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Chapter 1

Introduction

Inpainting is an artistic synonym for image interpolation. The terminology “inpainting” is
borrowed from museum restoration artists.

Let D denote the entire image domain. The problem of inpainting is to fill in image
information in a blank domain Ω ⊂ D based upon the image information available outside
Ω, D\Ω. Different techniques can be applied to solve this problem [8, 7, 9, 11, 4, 17, 3, 5, 21].

In this thesis a new method has been tried out. The idea is to find a set of tangential
vectors τ to the level curves of the image d in the missing region Ω. These tangential
vectors are found such that they have the smallest Total Variation norm over Ω,

min
τ

∫

Ω

|∇τ | dx subject to ∇ · τ = 0 in Ω. (1.1)

The constraint ∇ · τ = 0 assures us that τ are tangential vectors to the level curves of d.
From the tangential vector field we find a surface d that fits τ in Ω. This surface is found
by

min
d

∫

Ω

(

|∇d| − ∇d · n

|n|

)

dx in Ω, (1.2)

where n are the normal vectors found from the tangential vectors τ .
Two different boundary conditions are used. In most of our experiments we have

used Dirichlet conditions, i.e. τ = τ0 in (1.1) and d = d0 in (1.2) on the boundary
around Ω, ∂Ω. In the other experiments we have decomposed the boundary into two parts,
∂Ω = ∂ΩD ∪ ∂ΩN , and used different boundary conditions on ∂ΩN . To avoid information
from propagating through ∂ΩN , we have used the Neumann boundary conditions ∂d

∂ν
= 0

on ∂ΩN in (1.2). The corresponding boundary condition for (1.1) is τ = 0 on ∂ΩN .
First order optimality of the problems (1.1) and (1.2) leads to two nonlinear partial

differential equations that we solve using the method of steepest descent.
This thesis will be organized in the following way: The next chapter gives an overview

over different fields in image processing. The three following chapters introduce the theory
that is necessary to solve our problem. Level sets and gradients are defined, some important
theory from the functional analysis is introduced and a procedure to solve minimization
problems is presented. In the last chapter we use this theory to solve (1.1) and (1.2) with
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2 Introduction

the given boundary conditions. The appendix contains an article we have written on this
method. The article includes the results and a discussion of these.



Chapter 2

Introduction to image processing

One basic issue in image processing is to restore degraded images. Since the popularity of
digital images has increased, this field is of great interest, both for people in general and
as a research area.

A general image processing problem can be modelled as

d0 → Image Processor → d.

There are various approaches to image processing, such as stochastic modelling, wavelets
and partial differential equation (PDE) approaches [2]. The last two decades or so PDE
methods have been very popular.

Image processing includes a vast number of fields. Before going deeper into some of the
fields, we need a definition of a digital image.

2.1 Digital image

A two-dimensional digital image is a representation of an image as a finite set of digital
values, called pixels. Each pixel is associated to a specific position xij in the image and
has an intensity value d(xij) with information about the colour and intensity at the point
xij. An image is usually stored as a matrix with integer entries between 0 and 255, where
0 is the weakest intensity and 255 is the strongest.

Gray-scale images are composed of shades of gray. Each pixel has a single value that
tells us the intensity, varying from 0 corresponding to black and 255 corresponding to
white.

The RGB colour model is one possible model in which to represent a colour image.
Shades of red, green and blue are combined to create other colours. A pixel in a color
image then consists of three integer values between 0 and 255. The values define the
intensity of red, green and blue, respectively. It is possible to represent 2563 = 16777216
different colours in this model.

3



4 Introduction to image processing

The quality of an image depends on the resolution. The resolution is the number of
rows and columns in the image. In an image with high resolution the pixels are so small
that they are not visible one by one, but together they form a smooth image. An image
with low resolution has few pixels and does not contain as much details as an image with
high resolution. The closer together the pixels are, the better the image will represent the
real world.

An image can be viewed as a landscape with valleys and peaks. High intensities corre-
spond to peaks and low intensities to valleys. This is illustrated in Figure 2.1. Images are
generally not smooth, but contain edges and discontinuities.

a) A colour image. b) The matrix for the colour red.

c) The matrix for the colour green. b) The matrix for the colour blue.

Figure 2.1: An example image illustrating the RGB colour model.
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2.2 Image inpainting

If a part of an image is damaged or missing, a desirable task can be reconstructing it in a
way that looks natural for the eye. This can be done by using information from surrounding
areas and merge the inpainted region into the image so seamlessly that a typical viewer is
not aware of it. The quality of the result will depend on what is missing. If the inpainting
region is small and the surrounding area is without much texture, the result will be good.
Texture is a measure of image coarseness, smoothness and regularity. Images with texture
contain regions characterized more by variation in the intensity values than by one value
fo intensity. The background of the image in Figure 2.1 is an example of texture. Large
areas with lots of information lost are harder to reconstruct, because information in other
parts of the image is not enough to get an impression of what is missing. If the human
brain is not able to imagine what is missing, equations will not make it either.

When we look at the real world we see many objects, but we do not see each object
one by one. Parts of them are occluded by others all the time. Still we have an intuitive
understanding of what is covered. This is because we have seen similar objects before and
know what they look like. In Figure 2.2 b) a part of the image is occluded. Because we
know the shape and the colour of the pear, we can imagine what is missing.

a) The original image. b) A part of the image
is occluded.

Figure 2.2: Humans have an intuitive understanding of what is missing. Com-
puters do not.

The human brain often prefers the connected structures. If we show the occluded object
in Figure 2.3 a) to someone, they would most likely guess that the object in Figure 2.3 c)
is the original object.

a) A narrow occlusion. b) Alternative 1. c) Alternative 2.

Figure 2.3: Illustration of the Connectivity Principle with a narrow occlusion.
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Even though the remaining parts are separated far apart by the occlusion, like in Figure
2.4 a), most of us would prefer the result in Figure 2.4 c). This is referred to as the
Connectivity Principle in human perception and is discussed in [9].

a) A broad occlusion. b) Alternative 1. c) Alternative 2.

Figure 2.4: Illustration of the Connectivity Principle with a broad occlusion.

Removing occlusions is analogous to inpainting, since the region to be inpainted can
be considered as an occluding object. It is a challenge to make an algorithm that can do
the inpainting in the same way as humans.

Let
d0 : R

2 → R (2.1)

be a given observed image on the domain D. In Ω ⊂ D the image data is missing or
inaccessible. We want to recover the region Ω ⊂ D based on information from d0 on ∂Ω
or in the surrounding band B. This is illustrated in Figure 2.5.

Figure 2.5: The inpainting domain Ω with the boundary ∂Ω and a surrounding
band B.
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A common approach to image restoration is the Bayesian framework [21, 13]. We want
to find the best guess d based on the image d0. This starts out with Bayes’ formula

p(d|d0) =
p(d0|d)p(d)

p(d0)
, (2.2)

where p(a|b) is the probability of a given b, and p(a) is the probability of a. Since d0 is
given, p(d0) is a constant. p(d) is found from a prior model, and p(d0|d) is found from a
data model.

