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1 Abstract 
 
Atlantic cod (Gadus morhua) is known to grow large livers, especially farmed cod, but 

commercially, muscle growth is preferred, due to profits. Therefore, main focus in this 

feeding trial was to achieve lowered liver size, without compromising growth, feed utilization, 

digestibility of nutrients and elements, and maintain health. To accomplish this, indigestible 

fibre was used to dilute energy in feed. Atlantic cod were fed increasing α-cellulose inclusions 

(0, 6, 12 and 18%), in sustainable diets based on 50% plant ingredients (soy protein 

concentrate and wheat gluten) plus 50% fish meal as protein source (PP), or diets based on 

100% fish meal as protein source (FM). The initial average cod live weight was 138 g, and the 

feeding trial lasted for 14 weeks. 

 

Good growth and feed utilization were obtained in all diet groups. At the end of the feeding 

trial growth was equal in all diet groups, but feed intake was higher for cod fed α-cellulose. 

The similar energy intake, even though dietary energy concentrations differed, and the dietary 

digestible macro nutrients (protein/fat/carbohydrates) and protein to energy (PE) showed 

similar ratios, indicate that the cod adjusted its feed intake in accordance to both energy and 

protein amount. The liver index (HSI) was not affected by increased α-cellulose. Digestibility 

of fat decreased with increased α-cellulose, in disagreement with increased lipid efficiency 

ratio (LER). Digestibility of protein was not affected by α-cellulose. Dry matter digestibility 

decreased with increased α-cellulose, in accordance with increased dry matter in faeces. 

There were variation in element concentrations between plant based and fish meal based diets. 

Some element digestibility results were negative, which might be due to presence of elements 

in water, although the diet is the main source of elements for fish. Most element digestibility 

results were not affected by increased α-cellulose. Though, Mn and Ba digestibility increased 

with increased α-cellulose, for cod fed PP diets, but not FM diets. Cod health was good, and 

macro composition of whole body and liver was not affected by α-cellulose.  

 

Our study reports that it seems hard to manipulate energy deposition in cod, even when using 

α-cellulose as energy dilution in diets. Our results also show that cod tolerated up to 18% α-

cellulose inclusions, both in combination with FM and PP, and that the cod compensated by 

higher feed intake to satisfy its need for energy and protein. Although, cod fed 18% α-

cellulose had more faecal waste, which may be a local environmental challenge. 



  Introduction 

10 
 

2 Introduction 

 

 

2.1 General introduction  
 
 

2.1.1 Cod farming and feed resources 
Atlantic cod have historically been important for fisheries. Interest for cod farming rose in the 

late 90-ties when fisheries quotas dramatically decreased. However, today the north east 

Atlantic cod stocks have increased (Langaard et al., 2008), and the quotas increased 8% from 

2008 to 2009. Volumes of farmed cod are still low, nevertheless, cod farming competes with 

the global aquaculture industry for feed ingredients (Torrissen, 2008). Feed constitute 

approximately 60-80% of the operational costs in global intensive aquaculture (FAO, 2006), 

partly due to expensive marine feed ingredients (fish meal and fish oil). In addition, wild fish 

is exploited to the maximum for most species, and thereby marine ingredients are resources 

that will not increase. Cod need a diet high in protein, and low in fat and carbohydrates. 

According to Rosenlund et al. (2004) cod feed should contain 50-60% protein, 13-20% fat 

and less than 15% digestible carbohydrates (based on dry weight), to maintain good growth, 

and relative low liver size (<12%). Though, the nutrient requirement differs some with the 

cod’s life stage. Protein in cod diets has until recently been based on expensive high quality 

fish meal, which has not been a sustainable feed. Cod farming is expected to increase about 

17 % annually, which predicts a production of 50 000 cod in 2017 (Torrissen, 2008). World 

aquaculture in 2004 produced 46 million tonnes in total for all species. To keep up current 

level of seafood consumption per capita it is estimated that aquaculture needs to reach 80 

million tonnes world wide by 2050 (FAO, 2006). Therefore, even more sustainable feed 

ingredients should be used in fish farming. Plant feed ingredients are available at low prices in 

large quantities, but do not meet the nutrient requirement in the same manner as marine 

ingredients. Plant ingredients e.g. contain anti nutrients, and have more carbohydrates and 

indigestible components than fish meal (Francis et al., 2001). Increases of these components 

may have negative effects on feed utilization. If more alternative ingredients shall be used, it 

has to be without considerable adverse effects on fish performance and health. 
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2.1.2 Cod gut waste and liver size 

Remnants (gut waste, head, skin and bones) in cod production today constitute up to 60% of 

produced biomass (Hansen and Kjerstad, 2008), and the liver is a considerable amount of the 

gut waste. Farmed cod livers are mostly found to be larger than wild cod livers (Jobling, 

1988; Grant et al., 1998; Gildberg, 2004; Mørkøre, 2005). The market value for cod liver is 

not as high as the market value for cod muscle, therefore it is desirable that cod use protein for 

muscle growth and reduce liver growth. Liver size can be reduced by starvation (Hemre et al., 

1992; Jobling et al., 1994; Karlsen et al., 1994) and lower feeding frequencies (Dos Santos et 

al., 1993). To reduce feeding to near starvation will result in reduced muscle growth, which 

will not be economically for the farmer. For Atlantic salmon (Salmo salar) energy dense 

diets, up to a certain level, have resulted in good growth and feed utilization (Hemre and 

Sandnes, 1999). The same strategy will however not function for cod, as this species stores all 

surplus energy in the liver. Researchers have shown that a high fat content in cod feed gives 

enlarged liver (1986; Lie et al., 1988; Jobling et al., 1991; Hemre et al., 1992; Jobling et al., 

1994; Morais et al., 2001; Rosenlund et al., 2004; Karlsen et al., 2006). Also increased 

dietary starch seems to increase fat and glycogen deposition in liver (Hemre et al., 1989). The 

fact that high energy diets increase liver size is in agreement with liver size being reduced by 

using diets high in protein and low in energy (Rosenlund et al. 2004).  

 

Muscle growth is probably driven by protein amount and composition (Hemre et al., 1989; 

Karlsen et al., 2006). The small amount of fat that is found in cod muscle is mostly membrane 

lipids (Lie, 1991). However, all metabolic mechanisms and growth demands energy, meaning 

that a proper protein to energy (PE) balance in the feed is needed, to avoid loss of body mass. 

Experiments with feed based on fish meal and fish oil in different amounts gave varying liver 

growth in cod, and it was indicated that to hold liver growth around 10-12% the relationship 

between protein to energy should be around 3 to 1 (Rosenlund et al., 2004). This diet only 

functioned partly in big scale. Therefore, a new strategy was needed to better predict liver 

growth compared to muscle growth, especially since high quality ingredients were used in 

that experiment.  
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2.1.3 Cod feed utilization 

Atlantic cod is an epibenthic-pelagic (Agbayani, 2001) and opportunistic species. Hence, in 

nature cod feed on a variety of fish and invertebrates from pelagic and benthic depending on 

which feed is accessible, the cod’s life stage, location, spawning success of the prey and 

seasonal variations (Link and Almeida, 2000; Orlova et al., 2005). In pelagic zones, cod feed 

on animals like capelin, herring, polar cod and crustaceans. While in benthic zones, the diet 

can consist of worms, molluscs, echinoderms and cructaceans. Thus the Atlantic cod is used 

to a variable diet in nature, and in addition does e.g. crustaceans and molluscs contain large 

amount of carbohydrates (chitin and glycogen). This could be why farmed cod show a high 

tolerance to plant ingredients (Albrektsen et al., 2006; Hansen et al., 2006; Refstie et al., 

2006a). The cod’s natural prey does of course not contain same types of carbohydrates as 

plants. Anyway, experiments show that it is possible to include up to 50% plant protein in cod 

feed (Hansen et al., 2007b) without any major adverse effects on growth and feed utilisation. 

But not without limitations, because there was a diarrhoea like condition in cod fed 100 % 

plant protein (Olsen et al., 2007). However, digestion of starch in cod depends on amount 

consumed, source and physical state of the starch (Hemre et al., 1990). Further, plant 

ingredients can create problems related to other components, especially the anti nutrients and 

fibres might inhibit digestion of nutrients.  

 

Cod probably tolerate plant material in the diet better than salmonid species. In experiments 

with salmon elucidating the effect of soybean meal inclusions, there were found severe 

changes in the gastrointestinal tract (GIT) (Van Den Ingh et al., 1991; Francis et al., 2001; 

Krogdahl et al., 2003). Plant protein diets gave no detectable enteritis changes in cod intestine 

(Hansen et al., 2006; Refstie et al., 2006b; Olsen et al., 2007), plus there were found a 

significant number of bacteria in the lower intestinal tract. It was speculated if bacteria may 

have a digestive function and maybe explain why no enteritis changes were observed. 

Herbivore fish have caecal pouches for microbial digestion, and Seppola et al. (2006) found 

similar distal fermentation chambers in cod. Atlantic cod were found to compensate the high 

anti nutrient and fibre contents in diets by increasing feed intake and growth of the intestines 

to keep good somatic growth (Refstie et al., 2006a; Hansen et al., 2007a). Ergo, growth was 

not reduced even though it resulted in lower feed utilization and protein retention. In 

accordance with the idea that protein growth in animals most likely is regulated through 

control of food intake (Webster, 1993; Jobling et al., 1994), but energy may be consumed in 
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excess, that means that fat deposition is much less strictly regulated. Based on the appearance 

and function of the cod GIT, it is classified among the omnivorous species. Intestine bacteria, 

larger intestines and more carbohydrate digesting enzymes are probably major reasons why 

herbivorous and omnivorous tolerates plant ingredients better than carnivorous. Experiments 

with cod have shown that there is no gain in exceeding one large meal every 24 hour (Hansen 

et al., 2006). Atlantic cod have a flexible gastro intestinal tract (GIT), which can be filled to 

huge volumes when feeding frequencies are low, hence cod will maintain good somatic 

growth and liver growth (Jobling et al., 1994). That could be why a specific strategy to 

manipulate the energy deposit in cod, with non-digestible fibre in feed, might lead to success. 

 

 

2.1.4 Energy dilution of feed 

Low energy fish diets are observed to result in quicker return of appetite than a energy dense 

diets (Jobling et al., 1991; Jobling and Hjelmeland, 1992). This means that fish eat more if the 

feed have less energy. Fish regulates feed intake closely connected to the PE ratio in the diet, 

pointing to the importance of balancing both protein and energy. With a too low protein 

compared to energy content, muscle growth will be reduced and fat deposits can increase 

(Einen, 2001). Though, with a too high PE, some protein will be directed towards energy in 

metabolic processes, instead of being used for muscle growth.  

 

Energy diluting with bone meal and crab by-products in feed is previously investigated with 

cod, giving increased feed intake and growth (Toppe et al., 2006), although there was no 

effect on the liver index (HSI). However, studies with cellulose as indigestible bulk fillers are 

performed on other fish species. Cellulose inclusions up to 20% in feeds for European seabass 

(Dicentrarchus labrax) did not affect growth performance, but feed intake increased and HSI 

tended to decrease (Dias et al., 1998). Rainbow trout (Salmo gairdnerii) fed up to 30% 

cellulose also increased feed intake to maintain growth (Bromley and Adkins, 1984). In 

another trial with rainbow trout (Oncorhynchus mykiss), up to 15% dietary cellulose did not 

affect growth, feed intake, apparent digestibility of crude protein, crude fat, total starch or ash 

(Hansen and Storebakken, 2007). Red drum (Sciaenops ocellatus) with 20% cellulose 

inclusions showed low fat deposition compared to red drum fed less cellulose, which may 

indicate that excess energy resulted in fat deposition (Turano et al., 2002). However, HSI, dry 

matter or protein were not significantly affected. Experiments with tilapia (Oreochromis 
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niloticus) have shown that cellulose inclusions up to 9% may improve growth performance, 

FCR and PER, and produce leaner fish compared to fish without cellulose inclusions (Al-

Ogaily, 1996). Although other studies with 10% and 20% cellulose for rainbow trout (Salmo 

gairdnerii) and tilapia (Oreochromis mossambicus), reported growth depression and reduction 

of feed intake (Hilton et al., 1983; Dioundick and Stom, 1990).  

 

The idea behind energy dilution has however its history from studies with fast growing broiler 

chicken. Therefore some background about fibre in broiler chicken diets is included. Soluble 

fibre in mammals and poultry tend to increase digesta viscosity and retard absorption of 

nutrients (Krogdahl et al., 2005), while insoluble fibre tend to increase digesta transit, 

resulting in reduced absorption time. In experiments with broiler chickens some dietary NSP 

(non starch polysaccharides) increased digestion viscosity and reduced performance (Razdan 

et al., 1997; Jozefiak et al., 2004). Digestibility of protein and fat has also shown to be 

reduced with increased NSP content (Smits et al., 2000; Saki and Alipana, 2005). Availability 

of some minerals were also affected by high dietary viscosity (Mohanna et al., 1999). Smits et 

al. (2000) implied that if the viscous properties of NSP were eliminated in broiler chicken 

feed then the nutrient value of some fats would be improved. Jozefiak et al. (2004) found that 

it was likely not total NSP that influenced intestinal viscosity in broiler chickens, but the NSP 

type. In addition maybe enzyme supplementation, since diets with viscous components and 

microbial enzymes probably prevented formation of viscous chyme. Chickens fed more fibre 

increased length and weight of GIT (Jorgensen et al., 1996; Saki and Alipana, 2005), and feed 

intake increased. NSP explained 86-96% of the metabolic energy variation in feed (Jorgensen 

et al., 1996), which indicate that NSP is a good predictor of dietary energy content. Increasing 

raw fibre in feed reduced metabolic energy per metabolic weight unit, and chickens retained 

more energy as body protein and consequently less as body fat.  

 

NSP in diets for broilers and some fish species shows that there are both positive and negative 

effects, depending on type and amount of NSP. With correct NSP we could perhaps reduce 

energy deposition in cod too. Adding inert fillers in feed will keep PE ratio constant, but by 

dilution, the proportion of individual nutrients and energy will be lowered. The indigestible 

cellulose we added as an energy dilution agent in the feed in this master study is claimed to be 

inert, and to result in no gut damage, at least in broilers. Therefore, the need to elucidate how 

it affected nutrient availability for cod, or resulted in gut damage or not, and how it affected 

liver growth, were urgent. 
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2.2 Feed components 

 

 

 

2.2.1 Plant ingredients  

Plant ingredients often have high carbohydrate levels, are imbalanced in essential amino acid 

compositions, lack several of the essential long chain fatty acids and other important nutrients 

such as phosphorus, contribute with a high content of non digestible components and anti 

nutrients (Francis et al., 2001). This increase of possible negative components and lack of 

essential components may have negative effects on energy utilization, digestion viscosity, 

nutrient digestion, and secondary metabolic responses. Anti nutrients present in soybean meal 

are; protease inhibitors, lectins, phytic acid, saponins, phytoestrogens, anti vitamins, allergens 

and fibres. Protease inhibitors and lectins affect protein digestion and utilization. There are 

processing techniques that can reduce damaging effects from anti nutrients in feed, such as 

dry and wet heating, solvent extraction and enzyme treatment. This has to be done with 

caution, since the treatment can alter important feed nutrients too.  

 

Soy protein concentrate (SPC) was used in the present master thesis and this SPC is specially 

designed for the animal feed industry (Appendix 1, Figure 9.4 and 9.5), and contain 65% 

crude protein. In other trials with dietary SPC, it is found to have no negative effects on feed 

utilization and digestion, in certain concentrations, for salmon (Refstie et al., 1998) and cod 

(Hansen et al., 2006). This is due to the production process for SPC, which inactivates anti 

nutritional factors and removes soluble carbohydrates; hence the soy protein becomes highly 

digestible. Anyway, there is some trypsin inhibitor activity and antigen activity in this SPC, 

and for example, phytic acid can inhibit trypsin activity in salmon (Denstadli et al., 2006). 

However, Francis et al. (2001) reported that protease inhibitors, phytates and antigens at 

normal levels in fish diets were unlikely to affect growth performance, but soluble NSP and 

saponins seem to be more important to be aware of in practical aquaculture nutrition. 

Compared to fish meal the amino acid profile of soy protein is quite well balanced (Dersjant-

Li, 2002), but soy protein concentrate contain less methionine and lysine compared to fish 

meal, so crystalline amino acids were added to meet requirements by NRC (1993). Wheat 

gluten was also added as a protein source in the feed in the present trial (Appendix 1, Figure 



  Introduction 

16 
 

9.6 and 9.7.), and wheat gluten has high protein content (80%). Hansen et al. (2006; 2007a) 

found that SPC combined with wheat gluten has better feed utilization and digestibility than 

other plant sources used in their cod diets, that is why these ingredients are used in the present 

trial. Wheat was added in all diets, as a binding agent in pellets. The indigestible fibre 

Vitacel® R 200 was added as the energy diluter of the feed (Appendix 1, Figure 9.1., 9.2. and 

9.3.). Vitalcel is a highly purified powdered α-cellulose (99.5% cellulose), and claims to give 

optimal effects on intestinal flora, better feed conversion ratios, increased protein digestibility, 

lower mortalities, less diarrhoea diseases, better vitality and healthiness of the animal 

populations. However, this is at low inclusion levels (0.35-2.0%), and Vitacel has not been 

tried in cod diets before. 

 

 

 

2.2.2 Fibre 
Fibres, sugars, starch and glycogen are carbohydrates (Coultate, 2002). Carbohydrates are 

normally added in small amounts in fish feed, for energy and as binding agents (in pellets), 

and are reported to have protein sparing effect (Hemre et al., 1995). Carbohydrates in fish 

feed mostly come from plants, since fish is low in glycogen. Cellulose, hemi-cellulose, lignin, 

gums, seaweed polysaccharides, pectin, resistant starch and inulin are different fibre types 

(Coultate, 2002). Bindings between fibre units are strong, often linked as β-linkages, and 

therefore not available for intestinal enzymes (Hemre, 2001). Fibres can be characterised by 

not being broken down by digestive enzymes in the small intestine of mammals (Burkitt, 

1979). Although, most fibres are partly broken down by bacteria in the large intestine of 

omnivores, such as humans, and maybe cod (Hansen et al., 2006). Colon bacteria ferment 

sugar to get energy for growth giving many types of end products, which can be absorbed by 

the host. Different plant sources can have different types and amounts of fibre, therefore it is 

important to know which carbohydrate types that are present in the plant feed ingredients and 

how these interact, before adding them to fish feed.  

 

All fibres (except lignin) are polysaccharides, which can be classified into soluble and 

insoluble fibres. Pectin and gum are soluble, hemi-cellulose is partly soluble and cellulose is 

insoluble. Cellulose is an important component of all plant cell walls, and is built up by at 

least 3000 β-D-glucopyranose units (a sugar), which are linked together by β-1,4-glycosidic 
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linkages, and strong hydrogen bindings (Coultate, 2002), illustrated in Figure 2.2.1. Chitin, (a 

polysaccharide, found in e.g. crustaceans) is similar to cellulose (Campbell and Farrel, 2006). 

Chitin has the same bindings (β-1,4-glycosidic) as cellulose, and chitin may be described as 

cellulose with one hydroxyl group on each monomer (N-acetyl-β-D-glucosamine).  

 

 

Figure 2.2.1. Cellulose chair structure, β-D-glucopyranoses with 1-4 glycosidic bonds and 
hydrogen bonds (Coultate, 2002). 
 

Glucopyranose units are arranged in linear molecules and cellulose molecules form 

microfibrils in plant tissues. This is a stable and ordered structure which gives cellulose 

strength to be insoluble. Herbivore animals can to some extent utilize cellulose, because they 

have specialized microorganisms in parts of their digestion system (Burkitt, 1979; Coultate, 

2002). These microorganisms can secrete enzymes which can hydrolyse cellulose and release 

free glucose. Further, the microorganisms get energy from fermenting glucose to short chain 

fatty acids, for example butyric acid, which can be absorbed and utilised by animals. Anyway, 

cellulose digestion is a slow process, and this is probably why herbivores have such a large 

GIT, compared to carnivores.  

 

Diets high in fibre give health benefits for humans, for example lower number of bowel 

disorders (Burkitt, 1979; Coultate, 2002). Fibre improves the musculature of the gut wall, 

reduces the time potentially carcinogens spend in the bowel, and it is indicated by research 

that dietary fibre is probably good for more. Still, one should be careful to regard high fibre 

intake as only beneficial, because, for example phytic acids can complex divalent cations and 

cause calcium deficiencies. Furthermore, NSP might act as an anti nutrient, by reducing 

utilization of other nutrients rather than supplying nutrients (Krogdahl et al., 2005). However, 

there is little information about anti nutritional factors of NSP in fish.  

 

 



  Introduction 

18 
 

2.2.3 Elements 

When replacing fish meal with plant ingredients it is important to also consider utilization of 

essential elements/minerals (Storebakken et al., 2000b). There are essential and non essential 

minerals (Lorentzen et al., 2001). Essential electrolytes are important for the fluid balance in 

fish (sodium (Na), potassium (K) and chlorine (Cl)). Essential bone minerals are calcium 

(Ca), phosphorus (P), magnesium (Mg) and sulphur (S). Essential trace elements are arsenic 

(As), zink (Zn), iron (Fe), manganese (Mn), copper (Cu), iodine (I), selenium (Se), fluorine 

(F), chromium (Cr), cobalt (Co), molybdenum (Mo), vanadium (V), silicon (Si), nickel (Ni) 

and tin (Sn). Some non essential elements, as the heavy metals arsenic (As), cadmium (Cd), 

lead (Pb) and mercury (Hg), can be very toxic. However, almost all minerals can be toxic with 

a too high intake. Therefore, the requirement and upper limit of minerals need to be 

determined. Trace elements are needed in smaller amounts than electrolytes and bone 

minerals. There is not total agreement about which minerals that should be considered 

essential, but it is mostly agreed that if a deficiency can be proven when the mineral is left out 

of the diet and that the symptoms disappears when the mineral is supplied again, then the 

mineral is essential. Deficiencies in fish can be reduced growth, poor feed utilization, reduced 

appetite, cataract, decreased mineralization of bones, etc. Knowledge still lacks about 

essential minerals, especially in fish. Though, essential minerals described for other animals 

may also be important for fish, 7 macro minerals and 16 trace minerals have been 

demonstrated as essential in 1 or more animal species (Davis and Gatlin, 1996). Knowledge 

about trace elements in fish are mainly limited to Fe, Cu, Mn, Zn and Se (Davis and Gatlin, 

1996; Watanbe et al., 1997), the fish requirement for these, Co and I is listed in Table 2.2.1. 

 

Table 2.2.1. Fish requirement ranges for the trace elements; iron, copper, manganese, zinc, 
cobalt, selenium and iodine. The table is copied from Watanbe et al. (1997). 

