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ABSTRACT 

Echo integration in bad weather conditions is problematic due to vessel- and wind-induced 

air bubble layer that is formed below the hull of a vessel, where acoustic transducers are 

mounted. The bubbles below the hull attenuate both the transmitted and received acoustic 

waves and may lead to an underestimation of the real fish abundance or density. A detailed 

understanding of the acoustic energy attenuation by the air bubble layer is crucial for 

establishing a correction factor for the recorded echo integrator measurements. The acoustic 

attenuation by the air bubble layer under different weather conditions were estimated by 

observing the ratio of the nautical area backscattering strength of the sea bed between two 

inter-calibrated Simrad EK60 38 kHz hull- and keel-mounted transducers. By integrating the 

sea bed as a reference target over distance in various weather conditions, the amount of 

acoustic signal attenuated by the air bubbles was estimated. A correction factor for the hull 

mounted system was further established from the data. 

 

The consistency of the bottom backscattered ratio was investigated in various wind speeds, 

and the best consistency of the ratio was found in periods with calm wind speeds (0-10 m/s). 

The results indicated that the estimated ratio strongly increased with wind speeds (Beaufort 

force) but at a lower magnitude than earlier reported and expected at 38 kHz. This indicates 

that the necessary corrections are less than earlier reported at similar wind speeds. This is 

however vessel specific, and may be effected by the transducer mounting position and by the 

shape of the vessel hull. There was a significant difference between the echo integrator values 

of the hull- and keel-mounted transducers, with the keel-mounted transducer performing 

better in all various weather conditions. In very bad weather, however, the data indicated that 

also the keel mounded transducer experienced air bubble attenuation as well. A strong 

correlation between the bottom backscattering strength responses of the two-transducer 

mounting systems was found, while a rather low correlation between the vessel pitch/roll and 

bottom backscattering strength was found. In conclusion, a new and modern technique of 

estimating a correction factor for air bubble acoustic attenuation was tested and verified. 

Since the investigations were made as a secondary or third priority objective during the 

surveys, a better material can be collected if special surveys are conducted for air bubble 

estimation. Especially when using this method with the vessel running in several directions 

into the wind should then be considered. 
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1. INTRODUCTION 

 

Fisheries acoustic techniques are adequate and dependable compared to the traditional trawl 

surveys, providing important biological information about fish spatial distribution, density 

and biomass, and behaviour. Acoustic fish abundance estimates are by comparison the easiest 

and fastest method for pelagic fish abundance estimation (Simmonds and MacLennan, 2005). 

However, there are some uncertainties associated with the technique in bad weather 

conditions and other unfavourable conditions. In fisheries acoustics, the echo intensity of a 

certain amount of underwater targets is usually assumed to be proportional to the density of 

the targets with the same acoustic characteristics (Dalen and Løvik, 1981; Foote, 1983; 

Simmonds and MacLennan, 2005). The above principle is called the linearity principle, and it 

is the basis of echo integration method (MacLennan, 1990; Simmonds and MacLennan, 

2005). Acoustic methods estimate fish density or biomass by summing the acceptable 

returning fish echoes, and this process is therefore called echo integration (Dragesund and 

Olsen, 1965; Simmonds and MacLennan, 2005). 

The echo integration procedure requires detailed background knowledge of the backscattering 

cross-section of the expected target (Foote, 1983; Simmonds and MacLennan, 2005). Echo 

integration in bad weather is one of the most challenging processes encountered during 

acoustic fish abundance estimation (Dalen and Løvik, 1981; Ona, 1991; Berg et al., 1983; 

Aglen, 1994). In bad weather conditions, an air bubble layer may be formed in the sea surface 

and extend below the hull of the vessel where transducers are typically mounted (Knudsen, 

2006). This layer of bubbles attenuates both the transmitted and received acoustic signals 

(Ona and Mamylov, 1988; Simmonds and MacLennan, 2005). By estimating the air bubble 

acoustic attenuation, the level of the lost signals can be compensated during the post-

processing stage. At a certain stage, the weather conditions may be such that more or less the 

entire signal is blocked by air bubbles. The stop conditions for a survey are generally set long 

before this condition occurs (Ona and Mamylov, 1988; Parker-Stetter et al., 2009). 

Air bubble acoustic attenuation associated error leads mostly to an underestimation of the fish 

density if not corrected for (Aglen 1989; ICES, 2007). Aglen (1989) estimated the 

probabilities for the underestimation to be around 90 % and 50 % for the overestimation. Due 

to air bubbles or due to all other errors it is of great importance that the fish abundance 

estimates are made to be as precise as possible; reducing the systematic errors to a possibly 
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low or negligible level. Systematic errors are generally considered difficult to correct; their 

estimation usually requires careful data scrutinizing. 

Historically, there have been several attempts to solve the problem of air bubble attenuation 

in bad weather conditions; such as suspension of acoustic surveys above 30 % bubble 

attenuation correction (Ona and Mamylov, 1988), using towed bodies (Dalen and Løvik, 

1981; Kloser, 1996; Dalen et al., 2003), implementing bubble attenuation estimator (Dalen 

and Løvik, 1981; Berg et al., 1983) and lastly using drop keels (Ona and Traynor, 1990). 

However, only the drop keel was found to be an efficient technique in resolving the bad 

weather problem without drastically reducing the average vessel survey speed (Ona and 

Traynor, 1990), especially during combined trawl-acoustic surveys. The drop keel can be 

protruded down below the bubble layer and to some extend eliminate the air bubble 

attenuation (Ona and Traynor, 1990; Simmonds and MacLennan, 2005; ICES, 2007). 

Most recently, there has been a shift by research institutions from using purpose-built 

research vessels equipped with the hull- and keel-mounted transducers to the use of the 

commercial fishing vessels (FVs) for fish abundance estimation (ICES, 2007). These 

commercial vessels are most often without drop keels or towed bodies to deploy in bad 

weather conditions (Ona, 1991; ICES, 2007), but only equipped with transducers directly to 

the vessels' hulls.  The hull-mounted systems are generally most efficient when acoustic 

surveys are conducted simultaneously with other research investigations (Aglen, 1989; Ona, 

1991), which is usually the case with fishing vessels (Godø, 2004; ICES, 2007). The use of 

fishing vessels for acoustic data collection has led to the reoccurrence of the air bubble 

acoustic attenuation problem once considered more or less resolved (ICES, 2007; E. Ona, 

IMR, pers. comm.), and direct comparison of vessels with and without drop keel has shown 

large differences (Peña, 2009). 

A systematic stock underestimation indisputably comes with detrimental economic 

consequences to the fishing industry (Hillborn, 2007), and may also be misleading to the 

scientific community and the management by giving an impression that a particular fish stock 

may be under severe fishing pressure while it may not be (Francis and Shotton, 1997). Most 

fishing vessels noise levels are also not in accordance with the ICES 209 recommendations, 

since they produce noise levels that are well within the hearing range of fish (ICES, 2007), 

and may thus resulting in another problem of fish vessel avoidance (Fréon et al., 1993; 

Mitson, 1995; Mitson and Knutsen, 2003; Jørgensen et al., 2004; ICES, 2008). Moreover, 
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factors like echosounder calibration; vessel heave compensation, etc. are usually of less 

importance in fishing vessels while these are very crucial and determining factors in research 

vessels (RVs) (Simmonds and MacLennan, 2005). These platform limitations will in many 

instances lead to a compromise between collections of qualitative or quantitative data (ICES, 

2007). 

There are several valuable reasons why research institutions use fishing vessels for the 

collection of acoustic data (Hampton and Soule, 2003; Godø, 2004 and ICES, 2007): 

- To obtain information for single-species stock assessment; 

- To obtain information for ecosystem approach to fisheries management; 

- Low research costs and more vessel time at sea; 

- Fish stock migration and distribution over time; 

- Acoustic data can be acquired without disrupting commercial trawling; 

- Acoustic data can be collected without scientific personnel onboard. 

 

Nowadays, fisheries scientists and the International Council for Exploration of the Sea 

(ICES) are devoting some effort to work closer together with fishing vessel owners in 

designing and constructing vessels that can be more suitable for both uses as fishing and 

research platforms (Godø, 2004). Not so long ago the Institute of Marine Research (IMR) in 

Norway cooperated with the vessel owner in the construction of a purse-seiner/trawler FV 

"Libas" (94 m, 8000 HP). This was the first fishing vessel to be built as a scientific vessel 

(Godø, 2004); it is equipped with most required scientific equipments such as a drop keel, 

multi-frequency acoustic instrumentations, laboratories and hydrological data collection 

equipments. 

While many studies have shown that a transducer mounted on a drop keel performs better 

compared to a hull-mounted transducer in bad weather conditions (Ona and Traynor, 1990; 

Simmonds and MacLennan, 2005; Knudsen, 2006a; ICES, 2007). However, there has never 

been any correction factor established for air bubble attenuation by the direct comparisons of 

the hull- and keel-mounted systems. In the past, air bubbles induced acoustic attenuations 

were compensated by adding a certain value to the echo during echo integration based on the 

personal experience of operator (Dalen and Løvik, 1981). Also, an "air correction" algorithm 

was implemented in some post-processing systems for echo sounder data like the Bergen 
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Echo Integrator (Foote et al., 1991) or in the newer Large Scale Survey System (LSSS) 

(Korneliussen et al., 2006). 

Apparently, this method was not ideal since it was operator dependent, and greatly depended 

upon the experience of the operator. Since the correction factor was also vessel dependent, it 

is therefore considered unsatisfactory and inefficient. Establishment of an appropriate 

correction factor for different weather conditions is therefore needed for the compensation of 

the signals lost due to air bubble attenuation in bad weather conditions. A well-designed 

experiment can also be used to demonstrate the effective gain in using a keel-mounted system 

as compared to the traditional transducer mountings. 

 

Air bubble acoustic signal attenuation 

Kinsler et al. (1982) define attenuation as "the lost of acoustic energy from a sound beam". 

They further categorized the acoustic attenuation into two folds:  the first as the conversion of 

acoustic energy into thermal energy and, the second as the deflection or scattering of acoustic 

energy out of the beam. Air bubbles in the water column cause a considerable amount of 

acoustic attenuation either by viscous forces and/or heat conduction losses. The compression 

of air bubbles by the passing sound waves results in the energy attenuation of the sound 

waves. Scattering in all directions by the entrapped bubbles also results in the reduction of the 

acoustic energy in directed sonar beams. 

Severe amounts of air bubbles in the water column, which can often happen when the vessel 

bow is pounding its way through the sea waves, also alter the density and compressibility of 

the medium through which sound is propagating; thus in turn leads to a reduction of the speed 

of sound. The air bubble induces change in density and compressibility of the medium results 

in enormous reflection and refraction of acoustic energy away from the main transmission 

source. Consequently, a beam of sound waves can be attenuated by reflection, refraction, 

absorption, and scattering as it propagates through the seawater containing a high 

concentration of air bubbles (Kinsler et al., 1982). Wind-induced bubbles are mainly 

produced by the breaking sea waves (Urick, 1983), and these occur right below the sea 

surface.  

However, Knudsen (2006a) claimed that wind-induced bubbles are not the main actual 

attenuator of the fisheries acoustic signal but rather bubbles that are generated by the vessel 
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itself as it bounces up and down on the sea surface in stormy weather conditions. The air 

bubble acoustic attenuation problem mainly occurs when hull-mounted transducers are used 

(Dalen and Løvik, 1981; Ona, 1991). The bubbles below the vessel hull attenuate both 

transmitted and received signals (Figure 1) by the conversion of the sound energy into heat 

energy (Urick, 1983), this process is known as "thermal damping" (Dalen and Løvik, 1981). 

Figure 1 is a simplified exemplification of the attenuation process but not a realistic 

indication of the magnitude of signal attenuation. 

 

Figure 1. Schematic illustration of acoustic signal interference by air bubbles in bad weather conditions. Solid 

line refers to the transmitted signal (out) and the dashed lines refer to the returning signal (in) - indicating the 

reduced echo intensities. 

 

In solving the air bubble acoustic attenuation problem, Berg et al. (1983) proposed that 

numerical "bubble attenuation estimator" software should be installed on research vessels to 

improve the bad weather acoustic performance of the hull-mounted transducers. The 

numerical attenuation estimator was empirically obtained by measuring the bubble density 

and bubble size distribution in relation to the resulting attenuation. Their method is not 

regularly used to compensate for the signal lost in bad weather conditions, as their bubble 

attenuation estimator was never realized and implemented. Later, after the drop keel was 
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introduced, the need for correction algorithms was reduced as the stop conditions for the 

survey was now more similar for both acoustic data collection and trawling. 

The time varied gain (TVG) of scientific echosounders is used to automatically adjust for 

transmission loss, i.e. sound attenuation and geometric spreading (Aglen, 1989; Simmonds 

and MacLennan, 2005). Unfortunately, the compensation by this function cannot correct for 

the attenuation caused by air bubbles in bad weather conditions. The TVG compensation is 

target-transducer range and time delay dependent, while bubble attenuation is sea state and 

platform dependent. 

The actual design of the hull is also proven to play a significant role in the attenuation of 

acoustic signals in bad weather conditions (Knudsen, 2006a). From his experience, vessels 

with a deeper and sharper raise angle of the hull in front of the transducer platforms had 

fewer problems with air bubble attenuation than vessels with a more flat bottom. On the first 

vessel type, the hull cut the air bubble layer and forced the bubble layer to the sides before 

hitting the transducer platforms. On flat-bottomed vessels, however, the air bubble layer is 

trapped under the bottom of the vessel, floating aft across the transducer face. In particular, a 

vessel with a large bulbous bow, flat on the bottom side, does not perform well in bad 

weather conditions. Knudsen (2006a) further explained that the hull shape in this way might 

determine the amount of air bubbles that may be present in front of the transducer on any 

vessel. Unfortunately, this study did not dissect the problem in detail, but it is still an 

interesting and controversial topic among manufacturers of commercial echo sounders. They 

all have their preferred mounting positions. 

Further, Dalen and Løvik (1981) earlier examined the attenuation due to wind direction 

relative to the vessel heading direction, concluding that the astern encounter gave less 

attenuation compared to the forward and athwart encounters. Ona (1991) later demonstrated 

that vessel heave could be successfully used as an attenuation correction index by monitoring 

the integrated vessel heave in bad weather in relation to the attenuation observed. He further 

emphasised that most echo integration problems encountered in bad weather could be 

attributed to the attenuation of the transmitted signal by bubbles close to the hull, often 

created by the vessel itself. The hull shape and transducer mounting position are therefore 

considered to have unquestionable effects on the transmission of the sound waves in the 

water column. In his study a more constant aeration of the water column by the wave action 

gave more controllable mean signal attenuation. 
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In the present study, two 38 kHz Simrad EK60 scientific split beam transducers were used, 

one mounted on the hull in a standard blister and the other on the drop keel. The two 

transducers were alternately pinged using a multiplexer, which was consecutively internally 

steered by the ER60 system itself. With this system set-up, acoustic data were collected in 

various weather conditions in the Barents Sea. Simultaneously, the two ER60 raw data sets 

were obtained from the two different 38 kHz transducers that allowed a direct powerful 

comparison between the two systems. The sea bottom was used as the reference target. The 

two data sets were thereafter post-processed using the LSSS (Korneliussen et al., 2006) 

software, which generated data base reports with the area backscattering coefficient from the 

two systems. From the resulting area backscattering strength data, ratios between the two 

measurement systems were established and compared both graphically and statistically. 

The objectives of this study were therefore: 

- To establish a correction factor for air bubble acoustic attenuation; 

- To determine the effectiveness of the seabed as the reference target; 

- To elucidate the benefits of using a drop keel-mounted transducer compared to a hull-

mounted transducer. 
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2. NOMENCLATURES AND DEFINITIONS 

 

2.1. Nomenclature 

Symbol Name Unit 

   

bs Backscattering cross-section  m
2
 

e Extinction cross-section m
2
 

a Absorption cross-section  m
2

 

 Acoustic absorption coefficient dB m
-1

 



e b  Attenuation coefficient ratio - 

sa Area backscattering coefficient  m
2
 m

-2
 

sA Nautical area backscattering coefficient  m
2
 nmi

-2
 

SA Nautical area backscattering strength [10 log10 (sA)] dB re 1 (m
2
 nmi

-2
) 

sv Volume backscattering coefficient  m
-1

 

Sv (Mean) Volume backscattering strength [10 log10 (sv)] dB re 1 m
-1

 

TVG Time Varied Gain (20 log R + 2αR) dB 

dB for decibels 

 

2.2. Definitions 

Term  Definition 

Hull is the basic structure of a vessel not including the masts, rigging, above board 

constructions or attachments of any kind. It is a central concept in floating 

vessels as it provides the buoyancy that keeps the vessel from sinking. 

Drop keel is the longitudinal structure along the centerline at the bottom of a vessel’s 

hull, mainly for vessel stabilization but here in this study acoustic 

instrumentations are also housed. It can be protruded out and retracted in from 

the vessel hull to improve the quality of acoustic data. 



9 

3. THEORETICAL APPROACH 

 

The measurement of the excess attenuation coefficient is based on a comparison of the 

bottom SA response of a hull-mounted transducer with that of a keel-mounted transducer in 

bad weather conditions. The acoustic attenuation mainly depends on the extinction cross-

section, the volume concentration and vertical distribution of the air bubbles in a vertical 

echo sounding system. The evaluation of attenuation as a function of depth is therefore a 

reliable way of precisely correcting the bubble problem with less variability, since this is the 

rate of acoustic energy attenuation per depth interval. Wind-induced bubble acoustic 

attenuation in various weather conditions was the primary concern of this study; hence fish 

related attenuations are not treated in all dimensions. Acoustic attenuations caused by any 

other biological sources are as well not considered because of their assumed negligible effect 

on the bottom echo (Foote, 1990). Therefore the bottom echo is considered to be mainly from 

the seabed, and no other factors are considered to contribute towards its overall intensity 

(Dalen and Løvik, 1981). 