The goal is to imitate the way professional artists would restore a painting. In [4] the
underlying methodology is gathered in four points:

1. The global picture determines how to fill in the gap, the purpose of inpainting being
to restore the unity of the work.

2. The structure of the area surrounding Ω is continued into the gap, contour lines are
drawn via the prolongation of those arriving at ∂Ω.

3. The different regions inside Ω, as defined by the contour lines, are filled with colours,
matching those of ∂Ω.

4. The small details are painted, in other words, texture is added.

There are several approaches to this. Which method is preferable, depends on the
information missing and how large the inpainting domain Ω is. The methods can mainly
be classified into two classes.

• Texture synthesis algorithms sample textures from the region outside Ω, D\Ω, and
use this to fill in the missing region Ω. These algorithms focus on reconstruction of
large regions Ω that contain much pattern.

• Inpainting algorithms try to recreate the structures like lines and object contours in
Ω. Delicate small scale features like texture will not be recreated, but if the region
Ω is small, this may not be noticeable at first sight.

Many interesting articles have been written on this subject.

• In [17, 5] the two classes mentioned above are combined. The image d0 is decomposed
into a sum of two parts, d0 = f + g, where f is the cartoon part capturing the basic
image structures and g is the texture and noise part. Then an inpainting algorithm
can be used on the first term, and a texture synthesis algorithm can be used on the
second term.

• In [3] Naviers-Stokes equations for incompressible, viscous fluids are used.

ut + u · ∇ · u − ∆u = −∇p in Ω,

∇ · u = 0 in Ω.
(2.3)
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These equations describe the relationship between the velocity u and pressure p in
a fluid. The stream function can be compared to the image intensity function d and
the fluid velocity to the isophote direction ∇⊥d. This approach has the advantage of
well-developed theoretical as well as numerical results. The solution of this equation
will have continuous isophotes and produces an image intensity function d that is
continuous across ∂Ω.

• In [7, 9] the Total Variation norm of the image d is minimized inside the inpainting
region Ω. This leads to the partial differential equation

∇ ·
( ∇d

|∇d|

)

= 0 in Ω,

d = d0 on ∂Ω.

(2.4)

The drawback of this method is that the interpolation is limited to creating straight
isophotes, not necessarily smoothly continued from the boundary ∂Ω. This may look
natural if Ω is small, but for large missing regions better algorithms are needed. An-
other drawback is that it does not always follow the Connectivity Principle illustrated
in Figure 2.3 and Figure 2.4.

• In [9] Curvature-Driven Diffusion is used to overcome the problem with the Connec-
tivity Principle. The model for this is

∇ ·
(

g(κ)

|∇d|∇d

)

= 0 in Ω,

d = d0 on ∂Ω

(2.5)

where g : R → [0,∞) is a continuous function satisfying g(0) = 0 and g(±∞) = ∞
and κ = ∇·

(

∇d
|∇d|

)

is the curvature of the level curves. Since g(κ)
|∇d|

denotes the diffusivity
coefficient, this model will penalize large curvatures and encourage small ones.

Image inpainting can be used to remove text and make objects disappear from an image.
It can also be used to restore old photos by removing cracks. Later in this work we will
show some examples of image inpainting.

2.3 Other fields

In this section I have used [1, 2, 16].

Noise reduction: We say that an image contains noise if the pixel values in the image do
not reflect the true intensities of the real scene. Denoising is different from inpainting
in the way that we do not have large regions of missing data.



2.3 Other fields 9

We can write the observed image d0 as a sum of the true image d and the additive
noise n,

d0(xij) = d(xij) + n(xij) for xij ∈ Ω, (2.6)

where Ω is the domain with noise. Noise can be introduced into an image in several
ways depending on how the image is created. There are mainly two models of noise:

• If a few pixels in an image are meaningless, the image contains random noise.
These pixels have colours that are totally different from the neighbouring pixels.
This can be a result of dust on the lens. Figure 2.6 b) shows an image with a
type of random noise called salt and pepper noise.

• In the second model each pixel contains a small amount of noise. This is called
Gaussian noise. A plot of the distortion of a pixel against the frequency of which
it occurs will look like a Gaussian distribution. Then the smallest amount of
noise will occur most often. This is shown in Figure 2.6 c).

a) The original image d. b) Salt and pepper noise. c) Gaussian noise.

Figure 2.6: Different types of noise introduced into the original image d.

There are several methods for removing noise, that is recovering d from d0. A good
algorithm must preserve edges and details in the picture during the denoising.

• Linear filters are advantageous in the way that they do not require much compu-
tational time. The intensity values of the reconstructed pixels d(xij) are a linear
combination of the values of the the observed pixels d0(xij) in the neighbour-
hood of xij. Averaging, Gaussian and Wiener filters belong to this category.
In averaging filters each pixel is replaced by the average of the pixels in the
neighbourhood. This is useful for removing grain noise from a photograph. The
drawback of this method is that edges will be smoothed. Gaussian filters use
the standard deviation to decide the degree of smoothing and use a weighted
average to calculate the pixels. A Gaussian filter preserves edges better than
the averaging filter. Wiener filters use statistical methods to reduce the noise.

• Median filters are similar to averaging filters. But instead of replacing each
pixel with the average of its neighbours, this filter replaces it with the median.
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It is better than the averaging filter to remove outliers without reducing the
sharpness of the image.

• Adaptive filters are filters that improve the linear methods. If the local variance
is found everywhere in an image, the Wiener filter can be improved adaptively.
It will perform much smoothing where the variance is small and less smoothing
where the variance is large. This method will preserve the edges and parts of the
image with high-frequency better than the original Wiener-filter. The drawback
of this method is the requirement for more computational time.

Edge detection: The curve that follows a path of rapid change in image intensity is
referred to as an edge. An edge detector tries to find the edges in an image. One
way of doing this is by locating places in the image where the first derivatives of the
intesity values are larger in magnitude than some threshold. If the threshold is small,
the edge detector will be sensitive to blurred edges and if the threshold is large, it
will only find the sharp edges. A noise reduction algorithm is often applied to the
image before the edge detector. The sharp edges will not disappear even if the image
is blurred.

• The Canny method looks for edges in places where the gradient of the intensities
has a local maximum. It uses two thresholds, one large and one small. The large
threshold locates the strong edges and the small locates the weak edges as well.
This method is one of the best edge detectors, because it includes a weak edge
only if it is connected to a strong edge. Therefore the method will not be
sensitive to edges introduced by noise.

• The zero-cross method finds edges by looking for places where the second deriva-
tive of the intensity has a zero crossing. This will be in places where the first
derivative of the intensity has an extremum.

Figure 2.7 shows these two edge detectors applied to the image in Figure 2.6 a). The
result from the Canny-method seems to be the best one.

a) The Canny method b) The zero-cross method

Figure 2.7: Two different methods in edge detection.
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Segmentation: Segmentation is the partition of an image into different regions. The goal
is often to locate a special object or region with common properties as colour or
texture. These regions need not to be connected.