 

Water is an important source for many minerals, e.g. Ca, Mg, Na, Fe, Zn, Cu, I, Se (Lorentzen 

et al., 2001), which is also observed in experiments with both cod and salmon (Lied et al., 
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1982; Storebakken et al., 1998b; Ward et al., 2005). Fish may absorb minerals with gills and 

intestine, however, the diet is the main source (Lall and Bishop, 1977). The mineral content in 

sea water is quite constant, and fish drink water as a part of their osmoregulation. To keep 

homeostasis of minerals, the fish have regulating mechanisms, either absorption gradients 

dependent on need (e.g. Cu, Zn, Fe) or a constantly high absorption with secretion of excess 

minerals (e.g. Se, I). Absorption regulation of Fe, Zn and Cu, mainly take place in the 

intestine. Ions from these metals are first transported through microvillis into the intestinal 

cell, where they are bound to specific intracellular carrier proteins, and transferred over the 

basal membrane into the blood.  

 

Bioavailability of nutrients in feeds is defined as the nutrient part that is digested, absorbed 

and enters the biologic system or nutrient storage in fish. Absorption of minerals can have 

huge variations, depending on which chemical state the minerals are in, inside the intestine. 

Interactions with other feed ingredients also affect element availability (Hilton, 1989). 

Therefore, feed ingredient types used will influence the need for adding extra minerals to the 

diet. Element absorption also differs among species, e.g. coho salmon (Oncorhynchus kisutch) 

and rainbow trout (Oncorhynchus mykiss) examined by Sugiura et al. (1998). A high 

bioavailability is reckoned as good for essential minerals, because less is needed to cover the 

requirement. Also, a low content and high utilization will reduce the mineral stream through 

fish, which is environmentally friendly. For toxic minerals, low bioavailability is an 

advantage, and of course a low content in diets. To determine digestibility of various trace 

elements (Al, As, Co, Mo, Se, Sn) have been found difficult, in salmon (Ward et al., 2005), 

due to too low concentrations to provide accurate information. In addition some digestibility 

results often provided negative, probably due to presence of these elements in the water. 

Digestibility of Mn and Zn in cod is found to have no significant difference between diets 

with soy bean meal and fish meal (Førde-Skjærvik et al., 2006).  

 

Essential trace elements analysed in this master thesis are Co, Cu, Fe, Mn, Mo, Se, Sn, V and 

Zn. Other elements analysed are strontium (Sr), silver (Ag) and barium (Ba). Heavy metals 

analysed are As, Cd, Pb and Hg. Therefore some background information about these 

elements is included in the two following headlines; essential elements and undesirable 

elements. As is listed as both a heavy metal and an essential element; here it is listed as an 

undesirable, as only total As is determined, while the possible essential As form is 

arsenobetaine (Amlund et al., 2006). 
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2.2.4 Essential elements 
Zn is the trace element that is most abundant in fish; it exists in all organs and tissues 

(Watanbe et al., 1997; Lorentzen et al., 2001). In biologic systems Zn appears as a divalent 

ion, which easy forms complexes with amino acids, peptides and proteins. Zn is a part of the 

metabolism of proteins, carbohydrates and nucleic acids, regulates synthesis of protein and is 

a specific cofactor of several enzymes. Fish utilize Zn from both feed and water, but from 

feed seems to be better utilized. Deficiencies of Zn can give low digestibility of protein and 

carbohydrates, fin damage and cataract. In addition, Zn separates from the other elements 

with reduced growth as an early sign of deficiency. This is probably due to Zn not having 

easy turnover storages in the body and that Zn is a part of functions that directly control the 

protein synthesis, ergo the growth. Adding Zn above the minimum limit seems to be 

necessary in fish meal based diets, since a high content of bone minerals (Ca and P) inhibit Zn 

absorption (Watanbe et al., 1997; Lorentzen and Maage, 1999). Plant ingredients like soybean 

meal can also reduce Zn absorption (and other divalent minerals). Studies with salmon show 

that increased amounts of phytic acid inhibits Zn absorption (Storebakken et al., 2000b; 

Denstadli et al., 2006). 

 

Mn is important in functions of many enzymes (Lorentzen et al., 2001), e.g. enzymes in the 

mitochondria, which take part in the metabolism of fat, carbohydrates and protein. Absorption 

from water is not likely, since the Mn content in seawater is very low (Davis and Gatlin, 

1996). In addition, bioavailability of Mn from fish meal is uncertain (Lorentzen et al., 1996), 

hence, it should be added in feed. Mn has a huge safety range in salmon, meaning that it can 

be added in excess, without severe effects. Absorption of Mn is hard to determine, 

considering that a large part of Mn in the faeces is likely to be endogenic Mn from bile. 

Deficiency of Mn leads to weight reduction, deformities, etc. High dietary Ca an P can reduce 

absorption of Mn (Watanbe et al., 1997).  

 

Fe exist in all cells, and is normally bound to proteins (Davis and Gatlin, 1996; Watanbe et 

al., 1997; Lorentzen et al., 2001), and homeostasis of Fe is controlled by intestinal absorption. 

Most Fe in fish and animals exist as haem-Fe, and the bioavailability of haem-Fe is higher 

than non-haem-Fe, in salmon (Andersen et al., 1997). Fe is abundant in many foodstuffs, in 

animals as well as plants, however, haem-Fe in e.g. myoglobin from meat or fish is better 

absorbed than Fe from plant feeds (Coultate, 2002). Bone minerals in fish meal inhibit 
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absorption of both haem-Fe and non-haem-Fe, in salmon (Lorentzen and Maage, 1999). 

Reduced haemoglobin concentration is the most known sign of Fe deficiency. 

 

Cu is essential for many functions studied in mammals, it is a part of several proteins and it is 

necessary for optimal function of the immune system (Watanbe et al., 1997; Lorentzen et al., 

2001), and deficiency of Cu has led to reduced growth. Absorption of Cu is thought to be well 

regulated in fish (Berntssen et al., 2000), because absorption of Cu decreases with increasing 

Cu in feed for salmon. The intestine is important in regulating Cu homeostasis in fish, and 

high retention of Cu, from feed in to the intestinal tissue, leads to increased apoptosis in 

intestinal cells. Availability of Cu depends on the physiological state of the animal and 

amount of metabolic antagonists of Cu (e.g. Zn, Fe, Cd, Mo), competing for binding sites on 

proteins responsible for mineral absorption and/or synthesis of enzymes, however details in 

fish are little known. 

 

Se is an important component in enzymes, anti-oxidant functions and is a part of the 

metabolism of I (Watanbe et al., 1997; Lorentzen et al., 2001). Fish absorb Se from both 

water and diet, and high levels can be toxic and the safety range is narrow. Deficiencies of Se 

can give reduced growth, increased mortality, etc. A feed with more than 30% fish meal will 

in theory cover the Se requirement for rainbow trout (Oncorhynchus mykiss) (NRC, 1993). 

However, the feed might contain components which may reduce the Se bioavailability.  

 

Co is a component of cyanocobalamin (vitamin B12) which is a conenzyme for enzymes 

associated with synthesis of haemoglobin and muscle protein. Therefore, dietary Co is 

essential for growth and haematology in fish (Watanbe et al., 1997). Co can be absorbed from 

the diet and from surrounding water.  

 

Knowledge about other essential minerals as Mo, V and Sn is limited (Watanbe et al., 1997; 

Das, 2000). Deficiencies are demonstrated in mammals, although, studies in fish are not 

performed (Lorentzen et al., 2001).  
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2.2.5 Undesirable elements 
As is found in most marine organisms (Lorentzen et al., 2001; Coultate, 2002). Accumulation 

of As increases with increasing salinity, and As can damage fat and carbohydrate metabolism. 

Toxicity of As depends on chemical state and valence. Marine organisms mostly contain 

organic pentavalent As (arsenobetaine), which is stable and less toxic than trivalent As. 

Arsenobetaine is possible essential for fish, according to studies with salmon and cod 

(Amlund et al., 2006). Cd contamination mostly comes from industrial pollution 

(Baldisseretto et al., 2005), and contaminated food in water is a more important source than 

water itself. Absorption of Cd increases when the dietary concentration is low (Harrison and 

Jefferson, 1992), and Cd is accumulated in the kidney, liver and intestines (Berntssen et al., 

2000). Damage from Cd can be increased stress hormones and reduced carbohydrate 

metabolism. Elevated dietary Ca can protect against dietary and waterborne Cd uptake in 

rainbow trout (Baldisseretto et al., 2005).  

 

Hg occurs in different forms; free metal (Hg0), inorganic Hg (Hg2+), salts, and alkyl-Hg 

compounds (Coultate, 2002), these forms have very different toxicity and metabolism. 

Organic compounds of Hg and Hg salts are most hazardous. Alkyl-Hg compounds mostly 

come from industrial pollution. Methyl-Hg will accumulate to dangerous levels, even though 

if the pollutant is inorganic Hg salt or the free metal (by anaerobic methane producing 

bacteria in sediments). Hg biomagnifies up marine food chains, since predatory fish can 

accumulate Hg (Morel et al., 1998). Cod is found to readily absorb dietary methyl-Hg 

(Amlund et al., 2007). Pb is less toxic to marine organisms compared to other metals, 

however, fish contain low amounts of Pb (NIFES, 2009). Organic compounds of Pb are most 

toxic, but most Pb compounds have very low water solubility, which is the major factor for 

the poor absorption of Pb from the gastrointestinal tract in humans (Coultate, 2002). Though, 

Pb can inhibit the formation of haemoglobin. Absorption of Pb increases when the Ca 

concentration in feed is low and Pb is mainly accumulated in bone tissue.  

 

Ba, Sr and Ag are not found to be vital for fish or other animals, therefore are they assumed to 

be toxic or at least non essential for fish, although reports of this are not found, so they could 

be essential in small amounts. Concentrations of Ba in otoliths, are one of more element 

concentrations used as identification to locate cod nursery areas (Gibb et al., 2007). Toxicity 

of Ag occurs mainly in aqueous phase, depending on concentration and form (Ratte, 1999). Sr 

and Ag are little studied elements in marine biological samples (Ratte, 1999; Das, 2000).  
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2.3 The digestive system and health 

 

 

2.3.1 The digestive system 

Nutrients are digested and absorbed in the gastrointestinal tract (GIT) of fish (Buddington et 

al., 1997). The GIT also have many other functions; important for the water and electrolyte 

balance, a source of hormones which regulate digestion and metabolic processes, and a part of 

the immune defence. Figure 2.3.1. show some parts of the GIT for a juvenile cod.  

 

 

Figure 2.3.1. Stomach (ST), pyloric caeca (PC), intestine (I), distal chamber (DC) and liver 
(L) to a juvenile cod about 100 g and 20 cm long (Austevoll 10.10.07). 
 

The GIT starts with throat (pharynx), gill opening and gullet (oesophagus) which lead food to 

the stomach (Bishop and Odense, 1966; Jobling and Hjelmeland, 1992; Kryvi and Totland, 

1997). Below oesophagus lies the stomach and intestinal system fastened with a thin 

transparent membrane. Cod have a curved stomach, and the stomach “stores” feed and starts 

the digestive processes. The stomach surface area consists of mucosa cells and one cell type 

which secretes pro-forms of pepsin and hydrochloric acid (HCl). Pepsinogen is activated into 

pepsin when the pH is below 6. Hydrogen ions (H+) and chloride ions (Cl-) are formed to HCl 

in the stomach. Pylorus is in the end of the stomach, and the pyloric sphincter empties 

stomach contents in portions into the intestine. Cod have a high number (~700) of narrow 

pyloric caeca situated in a short section in the intestine right after the pyloric sphincter 

(Refstie et al., 2006b). Pyloric caecas increase absorptive surface area in the intestine 

(Buddington et al., 1997). In addition, folds and villis in the intestine mucosa also increase the 

intestine surface. The intestines main function is enzymatic hydrolysis and food absorption 
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(Jobling and Hjelmeland, 1992). At the end of the intestine, the distal chamber has a clear 

separation from the intestine, with a clear thickening of the mucosal wall, and the distal 

chamber ends in anus. The liver lies in front of the lumen and produces bile and stores fat and 

glycogen as energy reserves. Bile is stored in the gall bladder, close to pylorus and the 

intestine, and enters in the intestine close to the pyloric caecas. Pancreas lies between the 

pyloric caecas, and secretes digestive enzymes in to the intestine.  

 

 

2.3.2 Digestion of nutrients 
Protein and carbohydrates are hydrolysed by enzymes secreted from pancreas. Protein 

digestion starts with denaturation and pepsin action in the stomach, continuing in the intestine 

by the action of trypsin and various peptidases. There are specific enzymes for different 

carbohydrates and proteins. This hydrolysing process gives peptides and oligosaccharides, 

which are further hydrolysed to amino acids and sugars, which are transported into 

enterocytes. In carnivorous fish, protease activity is likely to be connected to diet composition 

(Buddington et al., 1997). However, carbohydrase appears to be genetically low. That is why 

a too high amount of starch will affect digestion negatively (Hemre, 2001). Digestion of 

carbohydrates varies between types of meal used (different meals contain different sugars and 

bindings of these), molecule size, amount of carbohydrates, carbohydrate types, fish species, 

life stadium, temperature and feed intake. Most fish have the enzyme amylase, a starch 

digesting enzyme (Jobling and Hjelmeland, 1992). Fish secrete chitinase, but it seems like 

most chitin digesting enzyme activity comes from intestinal bacteria. Chitinase activity in 

Atlantic cod reaches a peak when it feeds on crustaceans, a big part of this is probably 

because of high chitinase and chitin concentrations in the prey (Krogdahl et al., 2005). 

Digestion of carbohydrates in fish have been extensively researched, but the information 

about processes in carbohydrate digestion and absorption is still not fully understood for any 

species in aquaculture production (Krogdahl et al., 2005). Amino acids in cod are mainly 

absorbed in the pyloric caeca and intestine, but absorption continues along the entire intestinal 

tract (Lied et al., 1982; Lied and Solbakken, 1984). Digestion of lipids starts in the pyloric 

caeca and intestine. Bile emulsifies lipid to micelles, so the lipids get more available for 

enzymatic cleavage. Then fatty acids can be absorbed into enterocytes. 
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2.3.3 Fibre; a digesting inhibitor? 

Fibres are not broken down by digestion enzymes in the first part of the intestine, but are 

partly hydrolysed by bacteria in the last part of the intestine of omnivores. E.g. cellulose is 

practically indigestible for most fish, and generally it is believed that most cellulose digesting 

activity (cellulase) in fish intestine come from bacteria. Though, whether cellulase have 

endogenous or exogenous origin is still discussed (Krogdahl et al., 2005). Soluble fibre 

thickens water layers in the intestine, which reduce absorption of water soluble nutrients 

(Figure 2.3.2.) (Hemre, 2001). Further, soluble fibre can disturb digestive enzymes, which 

results in reduced digestion of carbohydrates and protein. In addition, soluble fibre can break 

micelles which are necessary for good fat absorption (Krogdahl et al., 2005). In tilapia 

(Oreochromis niloticus), soluble fibre has caused diarrhoea like faeces, in contrast to the 

insoluble fibre which enhanced faeces stability (Amirkolaie et al., 2005). Due to these 

negative effects from soluble fibre, the amount used in feed binders is kept to a minimum. 

Insoluble fibres increase feed flow rate through the intestine (Hemre, 2001), and fish get less 

time to digest nutrients. This further confirms that too much fibre is preferred to be avoided.  

 
Figure 2.3.2. Fibre interacting with nutrients in fish intestine, copied from Hemre (2001). 
 

Feed utilization in salmon was reduced with high dietary carbohydrate inclusion (Hemre et 

al., 1989; Hemre et al., 1995), indicating negative influence from undigested starch, since 

excess starch probably behaved like indigestible fibre in the intestine. Soluble fibre in diets 

for tilapia increased digestion viscosity, reduced growth and digestibility of protein, fat and 

starch (Amirkolaie et al., 2005). In contrast, moderate dietary cellulose did not affect digesta 

viscosity, growth and digestibility. In addition, when cellulose plus the soluble fibre were 

added in feeds, it seemed like cellulose alleviated negative effects from the soluble fibre. 

Experiments with both salmon and chicken found that some soybean products can negatively 

affect digestion (Refstie et al., 1999). This could be due to anti nutritional effects from NSP, 

which cause high viscosity in chicken guts, and increased water content in salmon guts. 



  Introduction 

26 
 

2.3.5 Health parameters 

Haematocrit (Hct), red blood cell count (RBC) and haemoglobin (Hb) are haematological 

parameters that are important when evaluating fish health (Sandnes et al., 1986; 1988; 

Waagbø, 2001). Low values of haematological parameters probably indicate anaemia. 

Anaemia is a symptom that occurs in many diseases; from nutritional, parasite, environmental 

stress, environmental pollution, viral or bacterial origin. This means that irregularities in fish 

health are likely to be detected with haematological analyses, but not the cause. Although, 

mean cell volume (MCV), mean cell haemoglobin (MCH) and mean cell haemoglobin 

concentration (MCHC) in combination with Hb, RBC and Hct give valuable information on 

diagnostics of the origin of the anaemia. Haematological parameters in fish vary depending on 

seasonal variations, water temperature, age, nutrition (Sandnes et al., 1988; Waagbø, 1999) 

and maturation. Therefore it may be hard to control if haematological parameters are normal 

or not. Anyway, there are haematological values found in cod experiments (Lie et al., 1990; 

Hemre et al., 2002; Rosenlund et al., 2004; Olsen et al., 2007), to compare our results with.  

 

Aspartate aminotransferase (ASAT) and alanine amintransferase (ALAT) normally occur in 

low levels in blood plasma (Racicot et al., 1975). ASAT and ALAT are non plasma organ 

specific enzymes, which are used as indicators for organ damage. When cell membranes are 

intact, these enzymes are found in low concentrations in plasma. When there is cell damage, 

enzyme activity increases in the blood plasma. Determination of these enzymes is efficient in 

diagnosis of liver and kidney diseases in fish. Total protein in blood plasma increases when 

the fish is dehydrated (Sandnes et al., 1986), but when total protein is low, it is a less specific 

diagnosis of a disease. Blood glucose in cod has been reported to increase with increased 

dietary carbohydrate (Hemre et al., 1989; Rosenlund et al., 2004), this means that higher 

carbohydrate inclusions have to be done with caution.  

 

Sick or stressed fish eat and grow less, and have poor feed utilization (Einen, 2001). 

Therefore, elucidation of fish health during feeding the trial is needed, to know that it is 

experimental feed affecting fish performance, and not the fish being sick or stressed. 

Elucidation of fish health is of course also performed to find potential adverse effects from 

experimental feed.   
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3 Aim of the study 

 

 

The aim of the study was to find possible effects from including increasing amounts (0, 6, 12 

and 18%) of non digestible fibre (α-cellulose), as an energy diluter, in Atlantic cod diets; 

sustainable diets holding 50% plant meal (PP) plus 50% fish meal (FM) as protein source, or 

diets holding 100% fish meal as protein source.  

 

Main focus was to control liver sizes, without compromising total growth, utilization of 

nutrients or fish health.  

 

Further questions were; are there differences between cod fed a plant based diet and a fish 

based diet and are there effects from the increasing α-cellulose, on any of the following: 

 

- Growth (SGR and weight gain) and condition factor (CF) 

- Feed utilization (feed intake, energy intake, protein intake and FCR) 

- Size of liver, muscle and gutted fish 

- Protein and lipid utilization 

- Digestibility of protein, lipid and dry matter 

- Digestibility of elements (As, Co, Cu, Fe, Mn, Mo, Se, Sn, V, Zn, Sr, Ag, Ba, Cd, Pb 

and Hg) 

- Concentration of elements in diets 

- Fish health  

- Composition of whole body and liver 
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4 Materials and methods 
 

 

 

 

4.1 Feeding experiment 

 

 

4.1.1 Progress 

The feeding trial was runned at Austevoll Aquaculture Research Station (Institute of Marine 

Research, Norway) and the feed were produced by Skretting ARC (Stavanger, Norway). The 

feeding trial started 1.Nov.2007, when the cod had an average weight of 138g (±4g) and 

lasted until 5.Feb.2008 (totally 97 days), with average final weight of 312g (±11g). Totally 

1444 cod were randomly distributed into 16 different tanks (from 89–93 cod per tank) three 

days before the feeding trial started, since this is a stressing procedure. Few cod died during 

the trial (0–5 cod per tank). Progress overview of samplings and measurements from the 

feeding trial is given in Table 4.1.1. 

 

 

Table 4.1.1. Progress overview of samplings and measurements during the feeding trial. 

Procedure Date: Days Weeks Length Weight 
Organ 

samples  
First sampling             10.Okt.2007 * 0 0 X X X 
First weighing             29.Okt.2007 ** 19 2.7 X X  
Start feeding trial             01.Nov.2007 *** 3 0.4    
Mid weighing             18.Des.2007 47 6.7 X X  
Final sampling 
& weighing             05.Feb.2008 49 7.0 X X X 
Total From first sampling 118 16.9    
Total From feeding trial starts 96 13.7    

* 10.Okt. - 1.Nov.2007: Adjustment to rearing conditions. 
** 29.Okt.2007: Measurement and experimental set up. 
*** 1.Nov.2007: Feeding experiment starts. 
 

 

 



  Materials and methods 

29 
 

4.1.2 Rearing conditions 
Fish tanks were dark green, 1.5 m in diameter and 1 m deep. The trial was runned using light 

continuously. Oxygen concentration in water was measured in outlet water, and adjusted to 

always hold more than 89% saturation. Water was taken from 165m depth with a stable 

temperature around 8°C and salinity around 35‰, this were obtained throughout the trial. 

Atlantic cod juveniles used in this trial were produced in a closed inlet (Parisvatnet), from a 

local stock, and they were hatched in spring 2007. Until the trial started the cod were fed a 

commercial cod diet (Amber Neptun, Skretting AS, Stavanger, Norway), declared to contain 

52% crude protein and 18% crude fat, mainly originating from high quality marine raw 

materials. Cod juveniles arrived at Austevoll three weeks before the feeding trial started and 

adjusted to rearing conditions. Before the feeding trial started, the cod was also randomly 

redistributed in all fish tanks. The fish were fed once a day by an automatic feeder (Storvik 

skiveautomat, Storvik Aqua AS, Sunndalsøra, Norway), and each feeding lasted about 1.5 

hour from 0900 in the morning. Outlet water was split, most water went out as “waste”, but 

water with waste feed was filtered, and waste feed was dried over night at 65°C and then 

weighed dry. Dead fish were registered, weighed and removed every day.  

 

 

4.1.3 Experimental design 
Vitacel R 200 Superfine (J. Rettenmaier & Söhne, Rosenberg, Germany, data sheet in 

Appendix 1; Figure 9.1., 9.2. and 9.3.), an α-cellulose, was added from 0 to 18 % in diets, 

resulting in a regression design (Figure 4.1.1.). Totally 8 different diets were fed in duplicate.  

 

Figure 4.1.1. Inclusion levels of α-cellulose in the 8 different experiment diets and protein 
sources. Abbreviations: FM = fish meal, PP = 50 % plant protein & 50 % fish meal, 0, 6, 12 
& 18 = inclusions of α-cellulose.  
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The feed receipt is shown in Table 4.1.2. Fish meal used was Norse LT (Vedde Herring Oil 

Factory, Egersund, Norway) and plant materials used in diets were Soycomil (ADM, 

Speciality Ingredients BV, Koog an de Zaan, Netherlands, data sheet in Appendix 1, Figure 

9.4. and 9.5.) and wheat gluten (Gluvital 21040, Cerestar, Charlottenlund, Denmark, data 

sheet in Appendix 1, Figure 9.5. and 9.6.). Additional amino acids were added to all PP based 

diets; the amino acids added were DL-methionine (Degussa, Hanau, Germany) and L-lysine 

(Ajinomoto Eurolysine, Paris, France). Wheat was added in all diets. Fish oil was added in all 

diets, to balance total lipid and fatty acids to be equal. Nutrient requirement recommendations 

followed NRC (1993); vitamin and minerals (Premixes) were added (Proprietary composition, 

Skretting ARC, Stavanger, Norway) and mono-sodium phosphate (Trouw Nutrition, 

Boxmeer, Netherlands) was added in diets with 50 % plant protein. Yttrium was added in all 

diets as an inert indicator to calculate digestibility of nutrients.  