 

3.1 Basic assumptions 

It is of utmost importance to note that the assumptions made below are based on the 

consideration of the time period for a master thesis completion, and they are a simplification. 

These assumptions are: 

- There is a linear relationship between excess attenuation coefficient and wind speed; 

- The bubble density (a) is constant throughout the water column, i.e. they are 

uniformly distributed in the insonified volume since this will not be estimated; 

- Bubbles resonance and reverberation are considered negligible due to the high echo 

intensity of the seabed; 

- All bubbles are of the equal size and radius; therefore the bubble size will not be 

measured; 

- The echo intensity of the bottom is approximately constant between the two-

transducer systems, i.e. they encounter the same target at the equivalent time thus 



sA1
 sA2

; 

- Bubble reverberation effects are considered insignificant, since no small targets will 

be evaluated; 
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- The transducer mounting position does not have an effect on the backscattering 

coefficient in good weather conditions but it does have an effect in bad weather 

conditions; 

- The seabed is not assumed to be flat due to the use of the two 38 kHz transducers that 

simultaneously sample the same target (the seabed) hence gives homogeneous 

backscattering coefficients. 

 

3.2 Mathematical modelling 

 

Initially, Løvik (1980), then later Furusawa et al. (1992) described air bubble spectrum 

estimate by backscattering cross-section (bs), extinction cross-section (e), and absorption 

cross-section (a) of the air bubble layer. They both mathematically expressed the bubble 

spectrum as follows: 



e bsa          (1) 

This study mainly considered two theoretical models introduced by Foote (1983) and Foote et 

al. (1992), which are applied in addressing the problem of echo extinction by fish shadowing 

or signal extinction. Since the blockage of the signal by the bubble is a similar principle to the 

shadowing or extinction by fish swimbladder in dense schools or shoals (Ye, 1996), hence 

these models were applied to bubble acoustic attenuation. The Foote’s 1983 model states that 

there is linearity in the signal scattering and echo energy of the target fish, meaning that the 

total echo intensity (



E tot) from a volume containing a randomly distributed number of targets 

is on average the exact reflection of the echo capacity of the aggregated target fish. Foote 

(1983) therefore expressed the linearity principle mathematically as: 



E tot  E i

i1

N


           (2) 

where 



E i  is the mean echo energy from the ith fish. 

The above model (Equation 2) stands true for less dense fish schools or shoals, where a linear 

relationship between the target and the received echo energy is assumed (Dalen and Løvik, 

1981; Foote, 1983). Therefore, this model cannot be applicable in dense fish aggregations 

where there is shadowing by fish on the upper layer (Armstrong et al., 1989; MacLennan et 

al., 1990; Toresen, 1990; Furasawa et al., 1992; Zhao and Ona, 2003), and in the case of bad 
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weather conditions where wind-induced bubbles scatter and attenuate acoustic signal (Dalen 

and Løvik, 1981; Berg et al., 1983; Novarini and Bruno, 1982).  

However, in instances with uniform number of fish that are uniformly distributed within a 

particular thick layer 



z , Foote (1983) recommended the use of Equation (3) which 

calculates the 



E tot considering extinction effects at least in ex situ situations: 



E to t 
1exp(2vze )

2vze

Ei

i1

N


        (3) 

where: v  is the bubble density; 



 e  is the expected mean extinction cross-section of the bubbles (Equation 1); 

z is the vertical extent of the bubble layer; 



E i  is the aforementioned mean echo energy from the i-th bubble. 

The multiplication by two is due to the two way absorption of the signal. 

 

Foote et al. (1992) used a different theorem (Equation 4) for evaluating the effect of signal 

extinction by fish schools (analogous to air bubbles in this study). Foote’s model uses the sea 

bottom as the reference target for the extinction attributed to the large fish aggregation, it also 

assumes a flat sea bottom. In this instance, the bubble layer will be used as the scattering and 

extinction source within a defined depth channel. The model is expressed in terms of the 

mean volume backscattering coefficient (



sv ) in m
-1

: 



sv  
bs

4

1exp(2ez)

2ez
        (4) 

Where: 



 bs is the expected average backscattering cross-section of the bubbles;  



  is the bubble density, assumed to be constant; 



 e  is the average extinction cross-section of the bubbles. 
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The integration results of 



sv  over a certain depth channel does not rely on the random vertical 

extent, if it includes the bubble layer while it excludes the bottom. Then the expected area 

backscattering coefficient associated with the bubble layer can be expressed as: 



sa,Bu  (b /8e) 1exp(2ez) 
       (5) 

The area backscattering coefficient of the bottom without the bubble layer (



sa,B0
) is expressed 

as: 



sa,B  sa,B0
exp(2ez)

         (6) 

Simultaneous solution of Equation (5) and (6) gives 



sa,B  sa,B0
1 (8 e / b )sa,Bu         (7) 

where 



sa,Bu 
and 



sa,Bo
 are the estimated area backscattering coefficient of the air bubble layer 

and the seabed in the absence of bubbles respectively. 

Equation (7) shows how the problem in calculating the 



 e  can be solved by a pair wise 

evaluation of 



sa,Bu 
and 



sa, B . The linear regression of the 



sa,Bu 
and 



sa,B  determines the 

regression coefficients  and : 



sa,B sa,Bu          (8) 

Therefore, the attenuation coefficient ratio can be derived from Equation (7) as: 

)ˆ8/(ˆ  be          (9) 

where ̂  and ̂  are the determined regression coefficients. 

The above regression in Equation 8 is heavily dependent on the thickness of the bubble layer. 

In the case of very low bubble concentration, the range in values of the 



sa,Bu may be quite 

low, resulting in erroneous regression estimates. 

The volume backscattering coefficient (sv) describes the density of targets per volume, but 

not the density per area which might as well reflect the amount of the signal attenuated over a 
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certain depth interval in a given fish school or bubble layer. The area backscattering 

coefficient (sa) can be derived from the sv (Knudsen, 1990), since the sa is just an integral of 

the volume backscattering coefficient (sv). The sa is a dimensionless factor while sv is one 

dimensional (MacLennan et al., 2002). 

To determine the range attenuation, the sa could be used, which will give an estimate of how 

much signal is lost in good-to-bad weather condtions. The sa (m
2
 m

-2
) is defined by: 


2

1

z

z

va dzss

        (10) 

where 



z1 and 



z2 are the limits of the depth channel. 

For many practical purposes, for example the Simrad EK500 echosounders, the nautical area 

backscattering coefficient (sA) is used in many instances instead of the sa (MacLennan et al., 

2002; Foote et al., 1992). The relevance of the sA is due to the inclusion of the precise scaling 

factor 



4(1852)2 as the mean cumulative backscattering cross-section: 


2

1

2)1852(4

z

z

vA dzss 

        (11) 

where 



dz is the difference in depth between the depth channel limits. The units of sA are 

square meter per square nautical mile (m
2
 nmi

-2
). 

The attenuation coefficient ratio (



e b ) defined by Equation (9) was determined from both 

the hull- and keel-mounted transducers and used to set the correction factor. In good weather 

conditions the ratio between the two transducers should be approximately equal to unity, 

while in bad weather conditions the ratio should be in overall greater than one. 
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4. MATERIALS AND METHODS 

 

4.1 Basis of the study 

Extreme high survey costs and the high demand for more data for fisheries stock assessment 

purposes have led research institutions to take advantage of using fishing vessels as acoustic 

data collection platforms. Unfortunately, fishing vessels are generally not well equipped or 

suited to perform this kind of task as research vessels. Given that in the Norwegian Sea and 

many other seas around the world, the sea states are predominantly rough with stormy 

weather conditions occurring repeatedly in the main distribution area for oceanic fish stocks. 

Wind induced air bubbles can significantly reduce the quality of acoustic data collected by 

vessels with only hull-mounted transducers. This study was undertaken to calculate a 

correction factor for this frequently encountered systematic error and to thereby improve the 

quality of acoustic data collected. 

 

4.2 Research platform 

As a platform for acoustic data collection the research vessel "Johan Hjort" 64.4 m, 3264 HP 

(2400 KW) (Figure A.4 in Appendix A) was used, principally because this vessel is 

equipped with both drop keel- and hull-mounted transducers. It was built in 1990 with a v-

shaped hull, typical of older vessels. The v-shaped hull does to some extend "plough" water 

sideways of the transducer as the vessel moves forward, and in this way, improves the quality 

of acoustic data collected in such vessels by removing the bubbles in front of the transducer 

(Knudsen, 2006a). Thus, the RV "Johan Hjort" likely represents a best-case scenario for hull-

mounted transducers. 

In contrast, the hull shape of most modern vessels have a flat bow that tends to improve the 

vessel stability in bad weather conditions, but reduces the quality of acoustic data collected 

from hull-mounted transducers. The Institute of Marine Research (IMR), Norway, owns the 

vessel; it is fundamentally used in the conduction of both fisheries and environmental 

research. The keel- and hull-mounted transducer cables are both wired to the instrument 

room, from where the multiplexer (illustrated below) can be easily connected. 

 



15 

4.3 Acoustic instrumentations 

Acoustic transducers were mounted in the hull and the drop keel respectively. The Simrad 38 

kHz transducer characteristics and settings used are briefly summarized in Table 4.1. 

Table 4.1. The parameters and settings of the two Simrad ES38B transducers used for the present study. 

Parameter (unit) Value 

Beam type Split 

Transducer type ES38B, 88 discrete elements 

Central frequency (kHz) 38.095 

Transducer depth (m) 5-8 

Maximum transmitted power (W) 2000 

Pulse duration (s) 1024 

Sample interval (s) 256 

Bandwidth (Hz) 2425 

Two way beam angle (dB) -20.6 

GPT-SW version 070413 

-3 dB beam width alongship (deg) 6.84 

-3 dB beam width athwartships (deg) 6.78 

Angle offset alongship (deg) -0.09 

Angle offset athwartships (deg) -0.13 

Angle sensitivity (deg) 21.90 

 

The hull-mounted transducer was housed in a standard blister, with the 38 kHz transducer 

utilised in this study and the 120 kHz transducer was not used (Figure 4.1). The 38 kHz 

transducer was used for comparison due to its normal usage in fisheries acoustics, and also 

because it is the only available usable frequency in the hull-mounted transducer of this 

research vessel. The transducer was located at 5 meters depth below the sea surface, but 

assumed to fluctuate with wind- and wave-actions. The beam opening angles of the two 

Simrad ES38B transducers are the within the recommended opening angles for scientific 

echosounders (Simmonds and MacLennan, 2005; Parker-Stetter et al., 2009). 
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Figure 4.1. Schematic diagram of the 38 kHz transducer mounted on the hull of the RV "Johan Hjort". The 120 

kHz transducer was not used in the surveys. (Drawing adopted from H.P. Knudsen, IMR, pers. comm.) 

 

The 38 kHz transducer on the drop keel was installed close to three other transducers (Figure 

4.2). These are the Simrad ES18, ES120 and ES200 transducers, operating at 18, 120 and 200 

kHz, respectively. The transducers were placed at 8 meters below the sea surface when the 

keel was fully lowered. The Acoustic Doppler Current Profiler (ADCP) and Scanmar HCL 

(Hydroacoustic Communication Link) are also mounted in the drop keel but not used during 

the experiment. Throughout the use of the vertical echo sounding system, the sonar system of 

the vessel was then turned off to avoid potential interference (Peña, 2005; ICES, 2007; Peña, 

2009). 

Wind speed, wave height, wind direction, vessel speed and vessel heave movement data were 

logged simultaneously to the ER60 from an Octans III- Fiber-Optic Gyrocompass with 

Integral Motion Sensor (iXSea, Marly-le-Roi-France). The wind speed and direction were 

measured by the Thies Clima AMS 07 weather station on the vessel, and logged each second 

to the "Survey logger 'software'". Wave height and wave direction relative to the vessel were 

manually observed and entered to the survey logger by the navigator. 
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Figure 4.2. The layout of transducers in the drop keel of the RV "Johan Hjort". Only the 38 kHz ES38B 

transducer was used for the experiment. The Scanmar HCL and the ADCP are also incorporated in the keel. 

 

4.4 Alternate pinging 

The alternative pinging was performed between the hull- and keel-mounted transducers. This 

enabled different range sampling by the two-transducer mounting systems. The drop keel of 

the vessel was protruded to its maximum depth of 3 m below the hull while alternately 

pinging to the hull-mounted transducer. The multiplexer (MUX) system was connected to 

one EK60 General Purpose Transceiver (GPT) that served as a commander between the two 

transducers mountings (Figure 4.3). 
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Figure 4.3. Schematic diagram of the communication set-up between the multiplexer (MUX) and the EK60 

general-purpose transceiver (GPT). The MUX pinged alternately between the hull- and drop keel-mounted 38 

kHz transducers. All data collected were stored in a personal computer (pc) that also ran the ER60.  

 

The multiplexer system was remotely controlled by the GPT; the GPT transducer ports were 

connected to the MUX on two sides and MUX was directly plugged to the echo sounders. 

The photographic picture of the multiplexer showing all the ports is given in Figure A.1 in 

the Appendix A. Since it is a split beam technology system, each the transducer cables had 4 

pairs or 8 wires (Figure 4.4). 
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Figure 4.4. The detailed multiplexer circuit illustrating how the alternate pinging was executed by channel 

switching transmission between the two transducers. Ch and p, refer to channel and pin respectively. (Diagram 

by A. Totland, IMR, Norway.) 

 

To switch the GPT (wires) to the two transducers (8*2 wires), the MUX uses 2 relays; these 

are controlled from the GPT AUX-port by the signal "Alarm out". If "Alarm out" was 5 volt 

for transducer 1, no current went through the relay coil (since there is also 5 volts on the other 

side of the relay), then allowing Transducer 1 to be connected to the GPT. If "Alarm out" is 5 

volt for transducer 2, no current went through the relay coil and eventually the relays 

switched to transducer 2. The Simrad ER60 software controlled all the "Alarm out" signals, 
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as well as the transmission, and the storing of acoustic data to 2 separate portions of the data 

files in the pc (A. Totland, IMR, pers. comm., 2008). 

 

4.5 Data collection 

The Simrad EK60 38 kHz scientific echosounder data for the bottom backscattering 

coefficient comparison were collected onboard RV "Johan Hjort" in the Barents Sea under 

various weather conditions in three consecutive surveys (Figure 4.5). The vessel was 

steaming at various speeds in correspondence to the wind speeds. The first set of the data was 

acquired from the 17th to 27th of October 2008 in the Barents Sea. The time period chosen 

for the data collection was motivated by the fact that during this month of the year the 

weather conditions are generally considered rough in the Barents Sea, i.e. almost winter 

weather conditions. 

It is generally reported that the Norwegian economic exclusion zone experiences high wind 

forces between 11-14 m/s and above in most parts of the year (Knudsen, 2006b). It is this 

kind of weather conditions that this study anticipated. The second set of data was conducted 

on the 4th and 5th of February 2009, when the weather conditions were also generally rough. 

The third set data collection was conducted on the 20th and 25th of February 2009 as a 

supplementary data set in very bad weather conditions. Acoustic data collections were by-

products in all these surveys; the primary aim of the first survey was to test fish capture 

equipments while the aim of the second was to research the Barents Sea oceanography, and 

that of the third was during the winter abundance estimation survey for demersal fish. 

Unfortunately, the multiplexed data created some problems for the display of the LSSS 

system, putting one empty ping between each real transmission in each file, so it was decided 

not to use the multiplexer during standard survey work. This reduced the data collection for 

this study to periods when the data were not used for fish abundance estimation. 

In all the events, the multiplexer was plugged to the GPT and acoustic attenuation data were 

extrapolated simultaneous. Ping averaging in rate was automatically done by the ER60 itself. 

Data were stored on a ping-by-ping logging. The MUX ping rate was set to 1 ping per 1 

second for the two 38 kHz frequencies and the same for the other three frequencies. The 

switch occurred every ping; one ping was consecutively transmitted at a time to the hull-

mounted transducer, and then switching to the keel-mounted transducer for a ping as well. 
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Altogether, this set-up ensured that the identical volume of targets were insonified by the 

two-transducer systems. Consequently, the double pinging also led to a time delay in the two 

38 kHz echograms. Due to the time delay on the ER60 echogram display, a general 

agreement was made that the multiplexer should be disconnected before trawling to precisely 

locate the fish in the water column. As a result, a period of four days from ten was lost in the 

first survey to accommodate the needs of the fish capture researchers. 

Figure 4.5. Vessel tracks geographical positions of the three surveys in the Barents Sea. (Map by Karen 

Gjertsen, IMR, Bergen, drawn using the ESRI ArcMap software.) 
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The acoustic personnel onboard constantly monitored the ER60 echogram to ensure that the 

alternative pinging was functioning as expected. The instrument chief strictly controlled the 

EK60 echosounder settings in the instrument room; the other users logged to the ER60 

through the Ethernet LAN (Local Area Network) were only observers, hence could not make 

changes. The instrument chief mainly operated from 08:00 to 20:00 UTC. After this time the 

equipments were assumed to be working accordingly well until the following day. The data 

obtained were evaluated on everyday basis to check if the equipments were working well and 

that all the required data were being logged. However, the collected data were always found 

to be of relatively good quality. 

 

4.6 Calibrations 

Calibration is the process of establishing a relationship between a measuring device and the 

units of measure. In the case of scientific echosounders, this is accomplished by comparing 

the output of an instrument to a standard target having known acoustic scattering 

characteristics (Foote et al., 1987). Calibration is an indispensible procedure to be performed 

in order to ensure the accuracy and precision of the acoustic data or measurements; therefore 

echosounders should be frequently calibrated, and preferably before important surveys for 

stock estimation (Knudsen, 2009). The RV "Johan Hjort" was calibrated in Skogsfjord, 

Ringvassøy, Norway, according to the standard target procedures described by Foote et al. 