Figure 2.8 shows a simple example of segmentation of a gray-scale image. Each pixel
is assigned to the class A if d(xij) ≥ t and the class B if d(xij) < t, where t is the
chosen threshold.

a) A gray-scale image. b) Segmentation of an image
into two classes.

Figure 2.8: Segmentation of a gray-scale image.

Deblurring: An image that is out of focus is referred to as blurred. If it is known how
the image blurred, it can be possible to deblur it. The blurring of an image can be
caused by movement during the image capture process, i.e. either the camera or the
subject was moving. It also occurs if the camera is out of focus.

A blurred image d0 can be described by the equation

d0(xij) = Hd(xij) + n(xij), (2.7)

where H is the distortion operator, d is the original true image and n is additive
noise. Note that recovering d from d0 can be an ill-posed inverse problem [10, 14].

a) The original image d. b) The blurred image d0.

Figure 2.9: Blurring of an image.
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Zoom-in: When an image with low resolution is magnified, the pixels may be so large
that they can be seen as squares. To improve the result it is possible to interpolate
between the pixels to make the crossings between them smoother. This is called
zoom-in.

In Figure 2.10 the resolution of the original image is reduced. If the image with low
resolution is smaller than the original it is not visible that the crossings between the
pixels are not smooth. But when it is shown in the original size, we see that there is
a need for zoom-in methods.

a) My cornet b) A small cornet c) A magnified cornet
(131 x 250 pixels). (50 x 95 pixels). (50 x 95 pixels).

Figure 2.10: Images with different resolutions and sizes.



Chapter 3

Calculus

3.1 Level set

A level set of a differentiable function f : Rn → R corresponding to the real value c is the
set of points

{(x1, ..., xn) ∈ R
n : f(x1, ...xn) = c}. (3.1)

That is, the set where the function f has a given constant value c. If n = 1, the level set
is one or more points, depending on how many solutions the function f(x) = c has for the
given c. If n = 2, the level set is a plane curve and is called a level curve. If n = 3, the
level set is a surface and is called a level surface. For n ≥ 4 the level set is a hyper surface,
which is a generalization of a surface.

Figure 3.1 shows a surface f together with its level curves projected down to the xy-
plane.
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Figure 3.1: A plot of the function f(x, y) =
√

(x − 10)2 + (y − 30)2 together with

its level curves
√

(x − 10)2 + (y − 30)2 = c projected down to the xy-plane.
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14 Calculus

3.2 The gradient vector

In this work we only need the following definitions and theorems for functions of two
variables. Generalizations to functions of more variables are straight forward and can be
found in [20].

Definition 1 (Differentiable) We say that the function f(x, y) is differentiable at the
point (x0, y0) if

lim
(h,k)→(0,0)

f(x0 + h, y0 + k) − f(x0, y0) − h∂f

∂x
(x0, y0) − k ∂f

∂y
(x0, y0)√

h2 + k2
= 0. (3.2)

The function f(x, y) is differentiable at the point (x0, y0) if and only if the surface z = f(x, y)
has a non-vertical tangent plane at (x0, y0). This implies that the first partial derivatives
of f exist and that f is continuous at (x0, y0).

Definition 2 At any point where the first partial derivatives of the function f(x, y) exist,
we define the gradient vector ∇f(x, y) by

∇f(x, y) =
∂f

∂x
(x, y)i +

∂f

∂y
(x, y)j (3.3)

and the perpendicular gradient vector ∇⊥f by

∇⊥f(x, y) = −∂f

∂y
(x, y)i +

∂f

∂x
(x, y)j (3.4)

The relationship between the level curves of f and the gradient vector ∇f is stated in the
following theorem.

Theorem 1 If f(x, y) is differentiable at the point (x0, y0) and ∇f(x0, y0) 6= 0, then
∇f(x0, y0) is a normal vector to the level curve of f that passes through (x0, y0).

The proof of this theorem can be found in [18].
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3.2.1 Geometric properties of the gradient vector

• At (x0, y0), f(x, y) increases most rapidly in the direction of the gradient vector
∇f(x0, y0). The maximum rate of increase is |∇f(x0, y0)|.

• At (x0, y0), f(x, y) decreases most rapidly in the direction of −∇f(x0, y0). The
maximum rate of decrease is |∇f(x0, y0)|.

• The rate of change of f(x, y) at (x0, y0) is zero in directions tangent to the level curve
of f that passes through (x0, y0).

In Figure 3.2 the level curves of the function f in Figure 3.1 are plotted together with
the gradient vectors ∇f . We see that the gradients are perpendicular to the level curves
and point in the directions where f increases the most.
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.





Chapter 4

Functional analysis

In order to study the minimization problems, theory from the functional analysis must be
used. We will use a definition of a functional derivative where the functionals are defined
on a Banach space. To define what a Banach space is, some other definitions are required.

4.1 Definitions

Definition 3 (Metric space) A metric space is a pair (M, d), where M is a set and d

is a metric on M (or distance function on M), that is, a function defined on M ×M such
that for all x, y, z ∈ M we have:

1. d is real-valued, finite and nonnegative,

2. d(x,y) = 0 iff x = y,

3. d(x,y) = d(y,x),

4. d(x, z) ≤ d(x,y) + d(y, z) (The triangle inequality).

The most common metric is the Euclidean metric. In n-space this is defined as
d(x,y) =

√
∑n

k=1(xk − yk)2. For n ≤ 3 this metric resembles the intuitive understanding
of distance.

Definition 4 (Cauchy sequence) A Cauchy sequence is a sequence in a metric space
(M, d) such that for every positive real number ε > 0, there exists an integer N such that
for all integers m, n > N , the distance d(xm, xn) < ε.

Thus a Cauchy sequence is a sequence whose terms become arbitrarily close to each other
as m, n → ∞. This does not imply that the sequence has a limit in M .

Definition 5 (Complete metric space) (M, d) is a complete metric space if every Cauchy
sequence in M converges to a limit in M .

17



18 Functional analysis

This implies that every convergent sequence in a metric space is a Cauchy sequence.
An example of a complete metric space is the space of the real numbers R with respect

to its natural metric d(x,y) = x − y.
The rational numbers are not complete. π is the limit of a sequence of rational numbers,

but π itself is irrational. Leibniz’ expressed π as an infinite sum

π = 4

∞
∑

n=0

(−1)n 1

2n + 1
. (4.1)

Figure 4.1 shows how this sum converges to π.
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Figure 4.1: The sum in (4.1) (blue line) and the exact value of π (red dotted
line).

Definition 6 A nonempty set X ⊂ R
n is a vector space if x + y ∈ X and cx ∈ X for all

x ∈ X, y ∈ X, and for all scalars c.

Definition 7 Let E be a real vector space. A norm on E is a mapping ‖ · ‖ : E → [0,∞)
which satisfies the following conditions:

• ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x,y ∈ E,

• ‖cx‖ = |c| ‖x‖ for all x ∈ E, c ∈ R,

• ‖x‖ = 0 iff x = 0.
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A normed space is a pair (E, ‖ · ‖) where E is a real vector space and ‖ · ‖ is a norm on E.

