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Chapter 1

Introduction

Quantum mechanics was born when Max Planck found the quantisation of light, at the
dawning of the last century [1]. The birth was not planned for, but nurturing parents such
as Einstein, de Broglie and Bohr took excellent care of the baby, and it thrived and put
on weight. Perhaps Heiflenberg introducing matrix mechanics can be described as the tod-
deler’s first steps, but it spoke its first words (probably in German) when the Schrédinger
equation was put forth by Erwin Schrodinger in 1926. Quantum mechanics has since then
matured into an important tool used in many branches of both physics and chemistry. It
is at the root of atomic, molecular, nuclear and particle physics. For any deeper under-
standing of chemistry you will need it. It plays a vital role in astrophysics, nor can it
be ignored as microelectronics strive to become nanoelectronics. Quantum mechanics has
withstood rigorous testing, and is at present without doubt the best theory to describe the

submicroscopic world.

Though most of the fundamental principles of quantum mechanics seems to be nailed
down, its full potential cannot easily be tapped. Even what we would call simple problems
such as a hydrogen molecule, H,, is so complex when described with quantum mechan-
ics, that they cannot be solved analytically. Atomic and molecular physics began to make
strides ahead with the appearance of the first computers in the 1940s. Most often quantum
mechanical problems have to be solved numerically, by approximative methods. As the
computers became stronger and faster, and the algorithms more efficient, the physicisists
and chemists could model larger systems, with less approximations. In 1956, scientists at
MIT did the first ab initio Hartree-Fock calculations on diatomic molecules [2]. Today
chemists can describe systems with dozens of electrons with some accuracy using density

functional theory [3]. In parallel, the experimental technology saw a similar development.
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With laser pulses of high intensity and short durations, it has now become possible to see
chemical reactions in progress at a molecular level, (A. H. Zewail was awarded the Nobel
prize in 1999 for his work in this area [4]), as well as controlling the state of quantum
mechanical systems [5]. With high accuracy theoretical calculations of atomic and molecu-
lar systems, one is building up a better understanding of atomic/molecular processes, and
how to control these [6]. This is of fundamental importance for atomic physics, quantum

chemistry and for all related technology.

Molecules contain more than one nucleus, and are held together by one or more electrons.
The additional freedoms of nuclear movement make molecular problems more complex
than atomic systems. Dissosiation and ionisation of molecules by lasers have been studied
in experiments, and recently the hydrogen molecule, Hy, have been succesfully modelled
in 3D with high accuracy [7], albeit using the Born-Oppenheimer approximation, and only
for weak fields. This is a huge problem, and consequently a common approach to this
sort, of scenarios is to reduce the dimensionality of the problem. The Born-Oppenheimer
(BO) approximation is another widely used simplification, that separates the nuclear and
electronic parts of the Schrodinger equation. This makes molecular problems more man-
ageable. The approximation is based on the fact that nuclei are heavy and slow compared
to the electrons. This may not always be the case for molecules in a laser field [8]. In
this thesis we have studied the hydrogen molecular ion, Hy, by solving the Schrodinger
equation. It is the simplest molecule there is, and it is therefore an ideal system to study in
detail. The goal of the thesis was to design and implement a model of Hj. The model de-
veloped in this thesis does not describe the molecule in three dimensions, as that would be
an enormous job. Instead we developed a one dimensional approximation of the molecule.
It is often useful to look at a problem using a flexible, fast and cheap model, before (or in
stead of) going to the trouble of modelling it in 3D. For that reason 1D models are very
common |9, 10, 11, 12, 13, 14]. The success of the one dimensional model will of course
depend on how well the results agree with experiments. As the model was being devel-
oped, a new approach was implemented to make the model better. Our model is based
on the Born-Oppenheimer approximation, but in addition, it can include the non-Born-
Oppenheimer effects. After completing the model, it was tested. Two articles, [15, 16],
which report interesting results on HJ calculated in 3D in the Born-Oppenheimer regime,
were chosen. We attemted to reproduce some of the results from these articles with our
model. Comparison then gave an idea of how well the model works. We also searched for

discepancies in the results between the BO and the non-BO simulations.



The thesis will describe the development of our H model, and the result of its testing.
Preliminarily, a brief introduction is given to quantum mechanics, lasers and the hydrogen
molecular ion. The Born-Oppenheimer approximation is introduced, and used to simplify
the Schrédinger equation for Hy. We then go on to report how we modelled HJ in one
dimension. A chapter is devoted to the usual consepts when going to 1D, as well as our
own modifications. This is followed by a few chapters that recount the actual numerics
and programming solutions used when implementing the model. Ultimately we present

the simulations that were run, and how they compared to the 3D scenarios.






Chapter 2
The Schrodinger equation

The time dependent Schrodinger equation (TDSE) plays much the same role in quantum
mechanics as Newton’s 2nd law does in regular mechanics. By solving the equation, one
obtains the wavefunction, from which all attainable information about the quantum system
can be extracted. The TDSE

ih— = HU 2.1

ot (2.1)
is a partial differential equation. The Hamiltonian, H , 1s the energy operator, and will
be different from problem to problem. 7 is the imaginary unit, A is the reduced Planck’s
constant and ¥ is the wavefunction. The standard interpretation of the wavefunction is as
a probability distribution. If the Schrédinger equation were to be solved for an electron,

for example, then | U (7, t)\2 is its probability density, i.e.
(7, )| d®r

is the probability of measuring the electron in the voulume d3r around the position 7 at
the time t.

2.1 Separating out time

When the Hamiltonian of a problem is time independent, the wavefunction can be sepa-

rated into a function depending only on ¢, and a function that is independent of ¢ [1].



Assume V(7,t) can be written on the form W(7, ¢t) = (7)T(¢t). The Schrédinger equa-

tion will now take the form

o7 (t)
ot

Dividing on both sides by 1(7)7T'(¢), and one is left with no time dependence on the right,

and no position dependence on the left,

i H(Fp ()
Tt W@

For the left side to be equal to the right for all 7 and ¢, both sides have to be equal to a

i) (7) = T(t)H (%) (7) (2:2)

(2.3)

constant. This constant is called E, as it happens to be the energy of the system. The

Schrédinger equation can now be separated into two equations,

ma:g—ff) = ET(t) (2.4)
and
H(P)$(7) = B¢ (7) (2.5)
The solution to Eq. (2.4) is
T(t)=Ce n (2.6)

It is not that straight forward to find (7). Equation (2.5) is called the time indepen-
dent Schrodinger equation, (TISE). Depending on the Hamiltonian, this equation can be
anything but trivial to solve.

2.2 The hydrogen molecular ion (HJ)

Each particle that is included in the Schrédinger equation typically increases the dimen-
sionality of the problem by three (disregarding spin). Faced with an exponential increase
in computation costs with the number of particles, one can either use other approxima-
tive approaches, such as Hartree-Fock and Density Functional Theory!, or one can choose
problems with few particles. Having chosen the latter, a theoretical physicist is not left
with many molecules. The simplest molecule that is abundant in nature, is hydrogen gas,

Hy. With only two protons and two electrons, it contains the bare minimum for a neutral

!For more on the Hartree-Fock method and DFT, see [3].
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molecule. Unfortunately, it is still a huge problem, of 9 dimensions even in the centre of
mass reference frame. By removing one electron from the equation, the problem becomes
more manageable. The ionised version of the gas, Hj , consists of two protons held together
by an electron, (see Fig. 2.1). However, the full 3D solution of Hj is still a formidable
task, and one is very often obliged to perform further approximations. In this thesis, the
TISE was solved for a model Hf molecule. The Hamiltonian operator for Hj in the centre

of mass frame reads

(2.7)

The first term represents the kinetic energy of the electron, the second term the kinetic
energy of the nuclei and the potential is given by three Coulomb terms: the Coulomb
attraction between the electron and each nucleus, and the Coulomb repulsion between the

nuclei.

e Proton/electron charge

1
k= where € is the permittivity of vacuum
4meq
me. Mass of the electron
M Mass of the nucleus
M2 M
it = —— = — The reduced mass of the nuclei
2M 2
h
h = o The Planck constant over 27
T
7 The electron position variable
R The distance between the nuclei
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Figure 2.1: The HJ molecule, consisting of two protons and an electron.

2.3 Laser

A laser emits a beam of monochromatic, coherent electromagnetic waves, i.e. the photons

emitted have the same frequency and are perfectly in phase.

"Laser" is an acronym for Light Amplification by Stimulated Emission of Radiation [3|. As
early as in 1916 Albert Einstein laid the theoretical foundation for lasers, with an article
regarding absorption and emission of radiation [17]. It would take another 43 year until
Theodore Maiman built the first working laser, in 1960 [18]. Since then lasers have been
used extensively in science. Several Nobel Prizes have been awarded for work involving
lasers, among them the 1997 prize, "for development of methods to cool and trap atoms
with laser light" [19]. In medicine, lasers are used for surgery, while diametrically different
uses are put to the technology in the military, where lasers are used for weapons targeting.
The laser is put to more mundane uses as well. It enters into everyone’s daily life through

appliances such as the CD player, the laser printer and the bar code reader.



Figure 2.2: Lasers have a wide range of scientific applications. NASA /courtesy of nasaimages.org.

Lasers are of great importance in atomic and molecular physics. Short, high intensity
laser pulses provide finely controlled external stimuli to atoms/molecules, thus allowing
imaging of atomic systems. It even allows for controlling the state of the system [6]. This

can for example be used for controlling chemical reactions [4].

In this thesis, we will model an Hj molecule in a short, high intensity laser pulse, and
calculate the ionisation and dissosiation spectra. That means adding an extra term to the
Hamiltonian from the previous section. So far the problem has been time independent.
That will not be the case when a laser field is turned on. The laser will be modelled as
an electric field that changes with time, but not with position, i.e. the so called dipole
approximation? is applied. At any time, the potential energy of a particle with charge ¢ in
a homogenous electric field will be given as

U= —qE(t)-7

relative to origin [20]. The Hamiltonian for H will get three more terms when the field
is turned on, one for each charge. However, in the centre of mass reference frame, the two
nuclear terms differ only in sign, and cancel each other out, leaving only one extra term.
This means that only the electron is affected by the field, and the Hamiltonian, Eq. (2.7),

2The dipole approximation [3] stems from the fact that the wavelength of the laser light is much longer
than the spatial extension of the molecular/atomic system, and the laser field can therefore be considered
to be homogenous.



becomes

ke? ke? ke? S
Vi — T LB (2.8)
=4 |A

7o I
"o

(N]l=vTt

E(t) will typically oscillate rapidly, the amplitude modulated by a carrier envelope, to
model a laser pulse, (see Fig. 2.3). By controlling the laser frequencies and the intensity
profile, it is to some extent possible to control the quantum system to which the pulse is

applied.