(1987). The calibration was conducted after the first two surveys, but before conducting the 

third survey. The weather conditions on the calibration site were optimally calm. The vessel 

drop keel transducers are usually calibrated every four to six months to ensure the proper 

performance of the echosounders. 

However, the hull-mounted transducer had not been calibrated during the ten years prior to 

this study, since it has not been used in surveys ever since the drop keel instrument package 

was installed. It now served as a backup transducer on this vessel. The exact acoustic 

performances of this transducer were not known beforehand, and the important gain settings 

were simply set to be the same as those of the keel-mounted transducer, since the transducers 

were otherwise identical. The vessel was initially rigged stagnant by anchors before the 

calibration began. The copper sphere with 60 mm diameter (CU60) was used as the standard 

target. Three 0.4 mm diameter monofilament lines supported by winches placed on three 

chosen point on the vessel held the copper standard sphere at the desired calibration depth 
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and location inside the acoustic beam. The drop keel was retracted to its original height below 

the hull; and the echosounders were therefore calibrated at this operational depth. 

The standard sphere was moved inside the beams of the EK60 transducers until enough 

detections were acquired. Thereafter, the hull-mounted transducer was calibrated using the 

same procedure described above. The Conductivity, Temperature and Density (CTD) data 

were collected at all operational depths before and during the calibrations to determine the 

speed of sound in the water column between the transducer and the sphere. 

The standard target calibration method was executed by running the built-in ER60 software 

"calibration.exe". The split beam on-axis sensitivity and the beam pattern were accomplished 

in one single beam mapping operation to determine the on axis gain (G) and the SA correction 

(SaCorr) in decibels (dB). Beam models (polynomial and EK-Simrad) were then compared to 

the acquired data to determine the beam parameters used for the investigation of the point-

beam compensation by the post-processing software. The calibration program harmonized the 

parameters in the beam model to minimize the root mean square error (rms-error) computed 

on the recorded data (Calise, 2009). 

The rms deviations indicate how well the beam models fit the recorded data. Hence, they 

were utilized to evaluate the validity of the calibration, which can be declared satisfactory if 

the rms-value is less than 0.2 (Simrad, 2008). The G and the SaCorr are important for the 

volume backscattering strength (Sv), and hence the area backscattering coefficient (sA) is 

determined from the 10 detections closest to the acoustic axis. The "calibration.exe" 

concludes the calibration by confirming and updating the transducer parameters inside the 

GPT of the echosounder (Simrad, 2008). A file in ASCII format containing information in a 

standard form on: calibration parameters, gain and SaCorr, beam parameters results, 

statistical comparison with beam models and target detections of the standard target involved 

in the analysis could also be stored (Tables C.1 and C.2 in Appendix C). 

The calibration process aimed at evaluating the compensation for geometrical spreading or 

transmission loss and power gain. The target strength (TS) and the mean volume 

backscattering strength (Sv) of the sphere in the split beam echosounder were determined 

mathematically by: 


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where: 



Pr is the power of the received signal measured at the transducer terminal (W); 

 



Pt  is the power of the transmitted signal referred to the transducer terminal (W); 

 



G  is the transducer gain in the target direction ( , ) (dB); 

 



G0  is the on-axis transducer gain (dB); 

 



r  is the range of the target sensed by the transducer (m); 

 c is the sound speed (m/s); 

 



  is the absorption coefficient of the medium (Bel/m); 

 



 is the wave length (m); 

  is the equivalent beam angle (sr) 

τnom is the nominal pulse duration (s); and 

 SaCorr is the integration correction (dB). 

 

Equations (12) and (13) require that several parameters should be measured, which makes the 

calibration output from such measurements to be more precise compared to earlier 

calibrations, with respect to the axis measurements. 

The TS and Sv measurements from Equations (12) and (13) are applicable to both split beam 

and multi beam sonar respectively (Ona et al., 2009). 

 

4.6.1 Inter-calibration of the two 38 kHz echosounding systems 

As a verification of the sphere calibrations, an inter-calibration was conducted between the 

two 38 kHz transducers on the LSSS post-processing system. The inter-calibration aimed to 

explicitly compare the hydro acoustical performance of the 38 kHz EK60 transducers in 

various weather conditions (Figures 4.6-4.7). 
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Figure 4.6. ER60 echogram from the 38 kHz hull-mounted transducer (A) with fish in the water column 

showing total acoustic attenuation and keel-mounted transducer (B) without attenuation in moderate weather 

conditions, wind speeds from 15 to 22 m/s. 

 

Figure 4.7. An exemplary ER60 echogram from the 38 kHz hull-mounted transducer (A) showing air bubble 

attenuation of the bottom signal and drop keel transducer (B) without attenuation. The blank or washed out 

stripes are due to complete acoustic signal attenuation in 23 m/s wind speed. 
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The data obtained by the multiplexer method were used for this inter-calibration purpose. The 

inter-calibration was accomplished by a comparison of the resultant nautical area 

backscattering coefficient (sA) of the bottom echo at the two 38 kHz frequencies in relation to 

the prevailing wind speeds. The ratio (R) between the bottom sA values of the 38 kHz of the 

two systems was computed as sA keel (K) over sA hull (H): 



R 
sA (K)

sA (H)
          (14) 

The above Equation (14) has no units, but by linearizing the two variables one can get the 

ratio in dB re 1 (m
2 

nmi
2
): 



Log(
sA ,K

sA ,H

)  SA ,K  SA ,H         (15) 

With the above equation the established correction factor can be relatively compared to 

previously established correction factors with easier. Under ideal conditions in good weather, 

and after calibrating the systems with a standard target, the ratio of the mean backscattering 

coefficients of the bottom echo should be very close to 1.0. The comparison gave a powerful 

verification of the desired and expected outcome, i.e. both transducers give similar bottom 

backscattering strengths, nautical mile by nautical mile.  With this verification method, it was 

now possible to measure the effect of air bubble attenuation on the hull-mounted system, if 

we first assume that the keel mounted system is not affected by air bubble attenuation. 

Collection of data on wind speed, wind direction, wave height and vessel movement over the 

same time intervals as the bottom data were now the background data for the analysis. 

The inter-calibrations were performed in both good and bad weather conditions; using the 

bottom echo as the reference target. The echo intensity of the bottom was integrated in a layer 

well covering the entire first echo of the bottom, and over a distance of 0.1 nautical mile. At a 

ping rate of 1 ping s
-1

 and a vessel speed of 10 knots, this represents an average over 36 

pings. Using the alternate pinging on the two transducers, most of the data collected at 10 

knots survey speed represents an average over 18 pings. At slower speed, the number of 

pings, say 5 knots may represent 36 pings again. The frequency response of the bottom signal 

at the other frequencies could also be monitored, but is not further studied here, since all of 

these were mounted on the keel, presumably unaffected by air bubble attenuation. The 

detailed inter-calibration results are given in the results section 5.4. 
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However, there were instances before the two transducers were calibrated where the 

frequency response between the two transducers was exceedingly deviating (Figure 4.8). The 

38 kHz keel-mounted transducer had then a stronger frequency response than the 38 kHz 

hull-mounted transducer. Later, the calibration results were used to compute a correction 

factor for both 38 kHz transducers, which was implemented before the analysis of the bottom 

backscattering coefficient ratio was made. The sA-values of the bottom signal generally 

decreased exponentially with increasing of the frequency. After this first scrutiny was 

completed, the collected data from the two transducers and the different frequencies were 

carefully analysed. The associated bottom sA-values were evaluated carefully, with a 

resolution of 0.1 nmi by 0.1 nmi. Thereafter, bottom SA plots were made between the two 38 

kHz transducers. 

 

 

Figure 4.8. The frequency responses of the two transducers at 38 kHz, also included are the response at the three 

other frequencies 18, 120 and 200 kHz during survey 1 before calibration. Only the frequency response of the 

two systems at 38 kHz was of interest in this study. Graph from the LSSS post-processing analysis. 
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A linear regression analysis to determine the relationship between the data from the two 38 

kHz transducers was performed mathematically: 



sA (H)  a b.sA (K)         (16) 

where a and b are the regression coefficients, H and K refer to the hull- and keel-mounted 

transducers respectively. 

The linear regression determined if the backscattering strength of the bottom from the two 

systems had a linear relationship. If not, it would have indicated that the systems were not 

performing correctly. In good weather conditions, i.e. without attenuation, ideally the slope 

should be close to 1.0 and the intercept close to 0. Since the bottom echo is quite variable due 

to changes in slope, roughness and hardness, large variability along the transects is expected, 

but since two identical transducers are measuring the same bottom with the alternate pinging, 

the expected mean ratio should be close to 1.0 if this method shall have any validation. 

 

4.6.2 Actual calibration of the two systems 

The actual calibration was done after the first two surveys and before the third survey. From 

the calibration results the actual transducer G and the SaCorr of the systems were derived. It 

was later realised during the data scrutiny with the LSSS and it was also confirmed by the 

ER60 replayed echograms that both systems had the same transducer gain, set by an 

experienced instrument operator after trying the old transducer in the hull. This implied that 

during the collection of data in the first two surveys, the hull-mounted transducer gain was set 

to be the same as the keel-mounted transducer seemingly because there were no previous 

calibration data available for use at the time. The transducer gain was therefore set to be 

27.03 dB for both systems. 

However, the later calibrations results indicated that the two systems had slightly different 

transducer gains. The actual transducer gain for the hull-mounted transducer obtained from 

calibration was 26.92 dB, while the 27.03 dB gain was confirmed by calibration output to be 

the correct setting for the keel-mounted transducer. So, for the computation of the gain to be 

used for post-correction, the transducer gain results determined by calibration were used with 

confidence. 
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The final gain used for the post-correction of the bottom area backscattering coefficient data 

for both systems were generally computed using the following formulations: 

Total gain before calibration 



Tb G0  SA0
      (17) 

Total gain after calibration 



Tc G1  SA1
      (18) 

where the subscript 0 refers to the values before calibration, and the subscript 1 refers to the 

values after calibration. 

From Equations (17) and (18), the actual transducer gain can be computed by revisiting 

Equation (13), after calibration it can be simplified into: 



Sv(corrected)  Sv (observed) 2G      (19) 

where 



G is the difference between the total gain before and after calibration. 

From the above computation, all the other parameters in Equation (13) are known to become 

constants after calibration. 

Then the final corrected bottom sA will be computed as: 



sA (corrected)  sA (observed) 102G 10
      (20) 

where the 10210 G  term refers to the linear correction factor for the area backscattering 

coefficient. 

The computed correction factor was therefore directly multiplied to all the integrated bottom 

data in the database output of each survey in Microsoft
®
 Excel 2007. The correction factors 

based on calibration data for the three surveys are shown in Table 4.2. 
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Table 4.2. The applied corrections to the measured area backscattering coefficient for survey 1 and 2 (upper 

table) and survey 3 (lower table), based upon the calibration data obtained for the two transducers. TG is used 

for describing the total gain of the volume backscattering coefficient. 

 

Hull-mounted system, survey 1 and 2 

  Gain(dB) SaCorr (dB) TG (dB)  

Gains before calibration 26.92 -0.59 26.33  

Gains after calibration 26.24 -0.83 25.41  

Gain difference (dB)    0.92 

Correction factor, linear    1.527566 

Gains set during the survey, (dB) 27.03 -0.61 26.42  

Gain difference, survey (dB)    1.01 

Correction factor for survey, linear    1.592209 

Keel-mounted system, Survey 1 and 2 

  Gain (dB) SaCorr (dB) TG (dB)  

Gains before calibration 27.03 -0.61 26.42  

Gains after calibration 26.92 -0.59 26.33  

Gain difference (dB)    0.09 

Correction factor, linear    1.042317 

 

 

Hull-mounted system, survey 3 

  Gain (dB) SaCorr (dB) TG (dB)  

Gains after calibration 26.24 -0.83 25.41  

Correction factor for survey, linear    1.000000 

Keel-mounted system, survey 3 

  Gain (dB) SaCorr (dB) TG (dB)  

Gains after calibration 26.92 -0.59 26.33  

Correction factor, linear    1.000000 

 

 

4.7 Data post-processing 

The acquired ER60 raw data were initially scrutinized by means of the LSSS 1.2.4 post-

processing software. The bottom echo scrutiny evaluated the variation of the bottom echo 
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intensity between the two 38 kHz transducers in various weather conditions. Data collected 

without the connection of the multiplexer were relatively easily distinguished from those 

collected with the multiplexer plugged on by their colours in the LSSS file selection menu. 

The files of data collected with the MUX plugged were mainly marked green, while those 

without the MUX were marked with a red marker and were not selected for the post-

processing. This was vital in ensuring the right data sets were selected for the post-procession 

and analyses. 

Firstly, the LSSS was configured to the administrator mode, and then categories were 

generated. It was anticipated that the scrutiny could be divided into two categories: the 

transmission pulse scrutiny and the bottom echo scrutiny. However, it was later realised that 

the transmission pulse part was difficult to evaluate because the vessel heave compensator 

was activated during all surveys. The compensation of the vessel movement is then 

incorporated and compensated for on the echogram by varying range of the start of the 

transmission pulse (Figure A.7 in Appendix A). The main advantage of doing this is that a 

flat bottom will appear flat on the echogram, even with the vessel moving up and down 

several meters in rough weather conditions. Two layers were set around the seabed echo with 

a height around 100 m as the bottom echo integration layer (Figure 4.9). 

The bottom echo category had to be assigned to 100 % during the scrutiny since it was 

assumed to be the only contributing factor to the backscattered energy. Echoes from fish, 

zooplankton or any other scatterers were assumed not to contribute to this very large echo. 

Although fish species like cod (Gadus morhua), capelin (Mallotus villosus), and redfish 

(Sebastes mentella) were reported from trawl catches. The data were scrutinized in the 

pelagic mode with a noise threshold set to a high -60 dB, and the TVG of 



20logR2R for 

transmission loss compensation were applied. The ER60 vessel log raw data were logged at 

different vessel speed intervals, which made it difficult to evaluate and determine the actual 

distance travelled by the vessel over time. 

 During the data scrutiny the log distance was set to a high resolution of 0.1 nautical mile 

(nmi), which gave about 50 values per 5 nautical miles. The data were stored in a high quality 

marking interpretation. These were later pulled out as a different ASCII file; the database 

reports were generated as the compact scatter reports. The 0.1 nmi logged acoustic data gave 

bigger data files with date, time position and the area backscattering coefficient for the 

bottom signal. The files from the two transducers were later merged in excel, and 
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subsequently also merged with data files containing the information on wind speed and 

direction, vessel speed and course, as well as data on vessel movement. Some of these 

variables had to be computed and averaged before being merged with the acoustic data files. 

 

 

Figure 4.9. A LSSS screen snapshot showing the bottom echo integration channel and the resultant nautical area 

backscattering coefficients (sA). The black stripes are the empty pings during the alternate pinging. 

 

The whole data scrutiny gave in detail factors like the log, position, depth and importantly the 

bottom nautical area backscattering coefficient for the two EK60 38 kHz transducers. All sA 

values for the bottom less than one million were not considered for use during the statistically 

comparisons, as most of these were collected on very sloping bottom. The typical nautical 

area backscattering coefficients for the bottom were between 1001443 - 67713527 m
2
 nmi

-2
. 

The bottom sA ratio between the two systems was also later computed using Equation 14. 

Thereafter, the bottom mean nautical area backscattering strength was computed: 



SA 10 log10(sA )         (21) 
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where sA is the bottom nautical area backscattering coefficient (m
2
 nmi

-2
), 

SA is the bottom nautical area backscattering strength in dB re 1 (m
2
 nmi

-2
). 

 

To obtain the wind speed and wind direction from this resultant acoustic data, the ER60 

vessel raw data were statistically merged with the acoustic data. During the merging, only 

values of the wind speed and wind direction from the ER60 logging raw data that were 

closely equal to acoustic logging data were extracted. The combined acoustic data contained 

the wind direction and speed respectively. Due to the large size of the data set, a mean or 

average of the wind and bottom SA had to be calculated for each 5 nmi. This averaging gave a 

much more presentable and readable graph of bottom SA as a function of wind speed. 

 

4.7.1 Vessel’s heave, tilt and roll determination 

The vessel heave movement had to be evaluated as an index of the air bubble acoustic 

attenuation in bad weather conditions, as earlier done by Ona (1991). Since it is well known 

that wind- and wave-actions affect the vessel movement, which will in turn influence the 

echo integral values form such recordings (Dalen and Løvik, 1981, Stanton, 1982). The 

research vessel-borne Octans gyrocompass and motion sensor were activated during the 

conduction of all surveys. The research vessel heave movements were logged in a datagram 

in the ER60 raw data, and data were derived by a specially designed software called the 

ER60LPHTR (Log, Position, Heave, Tilt and Roll). In these surveys, the vessel was headed 

into the wind and then turned and later sailed in the direction of the wind. Thereafter, data 

obtained from these surveys were replayed in the ER60 software with the ER60LPHTR 

running at the same time. The ER60 software was set to communicate with the ER60LPHTR 

in the internet broadcast mode during the replay. The ER60LPHTR read the output telegram 

from the ER60 and stored it to a file as an EK500 datagram output.  

The EK500 datagram was set amongst other things to retrieve values of the following three 

parameters: vessel log, navigation and motion sensor data. These files contained information 

on the date, time, log, heave, tilt, roll, latitude, longitude and direction. Since the navigation 

data and vessel heave sensor were not chronological synchronized, the ER60LPHTR obtained 

the navigation data from the Global Positioning System (GPS). The timestamps in the output 
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files were unfortunately not in chronological order because the data were written in the file in 

the same sequence as they were received from the ER60 source (Atle Totland, per. comm.). 