 

 

Table 4.1.2. Feed receipt for the experimental diets.  

Ingredient (g/kg) 
Diets* 

FM0 FM6 FM12 FM18 PP0 PP6 PP12 PP18 
Fish meal 713 670 627 585 362 341 319 297 
Soycomil 0 0 0 0 185 174 163 152 
Wheat gluten 0 0 0 0 148 139 130 121 
Wheat 181 170 159 148 130 122 114 106 
Fish oil 102 96 90 83 131 123 115 107 
Premixes 3.2 3.0 2.8 2.6 3.2 3.0 2.8 2.6 
DL-Methionine 0 0 0 0 3.3 3.1 2.9 2.7 
L-lysine 0 0 0 0 8.2 7.7 7.2 6.7 
Mono-sodium-
phosphate 0 0 0 0 29 27 26 23 
Yttrium premix 1.10 1.03 0.97 0.90 1.10 1.03 0.97 0.90 
Vitacel 0 60 120 180 0 60 120 180 
Sum 1000 1000 1000 1000 1000 1000 1000 1000 
*Abbreviations: FM = fish meal, PP = 50 % plant protein & 50 % fish meal, 0, 6, 12 & 18 = 
inclusions of α-cellulose. 
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All diets were analysed after the trial ended. Table 4.1.3. and Table 4.1.4. show analysed 

concentrations of nutrients and elements in diets. 

 

 

Table 4.1.3. Analysed concentrations of dietary fat, protein, starch, ash and dry matter, and 
indigestible fibre, energy and PE (protein/energy) ratio calculated from the analysed nutrients.  

Diets* 
Indigestible fibre** Fat Protein Starch Ash 

Dry-
matter Energy*** PE-ratio* 

% g/100g g/100g g/100g g/100g g/100g kJ·g-1 mgP/ kJ·g-1 
FM 0 0.1 18.3 52.4 12.2 8.1 91.1 21.6 24.3 
FM 6 5.0 16.9 50.2 11.6 7.8 91.5 20.5 24.6 
FM 12 9.7 16.6 47.7 11.0 7.6 92.6 19.6 24.3 
FM 18 15.1 15.1 44.8 9.7 7.1 91.8 18.1 24.7 
PP 0 3.0 21.3 50.7 10.2 7.6 92.8 22.0 23.1 
PP 6 9.3 18.7 48.2 9.9 7.2 93.2 20.3 23.7 
PP 12 12.7 17.4 44.6 8.9 6.7 90.3 18.8 23.7 
PP 18 17.7 15.5 43.1 8.2 **** **** 17.6 24.5 
*Abbreviations: PE = protein to energy ratio, FM = fish meal, PP = 50 % plant protein & 50 
% Fish Meal, 0,6,12 &18 = % cellulose inclusions.  
** Indigestible fibre = 100% - (%water + %fat + %protein + %starch + %ash). 
*** Total energy (kJ · g-1) = protein (24 kJ · g-1) + fat (38 kJ · g-1) + starch (17 kJ · g-1), total 
energy values by Jobling and Hjelmeland (1992). 
**** Analyse failed, a mean from the others are used in further calculations. 
 
 
 
 
Table 4.1.4. Analysed concentrations of elements in diets.  

Diets* 
Elements (mg/kg) * 

Y Ag As Ba Cd Co Cu Fe Hg Mn Mo Pb Se Sn Sr V Zn 
FM 0 65 <0.01 3.7 0.88 0.19 0.08 7.3 200 0.09 25 0.24 <0.04 <0.2 <0.04 26 0.08 160 
FM 6 68 <0.01 3.6 1.10 0.18 0.14 8.1 190 0.08 27 0.12 0.12 <0.2 <0.04 24 0.12 170 
FM 12 65 <0.01 3.4 1.00 0.17 0.05 7.6 170 0.07 24 0.08 <0.04 <0.2 0.05 23 0.07 170 
FM 18 64 <0.01 3.1 1.20 0.16 0.07 7.4 220 0.07 26 0.11 <0.04 <0.2 0.07 21 0.08 160 
PP 0 80 <0.01 2.4 3.40 0.13 0.19 10.0 290 0.04 54 0.87 <0.04 <0.2 <0.04 17 0.34 180 
PP 6 66 <0.01 2.6 3.20 0.12 0.17 8.8 230 0.04 47 0.78 <0.04 <0.2 0.04 16 0.31 160 
PP 12 63 <0.01 2.4 3.10 0.11 0.16 7.7 240 0.04 46 0.70 <0.04 <0.2 0.05 15 0.28 140 
PP 18 58 <0.01 2.1 3.30 0.10 0.16 7.4 230 0.03 45 0.72 <0.04 <0.2 0.07 14 0.25 130 
*Abbreviations: FM = Fish Meal, PP = 50 % Plant Protein & 50 % Fish Meal, 0,6,12 &18 = 
% α-cellulose inclusions, Y=yttrium, Ag=silver, Ba=barium, Cd=cadmium, Co=cobalt, 
Cu=copper, Fe=iron, Hg=mercury, Mn=manganese, Mo=molybdenum, Pb=lead, 
Se=selenium, Sn=tin, Sr=strontium, V=vanadium and Zn=zinc. 
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4.2 Sampling procedures 

 

 

 

There were two samplings during the trial. First sampling (10.Okt.2007) was before the 

feeding trial started and before the cod were distributed in different tanks. Final sampling was 

when the feeding trial ended (05.Feb.2008). At the final sampling all fish were weighed 

(grams) and length (cm) measured. There were also weighing and length measurements of all 

the cod three days before the feeding trial started and in middle of the trial (18.Des.2007), but 

at those days no fish were sampled for further investigations.  

 

At first sampling, 20 randomly selected fish were killed with a blow to the head, and then 

weighed and length measured. Livers were dissected and weighed on all 20 fish, to calculate 

the liver index (HSI). Carcasses and livers for all 20 cod were pooled and homogenized at 

NIFES with a kitchen machine (Braun K 3000). These two samples were stored at –20 °C, 

until whole body and liver analyses were performed. 

 

Final sampling was performed 12 hours after last feeding, for each tank. Same procedures as 

in initial sampling were carried through at final sampling. However, at final sampling, 16 cod 

from each of the 16 tanks were used. From each tank, 10 cod were used for whole body and 

faeces samples, and 6 cod for blood and liver samples. Fillet weights were also measured on 

the 6 cod and all 16 cod were used to measure HSI and gutted weight. The cod were also 

dissected for brain and intestine samples, but these results will not be a part of this master 

thesis. Blood samples were taken from the caudal blood vessels, just behind the ventral fin 

(Vena caudalis), with heparinized syringes. There was one blood sample from each cod and 

this was divided in three parts. First, two parts of the blood samples were centrifuged 

(Haemofuge, Heraeust Christ) at 3000 rpm, less than one hour after blood samples were 

taken. One part was used to measure Hct on individual samples, and from the second part the 

plasma was pooled to one sample per tank. The plasma samples were then frozen on liquid 

nitrogen and stored at -80 °C until analyses were completed 16 days after sampling. The third 

part was used to measure RBC and Hb at NIFES one day after sampling, keeping samples at 4 

°C. The 10 faeces samples from the same tank were pooled to one sample per tank. Faeces 
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were sampled by stripping the last part of the intestine of the cod, as described by Hemre et 

al. (2003). Faeces were stored at -20 °C, until analyses were performed.  

 

 

 

An overview of samples taken and what they were analysed for is listed in table 4.2.1. All 

analyses were carried through at NIFES during spring 2008, autumn 2008 and winter 2009. 

 

 

Table 4.2.1. Samples taken and what they were analysed for.  
Samples 
taken 

Sampling 
date 

What different samples were analysed for 

Whole body 10.Okt.07 Protein Fat Dry matter Glycogen Ash  
Whole body 05.Feb.08 Protein Fat Dry matter Glycogen Ash  
Feed 05.Feb.08 Protein Fat Dry matter Starch Ash Elements*** 
Faeces 05.Feb.08 Protein Fat Dry matter Starch  Elements*** 
Liver 05.Feb.08 Protein Fat Dry matter Glycogen   
Blood 05.Feb.08 Haematocrit Haemoglobin Red  blood cell count 
Plasma 05.Feb.08 ASAT*  ALAT** Plasma glucose 
*Alanine aminotransferase.  
**Aspartate aminotransferase. 
***Yttrium, silver, barium, cadmium, cobalt, copper, iron, mercury, manganese, 
molybdenum, lead, selenium, tin, strontium, vanadium and zinc. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



  Materials and methods 

34 
 

4.3 Analytical methods 
 

 

 

To get reliable results the analytical methods have good quality insurance and some are 

accredited. There are quality controls and calibrations that must be performed together with 

the analyses of samples. How to get good quality assurance of analytical methods are 

described in Appendix 2.  

 

4.3.1 Determination of total protein in liver, whole body, feed and faeces 
Total protein was measured in homogenates of liver, whole body, feed and faeces. Most 

nitrogen in a fish comes from protein, therefore is total nitrogen analysed. This method is 

based on the principle that mean content of nitrogen in amino acids are 16 %, and when total 

nitrogen is determined it can be multiplied with 6.25 to find approximate protein 

concentration. Total nitrogen was measured with a nitrogen analysing instrument (LECO-

FP528) according to Leco FP-528 manuals and AOAC official methods of analyses (1995), 

16 th. Ed. Metode 992.15: “Crude protein in meat and meat products, combustion method” 

This method is accredited at NIFES. 

 

In the nitrogen analyser, samples were burned with oxygen in a combustion tube at 950 °C. 

The carrier gas helium leads CO2, water and nitrogen through a reduction tube where copper 

reduces oxygen from nitrogen. Water and CO2 were also removed and only nitrogen gas and 

helium (carrier gas) were left. Nitrogen content was measured with a thermal conductivity 

detector which measures deviance from helium’s normal heat conduction ability. Samples 

were quantified with a calibration curve. Reactions that took place in the nitrogen analyser are 

following: 

 

Reactions in combustion tube: 

R-NH2 + O2 + sample → N2 + NOx + H2O + SOx + CO2 

 

Reaction in reduction tube: 

NOx + H2O + CO2 + SOx + Cu (solid) + He (carrier gas) → N2 (gas) + H2O (gas) + CO2 (gas) 

+ S (solid) + CuO (solid) + He (carrier gas) 
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4.3.2 Determination of fat in liver and whole body  
Total fat in liver and whole body was measured after etylacetate extraction according to Lie 

(1991), and this method is accredited at NIFES. This is a gravimetric method, which means 

that samples are weighed before and after extraction of fat with etylacetate. An aliquot from 

samples were taken out and were filtrated, so there was only fat and etylacetate left. Then 

etylacetate was steamed off, fat was weighed and calculations back to total fat concentration 

in samples was performed according to the following formulae:  

 

Total fat in sample = 
))(1,1()(()(

100)()(

gFatmlAliqoutgsampleWeighed

gFatmleEtylacetat

∗−∗
∗∗

 

 

 

 

4.3.3 Determination of fat in feed and faeces 
A more accurate method is needed to find total fat in feed and faeces, due to more complex 

matrix. Therefore, acid hydrolysis was used, as described by the EU commission directive 

98/64/EC in the Official journal of the European community (nr L257/23, 19.Sept.98, part B); 

Community methods of analysis for the determination of amino acids, crude oils and fats, and 

olaquindox in feedingstuffs and amending Directive 71/393/EEC (http://eur-lex.europa.eu), 

Tecator application note AN 301, REV 3.0 “Solvent Extraction using the Soxtec System” and 

Tecator application note ASN 3427 “The extraction of total fat in feed”. This method is 

accredited at NIFES.  

 

This is a gravimetric method. When analysed, free fat from samples were pre-extracted with 

n-heptan, and then centrifuged. The solid residue was taken away from the extract, and then 

n-heptan steamed off so that the extraction residue (free fat) could be measured. To remove 

possibly bound fat from the solid residue, this was hydrolysed with hot HCl (Hydrochloric 

acid) and n-heptan, in an incubator. Then the heptan phase was transferred to an extraction 

cup and the solid residue was transferred to a LLE-column (Varian CHEM ELUT CE1010 

Column, capacity to 10ml, art.nr12198007, Holger Technolgy). In the LLE-column fat was 

extracted with petroleum and was then also transferred to the extraction cup, where the 

solvent steamed off and the extraction residue (fat) was weighed. The two extraction residues 

were added up and then calculated back to total fat.  
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4.3.4 Determination of glycogen in liver and whole body and starch in 
feed 
Digestible carbohydrate in liver, whole body and feed was determined according to Hemre et 

al. (1989) using a modified method originally described by Murat & Serfaty (1974) and Holm 

et al. (1986). At the final stage glucose was measured in a MAXMATTM PL (Multi-purpose 

diagnostic analyser, version 3.0.0, revision 8. MAXMAT S.A, France). This method is not 

accredited at NIFES.  

 

In principle samples were enzymatically hydrolysed with a heat stable α-amylase (thermamyl) 

and amyloglukosidase, to get free glucose. In MaxMat an automated reaction took place 

between glucose and a glucose reagent solution containg two enzymes; hexokinase and 

glucose-6-phosphate-deshydrogenase (G6PDH), the following reactions took place in 

MaxMat:  

 

D-glucose + ATP   → asenokixeH
Glucose-6-phosphate + ADP 

 

Glucose-6-phosphate + NAD+  →G6PDH
 D-gluconate-6-phosphate + NADH + H+ 

 

Then the formed NADH was measured photometric at two wavelengths; main: 340 and 

associated: 450, as 1 molecule of glucose forms 1 molecule of NADH. Glucose was 

quantified using a calibration curve. Then glucose concentrations were used to calculate 

digestible carbohydrate concentrations in samples, with the following formulae: 

 

Starch/glycogen in sample (mg/g) =  
)()(

9.018.180)/(Re

mlvolumeTotalgweightSample

LmmolMaxMatfromsult

∗
∗∗

 

180.18 = calculation factor from mmol/L to mg/L 

0.9 = correction factor from glucose to glycogen/starch/digestible carbohydrates 
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4.3.5 Determination of dry matter in feed, whole body, liver and faeces 
Dry matter was analysed in feed, whole body and liver, according to NMKL (Nordic 

committee on food analysis) method 23, 3.edition, 1991, UDC 637.5. This method is 

accredited at NIFES. Samples were dried in 104 °C to find dry matter. This is a gravimetric 

method and dry matter concentration was calculated with following formulae: 

 

Dry matter (g/100g) = 
)(

100)(

gsampleWet

gsampleDryed ∗
 

 

 

Faeces were freeze dried to determine dry matter, since the same faeces samples were 

afterwards used for analysing elements. To freeze dry, samples were frozen at -20 °C and 

water was extracted from the frozen sample by vacuum in the freeze dryer (Christ Gamma 1-

16 LSC), where the water goes from ice to vapour. This is also a gravimetric method and dry 

matter was calculated with following formulae: 

 

Dry matter (g/100g) = 
)(

100)(

gsampleWet

gsampledriedFreeze ∗
 

 

 
 

4.3.6 Determination of ash in feed and whole body 
Ash was analysed in feed and whole body, according to NMKL (Nordic committee on food 

analysis) method 23, 3.edition, 1991, UDC 637.5. This method is accredited at NIFES. 

Samples were burned at 550 °C to find ash content. This is a gravimetric method and ash 

content was calculated with the following formulae: 

 

Ash (g/100g) = 
)(

100)(

gsampleWet

gsampleBurned ∗
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4.3.7 Determination of Yttrium and other elements in feed and faeces 

Yttrium (Y) was measured by means of an ICP-MS (Inductive Coupled Plasma Mass 

Spectrophotometer). This is a multi element instrument, so it was also used to analyse other 

elements (Y, Ag, Ba, Cd, Co, Cu, Fe, Hg, Mn, Mo, Pb, Se, Sn, Sr, V and Zn) in feed and 

faeces. Analyses were performed according to NMKL (Nordic committee on food analysis) 

method  nr.186, 2007 and Julshamn et al. (2007). This method was not accredited at NIFES 

when these samples where analysed, due to recently moving of instruments. Samples were 

mixed with nitric acid and hydrogen peroxide and were then digested in a micro wave oven 

(Milestone, Microwawe digestion system, MLS-1200 Mega, Microwawe digestion Rotor, 

MDR 300/10). Measurements of trace elements were then quantified by the ICP-MS (Agilent 

7500c with HP-computer, with Chem Station). In the ICP an argon gas stream transform to a 

plasma beam where the samples are atomised. This lightning ionic plasma is shot in to the 

MS, where ions are focused and only ions with a certain mass are able to pass the filter and 

reach the detector. That is how concentrations of different elements are measured. By 

changing properties of the filter several elements can be measured in the same sample. 

Concentrations of trace elements were calculated by means at a calibration curve. 

Additionally it was used an internal standard, to have better control over results, since an 

internal standard is added directly with the samples and have therefore gone through same 

treatment as the samples. 

 

4.3.8 Determination of haematocritt (Hct), red blood cell count (RBC) and 
haemoglobin (Hb) in blood 
Blood chemical analyses  (Hct, RBC and Hb) was performed according to Sandnes et al. 

(1988). Hct was analysed at sampling as explained earlier, and Hb and RBC one day after 

sampling. Hb was analysed as described by the cell counter producer (Seqoia-Turner 

Corporation). Diluter 771 Swelab Instrument and Cell-Dyn 400 (Seqoida Turner) was used to 

analyse the RBC and Hb in blood samples. These methods are not accredited at NIFES. When 

analysing RBC, blood was first diluted to a fitting concentration for the cell counter. Red 

blood cells were determined from increased resistance in an electricity field between two 

electrodes in the cell counter.  After RBC was analysed, the same blood was used for 

analysing Hb. The blood samples were added a cyanid containing solution, which results in 

ruptures in blood cell walls and leakage of Hb. Hb is a pigment and could therefore be 

measured photometrical at 540 nm.  
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4.3.9 Determination of aspartate aminotransferase (ASAT), alanine 
aminotransferase (ALAT), glucose and total protein in blood plasma 
Pooled plasma were analysed for ASAT, ALAT, glucose and total protein. Analyses were 

performed according to methods described for the analysing instrument MAXMATTM PL 

(same instrument as used for determining glycogen in liver and whole body, and starch in 

feed). These methods are also not accredited at NIFES. ASAT was measured by the principle 

that NADH (reduced NAD) is oxidised to NAD+, and this results in a decrease in absorbance 

at 340 nm. This decrease in absorbance is directly proportional with activity of Glutamate 

Oxaloacetate Transaminase (GOT) in samples, GOT is also called ASAT. The following 

reactions take place in MaxMat: 

L-Aspartate + 2-Oxoglutarate   →←GOT
 Oxaloacetate + L-Glutamate 

 

Oxaloacetate + NADH + H+  →←  esaengrodyheD Malate
L-Malate + NAD+ 

 

ALAT was measured by the same principle as ASAT. ASAT is also called Glutamate-

Pyruvate Transaminase (GPT). The following reactions take place in MaxMat: 

L-Alanine + 2-Oxoglutarate   →←GPT
 Pyruvate + L-Glutamate 

 

Pyruvate + NADH + H+  →←  esaengrodyheD Lactate
L-Lactat + NAD+ 

 

Glucose in plasma was measured by the same principle as glycogen in MaxMat. However, a 

“digestion process” of samples is of course not needed for plasma as glucose exists as such in 

plasma. Protein in plasma was measured by the principle that proteins form a coloured 

complex in presence of copper salt in an alkaline solution (Biuret reaction). The following 

reaction takes place in MaxMat: 

Proteins + Cu2+  →Biuret
Coloured complex 

 

The coloured complex is measured photometrically at 540 nm, and the intensity of the 

coloured complex is directly proportional to protein concentration in the sample.  
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4.4 Calculations 

 

 

 

Calculations that have been performed with results from analyses of samples and growth data 

from the trial are as follows: 

 

SGR (specific growth rate) = 100 % (ln W1 – ln W0) d
-1 =  % per day 

(W0 = initial body weight, W1 = final body weight, d = sum experimental days) 

FCR (feed conversion ratio) = 
)(

)(

ggainWeight

geatenfeedDry
 

HSI (hepatosomatic index) = 100
)(

)( ∗
gweightLive

gweightLiver
  

ADC (apparent digestibility coefficient) = 



















÷

(%)

(%)
(%)

(%)

1100

feedinoxideYttrium

feedinNutrient
faecesinoxideYttrium

faecesinNutrient

 

CF (condition factor) = 
( )

( )3)(

100)(

cmLength

gweightLiver ∗
 

MCV (mean cell volume) = 10∗
RBC

Hct
 

MCH (mean cell haematocrit) = 10∗
RBC

Hb
 

MCHC (mean cell haemoglobin concentration) = 100∗
Hct

Hb
 

PER (protein efficiency ratio) = 
)(

)(

geatenoteinrP

ggainweightLive
 

PPV (protein productive value) = 
)(

)(

geatenroteinP

gretentionoteinrP
 

 

Live weight gain (g) = End weight (g) – Start weight (g) 

Protein eaten (g) =  
100

(%))( feedinoteinrPgfeedEaten ∗
 

Protein retention = Protein end biomass (g) – Protein start biomass (g) + dead fish biomass (g) 
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Biomass (by end and start) = Mean weight * number of fish in tank 

Protein in biomass (g): 
100

(%))( fishwholeinroteinpgBiomass ∗
 

 

Energy intake (kJ/fish/day) =
ktheinfishofNumber

d

tan

tank)/ay/(geaten  feed * 1)-g*(kJ feedin energy  Total
 

 

 

 

4.5 Statistics 
 

 

 

Statistica (StatSoft, Inc. 2008. data analysis software system, version 8.0. www.statsoft.com) 

was used for statistical analyses. Linear regression was performed, on both FM and PP diets, 

to evaluate if there were any effects from the increasing α-cellulose, on growth parameters, 

digestibility parameters and analytical results. Spearman rank order correlation was 

performed, on both FM and PP diets, to evaluate non-parametric correlations between growth 

parameters, digestibility parameters and analytical results. The two different series of diets 

(FM and PP), were compared, when both regression lines were significant, to find if they had 

different slopes and elevations. Comparing equality of two regression coefficients involves 

student’s t (Zar, 2005), to find if the slopes are different. A t-test was used when examining if 

the elevations are different. This was done in an excel spreadsheet (Microsoft Excel 2002). 

Most results are presented with standard deviations (SD), which are also calculated in an 

excel spreadsheet.  
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5. Results 
 

 

 

5.1 Growth and feed utilization 
 

 

5.1.1 Growth and feed utilization during week 0-7 

 

The first 7 weeks (01.Nov.2007–18.Des.2007) with growth data from the feeding trial are 

listed in Table 5.1.1. 