0.006

0.004} 1

0.002¢ 1

0.000 1

—0.002} 1

Electric field - a.u.

—0.004 1

—0.006; 200 200 600 800 1000 1200

Time - a.u.

7t

Figure 2.3: Theoretically, laser pulses are often defined by E(t) = Ey sin®(%}) cos(wt), where T is
the pulse length, and w is the angular frequency [16][21][22].

This example pulse contains 10 cycles of an infrared laser (800 nm), with intensity I = 10'2
Wem 2.
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Chapter 3

The Born-Oppenheimer approximation

Since its conception in the late 1920s [23|, the Born-Oppenheimer (BO) approximation,
as it came to be called, have been extensively used in molecular physics and quantum
chemistry. The BO approximation [1] allows one to seperately calculate the wavefunctions
of electrons and nuclei, when solving the Schrodinger equation for molecules. Due to the
large difference in mass between the electron and the nuclei (a proton weighs roughly 1836
times as much as an electron), the electrons move on a shorter time scale than the nuclei.
The crudest approximation at this point would be to assume that the nuclei were fixed
in one position. This is equivalent to assuming the nuclei have infinite mass. The Fixed
Nuclei Approximation, (FNA), as it is called, is of course way to rigid for most problems.
A more reasonable approach is to solve the Schrédinger equation for the electrons as if the
nuclei were frozen in place, but doing this for a sufficient number of nuclear arrangements,
so that the electrons’ impact on the nuclei can be included when solving the rest of the

equation.

In order to solve the equation for the nuclei separately, the electronic wavefunction must
be decoupled from the nuclear part of the Hamiltonian. This means that the kinetic energy
terms of the nuclei, i.e. the differentiation with regard to nuclear positions, must not act
on the electronic wavefunction. In other words, the partial differentiations of the electronic

wavefunction in the nuclear variables must be set to zero,
Vﬁd)electron (T; R) =0

where R and 7 are the position vectors of a nucleus and an electron, respectively. The

seperation significantly simplifies the task of solving the Schrédinger equation.
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3.1 H} in the BO approximation

The Hamiltonian operator for HJ , as given in Eq. (2.7), reads

~ h? h? ke? ke? ke?
2me P+ & |F-E IR
Terms with an explicit 7 dependence are put into an electronic Hamiltonian,
~ h? ke? ke?
H,=- Vi— — — _ (3.2)
2me P+ R PR

An attempt is made to seperate the wavefunction into a function of 7, describing the
electronic part of the system, and a function of ﬁ, describing the nuclear part. A complete
separation is not possible, due to the denominators in the Coulomb attraction part of the
Hamiltonian. However, if one assumes that the electronic wavefunction only depends on

R as a constant parametre, the total wave function can be expressed as
Vit (7, B) = (73 R)x(R) (3.3)

The validity of this assumption will be discussed later.

The electronic wavefunction, v, (7 ) can be found from the eigenvalue problem
Hopo (7 R) = E(R).(7; B) (3.4)

The electronic energies, E, (ﬁ), will now be functions of the nuclear distance, R.

How to solve for the vibrational wavefunction of the nuclei, X(ﬁ), becomes apparent when
looking at the TISE for Hj:

HV,, = EV,,

Ho(7; R)x(R) = Eve(7; R)x(R)
X(ﬁ) is independent of 7, and is unchanged by the ﬁe operator.

2 . k62

(R ot = 37V (bl () + T 73 BO() = Bl ()

[—h—2v2 R+ ’“—] VelF B)X(R) = Buu(7 B)x(F)



The Laplacian,
VZWX) = X% + 2V - Viax + ¥V %x

is inserted in the full equation,

h? ~ - _. _ - _.
— 7 (Vo7 BYVEX(R) + 2V (7 B) -V gox(B) + x(R) Ve (7 D))
o ke? o o o o
+ (B + T ) (7 XD = B (7 FOn(D

At this point, one uses the Born-Oppenheimer approximation. Simply stated, the differ-
ensiations of (7 ﬁ) with respect to R is considered negligible, i.e.

2 o =

\Y R‘we(r; R)

\% R’we(f’; R)

0
0

The approximation relies on the fact that electrons are so much lighter than the nuclei,
that they have time to adjust adiabatically to the nuclear movement. While the nuclear
wavefunctions typically have a lot of oscillations, (as the electronic wavefunctions have in
the z domain), the electronic wavefunctions have only a slow and smooth dependence on

R. As a consequence,

‘Vﬁiﬁe(ﬁ R)

<< ‘VEX(R')

When this is used, the equation is greatly simplified,

(6F ROV + (BB + 12 ) 0 B = B o) 39

h2
M R|

The electronic wavefunction, v, (7; R), becomes a common factor, and cancels, leaving

1V BB+ T () = Bx( (36)
MRS |R| ’ '
an 7 independent eigenvalue problem, that can be calculated numerically. Notice how
the electronic energies calculated in Eq. (3.4), now set up an effective potential in the
vibrational Hamiltonian, Eq. (3.6). The eigenvalue, E, is the total energy of the state,
W01 (77, ﬁ), i.e. the sum of the electronic energy, the vibrational energy and the rotational

energy.

The electronic energy is typically much larger than the vibrational energy, which again
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is two or three orders of magnitude larger than the rotational energy!'. This leads to the
differences in timescales between nuclei and electrons, which made a separation of their
wavefunctions possible. There is a similar difference in the typical time periods of nuclear
vibration and rotation |22,

—18 —-15 —12
telectron ~ 10 S, tvibration ~ 10 S, trotation ~ 10 S (37)

meaning vibrational and rotational motion can be separated as well. In this thesis the
rotation is in fact completely ignored, since the entire time propagation of the Schrédinger
equation will be of the order 10 fs. That means the nuclei are set with a certain orientation,
and only allowed to move along the internuclear axis. This approximation eases the work

load, since the electronic wave equation, Eq. (3.4), needs only be solved for R values in

&9 &

Figure 3.1: Vibration typically has a time period of the order of 10715 s.

one dimension.

s

P

Figure 3.2: Rotation typically has a time period of the order of 10712 s.

!These results are derived in [3] pp. 477-480.
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3.2 Processes in HJ

In the BO approximation, the wavefunction separates into an electronic and a vibrational
wavefunction. Frequently, one meets the problem visualised by a drawing of the potential
in the nuclear Hamiltonian, Eq. (3.6). As one is using the reduced mass in the center of
mass reference frame, the vibrational wave equation describes the nuclei as one particle in
a potential of the form

1
= E, -
V=FE(R)+ 5

where E,(R) are the energies of the electron, calculated from Eq. (3.4). That makes it
possible to have a classical intuition of how the system will behave. Figure 3.3 shows the

energy curves for the 3D model.

0.4;

0.2

-0.6f ~—

1 1 1 1 1

2 4 6 8 10

Internuclear distance - a.u.

Figure 3.3: Electronic energy curves in H;’ . The names of the lowest curves are included. Three
different wavepackets are drawn schematically on the figure. Wavepacket A is composed mainly of
bound states, and the molecule will stay together. Wavepacket B is made of dissosiating states, i.e.
the molecule will divide into a proton and a hydrogen atom. The energy curves which wavepacket
C belongs to is above the ionisation threshold (dashed line), i.e. the electronic energy is greater

than 0. With time the molecule will split into two protons and an electron.

The names of the curves are inherited from the states of He™, i.e. Hy in the limit of
R — 0. 1s0y, e.g., corresponds to the ground state in the Helium ion. The number 1 is the
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principal quantum number, the s signifies the angular momentum quantum number [ = 0,
the o indicate the [, quantum number m; = 0, and the g stands for gerade, meaning the
electronic wavefunction is even about the origin. Similarly for 2po,, the state is described
by n=2 [1=1 m; = 0 and the u stand for ungerade, or odd. In the figure, three
wavepackets have been drawn, labelled A, B and C. The packets will demonstrate the three
possible fates of a diatomic molecule. To a certain extent, the wavepackets on a potential
curve will behave as if it were a ball on a slope. Since the nuclear state is typically just
excited from the ground state, the probability density often retains the localised character
of a wavepacket. It is therefore not all that inaccurate to envisage the wavepacket as a
classical particle. The "particle" will slide down the inclined curve, exchanging potential
energy for kinetic energy. In the case of wavepacket A, the packet will regain the potential
energy on the opposite slope of the potential curve, and return, since the packet resides
near a minimum. The system is composed of bound states. In such cases, the internuclear
distance will not diverge, i.e. one has a stable molecule. For wavepacket B, there is no
opposite slope, and the wavepacket will slide off into the unknown. This means that the
nuclei are drifting apart. However, the electron will stay bound to one of the protons. This
process is called dissosiation, and the result in this case is a free proton and a hydrogen
atom (in the 1s state). Wavepacket C is above the ionisation threshold, (the dashed curve
in Fig. 3.3), meaning the electron has a positive energy. As a consequence, not only will
the nuclei drift apart, but the electron will no longer be bound, and will travel off without
any of its molecular companions. This is called a Coulomb explosion (CE), or ionisation.

16
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Figure 3.4: The vibrational energy levels, corresponding to the two lowest electric energy curves,

1soy and 2poy,.

For each electronic state, ¥’ (Z; R), there is a set of vibrational states, x*,(R), m =
0,1,2.... The energy levels of the vibrational states are scetched in Figure 3.4. The levels
in the figure shows the total energy, which is shared by the electron, whose energy is given
by the electric energy curve, and the nuclei, who get the energy difference between the
curve and the total. The states with energy below the asymtotical value of the electronic
energy curve are bound states, (e.g. the 15-20 lowest 1so, states in the Fig. 3.4). If the
energy is higher than this value, the states are dissosiative, or ionising, depending on the
electronic energy. If the rotational energy were included in the calculation, there would in

addition be a set of rotational states for each vibrational state.

17



Energy

Internuclear distance

Figure 3.5: Franck-Condon transition from the ground state in He to a superposition of states in
Hé" . Since the resulting wavepacket is not an eigenstate, it will propagate back and forth. The

electronic energy curves are not to scale.

