discussion of automatic differentiation of multivariate func-
tions much in the same vein as done in [13] to extend our ADouble.

The first derivative of a scalar function f(z) with respect the vector vari-
able © = (xq,..., 2, 1) is called the gradient and is denoted by Vf where
the symbol V denotes the vector differential operator. The gradient of f is
defined to be the vector field whose components are the partial derivatives

of f. That is:
T
w:<af of ) .

85507 Y 8xn,1

Consider the function
f(zo, 1) = u*v =u(xg, 1) * v(xo, 1)

Let the first partial derivative of f with respect to x; be designated f;. The
rules of calculus give the following for the value and first derivative of f:

f =u*xv

fi =uxv+uxv;

The designation of the first partial derivative of f to be f; is made to em-
phasise the similarity of arrays and partial derivatives. It is clear that if the

15
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values of u, v and their partial derivatives is known then the value of f and
its partial derivatives can be calculated by the relationships above. Similar
relationships for the operations of addition, subtraction and division are pro-
duced by the rules of calculus.

We are interested in finding the values of the derivative at a point of the
function f(z) where z is the vector in R"™. Because the value of this vector
is known, as well as its partial derivatives, the value and partial derivatives
of f is known.

In the following listing we will expand our ADouble class to work on the
first derivative of the multivariate function f(x)

#ifndef ADOUBLE H
#define ADOUBLE H

class ADouble {
private:
double value;
double * gradient;
int num_vars;

public:
ADouble(int num_vars, double v, int diffindex);
virtual “ADouble() ;

ADouble operator* (const ADouble& x);
ADouble& operator= (const ADouble& x);
friend std::ostream& operator<< (std::ostream& s, const ADouble

&);
}s

#endif // ADOUBLE_H_

Listing 3.1: Header definition of our modified ADouble class

Instead of using a single variable of type double to handle the derivative
value we now use a dynamically allocated array of doubles. This array is
0-indexed. We also need to keep track of how many variables in the function.
The constructor is also modified. Instead of just taking the one argument as
we did in listing 2.3 we now take as arguments the number of variables, the
(real) value and diffindex. This diffindex denotes the index number in the
gradient vector.

Because we dynamically allocate the memory needed for the gradient, we
also need the destructor on line 12. The definition of the multiplication op-
erator and assignment operator is exactly the same in Listing 3.1 as it was in

16




Listing 2.3. The last change is the addition of the overloaded output stream
operator «.

In the following listing we will modify the source file of our ADouble class
to work with multivariate functions.

#include <iostream >
#include "ADoublel.h"

1

2

3

4| ADouble:: ADouble(int nvars, double v, int diffindex) {
5 value = v;
6
7
8

num_vars = nvars;
gradient = new double[num vars];
for (int i=0; i<num vars; i++) {
9 gradient [i] = 0;
10 }
11| gradient[diffindex]| = 1;
12|}
13

14| ADouble::~ ADouble () {
15| delete [] gradient;
16| }

18| ADouble ADouble:: operator*(const ADouble& x) {
19| ADouble temp(x.num_vars, 0.0, 0);

20| temp.value = value x x.value;

21| for(int i=0; i<x.num_vars; i++) {

22 temp. gradient [i] = (gradient[i] * x.value) 4+ (value % x.
gradient [i]) ;

23| }

24 return temp;

25|}

26

27| ADouble& ADouble:: operator= (const ADouble& x) {

28 value = x.value;

29| for(int 1=0; i<num_vars; i++) {

30 gradient[i] = x.gradient[i];

31

32 return xthis;

33( 1

34

35| std :: ostream& operator<< (std::ostream& s, const ADouble& x) {

36| s << "Value: " << x.value << std::endl;

371 s << "Gradient: [";

38| for(int i=0; i<x.num_vars; i++) {
39 s << " " << x.gradient[i] << " ",
40| }

17




41
42

s << "]" << std::endl;
return s;

43|}

SO s W N

Listing 3.2: Source file of our ADouble class

The constructor in Listing 3.2 will still assign the variable’s real value in
the same manner as in Listing 2.4, but the initialisation of the gradient is not
quite as obvious. We will still initialise the derivative of a variable to be 1,
but only at the correct index. The variable z; in the vector (xg, z1, z2) will
of course be of type ADouble, but its initial gradient will be (0, 1,0) because
x1 is not differentiable with respect to to zy or xs.

Further, the multiplication operator is modified to do the proper operations
on the gradient.

Using our modified ADouble class is no more complicated than it was in
Listing 2.5. As an example we what to calculate the function value of

flz,y,2) =x*xy*xz

and its gradient

of of of\*
Vi = (o505

Vf(r,y,z) = (l-y-z,x-l-z,x-y-l)T
at the point
(z,y,2)" = (2.0,3.0,4.0)"
The function value should be
flz,y,2)=2-3-4=24
and the gradient should be
Vi(z,y,z)=01-3-42-1-42-3-1)" =(12,8,6)7

Consider the following short code example of how we now use our ADouble
class in our code

#include <iostream >
#include "ADoublel.h"

int main() {
const int num vars = 3;
ADouble x(num_vars, 2.0, 0);

18



ADouble y(num_vars, 3.0, 1);
ADouble z(num_vars, 4.0, 2);
ADouble f = x * y * z;
std :: cout << f;

return O0;

)

Listing 3.3: Using our our ADouble class

First of all we need to declare how many variables our function consists
of. The new constructor for the ADouble class is called to initialise variables
x, y and z to the desired values. The function value f is also initialized
as an instance of the ADouble class. We also overloaded the output stream
operator to provide a convenient way of printing our resulting ADouble object
f to standard output. The resulting output from Listing 3.3 is

Value: 24
Gradient: [ 12 8 6 ]

Again exactly what we want.

What may not be so clear is how the gradient is filled with the correct
numbers. Consider the simple diagram below:

temp2
/ \
/ \
templ \
/ \ \
f = x *x y x 9z

Within then independent variable z is the temporary gradient (1,0,0).
The independent variables y and z have the gradients (0,1,0) and (0,0, 1)
respectively. At the first multiplication, a temporary object of type ADouble
is created, designated templ in the diagram above, which contains the func-
tion value and gradient with respect to x and y. This temporary object is
then multiplied with 2z to produce the second temporary object temp2. This
latest temporary object contains the full function value and gradient with
respect to x, y and z. Finally, f is set equal to the last temporary object,
and thus contains the function value and gradient of the entire function.

19




Chapter 4

Extending our AD-class to the
second derivative and higher

4.1 DMatrices and second order partial deriva-
tives

Before we start doing anything more with our ADouble class, a few words on
matrices and second order partial derivatives is needed. The reason for this
will soon become clear.

A symmetric matrix is a square matrix which has the property that the
matrix A is equal to its transpose.