 
Table 5.1.1. Initial and final 7-week-weight (g), final length (mm), 0-7-week-weight gain 
(%), condition factor (CF; initial and 7-week), specific growth rate (SGR), feed conversion 
ratio (FCR), mean energy intake (kJ/cod/day) and mean feed intake (g/cod/day) for Atlantic 
cod fed 8 different diets in duplicate, in trial-week 0-7. Weight and length measurements are 
given as mean ±SD. Number of cod in each tank in week 0 was from 89 to 93 and in week 7 it 
was from 88 to 93 in each tank. From 0 to 2 cod died in each tank. 
Trial-week 0 7 7 0-7 0 7 0-7 0-7 0-7 0-7 

Diets* 

Weight 

g 
Weight 

g 
Length 

mm 

Weight  
gain 

% 
CF CF SGR FCR 

Feed  
intake  

g 

Energy  
intake 

kJ 

FM 0 135 ± 24 222 ± 39 265 ± 20 64 1.09 1.20 1.07 0.73 1.35 30 
FM 0 138 ± 23 217 ± 36 260 ± 16 57 1.12 1.17 0.98 0.77 1.30 29 
FM 6 135 ± 28 221 ± 43 262 ± 27 63 1.11 1.24 1.07 0.75 1.37 29 
FM 6 138 ± 27 225 ± 40 268 ± 18 63 1.14 1.20 1.06 0.76 1.41 29 

FM 12 139 ± 28 223 ± 43 268 ± 23 61 1.10 1.16 1.03 0.81 1.46 29 
FM 12 136 ± 30 218 ± 44 265 ± 19 60 1.15 1.18 1.03 0.80 1.39 28 
FM 18 135 ± 26 228 ± 43 263 ± 20 68 1.14 1.26 1.13 0.79 1.55 29 
FM 18 138 ± 29 222 ± 37 264 ± 17 60 1.18 1.23 1.02 0.84 1.49 28 

PP 0 142 ± 33 229 ± 57 264 ± 21 61 1.12 1.23 1.04 0.73 1.35 30 
PP 0 133 ± 30 214 ± 44 262 ± 19 61 1.16 1.18 1.04 0.72 1.27 29 
PP 6 141 ± 31 224 ± 45 260 ± 21 59 1.14 1.29 1.01 0.76 1.35 28 
PP 6 145 ± 32 215 ± 52 261 ± 22 48 1.16 1.12 0.85 0.87 1.28 27 

PP 12 141 ± 28 213 ± 46 264 ± 22 51 1.12 1.15 0.89 0.90 1.37 26 
PP 12 132 ± 30 209 ± 43 259 ± 22 58 1.14 1.17 1.00 0.88 1.43 28 
PP 18 138 ± 29 214 ± 43 258 ± 17 55 1.11 1.18 0.96 0.90 1.47 26 
PP 18 140 ± 29 202 ± 59 257 ± 22 44 1.11 1.17 0.80 1.02 1.35 24 

*Abbreviations: FM = fish meal, PP = 50% plant protein & 50% fish meal, 0, 6, 12 & 18 = 
inclusions of α-cellulose (on a weight basis).  
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The initial cod weight was 138 ±3.5g, and after 7 weeks they had grown to 218 ±7.2g. There 

was a tendency to decreased weight with increased α-cellulose for cod fed PP diets (R2=0.49, 

p=0.054), Figure 5.1.1., however, for cod fed the FM diets there were no effects on weight. 

The cod had good weight gain during the first period, with an average of 58 ±6.2%, which 

was not influenced by increased α-cellulose. Average specific growth rate (SGR) was 1.00 

±0.09, and there were no effects on SGR from increased α-cellulose. 
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Figure 5.1.1. Regression with weight (g), after 7 weeks, for cod fed four increasing levels of 
α-cellulose in; four FM diets (Y=219.89 + 0.22x, R2=0.22, p=0.25) and four PP diets (Y= 
222.43 - 0.83x, R= -0.70, R2=0.49, p=0.054). Abbreviations: FM = fish meal, PP = 50% plant 
protein & 50% fish meal. 
 
 
 
Average cod length was initially 229 ±2.7mm and 263 ±3mm in week 7. In week 7, lengths 

varied from 258 to 268mm between all dietary groups. Lengths decreased slightly with 

increased α-cellulose in PP diet groups (R2=0.56, p<0.05), however, not in FM diet groups. 

Average condition factor (CF) in week 0 was 1.13 ±0.03, and in week 7 the average CF was 

1.2 ±0.04. Increased α-cellulose in diets had no effect on CF.  
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Feed conversion ratio (FCR) was at average 0.81 ±0.08. Increased α-cellulose led to increased 

FCR for cod fed both FM and PP diets (FM: R2=0.62, p<0.05, PP: R2=0.82, p<0.05), see 

Figure 5.1.2., and the two regression lines are significantly different. Average feed intake was 

1.39 ±0.08g/fish/day. Feed intake increased with increased α-cellulose, for cod fed FM diets 

(R2=0.85, p<0.05) and tended to increase for cod fed PP diets (R2=0.46, p=0.067), Figure 

5.1.3. Average energy intake was 28 ±2kJ/fish/day. Energy intake decreased with increased 

α-cellulose for cod fed PP diets (R2=0.71, p<0.05), Figure 5.1.2., but cod fed FM diets had no 

effects. 

 

 

Figure 5.1.2. Regression with feed conversion ratio (FCR) and mean energy intake per day 
for individual cod, from week 0-7, for cod fed four increasing levels of α-cellulose in; four 
FM diets and four PP diets (FCR: FM: Y=0.75 + 0.004x, R=0.79, R2=0.62, p=0.021 and PP: 
Y=0.73 + 0.02x, R=0.91, R2=0.82, p=0.002), (Energy intake: FM: Y=29.30 – 0.06x, R=-0.60, 
R2=0.36, p=0.12 and PP: Y=29.18 – 0.21x, R=-0.84, R2=0.71, p=0.009). Abbreviations: FM = 
fish meal, PP = 50% plant protein & 50% fish meal 
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Figure 5.1.3. Regression with mean feed intake (g) per day for individual cod, from week 0-
7, for cod fed four increasing levels of α-cellulose in; four FM diets (Y=1.3209 + 0.0104x, 
R=0.92, R2=0.85, p=0.001) and four PP diets (Y=1.3021 + 0.0063x, R=0.67, R2=0.45, 
p=0.067). Abbreviations: FM = fish meal, PP = 50% plant protein & 50% fish meal. 
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5.1.2 Growth and feed utilization during week 7-14, and compared to 
week 0-7 
 

Growth data from the last 7 weeks (18.Des.2007–05.Feb.2008) are given in Table 5.1.2. At 

final sampling in week 14, average cod weight was 312 ±11.2g.  The weight gain in the last 

period was at average 43 ±5.2%. Increased α-cellulose did not result in any significant effects 

on final weight or weight gain.  

 

 

Table 5.1.2.  Final weight (g), final length (mm), weight gain (%), final condition factor (CF), 
specific growth rate (SGR), feed conversion ratio (FCR), average energy intake (kJ/fish/day) 
and average feed intake (g/fish/day) for Atlantic cod fed eight different diets in duplicate from 
trial-week 7-14. The weight and length measurements are given as mean ±SD. There was 
from 88 to 93 cod/tank in week 7 was and in week 14 it was from 86 to 92 cod/tank. 0 to 5 
cod died in each tank. 
Trial-week 14 14 7-14 14 7-14 7-14 7-14 7-14 

Diets* 

Weight Length Weight 
gain CF SGR FCR 

Feed  
intake 

Energy 
intake 

g mm % g/fish/day kJ/fish/day 

FM 0 304 ± 76 296 ± 22 37 1.16 0.67 0.99 1.63 36 
FM 0 320 ± 76 299 ± 20 48 1.18 0.83 0.82 1.74 38 
FM 6 301 ± 74 293 ± 24 36 1.18 0.66 0.92 1.49 31 
FM 6 330 ± 79 301 ± 20 47 1.20 0.82 0.85 1.84 38 

FM 12 318 ± 80 299 ± 25 42 1.18 0.75 0.89 1.72 35 
FM 12 323 ± 86 299 ± 24 48 1.19 0.84 0.83 1.78 36 
FM 18 328 ± 72 299 ± 21 44 1.21 0.78 0.95 1.93 36 
FM 18 301 ± 84 293 ± 24 36 1.18 0.65 1.10 1.79 33 

PP 0 315 ± 103 298 ± 29 38 1.19 0.68 0.89 1.55 35 
PP 0 299 ± 133 293 ± 24 40 1.17 0.71 0.95 1.58 36 
PP 6 323 ± 91 298 ± 27 44 1.20 0.78 0.99 1.97 41 
PP 6 323 ± 110 299 ± 29 50 1.19 0.87 0.90 1.97 41 

PP 12 300 ± 91 294 ± 29 41 1.15 0.73 0.99 1.75 34 
PP 12 305 ± 94 294 ± 27 46 1.17 0.80 0.95 1.85 36 
PP 18 300 ± 86 294 ± 25 40 1.17 0.71 1.09 1.90 34 
PP 18 308 ± 102 298 ± 29 53 1.14 0.90 0.89 1.94 35 

*Abbreviations: FM = fish meal, PP = 50% plant protein & 50% fish meal, 0, 6, 12 & 18 = % 
inclusions of α-cellulose (on a weight basis). 
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Average weight of all diet groups, in trial week 0, 7 and 14, is shown in a growth curve in 

Figure 5.1.4. Weight gain from week 7-14 seemed to be higher in PP groups with α-cellulose, 

than the other diet groups, Figure 5.1.5. SGR during week 7-14 was at average 0.76 ±0.08m, 

and was not significantly influenced by increased α-cellulose. SGR was generally less in the 

second period (week 7-14) than in the first period (week 0-7).  
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Figure 5.1.4. Growth curve with average cod weight (g) of the duplicate tanks with the same 
feed (n=2), in trial-week 0, 7 and 14. Abbreviations: FM = fish meal, PP = 50% plant protein 
& 50% fish meal, 0, 6, 12 & 18 = % inclusions of α-cellulose (on a weight basis). 
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Figure 5.1.5. Bar graph with average weight gain (%) of the duplicate tanks with the same 
feed (n=2), in trial-week 0-7 and 7-14. Abbreviations: FM = fish meal, PP = 50% plant 
protein & 50% fish meal, 0, 6, 12 & 18 = % inclusions of α-cellulose (on a weight basis). 
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Final length was at average 297 ±2.8mm, and were not significantly affected by increased α-

cellulose. Final average CF showed 1.18 ±0.02 among all dietary groups, and was not affected 

by increased α-cellulose.  

 

 

Average FCR was 0.94 ±0.08 in the last 7 trial-weeks. Increased α-cellulose had no 

significant effect on FCR in the last period, as it had in the first period.  But FCR seemed to 

be higher, in most diet groups, in the second period than in the first period, Figure 5.1.6. Feed 

intake in the last period averaged 1.78 ±0.15g/fish/day, and tended to increase with increased 

α-cellulose, for cod fed PP diets (R2=0.39, p=0.10), however, not for cod fed FM diets. Feed 

intake for week 0-7 and week 7-14 is illustrated in Figure 5.1.7. Energy intake in the last 

period was at average 36 ±3kJ/fish/day, and was not affected by increased α-cellulose. 

Energy intake for week 0-7 and week 7-14 is illustrated in Figure 5.1.8. 
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Figure 5.1.6. Bar graph with average feed conversion ratio (FCR) of duplicate tanks with the 
same feed (n=2), in trial-week 0-7 and 7-14. Abbreviations: FM = fish meal, PP = 50% plant 
protein & 50% fish meal, 0, 6, 12 & 18 = % inclusions of α-cellulose (on weight basis). 
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Figure 5.1.7. Bar graph with average feed intake (g/cod/day) of duplicate tanks with the same 
feed (n=2), in trial-week 0-7 and 7-14. Abbreviations: FM = fish meal, PP = 50% plant 
protein & 50% fish meal, 0, 6, 12 & 18 = % inclusions of α-cellulose (on weight basis). 
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Figure 5.1.8. Bar graph with average energy intake (kJ/cod/day) of duplicate tanks with the 
same feed (n=2), in trial-week 0-7 and 7-14. Abbreviations: FM = fish meal, PP = 50% plant 
protein & 50% fish meal, 0, 6, 12 & 18 = % inclusions of α-cellulose (on weight basis). 
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5.1.3 Growth and feed utilization during total period (week 0-14) 
 

Growth data from the total period (01.Nov.2007–05.Feb.2008) are listed in Table 5.1.3. and 

Table 5.1.4. Weight gain average was 126 ±8.5%, and varied from 112-142% between the 

different dietary groups. Weight gain was not affected by increased α-cellulose. Average SGR 

was 0.88 ±0.04. There were no influence from increased α-cellulose on SGR. 

 
 
Table 5.1.3. Weight gain (%), specific growth rate (SGR), feed conversion ratio (FCR), 
average daily energy intake (kJ/fish/day), average daily feed intake (g/fish/day) from the total 
feeding trial (week 0-14), gutted weight (g), total gutted yield of whole body (%), one fillet 
side (g), total fillet yield of whole body (%) and liver index (HSI) from final sampling for 
Atlantic cod fed eight different diets in duplicate of each. There was from 89 to 93 cod/tank in 
week 0 and in week 14 it was from 86 to 92 cod/tank. From 0 to 5 cod died in each tank. 
Trial-week 0-14 0-14 0-14 0-14 0-14 14 14 14 14 14 

Diets** 

Weight 
gain SGR FCR 

Feed 
intake 

Energy  
intake Gutted* Fillet 

HSI  
% g/cod/day kJ/cod/day g % g % 

FM 0 124 0.87 0.86 1.50 33 270 82 75 42 10.5 
FM 0 132 0.90 0.80 1.52 34 294 82 87 46 10.8 
FM 6 123 0.86 0.84 1.44 30 267 83 79 44 9.5 
FM 6 140 0.94 0.80 1.63 34 287 82 89 48 10.4 

FM 12 129 0.89 0.85 1.59 32 263 83 76 44 9.6 
FM 12 138 0.93 0.81 1.59 32 302 81 103 47 10.6 
FM 18 142 0.95 0.87 1.75 32 290 81 87 47 10.8 
FM 18 117 0.83 0.97 1.64 30 264 84 80 46 9.4 

PP 0 121 0.85 0.81 1.46 33 284 84 84 45 11.4 
PP 0 125 0.87 0.84 1.45 32 258 82 83 45 10.8 
PP 6 130 0.89 0.87 1.68 35 283 82 86 44 10.5 
PP 6 122 0.86 0.88 1.64 34 279 81 92 46 10.9 

PP 12 112 0.81 0.95 1.60 31 238 82 73 43 10.1 
PP 12 131 0.90 0.91 1.65 32 267 82 76 45 10.8 
PP 18 117 0.84 0.99 1.70 31 252 82 71 45 10.5 
PP 18 120 0.85 0.96 1.65 30 297 81 104 47 10.7 

*Gutted weight is total body weight without internal organs in abdomen and pericardium.  
**Abbreviations: FM = fish meal, PP = 50% plant protein & 50% fish meal, 0, 6, 12 & 18 = 
% inclusions of α-cellulose (on a weight basis). 
 
 
 

Average FCR was 0.88 ±0.06, and FCR increased significantly with increased α-cellulose for 

cod fed PP diets (R2=0.94, p<0.05), but not for cod fed FM diets. Feed intake showed an 

average of 1.59 ±0.09g/fish/day. Feed intake increased with increased α-cellulose for cod fed 

both FM and PP diets (FM: R2=0.58, p<0.05, PP: R2=0.78, p<0.05), Figure 5.1.9., but the 
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regression lines were not significantly different. Energy intake was at average 32 ± 2 

kJ/fish/day. Energy intake decreased with increased α-cellulose for cod fed PP diets (R2=0.51, 

p<0.05), Figure 5.1.10, but not in FM based treatments.   
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Figure 5.1.9. Regression with feed intake, from week 0-14, for cod fed 4 increasing levels of 
α-cellulose in; four FM diets (Y=1.49 + 0.01x, R=0.76, R2=0.58, p=0.03) and four PP diets 
(Y=1.51 + 0.01x, R=0.78, R2=0.61, p=0.02). Abbreviations: FM = fish meal, PP = 50% plant 
protein & 50% fish meal. 
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Figure 5.1.10. Regression with energy intake, from week 0-14, for cod fed 4 increasing levels 
of α-cellulose in; four FM diets (Y=33.07 – 0.10x, R=-0.49, R2=0.24, p=0.21) and four PP 
diets (Y=33.68 – 0.18x, R=-0.72, R2=0.51, p=0.046). Abbreviations: FM = fish meal, PP = 
50% plant protein & 50% fish meal. 
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At trial end the average gutted weight was 275 ±18g, total gutted yield of whole body was at 

average 82 ±1%, average one side fillet weight was 84 ±10g and total fillet as part of whole 

body weight was at average 45 ± 1.5%. None of these parameters were significantly affected 

by increased α-cellulose. Gutted weight, fillet weight and liver index (HSI) are calculated 

from weight of sampled cod and not total average weight of all cod in the trial. Three weeks 

before the feeding trial started, when all cod were fed equal feed, the HSI averaged 11.9 

±0.8% and at the end of the trial HSI averaged 10.5 ±0.6%. All diet groups seemed to have 

lower final HSI compared to initial, Figure 5.1.11. HSI was not significantly affected by 

increased α-cellulose in any of the diet groups.  
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Figure 5.1.11. Average liver index (HSI) from first sampling (10.okt.2007) (n=20) ± SD and 
average HSI from duplicate cod tanks fed same feed from last sampling (5.feb.2008) (n=2) ± 
= max/min. Abbreviations: FM = fish meal, PP = 50% plant protein & 50% fish meal, 0, 6, 12 
& 18 = inclusions of α-cellulose. 
 

 

Efficiency ratios and productive values for protein and lipid in the total period (01.Nov.2007– 

05.Feb.2008) are listed in Table 5.1.4. Efficiency ratios and productive values for starch and 

ash in the total period are listed in Appendix 3, Table 9.1., and will not be discussed. Average 

protein efficiency ratio (PER) was 2.37 ±0.11 among dietary groups and was not influenced 

by increased α-cellulose. Protein productive value (PPV) was averagely 0.37 ±0.02 among 

diet groups and α-cellulose did not affect PPV. Lipid efficiency ratio (LER) averaged 6.52 

±0.64. LER increased with increased α-cellulose for cod fed PP diets (R2=0.63, p<0.05), and 

tended to increase also for cod fed FM diets (R2=0.39, p=0.098), Figure 5.1.12. Average lipid 

productive value (LPV) was 0.42 ±0.06 and α-cellulose did not affect LPV.  
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Table 5.1.4. Protein efficiency ratio (PER), protein productive value (PPV), lipid efficiency 
ratio (LER), lipid productive value (LPV), starch efficiency ratio (SER), starch productive 
value (SPV), ash efficiency ratio (AER) and ash productive value (APV) for Atlantic cod fed 
eight different diets in duplicate of each, from the total feeding trial (week 0 to 14).  
Diets* PER PPV LER LPV 
FM 0 2.21 0.35 6.33 0.42 
FM 0 2.38 0.36 6.81 0.50 
FM 6 2.37 0.36 7.03 0.38 
FM 6 2.41 0.40 7.15 0.43 
FM 12 2.43 0.38 6.97 0.37 
FM 12 2.57 0.40 7.38 0.46 
FM 18 2.53 0.41 7.53 0.51 
FM 18 2.30 0.34 6.84 0.27 
PP 0 2.42 0.38 5.76 0.51 
PP 0 2.28 0.37 5.44 0.36 
PP 6 2.31 0.35 5.96 0.40 
PP 6 2.32 0.35 5.97 0.44 
PP 12 2.19 0.34 5.62 0.35 
PP 12 2.45 0.37 6.28 0.39 
PP 18 2.28 0.35 6.37 0.43 
PP 18 2.47 0.36 6.88 0.45 

*Abbreviations: FM = fish meal, PP = 50% plant protein & 50% fish meal, 0, 6, 12 & 18 = % 
inclusions of α-cellulose (on a weight basis). 
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Figure 5.1.12. Regression with lipid efficiency ratio (LER), in week 14, for cod fed four 
increasing levels of α-cellulose in; four FM diets (Y=6.72 - 0.03x, R=0.63, R2=0.39, p=0.098) 
and four PP diets (Y=5.58 - 0.05x, R=0.79, R2=0.63, p=0.02). Abbreviations: FM = fish meal, 
PP = 50% plant protein & 50% fish meal. 
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5.1.4 Correlations between growth parameters 

 

Some spear man rank order correlations between growth parameters from the first period, 

second period and total period in the feeding trial (week 0-7, 7-14 & 0-14), are presented.  

 

SGR did not correlate with feed intake in the total period (0-14), or in the first period (0-7), 

but there was a significant positive correlation between SGR and feed intake in the second 

period (7-14) for cod fed PP diets (R=0.74, p<0.05), but not for cod fed FM diets. Weight 

gain, consequently, also correlates in the same way as SGR. Increased SGR did correlate with 

increased energy intake in the first period for cod fed PP diets (R=0.91, p<0.05), but not for 

cod fed FM diets. Increased SGR tended to correlate with increased energy intake in the 

second period, for cod fed FM diets (R=0.62, p=0.10), but not with PP diets. Increased SGR 

slightly tended to correlate with increased energy intake in the total period for cod fed FM and 

PP diets (FM: R=0.60, p=0.12, PP: R=0.60, p=0.12), Figure 5.1.13. Feed intake did not 

correlate with energy intake in any of the periods. Lower FCR correlated with a high energy 

intake in the total period for cod fed PP diets (R=-0.74, p<0.05), but not FM diets. FCR 

decreased with increased energy intake in the first period for cod fed PP diets (R=-0.91, 

p<0.05), but not FM diets. FCR did not significantly correlate with energy intake in the 

second period, for cod fed either FM or PP diets.  
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Figure 5.1.13. Spearman rank order correlation between energy intake (kJ) and SGR, from 
week 0 to 14, for cod fed four increasing levels of α-cellulose in; four FM diets (R=0.60, 
p=0.12) and four PP diets (R=0.60, p=0.12). Abbreviations: FM = fish meal, PP = 50% plant 
protein & 50% fish meal. 
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Energy intake and feed intake did not correlate with PER or PPV. Increased SGR correlated 

with increased PPV and PER for cod fed FM diets (PPV: R=0.93, p<0.05, PER: R=0.76, 

p<0.05), but not PP diets. FCR did not correlate with PPV or PER for cod fed PP diets or FM 

diets, although, there was a tendency for increasing FCR with decreasing PPV for cod fed PP 

diets (R=-0.69, p=0.058).  

 

Increased HSI correlated with increased PPV for cod fed FM and PP diets (FM: R=0.67, 

p<0.05, PP: R=0.86, p<0.05). HSI did not correlate with PER in any diet groups. Larger total 

fillet yield in cod correlated with increased PPV, for cod fed FM diets (R=0.71, p<0.05), but 

not PP diets. Larger total fillet yield in cod tended to correlate with increased PER, for cod fed 

FM diets (R=0.69, p=0.058), but not PP diets.  High PPV correlated with high PER for cod 

fed FM diets (R=0.93, p<0.05 and), but not PP diets. 