It is possible to prepare Hj in the vibrational ground state in experiments [24], but
typically in experiments [9], the laser pulse will ionise neutral Hy molecules in hydrogen
gas. One electron will be ionised first. The nuclear wavefunction, which used to be in the
ground state of Hy, is no longer an eigenstate, since the system and its Hamiltonian has
changed. Instead, the wavefunction is transfered to a superposition of the Hj eigenstates,
see Figure 3.5, according to the Franck-Condon (FC) principle [25], which states that a
vibrational transition is more likely to occur if the final state overlaps with the initial
state. If the transition is more or less instantaneous, the wavefunction, see Figure 3.6, will
mostly retain its shape and position in the new system. A common approximation in the
BO picture is to assume that the initial state in Hj is the vibrational ground state of Hs.
Since the Franck-Condon state, xxc, is not an eigenstate of HJ , it is written as a sum of

the vibrational states of 1soy,
XIE; lso
Xo ° =Xro =) CmXn (3.8)
m
The function is plotted in Fig. 3.6, for t = 0. If the function is propagated in time, it will

18



move to the right for ~8 fs, and then move back to to the left. The new system will in

turn interact with the laser, maybe resulting in dissosiation or full ionisation.

2.5

T

2.0

T

1.5

1.0

T

T

0.5

Probability density - a.u

O'OO 1 2 3 4 5 6

Internuclear distance - a.u.

Figure 3.6: The X 12; state of Hy expanded in the vibrational states of 1so, in Hy . Since the

wavepacket is not an eigenstate, with time it will propagate back and forth.

The energy of the molecule fragments will be measured in detectors. After measuring
enough particles, one gets a kinetic energy spectrum, i.e. a probability distribution in
kinetic energy. When modelling this theoretically, the energy spectra must be calculated
for comparison. The result of the calculation is simply a wavefunction, and it must be
projected onto states with known energies. If the wavefunction is already expressed as a
linear combination of known states, as in this thesis, the spectrum can be extracted with

ease.
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Chapter 4

A 1D model of H;

Modelling HJ in three dimensions is an enormous job. A three body problem in 3D makes
nine dimensions. Three of these are ignored, since the problem is studied in the centre
of mass reference frame. Further two nuclear dimensions can be dropped if the nuclei are
not allowed to rotate. But four dimensions is quite a lot. If, for instance, an average of
N = 60 basis functions are needed in each dimension, the total wavefunction will be a
superposition of N* ~ 107 basis functions, and as a consequence, the Hamiltonian matrix
contains a staggering N® = 10'* elements. Though most of the elements will be zero,
constructing this matrix, and time propagating the wavefunctions with it, demands serious
time and computer power. A few simulations have been run in 3D, e.g. 26, 27, 28, 29, 15|,
but it is also common to reduce the problem to one dimension, [9, 10, 11, 12, 13, 14].
In 1D, the problem can be described using only two spatial dimensions, and the number
of basis functions is reduced to N2. This is more manageable, and allows one to run the
simulations on larger domains. 1D models are widely used, partly because a lot of problems
are to complex to be calculated in 3D yet. 1D simulations have to be done with caution,
though. Much information is lost when discarding two dimensions, and one cannot expect
the results to be the same as those found in experiments or 3D simulations. In this thesis
we will introduce a more realistic 1D model. How this is done will be described in Section
4.2.
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Figure 4.1: Electronic energy curves in the one dimensional Hj . Since there is no angular mo-

mentum in 1D, the curves are given names simply based on their energy and their symmetry.

The energy curves in 1D, drawn in Fig. 4.1, are given new names, as keeping the names
from the 3D model would be misleading. The references to the angular momentum of the
state are removed, and the names are given simply as a principal quantum number and a

symmetry, i.e. 1g, 2u, 3g,4u, etc.

We ran the HJ simulation for several different scenarios. From the few 3D simulations
on HJ in the Born-Oppenheimer approximation, e.g. [30, 31, 32, 15, 16|, we chose to look
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at some of the interesting cases reported. This allowed us to test our model against real
3D calculations. We were also able to test if there were discrepansies between our BO
calculations, and our non-BO calculations. In an article by Palacios et al., called Two-
photon ionization of Hy by short laser pulses [15], structures in the energy spectrum were
reported. The structures could, to a large extent, be reproduced in the one dimensional
model. The model was also able to qualitatively recreate the work of Fgrre et al. in Nuclear
Interference in the Coulomb Ezplosion of Hy in Short vuv Laser Fields [16], where interfer-
ence effects in the vibrational states led to characteristic structures in the dissosiation and
ionisation energy spectra. We ran the scenarios with and without the BO approximation,

which allowed us to look for discrepancies in the results.

The laser/molecule dynamics were done using the eigenstates of Hj in the BO approx-
imation as basis functions. The terms that were neglected when applying the BO approx-
imation were reintroduced as a perturbation to H , and comparisons were done between
results before and after these couplings were included in the Hamiltonian matrix. To find
the basis functions, the TISE for HJ was solved in the BO approximation, using a B-spline
basis. The next chapters describe priciples and theory needed for doing the calculations
of this thesis. Some focus will also be put on the implementation of the programs and the
numerical considerations therein, before the simulations and resuls are discussed in detail

in the last chapters.

4.1 The TISE in 1D

The Hamiltonian operator of Hy , Eq.(2.7), when directly translated into a one dimensional

operator, takes the form

h2 62 h2 62 k' 2 k' 2 k 2
© ¢ _+= (4.1)

H= oo 20 o+ ® |o- % 'R

Applying the BO approximation to this problem goes exactly as for the 3D Hamiltonian.
The position vectors are replaced by scalar values, as the three dimensional space has been
replaced by the x-axis. The problem separates into two simpler problems like shown in

Section 3.1. The electronic wavefunction, ¢.(z; R), is found by solving
ﬁeﬂﬁe(‘ﬁ R) = Ee(R)we(x; R) (4'2)
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where the electronic Hamiltonian is

~ n* 9 ke? ke?
7. - _ 43
T T P 4
The vibrational wavefunction, x(R), is found by solving
h? 9 ke?
———+FE,(R)+ —| x(R) = Ex(R 4.4
TorE BB+ T | X(R) = Ex(R) (4.4)

4.2 Adjusting the 1D Coulomb potential

When using a one dimensional model of a three dimensional problem, certain adjustments
have to be made. Upon comparison with the 3D model, results gathered from the 1D model
will provide qualitative agreement at best. However, for comparison to be even possible,
changes need to be made in the Hamiltonian. The singularity in the Coulomb potential
will be a lot more dominating in 1D than in 3D. If one pictures the electron as a particle
moving around the nuclei, it is easy to see that while the electron can circle each nucleus
any which way in three dimensions, in one dimension it is forced to go through the nuclei.
To make the system resemble the three dimensional representation, one includes softening
parametres, o, to the potential. The Coulomb terms in the Hj Hamiltonian then changes
from
Veoulomb = — L + ke
e+3 lz—3] IR

(4.5)

to

ke’oq ke*oq ke?

Veoutoms = — - + =
Ver Do Je-9)'+e T

This is called a regularised Coulomb problem. Values for o; and o, were chosen to make

(4.6)

the electronic energy curves, E.(R), mimic the three dimensional case as closely as possible.

At this point we went further than what is common. The two lowest curves, corresponding
to the ground state, 1g, and the first excited state, 2u, are of special interest in this work.
These were fitted to the real 3D-energies, 1so, and 2po,, as closely as possible, by allowing

0y to become R-dependent, (see Fig. 4.2),

09 — O'Q(R)
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This is a new approach, making the 1D model more comparable to the 3D model. The opti-
malisation was done by making a function in Python [33], f(o9), that solved the electronic
Schrodinger equation for the given oy, and returned the difference between the calculated
ground state energy and the real Hf ground state energy [34].

flo) = B -

A least square method in the Python library!' found o3 values for a sufficient number of
points on the R-axis. The 2u curve does not match ideally for R < 2 a.u., but for larger
R, in the area of interest in this work, the conformity is good. (See Table 4.1.) Allowing
the softening parametre to change with the internuclear distance is a new approach. The
conventional modus operandi is to keep o9(R) = 2, or some nearby constant. Figure 4.3
shows the resulting 1g and 2u electronic energy surfaces. The solid lines are our adapted
curves. They are almost the same as the 3D curves, who for that reason is not included in
the figure. One sees the marked difference between our curves and the curves constructed
with constant softening parametres. The common choice, o9 = 2 a.u., puts the minimum

in 1g at ~1.4 a.u. right of the correct placement.

Lscipy.optimize.leastsq()
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Table 4.1: The table shows the values used for oo(R), and the resulting energy curves. The 3D

energy curves [34], are included for comparison.

R 02 1g 1so, 2u 2poy,
Model Real Model Real
energies energies energies energies

(a.u.) (a.u.) (a.u.) (a.u.) (a.u.) (a.u.)
1.0 0.1931550 -0.4518004 -0.4517863 0.3935613 0.4351863
2.0 0.2508971 -0.6026424 -0.6026342 -0.1762692 -0.1675344
3.0  0.2863316 -0.5775650 -0.5775629 -0.3682164 -0.3680850
4.0  0.3123320 -0.5460855 -0.5460849 -0.4457946 -0.4455064
5.0 0.3339039 -0.5244203 -0.5244203 -0.4777170 -0.4772916
6.0 0.3517653 -0.5119695 -0.5119690 -0.4908747 -0.4906439
7.0 0.3661765 -0.5055945 -0.5055940 -0.4963323 -0.4962717
8.0  0.3777629 -0.5025707 -0.5025704 -0.4985972 -0.4986060
9.0 0.3872043 -0.5011956 -0.5011954 -0.4995214 -0.4995438
10.0  0.3950349 -0.5005788 -0.5005787 -0.4998833 -0.4999011
11.0  0.4016353 -0.5002994 -0.5002992 -0.5000136 -0.5000244
12.0  0.4072751 -0.5001684 -0.5001683 -0.5000521 -0.5000579
13.0  0.4121492 -0.5001036 -0.5001035 -0.5000566 -0.5000595
14.0  0.4164029 -0.5000690 -0.5000689 -0.5000501 -0.5000515
15.0 0.4201464 -0.5000490 -0.5000489 -0.5000415 -0.5000421
16.0  0.4234661 -0.5000364 -0.5000364 -0.5000335 -0.5000337
17.0  0.4264297 -0.5000280 -0.5000279 -0.5000268 -0.5000269
18.0  0.4290913 -0.5000220 -0.5000220 -0.5000215 -0.5000216
19.0  0.4314946 -0.5000176 -0.5000176 -0.5000174 -0.5000174
20.0 0.4336752 -0.5000143 -0.5000143 -0.5000142 -0.5000142
21.0 0.4356629 -0.5000117 -0.5000117 -0.5000117 -0.5000117
22.0 0.4374819 -0.5000097 -0.5000097 -0.5000097 -0.5000097
23.0 0.4391529 -0.5000081 -0.5000081 -0.5000081 -0.5000081
24.0 0.4406930 -0.5000069 -0.5000068 -0.5000069 -0.5000068
25.0 0.4421171 -0.5000058 -0.5000058 -0.5000058 -0.5000058
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Figure 4.3: The two lowest energy curves, using different softening parametres. The curves with
an R dependent parametre (solid) are more or less identical to the 3D curves, and the ground
state has a minimum at Ry = 2.1 a.u. When oy was kept constant at 2 (dashed), as used in [27],
the shape of the curves deviates markedly, (Ry = 3.5 a.u.), whereas with g9 = 1, (dash-dot), as
used in [9], the shape is somewhat better, (Ry = 2.6 a.u.), but the energies are lower. The dashed

vertical lines show the minima of the ground state curves.
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Figure 4.2: The softening parametres, o7 and o3, that reproduced the two lowest energy curves

in Hj. oy = 0.61 was constant for all R, whereas o3(R) was allowed to change.