The output files were therefore manually arranged in the appropriate chronological order. 

 

4.7.2 Averaging the movement of the vessel 

Computations were made to determine the instantaneous vessel heave movement in meters 

(m) for various weather conditions. Approximately 60 values per minute were obtained from 

the ER60LPHTR, being either positive or negative. Positive values indicated the upward 

movement of the heave while the negative values indicated the downward movement of the 

heave. To remove the point effects of negative or positive sign on the outcome, all values 

were squared. The horizontal and vertical heave movements were evaluated by integrating at 

the heave and roll. The heave movement or pitch (m) was integrated over distance using the 

formula: 


hn

ih
n

AvH
1

21

         (22) 

where: hi is each individual heave reading; 

h
n is the number of readings over the recorded distance travelled, in this case it was 

per 0.1 nautical mile. 

The same procedure was applied to the vessel roll (degrees); also some values were negative 

or positive, negative indicated the roll to the port and positive roll to the starboard. Therefore, 

all values were squared to remove the movement angle effect and averaged per 0.1 nautical 

mile as AvR: 


hn

ir
n

AvR
1

21

         (23) 

where: ri is each individual roll reading; 

 h
n is the number of readings recorded over the travelled 0.1 nautical mile. 
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Later, the variance and the standard deviation of the vessel heave and roll were also 

computed in order to remove the effect of the fixed offset and determine the probability 

distribution of the data. The statistical formulas used for computing the variance and standard 

deviations are given in Appendix D as Equations D.1-D.4. The vessel tilt was however of less 

interest in this instance since it indicated the vertical vessel movement, which is the same 

feature that is described by the heave and hence it was not scrutinized. 

 

4.7.3 Weather data 

The vessel heave movement is strongly influenced by the wind speed and sea state (Ona, 

1991), for this reason weather data were collected. The sea state or wave height gives an 

indication of how the vessel was potentially moved sideways and vertically as the vessel 

headed towards a certain direction. The data of general wind speed (m/s), wind direction 

angle (degrees) and sea state (Beaufort force) were collected during the times of the surveys 

onboard the research vessel by the Thies Clima AMS 07 weather station at one minute 

intervals. The data was later retrieved in an excel file. After a careful scrutiny it was decided 

that the weather data sets should be treated separately according to the sea states. This would 

give a rightful correction factor in various weather conditions. Then the data was grouped 

into five groups according to prevailing wind conditions: 0-5; 5-10, 10-15, 15-20, and 20-25, 

all in units of meter per second (m/s). An example of a selected weather data set is given in 

Table C.3 in Appendix C. 

 

4.7.4 Data merging 

The data merging was performed in R-environment software version 2.8.1 (Vernables and 

Smith, 2002) installed with the RODBC package (see Appendix B for the commands used). 

The script editor Tinn R version 1.17.2.4 (2001-2005 rdm) was used for writing and saving 

the commands. The whole merging process is summarised in Figure 4.10. In order to 

determine the effect of wind speed on attenuation as a function of vessel movement, three 

data sets were linked together. Those were the weather data obtained from the vessel weather 

station, the acoustic data derived from the LSSS post-processing software and the 

ER60LPHTR derived vessel heave, tilt and roll data.  
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Firstly, the weather data were merged with the acoustic data using the logged distance as a 

merging reference point. Since the acoustic data were obtained using a high resolution of 0.1 

nmi, they had many points compared to the weather data that were collected using a lower 

resolution. Due to the length differences between the two data sets, the logged distance points 

from the weather data that were very close to those in the acoustic data were merged together. 

Although this is not an absolute method, it gave an approximation of the wind speeds and 

wind directions at a given log distancing with the relative bottom sA values. They were later 

pulled out as a different ASCII file called acoustic-weather data. 

Thereafter, the acoustic-weather data were merged with the ER60LPHTR vessel heave, tilt 

and roll data. This was not an easy task; since the ER60LPHTR data was sampled each 

second in time, resulting in about 60 values or points per minute while the acoustic-weather 

data were sampled and averaged as one point per minute. 

 

 

 

Figure 4.10. Diagram showing all the steps described during data merging and analyses. 
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In order to merge the two data sets, the ER60LPHTR 60 points per minute had to be averaged 

into one value per each 0.1 nmi. The exact log distancing between the two data sets were 

selected and merged accordingly. The exact log merging was used because it precisely 

merged the distance at which the vessel exactly tilted or pitched. After the merging, an excel 

file with sA values, wind speeds and directions, vessel heave, tilt and roll was generated. 

 

4.7.5 Linear regression lines at various wind speeds 

The initial step of the data analysis was to obtain the linear regression between the hull- and 

keel-mounted transducers (Equation 16) to determine if there was linear relation between the 

two 38 kHz transducers at different wind speeds (m/s). Pings recorded at different wind 

speeds were treated separately according to their relative wind speeds. The correlation 

coefficient (r) indicated the optimal wind speeds where the two systems were still correlated 

to each other. The r-value ranges from -1 to +1, with a mean value around +1 indicating that 

there is a strong positive linear relationship between the two 38 kHz transducers, and a value 

close to -1 indicating that there is a negative relationship between the two transducers in 

question. Values close to zero indicated that there was no correlation between the two 38 kHz 

transducers. Linear regression plot were made in turn to confirm the correlation calculations. 

The plots were made with a zero intercept to check how the two data sets deviated from 

mean. 

 

4.8 Data analyses 

Acoustic data obtained from the LSSS post-processing software were manually sorted in 

excel spreadsheets prior to further analysed statistically. The sorting involved filtering out 

blank columns and taking out parameters that were not going to be considered. Since LSSS 

gave the bottom sA values for the two transducer systems as separate files. These were also 

joined together in excel during the data sorting according to their time and logged distancing 

respectively. The mean echo intensity and standard deviation of the two systems at different 

wind groups were compared statistically. The attenuation curves at different wind speeds for 

the hull-mounted transducer were also plotted against the drop keel-mounted system. The 

SYSTAT 12 Version 12.00.08 (SYSTAT Software Inc., 2007) statistical programme was 
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used to perform the statistical comparisons and analyses of the mean attenuation coefficients 

and other variables of the two-transducer mounting systems (Figure 4.10). 

 

4.9 Establishing the relative correction factor 

It is a general theoretical expectation that the two-transducer systems should at least give a 

ratio (Equation 14) close to one in good weather i.e. without any air bubbles in front of the 

transducer face. The evaluation of the bottom sA ratio can be done to either inter-calibrate the 

two systems or to establish a correction factor. The latter can be done before and after the 

multiplication by the correction factor obtained during calibration. It is highly expected that 

after the correction the two systems should give a ratio very close to one, since they are both 

compensated for total transducer gain. Fortunately, in this study the two systems did give the 

expected ratio. Therefore, they were not manually forced to give the desired ratio of one; this 

was a very crucial step since one of the systems was going to be used as reference to the other 

system in terms of attenuation. The establishment of this relationship between the two-

transducer systems was therefore necessary, either relatively or absolutely as in this study. 

After the verification of the ratio between the two systems, the air bubble acoustic attenuation 

correction factors were statistically established. First, one assumption or expectation should 

be made before the establishing the correction factor. That the keel-mounted transducer 

should be experience no air bubble attenuation since it was assumed to protrude beyond the 

bubble layer. With this assumption, the correction factor can be derived, once the ratio 

between the two-transducer systems has been verified to be close to one. Any changes in the 

ratio in bad weather conditions will be regarded as caused by air bubble attenuation. The 

keel-mounted transducer can be used as a reference to indicate how much echo intensity of 

the target is attenuated on the hull-mounted transducer. Since the echo intensity of the bottom 

on the hull-mounted transducer will be less than that in the drop keel. The established 

correction factor can later be used for correcting the measured integrator data on fish, as 

suggested and used in the literature. 

For a comparison of this study established correction factor to the method implemented by 

Novarini and Bruno (1982) of evaluating the vertical attenuation as function of transducer 

depth at different wind speeds. They calculated the correction factor in dB: 

 tv zwXfwwA )(exp)002367.008597.09754.0( 32.12     (24) 
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where 



X(w) 1616.77w2.36,  



f  is the frequency (kHz) used,  



w  is the wind speed (knots) and  



zt  is the transducer depth (meters).  

The equation holds in the range 8 kHz  f   60 kHz, 6 knots  w  30 knots, and 



zt  ≥ 1 m. 

 



40 

5. RESULTS 

 

5.1 Wind conditions 

Wind stresses on the sea surface form air bubbles close to the surface that may increase the 

attenuation of sound waves of the sound transmitted from transducer located above or inside 

the bubble layer. Vessel movement also in turn induces some air bubbles below the hull of 

the vessel (Figure A.3 in Appendix A). Weather conditions (i.e. wind speed, wind direction 

and sea state) are therefore the main factors determining the amount of the acoustic signal 

that will be attenuated. Data collections were conducted in separate surveys in order to obtain 

data covering the full variability within the regular fishery acoustic survey areas. Weather 

conditions varied considerably between each survey of this study. The average Beaufort wind 

force recorded in the first survey was on average calm at force 3 in the first period (Figure 

5.1) (Figure A.2 in Appendix A shows the typical condition of the sea surface.). During the 

second period, however, the Beaufort force increased by one level to average force 4, due to 

high wind speeds in the middle of the survey (Figure 5.2). The sea state during the second 

survey was twice (at force 6) the first, and remained rough throughout the whole survey 

period (Figure 5.3). The Beaufort force in the third survey was at force 4 in the first period 

and then later dropped to 3 in the second period (Figure 5.4 and 5.5). Details and description 

of the Beaufort force categorization are given in Table C.9 in Appendix C. 

The minimum and maximum wind speeds encountered in survey 1 were 1.0 and 22.4 m/s 

(Figure 5.1 and 5.2). For survey 2, whereas wind speeds less than 5 m/s were not 

encountered, the minimum and maximum wind speeds were 5.4 and 22.9 m/s respectively 

(Figure 5.3). In survey 3, the lowest wind speed observed was 10.7 m/s and maximum of 22.8 

m/s (Figure 5.4 and 5.5).  

It is apparently clear that there was a difference in wind speeds distribution between the three 

surveys that can be attributed to the seasonal difference in which these surveys were 

conducted. From the above comparisons it can be supposed that survey 1 weather conditions 

were generally calm since it was dominated by wind speeds below 10 m/s (Figure 5.6). In 

contrast, survey 2 and 3 are considered as rough weather conditions since they were 

dominated with occurrences of wind speeds above 10 m/s (Figure 5.6). Although it is 

previously reported in many studies that these wind speeds that wind-induced air bubbles are 
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already produced at these wind speeds (Dalen and Løvik, 1981; Berg et al., 1983; Ona and 

Mamylov, 1988), there were low insignificant acoustic energy attenuations observed in this 

study.  

 

 

Figure 5.1. Prevailing wind speeds encountered during the period 1 of survey 1 data collection over the survey 

distance of 310 nmi. Also shown on the right of this graph is categorization scale of the weather conditions from 

good to rough weather conditions. 
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Figure 5.2. Encountered wind speeds during the period 2 of survey 1 data collection over a cruised distance of 

365 nmi. The long lines are periods when acoustic data collections were ceased. 
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Figure 5.3. High wind speeds encountered during the conduction of survey 2 over a cruised distance of 149 nmi. 
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Figure 5.4. Prevailing wind speeds encountered during the first period of survey 3 data collection over a 

travelled distance of 100 nmi. 
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Figure 5.5. Prevailing wind speeds during the second period of survey 3 data collection over a short cruised 

distance of 8 nmi. 
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Figure 5.6. The overall frequency distribution of the wind speeds for all surveys conducted in this study. 
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5.2 Hydrographic conditions 

Temperature, salinity and depth are the most important environmental factors that are well 

known for their effect on underwater acoustic sound propagation by absorbing sound waves 

(Johannesson and Mitson, 1983; Medwin and Clay, 1998; Simmonds and MacLennan, 2005). 

The absorption coefficient is usual expressed as the energy lost in dB over a given range (e.g. 

dB/m). Water temperature varied considerably with depth, with the shallower layers having 

higher temperatures and the deeper layers having lower temperatures [Figure 5.8 (A)]. The 

recorded lowest surface temperature was -1 °C and the highest was 11 °C in the survey area 

(Figure 5.7). The surface temperatures were observed to be warmer in area around the coast 

and colder in the open sea. The maximum depth measured by the CTD instrument was 350 

m. The temperatures observed in this study are well suited for temperate regions. The salinity 

values ranged between 34.3-35.1 parts per thousand (ppt). The salinity did not vary with 

depth [Figure 5.8 (B)]. The analytical combination of salinity and temperature per unit 

distance give a good reflection of the absorption of sound (Johannesson and Mitson, 1983; 

Simmonds and MacLennan, 2005). The weather conditions were assumed and believed not to 

have changed from survey to survey; hence only results from last year’s oceanography are 

presented. 
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Figure 5.7. Surface temperature of the whole survey area in August-October 2008. (Graph from Barents Sea 

Ecosystem Survey 2008 report, unpublished.) 
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Figure 5.8. Temperature (A) and salinity (B) as a function of depth in the Vardø-North section August – October 

2008, an area where most data was collected from. (Graphs from Barents Sea Ecosystem Survey 2008 report, 

unpublished.) 
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5.3 Standard target calibration 

Accurate calibration is fundamental to the overall accuracy of the results when estimating the 

abundance size of a fish stock. The calibration of the entire echosounder system by a copper 

sphere under the two transducer systems was performed at 5 m transducer depth without 

encountering any technical problem. Although the hull-mounted transducer was not 

calibrated for many years, the calibration gain indicated that the two-transducer systems 

performed both exceedingly well. The root mean square (rms) value of the calibration results 

from the beam model for the hull-mounted was 0.11 dB and 0.14 dB for the keel was, the 

wind speed in the calibration site was  6.2 m/s in both instances (Table C.1 and C.2 in 

Appendix C). The above rms values are unquestionably well below the recommended Simrad 

value of 0.2 for the calibration to be considered good and successful (Simrad, 2008). 

Based upon the sphere calibration results, in Survey 1 and 2, a correction factor of 1.59 dB 

was used for the data collected using the hull-mounted transducer and a correction factor of 

1.04 dB for data collected using the keel-mounted transducer (Table 4.2). The corrected sA 

ratios of the measured area backscattering coefficient of the two systems were significantly 

different (paired samples t-test, p-value < 0.05) from those before calibration (Figure 5.9 and 

5.10). The pattern of bars in the graphs follows a normal distribution. For Survey 3 that was 

conducted after the sphere calibration where the whole system was updated according to the 

calibration output, the bottom sA ratio distribution is shown in Figure 5.11. The distribution 

of the ratio in this survey more resembled a Poisson distribution. The ratio is above the 

expected one, which indicates that there was a high sound attenuation experienced in the hull 

system since this third survey was conducted in high wind speeds ranging from 15 to 25 m/s. 
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Figure 5.9. The frequency distribution bottom sA ratios from Survey 1 indicating an improvement from the 

backscattering coefficient ratios before (a) to after (b) correction. 
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Figure 5.10. Histograms of the mean bottom sA ratios frequency distribution for survey 2 before (a) and after (b) 

backscattering coefficient correction. 
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Figure 5.11. Histogram of the uncorrected bottom sA ratios frequency distribution plotted by data directly 

obtained from sea measurements during Survey 3. 
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5.4 Intersystem acoustic calibration 

Now that the electronic units are stable and the standard targets of high accuracy were 

available for the on-axis calibration, it should be possible in theory to obtain very close 

agreement between the two transducer mounting systems. The primary assumption of inter-

calibration is that the two-transducer mounting systems of interest will on average give equal 

bottom echo intensity. The two systems should have the same number of samples, for pair-

wise comparison. The sample sizes are well correlated to the cruised distance of the surveys. 

The first survey had the biggest paired sample size of 5872, followed by the second survey 

with a paired sample size of 1336; and the third survey had the smallest paired sample size of 

483. These pair's results from the LSSS showed that the sample sizes from the two systems 

were as expected when using a multiplexer. The bottom sA mean ratios between the two 

systems per wind speed group are also well approximately one at least in good to moderate 

weather conditions (0-15 m/s wind speeds). The ratio close to one positively confirms that the 

two systems were performing relative well and that the calibration process was a successful 

one (Table 5.1). However, in instances with high wind speeds above 15 m/s the ratio deviated 

from one to above two. Since the bottom sA ratio is a quotient of two variables with the same 

dimension, it is expressed here as a numerical value without any unit. The above figures 

(Figures 5.9-5.11) also prove the good performance of the two systems in most cases with the 

ratio revolving around one.  

Table 5.1. The main results of the basic analysis of the mean ratio (µ ratio) as function of wind speeds, including 

the Standard Deviation (SD), Standard Error of the Arithmetic Mean (SEAM), 95% Lower and Upper 

Confidence Limit (LCL and UCL), Coefficient of Variation (CV), the minimum (Min.) and maximum (Max.) 

values for each survey. 

Survey no. WS µ ratio SD SEAM 95 % LCL 95 % UCL CV Min. Max. 