A= AT

Each entry in a symmetric matrix is symmetric with respect to its main
diagonal. If the entries of the matrix A is written as a;;, then a;; = a;; for
all indices ¢ and j. The following 3 x 3 matrix is symmetric
2 -3
1 8
-3 6
The Hessian matrix is the n x n matrix of second order partial derivatives
of a function. It describes the local curvature of a function of many variables.
It was developed by the German mathematician Ludwig Otto Hesse in the
19th century and later named after him. We will use the symbol V2f to
denote the Hessian matrix of the multivariate function f.

20



Given the two times continuously differentiable function

f (@)

where x is the vector in R", the Hessian matrix is on the form

2*f > f _f
Bz% Oxo Ox1 Oxo Oxn—1
% f 2f 2%f
Oz1 Oz¢ Ox3 Oz1 0Ty _1
Vif(x) =
2% f 0% f _0°f
OTp—10xyg OTp_10x1 81’%71

The order in which the partial derivatives is produced does not matter.
If the function f: R® — R has continuous partial derivatives at any given
point in R", then for 0 <i,7 <n

rf P
Gxi 8x]~ a aﬂfj 8:62

(4.1)

In other words, the partial derivatives of this function commute at that
point and the Hessian matrix is symmetric. This enables us to store and do
calculations on merely one of the halves of the Hessian along with its main
diagonal.

At this point we begin to see a worrying development regarding compu-
tational complexity and storage requirements. If we continue along the path
we have so far, the storage requirements will grow very large very quickly.
The gradient itself is not really a problem with its n required doubles, but
the Hessian will soon grow to be too large due to its required % doubles
to store. As we shall soon find out, the storage requirement the third partial
derivatives is even worse, but for the time being we will ignore this bottleneck

as the code for a somewhat naive implementation is more easily understood.

4.2 Extending ADouble to second partial deriva-
tives

In order to actually use any of the information above, we will need some rules
to base our operators on. To keep the displayed amount of example code to
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a minimum we will only consider the multiplication operator.

Counsider the function

f=u-v

Component ¢ of the gradient is then

0
3@»

fi=

U-V=U - VF+U-V;

Element ij of the Hessian is calculated using

fij:uij'v+ui'vj+uj'vi+u'vij (42)

We are now in the position to start making modifications to our ADouble

class. Our goal now is to successfully compute the (full) Hessian matrix.
Consider the following header file for our modified ADouble class.

#ifndef ADOUBLE H
#define ADOUBLE H

class ADouble {

private:

double value;
double * gradient;
double xx Hessian;
int num_vars;

public:

}s

ADouble(int num_vars, double v, int diffindex);
virtual “ADouble() ;

ADouble operator+ (const ADouble& x);
ADouble operator* (const ADouble& x);
ADouble& operator= (const ADouble& x);
friend std::ostream& operator<< (std::ostream& s, const ADouble

&);

#endif // ADOUBLE H_

Listing 4.1: Header file of our ADouble class

Only two things has changed compared to Listing 3.1. We have added the

Hessian declaration on line 8. Here the Hessian is defined as a dynamically
allocated two dimensional array. We have also introduced the addition op-
erator. Note that nothing more has been changed. The other two operators
still take the same arguments. We also need to do some changes in the source

22




0 ~J O O i W N~

file for our ADouble class. Rather than Listing the whole source file, only
the source for the class constructor and the multiplication operator will be
listed in its entirety.

First we need to allocate the memory needed to store the Hessian. This
will be done in the constructor as well as initialising the Hessian to 0 at all
its elements. We also need to modify our multiplication operator to calculate
the elements of the Hessian according to (4.2).

Consider the new ADouble class constructor

ADouble:: ADouble(int nvars, double v, int diffindex) {
value = v;

num_vars — nvars;

gradient = new double[num vars];

for (int i=0; i<num_ vars; i++) {
gradient[i] = 0;

gradient [ diffindex]| = 1;

Hessian = new doublex[num vars];
for (int i=0; i<num vars; i++) {
Hessian[i] = new double[i+1];
}
for (int i=0; i<num_vars; i++) {
for (int j=0; j<=i; j++) {
Hessian[i][]j] = 0;

Listing 4.2: Our modified ADouble class constructor

Our constructor has seen some radical changes since Listing 3.2 with new
code from lines 9 through 16. Because we want to be able to decide the num-
ber of variables at runtime, a dynamic two dimensional array is needed to
store the Hessian. Or more accurately, an array of arrays is needed. We also
take the symmetry of the Hessian into account by storing only the bottom
half of the matrix along with its main diagonal.

As we continue to allocate memory, we need to keep an eye out for so-
called memory leaks. If we allocate more memory than we free up after we
have used it, the computer can run out of available memory. Every time
we use the operators new and newl] in our code, we need to use the corre-
sponding delete and delete]] to release the memory at the proper place. The
proper place is our ADouble class destructor, as show in the following Listing.
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1| ADouble:: ~ ADouble() {

2| delete [|] gradient;

3] for(int i=0; i<num vars; i++) {
4 delete [| Hessian[i];

5}

6

7

delete [] Hessian;

Listing 4.3: A destructor for the ADouble class

The destructor is not the most sophisticated piece of code, but it does the
job we need it to. Namely to free the memory used by the gradient and the
Hessian.

We will also need to make some changes to our multiplication operator in
order to actually perform the operations required to fill our Hessian matrix.
The following Listing will provide for that

ADouble ADouble:: operator«(const ADouble& x) {
ADouble temp(x.num_ vars, 0.0, 0);
temp.value = value x x.value;
for (int i=0; i<x.num_ vars; i++) {

temp. gradient [i] = (gradient[i]
(value * x.gradient[i]);

* x.value) +

}
for (int i=0; i<x.num_vars; i++) {
for (int j=0; j<=i; j++) {
temp. Hessian [i][j] =

Hessian[i][]j] * x.value +
gradient[i] * x.gradient[j] +
gradient[j] * x.gradient[i] +
value % x.Hessian[i][]j];

00~ O O s W N -

— e e
UL W NN = OO

}
}

17 return temp;

}

—
(=2}

—
oo

Listing 4.4: Our modified multiplication operator

Our multiplication operator has doubled in size in terms of lines of code,
but the added lines are not particularly complicated. On line 8 we start to
compute the values of the Hessian matrix according to (4.2). This is simply
done by nesting two for-loops and calculating element f;; in the inner loop.