The norm induces a distance function d(x, y) = ‖x − y‖. This means that E is a metric
space.

A norm provides us with a notion of convergence: We say a sequence {xk}∞k=1 ⊂ X

converges to x ∈ X, written xk → x, if lim
k→∞

‖xk − x‖ = 0.

Definition 8 (Banach space) A Banach space is a normed space which is a complete
metric space with respect to the metric induced by its norm.

Then a Banach space is a normed vector space which is complete, that is, within which
each Cauchy sequence converges.

4.2 Functional derivative

A functional is a real-valued function on a vector space V, usually of functions. The
functional derivative is the derivative of a functional with respect to a function and is a
generalization of the function derivative. It tells us how the functional changes when the
function changes by a small amount.

In this work the space V can be restricted to be a Banach space. A functional on a
Banach space is a a scalar-valued mapping which is continuous, but not necessarily linear.

Let V be a Banach space and let F : V → R be a functional. The definition of the
functional derivative at x in the direction of y is then

F ′(x)y = lim
ε→0

F (x + εy) − F (x)

ε
. (4.2)

F is (Frechet-)differentiable at x if

F (x + y) = F (x) + F ′(x)y + o(‖y‖V ) as ‖y‖V → 0. (4.3)

F ′(x) will be a bounded linear functional.
The intuition from Calculus carries over to functional derivatives. x is a critical point

of F if F ′(x) = 0, that means

F ′(x)y = 0 ∀ y ∈ X. (4.4)

This critical point condition is called the Euler-Lagrange equation for the functional F .

4.3 Function spaces

4.3.1 Inner product spaces

Definition 9 An inner product on a real vector space V is a mapping

(·, ·) : V × V → R (4.5)

such that, for all x, y, z ∈ V and all λ ∈ R,
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1. (x, y) = (y, x),

2. (x, y + z) = (x, y) + (x, z),

3. λ(x, y) = (λx, y),

4. (x, x) > 0 when x 6= 0,

An inner product space is a pair (V, (·, ·)) where V is a real vector space and (·, ·) is
an inner product on V .

It follows that (x, x) = 0 iff x = 0.

Definition 10 If (·, ·) is an inner product, the associated norm is

|x| = (x, x)
1

2 . (4.6)

Definition 11 (Hilbert space) A Hilbert space is an inner product space which is a
complete metric space with respect to the metric induced by its inner product.

We can say that a Hilbert space is a Banach space endowed with an inner product which
generates the norm. Every Hilbert space is a Banach space, but there exist plenty of
Banach spaces which are not Hilbert spaces.

Euclidean spaces

For each positive integer n, let R
n be the set of all ordered n-tuples of real numbers, that

is

x = (x1, x2, ..., xn), (4.7)

where (x1, x2, ..., xn) is a point in n-space. We define the inner product of x and y by

(x, y) =
n
∑

i=1

xiyi, (4.8)

and the norm by

|x| = (x, x)
1

2 =

(

n
∑

i=1

x2
i

)
1

2

. (4.9)

The vector space R
n with the above inner product and norm is called Euclidean n-space.
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4.3.2 Space of all measurable functions

Assume Ω is an open subset of R
n. We define Lp(Ω) to be the space of all measurable

functions u : Ω → R for which ‖u‖Lp(Ω) < ∞,

Lp(Ω) = {u : Ω → R : u is Lebesgue measurable, ‖u‖Lp(Ω) < ∞}, (4.10)

where

‖u‖Lp(Ω) =















(∫

Ω

|u|p dx

)
1

p

if 1 ≤ p < ∞,

ess sup
Ω

|u| if p = ∞.

(4.11)

4.3.3 Space of continuously differentiable functions

Assume Ω is an open subset of R
n. We define Ck(Ω) to be the space of k-times continuously

differentiable functions,

Ck(Ω) = {u : Ω → R : u is k-times continuously differentiable}. (4.12)

The support of a continuous function u(x) defined on R
n is the closure of the set of

points where u(x) is non-zero, that is

supp u = {x ∈ Rn : u(x) 6= 0}. (4.13)

A set is bounded if it is contained in a ball BR(0) with R sufficiently large. If supp u is
bounded, we say that u has compact support. Ck

0 (Ω) denotes the functions in Ck(Ω) with
compact support.

4.3.4 Space of functions with Bounded Total Variation

In the image processing community the Total Variation norm was introduced in order to
be able to preserve edges in an image during the regularization. Let Ω ⊆ R

n be a bounded
open set. The Total Variation norm is the L1-norm of the gradient and can be defined as

‖u‖TV (Ω) =

∫

Ω

|∇u| dx for u ∈ C1(Ω). (4.14)

This norm is a measure of the amount of oscillation found in the function u. A more
rigorous definition is based on the dual form

‖u‖TV (Ω) = sup

{
∫

Ω

u · ∇g dx : g ∈ C1
0(Ω, Rn), |g(x)| ≤ 1 ∀ x ∈ Ω

}

, (4.15)

where u ∈ L1(Ω). This is basically the space of functions with Bounded Total Variation,
BV (Ω). The definition of this space is

BV (Ω) = {u ∈ L1(Ω) : ‖u‖TV < ∞}. (4.16)
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BV (Ω) is a Banach space endowed with the norm

‖u‖BV (Ω) = ‖u‖L1(Ω) + ‖u‖TV (Ω). (4.17)

Thus BV-functions are the L1 functions with bounded TV-norm, and discontinuous func-
tions are included in this space. The advantage of the TV-norm is that it allows for
discontinuities, but at the same time disfavours oscillations, such as noise.

BV0(Ω) denotes the functions belonging to BV (Ω) whose support is a compact subset
of Ω.



Chapter 5

Calculus of variation

Calculus of variations is essentially a generalization of ordinary calculus [12]. It is a field
which deals with finding extremas of functionals.

5.1 Basic idea

The idea is to solve a partial differential equation by finding the minimum of a functional.
A partial differential equation is an equation involving partial derivatives of an unknown
function with respect to more than one independent variable.

We want to solve the partial differential equation

A[u] = 0, (5.1)

where A[·] denotes a given, possibly nonlinear, partial differential operator and u is the
unknown. If the operator A[·] is the derivative of an energy functional I[·] we can write

A[·] = I ′[·]. (5.2)

By solving equation (5.1) we find the critical points of I[·],
I ′[u] = 0. (5.3)

It may be easier to find a critical point of I[u] than solving the partial differential equation
(5.1). I[u] is typically formed as an integral involving the unknown function u and some
of its derivatives.

Suppose that Ω ⊂ R is a bounded, open set with smooth boundary ∂Ω and L : R
n ×

R × Ω → R is a smooth function. We will write

L = L(p, z, x) = L(p1, ..., pn, z, x1, ..., xn) (5.4)

for p ∈ R
n, z ∈ R and x ∈ Ω and use the notation

DpL = (Lp1
, ..., Lpn

),

DzL = Lz,

DxL = (Lx1
, ..., Lxn

).