28



Chapter 5

Wavefunction expansion and basis

functions

5.1 Wavefunction expansion

One of the important tools in a quantum mechanic’s toolbox, is the wavefunction expansion.

Any function can be written as a sum of other known functions,
o
f(z) = Z ¢igi(x), {gi(z)}, set of basis functions (5.1)
i=1

where g;(z) is the ith of these known functions, from now on called basis functions, and
c; is the weight of the ith function in the sum. Well known examples of this is the Taylor
expansion, where the basis functions are polynomials, and the Fourier expansion, where
the basis functions are sine and cosine functions. In fact, any set of basis functions that
form a complete set', (i.e. the basis functions span out the entire function space) can be
used.

In numerical applications, it is impractical to use a sum that goes to infinity, so one
sums only over a finite number, N, of basis functions,

f(z) = Z cigi(z) = f(z) = Zcigi(x) (5.2)

This introduces a truncation error. However, for a reasonable basis set, the coefficients, c;,

will drop toward zero when 7 increases. If N is sufficiently large, the contributions from

1For more details on this, see [35].
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the (i > N) terms are negligible. If the wavefunction is expanded in basis functions, the

time independent Schrodinger equation takes the form

HU =EV
N N
ﬁz cigi=FE)_ cgi
i=1 i=1

where H is the Hamiltonian operator, ¥ is the wavefunction, £ is the energy and g; is the

1th basis function. To find ¥, one needs to determine the coefficients, c;.

The complex conjugated of a basis function is multiplied with the equation from the left,

one integrates over space, and one gets a linear equation with N + 1 unknowns.

N N
Sa[gha=EY [ g
i=1 =1

This is done for all the N basis funtions?, and one ends up with a system of linear equations,

that can be written on the form,
Hc=SEc¢ (5.3)

The coefficients, ¢;, are written as a vector, ¢. The Hamiltonian operator has been replaced

by a N x N Hamiltonian matrix, H. Each matrix element is given as
H;; = /g]’-‘flgz-, in bra-ket notation: (g;| H |g;) (5.4)

On the right hand side in Eq. (5.3), one gets the slightly simpler matrix, called the Overlap

matriz, S, with matrix elements

Sji= /g;gi, in bra-ket notation: (g, | ;) (5.5)

Solving the Schrodinger equation has now been reduced to the linear algebra problem of
finding ¢ and F.
5.2 Choosing a basis

The basis functions determine how the matrices will end up. One basis set may need a lot

more basis functions to approximate a function well than another. The function expansion

2N equations, and N + 1 unknowns. How does that add up? An extra equation appear in our
normalisation demand, (¥ | ¥) = 1.
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is acceptable when

<e (5.6)

N
Z cigi — f
i=1

where g; are the functions in our basis set, f is the function to be expanded and ¢ is

the given tolerance. We want to choose a basis set that makes /N small, since N is the
dimensions of the H and S matrix. It is common to choose an orthogonal basis. In that
case

/g;fgi = (95| g:;) = Adi; (5.7)

where 6; ; is the Kronecker delta function

1, 1=y
= W} (58)

This simplifies the linear algebra problem considerably, as the S matrix will become diago-
nal. For convenience, the basis can be made ortonormal, i.e. the A from (5.7) is 1. Then the
overlap matrix will simply become the identity matrix. In quantum mechanics, the basis
functions may be chosen to be solutions of the Schrédinger equation for a related problem.
For instance, if H resembles a harmonic oscillator, the analytically known solutions to the

harmonic oscillator potential, namely the Hermite polynomials, is an appropriate basis set
[36].

When solving the time independent Schrédinger equation for H in this undertaking, a
B-spline basis is used. The B-splines are not orthogonal, but a property of the basis is that
H and S will be banded matrices, which are easier to diagonalise. In addition, a B-spline

expansion can approximate most functions efficiently.

When performing laser/molecule dynamics, the solutions of the TISE for Hj in the BO
approximation are used as a basis. It is an orthogonal basis set, easy to truncate, and very

good for interpreting the results.

5.3 B-splines

The basis functions in a B-spline basis set are piecewise polynomials [37], splined into a

bell shaped curve as can be seen in Fig. 5.1.
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Figure 5.1: The B-spline function (bold line) is a piecewise polynomial. The polynomial con-
stituents (thin lines) contribute to the final curve on an interval each. The intervals are separated
by knotpoints, shown here as vertical lines. This B-spline is of order 4, i.e. it is nonzero over four
intervals, and is made up of third order polynomials. The knotpoints are {1,2,3,4,5}.

The figure was made using a function from the Matlab library, bspline().

Typically, the next function in the basis will be identical, but shifted a knotpoint
interval to the right. When defining a B-spline basis for a domain [a,b] € R, one first
defines a sequence of knotpoints. Each knotpoint marks the beginning of a B-spline3. If
the function to be approximated is oscillating or changing rapidly, the knotpoints must be
closely spaced. For nicely behaving functions, they can be further apart. The knotpoints
need NOT be equidistant. Herein lies one of the advantages of the B-spline basis. For
the swiftly oscillating portions of the function, a dense grid of knotpoints may be used,

and for the moderate parts, a wider spacing will do nicely. One then has to choose the

3Except for the last k knotpoints, which only mark the ending of the splines, (k being the order of the
B-splines).
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order, k, of the B-splines. Each spline function will stretch over k intervals, an interval
being the space between neighbouring knotpoints. The function is made up of a different
polynomial (of order k — 1) on each interval, smoothly* joined at the knotpoints. Outside
of these intervals, the function is 0. This means that on any point on the domain there will
be exactly k£ nonzero splines. High enough order is important for making a good function
approximation. In quantum mechanical applications, k is typically chosen to be between
6 and 9 [38].

1.0

0.8

0.6

0.4

0.2

0.00

Figure 5.2: The entire B-spline basis, of order k = 3, for the knotsequence {0, 0, 0, 1, 2, 3, 4, 5,
5, 5}. The sum of all the functions will be 1 everywhere on the domain [38].

The B-spline basis functions are defined by the recursion formula

— tZ _ t’L - _
Bf(x) = :Eisz Y(z) + #Bf.ul(x) (5.9)
tivk—1 — 1 tivk — i1
Hx) = .
! 0, otherwise

“In the interior of the domain, the continuity is typically C*~2. The continuity at the edges of the
domain is of lower order. The first and last splines will not even be continuous.
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where BF is the ith basis function, k is the order and t; is the ith knotpoint, i.e. the
starting point of the ith spline, (or the end point of the (i — k)th spline). As one can see
from Equation (5.10), the first order B-spline is a step function, that is one on its interval,
and zero everywhere else.

The derivatives of a B-spline function may be found by the recursion relation,

k—1 k-1

Fol g - BY () (5.11)

DBf(z) = ————— S
Livk—1— 1 Livk — tig1

The derivatives are necessary when calculating the Hamiltonian matrix elements.

If one were to use the recursion formula every time a spline value was needed, from a
numerical point of view, it would soon become cumbersome. As it turns out, one only
need the B-spline values from the same set of points for most operations, and these can be
saved to a table, and quickly called up when needed.

The spline values will mostly be needed for calculating integrals on the domain. To perform
these integrals, a Gauss Legandre quadrature formula® is used.

I= Zwif(:ci) (5.12)

The integral, I, is reduced to a sum with N terms, of the integrand, f(z), evaluated in
specific nodes, x;, weighted with w;. x; and w; can readily be calculated [39, p 304]. This
integration is exact for polynomials up to a degree 2N — 1. The B-splines are piecewise
polynomials, and the integrand is typically a product of two B-splines, i.e. a piecewise
polynomial of order 2k — 2. On each interval, the integral can be found exactly with only

k function evaluations®.

The total number of B-spline evaluations needed, will then be 2Ngk?, where Np is the
total number of B-splines. Each of these will stretch over k intervals, and each interval
needs k function evaluations. The factor 2 comes from also calculating the derivative of

the B-splines, which is needed for the kinetic energy part of the Hamiltonian.

5For more on Gaussian quadrature, see [39, pp 301-307].
6This obviously holds when calculating Equation (5.5), but what of Eq. (5.4)? The integrand will

not necessarily be a simple polynomial. Experience has shown, though, that for any H in this work, the
integral can be evaluated to machine precicion using only k nodes.
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5.4 TISE eigenfunction basis
When the Hamiltonian is on the form
H=Hy+ H,

where ﬁo is easier to solve than the full problem, (ﬁ "' may for instance be time-dependent),
it is common to solve the TISE for ﬁo, and use the solutions as a basis for solving the full
problem. The Hamiltonian is hermitian |1, p 23], i.e. the eigenvalues (energies) are real,
and its eigenfunctions are orthogonal [40, p 233]. When constructing the full Hamiltonian
matrix, using the wavefunctions, [¢;), from Hy as a basis, there will not be an overlap
matrix. The additional benefit is that only the interaction with H' needs to be calculated,

as can be seen when the matrix elements are written explicitly,

H; ;= (| Ho + H' |;)
= (Y| E; |1b;) + (il H ;)
= E;0ij + (i H' |4;)

The contribution from f]o will be the eigenstate energies, F;, on the matrix diagonal.