Even though we have made some changes that significantly improves the
usefulness of our ADouble class, the actual way to use the class in our code
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has not changed. Consider the function
f(x)=a) + o+ a3+ 3027+ 21 - 25 + 20 - 75 (4.3)
its gradient
T
— of of 9f
= (323 + 2% + 23,32} + 2z011 + 73, 3735 + 27179 + 2101s)"

and the Hessian

[ 9%f >’f >’f - -
8:2(2) Ox00x1 Oz00x2 6[E0 2271 2I2
oy 2f 2f
v2f(l’> — | 8z1,0z0 0x3 Or10z2 | — 211 611 + 220 21
%f 2%f 2f 219 219 6xo + 221 + 229
Ora,0rg Oz 011 awg

We want to compute the function value, gradient and Hessian of function
(?7?) in the point x = (xg, z1, z2) = (1,2,3). This function value is

fla) =13 42"+ 3% 41-22+2.32 4+ 1-32 =67, (4.4)
the gradient

Viz)= (3-12+22432,3.2242.1-24+323-32+2.2.3+2-1-3)T

= (16,25,45)T
and the Hessian
[6-1 2.2 2-3 i (6 4 6]
VQf(x): 2-2 6-2+2-1 2.3 _ 4 14 6
2.3 2-3 6-3+2-24+2-1 6 6 24

Consider the following code to compute the function value, gradient and
Hessian of function (4.3)
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#include <iostream >

#include "ADouble.h"

int main() {
const int num vars = 3;
ADouble x0(num_vars, 1.0, 0);
ADouble x1(num_vars, 2.0, 1);
ADouble x2(num_vars, 3.0, 2);
ADouble f(num_ vars, 0.0,0);
f = x0*xx0%x0 + x1*xx1xx1 + x2*xx2%x2 +

x0xx1*xx1 + x1xx2%x2 4+ x0*%x2%x2;

std :: cout << f;
return 0;

}

Listing 4.5: Computing the Hessian using our ADouble class

Just like we did previously, we start by defining how many variables our
function consists of. The next order of business is to declare and initialise
our variables so that we evaluate f at the desired point. This is done on line
6 - 8. Finally, we define the function itself on line 11. The resulting output
from Listing 4.5 is

Value: 67

Gradient: [ 16 25 45 ]
Hessian:

6

4 14

6 6 24

The values produced by our ADouble class is the same as the values we
got when we calculated the derivatives by hand, which is quite impressive for
little more than one hundred lines of code. To do computations on some real
life problems we would of course need to implement other operators, perhaps
also overload functions such as sin() and cos(), but the procedure to do so
differs little from what we have already seen.

4.3 Extending ADouble to the third derivative

As the chapter heading implies, we are interested in more than the second
partial derivatives. We want to compute the third derivative as well. The
collection of third order partial derivatives, henceforth called the Tensor, is
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not quite so easily visualised as the gradient or the Hessian. Recall that the
gradient is defined as a vector with each element defined as

of
8(13'i

and the second partial derivative is a matrix with each element defined as

0*f
8@-8%

Consider the Tensor as the n times n times n cube with each element, or
'block’ as it were, defined as

L
szaxjﬁxk

We will use V?f(z) to denote the Tensor of the function f(z) where
f:R* =R,

We will again turn to the trusty old multiplication operator to show us
how to compute the elements of the Tensor. Consider again the function

fla) =u-v
Element ijk of the Tensor is calculated using

0 0 0
fijk = 8—%1‘}]‘ = 8—%(%‘ ) + a—%(uz‘ “vj) + a—xk(uj -v;) + 8—%(16 - v45)(4.5)

The worrying development we began to see regarding computational com-
plexity and storage requirements of the Hessian becomes even worse for the
Tensor. Based on what we have seen so far, the Tensor will require a ridicu-
lous n? doubles of memory. Not to mention how many operations we need to
actually compute the Tensor. But we will again throw caution to the wind
and continue bravely on our quest to expand our naive implementation.

Consider the new header definition for our ADouble class

#ifndef ADOUBLE H
#define ADOUBLE H

class ADouble {
private:
double value;
double * gradient;
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double xx Hessian;
double xxx Tensor;
int num_vars;

public:
ADouble(int num_vars, double v, int diffindex);
virtual “ADouble() ;

ADouble operator+ (const ADouble& x);
ADouble operator* (const ADouble& x);
ADouble& operator= (const ADouble& x);
friend std::ostream& operator<< (std::ostream& s, const ADouble

&);
}s

#endif // ADOUBLE H_

Listing 4.6: Header file of our ADouble class

Only one change has been made from Listing 4.1 with the declaration of
the Tensor on line number 9.

We will also need to make further changes to the source file. The con-
structor needs to be modified to allocate the needed memory to store the
Tensor. As was the case with the Hessian, the Tensor will also be initialized
with all its elements set to zero. The destructor will free the memory when
we no longer require it, and the operator will be modified to perform calcu-
lations on the Tensor.

Let us first have a look at our new ADouble class constructor

ADouble:: ADouble(int nvars, double v, int diffindex) {
value = v;
num_vars — nvars;
gradient = new double[num vars];
for (int i=0; i<num_vars; i++) {
gradient[i] = 0;
gradient [ diffindex]| = 1;

Hessian = new doublex[num_vars];
for (int i=0; i<num_vars; i++) {
Hessian[i] = new double[num_vars];

}

for (int i=0; i<num_vars; i++) {

for (int j=0; j<num vars; j++) {
Hessian[i][]j] = 0;
}
}
Tensor = new double *x [num vars];
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19| for(int i=0; i<num_vars; i++) {

20 Tensor|[i] = new doublex|num_vars];
21 for (int j=0; j<num vars; j++) {
22 Tensor[i]|[j] — new double[num vars];
23 }

24|}

25| for(int i=0; i<num_vars; i++) {

26 for (int j=0; j<num vars; j++) {
27 for (int k=0; k<num_vars; k++) {
28 Tensor[i][j][k] = 0;

29

30 }

31 }

32|}

Listing 4.7: A constructor for our ADouble class

The constructor i Listing 4.7 has nearly doubled in size since Listing
4.2, but the changes are not particularly complicated. Lines 18 through 24
handles the allocation of the n x n x n sized Tensor, the 25 through 32
simply initialises the Tensor to 0. The destructor, which will not be listed,
is modified accordingly to free the memory when the object’s lifetime expires.

Not surprisingly, changes are also made to the operators. Here illustrated
by the following Listing for the multiplication operator.