1 0-5 0.954 0.578 0.019 0.918 0.991 0.606 0.105 5.792 

1 5-10 1.039 0.827 0.016 1.007 1.071 0.777 0.071 9.785 

2 5-10 1.055 0.271 0.059 0.932 1.178 0.257 0.484 1.635 

1 10-15 1.278 0.748 0.022 1.234 1.321 0.586 0.292 10.105 

2 10-15 1.257 0.359 0.015 1.229 1.286 0.285 0.403 3.496 

3 10-15 1.806 0.591 0.058 1.691 1.921 0.327 1.011 4.556 

1 15-20 1.483 0.523 0.025 1.434 1.532 0.353 0.495 3.926 

2 15-20 1.341 0.400 0.018 1.306 1.375 0.298 0.599 3.652 

3 15-20 2.433 2.184 0.130 2.178 2.688 0.898 0.617 33.375 

1 20-25 1.537 0.511 0.084 1.367 1.708 0.322 0.788 2.627 

2 20-25 1.433 0.414 0.138 1.115 1.751 0.289 0.848 2.305 

3 20-25 2.347 1.015 0.192 1.953 2.741 0.433 1.204 5.530 
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5.5 Bottom backscattering strengths 

5.5.1 Backscattering strengths of the two systems 

All the nautical area backscattering strengths of the bottom echo discussed here are the 

corrected using the calibration correction factor. The uncorrected were not considered except 

for survey 3 (where calibrated systems were used). The nautical backscattering coefficients of 

the two systems are highly suitable for the linear regression; the correlation coefficients were 

high in all surveys. In survey 1, the bottom SA values from the two systems were highly 

correlated with an r-value of 0.759 (Figure 5.12). The response in survey 2 was better as well 

with the r-value of 0.805. It is evident in Figure 5.13 that some points are shooting beyond 

the low confidence limit; those can be said to be pings that were highly attenuated by air 

bubbles hence there are outliers. In survey 3, the response of the two systems was highly 

correlated (r = 0.941). The deviation of the data from the mean was generally narrow (Figure 

5.14), which also indicates that the responses of the two systems were closely related. The 

linear regression slope is also close to one as in all other surveys. 

The legends LCL, UCL, LPL and UPL in the Figures 5.13-5.15 refer to the 95 % Lower and 

Upper Confidence Limit, Lower Prediction Limit and Upper Prediction Limit respectively. 

Further regression results for all surveys are shown in Table C.4 in Appendix C. 
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Figure 5.12.  The relationship between the nautical area backscattering strength of the bottom echo from the two 

systems during survey 1. The estimated regression slope between the two systems is 0.902 and the Pearson 

correlation coefficient of 0.759.  

 

 

 

 

 

 

 

 

 

 

Figure 5.13. The relationship between the bottom nautical area backscattering strength of the keel-mounted 

transducer versus hull-mounted transducer from survey 2. The estimated regression slope was found to be 0.959 

and a Pearson correlation coefficient of 0.805. 
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Figure 5.14. The nautical area backscattering strength response during survey 3 for the two-transducer systems 

in wind speeds 10-25 m/s. The estimated regression slope between the two systems is 0.989 and the Pearson 

correlation coefficient is 0.941. 
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5.5.2 Nautical area backscattering strength (SA) according to wind speed groups 

The nautical area backscattering strengths from each survey were treated separately 

according to different prevailing wind speeds. The comparison of the mean area 

backscattering strengths per wind group from all surveys indicates that there is a significant 

difference between the SA values of the hull- and keel-mounted transducer (paired t-test, p < 

0.05). The hull-mounted transducer had higher bottom SA values than the keel-mounted 

transducer in wind speed groups between 0 and 10 m/s (Figure 5.15), but from wind speeds 

above 15 m/s the bottom SA values of the hull-mounted transducer generally decreased more 

rapidly than that of the keel mounted transducer (Figure 5.15, 5.16 and 5.17). From the plots 

below it is evident that the bottom SA values of both systems gradual decrease together with 

increasing wind speeds. The bottom SA responses of the two-transducer systems were highly 

correlated at all wind speeds with a correlation coefficient (r) of 0.999. The bottom SA is used 

here due to its compression impact on high area backscattering coefficient values which made 

it easy to handle the data in logarithmic mode. 

In survey 1, the difference in percentage between the bottom mean SA values of the two 

systems grouped according to wind speeds ranged from 0.8 - 2.6 %. In this survey at 10 - 15 

m/s the bottom SA decreased gradually with increased wind speeds (Figure 5.15). In Survey 

2, there were little percentage differences between the means of the two systems; the range 

was 0.1 - 2 .3 % (Figure 5.16). Surprisingly, the bottom SA means of Survey 3 which was 

conducted after calibration had a widest range in difference of 3.6 - 5.4 % (Figure 5.17). The 

hull-mounted transducer appears to have low bottom SA values at a given wind speed above 

15 m/s compared to the keel-mounted system. The general reduction of the bottom SA on 

both systems is expected where wind speeds increase since the transducer is mostly 

measuring the bottom at a non-normal incidence, and this is not attenuation but purely an 

effect of vessel roll. There was no analysis of the day and night attenuation differences since 

in this instance attenuation is dependent on the wind speed. 

There was a variation in the bottom echo nautical area backscattering strengths of the two 

systems over the cruised log distance (Figures A.8-A.12 in Appendix A). The hull-mounted 

transducer compared to the keel-mounted transducer had the lowest bottom SA values over a 

given distance. The regression lines of the hull system versus the keel system grouped 

according to wind speeds are plotted in Figure A.16 - A.18 in Appendix A. The regression 

results of the SA regressed per wind speeds are given in Table C.5 - C.8 in Appendix C. 
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Figure 5.15. The corrected SA- values for the hull and the keel transducers versus wind speeds for survey 1. The 

o and the x symbols represent the SA mean values at a particular wind speed. 

 

Figure 5.16. The observed SA- values of the hull and keel transducers versus wind speed in survey 2. 
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Figure 5.17. The SA- values of the hull and keel transducers recorded in survey 3 at various wind speeds. 
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5.6 Vessel heave and roll as an index of attenuation 

5.6.1 Heave movement relative to distance travelled 

The vertical and horizontal movement of the vessel is here addressed by evaluating the heave 

and roll movements of the vessel. The integrated squared heave (ISH) and integrated squared 

roll (ISR) per 0.1 nautical mile (nmi) varied considerable over the travelled logged distances 

in each survey. In the first period of survey 1, the vessel heave mean and range were 0.202 

and 1.233 m respectively [Figure 5.18 (a)]; the mean of the roll was 1.405° and a range of 

10.729° [Figure 5.18 (b)]. In this first period, the two variables were not correlated at all, with 

an r-value of 0.303. In the second period of Survey 1 the observed heave mean was 0.290 m
 

and the range was 1.939 m [Figure 5.19 (a)], the roll was highly variable with a mean of 

4.791° and range of 31.201° [Figure 5.19 (b)]. In this second period, the two variables were 

not correlated as a result with an r-value of 0.180. The integrated square heave and roll 

movement in the above survey appeared to correspond positively to the distance travelled 

away from the coast, as the survey began in the fjord surrounded by mountains, the heave and 

roll were low but as the survey progressed towards the open sea the heave movement 

significantly increased.  

The ISH in the beginning of survey 2 was high; it picked up in the middle of the survey but 

gradually decreasing towards the end [Figure 5.20 (a)]. While the ISR responded in an 

inverse way, as heave movement increased the roll decreased and vice versa [Figure 5.20 

(b)]. The ISH mean was 0.805 m and the range was 3.199 m, the ISR mean was 13.727° and 

the range of 40.695°. The correlation coefficient of the heave and roll in this survey was low 

and equal to 0.330. The responses of these two parameters are also related to the cruising 

direction relative to the waves or wind direction. Surveys 2 and 3 cannot be linked to the 

distance away from the shore since they were both conducted in the open sea. 

Though a short-period survey, in the first period of Survey 3 the ISH had a mean of 0.276 m 

and a range of 1.725 m. The ISH in the first 25 nmi was less than 0.5 m and then increased in 

the last 15 nmi above 0.5 m
 
[Figure 5.21 (a)]. The mean ISR was 6.453° and range of 37.024° 

[Figure 5.21 (b)]. The ISR in this first period followed the same response as that of the ISH, 

the correlation coefficient is 0.709. The ISH mean of the Survey 3 second period was 0.328 

m and a range of 0.730 m, all values were generally less than one [Figure 5.22 (a)]. The ISR 

mean in this second period was 29.286° and range of 13.958°, the response is shown in 

Figure 5.22 (b). The correlation between the two variables in this period was low, equal to 
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0.120. Apparently Survey 2 had the highest ISH and ISR compared to the other two surveys. 

From the above results it becomes clear that the vessel either moves more vertically or more 

horizontally in relation the wave or wind direction, but not in both directions at same time. 
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Figure 5.18. Integrated squared heave (ISH) (a) and integrated square roll (ISR) (b) over a cruised distance of 

310 nautical miles in the first period of survey 1. 
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Figure 5.19. Integrated squared heave (a) and roll (b) over a cruised distance of 365 nmi in the second period of 

survey 1. 



60 

(a)

2950 3000 3050 3100

Log distance (nmi)

0

1

2

3

4

IS
H

 (
m

)

 

(b)

2950 3000 3050 3100

Log distannce (nmi)

0

10

20

30

40

50

IS
R

 (
d

e
g

re
e

s
)

 

Figure 5.20. The overall ISH (a) and ISR (b) for survey 2 over sailed distance of 149 nmi. 
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Figure 5.21. ISH (a) and ISR (b) over a cruised distance of 100 nmi in the first period of survey 3. 
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Figure 5.22. The ISH observed over a short cruised distance of 8 nmi in the survey 3 period 2. The straight line 

in the cruised distance between 5578 and 5586 nmi refers to periods where acoustic data collection was ceased. 
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5.6.2 Heave movement relative to wind speeds 

Wind speed is an influential factor on the overall vessel movement both vertically and 

horizontal. The heave movement in the first survey was observed to show a rather weak 

response to the wind speeds, first increasing with the increasing wind speed then later 

decreasing [Figure 5.23 (a)]. The coefficient of determination (r
2
) between the wind speed 

and ISH for this survey was weak, found to be 0.487. The vessel roll, however, showed a 

different pattern of response with its values remaining almost uniform in all other wind 

speeds but picking up at 15 m/s [Figure 5.23 (b)]. The r
2
 of the roll versus wind speed was 

therefore very low at 0.019, showing no determinacy or linearity in the response of the roll. 

In survey 2 the occurrences were different with the heave appearing to decrease gradually 

with the increase in wind speed [Figure 5.24 (a)]. There was a high coefficient of 

determination between the ISH and prevailing wind speeds (r
2
 = 0.996). The response of the 

roll in this survey increased in wind speeds between 10 and 15 m/s but decreased at wind 

speeds above 15 m/s [Figure 5.24 (b)].  The correlation between the roll movement and the 

wind speed was low; the r
2
-value was 0.358.  

The vessel heave in the third survey closely responded to the prevailing wind speeds [Figure 

5.25 (a)], as a result there was a strong correlation (r
2
-value = 0.738). As in the previous first 

two surveys the roll did not respond to the prevailing wind speeds [Figure 5.25 (b)], with the 

r
2
 value as a result equal to 0.394. The ISH can be claimed here to respond positive in relation 

to prevailing wind speeds, but the ISR response does not seem to be influenced by the wind 

speed in the same way. The wind direction and the vessel heading are the determining factors 

of the vessel pitch/roll (Figure A.5 and A.6 in Appendix A). The size of the vessel is also 

another important contributing component. Since it was the heave movement which was 

correlated to the wind speed, it was reasonable to investigate the correlation between the 

backscattering strength and the heave movement. The comparisons showed that there were 

correlations between the heave movement and the bottom SA values from both hull- and keel-

mounted transducers (Figure A.19 - A.21 in the Appendix A). Figures A.13 - A.14 indicate 

the recorded roll and pitch plotted with standard deviations in various wind speeds. In good 

weather conditions, like in survey 1, it is normally expected that there should be no 

correlation between the bottom SA values and heave movement since the vessel is assumed to 

be at its best stable environment. However, in bad weather conditions like in surveys 2 and 3 

it is generally expected that there should be a correlation between the two parameters. 

Unexpectedly, there were very low correlations between the bottom SA-values and heave 
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from the linear regression computations, although a weaker bottom echo is recorded at high 

heave positions. The dots in the figures below designate the mean while the whiskers 

designate the standard deviation. The standard error would have given better impression how 

the precise was the mean measured, it is used here since the data were found to be auto 

correlated hence the standard error could be computed. 

 

    

Figure 5.23. The mean ISH (a) and mean ISR (b) with standard deviations as function of the wind speeds in 

survey 1. 
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Figure 5.24. The mean ISH (a) and mean ISR (b) per wind speed observed in wind speeds 5 - 25 m/s plotted 

with standard deviations for survey 2.
 

  

Figure 5.25. The observed mean ISH (a) and mean ISR (b) per wind speed groups at 15-25 m/s during survey 3. 
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5.7 Model applicability [Foote (1983) vs. Foote et al. (1992)] 

After detailed and careful analyses of the acquired data from all surveys it became apparent 

that only one model could be applicable in this study at least in good weather conditions, the 

Foote (1983) linearity principle. The model of Foote et al. (1992) was not applicable since it 

requires the measurement of the non-computed extinction cross-section. It was planned to 

measure the extinction cross-section through the bubble layer by measuring the area 

backscattering coefficient of the bubble layer with simultaneous measurement of the bottom 

echo. Unfortunately, it was hard to define the upper layer limit for the bubble layer since the 

vessel heave compensation was activated in the echo sounder. Software must be made to 

remove this effect, and this was not available before the completion of this thesis. This part of 

the investigation was therefore omitted in the analysis. 
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5.8 Absolute correction factor establishment 

There were two possible ways of establishing the absolute correction factor. The first was the 

use of the bottom sA ratio of the 38 kHz two-transducer systems in various wind speeds. The 

second method was the use of heave movement as an index of the observed attenuation. The 

second method was not applied in this study due its complexity and lack of validation data. 

The bottom sA ratio was here a very practical and robust method since all the required factors 

were well established, the mean bottom sA ratio is the correction factor. Since the data in this 

study were treated separately according to surveys, they are here below reported in that 

manner. In survey 1, there was a high estimated r
2
-value of 0.962 between the wind speed 

and mean bottom sA ratio. The mean ratio per wind speed was generally less than 2 (Figure 

5.26), and the overall mean bottom sA ratio for this survey was 1.258. There was no 

significant difference between the mean ratios per wind speed category (one sample t-test, p 

> 0.05), although the mean ratio showed to increase with wind speed up 20 m/s where after it 

stabilized. Looking at the standard deviations in Figure 5.26, it is evident that there was a 

high deviation of the data around the mean for wind speed between 10 and 15 m/s. There was 

a special low attenuation in wind speed between 0 and 10 m/s for Survey 1 and 2, with the 

bottom sA ratio (correction factor) close to one. 

In survey 2, there was strong correlation between the wind speed and the mean bottom sA 

ratio with an r
2
-value of 0.951. The mean bottom sA ratios were less than 2 as well; the 

overall bottom sA mean ratio of the survey was 1.272. There was no significant difference 

observed between the mean ratios per wind speed category (one sample t-test, p > 0.05). In 

this second survey, it is evident in Figure 5.27 that the standard deviation spread slowly away 

from the mean values as the wind speed increases. Survey 3, which was conducted under 

high wind speeds above 15 m/s, the resultant r
2
-value was lower at 0.634 compared to other 

previous surveys. Another important factor that was pointed out in this survey was the high 

standard deviation per wind group; the deviation was high especially at 20 m/s (Figure 5.28). 

The mean survey bottom sA ratio was higher than that of previous two surveys at 2.195. The 

dashed lines at 1 in the correction axis in all the plots below represent the low limit of one 

whereby below it there will be low negligible error induced without correction. 

For survey 1 and 2, a low numerical wind-determined correct factor was multiplied to the 

estimated backscattering coefficient, since their bottom sA ratios are well below 2 (Figure 

5.26 and 5.27). As a correction factor the observed integrator values at an average wind speed 
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of 20 m/s in survey 1, a 1.483 correction factor should be applied. For survey 3, the 

correction factor should be higher since mean bottom sA ratios per wind speed are right above 

two (Figure 5.28). In a normal survey situation, a separate correction factor for each 

elementary sampling unit should be applied, for example per 1 nmi. 

The overall correction factor is therefore established by averaging mean bottom sA ratios and 

the standard deviations per wind speed for all three surveys (Figure 5.29). The correction 

factor increases exponentially with increasing wind speed until wind speeds reach 20 m/s 

where the correction factor stabilizes. The established correction factor can be applied to all 

surveys of this study or any other similar studies where the same or equivalent platform is 

used for data collection. 

 

 

Figure 5.26. Mean backscattering coefficient ratio plotted with standard deviations in various wind speeds for 

survey 1 at 38 kHz. 
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Figure 5.27. The mean bottom backscattering coefficient ratio in survey 2 in relation to the prevailing wind 

speeds at 38 kHz. 

 

Figure 5.28. The mean backscattering coefficient ratio versus wind speed at 38 kHz observed in survey 3. 
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Figure 5.29. The overall correction factors (CFs) for all surveys in this study at different wind speeds. 
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6. DISCUSSION 

 

6.1 Alternate pinging 

The alternate pinging between the hull- and keel-mounted transducers was successful 

achieved through the specially built multiplexer system. This allowed the collection of data 

using the same ping rate and investigations of the same bubble layer with the two-transducer 

systems. The double coverage by the two transducers significantly saved significant survey 

time, which reduced greatly the survey costs and the bias introduced when sampling different 

air bubble layers, which would be the case in serial operation. The technique seemed to work 

well in general except for two discrepancies that were discovered during initial use; first a 

longer time delay than usual expected for survey work in the two 38 kHz ER60 echograms. 

Secondly, there were empty pings between each ping stored to the ER60 data. These 

deviations, which could not be removed at this stage with the post-processing system. 

Although these did not affect the echo integration, it prevented us to use the system under 

regular survey work.  

Only a fraction of the otherwise available data was therefore collected now, mainly within 

time periods in the surveys that were not used for abundance estimation. Therefore, it is 

suggested that data is collected in areas where a ping rate of 0.5 sec
-1

 can be used in the 

survey, ensuring a normal ping rate of 1 sec
-1

 on the used keel transducer. With special 

attention, this can be achieved at depths of about 350 m with the EK60, if data storage is 

limited to the same range. Also, in order to improve the analysis of the bubble layer, the 

recordings should be made with no heave compensation. There is to our knowledge no 

recently published literature on the measurement technique for of attenuation correction 

purposes. The collected material is also not optimal since the investigations reported here was 

made during surveys with other main objectives. Especially the vessel should have been run 

in several directions relative to the wind and wave direction to evaluate the real vessel effect 

on the correction factor. 