 

Increased LER correlated with increased PER for cod fed FM diets and tended to for PP diets 

(FM: R=0.81, p<0.05, PP: R=0.67, p=0.07). LER and LPV did not correlate with energy 

intake. Increased LER correlated with increased feed intake for cod fed PP diets (R=0.79, 

p<0.05), but not FM diets. LPV did not correlate with feed intake. LER did not correlate with 

SGR, FCR or HSI. LPV increased with increased SGR for cod fed FM diets (R=0.83, 

p<0.05), but not PP diets. LPV increased with increased HSI for cod fed FM diets (R=0.95, 

p<0.05), but not PP diets. LPV did not correlate with FCR. 

 

Increased SGR (week 7-14) correlated with a high HSI, for cod fed FM diets, (R=0.74, 

p<0.05), but not PP diets. Higher HSI correlated with a higher live weight in week 14 for cod 

fed FM diets (R=0.86, p<0.05), but not PP diets. Higher HSI tended to correlate with higher 

energy intake for cod fed FM diets (R=0.62, p=0.10), but not PP diets. FCR (week 7-14) did 

correlate with a decreased HSI for cod fed PP diets (R=-0.83, p<0.05), however, not FM diets. 

Increased HSI did not correlate with feed intake. 
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5.2 Digestion  
 

 

5.2.1 Digestibility of fat, protein and dry matter (week 14) 
 

Digestibility of fat, protein and dry matter from the final sampling (05.Feb.02) are listed in 

Table 5.2.1. The apparent digestibility coefficient (ADC) for fat was averagely 93.7 ±2.4%. 

Digestibility of fat decreased with increased α-cellulose for cod fed FM and PP diets (FM: 

R2=0.65, p<0.05, PP: R2=0.72, p<0.05), Figure 5.2.1., but the two regression lines are not 

significantly different. Average ADC for protein was 85.3 ±2.1%. There were no significant 

differences in protein ADC caused by increased α-cellulose. The average ADC for dry matter 

was 69.1 ±5.5%. Dry matter ADC decreased with increased α-cellulose for cod fed FM and 

PP diets (FM: R2=0.83, p<0.05, PP: R2=0.78, p<0.05), Figure 5.2.2., and the two regression 

lines are not significantly different.  

 

  

Table 5.2.1. Apparent digestibility coefficients (ADC) for protein, fat and dry matter.   
Diets* ADC (fat) ADC (protein) ADC (dry matter) 

FM 0 96.7 85.5 79,0 
FM 0 94.2 80.6 73.6 
FM 6 95.1 87.1 76.0 
FM 6 94.8 83.3 71.4 
FM 12 94.3 86.2 70.8 
FM 12 94.9 85.7 69.5 
FM 18 90.1 81.6 61.3 
FM 18 91.5 86.4 63.3 
PP 0 97.5 87.2 76.7 
PP 0 95.0 83.4 69.2 
PP 6 93.4 85.6 67.8 
PP 6 95.1 86.7 70.5 
PP 12 94.1 86.7 66.8 
PP 12 92.4 87.2 66.8 
PP 18 88.3 86.9 62.9 
PP 18 92.0 85.4 60.6 

*Abbreviations: FM = fish meal, PP = 50% plant protein & 50% fish meal, 0, 6, 12 & 18 = 
inclusions of α-cellulose (on a weight basis). 
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Figure 5.2.1. Regression with apparent digestibility coefficient (ADC) for fat, in week 14, for 
cod fed four increasing levels of α-cellulose in; four FM diets (Y=96.0712 - 0.2373x, R= -
0.81, R2= 0.65, p= 0.016) and four PP diets (Y= 96.38 - 0.32x, R=-0.85, R2= 0.72, p=0.008). 
Abbreviations: FM = fish meal, PP = 50% plant protein & 50% fish meal. 
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Figure 5.2.2. Regression with apparent digestibility coefficient (ADC) for dry matter, in week 
14, for cod fed four increasing levels of α-cellulose in; four FM diets (Y=77.45 – 0.76x, R=-
0.91, R2=0.83, p=0.002) and four PP diets (Y=73.07 – 0.60x, R=-0.88, R2=0.78, p=0.004). 
Abbreviations: FM = fish meal, PP = 50% plant protein & 50% fish meal. 
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5.2.2 Digestibility of essential elements (week 14) 
 

The apparent digestibility coefficients for essential elements analysed, from the final sampling 

(05.Feb.2008), are presented in table 5.2.2.  

 

 

Table 5.2.2. Apparent digestibility coefficients (ADC) (%) for the essential elements 
analysed; Cobalt (Co), Copper (Cu), Iron (Fe), Manganese (Mn), Molybdenum (Mo), 
Selenium (Se), Tin (Sn), Vanadium (V) and Zinc (Zn).   
Diets*** Co Cu Fe Mn Mo Se Sn V Zn 
FM 0 24 14 ** 54 ** * * ** 25 
FM 0 21 13 24 71 47 * * ** 43 
FM 6 50 32 13 56 32 * * 20 38 
FM 6 53 21 26 79 7 * * 31 55 
FM 12 ** 11 6 49 ** * ** ** 28 
FM 12 ** 32 19 81 ** * ** ** 58 
FM 18 ** 14 37 86 ** * ** 2 60 
FM 18 22 26 38 79 ** * ** ** 51 
PP 0 3 24 25 71 65 * * 11 47 
PP 0 ** ** 19 63 67 * * ** 29 
PP 6 ** ** 3 67 71 * ** ** 33 
PP 6 ** 8 10 76 72 * 2 10 42 
PP 12 1 14 19 75 64 * ** 7 46 
PP 12 ** 9 33 77 71 * ** 13 35 
PP 18 ** 3 23 83 67 * ** 0 48 
PP 18 ** 0 29 89 66 * ** 7 49 

*Element was below LOQ (limit of quantification) in faeces or/and feed. More details about 
LOQ and parallel measurements in Appendix 4, Table 9.2, 9.3. and 9.4. 
**ADC result below 0%. More details in Appendix 4, Table 9.5. 
***Abbreviations: FM = fish meal, PP = 50% plant protein & 50% fish meal, 0, 6, 12 & 18 = 
inclusions of α-cellulose (on a weight basis). 
 

 

Cobalt (Co) ADC was mostly below 0%; therefore it was not possible to test if there were any 

effects from the increased α-cellulose. Copper (Cu) ADC was below 0% in two of the PP diet 

groups, but the average in all other diet groups was 16 ±10%. Cu ADC was not significantly 

influenced by increased α-cellulose. Iron (Fe) ADC was below 0% in one FM0 replicate; 

however, average Fe ADC for the rest of the diet groups showed 22 ±10%. Fe ADC was not 

significantly influenced by increased α-cellulose.  
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Average ADC for manganese (Mn) was 72 ±12% among all dietary groups. Mn ADC 

increased with increased α-cellulose, for cod fed PP diets (R=0.88, p<0.05), Figure 5.2.3., 

although, not FM diets. ADC for molybdenum (Mo) was below 0%, for most cod fed FM 

diets, however, Mo ADC for cod fed PP diets was at average 68 ±3%, and was not 

significantly affected by increased α-cellulose. Selenium (Se) was below limit of 

quantification in both feed and faeces, therefore could Se ADC not be calculated in any diet 

groups. Tin (Sn) was below limit of quantification in FM0, FM6 and PP0 in feed and in one 

PP0 replicate in faeces, consequently Sn ADC could not be calculated in those. Sn ADC was 

below 0% in the rest of the diet groups, except from one PP6 replicate where ADC for Sn was 

2%. Vanadium (V) ADC was below 0% in FM0, FM12, one FM18 replicate, one PP0 

replicate and one PP6 replicate. In the rest of the diets V ADC was low and ranged from 0-

31%. Average ADC for zinc (Zn) was 43 ±11% among all diet groups, and was not 

significantly affected by increased α-cellulose. 
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Figure 5.2.3. Regression with apparent digestibility coefficient (ADC) for Manganese (Mn), 
in week 14, for cod fed four increasing levels of α-cellulose in; 4 FM diets (Y=60.75 + 0.97x, 
R=0.49, R2=0.24, p=0.22) and four PP diets (Y=65.75 + 1.02x, R=0.88, R2=0.77, p=0.004). 
Abbreviations: FM = fish meal, PP = 50% plant protein & 50% fish meal. 
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5.2.3 Digestibility of undesirable elements (week 14) 
 
 

The apparent digestibility coefficients for undesirable elements analysed, from the final 

sampling (05.Feb.2008), are shown in table 5.2.3.  

 

 

Table 5.2.3. Apparent digestibility coefficients (ADC) (%) for the undesirable elements; 
Silver (Ag), Barium (Ba), Arsen (As), Cadmium (Cd), Mercury (Hg), Lead (Pb) and 
Strontium (Sr).  
Diets*** Ag Ba As Cd Hg Pb Sr 
FM 0 * 24 86 15 72 * ** 
FM 0 * 36 81 ** 67 * ** 
FM 6 * 6 88 31 75 ** ** 
FM 6 * 54 84 7 70 69 ** 
FM 12 * 11 85 16 73 * ** 
FM 12 * ** 86 32 63 * ** 
FM 18 * 64 79 16 * * ** 
FM 18 * 40 85 21 * * ** 
PP 0 * 41 82 15 * * ** 
PP 0 * 15 75 ** * * ** 
PP 6 * 32 82 ** * * ** 
PP 6 * 40 82 ** * * ** 
PP 12 * 50 83 7 * * ** 
PP 12 * 38 82 ** * * ** 
PP 18 * 57 81 ** * * ** 
PP 18 * 56 81 ** * * ** 

* Element was below LOQ (limit of quantification) in faeces or/and feed. More details about 
LOQ and parallel measurements in Appendix 4, Table 9.2, 9.3. and 9.4.  
** ADC result below 0%. Details in Appendix 4, Table 9.5. 
***Abbreviations: FM = fish meal, PP = 50% plant protein & 50% fish meal, 0, 6, 12 & 18 = 
inclusions of α-cellulose (on a weight basis). 
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Silver (Ag) was below the quantification limit in both feed and faeces. ADC for total arsenic 

(As) was at average 82 ±3%, and was not affected by increased α-cellulose. Average ADC for 

barium (Ba) was 38 ±18%. ADC for Ba increased with increased α-cellulose for cod fed PP 

diets (R=0.81, p<0.05), Figure 5.2.4., but not FM diets. Cadmium (Cd) ADC was mostly 

below 0% for cod fed PP diets, and therefore not included, but Cd ADC for cod fed FM diets 

had an average at 20 ±9%. Cd ADC for cod fed FM diets was not affected by increased α-

cellulose. Mercury (Hg) ADC was below limit of quantification for cod fed PP and FM18 

diets. Hg ADC for cod fed FM0, FM6 and FM12 diets averaged 70 ±4%, and was not 

significantly influenced by increased α-cellulose for cod fed FM0, FM6 and FM12 diets. 

Lead (Pb) was mostly below limit of quantification in all diet groups, except for cod fed FM6 

diets, where Pb ADC was below 0% in one replicate and was 69% in the other. Strontium (Sr) 

ADC was below 0% in all diet groups. 
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Figure 5.2.4. Regression with apparent digestibility coefficient (ADC) for Barium (Ba), in 
week 14, for cod fed four increasing levels of α-cellulose in; four FM diets (Y=25.04 + 1.01x, 
R=0.36, R2=0.13, p=0.43) and four PP diets (Y=26.88 + 1.57x, R=0.81, R2=0.66, p=0.014). 
Abbreviations: FM = fish meal, PP = 50% plant protein & 50% fish meal. 
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5.2.4 Faeces composition (week 14) 
 

Protein, fat and dry matter in faeces, from final sampling (05.Feb.2008), are presented in 

Table 5.2.4. Average protein in faeces was 4.4 ±1.0%. Protein in faeces decreased with 

increased α-cellulose for cod fed FM and PP diets (FM: R2=0.91, p<0.05, PP: R2=0.92, 

p<0.05), Figure 5.2.5., and the two regression lines were significantly different. Average fat in 

faeces was 0.6 ±0.1%, and was not significantly influenced by increased α-cellulose. Average 

dry matter in faeces was 17.4 ±1.6%. Dry matter in faeces increased with increased α-

cellulose for cod fed FM and PP diets (FM: R2=0.64, p<0.05, PP: R2=0.66, p<0.05), Figure 

5.2.6., however, the two regression lines were not significantly different. Faeces colour after 

freeze drying was darker in FM0, FM6 and PP0 than in FM12, FM18, PP6, PP12 and PP18.  

 

 

Table 5.2.4. Faeces compositions at trial end; protein, fat and dry matter, week 14. Nutrient 
values are given in wet weight.  

Diets* 
Protein Fat Dry matter Colour** 

% % % description 
FM 0 6.1 0.5 15.4 dark 
FM 0 6.0 0.6 14.1 dark 
FM 6 5.4 0.7 18.4 dark 
FM 6 5.9 0.6 18.4 dark 
FM 12 4.7 0.7 19.2 light 
FM 12 4.5 0.6 18.5 light 
FM 18 4.2 0.8 18.2 light 
FM 18 3.5 0.7 19.4 light 
PP 0 4.8 0.4 15.9 dark 
PP 0 4.4 0.6 15.0 dark 
PP 6 3.7 0.7 15.9 light 
PP 6 4.0 0.6 17.2 light 
PP 12 3.5 0.6 17.9 light 
PP 12 3.6 0.8 18.9 light 
PP 18 2.9 0.9 17.7 light 
PP 18 3.1 0.6 18.0 light 

*Abbreviations: FM = fish meal, PP = 50% plant protein & 50% fish meal, 0, 6, 12 & 18 = 
inclusions of α-cellulose (on a weight basis).  
**The colour of faeces is described with eyesight after freeze drying. 
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Figure 5.2.5. Regression with protein in faeces (%), in week 14, for cod fed 4 increasing 
levels of α-cellulose in; four FM diets (Y=6.18 - 0.13x, R=-0.95, R2=0.91, p=0.0002 and four 
PP diets (Y=4.5025 - 0.0833x, R=-0.96, R2=0.92, p=0.0002). Abbreviations: FM = fish meal, 
PP = 50% plant protein & 50% fish meal. 
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Figure 5.2.6. Regression with dry matter in faeces (%), in week 14, for cod fed 4 increasing 
levels of α-cellulose in; four FM diets (Y=15.79 + 0.21x, R=0.80, R2=0.64, p=0.018) and four 
PP diets (Y=15.70 + 0.15x, R=0.81, R2=0.66, p=0.014). Abbreviations: FM = fish meal, PP = 
50% plant protein & 50% fish meal. 
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5.2.5 Correlations between digestibility coefficients and growth 
parameters 
 

Some spear man rank order correlations for digestibility values and growth parameters from 

the feeding trial are presented.  

 

HSI did not correlate with ADC for fat, for cod fed FM and PP diets. Increased HSI correlated 

with decreased protein ADC in FM diet groups (R=-0.86, p<0.05), but not PP diets. A high 

feed intake resulted in higher ADC for Mn and Zn, for cod fed FM diets (R=0.86, p<0.05), 

but not PP diets.  A high PPV tended to be found simultaneously as Zn ADC increased, for 

cod fed FM diets (R=0.69, p=0.058), but not PP diets. Increased LER correlated with 

increased ADC for Mn for cod fed FM and PP diets (FM: R=0.74, p<0.05, PP: R=0.91, 

p<0.05). Increased ADC for Mn correlated with increased ADC for Zn for cod fed FM and PP 

diets (FM: R=0.98, p<0.05, PP: R=0.76, p<0.05).  

 

SGR and weight gain decreased coincided with higher Hg ADC for cod fed FM diets (R=-

0.94, p<0.05). Increased ADC of protein correlated with increased ADC for Cd, for cod fed 

FM and PP diets (FM: R=0.79, p<0.05, PP: R=0.79, p<0.05). Increased ADC for protein 

correlated with increased ADC for total As, for cod fed FM diets (R=0.76, p<0.05), but not 

PP diets. High total As ADC was found simultaneously with high Cd ADC in all diet groups 

(FM: R=0.69, p=0.058, PP: R=0.86, p<0.05). High total As ADC also correlated with high Cu 

ADC, for cod fed PP diets (R=0.76, p<0.05), but not FM diets.  

 

As a result of lower ADC for fat, faeces values showed higher residue fat levels, for cod fed 

FM diets (R=-0.78, p<0.05), and there was a tendency of correlation for cod fed PP diets (R=-

0.68, p=0.062). 
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5.3. Fish health 
 

 

5.3.1 Haematological values (week 14) 
 

Haematological values from the final sampling (05.Feb.2008) are given in Table 5.3.1. 

Haematocrit (Hct) varied from 24-33% between all diet groups. Red Blood Cell count (RBC) 

varied from 1.51-2.36 1012/L among all diet groups. Haemoglobin (Hb) ranged from 3.93-

4.85g/100ml in all diet groups. Mean cell haemoglobin concentration (MCHC) ranged from 

13-18g/100ml. Mean cell volume (MCV) varied from 119-194 10-15L among all dietary 

groups. Mean cell haemoglobin (MCH) ranged from 19-30 10-6g in all diet groups. None of 

the haematological values were significantly influenced by increased α-cellulose.  

 

Table 5.3.1. Haematological values in Atlantic cod fed eight different diets in 14 weeks.  

Diets* 
Hct* RBC* Hb* MCHC* MCV* MCH* 
(%) *1012 /L g/100 ml g/100 ml 10-15 L 10-6 g 

FM 0 28 1.71 4.65 17 162 27 
FM 0 28 1.65 4.90 18 170 30 
FM 6 28 2.05 4.82 17 138 24 
FM 6 28 1.65 4.55 16 168 28 
FM 12 35 1.79 4.85 14 194 27 
FM 12 27 1.78 4.82 18 154 27 
FM 18 28 2.36 4.42 16 119 19 
FM 18 25 1.51 3.93 16 164 26 
PP 0 27 2.01 4.55 17 132 23 
PP 0 28 1.63 4.47 16 169 27 
PP 6 24 1.61 4.36 18 149 27 
PP 6 30 1.74 4.68 16 170 27 
PP 12 33 1.69 4.37 13 194 26 
PP 12 28 1.79 4.80 17 158 27 
PP 18 26 1.74 4.47 17 149 26 
PP 18 27 1.63 4.27 16 168 26 
*Abbreviations: FM = fish meal, PP = 50% plant protein & 50% fish meal, 0, 6, 12 & 18 = 
inclusions of α-cellulose (on a weight basis), Hct = Haematocrit, RBC = Red blood cell 
count, Hb = Haemoglobin, MCHC = Mean cell haemoglobin concentration, MCV = Mean 
cell volume and MCH = Mean cell haemoglobin. 
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5.3.2 Clinical and nutritional values (week 14) 
 

Clinical and nutritional values in blood plasma are listed in Table 5.3.2. Aspartate 

aminotransferase (ASAT) ranged from 1-49 U/L and Alanine aminotransferase (ALAT) from 

0-18 U/L among all diet groups. Plasma glucose ranged from 3.5-7.5mmol/L among all diet 

groups. Total protein ranged from 23.9-40.1g/L among all dietary groups. None of the clinical 

or nutritional values were significantly influenced by increased α-cellulose. 

 

 

Table 5.3.2. Clinical and nutritional values in blood plasma in Atlantic cod fed eight different 
diets for 14 weeks.  

Diets* 
ASAT* ALAT* Glucose* Total protein* 
(U/L) (U/L) (mmol/L) (g/L) 

FM 0 20 5 4.5 32.2 
FM 0 17 0 5.5 33.3 
FM 6 16 18 4.9 38.0 
FM 6 17 3 4.4 28.6 
FM 12 20 10 4.4 31.3 
FM 12 18 7 4.6 34.7 
FM 18 19 0 4.8 36.0 
FM 18 8 0 3.5 23.9 
PP 0 17 13 4.9 34.2 
PP 0 7 10 4.6 38.1 
PP 6 16 0 4.1 30.9 
PP 6 4 0 5.2 38.0 
PP 12 1 6 7.5 40.1 
PP 12 49 12 5.5 28.8 
PP 18 40 16 6.1 34.6 
PP 18 21 6 3.9 32.5 
*Abbreviations: FM = fish meal, PP = 50% plant protein & 50% fish meal, 0, 6, 12 & 18 = 
inclusions of α-cellulose (on a weight basis), ASAT = Aspartate aminotransferase and ALAT 
= Alanine aminotransferase. 
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5.4. Whole body and liver compositions 
 

 

 

 

5.4.1 First sampling (3 weeks before feeding trial started) 
 

Whole body composition of protein, fat, glycogen, dry matter and ash, from the first sampling 

(10.Oct.2007), three weeks before the feeding trial started, are listed in Table 5.4.1. 

Nutritional values are given in wet weight. Protein concentration was 14.9%, fat 8.7%, 

glycogen 0.07%, dry matter 27.1% and ash 2.1%.  

 

 

Table 5.4.1. Average whole body composition of protein (%), fat (%), glycogen (mg/g), dry 
matter (%) and ash (%), from the first sampling (10.Oct.2007), three weeks before fish 
distribution and feeding trial onset. Nutrient values are given in wet weight.  

 
Protein Fat Glycogen Dry matter Ash 

% % % % % 
Start* 14.9 8.7 0.07 27.1 2.1 
*Average from cod before feeding trial started, when all cod were fed equal feed. 
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5.4.2 Final sampling (week 14) 
 

Whole body composition from the last sampling (05.Feb.2008) are given in Table 5.4.2.  

Values here are all given on a wet weight basis.  Protein in whole body was at average 15.3 

±0.5%. Protein in whole body decreased with increased α-cellulose for cod fed PP diets 

(R2=0.51, p<0.05), Figure 5.4.1., but not for cod fed FM diets. Whole body fat averaged 7.4 

±0.6%, average glycogen level was 0.05 ±0.01% and dry matter averaged 26.4 ±0.5%, and 

either of these three parameters were influenced by increased α-cellulose for cod fed FM or 

PP diets. Whole body ash averaged 2.3 ±0.3%. Ash in whole body tended to decrease with 

increased α-cellulose for cod fed PP diets (R2=-0.66, p=0.074), however, not for cod fed FM 

diets.  

 
 
Table 5.4.2. Whole body composition at trial end (05.Feb.2008). Nutritional values are given 
in wet weight.  

Diets* 
Protein Fat Glycogen Dry matter Ash 

% % % % % 
FM 0 15.6 7.5 0.04 26.4 2.5 
FM 0 15.3 7.9 0.07 27.0 2.2 
FM 6 14.9 6.9 0.04 25.4 2.2 
FM 6 16.2 7.1 0.05 26.5 2.3 
FM 12 15.4 6.8 0.03 25.8 2.6 
FM 12 15.6 7.3 0.05 26.1 2.1 
FM 18 15.8 7.5 0.05 26.9 2.4 
FM 18 14.9 6.1 0.03 25.5 2.6 
PP 0 15.5 8.7 0.05 26.4 2.4 
PP 0 15.7 7.4 0.04 26.8 2.6 
PP 6 14.8 7.5 0.04 26.2 2.0 
PP 6 15.1 7.9 0.05 27.2 2.8 
PP 12 14.5 7.2 0.05 26.1 2.2 
PP 12 15.3 7.3 0.05 26.5 2.1 
PP 18 14.9 7.6 0.05 26.7 2.1 
PP 18 14.8 7.5 0.06 26.6 1.9 
*Abbreviations: FM = fish meal, PP = 50% plant protein & 50% fish meal, 0, 6, 12 & 18 = 
inclusions of α-cellulose (on a weight basis). 
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Figure 5.4.1. Regression with protein in whole body (%), in week 14, for cod fed four 
increasing levels of α-cellulose in; four FM diets (Y=15.512 – 0.005x, R2=0.01, p=0.84) and 
four PP diets (Y=15.42 – 0.040x, R2=0.51, p=0.047). Abbreviations: FM = fish meal, PP = 
50% plant protein & 50% fish meal. 
 