1| ADouble ADouble:: operator*(const ADouble& x) {

2|  ADouble temp(x.num_vars, 0.0, 0);

3| temp.value = value x x.value;

4| for(int i=0; i<x.num_vars; i++) {

5 temp.gradient[i] = (gradient[i] * x.value) + (value * x.
gradient [i]) ;

6|}

7| for(int i=0; i<x.num_vars; i++) {

8 for (int j=0; j<x.num vars; j++) {

9 temp. Hessian[i]|[j] =

10 Hessian[i][j] * x.value +

11 gradient [i] % x.gradient[j] +

12 gradient[j] * x.gradient[i] +

13 value x x.Hessian[i][]];

14 }

15| }

16| for(int i=0; i<x.num_vars; i++) {

17 for (int j=0; j<x.num vars; j++) {

18 for (int k=0; k<x.num_vars; k++) {

19 temp. Tensor[i][j][k] =

20 Tensor[1][j][k] * x.value +

21 Hessian|[i][k] * x.gradient[j] +

22 Hessian|[j][k] * x.gradient[i] +
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23 gradient [k] % x.Hessian[i][]j] +
24 Hessian[i][j] * x.gradient[k] +
25 gradient [i] % x.Hessian|[]j]|[k]| +
26 gradient[j] * x.Hessian[i][k] +
27 value % x.Tensor[i][j][k];

28 }

29 }

30[ 3}

31 return temp;

32|}

Listing 4.8: A multiplication operator for our ADouble class

Just as the case was in listing 4.4, our multiplication operator has dou-
bled in size compared to its previous version. On lines 16 through 30 we
compute the Tensor. There is not any more magic involved than it was
when we calculated the Hessian. All that is needed is three nested for-loops,
the inner loop calculating each and every Tensor element ijk according to 4.4.

We use the class in exactly the same manner we did in Listing 4.5 to

compute the Tensor in addition to the the function value, gradient and Hesian
at any given point.
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Chapter 5

Exploiting structure and sparsity

5.1 Partially separable functions

Consider a partially separable function on the form

F@) =" ol Thvars Trrdys - Thvay) (5.1)
i

where d; € D

Theorem 1. [22] If [ is three times continuously differentiable then the
Hessian matrixz has the diagonals

I={i—jlieD,jeD} (5.2)
and the third derivative has the diagonals
M={Gj)|iel,jeli—jecl} (5.3)
Proof. We only need to show that T given in (5.2) are the diagonals of the
Hessian matrix of the elemental functions. Consider
Ok (T, Thvdy s Thvdys -+ - > Thordg)
then
92
Oy 1iDThs

o 1€D,jeD

are the only nonzero elements of the element function ¢y. Element (k+i, k+7)
in the Hessian matrix is in diagonal k +¢ — k — j = ¢ — 5. The diagonals of
the Hessian matrix are thus given by (5.2). The second part of the theorem
follows from the observation that (¢,j) € Il if and only ifi € I,j € [,i —j €
I. ]
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When we now consider the class of problems described in (5.1), we have
the luxury of a priori information about the structure of the elements of the
second and third partial derivatives.

5.2 Storing a sparse Hessian

Very large sparse matrices often appear in science or engineering when solv-
ing partial differential equations, meaning the matrices has many nonzero
elements. It is difficult to specify exactly what this ’small number’ is, but
from a practical point of view, a matrix can be called sparse if it has so many
zero elements that it is worth to inspect its structure and use appropriate
methods to save storage and number of operations.

The Hessian matrix of a function on the form given in (5.1) produces
diagonal banded matrices, quite often with a great many zero elements, and
is therefore a good example of where appropriate datastructures and methods
can be to utilised to great effect.

The basic idea when storing sparse matrices is to store the non-zero ele-
ments, and perhaps also a limited number of zeros. This requires a scheme
for knowing where the elements fit into the full matrix. There are many
methods for storing the data of sparse matrices. See [4] and [9] for details on
formats such as compressed row storage (CRS), compressed diagonal storage
(CDS) and jagged diagonal storage (JDS). CDS is also used in commercial
products from IMB [11] and Intel [12].

See also [7] for a comparison on the efficiency of CRS and Jagged CRS.
Even though [7] uses Java, the indication on performance should translate to
this thesis because we use arrays of arrays here as well. This means that if
need be, we are able to manipulate the rows independently without upsetting
the structure as would be necessary if we used CRS.

Seeing that the class of functions described in (5.1) produces diagonal
Hessians, a natural storage scheme would be one that utilises the diagonal
nature of the matrix. For this reason we use Jagged Compressed Diagonal
Storage (JCDS) [8], a storage scheme which uses the technique introduced
with Jagged Sparse Array. JCDS is also implemented by Bjgrn-Ove Heim-
sund in the package Matrix Toolkits for Java (MTJ).

The Hessian is stored by jagged compressed diagonal storage when we
store:

e A one-dimensional integer array Iptr the size of the number of nonzero
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Hessian diagonals. This array will contain the row indexes for each
diagonal.

e A two-dimensional floating point array containing the numerical values
of the Hessian matrix.

Consider the following header definition for a JCDS class

#ifndef JCDS H
#define JCDS H

#include "Vector.h"

class JCDS {
private:
double xx data;
int x Iptr;
int num diags;

int num_vars;
public:
JCDS(int ndiags, int nvars, int indexes|[]);
JCDS(int ndiags, int nvars, int indexes[], double value);
JCDS(const JCDS& Hessian);
virtual “JCDS() ;
//Get/set methods omitted
Vector operator % (const Vector& x);
JCDS operator * (const JCDS& x);
JCDS operator + (const JCDS& x);
JCDS operator = (const JCDS& x);
friend std::ostream& operator<<(std::ostream& s, comnst JCDS& c)
}s
#endif /xCDS H x/

Listing 5.1: Header definition for the JCDS class

On line 8 we declare our two-dimensional floating point array. This array
will store the diagonals of the Hessian matrix. Our one-dimensional integer
array of row indexes for each diagonal is declared on line 9. It is also prudent
to define a handful of operators for our JCDS class. Matrix-vector products,
matrix addition and multiplication are all important operations if our class
is to see any practical use. These operators will not be described further. It
is also convenient to be able to print the class to standard output, which is
done by overloading the output stream operator on line 34.
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Consider a constructor for the JCDS class:

num diags = ndiags;

num_vars = nvars;

Iptr = new int[num diags];

for (int i=0; i<num_diags; i++) {
Iptr[i] = indexes[i];

}

data = new doublex[num _diags];
for (int i=0; i<num_diags; i++) {

int size = num_vars — Iptr[i];
data[i] = new double|size |;

}

for (int i=0; i<num_diags; i++) {
int size = num vars — Iptr[i];
for (int j=0; j<size; j++) {

data[i][j] = 0;
}

JCDS::JCDS(int ndiags, int nvars, int indexes|[])

{

Listing 5.2: A constructor for the JCDS class

In order to create an instance of the JCDS class we need the number of
independent variables, the number of diagonals in the Hessian, and the row-
indexes of the diagonals. First the Iptr array is created, then the array of
arrays is allocated, and finally the elements are initialized to zero.

Consider the Hessian matrix: !