(5.5)

23
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Assume that I[·] has the explicit form

I[w] =

∫

Ω

L(∇w(x), w(x),x) dx, (5.6)

for smooth functions w : Ω → R satisfying a boundary condition

w = g on ∂Ω. (5.7)

We suppose that among all w satisfying the boundary condition (5.7) there exists a
function u that is a minimizer of I[·]. This function u will be the solution of a certain
nonlinear partial differential equation.

To show this we consider the real-valued function

i(h) = I[u + hv], (5.8)

for h ∈ R and v ∈ C∞
0 .

Since u is a minimizer of I[·] and u + hv = u = g on ∂Ω, i(·) has a minimum at h = 0,
therefore

i′(0) = I ′[u]v = 0. (5.9)

As stated in Section 4.2, I ′[u]v is the derivative of I in the direction of v. u is a critical
point of I and (5.9) is called the Euler-Lagrange equation associated with the functional I.

Now we want to compute the derivative of

i(h) =

∫

Ω

L(∇u + h∇v, u + hv, x) dx. (5.10)

Using the Chain Rule we get

i′(h) =

∫

Ω

n
∑

i=0

Lpi
(∇u + h∇v, u + hv,x)vxi

+ Lz(∇u + h∇v, u + hv,x)v dx. (5.11)

Since h = 0 at a minimum, we deduce that

0 = i′(0) =

∫

Ω

n
∑

i=0

Lpi
(∇u, u,x)vxi

+ Lz(∇u, u,x)v dx. (5.12)

Theorem 2 (Integration-by-parts formula) Assume that Ω is a bounded, open subset
of R

n and ∂Ω is C1. Let u, v ∈ C1(Ω). Then

∫

Ω

uxi
v dx = −

∫

Ω

uvxi
dx +

∫

∂Ω

uvνi dS (i = 1, ..., n), (5.13)

where ν = (ν1, ..., νn) is the outward pointing unit normal vector field along ∂Ω.
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By Theorem 2 we obtain

0 =

∫

Ω

[

−
n
∑

i=0

(Lpi
(∇u, u,x))xi

+ Lz(∇u, u,x)

]

v dx. (5.14)

The boundary integral vanishes since v has compact support. Since (5.14) holds for all
test functions v, u solves the nonlinear partial differential equation

−
n
∑

i=0

(Lpi
(∇u, u,x))xi

+ Lz(∇u, u,x) = 0. (5.15)

This is a quasi-linear second order partial differential equation in divergence form. Solving
this equation is equivalent to searching for a minimum of (5.6).

5.2 Minimization problems

Before going deeper into the minimization problems, we need a few more definitions.

Definition 12 (Local minimum values) A function f has a local minimum value f(x1)
at the point x1 in its domain provided there exists a number h > 0 such that f(x) ≥ f(x1)
whenever x is in the domain of f and |x − x1| < h.

A function f can have many local minima. This is illustrated in Figure 5.1.
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−0.5

0

0.5

1

1.5

x

f(
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Figure 5.1: A function f(x) with several local minima. The global minimum is
shown as *.
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Definition 13 (Absolute minimum values) A function f has an absolute minimum
value f(x1) at the point x1 in its domain if f(x) ≥ f(x1) holds for every x in the domain
of f .

This means that a function can have at most one absolute maximum or minimum value,
though this value can be assumed at many points.

When the global minimum of a function f(x) is to be found, we want to find x such
that f(x) is the smallest possible. A function f(x) can attain its minimum value only at
points x that belong to one of the following classes:

• Critical points of f , that is points x in the domain of f where f ′(x) = 0.

• Singular points of f , that is points x in the domain of f where f ′(x) is not defined.

• Endpoints of the domain of f , that is points x in the domain of f that do not belong
to any open interval contained in the domain of f .

The unconstrained minimization problem is formulated as

min
x

f(x), (5.16)

where x ∈ R
n is a real vector with n ≥ 1 components and f : R

n → R is a smooth function.
Sometimes a constraint must be fulfilled at the minimum. We can for example look

for the minimum only at points where g(x) = 0. The constrained minimization problem is
formulated as

min
x

f(x) subject to g(x) = 0, (5.17)

where x and f are defined as above and g : R
n → R is a smooth function.

5.3 Lagrange multipliers

Lagrange multipliers is a method for finding local extrema of a multivariate function
f(x1, ..., xn) subject to a constraint g(x1, ..., xn) = 0. f and g must be functions with
continuous first partial derivatives in the open set containing g(x1, ..., xn) = 0 and ∇g 6= 0
at any point in the open set. The method will not work if the extreme value occurs at an
endpoint of the constraint g(x1, ..., xn) = 0.

The Lagrange function is defined by

L(x1, ..., xn, λ) = f(x1, ..., xn) + λg(x1, ..., xn), (5.18)

where λ is a constant called the Lagrange multiplier. The value of λ tells us something
about how hard L(x1, ..., xn, λ) is pushing or pulling against the constraint g(x1, ..., xn).
For an extremum to exist

df =
∂f

∂x1

dx1 + ... +
∂f

∂xn

dxn = 0. (5.19)
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Since g is held constant

dg =
∂g

∂x1
dx1 + ... +

∂g

∂xn

dxn = 0. (5.20)

If (5.20) is multiplied by a constant λ and added to (5.19), we get the equation

(
∂f

∂x1
+ λ

∂g

∂x1
)dx1 + ... + (

∂f

∂x1
+ λ

∂g

∂xn

)dxn = 0. (5.21)

Since all the differentials are independent, it follows that

∂f

∂xk

+ λ
∂g

∂xk

= 0 ∀ k = 1, ..., n, (5.22)

and
∇f = −λ∇g. (5.23)

This implies that at an extremum ∇f and ∇g are parallel.
To explain why this is correct we take a look at the two-dimensional case. We want to

minimize the function f(x1, x2) subject to g(x1, x2) = 0. When we walk along the contour
g(x1, x2) = 0, we must cross the level curves of f(x1, x2) in the direction that f decreases
most. In a point where f does not decrease in any direction, the level curve of f through
that point is parallel to the level curve of the constraint. Thus the gradients are parallel
and we have found the minimum.

We illustrate this method by an example. We want to find the minimum of f(x, y) =
2(x−1)x−y2−4 on the line y = − 3

2
. This can be formulated as a constrained minimization

problem

min
x, y

2(x − 1)x − y2 − 4 subject to y +
3

2
= 0, (5.24)

and can be solved by the Lagrange multipliers method. The Lagrange function will be

L(x, y, λ) = 2(x − 1)x − y2 − 4 + λ(y +
3

2
). (5.25)

For critical points of L we want

0 =
∂L

∂x
= 4x − 2,

0 =
∂L

∂y
= −2y + λ,

0 =
∂L

∂λ
= y +

3

2
.

(5.26)

From these equations we find that the critical point must be ( 1
2
,−3

2
) where f(1

2
,−3

2
) = −63

4
.