Provided that H' is not too big, the eigenfunctions of I:To should be able to approximating
the wavefunction using relatively few basis functions. However, the real advantages of
using the eigenfunction basis is in interpreting the result, and the possibility of truncating
the basis set to keep only the essensial states, i.e. the states that one can expect to be
populated. The vector attained when solving the TDSE contains the amplitudes of the
basis functions. For the physical analysis, it is preferable to have the result as a linear com-
bination of actual physical wavefunctions, with known energies, rather than mathematical

functions, such as in the B-spline basis.
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Chapter 6

The numerical calculation of the TISE
and the TDSE

6.1 Implementing the TISE solver

The software made for this thesis is almost completely Python code, with some Fortran90
mixed in to do the heavy lifting. The entire source code is availabe at [41]. A 1D TISE
solver, (based on a program by Raymond Nepstad), was the starting point of the program-
ming. It creates a B-spline basis for the problem, constructs the Hamiltonian in that basis,
and solves the eigenvalue problem. The user interface is a config file, where one can supply
the specifications: particle mass, potential, domain, number and order of B-splines and
knotpoint distribution. The B-spline values are tabulated in the integration points and

saved, and the Gauss Legendre integration method use these tables.

The TISE solver was used on the two linked differential equations describing the molecule.

When the softening parametres are included, the electronic wave equation takes the form

V(7 R) = E.(R)Y.(F B)  (6.1)

For convenience, atomic units have been introduced, meaning 2 =1 a.u., m, = 1 a.u. and
e =1 a.u. Atomic units are used exclusively in the rest of the thesis. The operator for the

vibrational motion of the nuclei includes the solutions of Eq. (6.1),

[162

s+ BB+ o () = Ex() (6.2)

R
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Because the potential energy curves, F.(R), are needed to solve Eq. (6.2), Eq. (6.1) must
be solved first. It also follows that it needs to be solved for enough values of R, so that
the curves F.(R) can be resolved sufficiently to solve Eq. (6.2). The matrix elements of
the vibrational Hamiltonian are integrals over the R domain, calculated with quadrature
formulae. To satisfy any reasonable demands of accuracy, E.(R) was found in all the inte-

gration points in R.

Solving Eq. (6.1) and Eq. (6.2) gives us the electronic wavefunction, 1. (z; R), the vi-
brational wavefunction, x(R), the electronic energies, F.(R) and the total energies, E.
When the wavefunctions are calculated from the diagonalisation, their signs are arbitrary.
This is a problem when calculating the electronic wavefunctions for different R indepen-
dently. There is no guaranty the wavefunction for one R will have the same sign as its
neighbour. The signs of the wavefunctions therefore had to be set manually, to make sure
it stayed the same throughout. Since the wavefunctions changes with R, albeit slowly, one
cannot simply choose an x value, and demand that the sign of the wavefunction at that
z-value stays constant. A safe way to do it is to find the maximum of the wavefunction,
and making sure the sign is the same in that point for the next R value. This was done for
each wavefunction and each R. There will naturally be as many electronic energy curves
as there are functions in the basis. Not all of them are physically valid, as will be discussed

in Section 6.3. For each of the curves that are used, one needs to solve Eq. (6.2).

Summing up:

1. Create the B-spline basis for the R and x variable.

2. Solve Eq. (6.1) for all R on the integration grid, and save the energies and wave

functions.

3. Solve Eq. (6.2) for the N lowest energy curves. (How to decide N will be shown

later.) Save the energies and the wave functions.
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6.2 Solving the time dependent Schrodinger equation for
Hy

The results in this thesis were arrived at by solving the time dependent Schrédinger equa-
tion, (TDSE),

(9\11t0t ($, R) o

’l,h (’)t = H(R, T, t)\Iltot (.7,', R)

where the wavefunction, expressed in the BO state basis reads

\I’tot(xa R) = Z Z Cim’l/}e(x; R)ZX(R):n (63)

For a given Hamiltonian, the system was propagated in time using an ODE solver. We
used an old Fortran 77 code, based on the Adams - Moulton method [35]. It is a multistep
method, i.e. it uses several of the previous function values for calculating the next step.
The code uses a predictor-corrector formula. That means an explicit method is used
initially, and the result is then corrected for each step using an implicit formula. The code
is adaptive, meaning it changes the length of the time steps based on local error estimates.
The full description of the algorithm can be read in [42|. The following sections describe

how the Hamiltonian matrix was calculated.

6.2.1 The Hamiltonian matrix

The Hamiltonian for the whole problem can be written
ﬁI(iE,R, t) = ﬁBo(.’E,R) +ﬁ[laser(~rat) +ﬁINBo(R) (64)

The first part, H B0, is the time independent Hamiltonian of Hy , in the BO approximation,
written explicitly in Eq. (6.1) and Eq. (6.2). This problem was solved first, using a B-spline
basis. The eigenfunctions that were attained, were used as basis functions for solving the
full time dependent problem. The Hamiltonian of the laser field, I/-\Ilaser, represents the
energy from the electric field, (see section 2.3). In one dimension, and atomic units, it is
simply

ﬁlaser = E(t)ﬂ’)

The electric field strength, E(t), describes the pulse, and will be different depending on
which case is being studied. The last term in Eq. (6.4), ﬁNBO, contains the terms that
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were neglected when introducing the BO approximation. Since it acts on only parts of
the wavefunction, it cannot be written out properly as operators, but working on a BO

basisfunction, it takes this form:

HypoVio(z, R) = Hypote(x; R)x(R)
1 (28¢e(x; R) ox(R)

M OR OR

+ x(R) F0e(wi R) R)>

OR?

The reintroduction of H ~Bo Will remove the BO approximation error. Each matrix

element in the full Hamiltonian will be calculated from the equation

Hye = (Wi |Hpo (@, R) + Hugser(@,1) + Hyio((R)| ¥Ey,)

The basis functions are ordered a certain way:

‘\Ilgot> = ‘¢Z3sz> ) n:Zszb+m

‘W§0t> = |¢éX;L> ) gszuzb+n

i?j = 1727"'7Nel m,n = 1a27"'7N’Uib nafz 172:---aNel'Nvib
where N is the number of electronic energy curves, and N,; is the number of vibrational
states for each curve. v is the ith electronic state, ™ is the mth vibrational state of the
1th potential curve. In other words, the basis is ordered with every state corresponding to

the lowest energy curve first, in order of ascending energy, then every state corresponding

to the first excited electronic curve, and so on.

6.2.2 The dipole couplings

The electric field of the laser contributes to the total Hamiltonian through I:\Ilase,. The

matrix elements from this operator takes the form

Hye = B(t) (W, 2] 05,)
= B(t) (" [(0 21 92), | )

For the test scenarios described in Chapter 7 and Chapter 8, a basis set with 6 - 10* basis
functions was used. However, it is not necessary to calculate all the 3 - 10° or so matrix
elements this leads to. First of all, the Hamiltonian matrix is symmetric. That reduces the
task to finding elements from the diagonal and up. Second, the electronic Hamiltonian,

(Eq. (4.3)), commutes with the parity operator. Since the energy levels are not degenerate,
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this means that the wavefunctions, ¢.(z; R), will have well defined parity, i.e. they will
be even or odd [1, p 72]. As it turns out, with raising energy, every second is even, every
second is odd. This makes some sense, as at each new energy level, the wavefunction gets
another node, thereby flipping the parity. As a consequence of this,

<1/Jf; |z| 1/’Z> =0, when ¢+ j isan even number.

In these cases, the integrand will be odd, and as the domain is symmetrical around the
origin, the integral will be zero. This means another factor 2 work reduction. One should of
course notice that (¢ |z|?) needs only be calculated once for all the states corresponding
to the electronic energy curves denoted by i and j. (¢} || 4?), i.e. the electronic coupling
between 1g and 2u, is plotted in Fig. 6.1. For comparison, the coupling between the
1so, and 2po, curves in the three dimensional model is plotted as well. The couplings are

remarkably similar, which bodes well for the dynamics on these curves.

The program written to find the matrix elements first calculated all the electronic cou-
2

plings. Despite the symmetries mentioned above, which meant there were only % cou-

plings needed, it is a huge job. The reason is that it must be calculated for several values

of R on the integration grid, making each coupling a function of R.

f(R) = (¢e(w; R) |z ¥i(z; R)), (6.5)
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Figure 6.1: The dipole coupling between the two lowest energy curves, 1g and 2u. The function
goes approximately as g when R is large. The dashed line is the coupling in the 3D model, and
the solid line is the coupling in the 1D model.

When these were computed, one integrated over R,

X" (R X") (6.6)

where f(R) is the electronic couplings from Eq. (6.5). The results are the elements in the
Hamiltonian matrix. The number of times the integration in Eq. (6.6) had to be done was

now reduced to

(Neleib)2

a (6.7)

typically almost a billion.
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Integrating a product of B-spline expanded functions

Integrations of the kind®
(i | f (@)| 5, (6.8)

are done a number of times, and it can be beneficial to see how they are actually calculated.
1; and 1); are expanded in B-splines, so the integral can be written as

/ZCiBi(m) @) Zijj(év)dx
= ZZcidj/Bi(x) - f(z) - B;(z)dz (6.9)

In Eq. (6.9) all that is actually integrated is products of two B-spline functions multiplied
with f(z). The actual integration part of the problem does not explicitly involve the
wavefunctions. Since Eq. (6.8) is typically calculated for a few thousand combinations of
wavefunctions for each f(x), the integrals in Eq. (6.9) are stored. If they are stored in a
matrix, A, not only will it be banded, (see section 5.3), but it leads to rewriting Eq. (6.9)
as a linear algebra problem

& Ad (6.10)

where ¢ and d are the coefficients in the expansions, and A is a symmetric banded matrix

with elements
Ay = / By(2)f(2) By (x)dx

Using the case of the electronic dipole couplings, Eq. (6.5), as an example, f(z) = z, and

A need only be calculated once.

6.2.3 The NBO couplings

The computations are not as straight forward for the non BO matrix elements.