2 06 3 0 4 0]
0401404
6 030310
H=[31050 22 (5.4)
0430707
4012080
040270 2

This matrix stored with JCDS will have the following Iptr:
Iptr ={0,2,3,5}
and the elements will be stored as the array of arrays

data = {{2,4,3,5,7,8,2},{6,1,3,2,7},{3,4,1,2}{4, 4}}

'Numerical values are for illustrative purposes.
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5.3 The symmetry and sparsity of the Tensor

In order to compute efficiently with the Tensor, we have got to utilise its
symmetry and sparsity. The sparsity of the Tensor is induced by the sparsity
of the Hessian, and because the function (5.1) is three times continually
differentiable we can utilise the super-symmetry. Just as the case is with the
second partial derivative, the partial derivatives of the function f: R® — R
at any given point in R™ commute. Meaning that any combination of the
indices i, j and k at any given point produce the same partial derivatives.
For instance
Pf Bf
x = x

We will again turn to [8] to provide us with an appropriate datastructure
to store the induced Tensor, namely jagged compressed diagonal storage for
induced Tensor (JCDST). The Tensor is stored by JCDST when we store:

(5.5)

e A one-dimensional integer array Iptr the size of the number of nonzero
Hessian diagonals. This array contains the row indexes for each nonzero
diagonal in the Hessian.

e A two-dimensional sparse matrix Ilptr the size of the number of nonzero
diagonals in the Tensor, which will store the j indexes for each nonzero
diagonal in the Tensor. This is a pointer structure that gives the start
indexes for each Tensor diagonal.

e A three-dimensional floating point array for storing the numerical val-
ues in the Tensor.

Consider the jagged compressed diagonal storage for induced tensors in-
duced from the matrix in (5.4)

Iptr ={0,2,3,5}
[Iptr will contain

IIptr =40,{0,2},{0,3},{0,2,3,5}}

and the elements will be stored as 2
data = {{2,3,11,12,16,19, 24},
(3,6,7,10,15}, {4,6,9,13, 15},
(7,9,10,11,15}, {9, 10, 13, 14, 17},
(11,13}, {15,20}, {31, 40}, {36, 42}}

2Numerical values are for illustrative purposes.
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Consider the header definition for our JCDST class

#include "Vector.h"
#include "JCDS.h"

class JCDST {
private:

int num_vars;
int num diags;
int *x Tsizes;
int x Iptr;

int xx IIptr;
int x Ilsizes;
double xxx Tval;

public:

}s

JCDST(int ndiags, int n, int Iptr[]);

JCDST(int ndiags, int n, int Iptr[], double value);
JCDST(const JCDST& x);

virtual “JCDST() ;

// Get/set methods omitted

JCDS operator * (const Vector& x);

friend JCDS operator * (const Vector& p, const JCDST& T);
JCDST operator = (const JCDST& x);

friend std::ostream& operator<<(std::ostream &s, const JCDST &c

)3

Listing 5.3: Header definition for the JCDST class

The data members are all defined on line 6 - 12, and we provide our usual
collection of constructors as well as a destructor.

As was the case with the JCDS header in Listing 5.1, we define a few

operators here as well. Most notably the multiplication operator, which says
that a vector times a JCDST Tensor produces a JCDS matrix.

Counsider a constructor for the JCDST class

JCDST::JCDST(int ndiags, int n, int sizes[]) {

int size = 0;

num _diags = ndiags;

num_vars = n;

Iptr — new int[num diags];

for (int i=0; i<num_diags; i++)
Iptr[i] = sizes[i];

IIsizes = new int[num diags];

IIptr = new int * |[num_diags];

for (int i=0; i<num diags; i++) {
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size = 0;
for (int j=0; j<=i; j++) {
int search_ for = Iptr[i] — Iptr[i—j];
for (int k=0; k<num_diags; k++) {
if (Iptr [k]==search for) {
size++;
}
}
}
IIptr[i] = new int|[size];
IIsizes[i] = size;
int index = 0;
for (int j=0; j<=i; j++) {
int search for = Iptr[i] — Iptr[i—j];

for (int k=0; k<num _diags; k++) {
if (Iptr [k]==search for) {

ITptr[i][index] = Iptr[k];
index—++;
}
}
}
}
Tsizes = new int[num_diags];

Tval = new double *x [num _diags];
for (int i=0; i<num_diags; i++) {
Tval[i] = new double x [IIsizes][i]];
for (int j=0; j<IIsizes[i]; j++) {
int tsize = n — Iptr[i];
Tval[i][j] = new double [tsize ];

Tsizes[i] = tsize;
}
}
for (int i=0; i<num diags; i++) {
int size = IlIsizes|[i];
for (int j=0; j<size; j++) {
int tsize = Tsizes|[i];
for (int k=0; k<tsize; k++) {
Tval[i]]j][k] = 0;
}
}

Listing 5.4: A constructor for the JCDST class
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5.4 Using JCDS and JCDST in our ADouble
class

Consider the new header definition for our ADouble class:

#ifndef ADOUBLE H
#define ADOUBLE H

#include "JCDST.h"
#include "JCDS.h"

class ADouble {
private:
int diff index _;
JCDST % Tensor;
JCDS * Hessian;
int num diags ;
double * gradient;
int num_vars_;
int x Iptr_;
double value;

public:
ADouble(int num_vars, double v, int diffindex , int Iptr[],
int num diags, bool is_static);
ADouble(int num_vars, double v, int diffindex , int Iptr[],
int num_diags);
virtual “ADouble() ;

ADouble operator+ (const ADouble& x);
ADouble operator+ (const double& x);
friend ADouble operator+ (const double& x, const ADouble& y);

ADouble operator— (const ADouble& x);
ADouble operator— (const double& x);
friend ADouble operator— (const double& x, const ADouble& y);

ADouble operator* (const ADouble& x);

ADouble operator* (const double& x);

friend ADouble operatorx (const double& x, const ADouble& y);
ADouble& operator= (const ADouble& x);

friend std::ostream& operator<< (std::ostream& s, const ADouble

&);
}s

#endif // ADOUBLE H_
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Listing 5.5: Header definition for the ADouble class

Note that the ADouble class now has two different constructors. The
constructor with the boolean variable is static is called every time we ini-
tialise an independent variable. This is because for any independent variable,
%x = 1 and any higher derivatives will necessarily become zero. This en-
ables us to initialise all our independent variables with a NULL-pointer to an
instance of the JCDS and JCDST class, which will save us from allocating a

lot of unnecessary memory.

Counsider the function

f(x) = ‘ a(r; —xf ) (1 —zq)? (5.6)

O
[ |
H N

The empty squares indicate elements that will be stored implicitly due
to the Hessian’s symmetry over the main diagonal. With our JCDS class
we will then need to store the main diagonal and the subdiagonal, totalling
n + n — 1 doubles for each dependant variable. Suppose that n = 1000 and

our independent variables are stored in an array. Consider the following code
excerpt:

for (int i=1; i<n; i+=2) {
f =1f + (alpha x
((x[i] — x[i—-1] * x[i—1]) =
(x[i] — x[i-1] * x[1-1]))) +
(1 = x[i-1]) » (1 = x[i-1]));

Listing 5.6: Implementing (5.6)

Unless the compiler is very good at optimising code, dependant variables
will be created by all the elementary operations required to compute the
expression for each execution of the for-loop. These dependant variables

39




are all instances of the ADouble class. When the scope of the generated
dependant variables expires, in this case when execution reaches the equal-
sign on line 2, the destructor of all the dependant variables will be called and
the allocated memory will be freed.