 

 

Liver composition at final sampling is presented in Table 5.4.3.  Among diet groups the 

average liver protein was 4.2 ±0.6%, liver fat 67.8 ±1.3%, liver glycogen 0.36 ±0.06% and 

dry matter 74.5 ±1.0%, and neither protein, fat, glycogen nor dry matter in liver were 

significantly affected by increased α-cellulose, in any of the diet groups.  

 
Table 5.4.3. Liver composition at trial end (05.Feb.2008). Nutrient values are given in wet 
weight.  

Diets* 
Protein Fat Glycogen Dry matter 

% % % % 
FM 0 5.5 68.4 0.24 74.2 
FM 0 4.0 67.1 0.42 73.3 
FM 6 4.6 67.6 0.37 73.2 
FM 6 4.0 67.7 0.33 75.5 
FM 12 4.2 69.5 0.33 73.7 
FM 12 3.9 66.4 0.42 73.7 
FM 18 4.2 66.2 0.38 73.0 
FM 18 4.3 66.0 0.26 73.9 
PP 0 3.8 68.2 0.34 75.0 
PP 0 4.0 69.5 0.35 74.9 
PP 6 3.8 67.8 0.32 76.1 
PP 6 3.8 69.6 0.39 74.9 
PP 12 5.1 66.6 0.41 75.0 
PP 12 3.7 67.9 0.42 75.0 
PP 18 5.5 66.7 0.40 74.1 
PP 18 3.6 69.6 0.33 76.5 
*Abbreviations: FM = fish meal, PP = 50% plant protein & 50% fish meal, 0, 6, 12 & 18 = 
inclusions of α-cellulose (on a weight basis).
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6 Discussion 

 

 

6.1 Discussion of materials and methods  

 

6.1.1 Statistical design 

This trial had a simple linear regression design. When the true relationships between variables 

are not known, regression is the most chosen alternative (Shearer, 2000). To establish a good 

dose response relationship it is important to allocate 1/3 of nutrient inputs at the low end, 1/3 

at the high end and 1/3 in the middle. The high end in this experiment was unknown for cod, 

however, 18% was chosen due to results from cod and other fish species given fibre or other 

indigestible matters (Al-Ogaily, 1996; Dias et al., 1998; Turano et al., 2002; Toppe et al., 

2006; Hansen and Storebakken, 2007). Increasing number of replicates result in increased 

accuracy of the different levels. This is possible under ideal conditions and with unlimited 

resources. However, when using regression, replicates are not absolute necessary (Shearer, 

2000). If total observations are greater than 20 (levels x replicates), then more observations 

give little improvement. In this experiment there were 4 levels (0%, 6%, 12% and 18% α-

cellulose) and 2 replicates at each level giving 8 observations. This might not be ideal, but the 

8 points in the graph will give a good indication if there were any signs of a dose response 

relationship. In addition the total 16 observations from both fish meal (FM) and plant protein 

(PP) diets will also give a good indication, even though FM and PP might interact differently 

with α-cellulose. Most models are not intrinsically linear, and if the cellulose response in 

reality was a curved line, it probably would not have been discovered in the linear regression 

design. Furthermore, 2 replicates are not good enough for analysing differences between 

means, such as ANOVA (analysis of variance), because the power of the test would be too 

small, therefore this was not done. However, tendencies to different responses between 

different diet groups were most likely indicated in the regression design graph. In this trial 

there were two different basic diet formulas (FM and PP), both with similar increasing α-

cellulose. When both regression lines were significant, these were compared to find if they 

had different slopes and elevations (Zar, 2005). This analysis was influenced by the same 

uncertainties as linear regression.  
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6.1.2 Feeding trial 

To be able to compare different cod groups fed different diets, the different diet groups had to 

be treated as similar as possible. However, since it is an experiment with animals, there are 

many uncertain factors that can affect the results besides the targeted independent variable 

such as individual differences, stress, diseases, hierarchy systems and temperature changes. 

The feed was produced by Skretting ARC (Stavanger, Norway). All analysed macronutrients 

(fat, protein and starch) in feed met cod requirements as described by Rosenlund et al. (2004), 

analysed desirable elements with requirements (Co, Cu, Fe, Mn, Se and Zn) met requirement 

ranges as described by Watanbe et al. (1997), analysed essential elements with upper limits 

(Cu, Zn, Mn, Co, V and Se) were below upper limits set by EU (Julshamn et al., 2003), and 

undesirable elements (Hg, Pb, Cd and As) were below upper limits set by EU (Julshamn et 

al., 2003). Requirements for Sn, V and Mo, and limits for Ba, Ag and Sr, are not known, at 

least not to my knowledge. Cellulose inclusions in cod feed has not been tried earlier. 

Therefore we did not know if these cellulose inclusions would work well in combination with 

the other feed ingredients and if cellulose was the right insoluble fibre for energy dilution in 

cod diets. The cod approximately doubled its weight during the feeding trial, which means 

that any adverse effects from the cellulose most likely would have come forward, at least 

indications of these. 

 

 

 

6.1.3 Sampling methods 

There can be large individual differences within one tank, even though the fish are fed and 

treated in a similar manner. All cod from one tank counted as one independent sample in the 

statistical treatments, since the fish in the one tank can not be regarded as independent and are 

influenced by each other. Further individual feed intake could not be measured, which could 

have masked any regression effects. To get a good average from each tank several random 

samples were taken, which were thereafter pooled. In addition, organ samples were taken 

from the same spot in the organ, independent on individual, and performed by the same 

person. Whole body/organ samples were homogenized, which is also an uncertainty factor. 

Although, this would most likely be detected, since there were always at least two chemical 

parallels of each sample, and a standard deviation at the chemical level above 10% would lead 

to reanalyses.  To obtain homogenous and representative samples it is important to take large 
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enough samples, but this is not always possible. Faeces samples were small, due to small cod, 

even if these were pooled from 10 fish per tank. Therefore, faeces did not have large enough 

sample size to perform parallel chemical measurements of fat. In addition, starch analysis of 

faeces could not be performed at all. Another uncertainty factor is the random sampling 

performed when netting, as there might be individuals, e.g. the smaller fish in a tank, that are 

more able to escape than the larger individuals. This might explain why sampled cod used for 

HSI measurements in last sampling (05.feb.08) seemed to have higher mean weight (335 

±22g) than the rest of the cod (312 ±11g). Perhaps it is easier to catch bigger fish when we 

use a landing net. This should be considered in future samplings, since random sampling is 

the preferred and most used method in international published data from fish experiments. 

 

 

 

6.1.4 Analytical methods 

There are many possible sources of error during analytical processes; weighing, pipette 

measurements, dilution, extraction, time, steaming, filtrating, temperature, etc. However, error 

sources are controlled by control samples, reference material, parallel measurements and 

accreditation of methods (Appendix 2). In addition all samples in the same analysis are 

analysed as equally as possible, which means that they are comparable to each other, even 

though all results might not be the absolute true values.  

 

The total nitrogen analysis to measure protein is based on the factor 6.25, assuming that 

protein contains 16% nitrogen, which is not totally correct, since amino acids contain different 

amounts of nitrogen and different protein sources can have different amino acid profiles. In 

addition protein is not the only substance containing nitrogen in fish (also nucleic acids, 

phospholipids (phosphatidylethanolamine), nucleotides, etc. contain nitrogen). But still, 

protein is the main nitrogen source. Anyhow, as said, the results are comparable to each other. 

Determination of fat in faeces was performed with acid hydrolysis. There were not enough 

faeces for duplicate analyses, but the results are reliable because of control and reference 

material. One whole body sample (FM6) had 11.4% in difference between analysed parallels, 

which is above the accepted 10%. This could be due to low glucose values in whole body, 

because the analysis is more accurate when the values are higher. However, control and 

reference material were within normal values, which means that the analysis is good. The 
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difference between parallels is probably due to not good enough homogenization, since whole 

fish is hard to get totally homogenized, due to skin and bones. Parallels were re measured, 

with the same result, and the mean of all four results was therefore used. In glycogen analyses 

the calibration curve have only two points, and this could be an error source. Anyhow, since 

reference and control materials are used, wrong results most likely would have been detected. 

Yttrium oxide and other elements were analysed with ICP-MS (Inductive Coupled Plasma 

Mass Spectrophotometer). Some parallel measurements had a variance above the accepted 

10% (Appendix 4, Table 9.2 and 9.3), indicating that the results are not totally reliable.  

 

To determine digestibility an indirect method is used, by means of an inert indicator, here 

yttrium-oxide.  Digestion can be affected by temperature, salinity (Storebakken et al., 1998a) 

and other environmental factors; therefore is a stable environment important. Another 

uncertainty factor in measurement of digestibility is that some feed could have been digested 

by micro-organisms (Nortvedt and Krogdahl, 2001). It is important to know how much the 

fish has eaten; therefore waste feed was collected and subtracted from amount feed given. 

This is hard to do precisely; however, equal procedures were performed each day, after 

feeding, before the feed dissolves too much. To get politely faeces samples, faeces were 

stripped directly from the intestine, as described by Hemre et al. (2003). Faeces collecting 

might include fragments from the mucus membrane in the intestine. Anyway, this method is 

better than collecting faeces from the water column where water soluble components might be 

lost. Bioavailability of nutrients and minerals can differ in different feed sources (Lorentzen et 

al., 2001), depending on chemical state of minerals, and interaction with other feed 

components. 

 

Methods for aspartate aminotransferase (ASAT), alanine aminotransferase (ALAT), glucose 

and protein in plasma are not accredited at NIFES, neither are haematocrit (Hct), haemoglobin 

(Hb) or red blood cell count (RBC). These are however standardized methods used in clinics 

(for humans and animals), and the level of certainty is expected to be high. Blood samples are 

important to mix with an anti-clotting reagent, e.g. heparin, when analysing RBC, since blood 

cells sediment fast. Blood coagulate fast; therefore blood analyses have to be done right after 

the sampling, but heparinized syringes delayed coagulation efficiently. 
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6.1 Discussion of results 

 

 
 

6.2.1 Growth and feed utilization 

 

Growth 

Growth can be affected by environmental factors like water temperature (Howell, 1984), light 

(Hemre et al., 2004), fish size (Braaten, 1984; Jobling, 1992), sexual maturation (Braaten, 

1984; Hansen et al., 2001; Hemre et al., 2002), health, nutrition (Morais et al., 2001; 

Rosenlund et al., 2004) and heritage (Gjerde et al., 2004). Specific growth rate (SGR) was 

higher in the first 7 weeks (1.00 ±0.09) than in the last 7 weeks (0.76 ±0.08), which was 

expected, since smaller cod have higher feed intake per weight unit than larger cod (Braaten, 

1984). SGR in this trial was higher than predicted by growth models for cod at the same size 

and held at 8°C (Björnsson and Steinarsson, 2002). In addition, growth in this trial was good 

compared to previous studies with good growth for cod juveniles (Lie et al., 1988; Hemre et 

al., 1989; Morais et al., 2001; Rosenlund et al., 2004; Hansen et al., 2007b). Growth was not 

significantly influenced by the increased α-cellulose, in either FM or PP diets, in the total 

experiment. There was a tendency to decreased weight with increased α-cellulose for cod fed 

PP diets, in the first 7 weeks. However, in the last 7 weeks there were no such tendencies for 

either SGR, weight gain, weight or condition factor (CF) in either PP or FM diets. This might 

be due to cod being adapted physiologically to both high PP and α-cellulose during the first 

period. Therefore, in conclusion, there was great growth in all diet groups. Good growth with 

partly plant protein inclusions in diets is in accordance with previous studies on cod 

(Albrektsen et al., 2006; Refstie et al., 2006a; Hansen et al., 2007a; Hansen et al., 2007b). 

Increasing cellulose inclusions have not previously been investigated in cod diets. While, 

good growth is found in other fish species with cellulose inclusions in feeds; rainbow trout 

with cellulose inclusion levels up to 30% (Bromley and Adkins, 1984) and 15% (Hansen and 

Storebakken, 2007), seabass diets up to 20% (Dias et al., 1998), tilapia diets up to 9% (Al-

Ogaily, 1996) and red drum diets up to 20% (Turano et al., 2002). Although, other studies 

report growth depression with increasing cellulose in diets for tilapia and rainbow trout, with 

inclusion levels up to 10% and 20% (Hilton et al., 1983; Dioundick and Stom, 1990). The 
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gutted weight and fillet weights being equal in all diet groups are in our trial are in agreement 

with Hansen et al. (2007a), who found equal gut and fillet weight when plant protein in diets 

increased.  

 

Feed utilization 

Feed conversion ratio (FCR) and feed intake were in accordance with other juvenile cod trials 

(Lie et al., 1988; Morais et al., 2001; Hansen et al., 2006; Hansen et al., 2007a). In our trial, 

FCR during the first 7 weeks increased significantly with increased α-cellulose inclusions, in 

both FM and PP diet groups. In addition, the two regression lines for FM and PP diets were 

significantly different, which indicates that the two diets (FM and PP) combined with α-

cellulose, affected cod differently. In the last 7 weeks, no influence from increased α-cellulose 

on FCR was revealed, but FCR seemed higher than during the first 7 weeks. In addition, FCR 

still seemed to be most elevated in the diet groups with high α-cellulose inclusions. Also feed 

intake seemed to be higher in the groups with α-cellulose inclusions compared to those 

without, indicating that α-cellulose was the cause of the increased feed intake. These results 

are in accordance with cellulose inclusion results on seabass (Dias et al., 1998) and rainbow 

trout (Bromley and Adkins, 1984). Although feed intake in some experiments was not 

affected, e.g. in tilapia and rainbow trout reported by Al-Ogaily (1996) and Hansen and 

Storebakken (2007). However, those data were based on studies with very low growth rate, 

e.g. did the study reported by Hansen and Storebakken (2007) not result in doubling of fish 

weight. Some studies even reported reduction in feed intake, combined with growth 

depression; tilapia and rainbow trout (Hilton et al., 1983; Dioundick and Stom, 1990). In the 

first 7 weeks of our trial, feed intake and growth were lower for cod fed PP diets plus α-

cellulose, compared to cod fed FM diets with α-cellulose. Though, during the last 7 weeks, 

cod fed PP diets plus α-cellulose managed to increase its feed intake, tending to a higher 

weight gain than the other groups, again resulting in final weight being similar to the other 

diet groups. All this indicate that cod fed PP based diets added α-cellulose needed more time 

to adjust to the feed. Probably since PP6, PP12 and PP18 had more variable composition, 

compared to the pre experiment feed, than PP0 and FM diets. Furthermore, the tendency to 

lower feed intake and growth in the first 7 weeks in the PP diets plus α-cellulose, compared to 

FM diets, might have induced a compensatory growth in the last 7 weeks, when the cod got 

used to the diet. Anyway, this increased feed intake and weight gain in the last 7 week period 

would most likely level off when the cod catches up with its “normal growth rate”.  
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In our trial, cod fed PP0 had similar growth and feed utilization as cod fed FM0, which 

indicate that the plant protein used was equally well utilized as the fish meal. In other studies 

there have been found increased feed intake with increasing plant ingredients in diets for cod, 

especially when plant inclusion exceeded 25% (Hansen et al., 2006; Refstie et al., 2006a). 

However, utilization of plant ingredients depend on source, amount and processing treatment 

(Francis et al., 2001). The use of soy protein concentrate (SPC), compared to full fat soybean 

meal, is known to eliminate negative effects expected in salmon, especially since SPC have a 

lower concentration of oligosaccharides and anti nutritional factors than extracted soybean 

meal (Refstie et al., 1998). SPC plus wheat gluten in cod diets is found to result in same feed 

utilization, macronutrient digestibility and growth as fish meal (Hansen et al., 2006; 2007a), 

and that is one explanation why these ingredients were used in the present trial.  

 

Energy intake is not often reported in cod trials, to my knowledge. Anyway, the protein to 

energy ratio (PE) in our diets was similar to the PE ratio in cod diets recommended by 

Rosenlund et al. (2004). Although Rosenlund et al. (2004) reported digestible energy in diets, 

and in our trial the total energy was calculated. The independent and similar energy intake in 

the FM based diets, but not in the PP based diets only during the first feeding period, can be 

explained by cod adjusting to the new feed, especially when fed a PP based diet added α-

cellulose. The similar energy intake, at the end of the trial, even though the diets had different 

energy concentrations, might indicate that cod adjusted its feed intake in accordance to the 

energy concentrations, to maintain great growth. Increased feed intake to compensate low 

energy feed is in accordance with cod juveniles fed marine ash inclusions (Toppe et al., 

2006). In addition, energy intake tended to correlate with SGR, in our trial. However, the 

similar energy intake could instead be due to that the digestible macronutrients (protein, fat 

and carbohydrates) and PE had the same ratio in all diets. Then the cod increased feed intake 

to get enough of other nutrients, as protein, independently on energy intake. Most likely the 

cod depends on both energy and protein concentration.  

 

Liver index (HSI) 

In accordance with previous observations, HSI in our trial mostly seemed to be larger than 

normally found in wild cod (Jobling, 1988; Grant et al., 1998; Gildberg, 2004; Mørkøre, 

2005), and was within ranges of farmed cod juveniles (Lie et al., 1986; Morais et al., 2001; 

Rosenlund et al., 2004; Toppe et al., 2006; Hansen et al., 2007a). The reduction in HSI, from 

initial (11.9 ±0.8%) to final values (10.5 ±0.6%) was one of the main objectives of the study, 
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however, hard to explain, since fat and protein levels were equal in the pre experimental feed 

and in the experimental feed. There might be environmental or individual variations that we 

do not know about. It is known that protein growth in animals is most likely strongly 

regulated through control of food intake (Webster, 1993; Jobling et al., 1994), foreseen that 

both protein and amino acid requirements are met. Thus, energy may be consumed in excess, 

resulting in excess fat deposition and thereby increased liver sizes in cod. High lipid diets are 

known to increase cod liver size (Lie et al., 1986; Jobling et al., 1991; Jobling et al., 1994; 

Morais et al., 2001; Rosenlund et al., 2004; Karlsen et al., 2006). Therefore our experimental 

diets had protein/lipid/starch ratios according to Rosenlund et al. (2004) to maintain good 

growth and still keep liver size to a minimum. Bulk inclusions of cellulose have tended to 

reduce HSI in seabass (Dias et al., 1998) and give a low fat deposition in red drum (Turano et 

al., 2002). In broiler chicken, increasing raw fibre in feed reduced metabolic energy per 

metabolic weight unit, and chickens retained more energy as body protein and consequently 

less as body fat (Jorgensen et al., 1996). However, HSI in the present trial was not 

significantly affected by increased α-cellulose in any of the diet groups at final sampling. 

Hence, it seems hard to manipulate the energy deposition in cod more than previously done 

by means of dietary fat content in feeds. Another theory for that α-cellulose did not affect 

energy deposition in cod liver, could be due to that the heritability for HSI in cod is found to 

be high (Refstie, 2009). Then heritage for HSI perhaps conceal or overrule the possible effects 

from energy dilution with α-cellulose.  

 

Protein and fat utilization 

Protein efficiency ratio (PER) and protein productive value (PPV) in the present trial were 

good, when compared to earlier reports for cod juveniles (Lie et al., 1988; Hemre et al., 1989; 

Morais et al., 2001; Hemre et al., 2002; Rosenlund et al., 2004; Hansen et al., 2007a). PER 

and PPV were not influenced by increased α-cellulose. Rosenlund et al. (2004) reported that 

PER was positively correlated with dietary lipid and negatively with starch and protein. 

However, in our trial, the dietary digestible nutrient ratio (protein/lipid/carbohydrates), dietary 

protein to energy ratio (PE) and energy intake were similar in all our diet groups. This was 

probably the reason for protein utilization being unaffected, even though the indigestible part 

of the diets increased and reduced the energy contents in feeds. 
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Lipid efficiency ratio (LER) (average 6.5 ±0.6) increased with increased α-cellulose for cod 

fed PP diets, and tended to increase also for cod fed FM diets. Although average lipid 

productive value (LPV) being equal between diet groups, did however not further confirm this 

finding. However, the increase in LER was minor. In salmon it is found that PER correlated 

positively with LER (Sagstad et al., 2008), in agreement with the present study. Which of the 

two factors, LPV or LER, give the more accurate answer depends on several factors; LPV 

depends on more steps in analytical procedures and is calculated from the fat amount in the 

biomass increase, while LER is calculated from the total biomass increase, also discussed by 

Lie et al. (1988). This is the case for PPV and PER too, PPV is found to be more accurate 

than PER in cod studies (Lie et al., 1988). Reminding on cod storing most of its fat in the 

liver and very small amounts in muscle. In our study, LER did not correlate with HSI, while 

LPV increased with increased HSI for cod fed the FM based diets, but not for cod fed PP 

diets. This might indicate that LPV is more accurate than LER, in addition this also indicates 

that FM and PP diets might have different effects.  

 

 

6.2.2 Digestion of fat, protein and dry matter 

 

Digestion of fat 

In our trial the apparent digestibility coefficient (ADC) for fat was averagely 94 ±2%. The 

high ADC results are in accordance with previous cod studies, which have reported ADC of 

fat from 80% to above 90% (Lie et al., 1988; Hemre et al., 1989; Dos Santos et al., 1993; 

Hemre et al., 2003; Førde-Skjærvik et al., 2006; Hansen et al., 2006; Toppe et al., 2006; 

Hansen et al., 2007b). In our study digestibility of fat decreased with increased α-cellulose, 

for cod fed both FM and PP diets, and the two regression lines were identical. This indicates 

that it was the α-cellulose that affected ADC negatively, independent if the dietary protein 

came from PP or FM. The equal fat digestibility between FM and PP is in accordance with 

previous digestibility studies in salmon and cod (Refstie et al., 1998; Hansen et al., 2006) 

with the same plant protein ingredient (soybean protein concentrate) as used in our study. 

Reduced ADC for fat with increasing plant ingredients has previously been found in cod 

experiments, but, when using other PP types and mixtures (Førde-Skjærvik et al., 2006; 

Hansen et al., 2006; Refstie et al., 2006a).  
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High starch levels have been reported to decrease digestion of fat in salmon (Hemre et al., 

1995), however, there were no differences in protein/fat/carbohydrate ratios in diets in our 

experiment. Starch is water soluble and available to intestinal enzymes, while cellulose is not, 

meaning that cellulose will not affect digestion in a similar manner as starch. Cellulose 

inclusions up to 15% did not affect ADC for fat in diets for rainbow trout (Hansen and 

Storebakken, 2007), similar results were found in tilapia (Amirkolaie et al., 2005). The 

decrease in fat ADC with increasing cellulose inclusions in our cod trial was in accordance 

with salmon fed diets with cellulose inclusions (Aslaksen et al., 2007), where fat ADC ranged 

from 96-87%. Hansen and Storebakken (2007) gave two plausible reasons for how cellulose 

affected fat ADC differently; dietary lipid content was higher and water temperature lower in 

the trials performed by Aslaksen et al. (2007), probably challenging capacity for lipid 

digestion. Further, the trout (Hansen and Storebakken, 2007) and tilapia (Amirkolaie et al., 

2005) were reared in freshwater, an environment that favours lipid digestion compared to 

saltwater (Storebakken et al., 1998a). Aslaksen et al. (2007) experiments with salmon were 

carried out in close to same water temperature (8°C) in seawater, as the cod in our trial. 