-1 .
=7 <‘I’?ot HNBO‘ ‘I’fot>

:_ﬁl (2 <xm(R)1/)2(x; R) ‘awg'a(z; : 8X51£2R) > o\R

H UES

& i) R) (6.11)

)

; <xm(R>wzﬁ(x; R)

!The variable x was used here, but this is a general example, and it is exactly the same for R.
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The problem is the differentiation operators. The integrations in z,

i O] (w; R) i 0*Pl(x; R)
need the first and second derivated of the electronic wavefunction with respect to R. When
the electronic wavefunction is expanded,

Ye(z; R) = Y ci(R)Bi(x) (6.13)
the basis functions depend only on z, and the coefficients are functions of the internuclear
distance, R. To differentiate ¥(x; R) in R, the individual coefficients must be derivated.
¢(R) is known on the integration grid, and a good way to interpolate and differentiate the
function was to use a method from the python library?. The matrix, A from Eq. (6.10),
containing the B-spline integrals, will simply be the overlap matrix, S from Eq. (5.5), which

has already been calculated.

For the second term in Eq. 6.11 the integration over R will go exactly as in the dipole
case. For the first term,

fi(R)

<Xm(R) axg 1(%R) >R

the A matrix will be a bit different, with elements
0B,(R)
A ;= | Bi(R)f(R)—L—dR
i= [ BT
The derivatives of the B-splines were already calculated, for the BO Hamiltonian, so no
further derivation is needed.

The Hermitian argument still stands, the final matrix is symmetrical and only the ele-
ments from the diagonal and up are needed. However, in the intermediate steps, there is
no symmetry. This has no practical implication beyond making it harder to validate the
results when writing the code. The electronic wavefunctions will still be even/odd after the
derivation. Since the spatial symmetry/antisymmetry is for the z variable, the derivation
in R will not change it. The difference from the dipole case is the lack of the z, which is

antisymmetric. This means

<wz

OR"

rather than for even numbers, as for the dipole couplings.

¢g> =0, when ¢+ j isan odd number.

Zscipy.interpolate.splev() and scipy.interpolate.splrep()
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6.3 Truncation in space and energy

The size of the domain and the size of the basis sets depends on the problem. A wavepacket
that is generated by the laser pulse must not be allowed to hit the edge of the box. The
amount of time the system is propagated tells how far the wavepacket will get, and in
that way decides the size of the box. The frequency and intensity of the laser determines
how high energies the system can reach. Our eigenfunction basis needs to have functions
of equally high energy to model the problem. To get eigenfunctions with higher energy,
one needs to add more B-spline basis functions to the TISE basis set. This is the basic
idea, but there is a few other considerations. There is a maximal separation between the
B-spline knotpoints (see Section 5.3) if the eigenfunctions are to be smoothly drawn. For

our Hf model the required density is 10 X2 in the z domain, and 14 2% in the R

domain. Not all the BO eigenstates that are attained by diagonalisation can be included
in the time propagation basis set. The states with lowest energy will be good eigenstates
of the Hamiltonian. The highest states, however, are artifacts of the discretisation, and
will vary markedly if the box size or the order is changed. We want to exclude these states
from our eigenfunction basis. The question is how to recognise a bad eigenfunction. The
= ﬁ From theory [1, p 86] it is known that the

density of states, for a free particle in one dimension, should go as

density of states is given as g(E;)

g(E) x B2, (6.14)

E being the energy. For unbound states, the same behaviour is observed for the Hj model,
up to a certain point. For the highest energies the density of states will deviate from the
expected behaviour, at which point we leave the states out of the basis set. Figure 6.2
shows an example of how the density of state can look. For the dissosiating states, one
sees an B3 tendency. However, at E ~ 0.5 a.u., one observes irregular behaviour, which

we interpret as the eigenfunctions going bad.
When building the basis sets, one makes them as small as possible, without violating

the demands outlined in this section. Table 6.3 lists the domain and basis specifications
for the simulations we ran in this thesis.
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Table 6.1: The size of the domains in electronic coordinates, z, and nuclear coordinates, R.
The number of seventh order B-spline functions in the TISE basis sets, and the number of BO

eigenstates in the TDSE basis set is also included.

min max Number of Number of

B-spline  el/vib eigen-

(a.u.) (a.u.) functions functions
r -120 120 480 200
R 05 25 350 300

8000} 1
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4000¢ 1

Density of states

2000¢ |
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Figure 6.2: The density of vibrational states for the 1g potential curve. As may be seen from the
figure, the bound states, (energies below 0.5 a.u.), will not have the ﬁ tendency. For F ~ 0.5
a.u., there are clear signs of unphysical behaviour, and at E ~ 0.6 a.u. g(F) explodes. That
high energies were not needed for the 1g in our problems, since the population on those states
were negligible. The final cut was made at E ~ 0.3 a.u., corresponding to a basis set of 300 BO

eigenfunctions.
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Chapter 7

Resonance Enhanced Multi-Photon
Tonisation (REMPI) in HJ

In 2005, Palacios et al. published an article called Two-photon ionization of Hj by short
laser pulses [15](see also [32, 31]). We attemted to reproduce some of the interesting results

reported, using our 1D model.

7.1 Article summary

Doing 3D calculations in the BO approximation, Palacios et al. simulated an Hy molecule
ionised from the vibrational ground state by two photons. They did this for a wide range of
laser frequencies, w = 0.45 — 1.0 a.u., several different intensities, 7 = 10'° — 10* Wem =2,
and pulse durations, 7" = 0.5 — 10 femtoseconds (fs). Two different methods were used,
lowest order perturbation theory, (LOPT), and solving the time dependent Schrédinger
equation, (TDSE). Both these methods were used to find the differential cross section as a
function of the kinetic energy release (KER) of the protons, i.e. the kinetic energy of the
protons when they are far apart. The results were compared.

Some of the more interesting results were found for frequencies near w = 0.8 a.u., and
these are the results we intend to reproduce with our 1D model. Figure 7.1 schematically

shows the BO picture of the scenario.
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Figure 7.1: Electronic energy curves in Hj . The arrows symbolise the photons that ionise the
system. The dashed curve, %, is the ionisation threshold. The shape of the initial wavefunction

is plotted, to show for what internuclear distances transitions are likely to occur [15].

As can be seen in Fig. 7.1, if the system absorbs two photons, the electronic energy will
1

» R

explosion of the molecule. Palacios et al. calculated the energy spectra of the protons after

be over the ionisation threshold (the dashed curve in the figure), causing a Coulomb
the ionisation. The energy spectra arrived at in [15] showed some obvious peaks, see Fig.
7.2. Information may be gleaned from these, since the peaks in the energy spectrum may
be mapped back to where on the R domain the ionisation occured. This can be done by
using the classical relation
1

E~ = (7.1)
to estimate the final energies of the protons. The approximation stems from the fact that if
the electron is removed, the potential energy will simply be }lz. In the limit when R — oo,
all the potential energy of the nuclei will have become kinetic energy. Since it relies on the
assumtion that the nuclei have no kinetic energy initially, and that they are not notably
disturbed by the stripping of the electron, this will not be exact. The peaks at energy
E ~ 0.5 a.u., which are called V in Figure 7.2, are mapped back to R ~ 2 a.u. That
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corresponds to where there is a maximum in the population of the wavefunction on the
1so, energy surface. It is obvious that it will be a higher ionisation probability if there
is more population to ionise. One may expect the spectrum to be a picture of the initial
population, but that does not explain the peaks that are denoted R; and R,.
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Figure 7.2: KER spectra of the protons after the two-photon ionisation. The peaks in the spectra,
marked R; and Ry, may be mapped back to resonant transitions, see Fig. 7.3 [15].

The kind of ionisation we are looking at is often called REMPI, or resonance enhanced
multi-photon ionisation. Palacios et al. explains that the additional peaks stem from
enhanced transitions caused by resonances in the system. The peaks are named R; and
Ry because they can be mapped back to internuclear distances, R; ~ 1 a.u. and Ry ~ 3
a.u., respectively (see Figure 7.3). For these R-values there will be a resonant transition,
since the distance in energy between the ground state and the 2po, /3po, electronic energy
curves, respectively, matches the photon energy, w ~ 0.8 a.u.

The enhanced transition at the resonances follows from the fact that a one-photon
transition is more likely than a two-photon transition. In fact, two one-photon transitions
are still a lot more likely than a direct two-photon transition. The electron is removed in

two steps. A photon is absorbed to bring the electron to the intermediate state, before the
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molecule is fully ionised by another photon'. The only reason why the resonances do not
dwarf the two-photon channel, is that in the ground state, around R ~ 1 a.u. and R ~ 3
a.u., where the resonant transitions occur, there is very little population, see Fig. 7.3.

7.2 The scenario in 1D

We wanted to see if our model could reproduce the REMPI characteristics described in
Palacios’ article, [15]. The scenario is relatively simple, and the mechanisms behind the
results are understood. That makes the problem ideal for testing our model.

Due to the fitting of the 1¢g and 2u, similar resonances to those reported by Palacios et
al. are present in the one dimensional model. We were able to use almost the same laser
settings, although the pulse duration had to be reduced slightly. The computer resources
at hand made it impractical to use too big a domain in the x variable, so the pulse duration
was set to 7 fs instead of 10 fs. This may cause the resonances to be somewhat broader,
and may also reduce the total ionisation yield. The specifications for the laser pulse were

otherwise taken from the article,

Laser frequency: w =0.76 0.82 and 0.88 a.u.
Intensity: I = 10" Wem 2
Pulse duration: T =7 fs

The energy spectra of the nuclei may be found from the vector of expansion coefficients
describing the wavefunction after the pulse. In the BO approximation there is a nuclear
energy spectrum for each electronic state. It is calculated by the simple formula,

dP 2|cm|?

(B )= "1™ 2
aEE =5 B (72)

where |c,,|? is the expansion coeffisient squared, Eq. (6.3), or in other words, the prob-
ability of being in the vibrational state m. F,, is the corresponding nuclear energy, i.e.

Eit — FE.(R — o0) for state m. In the formula the probability is multiplied with the

2
Emt+1—FEm-1
bution. This is done for all the electronic states in the continuum, and added up. The

density of states, g(E,) = . It is then interpolated to find a continuous distri-

same can be done for dissociative states below the continuum. The electronic spectrum

may be found in a similar way.