Counting the number of additions, multiplications and subtractions in
Listing 5.6, let us say the compiler creates 10 dependant variables for each
execution of the for-loop. Without differentiating between independent and
dependant variables, we would have to allocate (n 4+ n — 1) = 1999 doubles
of memory for each of the n independent variables just to store the Hessian.
In contrast, we only need to allocate (n+mn — 1) doubles of memory for each
the 10 dependant variables created by the compiler.

We need to make several changes to our arithmetic operators in order to
use the JCDS an JCDST datastructures. Consider the addition operator for
the ADouble class:

SRR OORNRTHR W OORNPOHR RN OORTRTE W OO RIROR W

s s S G0 G0 G0 0 G G0 G0 G0 G0 GO NI IND BN BN N DD NI IND IND D\D b bt et o ot o ot ot et et

ADouble ADouble:: operator+ (const ADouble& x) {

ADouble temp(x.num_vars , 0.0, —1, Iptr_ , num_diags_);
temp.value = value + x.value;
for (int i=0; i<x.num_vars_; i++) {
temp.gradient [i] = gradient[i] + x.gradient[i];
¥

double aval;
double hessij;
double xhessij;
int size;
if ((Hessian!=NULL) && (x.Hessian!=NULL)) {
for (int i=0; i<num_diags_; i++) {
size = num_vars_ — Iptr_ [i];
for (int j=0; j<size; j++) {
hessij = Hessian—>getElement(i,j);
xhessij = x.Hessian—>getElement (i,]);
aval = hessij 4+ xhessij;
temp . Hessian—>setElement (i,j,aval);
}
}
} else if (Hessian!=NULL) {
for (int 1=0; i<num diags ; i++) {
size = num_vars_ — Iptr_[i];
for (int j=0; j<size; j++) {
aval = Hessian—>getElement (i, j);
temp . Hessian—>setElement (i,j,aval);
}
}

} else if (x.Hessian!=NULL) {
for (int i=0; i<num diags ; i++) {
size = num_vars_ — Iptr_[i];
for (int j=0; j<size; j++) {
aval = x.Hessian—>getElement (i, j);
temp . Hessian—>setElement (i,j,aval);
}
}

}

double tijk;

double xtijk;

if ((Tensor!=NULL) && (x.Tensor!=NULL)) {
for (int i=0; i<num _ diags ; i++) {
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44‘ for (int j=0; j<temp.Tensor—>getlIptrSize(i); j++) {

45‘ for (int k=0; k< temp.Tensor—>getTsize (i); k++) {
46‘ tijk = Tensor—>getElement (i,j,k);

47‘ xtijk = x.Tensor—>getElement (i,j,k);

48 aval = tijk + xtijk;

49‘ temp . Tensor—>setElement (i,j,k,aval);

90 }

01| }

92| }

53‘ } else if (Tensor!=NULL) {

54‘ for (int i=0; i<num_diags_; i++) {

55‘ for (int j=0; j<temp.Tensor—>getlIptrSize(i); j++) {
56‘ for (int k=0; k< temp.Tensor—>getTsize(i); k++) {
57‘ aval = Tensor—>getElement(i,j,k);

58‘ temp. Tensor—>setElement (i,j,k,aval);

99 }

60 }

61 }

62‘ } else if (x.Tensor!=NULL) {

63| for (int i=0; i<num diags ; i++) {

64‘ for (int j=0; j<temp.Tensor—>getlIptrSize (i); j++) {
65‘ for (int k=0; k< temp.Tensor—>getTsize (i); k++) {
66‘ aval = x.Tensor—>getElement (i,j,k);

67‘ temp. Tensor—>setElement (i,j,k,aval);

68| }

69| }

70| }

71

72|

73‘ return temp;

74| }

Listing 5.7: An addition operator for the ADouble class

We start by calculating the gradient in the usual fashion. On lines 11 - 39
we check if any of the arguments to the operator has a NULL-pointer to the
Hessian. If that is the case we do not have to calculate anything, because, as
outlined previously, the Hessian of independent variables contains only zero
elements. This is also the case for the Tensor calculations on lines 42 - 74.

The complexity of the code grows quite rapidly when dealing with higher
order derivatives. Recall that our we successfully calculated a function’s
Hessian in chapter 4.2 with little more than one hundred lines of code. This
is in stark contrast to the case we have now, with a simple addition operator
counting 74 lines of code.
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Chapter 6

Benchmarking

6.1 Floating point operations as a measure of
efficiency

A computer program’s runtime, or duration of the programs execution, is
often used to measure performance. Typically the runtime of the program
is measured several times, with the average or weighted average runtime
determining the program’s efficiency. In our case this approach is less than
ideal. The code in our ADouble class and data structures is written for
readability rather than speed. A much more accurate method to measure
our code’s efficiency is to count the number of floating point operations done
by our ADouble class. This is implemented by introducing a static class
member.

Static data members of a class are also known as "class variables", because
there is only one unique value for all the objects of that same class. Their
content is not different from one object of this class to another. In fact, static
members have the same properties as global variables but they enjoy class
scope. Because it is a unique variable value for all the objects of the same
class, it can be referred to as a member of any object of that class.

It is prudent to differentiate between the floating point operations needed
to calculate the function value, gradient, Hessian and Tensor. This is done
by simply declaring four different static data members for our ADouble class.
Then all that is needed is to increment each of these class members by one
each time a floating point operation is done in the ADouble class to produce
either of the derivatives.
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6.2 Test functions
We will consider the following test functions:

Extended Rosenbrock

O
-_.
The elements represented by white squares are not stored explicitly due

to the symmetry of the Hessian. The black squares are the elements
which we store in the JCDS class.

Chained Singular function

flz) = Z[(xz +10,,,,) +5(zige — Tigs)? + (Tip1 — 22i42)" + 10(z; — 102,43)"]

ie]
where n is a multiple of 4 and J = {0,2,4,--- ,n — 3}.

This function produces a Hessian with the following structure forn = 7.
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Just as the case is in the Rosenbrock function above, the elements
represented by the black squares are the only elements which are stored
explicitly.
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Broyden Banded

p

F@) = Y|+ 5w+ Y a1 )

Jj€J;
where p =4 and J; = {j : max(1,i —5) < j <min(n—1,i+1)}.

This function produces a Hessian with the following structure for n = 9.

EEEEEERN
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ERRO00000OO
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Again, black squares indicate elements which are stored in the JCDS class
and the white squares are stored implicitly by the symmetry of the Hessian.