 

6.2 Vessel heave movements at various wind speeds 

The effect of wind speed vessel heave movements was investigated in this study to evaluate 

its influence on how much signal is lost out of the beam during these movements. Narrow 
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beams (around 7°) are pronounced to be significantly affected by the vessel motion resulting 

in up to 64% error induced if not corrected (Stanton, 1982). Due to vessel motion, the 

transmitted signal may be received by the side lobe of the beam, which is half the strength on 

the acoustic axis (Simmonds and MacLennan, 2005). Unfortunately, wind direction relative 

to vessel heading was not determined since it was not the main focus of the study though it is 

known to contribute on signal loss. The correlation between the vessel heave movement and 

the integrated bottom backscattering strengths indicates that there is high potential for the 

heave to be used as a correction index for air bubble acoustic attenuation. This was also 

indicated by Ona, (1991), using a slightly different measurement of the heave. Since the 

heave can carry other information than wind speed, for example wave information and the 

effect of wind direction, it is important to evaluate these parameters in addition to the pure 

wind speed. It was observed that there more higher heave movements on the vessel at wind 

speed between 10 and 15 m/s than in all other wind speeds encountered during surveys. 

These movements can be attributed to the specific vessel heading direction relative to the 

direction of the wind and waves as observed by Ona (1991). 

Before wind speed exceeds 15 m/s vessels are usually still headed against the prevailing wind 

direction if surveying in this specific direction. This may then cause high heave movements. 

But when wind speeds exceed 15 m/s, there is a tendency by vessel captains to change the 

normal heading direction into a safe or more comfortable direction that will impose less 

vessel movements. As a result, at wind speed above 15 m/s the heading direction is usually 

more or less the same direction as that of the wind, i.e. the skipper has turned the vessel with 

the wind and waves. It can be assumed that low vessel heave movements observed at high 

wind speed were by the time the vessel encountered winds from astern. With this assumption 

it can be claimed that results obtained in this study are in agreement with the results of Dalen 

and Løvik (1981); they found less vessel heave and roll movements when the vessel 

encountered winds from the astern direction. Winds from astern are also pronounced to push 

the vessel forward, which can be said to be a "free ride" since the vessel is more drifting with 

no or little fuel used for cruising at this point in time. 

One other factor to be considered is the vessel cruising speed. During bad weather conditions 

the cruising speed is usually reduced from the normal 10 knots to around six knots. The 

reduction of the cruising speed gives a more comfortable situation onboard and the vessel can 

"shock" absorb the impact from rough waves. In addition, in some vessels, the vessel ballast 

tanks can be filled with sea water to increase the gross total weight of the vessel that helps in 
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the reduction of the vertical movement of the vessel (Peña, 2009). The hull of the vessel also 

traps water on its sides as it penetrates the sea waves that may assist in horizontally 

stabilising the vessel. The above mentioned factors do to some extend improve the stability of 

the vessel. These can be of pivotal help in understanding the observed decline in vessel pitch 

and roll at increased wind speeds. Since there are very few published literatures addressing 

this issue, it is therefore recommended that more effort should be devoted in solving and 

understanding how these factors may affect the air bubble attenuation, and how variable the 

ship-effect is.  

Knudsen (2006a) claims that the old v-shaped kind of vessel hull design leads to high heave 

and roll movement compared the modern flat hull design due to the increased hull surface 

area. Surely many engineers, scientists and other personnel who have been onboard both 

vessels with either design will agree with the logic of this claim. One vessel with the v-

shaped hull was used in this study; it is highly recommended for future studies that will 

investigate this problem to use two or more platforms with different hull designs. 

Unfortunately, to the best of our acquaintance there have never been any scientific research 

directed in investigating this problem in fisheries acoustics; therefore more studies to 

investigate the influence of this feature are advised.  

Based on the general knowledge that small vessels are more affected by the wind-wave 

actions than bigger ones, hence small vessels experience higher attenuation than big ones. 

Therefore the heave and roll movement can be evaluated as a function of wind speed to 

determine the attenuation, since it is heave movements that induces air bubble layer below 

the hull that cover the face of transducer (Ona and Traynor, 1990; Knudsen, 2006a; Knudsen, 

2009). It can be beneficial in the future if trials can be conducted with different vessel sizes to 

establish correction factors that can be more suitable to different vessel sizes. The effects of 

propeller cavitations on air bubble production and attenuation also needs to be evaluated. 

 

6.3 Nautical area backscattering strength variability 

The results indicated that the 38 kHz hull-mounted transducer was performing fairly well in 

terms of the resultant bottom SA in good to moderate weather conditions. At times in good 

weather conditions the hull system had a higher bottom SA values than the keel mounted 

system. Based on the theoretical assumption that the two systems should give equivalent 
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backscattering strengths, it was expected that the two systems should give more or less 

identical backscattering. The results section 5.5.2 revealed that this was only achieved in 

good to moderate weather conditions before attenuation became a problem. It was observed 

in the results that at wind speed above 15 m/s, the backscattering from the hull-mounted 

system were significantly reduced compared to those of the keel-mounted transducer. 

The variability in the bottom SA values between two-transducer systems is usually considered 

to be induced by calibration error and air bubble acoustic energy attenuation. Based on the 

results from the two confirmation ways, first by the sphere calibration and later inter-

calibrated by the bottom sA ratio, it can be said that the two-transducer systems used in this 

study were well calibrated. The results can be used to confirm the calibration since the hull- 

and keel-mounted transducers were observed to be both performing well in good to moderate 

weather conditions. Therefore the observed variability in bottom backscattering cannot be 

attributed to calibration errors. The observed difference in the bottom SA can be associated to 

the surveyed difference types of the sea bottom, since different bottom types have different 

acoustic scattering properties (Foote, 1999).  

It was generally observed from the results in both systems that the bottom SA varied from 

area to area. The bottom depth can also affect the backscattering values of the bottom, since 

the transmitted intensity is expected to decrease exponential with distance away from the 

transducer (MacLennan et al., 1990). But since there are no concrete evidence for the 

variation in properties and slopes of the sea bed (Foote, 1999); hence it is convenient to 

consider the overlaying bubble layer to influence the bottom echo in both systems. 

Nevertheless, when associating the variability of the bottom SA per distance to the wind 

speed at particular distance it was seen that there was an indirect relationship between the 

wind speeds and bottom backscattering strength. Since a one level increase in wind speed 

will result in a cube increase in the bubble layer. Therefore the bottom SA variability 

observed here can only be evidently associated to prevailing wind speeds. 

From a pilot study by Ona and Traynor (1990) where an American RV "Miller Freeman" was 

used to investigate the benefits of using the drop keel in improving the quality of the acoustic 

data in bad weather conditions. The vessel used in their study had an equivalent length size to 

the vessel used in this study. Ona and Traynor (1990) reported similar variations in the 

bottom SA values. Although they simulated the hull by retracting the drop keel its highest 

position, their study was conducted at various wind speeds with the drop keel in different 
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positions. They also associated the significant bottom SA variations observed in wind speeds 

above 15 m/s to be caused by the bubble layer that is formed in the face of the transducer. No 

further errors can be attributed to the threshold used by the instrument chief and/or cruise 

leader during the data post-analyses, since the threshold used was the recommended -100 dB 

(Parker-Stetter et al., 2009). 

 

6.4 Validity of the correction factor 

From the comparison of results of this study to previous studies it was revealed that the 

correction factors established in this study are relatively low compared to the ones created in 

the past by Dalen and Løvik (1981) from sea measurements and by Berg et al. (1983) from 

empirically calculations using the bubble estimator. In fact, the correction factors obtain here 

are even very low compared to the other previous studies even though they were established 

at high wind speeds. According to our up-to-date best knowledge, there have never been 

correction factors established in wind speeds exceeding 15 m/s (30 knots). This is the first 

exploratory study to establish a correction factor at wind speeds above 15 m/s.  

Though Dalen and Løvik (1981) and Berg et al. (1983) did both collect data in wind speeds 

exceeding 15 m/s, they did not establish a correction factor at wind speeds above 15 m/s due 

to the tediousness of the correction factor establishment process at the time of publication (J. 

Dalen, IMR, pers. comm.). The corrections factors established in this study were established 

based on a modern and new technique, by using a multiplexer to alternate ping between the 

hull- and keel-mounted transducers. However, this technique may also be questionable when 

the weather conditions are really bad, and air bubble attenuation also occur on the keel 

transducer. In this case, repeated measures of the same bottom under different conditions 

might be helpful. 

The in situ correction factors established in this study are in agreement up to a certain level 

with the theoretical expectation that the correction factor should exponentially increase of the 

with increase in wind speeds (Dalen and Løvik, 1981; Berg et al., 1983, Ona, 1991). The 

establishment of the correction factor was based on the assumption that the keel-mounted 

transducer was not affected by air bubble acoustic attenuation in all weather conditions. 

However, at high wind speeds like above 17 - 20 m/s the established correction factor was 

stable and not increasing exponentially. Consequently, it can be said that the keel-mounted 
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transducer was also experiencing the attenuation problem at those wind speeds. Comparisons 

to general air bubble acoustic literature, Novarani & Bruno (1982) shows that the results are 

well within the expected region for transducers at 5 and 8 meters depth, operating at 38 kHz 

(Figure 6.1). The comparisons prove that this study does not in any way underestimating the 

bubble effects, hence set a low air bubble acoustic attenuation correction factor. 

 

Figure 6.1. The estimated air bubble acoustic attenuation (dB) from Novarani & Bruno (1982), 38 kHz for 

transducers mounted at 1 to 8 meters depth from the surface.  The attenuation is estimated using Equation 23. 

 

In order for the correction factor established in this study to be considered valid and relevant, 

comparisons to previous established correction factors were undertaken to confirm its 

accuracy and precision. A paper by Berg et al. (1983) was reviewed and compared to; in this 

study they semi-empirically methods to establish an air bubble attenuation correction factor 

using data collected at 38 kHz onboard the RVs "G.O. Sars" and "Johan Ruud". No detailed 

comparison to Dalen and Løvik (1981) will be done since it is believed that they used the 
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same data from RV "G.O. Sars" as that later in Berg et al. (1983) and equivalent method for 

establishing their correction factors. The transducer onboard RV "G.O Sars" was stabilized 

while onboard RV "Johan Ruud" was not. First a comparison between the established 

correction factors from the stabilized transducer onboard old RV "G.O Sars" and stabilized 

transducers onboard new RV "Johan Hjort" was made. The results in Figure 6.2, shows that 

the correction factors established in this study are lower at all wind speed compared to Berg 

et al. (1983). The maximum recommended correction factor for normal practical surveying 

conditions is 1.5. A lower correction factor was also found by Ona and Mamylov (1988). 

For absolute and precise abundance estimations, the stop condition for "G.O. Sars" is set at 

about 17 knots (red box in Figure 6.2), while set at about 25-30 knots (yellow box in Figure 

6.2) for the RV "Johan Hjort" hull-mounted system. The correction factors set for RV "Johan 

Hjort" survey 1 and 2 are well below the threshold 1.5 in all wind speeds except at 50 knots 

or 25 m/s where they exceed the limit. The survey 3 from RV "Johan Hjort" is exceedingly 

above the threshold, therefore echo integrator values from that survey should not be used for 

fish abundance estimations. It can be seen from Figure 6.2 that the stop condition for Berg et 

al. RV "G.O. Sars" is considerably before the recommended stop wind speed of 20 knots (10 

m/s); vessel of this kind should be used with high precaution to avoid errors since the stop 

condition is also dependent on vessel features like size and hull design. Air bubble 

attenuation correction factors established with different frequencies in both hull and keel 

systems are advised for multi-species characterisation surveys to determine frequency 

dependent attenuation at various wind speeds. 

Secondly, comparisons of the correction factor from this study to those of Berg et al. 

stabilized transducer onboard RV "G.O. Sars" and non-stabilised transducer onboard RV 

"Johan Ruud" was conducted. The comparison also clearly shows that correction factors 

established in this study are considerably lower than those established before (Figure 6.3). 

The non-stabilized transducer onboard RV "Johan Ruud" had the lowest correction factor 

than the stabilized transducer onboard RV "G.O. Sars"; there may be many explanations to 

their observation, for example calibration errors. In either way, whether compared to 

stabilized or non-stabilized transducers the correction factors from this study are still 

outstanding low. 
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Figure 6.2. The comparison of current established correction factor for air bubble attenuation to previous 

established by Berg et al. (1983). For the current study the RV "Johan Hjort" (J.H. or J. Hjort) was used data 

collection while Berg et al. (1983) used RV "G.O. Sars" (G.O.S.). The letter S in the figure refers to the survey 

mean correction factor values, e.g. S1 for survey 1 correction factors. The vertical dashed lines indicate the stop 

conditions while the horizontal represent the minimum and maximum correction factors. 

 

After 30 knots, the keel mounted transducer also experience air bubble attenuation (Ona and 

Traynor, 1990), hence the correction factor set by the sA ratio stabilizes instead of 

exponentially increasing like in previous studies. This indicates that the method of setting the 

correction factor by using the mean sA ratio is very resistant to attenuation effects even at 

high wind speeds. When the correction factors start to stabilize it is recommended that the 

survey be suspended or the data collected from such surveys will be prone to the error of 

underestimating the fish abundance. Since attempting to correct the backscattered strength 

when the effect of attenuation is very high is hazardous (Foote, 1990). The overall objective 

in correcting the recorded backscattering strength estimates for attenuation is to derive the 

best possible abundance estimates.  
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The comparison of the two stabilized transducers indicates that the correction established 

here in this study is incomparably lower, easy calculated and extremely suitable for everyday 

sea going surveys. The correction factor results from RV "Johan Hjort" hull-mounted 

transducer indicate that there is high potential in good-to-moderate weather conditions to use 

commercial vessels which are only equipped with hull-mounted transducers for collections of 

acoustic data. But at wind speeds above 15 m/s (30 knots) data from such vessel should be 

used with high precaution. 

 

Figure 6.3. Correction factor (CF) for air bubble acoustic attenuation. Earlier results from RV "G.O. Sars" 

(Sarsen), black, and "Johan Ruud", red, compared with "Johan Hjort" (blue) mean data from  survey 1, 2 and 3 

from this investigation. Approximate wind speed for when the keel transducer also experience air bubble 

attenuation is shown by the vertical dashed line. 

 

The use of commercial fishing vessel can also be considered as another approach towards 

ecosystem approach to fisheries (EAF) (Garcia et al., 2003). The use of commercial vessels 

can be alternative way of reducing the number of vessels at sea, hence reducing air and water 

pollutions, and many other associated hazards. However, the installation of drop keels and 

other modern technologies to build commercial vessels as scientific vessels are highly 

recommended to improve the quality of data collected from these vessels (ICES, 2007). It is 

also recommended that more investigation should be simultaneously conducted in both the 
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fishing and research vessels at the same weather conditions to confirm this suggestion. 

Recent investigations like those by ICES (2007) and Peña (2009) are highly encouraged in 

finding a more rightful way of using commercial vessel for acoustic data collections.  

 

CONCLUSIONS 

- The sea bed can be used as a reliable reference target in investigations of air bubble 

acoustic attenuation. The bottom echo intensity is strongly affected by the weather 

conditions, the highest mean bottom echo intensities are found in good weather 

conditions. 

- There is a strong correlation between the heave movement and the resultant bottom 

echo intensities, but since the ratio is used, the established correction factor is 

unaffected. 

- The heave movement is highly influenced by the wind speed and sailing direction 

relative to the wind direction. 

- The keel-mounted transducer is proved to perform better in bad weather conditions 

than the hull-mounted transducer. 

- The ratio between the backscattering coefficients of the hull- and keel-mounted 

transducers could be used for measuring the attenuation for wind speeds up to about 

17 m/s, before bubble attenuation also occurred on the reference transducer. 

- A new and modern technique of establishing an absolute correction factor by 

computing the ratio of the backscattering from the bottom at various wind speeds is 

implemented. 
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APPENDIX 

 

Appendix A. Pictures and figures 

 

 

 

Figure A.1. A photographic picture with labels of parts of the multiplexer equipment onboard RV "Johan Hjort". 
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Figure A.2. Picture of the calm sea surface in good weather conditions in the Barents Sea. 

 

 
 

Figure A.3. Sea waveforms and white foams of the sea surface in bad weather conditions in the Barents Sea. 
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Figure A.4. Picture of the RV "Johan Hjort" used for data collection in this thesis.  

 

 
 
Figure A.5. The illustration of the influence of wind direction or vessel heading on acoustic attenuation. 

Drawing from Dalen and Løvik (1981), used by permission. 
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Figure A.6. The above diagram shows the effect of vessel roll on the transmitted and received pulse. The dashed 

lines show the transmission beam pattern while solid lines are the reception beam pattern.  
MRAtr ,

ˆ is the 

transmission maximum response axis direction and  MRArr ,
ˆ is the reception maximum response axis direction. 

(Diagram from Stanton, 1982.) 

 

 

 
 

Figure A.7. The pelagic echogram showing fluctuation of the transmission pulse range from the transducer in 

the data collected with the vessel heave sensor activated.  
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Figure A.8. The observed SA of the hull and keel transducers plotted against cruised distance in period 1 of 

survey 1. 

 

 
 
Figure A.9. The observed SA of the hull and keel transducers plotted against cruised distance in period 2 of 

survey 1. 
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Figure A.10. The recorded SA values recorded over the travelled distance in survey 2. 