This is the minimum we searched for.
The Lagrange multipliers can be generalized to deal with multiple constraints g1(x1, ..., xn) =

0, ..., gm(x1, ..., xn) = 0 for m < n. Thus

L(x1, ..., xn) = f(x1, ..., xn) + λ1g1(x1, ..., xn) + ... + λmgm(x1, ..., xn), (5.27)
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Figure 5.2: Finding the minimum of the function f(x, y) = 2(x − 1)x − y2 − 4
subject to the constraint g(x, y) = y + 3

2
= 0.

and
∇f = λ1∇g1 + ... + λm∇gm (5.28)

is required at the extrema.
Similarly, if F (u) : V → R and G(u) : V → R are C1-functionals on a Banach space

V , we can minimize F (u) on the constraint set C = {u ∈ V : G(u) = 0}. The Lagrange
functional is defined by

L(u, λ) = F (u) +

∫

Ω

λG(u) dx, (5.29)

where u : Ω → R and λ : Ω → R are functions.



5.4 The method of steepest descent 29

5.4 The method of steepest descent

To find the solution of a minimization problem iterative algorithms can be used. These
algorithms start with a given initial guess x0 and generate a sequence of iterates {xk}∞k=0

that hopefully will converge to the solution x∗. Which algorithm to use depends on the
problem, but all good algorithms should have the following properties:

• Robustness means that the solution is insensitive to the inputs in the algorithm. The
algorithm must perform well on a wide variety of problems and for all choices of
initial variables. Stability is also necessary. A stable algorithm gives nearly the right
answer to nearly the right question.

• Efficiency is important, especially for large problems. If the algorithm requires too
much computer time or storage, it may be impossible to solve the problem.

• We say that an algorithm is accurate if the relative error between the mathematical
problem f(x) and the computed problem g(x) is small. The relative error is defined
as

‖g(x) − f(x)‖
‖f(x)‖ . (5.30)

These goals may be at the expense of each others. An efficient algorithm is not necessarily
the most accurate one.

The method of steepest descent can be used for calculating a local maximum or min-
imum of a real-valued function f(x). If f(x) is continuous and differentiable in a neigh-
bourhood of a point x0, f(x) increases fastest from the point x0 in the direction of ∇f(x0)
and decreases fastest in the direction of −∇f(x0). To find a minimum one can start at a
point x0 and take a small step in the direction of −∇f(x0) to a new point x1. This can
be done several times by the algorithm

xn+1 = xn + ∆t∇f(xn), n = 0, 1, 2, ..., (5.31)

where x0 is an initial guess. If ∆t is small enough, xn gets closer to the minimum as n

increases. At a minimum x∗ the gradient ∇f(x∗) equals zero and the iterative algorithm
has converged.

This method does not need the second derivatives and works in spaces of any dimension.
A drawback of the method is that many iterations may be needed before convergence. In
general the convergence rate is only linear, that is

lim
k→∞

‖ek+1‖
‖ek‖ < 1, (5.32)

where ek = xk −x∗. The method is also very sensitive to poor scaling, that is if changes to
x in one direction produce much larger variations in f than changes to x in other directions.
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If the minimizer x∗ lies in a long narrow valley, the convergence is poor. This is because
the contours of f near the minimum x∗ tend to highly eccentric ellipses. If we follow the
direction of the steepest descent from the initial guess x0 in Figure 5.3, this will not lead us
much closer to the minimum. The convergence can be improved by calculating the optimal
∆t in each step. This will take more computational time and conjugate gradients method
is often a better alternative.

Figure 5.3: The level curves of a poorly scaled problem. The vector points in the
steepest descent direction.
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5.4.1 Unique solution

A minimization problem can have several local minima. We are interested in finding the
best of all such minima, the global minima. The problem is that even if the iterations have
converged, we do not know that the solution is a global minimizer.

In some cases the minimizers are simple to characterize.

Theorem 3 When f is convex, any local minimizer x∗ is a global minimizer of f . If in
addition f is differentiable, then any stationary point x∗ is a global minimizer.

The term convex need to be defined.

Definition 14 (Convex set) S ∈ R
n is a convex set if the straight line segment connect-

ing any two points in S lies entirely inside S. Formally, for any two points x ∈ S and
y ∈ S, we have

αx + (1 − α)y ∈ S for all α ∈ [0, 1]. (5.33)

This definition is illustrated in Figure 5.4.

a) A convex set. b) A non-convex set.

Figure 5.4: A straight line segment connecting two points in a set.
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Definition 15 (Convex function) f is a convex function if its domain is a convex set
and if for any two points x and y in this domain, the graph of f lies below the straight line
connecting (x, f(x)) to (y, f(y)) in the space R

n+1. That is, we have

f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y), for all α ∈ [0, 1]. (5.34)

This definition is illustrated in Figure 5.5.
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Figure 5.5: A straight line segment connecting two points at a function.



Chapter 6

Image inpainting using a TV-Stokes
equation

As in Section 2.2 we have an observed image d0 with a region Ω where the image data is
missing. We define B to be a surrounding band of Ω and Ω̃ = Ω ∪B. This was illustrated
in Figure 2.5. Based on information from the surrounding band B we want to reconstruct
the image in the region Ω. The reconstructed image is called d.

Our approach is to solve two minimization problems. The first one will find a set of
tangential vectors τ to the level curves of the image d in the missing region Ω. The second
will find a surface d that fits these tangential vectors.

A similar approach is used in noise removal [15].

6.1 The equation for the tangential vectors τ

For a given image d, τ = ∇⊥d are the tangential vectors to the level curves of d,

τ =

(

− ∂

∂y
d,

∂

∂x
d

)

= (v, u) . (6.1)

We let τ belong to the space of bounded variation, τ ∈ BV (Ω). As explained in
Section 4.3.4, τ are then allowed to be a discontinuous function.

To solve the inpainting problem we find the tangential vectors τ that have the smallest
TV-norm over Ω.

We have solved the minimization problem

min
τ

∫

Ω̃

|∇τ | dx +
1

ε

∫

B

|τ − τ0|2 dx subject to ∇ · τ = 0 in Ω̃, (6.2)

where | · | is the Euclidian norm.
Since

∇τ =





∂v
∂x

∂u
∂x

∂v
∂y

∂u
∂y



 , (6.3)

33
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the Euclidean norm of ∇τ is

|∇τ | =

√

(

∂v

∂x

)2

+

(

∂u

∂x

)2

+

(

∂v

∂y

)2

+

(

∂u

∂y

)2

. (6.4)

The Euclidean norm of τ − τ0 is |τ − τ0| =
√

(v − v0)
2 + (u − u0)

2.

Each term of (6.2) has a physical meaning. The first term smoothes the tangential
vectors in the missing region Ω and the surrounding band B. The second term makes sure
that τ is close to τ0 in the surrounding band B, where τ0 are the tangential vectors from
the observed image d0. ε is a weight parameter that decides how close τ will be to τ0 in
the surrounding band B. For a small value of ε the tangential vectors τ must be closer
to τ0 in B than for a large value of ε. The constraint ∇ · τ = 0 ensures us that τ are
tangential vectors to the level curves of a given function d. This can be explained from the
Divergence Theorem.