6.3 Numerical results

Each of the functions in section 6.2 above are implemented using our ADouble
class to compute the derivatives. The data structures used to store the
Hessian and Tensor is JCDS and JCDST.

The following tables displays the number of floating point operations
needed to calculate the function value, gradient, Hessian and Tensor for each
of the test functions above.

6.3.1 Extended Rosenbrock
Extended Rosenbrock (o = 100)

n function value gradient Hessian Tensor

8 44 608 1860 5544
16 88 2432 7688 23184
32 176 9728 31248 94752
64 352 38912 125984 383040
128 704 155648 505920 1.54022 - 10°
256 1408 622592 2.02765-10° 6.17702 - 10°
512 2816 2.49037-10° 8.11853-10° 2.47404 - 107
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From the table above, we can immediately notice that for each time we
double n, we quadruple the floating point operations needed to calculate each
of the derivatives. The gradient for this problem is relatively expensive to
calculate with its 9.5n? floating point operations, but it is very interesting
to see how the higher derivatives grow if we relate them to the operations
needed for the function value.

Extended Rozenbrock

9888

eta i)

Ll L)

6808

5868

4888

Jaoe

Floating point operations

2808

1888

1 1 L L L
a 188 2088 388 488 588 600

Here we have plotted the gradient, Hessian, and Tensor, all of which are
scaled by the number of floating point operations needed to calculate the
function value. The number of operations needed to calculate the function
value grows with n and so does not alter the plots.

These relationships are denoted as gradient, Hessian, and Tensor in the
plot. With respect to the floating point operations required to calculate the
function value, the cost of all the derivatives grows linearly.

Tt is also interesting to investigate the relations -—Zadient__ - Hessian
functionvalue’ gradient’
Tensor

Hessian’

and

which is given in the following table:
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Extended Rosenbrock (o = 100)

n gradient Hessian Tensor
functionvalue gradient Hessian

8 13.8182  3.05921 2.98065
16 27.6364 3.16118 3.01561
32 55.2727 3.21217 3.03226
64 110.545 3.23766 3.04039

128 221.091 3.25041  3.0444
256 442.182 3.25678  3.0464
512 884.364 3.25997 3.04739

As we see, the cost of the gradient relative to the function value grows
with n, but the Hessian relative to the gradient, and Tensor relative to the
Hessian, remains fairly constant.

6.3.2 Chained Singular function

Chained Singular function

n function value gradient Hessian Tensor

8 108 1248 3720 12288
16 360 7072 22816 76800
32 900 32032 108376 368640
64 2016 135200 469712 1.60666 - 10°
128 4284 554528 1.95399-10°  6.7031 - 10°
256 8856 2.24515-10° 7.96973-10° 2.73807 - 107
512 18036 9.03427-10° 3.21906 - 107 1.10678 - 108

From the table above, we see that the chained singular function behaves
in roughly the same manner as the extended Rosenbrock function did earlier.
When we double the values for n, the required operations needed to compute
the derivatives grows by an approximate factor of 6. Let us investigate how
the derivatives grow when we again scale them by the operations needed to
calculate the function value.
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Chained Singular function
Fooe
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Like we did with the extended Rosenbrock function, we have plotted
the gradient, Hessian, and Tensor, all of which are scaled by the number of
floating point operations needed to calculate the function value.

With respect to the floating point operations required to calculate the
function value, the cost of all the derivatives grows linearly.

The relations —Zradient__ = Hessian =5 Tensor g given in the following
functionvalue® gradient’ Hessian
table.
Chained Singular function
n gradient Hessian Tensor
functionvalue gradient Hessian

8 11.5556  2.98077 3.30323
16 19.6444 3.22624 3.36606
32 35.0911 3.38337 3.40149
64 67.0635  3.4742 3.42051

128 129.442  3.5237 3.43047
256 253.518 3.54975 3.43559
012 500.902 3.56317  3.4382

The table above shows us that again, the cost of the gradient relative to
the function value grows with n. The Hessian relative to the gradient and
Tensor relative to the Hessian does grow, but relatively slowly.
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6.3.3 Broyden Banded

Broyden Banded

n function value gradient Hessian Tensor

8 192 2368 20160 129024
16 624 12864 136640 989184
32 1536 56896 682304 5.20397 - 105
64 3408 237120 3.03251-10% 2.36974 - 107
128 7200 966208 1.27765-107 1.01026 - 10®
256 14832 3.89894 -10° 5.24469 - 107 4.17135- 108
512 30144 1.56627-107 2.12525-10% 1.69525 - 10°

This function continues the trend started by the previous two test func-
tions. We see that the derivatives requires roughly six times as many oper-
ations when we double the values for n. Let us continue to investigate how
the derivatives grow when we again scale them by the operations needed to

calculate the function value.

Broyden Banded
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Just as we did in the previous two test functions, the relations
and

Hessian
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gradient
functionvalue’

are plotted. We see again that with respect to
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the floating point operations required to calculate the function value, the
cost of all the derivatives grows linearly.

The relations —Zradient _ = Hessian oy Tensor g oiven in the following
functionvalue’ gradient’ Hessian
table.
Broyden Banded
n gradient Hessian Tensor
functionvalue gradient Hessian
8 12.3333  8.51351 6.4

16 20.6154 10.6219 7.23934
32 37.0417 11.9921 7.62705
64 69.5775 12.7889 7.81445
128 134.196 13.2234 7.90715
256 262.874 13.4516 7.95346
512 519.594 13.5689 7.97668

Again, the operations to compute the gradient relative to that of the
function value grows with n, but Hessian relative to the gradient and the
Tensor relative to the Hessian grows faster than it did in the previous two
test functions. The values of these relations are also significantly higher than
they were in both the previous test functions. This can be attributed to the
much larger number of nonzero elements in both the Hessian and the Tensor.
Furthermore, even if the values of the relations are higher than they were in
the previous two functions, they do not grow very rapidly.
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Chapter 7

Using ADouble in optimization

Automatic differentiation is used in a variety of fields such as numerical
methods, sensitivity analysis and inverse problems. It is also used in other
fields not necessarily thought of as science e.g digital movie production [18|.
We will illustrate the use of automatic differentiation with an implementation
of the conjugate gradient method.