Therefore the cellulose inclusions in our trial could have affected fat digestion in same 

direction as Aslaksen et al. (2007). Furthermore, cellulose is an indigestible fibre, and 

indigestible fibres are known to increase feed flow rate trough the GIT (Hemre, 2001), which 

may have led to decreased time to digest nutrients, e.g. fat. There could also have been a 

combination of these factors that resulted in the decreased fat digestion. However, in our 

experiment it was not possible to examine whether the lower fat digestibility was caused by 

reduced lipid hydrolysis, reduced intestinal fatty acids uptake, feed flow rate or other factors.  

 

Reduced fat ADC would expectedly result in LER and LPV also being negatively affected by 

α-cellulose. Still, this was not the case, actually LER increased with increased α-cellulose in 

PP diets and tended to in FM diets, which is hard to explain. If we speculate, the reason might 

be that the bacterial load in the distal intestine increased due to increased levels of α-cellulose 

(bacterial load was not measured).  Significant numbers of bacteria are previously observed in 

the lower intestinal tract of cod (Hansen et al., 2006; Seppola et al., 2006). The increased α-

cellulose could have resulted in α-cellulose being an available energy source for the bacteria, 

which again may have increased bacteria production of short chain fatty acids. Mammals are 

reported to use these short chain fatty acids as a source of energy (Burkitt, 1979; Coultate, 

2002).  There might also be other unknown sources for increased fat in faeces, causing a fake 
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decreased ADC for fat. However, this is not likely since the decrease in fat digestion caused 

by α-cellulose is supported by literature and previous experiments, as discussed. Also the 

increased LER in PP diets with α-cellulose was minor compared to PP0 results. A reason for 

cod tolerating cellulose could be due to that cellulose is similar to chitin (Campbell and 

Farrel, 2006), they have equal bindings (β-1,4-glycosidic) between monomers, which may be 

hydrolyzed with similar enzymes. Chitin is a part of the natural diet for wild cod, which feeds 

on a variety of fish and invertebrates (Link and Almeida, 2000; Orlova et al., 2005), and e.g. 

crustaceans contain large amounts of carbohydrates, like chitin. It is also speculated that this 

is why farmed cod show a high tolerance to plant protein (Hansen et al., 2006; Refstie et al., 

2006a), in agreement with our trial. 

 

Digestion of protein 

Average protein apparent digestibility (85 ±2%) in this study was in accordance with previous 

cod studies, where protein ADC was reported from 80 to above 90% (Lie et al., 1988; Dos 

Santos et al., 1993; Hemre et al., 2003; Hansen et al., 2006; Refstie et al., 2006a; Toppe et 

al., 2006; Hansen et al., 2007b). In our study, there were no significant differences in protein 

ADC caused by increased α-cellulose. This is in agreement with other fish species, where 

dietary cellulose inclusions did not affect protein ADC; seabass (Dias et al., 1998), salmon 

(Aslaksen et al., 2007), tilapia (Amirkolaie et al., 2005) and rainbow trout (Hansen and 

Storebakken, 2007). In addition, in our trial, there seemed to be no differences between FM 

and PP diet groups. Other cod studies reported reduction in protein ADC in diets with plant 

ingredients (Førde-Skjærvik et al., 2006; Refstie et al., 2006a), however these were not the 

same plant ingredients as used in our trial. Hansen et al. (2006) reported highest protein ADC 

in diets with soybean protein concentrate (SPC) and wheat gluten, which were the same plant 

ingredients as used in our trial. Except from that Hansen et al. (2006) found a higher protein 

ADC with SPC and wheat gluten than with pure fish meal diets, in our trial there seemed to be 

no such differences. Furthermore, the reason for no reduction in protein ADC might be due to 

low amounts of anti nutrients in SPC and wheat gluten, compared to other plant ingredients 

(Refstie et al., 1998).  

 

Digestion of dry matter 

Average dry matter ADC (69.1 ±5.5%) of all diet groups in our trial was lower than previous 

cod trials ranging from 71 to 84% (Hemre et al., 2003; Toppe et al., 2006). This is likely due 
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to the high α-cellulose inclusions in our trial, since dry matter ADC decreased with increased 

α-cellulose, in both FM and PP diets. This is in agreement with Toppe et al. (2006), where 

ADC for dry matter decreased for cod fed increased marine ash inclusions in feed. Further, 

this was also in agreement with other fish species, where dietary cellulose inclusions have 

been found to negatively affect organic matter ADC, in rainbow trout (Hansen and 

Storebakken, 2007) and dry matter and organic matter ADC for tilapia (Amirkolaie et al., 

2005). Low ADC for dry matter have been found in cod fed diets with 100% PP (Hansen et 

al., 2007b), but in our trial cod was fed 50% PP, and PP0 seemed to be similar to FM0. The 

two regression lines for FM and PP diets are equal, which confirm that α-cellulose, not PP, 

negatively affected ADC for dry matter.  

 

 

 

6.2.3 Digestion of elements  

 

Information still lacks about essential minerals, especially in fish. Anyway, essential minerals 

described for other animals may also be relevant for fish (Davis and Gatlin, 1996). The 

problem is that most trace elements are required only in very small amounts and it is difficult 

to control such small amounts in formulated diets. In experiments with salmon different 

amounts of yttrium were recollected in faeces depending on collection time (Ward et al., 

2005), and greatest concentrations were observed between 6 and 12 hours after last feeding. 

In our trial, samplings were performed 12 hours after last feeding. Ward et al. (2005) found 

biggest difference in Fe, Mg and Mn, and concluded that faeces should be collected over at 

least 18 hours after the last feeding for determination of true apparent digestibility (AD) for 

these minerals. However, our samples were all collected at the same time after last feeding; 

therefore they are at least comparable.  

 

Some element digestibility results provided negative (below 0%) in our trial, in some or all 

diet groups; essential: Co, Cu, Fe, Mo, Sn, V, and undesirable: Ba, Cd, Pb, Sr, details in 

Appendix 4 Table 9.5. This might be due to presence of elements in water, which is in 

agreement with that fish may absorb elements from water (Lall and Bishop, 1977). 

Furthermore, experiments with salmon have reported negative AD for some elements (e.g. V, 

Mo, Mn, Cd, Ba and Fe), depending on sampling time (Ward et al., 2005). Storebakken et al. 
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(1998b) also found that some elements were influenced by water uptake. Water uptake gives 

digestibility studies uncertainties. However, the diet is the main source of elements in fish 

(Lall and Bishop, 1977), and element absorption can differ among fish species (Sugiura et al., 

1998). 

 

Elements in our trial were measured in feed and faeces, therefore we can not know how they 

are deposited in the cod (the cods element status), and if there are any differences in element 

deposition between cod fed PP or FM plus/minus α-cellulose inclusions. This would have 

been interesting to know, since there were some differences in element concentrations in the 

different diets, especially between FM and PP diets.  

 

 

 

6.2.3 Digestion of essential elements  

 

Selenium (Se), tin (Sn), cobalt (Co) and vanadium (V) 

The elements Se and Sn were mostly below LOQ in feed and/or faeces in our trial, therefore 

ADC could not be calculated. There are no trials on digestibility of Se and Sn in cod, at least 

not to my knowledge. The Co and V ADC were mostly below 0%, therefore it was hard to 

test if there were any effects from the increased α-cellulose. Experiments with salmon also 

reported negative AD for V (Ward et al., 2005), but Co AD above 0%. Se, Sn, Co and V are 

required in small amounts, which are probably why they were hard to measure. 

 

Copper (Cu), iron (Fe), molybdenum (Mo) and zinc (Zn) 

Cu ADC in cod has not been previously reported to my knowledge. However, Cu AD have 

been reported ranging from 45-50% in salmon (Ward et al., 2005),  which is higher than 

results from our trial. This could be due to different amounts of Cu in diets (Sugiura et al., 

1998), since absorption of Cu is thought to be well regulated in fish (Berntssen et al., 2000). 

In addition availability of Cu depends on the physiological state of the animal and amounts of 

antagonists (e.g. Zn, Fe, Cd and Mo), competing for binding sites in absorption (Watanbe et 

al., 1997), but details in fish are little known.  
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Fe ADC was below 0% in one FM0 replicate; though, average Fe ADC for the rest of the diet 

groups showed 22 ± 10%. Fe ADC in cod has not previously been examined. Anyhow, Fe 

ADC for salmon have been reported lower than in our trial (Ward et al., 2005) and higher in 

trials with coho salmon and rainbow trout (Sugiura et al., 1998). However, our results are in 

accordance with earlier reported low bioavailability of iron, in salmon, non-haem being lower 

than haem iron (Andersen et al., 1997; Lorentzen and Maage, 1999). 

 

Mo ADC was below 0% for most diet groups fed FM diets, but Mo ADC for cod fed PP diets 

was at average 68 ±3%. Perhaps partly due to Mo concentrations in PP diets (0.77 

±0.08mg/kg) being higher than in FM diets (0.14 ±0.07mg/kg). Mo ADC for cod has not been 

previously studied, at least not to my knowledge. Though, Mo ADC in salmon has been 

reported from below 0% to 12% (Ward et al., 2005), which is lower than PP diet results in our 

trial, but in accordance with our FM diet results. Little is known about Mo functions in fish. 

 

The average Zn ADC (43 ±11%) in our trial, was higher than found in earlier cod trials (8-

16%) (Førde-Skjærvik et al., 2006). Zn ADC for salmon has been reported within the same 

range as the cod in our trial, 16-55% (Storebakken et al., 1998b; Ward et al., 2005). Plant 

ingredients like soybean meal can reduce zinc absorption. Phytic acid in soy concentrate (SC), 

in addition to lower concentrations of Zn in SC, have been reported to reduce Zn absorption, 

in salmon diets (Storebakken et al., 2000b; Denstadli et al., 2006). Also a high content of 

bone minerals (calcium and phosphorous) might inhibit zinc absorption (Watanbe et al., 1997; 

Lorentzen and Maage, 1999). Therefore adding zinc over the minimum requirement seems to 

be necessary in fish meal based diets, which was done in our experimental diets. Anyway, in 

our trial, Zn ADC seemed to be similar among the different diets, meaning that there were 

probably no considerable anti nutrient activity or nutrient interactions affecting Zn ADC.  

 

The no effects from increased α-cellulose on ADC for Co, Fe, Mo and Zn, in our trial, 

indicate that α-cellulose did not affect digestibility of these elements.  

 

Manganese (Mn) 

Concentrations of Mn in PP diets (48 ±4mg/kg) were higher than in FM diets (26 ±1mg/kg), 

in accordance with Storebakken et al. (2000a) who reported that wheat gluten contained more 

Mn than fish meal, since our PP diets contained wheat gluten. The difference between FM and 

PP is also in accordance with some fish meal having low Mn content (Lorentzen et al., 1996). 
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However, bioavailability of Mn in fish meal is uncertain. In our trial, Mn ADC seemed 

similar between PP and FM fed cod, and was high (72 ±12%). In accordance with Sugiura et 

al. (1998), who found high apparent availability of Mn in diets with wheat gluten (68%) and 

in control diets (54%) for rainbow trout. Mn ADC in cod experiments have been found 

ranging from 19 to 42% in different diets (Førde-Skjærvik et al., 2006), but as in our trial, 

there seemed to be no difference between Mn digestibility for cod fed plant and fish based 

diets. Mn ADC and AAC (apparent absorption coefficient) in salmon have been reported 

between 0 and 20% (Storebakken et al., 2000a; Ward et al., 2005), also lower than in our trial. 

Absorption of Mn from water is not likely, since the Mn content in seawater is very low 

(Davis and Gatlin, 1996). Anyway, absorption of Mn is hard to determine, considering that 

some Mn in faeces is likely to be endogenic Mn from bile (Sugiura et al., 1998), and high 

dietary calcium and phosphorous can reduce absorption of Mn (Watanbe et al., 1997). Mn 

ADC increased with increased α-cellulose, for cod fed PP diets, but not FM diets. This could 

indicate that α-cellulose in combination with PP increases Mn digestion.  

 

 

6.2.4 Digestion of undesirable elements 

 

Silver (Ag), lead (Pb) and strontium (Sr) 

Information about digestibility of undesirable elements for fish is scarce. In our trial, Ag and 

Pb were mostly below LOQ in feed or/and faeces. The Sr ADC was below 0% in all diet 

groups. The negative Sr ADC was in accordance with salmon in Storebakken et al. (1998b) 

and coho salmon in Sugiura et al. (1998) who found Sr ADC and availability below 0%, and 

just above 0%. Sr and Ag are not found vital for fish, therefore assumed to be toxic or at least 

non essential. Pb is less toxic to marine organisms compared to other heavy metals (As, Hg 

and Cd) and fish contain low amounts of Pb (Lorentzen et al., 2001; NIFES, 2009). In this 

study Pb was mostly below LOQ in feed, but was above LOQ in most faeces samples, only 

below LOQ in faeces from cod fed diets with high α-cellulose inclusions. The Pb below LOQ 

amount in feed and not in faeces could be due to feed being analysed “wet” and faeces freeze 

dried. The below LOQ amount of Pb in faeces with high α-cellulose indicate that high α-

cellulose conceal Pb in faeces. Previous studies have found that absorption of Pb increases 

when the calcium concentration in feed is low, this could either be confirmed or disconfirmed 

in our study. However, the α-cellulose inclusions did not seem to stimulate Pb digestion.  
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Arsenic (As) 

ADC for total As was high (82 ±3%). As is found in most marine organisms and toxicity of 

As depends on its chemical state and valence. In literature As is listed as both a heavy metal 

and an essential element; in our trial we listed it as an undesirable, since only total As was 

determined, and we did not know which state the digested As was in. Anyhow, marine 

organisms mostly contain a stable and less toxic As (arsenobetaine), which is the possible 

essential As form (Amlund et al., 2006). ADC for total As was not affected by increased α-

cellulose in diets. However, the concentration of As in FM diets (3.5 ±0.3mg/kg) seemed to 

be higher than in PP diets (2.4 ±0.2mg/kg), confirming high levels of As in marine organisms. 

 

Cadmium (Cd)  

The Cd ADC was mostly below 0% for cod fed PP diets, but Cd ADC for cod fed FM diets 

had an average at 20 ±9%. Concentrations of Cd seemed to be higher in FM feed (0.18 

±0.01mg/kg) than in PP feed (0.12 ±0.01mg/kg). This could be the reason for higher Cd ADC 

for cod fed FM diets than PP diets. Though, this is in contrast to that Cd absorption is found 

to increase when the dietary concentration is low (Harrison and Jefferson, 1992). Cd ADC for 

cod fed FM diets were not affected by increased α-cellulose.  

 

Mercury (Hg) 

Different Hg forms have different toxicity and metabolism (Lorentzen et al., 2001; Coultate, 

2002), however, in this trial only total Hg was measured. Pollution is not always the blame for 

high Hg levels in seafood; marine predatory fish accumulate Hg as they age (Morel et al., 

1998). The concentration of Hg seemed to be higher in FM diets (0.08 ±0.01mg/kg) than PP 

diets (0.04 ±0.01mg/kg), this is in accordance with Hg being below LOQ in all PP and FM18 

faeces samples and just above in the other faeces samples. In addition α-cellulose inclusions 

probably diluted Hg concentrations in faeces. Hence, Hg ADC for cod fed PP diets and FM18 

could not be calculated. Hg ADC for cod fed FM0, FM6 and FM12 diets were not influenced 

by increased α-cellulose. Anyhow, the high Hg ADC for these FM diets (70 ±4%), were in 

accordance with that cod is found to readily absorb dietary mercury (Amlund et al., 2007). 

 

Barium (Ba) 

Average ADC for Ba was 38 ±18%. Ba is assumed to be undesirable or at least non essential 

for fish, although reports for this are not found, therefore Ba can not be excluded as an 
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essential mineral in small amounts. Concentrations of Ba in otoliths are one of more element 

concentrations used as identification to locate cod nursery areas (Gibb et al., 2007), meaning 

that Ba is at least known to be absorbed in fish. ADC for Ba increased with increased α-

cellulose for cod fed PP diets, but not FM diets. In addition there were higher concentrations 

of Ba in PP diets (3.3 ±0.1mg/kg) than in FM diets (1.1 ±0.1mg/kg). This could be the reason 

for the noticeable effects on Ba ADC for cod fed PP diets. Whether the increased digestion of 

Ba was favourable or not is unknown, since requirements of Ba is unknown.  

 

 

 

6.2.5 Faeces composition 

 

Fat, protein (total nitrogen) and elements in faeces were measured as percents, which mean 

that increased α-cellulose will influence the percent of these in faeces. The nutrients (fat and 

protein) varied in diets dependent on α-cellulose inclusion, therefore only water content in 

faeces is discussed here, due to its relevance in describing diarrhoea like conditions, the other 

nutrients (protein and fat) are discussed together with ADC results.   

 

Dry matter in faeces increased with increased α-cellulose for cod fed FM and PP diets. The 

two regression lines were not different. Thus the increase in dry matter came most likely from 

α-cellulose inclusions, and further indicating that α-cellulose was not utilized. Faeces colour 

after freeze drying was darker in faeces from FM0, FM6 and PP0 than all other diets, this also 

indicates that there was more α-cellulose in faeces from α-cellulose diets, since α-cellulose is 

white. In addition, the increased dry matter in faeces was in accordance with decreased ADC 

for dry matter. There have been observed lower dry matter in faeces for cod fed soybean 

products (Førde-Skjærvik et al., 2006; Olsen et al., 2007). Olsen et al. (2007) observed 10.8% 

dry matter in faeces for cod fed 100% plant as protein in diets, which indicated diarrhoea. 

SPC and wheat gluten were used in our trial too, but not soya bean meal, and we only used 

50% PP as protein. The lowest amount of dry matter (14.1%) observed in our trial was in one 

FM0 replicate, a fish meal control group without α-cellulose. Therefore, due to high dry 

matter in our trial, the cod did not have diarrhoea. Although, since the α-cellulose inclusions 

were probably the source for the higher dry matter percent, it might have concealed a 
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diarrhoea like condition in those. However, no histological changes (Olsen, RE, 2009, 

pers.com.) confirm that there were no diarrhoea diseases. There will be more faecal waste 

from cod fed large inclusions of α-cellulose, which may cause local sedimentation, and might 

not be environmentally friendly. Smaller inclusions of α-cellulose probably do not have 

considerable effects. Anyway, to fully evaluate cellulose usage in feed, aspects about solids in 

aquaculture effluent water would need further investigation. 

 

Soybean meal did not affect viscosity of cod digesta (Førde-Skjærvik et al., 2006), so 

viscosity could not explain different digestibility between diets, in agreement with salmon 

(Refstie et al., 1999; Aslaksen et al., 2007). Refstie et al. (1999) reported that soybean with 

high dietary fibre content increased water in intestinal chime of salmon, without affecting 

viscosity, like in broiler chickens. However, viscosity depends on type and amount of NSP 

(Jozefiak et al., 2004), with soluble fibre giving higher viscosity than insoluble. No 

measurements of viscosity were performed in our study, but the water content of undigested 

matter decreased as α-cellulose increased. This indicates that at least there were no increased 

water in the intestines of the cod in our trial, and probably not increased viscosity either. 

 

 

 

6.2.6 Fish health 

 

Haematological parameters 

Haematocrit (Hct) and haemoglobin (Hb) were within previous reported values for cod (Lie et 

al., 1990; Hemre et al., 2002; Rosenlund et al., 2004; Olsen et al., 2007). Red Blood Cell 

count (RBC) for most of the diet groups (1.51-1.79 1012/L) ranged within previous reported 

values for cod. Although RBC in one FM6 replicate, one FM18 replicate and one PP0 

replicate (2.05-2.36 1012/L) were somewhat above earlier published values, however, this was 

probably negligible. Mean cell haemoglobin concentrations (MCHC) were within previous 

reported values. Mean cell volumes (MCV) were lower than previously reported values for 

cod in one FM6 replicate, one FM18 replicate and one PP0 replicate (119-138 10-15L), all 

other dietary groups (149-194 10-15L) ranged within previous reported values. Olsen et al. 

(2007) found significant reduction of MCV as plant protein increased. The low MCV that 

Olsen et al. (2007) found was similar to MCV in our trial. However, the reason for the low 
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MCV in this trial seemed to have no correlation with plant protein or α-cellulose. Mean cell 

haemoglobin (MCH) was in the lower range of previous reported values. None 

haematological values were significantly influenced by increasing α-cellulose. Furthermore, 

there were no significant difference between control diets and experimental diets, suggesting 

that the cod tolerated α-cellulose inclusions, in both FM and PP based diets. Haematological 

parameters in our trial indicate that the cod had good health, especially in combination with 

the good growth and almost no mortality.  

 

Clinical and nutritional parameters 

Aspartate aminotransferase (ASAT) and Alanine aminotransferase (ALAT) were both low, 

and within previous reported ranges for cod (Rosenlund et al., 2004; Olsen et al., 2007). Low 

ASAT and ALAT indicate that there were no organ damage, because ASAT and ALAT 

normally occur in low levels in blood plasma (Racicot et al., 1975; Sandnes et al., 1988) and 

determination of these enzymes, in high amounts in blood plasma, is efficient in diagnosis of 

liver and kidney diseases in fish. Plasma glucose was within previous reported normal cod 

ranges (Hemre et al., 2002; Rosenlund et al., 2004). Total protein was somewhat low in one 

FM18 replicate (23.9g/L), although, probably not of importance, as the rest of the dietary 

groups (28.6-40.1g/L) were similar to previous reported total protein in cod plasma. Anyhow, 

total protein in blood plasma increases when the fish is dehydrated, but low total protein is a 

less specific diagnosis of a disease (Sandnes et al., 1986). None of the clinical and nutritional 

parameters were significantly influenced by increasing α-cellulose. In addition to the normal 

haematological values, this further suggests that cod were in good health in our feeding trial.  

 

 

6.2.7 Whole body and liver composition 

 

Whole body 

Whole body composition of fat, protein, dry matter and ash were measured three weeks 

before and at the end of our feeding trial, and were within ranges from earlier findings in cod 

(Lie et al., 1988; Hemre et al., 2002; Rosenlund et al., 2004; Toppe et al., 2006). Whole body 

composition have been reported being affected by diets (Lie et al., 1988; Rosenlund et al., 

2004), but then due to different protein and fat ratios, which was similar in all our diets. 