Theorem 4 (Divergence theorem) . Let R be a regular, closed region in the xy-plane
whose boundary, C, consists of one or more piecewise smooth, non-self-intersecting, closed
curves. Let n denote the unit outward (from R) normal field on C.
If F = F1(x, y)i + F2(x, y)j is a smooth vector field on R, then

∫

R

∇ · F dx =

∫

C

F · n ds. (6.5)

From this theorem we deduce that if ∇ · F = 0 in the region R, then F · n = 0 at the
boundary C. The identity F · n = |F||n| cos θ, where θ is the angle between F and n, tells
us that F must be perpendicular to n if F 6= 0 and n 6= 0.

Let R be the region inside the level curve C. If ∇ · τ = 0 in R, we know that τ are
perpendicular to n and thus the tangential vectors to this level curve.

In this work we have chosen the surrounding band B to be only one pixel wide. If we
let ε → 0, the minimization problem reduces to

min
τ

∫

Ω

|∇τ | dx subject to ∇ · τ = 0 in Ω,

τ = τ0 on ∂Ω.

(6.6)

To deal with the constraint ∇ · τ = 0 a Lagrange multiplier is used. We then get the
Lagrange functional

L (τ , λ) =

∫

Ω

|∇τ | dx +

∫

Ω

λ∇ · τ dx. (6.7)

To achieve the boundary condition τ = τ0 on ∂Ω we assume that τ0 is defined on all
of Ω with τ0 ∈ BV (Ω). A natural way to express the boundary condition is to require
τ − τ0 ∈ BV0 (Ω). τ are not allowed to range freely over BV (Ω), but only over the
admissible set

A = {τ ∈ BV (Ω) : τ − τ0 ∈ BV0 (Ω)} = {τ = τ0 + µ : µ ∈ BV0 (Ω)}. (6.8)
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To obtain the corresponding Euler-Lagrange equation we calculate the derivatives ∂L
∂τ

and
∂L
∂λ

of the Lagrange functional and set them equal to zero. From the definition of the
functional derivative in Section 4.2, we get

0 =
∂L

∂τ
· µ = lim

h→0

L (τ + hµ, λ) − L (τ , λ)

h

= lim
h→0

1

h

∫

Ω

|∇ (τ + hµ) | − |∇τ | dx + lim
h→0

1

h

∫

Ω

λ∇ · (τ + hµ) − λ∇ · τ dx,

(6.9)

where µ = (w, z) are allowed to vary in BV0 (Ω). Using the difference of two squares, the
first term of the sum simplifies to

|∇ (τ + hµ) | − |∇τ | =
(∇ (τ + hµ))2 − (∇τ )2

|∇ (τ + hµ) | + |∇τ | = h
2∇τ · ∇µ + hµ · µ
|∇ (τ + hµ) | + |∇τ | .

(6.10)

Theorem 5 (The Dominated Convergence theorem) . Assume that the functions
{fk}∞k=1 are Lebesgue integrable and

fk → f a.e. (6.11)

Suppose also that
|fk| ≤ g a.e., (6.12)

for some integrable function g. Then
∫

Rn

fk dx →
∫

Rn

f dx. (6.13)

Using the Dominated Convergence theorem, it is possible to move the limit inside the
integral and let h → 0,

∂L

∂τ
· µ =

∫

Ω

lim
h→0

2∇τ · ∇µ + hµ · µ
|∇ (τ + hµ) | + |∇τ | dx +

∫

Ω

lim
h→0

λ∇ · µ dx

=

∫

Ω

∇τ · ∇µ

|∇τ | dx +

∫

Ω

λ∇ · µ dx,

(6.14)

where the dot product between ∇τ and ∇µ is

∇τ · ∇µ =
∂v

∂x

∂w

∂x
+

∂v

∂y

∂w

∂y
+

∂u

∂x

∂z

∂x
+

∂u

∂y

∂z

∂y
, (6.15)

and the dot product between ∇ and µ is

∇ · µ =
∂w

∂x
+

∂z

∂y
. (6.16)
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Theorem 6 (Green’s formulas) Assume that Ω is a bounded, open subset of R
n and

∂Ω is C1. Let u, v ∈ C2
(

Ω
)

. Then

∫

Ω

Dv · Du dx = −
∫

Ω

u∆v dx +

∫

∂Ω

∂v

∂~ν
u ds, (6.17)

∫

Ω

uxi
v dx = −

∫

Ω

uvxi
dx +

∫

∂Ω

uvνi ds, (6.18)

where ν = (ν1, ..., νn) is the outward pointing unit normal vector field along ∂Ω.
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Figure 6.1: A step function can be approximated by smooth functions.

Since τ ∈ BV (Ω), τ do not necessarily fulfill the assumptions for Theorem 6. But the
way we represent an image, makes it possible to approximate the functions in BV (Ω) with
functions in C2

(

Ω
)

. Therefor we can regard the functions we use as smooth functions and
use Theorem 6. Using Greens formulas on the first part and the last part gives

∂L

∂τ
· µ = −

∫

Ω

∇ ·
( ∇τ

|∇τ |

)

· µ dx +

∫

∂Ω

∇τ

|∇τ | · ν · µ ds

−
∫

Ω

∇λ · µ dx +

∫

∂Ω

λν · µ ds,

(6.19)

where ν is the outer normal vector to the boundary ∂Ω. Since µ ∈ BV0 (Ω), µ = 0 on the
boundary ∂Ω and the two boundary integrals vanish. The derivative of L with respect to
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λ is easier to calculate,

0 =
∂L

∂λ
=

∫

Ω

∇ · τ dx. (6.20)

As (6.19) holds for all functions µ, we conclude that τ solves the nonlinear PDE

∇ ·
( ∇τ

|∇τ |

)

+ ∇λ = 0 in Ω,

∇ · τ = 0 in Ω,

τ = τ0 on ∂Ω.

(6.21)

The denominator |∇τ | will be large for large ∇τ , such that significant diffusion only takes
place in regions of small changes in the image.

When ∇τ vanishes this equation will be highly non-regular. To regain some regularity
we modify the variational problem. |∇τ | in (6.6) is regularized by

|∇τ |ε =
√

|∇τ |2 + ε, (6.22)

where ε > 0 is a small constant. The minimization problem is then

min
τ

∫

Ω

√

|∇τ |2 + ε dx subject to ∇ · τ = 0 in Ω,

τ = τ0 on ∂Ω,

(6.23)

and the modified Lagrange functional is

Lε (τ , λ) =

∫

Ω

√

|∇τ |2 + ε dx +

∫

Ω

λ∇ · τ dx. (6.24)

This leads to the regularized version of (6.21),

∇ ·
(

∇τ
√

|∇τ | + ε

)

+ ∇λ = 0 in Ω,

∇ · τ = 0 in Ω,

τ = τ0 on ∂Ω.