!The direct two-photon peaks are denoted V, because the intermediate state is a "virtual" state [15].
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Figure 7.3: An H;’ molecule in the ground state, ionised by an w ~ 0.8 a.u. laser pulse. The four
lowest electronic energy curves are drawn, as well as the ionisation limit (dashed) and the ground
state wavefunction (not to scale). The arrows illustrate photon absorptions. There is a transition
resonance between the ground state and 2u at R; ~ 1.1 a.u., and one between the ground state
and 4u at Ry ~ 2.8 a.u. The direct two-photon ionisation will be possible wherever there is
population in the ground state, but the arrows are placed at V = 2.1 a.u. since the population,

and ergo the transition probability is highest there.

7.3 Results

The TDSE was solved for each of the three laser frequencies, and the nuclear energy

spectrum in the continuum was calculated, see Fig. 7.4. The expexted results was to find
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three peaks, corresponding to the resonances at R; and Ry, and the direct two-photon
transition at V. The position of the resonance peaks in the spectra was expected to move
when the frequency was changed, since the resonant transitions will occur at smaller R
when the frequency is increased. For w = 0.76 a.u., the matching energy gap between the
1g and the 2u is at R; = 1.16 a.u., whereas for w = 0.88 a.u., the resonant transition will
take place at R; = 0.94 a.u. The position of the two-photon peak, (V), was expected to
remain the same, since the transition does not depend on any intermediate states. The
height of the peaks were also expected to change with the frequency, as the height depends
on the population that may be transferred from the 1g at the given internuclear distance.
The population on the 1g is largest at V' = 2.1 a.u., so one expects the R; and R3 peaks

to be higher the closer the resonances are to this internuclear distance.
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Figure 7.4: Nuclear KER spectra for H;’ ionised by a laser pulse of frequency w = 0.76,0.82 or (.88
a.u. The REMPI peaks are marked with R; and Rp, while V shows the direct two-photon

ionisation peaks. For comparison with the 3D simulation, see Fig. 7.2.

Much of this was apparent in the result. The position of the direct two-photon peak, de-
noted V in Fig. 7.4, does not change with the frequency, but stays at £ ~ 0.5 a.u., excactly
as expected. Its height also matches well with what was reported in [15]. The 1g — 2u res-
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onance peak, denoted Ry, is clear at £ ~ 0.82 a.u. for w = 0.76 a.u. For w = 0.82 a.u. it is
much smaller, and positioned at £ ~ 0.9 a.u., while for w = 0.88 a.u. it is too small to see.
This is directly in accordance with expectations and Palacios’ article, though the height of
the peaks is noticably lower in our case. The resonance from R,, which overlaps with the
direct two-photon transition, is noticable only as a knee on the V' peak, and only for the
two highest frequencies. Compared to the results from the article, the peaks are again very
low, and since they almost overlap with the V' transition, the peaks are hard to distinguish.
The 4u is not fitted to the corresponding 3D energy curve, and one must assume it does not
ideally mimic the 3po, potential curve in the 3D model. This may account for some of the
discrepancies between the 3D results and ours. It is harder to tell why both the resonance
peaks are so much lower than reported in [15|. However, one cannot expect a 1D model to
give quantitatively the same results as the full 3D model, and we are satisfied with such
a good qualitative agreement. There is a small peak at £ ~ 0.3 a.u. It is not mentioned

in [15], and it is caused by a one-photon ionisation channel that opens for large values of R.

To see the resonances more clearly, we calculated the dissosiation spectra. This will boost
the transitions that have an intermediate resonant state, i.e. R; and Ry, and remove the
direct two-photon transition, V. As we can see from Figure 7.5, the resonances stand out
very clearly. The resonance peaks move towards higher energies when the frequency is

increased, and this time the R, peaks are visible for all three frequencies. The approxi-

1
R

be valid, since the electron is still present in the system. As a result, the structures in the

mative mapping between energy and internuclear distance, ' ~ + will of course no longer

spectra are shifted sightly toward lower energies, compared to the ionisation spectra. In

the w = 0.88 a.u. spectrum, there is an additional peak at £ ~ 0.35 a.u. It is caused by a

resonant transition to the 6u curve.
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Figure 7.5: The dissosiation spectrum for H;’ after a 7 fs laser pulse of frequency w = 0.76, 0.82
or 0.88 a.u. The peaks marked with R; are caused by transitions between the 1g and the 2u
potential curves. The dotted arrow points to a peak on the 0.88 a.u. spectrum that is visible

when magnified. The peaks denoted Ry corresponds to transitions between 1g and 4wu.
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Chapter 8

Wave Packet Interference (WPI) in HJ

In a recently published article by Fgrre et al., Nuclear Interference in the Coulomb Explo-
sion of Hy in Short vuv Laser Fields [16], modulations in the ionisation spectrum of Hj are
reported. The modulations are caused by interference between two nuclear wavepackets
on the 3do, energy surface. The interference occurs because there are two open paths to
the 3do, dissosiation channel, (see Fig. 8.1). This leads to two overlapping wavepackets
of the same energy, that are out of phase with each other. The constructive and destruc-
tive interferences between them result in modulations in the dissosiation /ionisation energy

spectra of the protons.

8.1 Article summary

The article describes H in the BO approximation, interacting with a laser pulse of duration
10 fs - 16 fs, and a central frequency of w = 0.32 a.u. The electronic motion is modelled
in three dimensions, while for the nuclei, only vibrational motion is included. The nuclei
are aligned with the polarisation axis of the laser field, and not allowed to rotate. This
approximation is justified, as the rotational motion is negligible for the pulse durations
used in the simulation. The initial state of the system is the Franck-Condon wavepacket,
Xrc, described in see Eq. (3.8). The wavepacket will propagate to the right with time,
(see Fig. 3.6). For the given laser frequency and duration, certain transitions, illustrated

on Figure 8.1, will dominate in the dynamics of the system.
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Figure 8.1: Schematic figure of the dominating transitions in Hj for a laser pulse with frequency
w = 0.32 a.u. Two different ionisation channels pass through the 3do, state, and create interfer-
ence. All population is initially in the ground state. The laser will bring a wavepacket from the
electronic energy curve 1soy to the 2po, curve at internuclear distance R; through a resonant
one-photon transition. A resonant two-photon transition at Ry brings a wavepacket from 1sog to

3dogy. This wavepacket will interfere with a wavepacket that is tranferred from 2po, at Rs.

At Ry ~ 3.1 a.u. there is a resonance for a two photon absorption, bringing a wavepacket
from 1so, directly to the 3do, curve. There is an alternative path to the 3do, potential
curve, namely by two separate one photon absorptions, one at R; ~ 2.4 a.u., lifting the
wave packet onto 2po,, from where it moves to larger R, and another resonance with the
3do, curve at R3 ~ 8.6 a.u. The laser frequency was chosen because it fits the energy gap
between 2po, and 3do, at R3, opening this second transition path. For pulse durations
longer than 10 fs, but less than 16 fs, the contributions from each path are approximately
the same. The wavepackets interfere, creating a modulated wavepacket, which in turn leads

to the characteristic modulations in the 3do, dissosiation energy spectra, Fig. 8.2. A third
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photon may ionise the system, and an image of the modulated wavepacket is reflected in
the CE channel (Hy, — H* + H" + ¢~ ) as well, see Fig. 8.3.
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Figure 8.2: KER spectrum of the 3do, dissosiasion channel, for an Hé" molecule in a laser field
with central frequency w = 0.32 a.u., intensity I = 1- 102 Wem ™2 and pulse durations from 10

to 16 femtoseconds.

The dissosiation spectra in Fig. 8.2 show two peaks at proton energies 0.18 a.u. and 0.21
a.u. For a pulse duration of 10 fs, there is only one peak. This is because the wavepacket
on 2po, did not have time to propagate to Rs3, thereby effectively closing that transition
path. With only one wavepacket on the 3do, electronic energy curve, there could be no

wave packet interference (WPI), i.e. no modulations are visible in the energy spectrum.
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Figure 8.3: KER spectrum after ionisation of H by an w = 0.32 a.u., I = 1.0-10!2 Wem =2 laser
pulse, for different pulse durations. Upper panel: The proton energy spectra are clearly modulated
for the pulse durations longer than 10 fs. Lower panel: Similar modulations are discernible in the

electron spectra, as demanded by the conservation of energy principle.

The modulations seen in the dissosiation spectra in Fig. 8.2 are also obvious in the
ionisation spectra drawn in Figure 8.3. This is because the system may be ionised from
the 3do, curve, and a signature of the wavepackets are transferred to the continuum.
The modulations are also visible in the electron spectra. As a direct consequence of the
conservation of energy principle, the structures in the proton energy spectrum also appear
in the electronic energy spectrum.
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8.2 The scenario in 1D
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Figure 8.4: Scematic figure of the dominating transitions in HJ for a laser pulse with frequency w =
0.355 a.u. Two different ionisation channels pass through the 3do, state, and create interference.

There is an enhanced three-photon ionisation channel at R; (white arrows).

We have studied a similar scenario in 1D. However, instead of starting with a Franck-
Condon wavepacket, as in [16], we used the Hj vibrational ground state as our initial
state. Other adjustments had to be made as well, and chief among them was changing
the laser frequency. The frequency was chosen so that the photon energy would match the
energy gap between 2po, and 3do, for large R. The corresponding energy gap in the 1D
model, i.e. between 2u and 3g, is larger than in 3D. To make the R3-transition available,
the laser frequency had to be increased to w = 0.355 a.u. This in turn led to changing the
other laser specifications, in order to achieve WPI on the 3g electronic energy curve. The

laser pulse settings we ended up with were

Laser frequency: w = 0.355 a.u.
Intensity: I = 3.5-10" Wem ™2
Pulse duration: T =10 fs

29



Figure 8.5: A qualitative plot of the probability density as a function of time (z-axis) and in-
ternuclear distance (y-axis). On the left, the population on the 2u BO curve, on the right, the
population on 3g. (Though it is not apparent on the figure, the population is 3-4 orders of mag-
nitude larger on 2u than on 3¢g.) The population around R ~ 2.5 a.u., which corresponds to
the one- and two-photon resonances, (left and right, respectively), seems to be strongly depen-
dent on the intensity of the electric field. Both the overall carrier-envelope, sin4(7th), and the
oscillations of the field, cos?(wt), can be seen in the probability density. Population propagating
toward larger internuclear distances are clear on both plots. However, while the left plot shows a
smooth wavepacket, the wavepacket on the right have a more complex structure, caused by the

interference from a second wavepacket.
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8.3 Results

When looking at how the probability density changes with time and internuclear distance,
Fig. 8.5, the resonances with one and two photons show up clearly. The left plot shows
the population on 2u, and the right plot shows the population on 3g. The intense bands
at R ~ 2 — 3 a.u. are caused by the resonant transitions at R; (left plot) and Ry (right
plot), (see Fig. 8.4). It is interesting to see how the population in these bands mimic
the behaviour of the laser pulse. The population is strongest in the middle of the pulse,
and disappears at the beginning and the end. This is the exact behaviour of the intensity
profile of the laser pulse, which goes as sin4(7%). Upon closer examination, it is also
possible to see more rapid oscillations modulating the bright band in the figure. What
we see corresponds to the actual oscillations of the electric field, cos(wt), or rather the
oscillations of the intensity, which goes as the square of the field strength. The one photon
resonance between the ground state and 2u gives a much stronger contribution than the
two photon resonance between the ground state and 3¢g. The population is almost 10* times
larger in the first excited electronic state than in the second. In both of them, however,
the population can be seen propagating toward larger R values. Notice, however, that
the shape of the wavepacket on 3¢ is distorted toward the end of the pulse. This occurs
because the wavepacket interferes with another wavepacket that is transferred from 2u at

R3. The shape of the resulting wavepacket after the laser pulse is depicted in Fig. 8.6.