 

 
 
Figure A11. The recorded SA values for the two-transducer systems in period 1 of survey 3.  
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Figure A.12. The observed SA values versus the logged distance in period 2 of survey 3.  

 

Keel transducer 
Hull transducer 

5571 5576 5581 5586 5591 

Log distance (nmi) 

40 

50 

60 

70 

80 
S

A
 [
d

B
 r

e
 1

 (
m

2
 n

m
i-2

)]
 



92 

 

 

(a)

0 5 10 15 20 25

Wind speed (m/s)

0.0

0.5

1.0

1.5

2.0

A
v
e

ra
g

e
 h

e
a

v
e

 (
m

)

    

(c)

0 5 10 15 20 25

Wind speed (m/s)

0

10

20

30

40

A
v
e

ra
g

e
 r

o
ll
 (

d
e

g
re

e
s
)

      

Figure A.13. The average 0.1 nmi heave (a and b) and roll (c and d) response in various wind speeds plotted 

with standard deviation (SD) during survey 1. 
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Figure A.14. The average 0.1 nmi heave (a and b) and roll (c and d) response in various wind speeds plotted 

with standard deviation (SD) during survey 2. 
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Figure A.15. The average 0.1 nmi heave (a and b) and roll (c and d) response in various wind speeds plotted 

with standard deviation (SD) during survey 3. 
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Figure A.16. Regression lines according to wind speeds from survey 1. Wind speeds are as (a) 0-5 m/s, (b) 5-10 

m/s, (c) 10-15 m/s, (d) 15-20 m/s, and (e) 20-25 m/s. 
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Figure A.17. Regression lines according to wind speeds from survey 2. Wind speeds are as (a) 5-10 m/s, (b) 10-

15 m/s, (c) 15-20 m/s, and (d) 20-25 m/s. 
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Figure A.18. Regression lines according to wind speeds from survey 3. Wind speeds are as (a) 10-15 m/s, (b) 

15-20 m/s, and (c) 20-25 m/s. 
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Figure A.19. Correlation between the backscattering strength of the hull (a) and keel (b) versus the integrated 

squared heave (ISH) in survey 1. 
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Figure A.20. Correlation between the backscattering strength of the hull (a) and keel (b) versus the integrated 

squared heave (ISH) in survey 2.  
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Figure A.21. Correlation between the backscattering strength of the hull (a) and keel (b) versus the integrated 

squared heave (ISH) in survey 3. 
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Appendix B. Commands used in R to merge the three different data sets 

  

Step 1. Importing data to the directory 

 

>library(RODBC) 

>filename <- "../Data/AcousticData.xls" 

>channel <- odbcConnectExcel2007(filename) 

>acu <- sqlFetch(channel, "Sheet1$") 

>close(channel) 

>filename <- "../Data/WeatherData.xls" 

>channel <- odbcConnectExcel2007(filename) 

>weather <- sqlFetch(channel, "Sheet1$") 

>close(channel) 

>filename <- "../Data/TiltData.txt" 

>tilt <- read.table(filename,header=T) 

 

Step 2. Merging acoustic with weather data 

 

>acu$logLink <- 0.5*(acu$LogStart + acu$LogStop) 

>id <- numeric(nrow(acu)) 

>for(i in 1: nrow(acu)){ 

 id[i] <- sort(abs(weather$Logg - acu$logLink[i]), index=T)$ix[1] 

} 

>out <- cbind(acu,weather[id,]) 

>write.table(out, 

"../Data/AcuWeather.txt",quote=FALSE,col.names=TRUE,row.names=FALSE,append=FALSE) 

 

Writing out the output 

 

Step 3. Merging AcuWeather with heave data 

 

>round.gr <- function(x,gr=2) round(x/gr)*gr 

>tilt1 <- tilt[is.na(tilt$Log),] 

>tilt1$DateTime <- paste(tilt1$Date,tilt1$Time) 

>out$DateTime <- paste(out$DATE,substr(out$Time,12,20)) 

>tilt1$DateNum <- as.numeric(as.POSIXct(tilt1$DateTime, format="%y.%m.%d 

%H:%M:%OS")) 

>out$DateNum <- as.numeric(as.POSIXct(out$DateTime, format="%Y.%m.%d %H:%M:%OS")) 

>id <- numeric(nrow(out)) 

>for(i in 1: nrow(out)){ 

  id[i] <- (1:nrow(tilt1))[(tilt1$DateNum - out$DateNum[i]) == 0][1] 

} 

>final <- cbind(out,tilt1[id,]) 

>final$LogNM <- floor(final$LogStart) 

>heave1 <- tapply(abs(final$Heave),final$LogNM, mean) 

>heave2 <- tapply(abs(final$Heave),final$LogNM, max) 

>wind1 <- tapply(final$Wind,final$LogNM, mean) 

>write.table(final, "../Data/AcuWeatherTilt.txt", quote=FALSE, col.names =TRUE, 

row.names=FALSE,append=FALSE) 

 

Writing out the output 
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Appendix C. Tables 

 

Table C.1. Hull-mounted transducer calibration 

 

Hull-mounted Transducer Calibration with Reference Sphere 

  Vessel: RV Johan Hjort Date: 2/7/2009 

  Echo sounder: JHER60-2 Location: Skogsfjord, Ringvassøy, Norway 

  TS-sphere:   -33.68 dB 

  Sphere: CU-60 (correction  for lydhastighet eller t,S ) Depth: 40 m 

  Calibration  Version   2.1.0.12 

Comments: Hull-mounted transducer Kal 1ms 

Reference Target: 

  TS                 -33.70 dB Min. Distance      17.00 

  TS Deviation          5.0 dB Max. Distance      22.00 

Transducer:  ES38B  Serial No.   1000 

  Frequency           38000 Hz Beamtype               Split 

  Gain                26.92 dB Two Way Beam Angle  -20.6 dB 

  Athw. Angle Sens.      21.90 Along. Angle Sens.     21.90 

  Athw. Beam Angle    6.90 deg Along. Beam Angle   7.00 deg 

  Athw. Offset Angle  -0.04 deg Along. Offset Angl 0.03 deg 

  SaCorrection        -0.59 dB Depth                5.00  m 

Transceiver:  GPT  38 kHz 009072057380 2-1 ES38B 

  Pulse Duration      1.024 ms Sample Interval    0.187   m 

  Power                2000  W Receiver Bandwidth  2.43 kHz 

Sounder Type: EK60 Version  2.2.0 

TS Detection: 

  Min. Value          -50.0 dB Min. Spacing           100 % 

  Max. Beam Comp.       6.0 dB Min. Echolength         80 % 

  Max. Phase Dev.          8.0 Max. Echolength        180 % 

Environment: 

  Absorption Coeff.  10.4 dB/km Sound Velocity     1464.2 m/s 

Beam Model results: 

  Transducer Gain    =  26.24 dB SaCorrection       =  -0.83 dB 

  Athw. Beam Angle   =  7.03 deg Along. Beam Angle  =  6.99 deg 

  Athw. Offset Angle =  0.07 deg Along. Offset Angle= -0.04 deg 

Data deviation from beam model: 

  RMS =    0.12 dB   

  Max =    0.38 dB  No. =   197  Athw. =  -3.7 deg  Along =  -2.5 deg 

  Min =   -0.40 dB  No. =   191  Athw. = -1.2 deg  Along = -2.3 deg 

Data deviation from polynomial model: 

  RMS =    0.11 dB   

  Max =    0.30 dB  No. =    188  Athw. = -0.2 deg  Along = -2.0deg 

  Min =   -0.41 dB  No. =    191  Athw. = -1.2 deg  Along = -2.3 deg 

Remarks: 

Wind speed: 12 kn. Wind direction: 090 deg 

Raw data file: G:\ER60\Kalibrering\2009\38khz, BUNNMONTERT 1ms 

File name: G:\ER60\Kalibrering\2009\38khz 1ms-BM 



104 

Table C.2. Keel-mounted transducer calibration output 

Keel-mounted Transducer Calibration with Reference Sphere

Vessel: F/F Johan Hjort Date : 2/7/2009

Echo sounder: JHER60-2 Location : Skogsfjord, Ringvassøy, Norway

  TS-sphere:  -33.68 dB

Sphere: CU-60 (Correction for lydhastighet eller t,S) Depth: 40 m

Calibration  Version   2.1.0.12

Comments: Kal 1ms

Reference Target:

  TS                -33.70 dB Min. Distance     18.00

  TS Deviation         5.0 dB Max. Distance     23.00

Transducer:  ES38B  Serial No.   2009

  Frequency          38000 Hz Beamtype              Split 

  Gain               27.03 dB Two Way Beam Angle  -20.6 dB

  Athw. Angle Sens.     21.90 Along. Angle Sens.     21.90

  Athw. Beam Angle   6.78 deg Along. Beam Angle  6.84 deg

  Athw. Offset Angle  -0.13 deg Along. Offset Angl -0.09 deg

  SaCorrection       -0.61 dB Depth               5.00  m

Transceiver:  GPT  38 kHz 009072057380 2-1 ES38B

  Pulse Duration     1.024 ms Sample Interval   0.189   m

  Power               2000  W Receiver Bandwidth  2.43 kHz

Sounder Type: EK60 Version  2.2.0

TS Detection:

  Min. Value         -50.0 dB Min. Spacing          100 %

  Max. Beam Comp.      6.0 dB Min. Echolength        80 %

  Max. Phase Dev.         8.0 Max. Echolength       180 %

Environment:

  Absorption Coeff. 10.3 dB/km Sound Velocity    1479 m/s

Beam Model results:

  Transducer Gain    =  26.92 dB SaCorrection       =  -0.59 dB

  Athw. Beam Angle   =  6.83 deg Along. Beam Angle  =  6.91 deg

  Athw. Offset Angle =  0.11 deg Along. Offset Angle= -0.07 deg

Data deviation from beam model:

  RMS =    0.14 dB  

  Max =    0.36 dB  No. =    11  Athw. =  2.3 deg  Along =  3.3 deg

  Min =   -0.80 dB  No. =   281  Athw. = 4.2 deg  Along = -0.2 deg

Data deviation from polynomial model:

  RMS =    0.11 dB  

  Max =    0.20 dB  No. =    214  Athw. = 3.4 deg  Along = -1.8deg

  Min =   -0.71 dB  No. =    281  Athw. =  4.2 deg  Along = -0.2 deg

Remarks :

Wind Speed: 12 kn. Wind Direction: 090 deg

RawdataFile: G:\ER60\Kalibrering\2009\38khz-1ms SK

Filename: G:\ER60\Kalibrering\2009\38khz 1ms-Sk
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Table C.3. The representative example from the first period of survey 1 of the weather data used in this study. 

 

Date Time Logg Lattitude Longitude Depth 
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18.10.2008 06:15:13 3925,995 7051.5619 N 01830.9314 E 190,74 281 11,06 7,8 5,49 45,35 4 3 

18.10.2008 06:15:38 3926,182 7051.5999 N 01830.3704 E 189,13 281 10,99 7,8 5,75 48,43 4 3 

18.10.2008 06:16:03 3926,367 7051.6373 N 01829.8305 E 188,07 281 10,96 7,8 6,77 36,39 4 3 

18.10.2008 06:17:55 3926,548 7051.6738 N 01829.2852 E 186,5 281 11,01 7,8 5,7 29,76 4 3 

18.10.2008 06:18:20 3926,732 7051.7108 N 01828.7306 E 184,6 281 11 7,8 5,53 29,53 4 3 

18.10.2008 06:20:14 3926,923 7051.7462 N 01828.1740 E 182,15 281 11,08 7,9 6,12 31,29 4 3 

18.10.2008 06:20:39 3927,107 7051.7828 N 01827.6346 E 179,56 281 11,01 7,9 5,86 49,66 4 3 

18.10.2008 06:21:04 3927,298 7051.8209 N 01827.0615 E 179,17 281 11,17 7,7 5,85 31,22 4 3 

18.10.2008 06:22:59 3927,485 7051.8593 N 01826.5056 E 179,21 281 11,23 7,9 6,38 42,03 4 3 

18.10.2008 06:23:24 3927,675 7051.8954 N 01825.9419 E 178,18 281 11,09 7,8 7,53 35,08 4 3 

18.10.2008 06:25:17 3927,865 7051.9347 N 01825.3709 E 176,47 281 11,21 7,8 6,38 38,14 4 3 

18.10.2008 06:25:43 3928,063 7051.9751 N 01824.8020 E 176,05 282 11,3 7,9 6,95 50,85 4 3 

18.10.2008 06:26:08 3928,248 7052.0154 N 01824.2385 E 174,67 282 11,3 7,9 7,94 27,86 4 3 

18.10.2008 06:28:01 3928,44 7052.0565 N 01823.6824 E 174,26 283 11,17 8 5,61 29,39 4 3 

18.10.2008 06:28:26 3928,628 7052.0984 N 01823.1244 E 174,37 282 11,21 7,9 5,72 40,99 4 3 

18.10.2008 06:30:19 3928,815 7052.1397 N 01822.5768 E 172,58 283 11,29 7,8 5,95 32,49 4 3 

18.10.2008 06:30:44 3929,005 7052.1840 N 01822.0035 E 170,5 283 11,23 7,9 5,58 29,77 4 3 

18.10.2008 06:31:09 3929,195 7052.2266 N 01821.4403 E 169,08 282 11,24 7,8 6,78 32,5 4 3 

18.10.2008 06:33:03 3929,385 7052.2682 N 01820.8874 E 170,13 283 11,13 7,9 6,81 43,81 4 3 

18.10.2008 06:33:28 3929,573 7052.3121 N 01820.3260 E 171,66 283 11,2 8 5,77 42,19 4 3 

18.10.2008 06:35:22 3929,765 7052.3551 N 01819.7740 E 175,6 283 11,27 8 6,86 28,52 4 3 

18.10.2008 06:35:47 3929,958 7052.3988 N 01819.2047 E 170 282 11,34 7,9 6,5 39,65 4 3 

18.10.2008 06:36:13 3930,148 7052.4406 N 01818.6243 E 172,75 282 11,37 7,9 6,37 38,53 4 3 

18.10.2008 06:38:07 3930,338 7052.4802 N 01818.0710 E 173,87 282 11,34 7,9 5,51 41,73 4 3 

18.10.2008 06:38:32 3930,528 7052.5214 N 01817.5064 E 173,46 282 11,29 7,9 5,47 44,96 4 3 

18.10.2008 06:40:24 3930,723 7052.5633 N 01816.9264 E 174,09 282 11,32 7,9 5,96 45,9 4 3 

18.10.2008 06:40:49 3930,913 7052.6072 N 01816.3674 E 173,59 282 11,27 7,9 5,28 37,87 4 3 

18.10.2008 06:41:14 3931,098 7052.6479 N 01815.8124 E 173,03 282 11,2 7,9 5,99 30,18 4 3 

18.10.2008 06:43:09 3931,285 7052.6871 N 01815.2531 E 171,33 281 11,36 7,9 5,45 26,87 4 3 

18.10.2008 06:43:35 3931,475 7052.7257 N 01814.6878 E 171,25 282 11,48 7,9 4,99 28,19 4 3 

18.10.2008 06:45:26 3931,673 7052.7670 N 01814.1141 E 172,25 282 11,34 8 4,78 37,96 4 3 

18.10.2008 06:45:51 3931,865 7052.8079 N 01813.5377 E 173,08 282 11,41 7,9 6,75 30,76 4 3 

18.10.2008 06:46:17 3932,055 7052.8486 N 01812.9718 E 174,52 282 11,27 7,9 5,69 39,72 4 3 

18.10.2008 06:48:11 3932,248 7052.8893 N 01812.4106 E 174,51 281 11,3 7,8 6,32 38,36 4 3 

18.10.2008 06:48:36 3932,438 7052.9298 N 01811.8238 E 176,77 282 11,4 7,8 4,89 48,91 4 3 

18.10.2008 06:50:29 3932,632 7052.9692 N 01811.2552 E 178,29 282 11,41 7,8 7,85 45,58 4 3 

18.10.2008 06:50:55 3932,825 7053.0105 N 01810.6826 E 177,12 282 11,31 7,8 7,39 36,71 4 3 

18.10.2008 06:51:20 3933,018 7053.0522 N 01810.1066 E 178,54 282 11,43 7,8 6,38 34,98 4 3 

18.10.2008 06:53:15 3933,208 7053.0907 N 01809.5361 E 176,53 281 11,53 7,7 5,46 37,12 4 3 

18.10.2008 06:53:40 3933,405 7053.1326 N 01808.9559 E 178,52 282 11,44 7,7 5,34 38,19 4 3 

18.10.2008 06:55:34 3933,605 7053.1729 N 01808.3625 E 174,51 281 11,58 7,8 5,58 27,03 4 3 

18.10.2008 06:55:59 3933,798 7053.2146 N 01807.8001 E 174,66 282 11,51 7,7 6,18 32,48 4 3 

18.10.2008 06:56:24 3933,995 7053.2564 N 01807.2088 E 175,86 282 11,55 7,7 6,45 39,12 4 3 

18.10.2008 06:58:16 3934,185 7053.2960 N 01806.6501 E 174,25 282 11,45 7,8 6,36 39,55 4 3 

18.10.2008 06:58:41 3934,375 7053.3385 N 01806.0758 E 180,43 282 11,44 7,8 5,48 35,93 4 3 

18.10.2008 07:00:35 3934,573 7053.3810 N 01805.5099 E 183,14 283 11,44 7,7 5,47 47,4 4 3 

18.10.2008 07:01:00 3934,765 7053.4259 N 01804.9366 E 184,01 283 11,45 7,8 5,85 47,27 4 3 
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Date Time Logg Lattitude Longitude Depth 
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18.10.2008 07:01:24 3934,953 7053.4679 N 01804.3811 E 184,55 282 11,37 7,8 6,96 49,52 4 3 