Conjugate gradient methods [21] are very useful for solving large linear
systems of equations, and they can also be adopted to solve nolinear opti-
mization problems. The performance of the conjugate gradient method is
determined by the distribution of the eigenvalues of the coefficient matrix.
By applying a preconditioner to the linear system, we can make this distri-
bution more favorable. However, we will not apply such a preconditioner
and focus on a simple implementation of the conjugate gradient method.
Consider the following implementation of the conjugate gradient method *:

int CG(Vector& df, JCDS& ddf, int n, Vector& skl, double tol) {
double rho 1 = 0;
Vector b = df;
JCDS A = ddf;
int
Vector p
Vector x
Vector z
Vector q
Vector r
double
if (brnm2 == 0.0
brnm2 = 1.0;

}

double error

\-/CT'D>

r.norm() / brnm2;

!Translated to C++ from a Matlab template provided by Geir Gundersen in personal
correspondence
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if(error < tol) {
skl = x;
return iter;
}
double alpha = 0;
double beta = 0;
while (iter < 50 && error > tol) {
z = 1;
double rho = rxz;
if(iter >1) {
beta = rho / rho 1;
p = z + betaxp;
} else {
p = Z;
}
q = Axp;
alpha = rho / (pxq);
x = x + alpha % p; // update approzimation vector
r = r — alphaxq; // compute residual
error = r.norm() / brnm2; // check convergence
if (error<=tol) {
break ;
}
rho 1 = rho;
iter 4= 1;
}
skl = x;
return iter;

}

Listing 7.1: Conjugate Gradient method in C++

Consider lines 10 and 32. Here we need a vector subtraction, matrix-
vector product, and the vector scalar product to be implemented. We will
need a class to store vectors with associated member functions such as norms
and scalar product. We will also need to implement a matrix-vector product
for our JCDS class. These implementation details will not be discussed in
this thesis.

The conjugate gradient method in Listing 7.1 will be called from the
following function:

int NewtonsMethodCG (Vector& df, JCDS& ddf, JCDST& dddf, Vector&
xk, Vector& pk, double alpha, double tol) {

int n = xk.getLength();
int nh = 0;
Vector skl (n);
Vector neg = —df;
nh = OG(neg,ddf ,n, skl, tol);
pk = sk1;
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8 return nh;
9}
Listing 7.2: Newtons method CG
We will use the following function to minimize:
Yoo (i —a) 4+ (1— )
i€l
where [ = {1,3,5,...,n— 1} and n is an even number.
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We will also need code to generate our independent variables, a vector
with the starting point for the algorithm, and a loop to continue the CG al-
gorithm until a stopping criteria is reached. This is all given in the following:

int main() {
double rose alpha = 6.4;
int Iptr[] = {0,1};
int num diags = 2;
int n = 10;

double f = 0;

// Generating independent variables
ADouble *x x;
x = new ADouble * [n];
for (int i=0; i<n; i++)
x[i] — new ADouble(n, 1.7, i, Iptr, num diags, true);

Vector df(n); // gradient
JCDS ddf(num _diags, n, Iptr); // Hessian
JCDST dddf(num_diags, n, Iptr); // Tensor

// Starting point
Vector xk(n,1.7);
Vector pk(n);

// Calculate initial derivatives
f = chainrose(rose alpha, x, n, df, ddf, dddf);

Vector df0 = df;
double alpha = 1/2;
double tol = 0.1;
int iterl = 0;

int NH = 0;

int nh = 0;

while(df.norm () >= 1.0e—8 * df0.norm() && iterl < 20) {
nh = NewtonsMethodCG (df, ddf, dddf, xk, pk, alpha, tol);
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xk = xk + pk;

// Update the independant variables

for (int i=0; i<n; i++) {
x[i]->setValue (xk(i));

}
f = chainrose(rose alpha, x, n, df, ddf, dddf);
iter += 1;

}

std ::cout << "Converged in " << iter << " iterations.\n";

// Memory cleanup

for (int i=0; i<n; i++)
delete x[i];

delete [] x;

return O0;

Listing 7.3: Using the CG method

The gradient, Hessian and Tensor defined on line 14-16 will be modified
for each call of the chainrose function.

We choose the starting point to be x = (1.7,1.7,1.7,...,1.7) and our tol-
erance level to be 0.1. With these parameters, our CG implementation min-
imizes the function f(z) when the norm of the residual is sufficiently small.
This is found in 7 iterations with the norm ||V f(z)||, = 2.227468438369573 -
1077 at the point z = (0.9999999,0.9999999, . .., 0.9999999).

23




Chapter 8

Conclusions and comments

C—++ is a good choice of programming language for implementing automatic
differentiation, particularly so if one decides to make an implementation with
operator overloading. A multitude of compilers are readily available, and in
terms of speed it is no longer a bad choice of programming language compared
with Fortran. Advanced features such as expression templates can also be
used to improve efficiency.

From the results in chapter 6, even when we only use forward mode, we
see that automatic differentiation can indeed be a viable source of deriva-
tives, even for higher order methods. Furthermore, computation of the third
derivatives is not of order n® as it is stated in [20] and [16], at least not
when dealing with partially separable functions. With the growing interest
in higher-order methods, especially for problems which require a high degree
of accuracy in the solution, calculating the derivatives with the help of AD
can be particularly appealing.

The computation of the Tensor in chapter 4 deserves some special men-
tion. Tt might seem counterproductive to store the Tensor as the full cube
with n? elements, and to some extent it is. A better solution than the one
described in chapter 4 would be to expand on the symmetry of the Hessian to
produce a super-symmetric Tensor as outlined in Knuth’s Art of Computer
Programming, Volume 1.
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Chapter 9

Future work

The ADouble class has a lot of room for further development. Exponential
and logarithmic functions, trigonometric and inverse trigonometric functions
all need to be implemented properly. Furthermore, efficient implementation
of matrix-vector and vector-Tensor products, vector norms, and other ele-
ments of linear algebra is very important if the ADouble class ever is to see
any practical use.

Another intriguing idea lies in how the ADouble class handles memory.
As it stands, every independent variable carries with it (possibly) incomplete
gradient, Hessian and Tensor objects. Further experiments are needed to
determine exactly how the complete derivatives of all orders are computed,
and if a single shared gradient, Hessian and Tensor object can be computed
upon by all instances of the ADouble class. If this is the case, the memory
usage bottleneck can be all but eliminated as all instances of the ADouble
class will work with a single piece of shared memory and allocate next to no
memory on its own.

In this thesis we have only concerned ourselves with forward mode au-
tomatic differentiation. It would be interesting to explore reverse mode, or
even a hybrid mode incorporating both forward and reverse mode automatic
differentiation.

Some advanced language features of C4++ can be of great help to speed
up the execution of our code. Expression Templates is a C++ technique
for passing expressions as function arguments. The expression can be inlined
into the function body, which results in faster and more convenient code than
C-style callback functions. The technique of using expression templates can
also be used to evaluate vector and matrix expressions in a single pass without
temporaries. In preliminary benchmark results, one compiler evaluates vector
expressions at 95-99.5% efficiency of hand- coded C using this technique for
long vectors [24]. Using expression templates has the added benefit of making
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our code independent on the underlying data types. This means that we
could use the exact same code to handle any primitive or class datatype.

The old programmer’s joke that ’you never finish a program, you just
stop working on it’ certainly applies to this thesis.
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