Increased fat in cod diets have previously shown to increase whole body fat (Lie et al., 1988), 
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mainly due to increased liver size and fat content of liver. PP in cod feed is reported to not 

affect whole body composition of macronutrients (Hansen et al., 2007a; Hansen et al., 

2007b), in agreement with our trial. Cod diets with 100% PP have shown to decrease dry 

matter in whole body (Hansen et al., 2007b), however our trial used 50% PP. Increased 

protein in whole body have been observed with increased protein in cod diets (Lie et al., 

1988). In our trial, protein in whole body (5.3 ±0.5%) decreased slightly with increased α-

cellulose, for cod fed PP diets, not FM diets. Anyway, this was probably insignificant, since 

protein utilization was not affected by α-cellulose, for either FM or PP based diets. Fat, 

glycogen and dry matter in whole body were not influenced by increased α-cellulose. Ash in 

whole body (2.3 ±0.3%) tended to decrease with increased α-cellulose for cod fed PP diets, 

but not FM diets. Tilapia fed up to 12% cellulose in diets also had slightly reduced protein 

content in whole body with increasing cellulose (Al-Ogaily, 1996), but they also had 

decreased fat content, similar to red drum fed 20% cellulose (Turano et al., 2002) and trout 

fed 40-50% cellulose (Bromley and Adkins, 1984). Cellulose inclusions up to 20% in 

European seabass feed did not affect whole body composition (Dias et al., 1998). Our results 

combined with other fish species indicate that cellulose inclusions have no remarkable effects 

on whole body composition of macronutrients, at least not in low amounts. 

 

Liver 

Liver composition of protein (4.2 ±0.6%), lipid (67.8 ±1.3%), glycogen (36 ±6mg/g) and dry 

matter (74.5 ±1.0%) were in accordance with earlier findings in cod (Lie et al., 1988; 

Rosenlund et al., 2004; Hansen et al., 2007a). Although, liver fat levels in our trial were 

higher when compared to Morais et al. (2001). Lipid liver content is known to increase with 

increasing fat in the diet (Lie et al., 1986; Jobling et al., 1991; Jobling et al., 1994; Morais et 

al., 2001; Rosenlund et al., 2004; Karlsen et al., 2006). However, the ratios of dietary 

digestible macronutrients (protein/lipids/carbohydrates) were equal in our trial, which is 

probably the reason for no differences in the liver composition. Increased corn gluten in cod 

feed increased liver glycogen (Hansen et al., 2007a), probably due to increased starch. 

Though, this plant ingredient was not used in our trial. Cod fed PP diets seemed to have equal 

liver macro composition as FM fed cod. In addition, increased dietary α-cellulose had no 

influence on macronutrient composition of the liver.  
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7 Conclusion 

 

 

 

All cod showed good growth. Weight gain, total weight, SGR and CF were not influenced by 

increased α-cellulose in either PP or FM based diets. Cod fed PP0 had similar growth and 

feed utilization as cod fed FM0, which confirms that 50% PP plus 50% FM as dietary protein 

source is equally well utilized as 100% FM based diets, in agreement with earlier results 

(Hansen et al., 2006; 2007a).  

 

Feed intake seemed to be increased by α-cellulose. Cod fed PP based diets plus α-cellulose 

probably needed more time to adjust to the feed, which might have induced a compensatory 

growth, making the cod catch up with its “normal growth rate”. The similar energy intake, 

even though the diets had different energy concentrations, and the dietary digestible macro 

nutrients (protein, fat and carbohydrates) and PE showing similar ratios, indicate that the cod 

adjusted feed intake in accordance to both energy and protein amount. 

 

Liver index, gutted weight and fillet weight were not affected by increased α-cellulose. 

Protein utilization was not influenced by increased α-cellulose. Digestibility of fat decreased 

with increased α-cellulose, equal in both FM and PP diet groups. In disagreement with the 

increase in LER with increased α-cellulose, however, LPV did not vary between diet groups. 

Digestibility of protein was not affected by increased α-cellulose. Digestibility of dry matter 

decreased with increased α-cellulose, in accordance with increased dry matter in faeces.  

 

Some of the element digestibility results were negative in our trial, in some or all diet groups, 

both essential: Co, Cu, Fe, Mo, Sn and V, and undesirable elements: Ba, Cd, Pb and Sr. 

Digestibility of the essential elements Co, Fe, Mo and Zn and the undesirable elements Pb, 

total As, Cd and Hg were not influenced by increased α-cellulose. Mn and Ba ADC increased 

with increased α-cellulose, for cod fed PP diets, not FM diets. Concentrations of Mo, Mn, V 

and Ba seemed to be higher in PP than in FM diets. Concentrations of Sr, As, Cd and Hg 

seemed to be higher in FM than in PP diets. Pb and Ag were below LOQ in feed.  
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Cod health was good, based on haematology, clinical and nutritional blood parameters, which 

all ranged within previous reported values for healthy cod. Good health was further confirmed 

by the almost no mortality and no diarrheic conditions. Composition of macronutrients in 

whole body and liver had no remarkable variation from the increased dietary α-cellulose.  

 

 

Our study reports that it seemed hard to manipulate energy deposition in cod by diluting diets 

with cellulose, and cod fed 18% α-cellulose had more faecal waste, which may be a local 

environmental challenge. Our results also show that cod tolerated up to 18% α-cellulose 

inclusions, both in combination with FM and PP based diets. In addition the cod compensated 

by higher feed intake to satisfy its need for energy and protein for optimal growth.  
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9 Appendix 
 
 
 
Appendix 1 

Data sheets for plant ingredients used in the experimental feed: 

- Vitacel: Figure 9.1, 9.2 and 9.3. 

- Soycomil: Figure 9.4 and 9.5. 

- Wheat gluten: Figure 9.6 and 9.7. 

 

 

Appendix 2 

Description of quality insurance of analytical methods: 

- Quality assurance of analytical methods.  

- Quality control of precision and trueness. 

- Calibration. 

- Accreditation. 

 

 

Appendix 3 

Efficiency ratios and productive values for starch and ash: Table 9.1. 

 

 

Appendix 4 

Concentrations (mg/kg), limit of quantification (LOQ) and parallel measurements for 

elements in feed and faeces, and ADC results for elements: Table 9.2, 9.3, 9.4 and 9.5. 
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Figure 9.1. Vitacel data sheet, part 1 of 3. 

 
 
Figure 9.2. Vitacel data sheet, part 2 of 3. 
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Figure 9.3. Vitacel data sheet, part 3 of 3. 
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Figure 9.4. Soycomil data sheet, part 1 of 2. 

 
Figure 9.5. Soycomil data sheet, part 2 of 2. 
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Figure 9.6. Wheat gluten data sheet, part 1 of 2. 
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Figure 9.7. Wheat gluten data sheet, part 2 of 2. 
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Appendix 2 
 

 

 

Quality assurance of analytical methods 

To get reliable results from analyses it is important to have good validations of chemical 

analytical methods. When validating a method, all parameters in the method have to go 

through examination  and determination (Julshamn et al., 2005). Important method 

parameters in a validation process are; specificity (determination of analytical component 

without interference), calibration, precision, trueness, ruggedness (sensitivity for changes), 

limit of quantification and measuring ranges. All of this has to be controlled in advance, to get 

reliable results from the method. Thus there are quality controls and calibrations that must be 

done together with analyses of samples, to make sure that analyses are done correctly.  

 

Quality control of precision & trueness 

Quality of analyses can be controlled by duplicate measurements of each sample. Variance 

between duplicate samples can not be over a stated number. This will control precision of 

results. One or more reference materials with control charts are used, and reference material 

will help in controlling trueness of results. Control charts have a mean value and upper and 

lower limit that result values from analyses have to be within to be approved. Values and 

limits in the control charts are made from several identical analyses on same material. Control 

charts are controlled by laboratory leaders.  

 

Calibration 

A calibration curve/standard curve is made from several weighing (at least two, but mostly 

more is better) of a control material. The control material has a known concentration and can 

be controlled with a control chart. Samples are quantified from the calibration curve.  

Therefore we have to know the measuring range where there is linearity between analytical 

signal and concentration. It is often important to analyse control material both before and after 

analysing samples, so we know that nothing have changed during analyses. A calibration 

curve is of course not needed in gravimetric methods.  
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Accreditation 

Accreditation of a method means that the method is officially approved of a competent 

organisation. Accredited methods have to satisfy international standards, to insure trust of 

results internally and externally. NIFES is accredited for chemical and microbiological 

analyses and the management is bound to make sure that laboratories do analyses in according 

to general principles for good laboratory practice, control routines and quality planning. 

Today Nifes have over 70 accredited methods. NA (Norwegian accreditation organisation) 

visits NIFES yearly, and NA is evaluated by EA (European accreditation organisation) to 

have same requirements in different countries. Quality routines are; variance treatment, SLP 

(comparing analyse results with other laboratories), controlling routines and internal and 

external audits. Not all methods have accreditation, since this is expensive and time 

demanding. In addition, accreditation is not needed when results from the method are not 

given to the Norwegian food safety authority (Mattilsynet) and when results only are used in 

experiments. 
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Appendix 3 
 
 
 
 
 
 
Table 9.1. Starch efficiency ratio (SER), starch productive value (SPV), ash efficiency ratio 
(AER) and ash productive value (APV) for Atlantic cod fed eight different diets in duplicate 
of each, from the total feeding trial (week 0 to 14). SER increased with increased α-cellulose 
for cod fed FM diets (R2=0.62, p<0.05), but not for cod fed PP diets. SPV was not affected by 
α-cellulose. AER decreased with increased α-cellulose for cod fed PP diets (R2=0.52, 
p<0.05), but not for cod fed FM diets. APV decreased with increased α-cellulose for cod fed 
PP diets (R2=0.58, p<0.05), but not for cod fed FM diets. 
Diets* SER SPV AER APV 
FM 0 9.5   0.01 14.3 0.41 
FM 0 10.3 0.06 15.4 0.35 
FM 6 10.3 0.01 15.3 0.35 
FM 6 10.5 0.03 15.5 0.39 
FM 12 10.5 0.00 15.3 0.46 
FM 12 11.2 0.04 16.2 0.33 
FM 18 11.7 0.04 16.0 0.42 
FM 18 10.6 -0.02 14.5 0.44 
PP 0 12.0 0.04 16.2 0.43 
PP 0 11.3 0.02 15.3 0.48 
PP 6 11.2 0.02 15.6 0.30 
PP 6 11.3 0.04 15.6 0.53 
PP 12 10.9 0.02 14.5 0.36 
PP 12 12.2 0.04 16.2 0.35 
PP 18 11.9 0.04 13.3 0.28 
PP 18 12.9 0.05 14.3 0.24 

*Abbreviations: FM = fish meal, PP = 50% plant protein & 50% fish meal, 0, 6, 12 & 18 = % 
inclusions of α-cellulose (on a weight basis).  
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Appendix 4 
 
 

 

 
Table 9.2. Analysed concentrations of elements in diets (mg/kg), included limit of 
quantification (LOQ) for elements below LOQ and variance (%) between parallel 
measurements of elements in diets.  

Diets** 
Elements ** 

Y Ag As Ba Cd Co Cu Fe Hg Mn Mo Pb Se Sn Sr V Zn 
Concentrations of elements in feed (mg/kg): 

FM0 65 <0.01 3.7 0.9 0.2 0.1 7 200 0.09 25 0.2 <0.04 <0.2 <0.04 26 0.1 160 
FM6 68 <0.01 3.6 1.1 0.2 0.1 8 190 0.08 27 0.1 0.12 <0.2 <0.04 24 0.1 170 
FM12 65 <0.01 3.4 1.0 0.2 0.1 8 170 0.07 24 0.1 <0.04 <0.2 0.05 23 0.1 170 
FM18 64 <0.01 3.1 1.2 0.2 0.1 7 220 0.07 26 0.1 <0.04 <0.2 0.07 21 0.1 160 
PP0 80 <0.01 2.4 3.4 0.1 0.2 10 290 0.04 54 0.9 <0.04 <0.2 <0.04 17 0.3 180 
PP6 66 <0.01 2.6 3.2 0.1 0.2 9 230 0.04 47 0.8 <0.04 <0.2 0.04 16 0.3 160 
PP12 63 <0.01 2.4 3.1 0.1 0.2 8 240 0.04 46 0.7 <0.04 <0.2 0.05 15 0.3 140 
PP18 58 <0.01 2.1 3.3 0.1 0.2 7 230 0.03 45 0.7 <0.04 <0.2 0.07 14 0.3 130 

Variance between parallel measurements (%): 
FM0 * * * 24 * 33 * 14 20 17 27 * * 48 15 * * 
FM6 12 * * 27 * 110 * 20 * * 25 152 * 10 * 71 * 
FM12 * * * * * * * * * * * 29 * * * 24 * 
FM18 * * * * * 49 * 47 * 37 * 20 * * * * * 
PP0 * * * * * 11 * 33 * 14 * * * 10 * * * 
PP6 * * * * * * * * 12 * * * * 26 * * * 
PP12 * * * * * * * 29 * * * 11 * * * * * 
PP18 * * * * * * * 31 11 15 * 25 * * * * * 
* Variance between parallels is accepted = below the upper limit at 10% 
**Abbreviations: FM = Fish Meal, PP = 50 % Plant Protein & 50 % Fish Meal, 0,6,12 &18 = 
% α-cellulose inclusions, Y=yttrium, Ag=silver, Ba=barium, Cd=cadmium, Co=cobalt, 
Cu=copper, Fe=iron, Hg=mercury, Mn=manganese, Mo=molybdenum, Pb=lead, 
Se=selenium, Sn=tin, Sr=strontium, V=vanadium and Zn=zinc. 
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Table 9.3. Analysed concentrations of elements in freeze dried faeces (mg/kg), for cod fed 
different diets, included limit of quantification (LOQ) for elements below LOQ and variance 
(%) between parallel measurements of elements.  

Diets** 

Elements ** 

Y Ag As Ba Cd Co Cu Fe Hg Mn Mo Pb Se Sn Sr V Zn 
Concentrations of elements in freeze dried faeces (mg/kg): 

FM0 340 <0.02 2.8 3.5 0.8 0.3 33 1100 0.13 60 1.5 0.13 <0.2 0.08 400 0.5 630 
FM0 270 <0.02 2.9 2.3 0.9 0.3 26 620 0.12 30 0.5 0.11 <0.2 0.10 260 0.4 370 
FM6 310 <0.02 1.9 4.7 0.6 0.3 25 750 0.09 54 0.4 1.30 <0.2 0.12 240 0.4 480 
FM6 260 <0.02 2.2 1.9 0.6 0.3 24 530 0.09 21 0.4 0.14 <0.2 0.17 200 0.3 290 
FM12 240 <0.02 1.9 3.3 0.5 0.2 25 590 0.07 45 6.7 0.26 <0.2 0.22 270 0.4 450 
FM12 230 <0.02 1.7 3.7 0.4 0.2 18 480 0.09 16 0.3 0.09 <0.2 0.18 170 0.3 250 
FM18 180 <0.02 1.8 1.2 0.4 0.2 18 390 <0.06 10 0.4 <0.08 <0.2 0.23 150 0.2 180 
FM18 190 <0.02 1.4 2.1 0.4 0.2 16 400 <0.06 16 0.3 <0.08 <0.2 0.21 450 0.3 230 
PP0 370 <0.02 2.0 9.3 0.5 0.9 35 1000 <0.06 73 1.4 0.12 <0.2 <0.08 310 1.4 440 
PP0 280 <0.02 2.1 10.0 0.6 0.9 37 810 <0.06 70 1.0 0.11 <0.2 0.08 440 1.4 440 
PP6 220 <0.02 1.6 7.3 0.5 0.8 32 740 <0.06 52 0.8 0.08 <0.2 0.14 250 1.1 360 
PP6 240 <0.02 1.7 6.9 0.5 0.7 29 740 <0.06 40 0.8 0.13 <0.2 0.14 220 1.0 330 
PP12 210 <0.02 1.4 5.2 0.3 0.5 22 650 <0.06 39 0.8 <0.08 <0.2 0.19 200 0.9 250 
PP12 210 <0.02 1.4 6.3 0.4 0.5 23 530 <0.06 34 0.7 <0.08 <0.2 0.17 170 0.8 300 
PP18 170 <0.02 1.2 4.2 0.3 0.5 21 520 <0.06 23 0.7 <0.08 <0.2 0.21 170 0.7 200 
PP18 160 <0.02 1.1 3.9 0.3 0.5 20 440 <0.06 14 0.7 0.08 <0.2 0.22 140 0.6 180 

Variance between parallel measurements (%): 
FM0 * * * * * * * * * * 80 36 * * * * * 
FM0 * * * 15 * * * * * * * * * 35 * * * 
FM6 * * * * * * * 11 * * * * * 23 * * * 
FM6 * * * * * * * * * * * 41 * 11 * * * 
FM12 14 * * 25 * * * * * * 21 127 * * * * * 
FM12 * * * 107 * * * * * * * * * 14 * * * 
FM18 * * 11 * 10 * * * 12 * * 57 * 19 * * * 
FM18 * * * * * * * * * * * * * 13 * * * 
PP0 * * * * * * * * * * * 20 14 * * * * 
PP0 * * * 23 * * * * 13 * * 40 * 16 * * * 
PP6 * * * * * * * 18 * * * * * 18 * * * 
PP6 * * * * * * * * * * * * * * * * * 
PP12 * * * * * * * * * * * * * 10 * * * 
PP12 * * * * * * * * 16 * * * * * * * * 
PP18 * * * * * * * * 30 * * * * * * * * 
PP18 * * * * * * * * 15 * * 13 12 * * * * 
* Variance between parallels is accepted = below the upper limit at 10% 
**Abbreviations: FM = Fish Meal, PP = 50 % Plant Protein & 50 % Fish Meal, 0,6,12 &18 = 
% α-cellulose inclusions, Y=yttrium, Ag=silver, Ba=barium, Cd=cadmium, Co=cobalt, 
Cu=copper, Fe=iron, Hg=mercury, Mn=manganese, Mo=molybdenum, Pb=lead, 
Se=selenium, Sn=tin, Sr=strontium, V=vanadium and Zn=zinc. 
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Table 9.4. Calculated concentrations of elements in wet faeces (mg/kg), for cod fed different 
diets.  

Diets** 
Elements (mg/kg) ** 

Y Ag As Ba Cd Co Cu Fe Hg Mn Mo Pb Se Sn Sr V Zn 
FM 0 52.2 * 0.43 0.5 0.13 0.05 5.1 169 0.020 9 0.23 0.02 * 0.01 61 0.08 97 
FM 0 38.2 * 0.41 0.3 0.12 0.04 3.7 88 0.017 4 0.07 0.02 * 0.01 37 0.05 52 
FM 6 57.0 * 0.35 0.9 0.10 0.06 4.6 138 0.017 10 0.07 0.24 * 0.02 44 0.08 88 
FM 6 47.7 * 0.40 0.3 0.12 0.05 4.4 97 0.017 4 0.08 0.03 * 0.03 37 0.06 53 
FM12 46.2 * 0.37 0.6 0.10 0.05 4.8 114 0.013 9 1.29 0.05 * 0.04 52 0.07 87 
FM12 42.5 * 0.31 0.7 0.07 0.03 3.3 89 0.017 3 0.06 0.02 * 0.03 31 0.05 46 
FM18 32.7 * 0.33 0.2 0.07 0.04 3.3 71 * 2 0.07 * * 0.04 27 0.04 33 
FM18 36.9 * 0.27 0.4 0.07 0.03 3.1 78 * 3 0.06 * * 0.04 87 0.06 45 
PP0 58.9 * 0.32 1.5 0.08 0.14 5.6 159 * 12 0.22 0.02 * * 49 0.22 70 
PP0 41.9 * 0.31 1.5 0.09 0.13 5.5 121 * 10 0.15 0.02 * 0.01 66 0.21 66 
PP6 35.0 * 0.25 1.2 0.07 0.12 5.1 118 * 8 0.12 0.01 * 0.02 40 0.17 57 
PP6 41.2 * 0.29 1.2 0.08 0.12 5.0 127 * 7 0.13 0.02 * 0.02 38 0.17 57 
PP12 37.7 * 0.25 0.9 0.06 0.10 3.9 117 * 7 0.15 * * 0.03 36 0.16 45 
PP12 39.6 * 0.26 1.2 0.07 0.10 4.3 100 * 6 0.13 * * 0.03 32 0.15 57 
PP18 30.1 * 0.21 0.7 0.06 0.09 3.7 92 * 4 0.12 * * 0.04 30 0.13 35 
PP18 28.7 * 0.20 0.7 0.06 0.08 3.6 79 * 3 0.12 0.01 * 0.04 25 0.11 32 
* Below limit of quantification (LOQ) 
**Abbreviations: FM = Fish Meal, PP = 50 % Plant Protein & 50 % Fish Meal, 0,6,12 &18 = 
% α-cellulose inclusions, Y=yttrium, Ag=silver, Ba=barium, Cd=cadmium, Co=cobalt, 
Cu=copper, Fe=iron, Hg=mercury, Mn=manganese, Mo=molybdenum, Pb=lead, 
Se=selenium, Sn=tin, Sr=strontium, V=vanadium and Zn=zinc. 
 
 
Table 9.5. Apparent digestibility coefficients (ADC) for elements (included negative results), 
for cod fed different diets.  

Diets** 
Elements (mg/kg) ** 

Ag As Ba Cd Co Cu Fe Hg Mn Mo Pb Se Sn Sr V Zn 
FM0 * 86 24 15 24 14 -5 72 54 -19 * * * -194 -24 25 
FM0 * 81 36 -11 21 13 24 67 71 47 * * * -144 -10 43 
FM6 * 88 6 31 50 32 13 75 56 32 -138 * * -119 20 38 
FM6 * 84 54 7 53 21 26 70 79 7 69 * * -121 31 55 
FM12 * 85 11 16 -30 11 6 73 49 -2168 * * -19 -218 -35 28 
FM12 * 86 -6 32 -3 32 19 63 81 -15 * * -3 -112 -7 58 
FM18 * 79 64 16 -2 14 37 * 86 -26 * * -17 -154 2 60 
FM18 * 85 40 21 22 26 38 * 79 -3 * * -3 -633 -28 51 
PP0 * 82 41 15 3 24 25 * 71 65 * * * -294 11 47 
PP0 * 75 15 -29 -36 -7 19 * 63 67 * * * -649 -19 29 
PP6 * 82 32 -18 -38 -9 3 * 67 71 * * -5 -369 -6 33 
PP6 * 82 40 -7 -15 8 10 * 76 72 * * 2 -284 10 42 
PP12 * 83 50 7 1 14 19 * 75 64 * * -14 -300 7 46 
PP12 * 82 38 -3 -1 9 33 * 77 71 * * -4 -245 13 35 
PP18 * 81 57 -9 -4 3 23 * 83 67 * * -2 -314 0,4 48 
PP18 * 81 56 -25 -6 0,3 29 * 89 66 * * -16 -269 7 49 
* Below limit of quantification (LOQ) in feed or/and faeces  
**Abbreviations: FM = Fish Meal, PP = 50 % Plant Protein & 50 % Fish Meal, 0,6,12 &18 = 
% α-cellulose inclusions, Y=yttrium, Ag=silver, Ba=barium, Cd=cadmium, Co=cobalt, 
Cu=copper, Fe=iron, Hg=mercury, Mn=manganese, Mo=molybdenum, Pb=lead, 
Se=selenium, Sn=tin, Sr=strontium, V=vanadium and Zn=zinc. 