61



--- 10"*. Population on 2u
—— Population on 3g

0.00010p

0.00008f

0.00006¢

0.00004|

Probability density - a.u.

0.00002f

0.00000 12

6
R - a.u.

Figure 8.6: The probability density on the 3¢ (solid) and 2u (dashed) states, after the laser pulse.
Whereas the population on 2u form a typical wavepacket moving to the right, the wavepacket on

3¢g is modulated. The modulation, as described in the text, is caused by WPL.

The spectrum attained for the 3¢ curve, Figure 8.7, shows exactly the same character-
istics as were reported in [16]. The energies in Fgrre’s article are centered around E = 0.2
a.u., cf. Fig. 8.2, while our energies are centered around F = 0.25 a.u. The reason for the
discrepancy is the laser frequency, which is higher in our case. The asymptotical electron
energy is approximately the same in both cases, so the the extra photon energy goes to

the nuclei.
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Figure 8.7: The proton energy distribution on the 3u after dissociation. The two peak structure

is the same as in [16], see Fig. 8.2.

The peaks are visible in the Coulomb explosion spectrum as well, both for the electron
(Fig. 8.9) and the nuclei, but as can be seen in the proton spectrum in Figure 8.8, the
right peak is dominant. This is caused by ionisation through a rivaling channel (the
white arrows in Fig. 8.4), in all likelihood the two-photon ionisation directly from the 2u
electronic curvel. It should occur at R ~ 2.2 a.u., which corresponds to a proton energy
E ~ & ~ 0.46 a.u., which is in agreement with the results. In [16] this channel is not
contributing to the spectrum, since a lower frequency was used, and the transition did not
reach the continuum. We made an attempt to disentangle the two ionisation channels.
The energy spectrum is a sum of the spectra for each electron curve in the continuum. If
the different ionisation channels have different electron energy, it is possible in a BO model
to separate the channels, and to look at their contributions isolated. In this case, the
direct three-photon ionisation at R ~ 2.2 a.u. leads to a low electron energy, whereas the

transitions from 3¢ leads to a higher electron energy. As a consequence, we were able to

1 This transition is the three-photon equivalent of the two-photon resonances described in the previous

chapter.
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plot the kinetic energy spectrum without the contamination from the direct three-photon

transition, in Figure 8.10.
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Figure 8.8: The proton energy distribution after a Coulomb explosion of H2+ , for a laser pulse of
frequency w = 0.355 a.u., a field amplitude of Ey = 0.01 a.u. and a pulse duration of 10 fs. The
two peaks are caused by one photon ionisation of two wave packets in 3g, though the right peak

is amplified by the two photon ionisation of a wavepacket on 2u.
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Figure 8.9: The electron energy distribution after ionisation of Hj .
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Figure 8.10: The proton energy distribution after a Coulomb explosion of HJ , showing only the
contribution from the 3¢ channel. It would not be possible to make such a distinction in an
experiment, but since the two ionisation channels results in somewhat different energies of the

electron in the continuum, it is possible to disentangle the two processes in the calculated results.

Our model successfully reproduces the WPI phenomenon discovered in the 3D simu-
lations that Fgrre et al. reported in [16]. This would have been difficult if the model had
used constant softening parametres, as the lowest electronic energy curves, where most of
the dynamics occured, would have been very different from the curves in the 3D model,
see Fig 4.3.

8.4 Non-Born-Oppenheimer effects

We wanted to decide if the Born-Oppenheimer approximation was valid for this scenario.
One of the foundations of the approximation is that the nuclear motion is much slower
than the electronic motion. The classical speed of the particles can be estimatied from the
kinetic energy. The peaks in the continuum spectra for protons (Fig. 8.8), and electrons
(Fig. 8.9), suggest the kinetic energies

Egi" ~ 0.45 a.u.
EF™ ~0.015 a.u.
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Classically this corresponds to the speeds

Ve = \/2E¥™ ~ 0.17 a.u.

The validity of the BO approximation when v, ~ 6v, is questionable.

From the dissosiation spectrum on the electronic energy curve 3g, cf. Fig. 8.7, one can
find the most likely total energy (Ej) of the dissosiated system. Ei, = E. + E,, where
the electronic energy is E.(R — oo0) ~ —0.125 a.u. after the dissosiation, and the proton
energy, from the spectrum is £, ~ 0.25 a.u. This gives us a total energy of E;, ~ 0.125
a.u. This is above the threshold for ionisation. If the electrons and protons could ex-
change energy after the pulse due to the non-BO coupling, a Coulomb explosion could
occur. The high proton energy may suggest that the nuclei are dissosiating so fast that
the electronic wavefunction does not have time to adjust adiabatically to the changes, as
the BO approximation assumes it does.

We wanted to test whether the approximation is justified or not. The WPI scenario was
run again with non-BO couplings included. The spectrum (Fig. 8.11) is subtly different
from the BO spectrum, however, it is not constant with time, i.e. it changes if the system

is propagated further in time after the pulse.
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Figure 8.11: The KER spectra for protons after the ionisation of H;’ by a laser pulse with frequency
w = 0.355 a.u. The non-BO spectrum will change with time in this basis, as demonstrated by
the difference in shape between the spectrum where the time propagation is stopped immediately

after the pulse, (red), and where the spectrum is propagated a few femtoseconds further, (cyan).

This problem occurs because we chose to do the analysis of the wavefunction in the
BO basis. These are not the real eigenfunctions of the system, and the couplings between
them do not disappear when R — oo. This can be shown, e.g. for the coupling between
the electronic states 1} and 12, corresponding to potential curves 1g and 3g. In the limit
R — o0, the molecular electronic states, 1! (x; R) will be linear combinations of hydrogen

atomic states, % (z = £). The three lowest states will be

o) = s ot (o 5) 4wt (- )]
e L Caa B C|

1| R R\’
o) == v (o4 F) + i (o= )|
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The main non-BO coupling between 12 and 1! is

0
(#ar| ), -

Sl (e D), e

Using the chain rule, the differensiation may be rewritten as
0 R 10 R
— + +-—— + —
oR (x 2) 2 0z <'” 2 )
when this is applied on Eq. (8.1) the problem may be reformulated as
L1 3 s R H1 R _
s (| [ (7)o (- 3)]), -

| #2) #0
€T T

1/ ,]0
§<wea

From parity considerations we know that this is an integral of an even integrand, and it

will in general not be zero.

0 5 10 15 20 25
R values - a.u.

Figure 8.12: The non-BO coupling between the 1g and the 3¢ potential curves,<1p}: ‘aiR| qu’)x The
coupling does not go toward zero for large R values.
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The same non-BO coupling calculated in our box, cf. Figure 8.12, shows no sign of
disappearing for large R values. One would want all couplings to vanish asymptotically,
as the atoms cannot perturb each other when infinitely far apart. We found the problem
mentioned in an article concerning collisions [43, pp 307-321]. The problem is that when
3%1/)6 (z; R) is calculated, x is held fixed with respect to the centre of mass reference frame,
rather than the reference frame of one of the nuclei. This leads to couplings of infinite
range. In order to do proper analysis of the non-BO effects, one needs non-BO eigenstates
with the correct asymptotic behaviour in the limit R — oo. Unforunately, solving the
problem is not trivial |43, pp 312-321]. Resolving this issue could not be done in the thesis
due to time concerns, but it is a natural choice for future work. To sum up, we have seen
evidence that the BO approximation might break down, but in order to analyse our results,
further work is needed.
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Chapter 9
Conclusion and outlook

In the course of this thesis we have developed and tested a one dimensional model of the
hydrogen molecular ion, Hf. In the first chapters we introduce the problem and some
necessary theory about quantum mechanics, lasers, molecules and the Born-Oppenheimer
approximation. In Chapter 4 we describe how to go from three dimensions to one dimen-
sion, and recount how additional steps were taken to improve the 1D model. In the next
chapters we outline the numerical methods and the actual implementation of the model,
before we in Chapter 7 and 8 describe how the model was tested against 3D simulations.
The REMPI scenarios modelled in Chapter 7 reproduced the energy spectra of the 3D
simulations well qualitatively, and the size of the results were of the same order. The
finely tuned WPI scenarios studied in Chapter 8 were reproduced, albeit for slightly dif-
ferent laser settings, making it hard to compare the quantitative agreement. In general
the model gives good qualitative results of comparable size to the 3D results. We ran
into trouble with the non-Born-Oppenheimer calculations, and the calculations concerning
such effects in this thesis should be considered as preliminary. To resolve the trouble, a
proper descriptions of the physical non-BO states were needed. This turned out to be
too extensive for the thesis, but solving the problem will be a natural continuation of this
work. Another natural next step is the parallelisation of our program. With relative ease
our code can be adapted to run on multiple processors. Setting up the Hamiltonian matrix
consists of doing a lot of independent operations, and the execution of the program may
be spread over many processors, thereby reducing the calculation time, and allowing us to
build a larger basis. Fitting the electronic energy curves to the curves from the 3D model
was a success. It would be interesting to try to extend this method to more electronic
energy curves. In order to tackle even larger problems, we may consider doing the entire

system propagation in the B-spline basis, rather than the eigenfunction basis. This would
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complicate the analysis afterwards, but it would also allow us to look at a wide range of

interesting problems.
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