18.10.2008 07:03:19 3935,148 7053.5148 N 01803.7952 E 186,23 283 11,5 7,8 6,96 52,43 4 3 

18.10.2008 07:03:44 3935,348 7053.5580 N 01803.2163 E 187,61 283 11,53 7,8 5,6 35,15 4 3 

18.10.2008 07:05:38 3935,543 7053.6026 N 01802.6384 E 187,91 283 11,47 7,8 5,59 45,33 4 3 

18.10.2008 07:06:03 3935,738 7053.6454 N 01802.0500 E 188,86 282 11,48 7,8 6,28 33,19 4 3 

18.10.2008 07:06:28 3935,938 7053.6896 N 01801.4713 E 189,61 283 11,51 7,9 6,29 47,68 4 3 

18.10.2008 07:08:22 3936,128 7053.7358 N 01800.8993 E 190,47 284 11,64 7,8 5,47 40,45 4 3 

18.10.2008 07:08:46 3936,323 7053.7822 N 01800.3405 E 190,32 284 11,6 7,9 6,54 53,14 4 3 

18.10.2008 07:10:40 3936,518 7053.8292 N 01759.7531 E 191,95 284 11,69 7,8 7,27 50,62 4 3 

18.10.2008 07:11:05 3936,718 7053.8757 N 01759.1721 E 193,59 283 11,75 7,8 5,89 59,24 4 3 

18.10.2008 07:11:30 3936,918 7053.9244 N 01758.5707 E 191,87 283 11,83 7,8 6,38 38,26 4 3 

18.10.2008 07:13:23 3937,118 7053.9707 N 01757.9877 E 192,68 283 11,74 7,9 6,05 45,33 4 3 

18.10.2008 07:13:48 3937,318 7054.0164 N 01757.4007 E 192,21 283 11,64 7,8 6,42 44,5 4 3 

18.10.2008 07:15:42 3937,515 7054.0640 N 01756.8138 E 193,2 283 11,71 7,7 5,62 47,86 4 3 

18.10.2008 07:16:07 3937,708 7054.1103 N 01756.2466 E 193,84 283 11,74 7,7 6,5 52,58 4 3 

18.10.2008 07:16:32 3937,908 7054.1608 N 01755.6494 E 188,94 284 11,73 7,8 6,27 55,31 4 3 

18.10.2008 07:18:28 3938,113 7054.2083 N 01755.0482 E 189,46 283 11,79 7,8 6,82 50,86 4 3 

18.10.2008 07:18:53 3938,315 7054.2554 N 01754.4494 E 191,3 283 11,88 7,8 5,59 56,97 4 3 

18.10.2008 07:20:44 3938,513 7054.3001 N 01753.8844 E 191,75 283 11,82 7,8 5,29 51,11 4 3 

18.10.2008 07:21:09 3938,705 7054.3475 N 01753.2914 E 200,55 283 11,62 7,8 5,4 43,84 4 3 

18.10.2008 07:21:35 3938,905 7054.3945 N 01752.7085 E 204,32 284 11,63 7,8 5,31 54,16 4 3 

18.10.2008 07:23:28 3939,098 7054.4408 N 01752.1392 E 205,34 283 11,55 7,9 6,28 48,12 4 3 

18.10.2008 07:23:53 3939,288 7054.4875 N 01751.5771 E 207,23 284 11,43 7,8 6,13 60,96 4 3 

18.10.2008 07:25:47 3939,475 7054.5318 N 01751.0340 E 211,25 284 11,41 7,9 5,67 56,53 4 3 

18.10.2008 07:26:12 3939,668 7054.5808 N 01750.4627 E 211,57 284 11,47 7,9 6,15 56,5 4 3 

18.10.2008 07:26:39 3939,862 7054.6463 N 01749.9011 E 209 291 11,15 7,9 6,23 32,77 4 3 

18.10.2008 07:28:30 3940,052 7054.7338 N 01749.3836 E 213,85 296 11,29 7,9 7,03 41,27 4 3 

18.10.2008 07:28:56 3940,245 7054.8187 N 01748.8563 E 215,24 296 11,34 7,9 6,64 52 4 3 

18.10.2008 07:30:50 3940,443 7054.9034 N 01748.3278 E 217,47 295 11,4 7,9 6,67 57,49 4 3 

18.10.2008 07:31:16 3940,635 7054.9883 N 01747.7952 E 216,62 296 11,49 7,9 6,2 38,44 4 3 

18.10.2008 07:31:41 3940,833 7055.0697 N 01747.2476 E 219,73 294 11,66 7,9 4,66 50,56 4 3 

18.10.2008 07:33:35 3941,023 7055.1473 N 01746.7247 E 220,87 294 11,56 7,9 5,49 43,98 4 3 

18.10.2008 07:34:00 3941,215 7055.2275 N 01746.1822 E 224,56 294 11,48 7,9 6,67 49,14 4 3 

18.10.2008 07:35:52 3941,408 7055.3102 N 01745.6571 E 225,49 295 11,51 7,9 6,8 41,09 4 3 

18.10.2008 07:36:17 3941,603 7055.3906 N 01745.1276 E 228,01 294 11,55 8 5,8 50,16 4 3 

18.10.2008 07:36:42 3941,795 7055.4722 N 01744.5839 E 231,1 294 11,57 8 4,77 43,89 4 3 

18.10.2008 07:38:35 3941,985 7055.5514 N 01744.0587 E 232,87 294 11,59 8,1 5,22 53,64 4 3 

18.10.2008 07:39:00 3942,178 7055.6357 N 01743.5239 E 232,52 295 11,68 8 6,27 42,35 4 3 

18.10.2008 07:40:54 3942,375 7055.7196 N 01742.9848 E 233,79 295 11,76 7,9 6,56 52,36 4 3 

18.10.2008 07:41:20 3942,575 7055.8069 N 01742.4395 E 234 295 11,74 8 6,42 49,65 4 3 

18.10.2008 07:41:45 3942,775 7055.8952 N 01741.8952 E 235,91 296 11,76 8,1 7,63 40,92 4 3 

18.10.2008 07:43:39 3942,949 7055.9634 N 01741.4587 E 234,89 294 9,51 8 5,68 62,62 4 3 

18.10.2008 07:44:04 3943,073 7056.0136 N 01741.1121 E 236,27 293 7,32 8 7,81 62,03 4 3 

18.10.2008 07:45:55 3943,18 7056.0523 N 01740.8197 E 236,27 292 6,26 8 6,42 33,04 4 3 

18.10.2008 07:46:20 3943,278 7056.0873 N 01740.5527 E 237,98 291 5,61 7,9 8,08 37,39 4 3 

18.10.2008 07:46:46 3943,366 7056.1174 N 01740.3127 E 237,36 290 4,87 8 6,78 43 4 3 

18.10.2008 07:48:40 3943,437 7056.1403 N 01740.1133 E 238,69 287 4,08 8 4,99 59,66 4 3 

18.10.2008 07:49:05 3943,495 7056.1568 N 01739.9428 E 237,05 286 3,38 8 5,17 57,57 4 3 

18.10.2008 07:51:00 3943,548 7056.1688 N 01739.7863 E 238,56 282 3,17 8,1 5,69 27,02 4 3 

18.10.2008 07:51:25 3943,624 7056.2001 N 01739.5272 E 235,77 292 5,73 8,1 6,89 33 4 3 
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Table C.4. Main linear regression results of the backscattering strength for the hull and keel systems. Included 

are the Arithmetic Mean (AM), Standard Error of Arithmetic Mean (SEAM), 95 % Lower and Upper 

Confidence Limits (LCL and UCL), Standard deviation (SD), and the Coefficient of Variance (CV). 

 

Measure 

Survey 1 Survey 2 Survey 3 

Hull Keel Hull Keel Hull Keel 

No. of cases 5645 5645 1219 1219 433 433 

Minimum 60.0 51.4 60.0 59.4 60.2 61.6 

Maximum 78.3 77.2 71.3 72.8 74.6 76.8 

Range 18.3 25.8 11.3 13. 5 14.4 15.2 

Sum 379596 375807 78584 79708 28583 29861 

Median 66.7 65.7 64.6 65.4 65.8 68.6 

AM 67.3 66.6 64.5 65.4 66.0 68.9 

SEAM 0.05 0.04 0.07 0.07 0.15 0.15 

95 % LCL 67.2 66.5 64.3 65.2 65.7 68.7 

95 % UCL 67.3 66.7 64.6 65.5 66.3 69.3 

SD 3.73 3.31 2.49 2.64 3.16 3.05 

Variance 13.9 10.9 6.23 6.95 10.0 9.30 

CV 0.06 0.05 0.04 0.04 0.05 0.04 

 

 

Table C.5. Main regression results of the backscattering strength grouped according to wind speeds between 0 

and 10 m/s for Survey 1 and 2. 
 

Measure 
Survey 1: 0 - 5 m/s Survey 1: 5 - 10 m/s Survey 2: 5 - 10 m/s 

Hull Keel Hull Keel Hull Keel 

No. of cases 953 953 2437 2437 21 21 

Minimum 57.4 57.6 56.6 58.6 60.6 61.4 

Maximum 76.5 76.0 78.3 77.2 70.2 67.8 

Range 19.1 18.4 21.7 18.6 9.58 6.46 

Sum 64115 63245 165207 163192 1346 1348 

Median 66.9 65.5 67.2 66.1 63.9 63.9 

AM 67.3 66.4 67.8 67.0 64.1 64.2 

SEAM 0.10 0.09 0.07 0.07 0.57 0.45 

95 % LCL 67.1 66.2 67.7 66.8 63.9 63.2 

95 % UCL 67.5 66.5 67.9 67.1 65.3 65.1 

SD 3.11 2.71 3.30 3.3 2.59 2.07 

Variance 9.69 7.36 10.9 10.9 6.72 4.28 

CV 0.05 0.04 0.05 0.05 0.04 0.03 

 



108 

Table C.6. Main regression results of the backscattering strength grouped according to wind speeds between 10 

and 15 m/s. 

 

Measure 
Survey 1 Survey 2 Survey 3 

Hull Keel Hull Keel Hull Keel 

No. of cases 1146 1146 605 605 104 104 

Minimum 55.4 60.2 57.8 60.4 56.13 61.2 

Maximum 70.5 75.1 71.3 72.8 74.2 76.8 

Range 15.1 14.9 13.5 12.5 18.1 15.6 

Sum 73571 74144 39055 39561 6849 7098 

Median 64.4 64.2 64.8 65.6 66.1 68.2 

AM 64.2 64.8 64.6 65.4 65.7 68.3 

SEAM 0.07 0.07 0.11 0.12 0.24 0.22 

95 % LCL 64.1 64.6 64.3 65.16 65.4 67.8 

95 % UCL 64.3 64.8 64.8 65.6 66.3 68.7 

SD 2.36 2.40 2.66 2.83 2.41 2.21 

Variance 5.57 5.76 7.08 8.03 5.81 4.87 

CV 0.04 0.04 0.04 0.04 0.04 0.03 

 

 

Table C.7. Main regression results of the backscattering strength grouped according to wind speeds between 15 

and 20 m/s. 

 

Measure 
Survey 1 Survey 2 Survey 3 

Hull Keel Hull Keel Hull Keel 

No. of cases 441 441 514 514 284 284 

Minimum 54.0 58.3 56.8 59.1 47.9 55.2 

Maximum 66.2 68.2 71.2 72.1 74.6 76.8 

Range 12.2 9.9 14.4 13.0 26.7 21.7 

Sum 26786 27427 32955 33520 18604 19540 

Median 60.8 62.2 64.3 65.2 65.9 68.9 

AM 60.7 62.2 64.2 65.2 65.5 68.8 

SEAM 0.08 0.06 0.12 0.12 0.27 0.24 

95 % LCL 60.6 62.1 63.9 65.0 64.9 68.3 

95 % UCL 60.9 62.3 64.4 65.5 66.1 69.3 

SD 1.60 1.18 2.68 2.66 4.64 4.12 

Variance 2.57 139 7.21 7.09 21.5 16.86 

CV 0.03 0.02 0.04 0.04 0.07 0.06 
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Table C.8. Main regression results of the backscattering strength grouped according wind speeds between 20 

and 25 m/s. 

 

Measure 
Survey 1 Survey 2 Survey 3 

Hull Keel Hull Keel Hull Keel 

No. of cases 37 37 9 9 28 28 

Minimum 57.8 59.5 58.5 60.8 53.2 58.5 

Maximum 62.5 63.6 66.2 66.9 71.0 73.7 

Range 4.70 4.08 7.71 6.02 17.9 15.2 

Sum 2218 2279 562 575 1751 1846 

Median 60.0 61.6 63.2 64.6 63.7 67.1 

AM 59.9 61.6 62.5 63.9 62.5 65.9 

SEAM 0.19 0.17 0.78 0.67 0.92 0.83 

95 % LCL 59.6 61.3 60.7 62.4 60.7 64.2 

95 % UCL 60.4 61.9 64.3 65.4 64.4 67.6 

SD 1.18 1.01 2.35 2.01 4.85 4.39 

Variance 1.39 1.02 5.51 4.04 23.5 19.251 

CV 0.02 0.02 0.04 0.04 0.08 0.07 
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Table C.9. The description and categorization of Beaufort Sea state scale 

 

Force 

(Beaufort) 

Wind speed 
Wave height 

(m) 
Description Sea conditions 

Knots m·s-1
 

0 0 - 1 0 – 0.2 0 Calm Sea like a mirror. 

 1 1 - 3 0.3 – 1.5 0 - 0.2 Light Air 

Ripples with the appearance of 

scales are formed, but without foam 

crests. 

 2 4 - 6 1.6 – 3.3 0.2 - 0.5 Light Breeze 
Small wavelets, crests glassy, no 

breaking. 

 3 7 - 10 3.4 – 5.4 0.5 - 1 Gentle Breeze 
Large wavelets, crests begin to 

break, scattered whitecaps. 

4 11 - 16 5.5 – 7.9 1 - 2 Moderate Breeze 
Small waves 1-4 ft. becoming 

longer, numerous whitecaps. 

5 17 - 21 8.0 – 10.7 2 - 3 Fresh Breeze 

Moderate waves 4-8 ft taking 

longer form, many whitecaps, some 

spray. 

6 22 - 27 10.8 – 13.8 3 - 4 Strong Breeze 
Larger waves 8-13 ft, whitecaps 

common, more spray. 

7 28 - 33 13.9 – 17.1 4 - 5.5 Near Gale 
Sea heaps up, waves 13-20 ft, white 

foam streaks off breakers. 

8 34 - 40 17.2 – 20.7 5.5 - 7.5 Gale 

Moderately high (13-20 ft) waves 

of greater length, edges of crests 

begin to break into spindrift, foam 

blown in streaks. 

9 41 - 47 20.8 – 24.4 7 - 10 Strong Gale 

High waves (20 ft), sea begins to 

roll, dense streaks of foam, spray 

may reduce visibility. 

10 48 - 55 24.5 – 28.4 9 - 12.5 Storm 

Very high waves (20-30 ft) with 

overhanging crests, sea white with 

densely blown foam, heavy rolling, 

and lowered visibility. 

11 56 - 63 28.5 – 32.6 11.5 - 16 Violent Storm 

Exceptionally high (30-45 ft) 

waves, foam patches cover sea, 

visibility more reduced. 

12 64 - 72 32.7 – 36.9 ≥ 14 Hurricane 

Air filled with foam, waves over 45 

ft, sea completely white with 

driving spray, visibility greatly 

reduces. 

Table adopted from: City of Stuttgart, Office for Environmental Protection, Section of Urban Climatology 
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Brief description of the Beaufort scale:  

 

"Beaufort wind scale" or "Beaufort wind force scale" was created by British Admiral Sir 

Francis Beaufort in 1805. The individual wind stage is called the Beaufort number or level. 

At that time, ships included fishing boats and warships, where canvas sails were deployed to 

ride the waves using wind power. Anemometer was not yet available. Wind and waves are 

inter-related. The stronger the winds, the higher will be the waves.  The wind strength has 

direct influence on the state of the sea. Beaufort developed the scale based on experience and 

observations on board a warship (called "44 gun man-of-war"). The scale is in form of a table 

(above) grading the wind strength from force 0 to force 12 (totally 13 categories). 

 

The Beaufort wind scale was originally drawn up to relate the number of canvas sails 

required to each category of the wind forces.  The higher the wind force, the less canvas sails 

would be required. The Beaufort wind scale was revised several times. In 1906, the 

description was extended from sea state to land observations of objects being blown by 

winds. In 1926, a set of equivalent wind speeds corresponding to the Beaufort wind force 

scale was adopted. In 1947, the International Meteorological Organization agreed reporting 

of wind velocity in knots. Beaufort's original scale was later correlated to wind speed in two 

different ways. The U.S. and British scale is for winds measured at a 36-ft elevation, while 

the international scale requires only a 20-ft elevation. The Beaufort scale is the oldest method 

of judging wind force. Separate scales for tornadoes and hurricanes did not come until the 

1970s.  
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Appendix D. Statistical Formulations 

 

Appendix D.1. Definition of the variance and the standard deviation 

A variance is the measure of the dispersion of a set of values around the sample mean. It is 

the mean of the sum of the squares of the differences between the values and the mean of the 

sample. While the standard deviation is the measure of the variability or dispersion of a data 

set around the population mean. The standard deviation is in simple terms the square root of 

the variance that indicates the precision of the investigation. The standard deviation has a 

confidence interval of 95%, compared to 68% confidence interval by the standard error. 

Below are the formulas used for computing the variance and standard deviation of the 

population and sample for the pitch and roll movements data. The sample variance and 

standard deviation formula have the term n-1 to indicate the degree of freedom of a particular 

sample.  

 

Appendix D.2. Formulas 

Sample variance formula: 
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Population variance formula: 
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Sample standard deviation formula: 
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Population standard deviation formula: 
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