(6.25)

If we do not want the information to float into the region Ω from a part of the boundary
∂ΩN , we decompose the boundary into two parts, ∂Ω = ∂ΩD ∪ ∂ΩN and let τ = 0 on ∂Ω.
(6.25) will then be replaced by

∇ ·
(

∇τ
√

|∇τ | + ε

)

+ ∇λ = 0 in Ω,

∇ · τ = 0 in Ω,

τ = τ0 on ∂ΩD,

τ = 0 on ∂ΩN .

(6.26)
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6.1.1 Discretization

To find the minimum of L (τ , λ) numerically we use the method of steepest descent,
Section 5.4. The algorithm is

τ
n+1 = τ

n + ∆t1∇ ·
(

∇τ
n

√

|∇τ n| + ε

)

,

λn+1 = λn + ∆t1∇ · τ n,

(6.27)

where ∆t1 is the step length.
The variables are discretized as shown in the Figure 6.2. It is important that the

approximation of the derivatives lies on the same grid as the variable we are computing.

Figure 6.2: The discretization of an image d, where blue points correspond to the
pixels di,j, green points correspond to λi+ 1

2
,j+ 1

2

, yellow points correspond to ui+ 1

2
,j

and red points correspond to vi,j+ 1

2

.

We define
ui,j = u (xi, yj) , (6.28)

such that

ui+1,j = u (xi+1, yj) and ui,j+1 = u (xi, yj+1) . (6.29)

To approximate the derivatives we have used forward, backward and centered difference
formulas.

Definition 16 (Forward difference formula)

F h
x ui,j =

ui+1,j − ui,j

h
(6.30)

F h
y ui,j =

ui,j+1 − ui,j

h
(6.31)
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Definition 17 (Backward difference formula)

Bh
xui,j =

ui,j − ui−1,j

h
(6.32)

Bh
y ui,j =

ui,j − ui,j−1

h
(6.33)

Definition 18 (Centered difference formula)

Ch
xui,j =

ui+1,j − ui−1,j

2h
(6.34)

Ch
y ui,j =

ui,j+1 − ui,j−1

2h
(6.35)

In this work we have set the distance between the pixels to be 1, i.e. h = 1.

The updating formulas for u, v and λ are

un+1
i+ 1

2
,j

= un
i+ 1

2
,j

+ ∆t1



Bx

(

Fxu
n
i+ 1

2
,j

√

Gn
i+1,j + ε

)

+ By





Fyu
n
i+ 1

2
,j

√

Hn
i+ 1

2
,j+ 1

2

+ ε



+ Byλ
n
i+ 1

2
,j+ 1

2



 ,

vn+1
i,j+ 1

2

= vn
i,j+ 1

2

+ ∆t1



Bx





Fxv
n
i,j+ 1

2
√

Hn
i+ 1

2
,j+ 1

2

+ ε



 + By

(

Fyv
n
i,j+ 1

2
√

Gn
i,j+1 + ε

)

+ Bxλ
n
i+ 1

2
,j+ 1

2



 ,

λn+1
i+ 1

2
,j+ 1

2

= λn
i+ 1

2
,j+ 1

2

+ ∆t1

(

Fxv
n
i,j+ 1

2

+ Fyu
n
i+ 1

2
,j

)

,

(6.36)

where

Gn
i,j =

(

1

2
Cxv

n
i,j+ 1

2

+
1

2
Cxv

n
i,j− 1

2

)2

+
(

Fyv
n
i,j− 1

2

)2

+
(

Fxu
n
i− 1

2
,j

)2

+

(

1

2
Cyu

n
i− 1

2
,j

+
1

2
Cyu

n
i+ 1

2
,j

)2

,

(6.37)

is located at the blue points in Figure 6.2 and

Hn
i+ 1

2
,j+ 1

2

=

(

1

2
Cyv

n
i,j+ 1

2

+
1

2
Cyv

n
i+1,j+ 1

2

)2

+
(

Fxv
n
i,j+ 1

2

)2

+
(

Fyu
n
i+ 1

2
,j

)2

+

(

1

2
Cxu

n
i+ 1

2
,j

+
1

2
Cxu

n
i+ 1

2
,j+1

)2

,

(6.38)

is located at the green points in Figure 6.2.
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Alternative approach

It is possible to solve the equations in another way. Instead of solving

∇ · τ = 0 in Ω, (6.39)

we solve

−∆λ = ∇ ·
[

∇
( ∇τ

|∇τ |

)]

in Ω,

∂λ

∂n
= 0 on ∂Ω.

(6.40)

Since a solution of (6.40) can only be determined up to a constant, the discretization of ∆
is not invertible. If we modify this system by replacing the first row of the discretization
by (1, 0, ..., 0) and the first entry on the right hand side by 0, this system will have a unique
solution. Instead of the updating formula for λ in (6.36) this equation is solved in each
iteration.

6.1.2 Analogy with the Stokes equation

The Stokes equation with zero boundary condition is

−∆u + ∇p = f in Ω,

∇ · u = 0 in Ω,

u = 0 on ∂Ω,

(6.41)

where u is the velocity field of a steady fluid flow within the region Ω subject to the external
force f and the pressure p. ∇ · u = 0 is the incompressibility condition.

If we replace ∇τ

|∇τ |ε
in equation (6.25) with ∇τ , we solve the Stokes equation with zero

body force f . The Lagrange multiplier λ, corresponding to the incompressibility condition,
arises as the pressure p, but with reversed sign.
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6.2 The equation for the image d

In the second minimization problem we want to find a surface d which fits the tangential
vectors τ found in the first part (6.26). To allow d to be a discontinuous function we let it
belong to BV (Ω). d is found from the minimization problem

min
d

∫

Ω̃

(

|∇d| − ∇d · n

|n|

)

dx +
1

ε

∫

B

(d − d0)
2 dx. (6.42)

The first term makes sure that the level curves of d will be orthogonal to n in the region
Ω̃. Let α be the angle between ∇d and n, where n are the normal vector found from the
tangential vectors,

n = (v,−u) . (6.43)

Then
|∇d| − ∇d · n

|n| = |∇d| (1 − cos α) (6.44)

is always non-negative. If α equals zero, ∇d and n is oriented in the same direction.
Therefor d is found such that the tangent vectors to the level curves are the tangent
vectors τ calculated in the first part. The second term makes sure that the image d is not
far from the initial image d0 in the surrounding band B. As in the first part we choose B

to be only one pixel wide and let ε → 0. We get the minimization problem

min
d

∫

Ω

(

|∇d| − ∇d · n

|n|

)

dx and d = d0 on ∂Ω. (6.45)

The functional to be minimized is then

F (d) =

∫

Ω

(

|∇d| − ∇d · n

|n|

)

dx. (6.46)

Similar to the first part, we assume that d0 is defined in all of Ω with d0 ∈ BV (Ω) and
require d − d0 ∈ BV0 (Ω). d is allowed to range over the admissible set

A = {d ∈ BV (Ω) : d − d0 ∈ BV0 (Ω)} = {d = d0 + µ : µ ∈ BV0 (Ω)}. (6.47)

As in the first part, the derivative of the functional need to be calculated,

∂F

∂d
µ = lim

h→0

F (d + hµ) − F (d)

h

= lim
h→0

1

h

∫

Ω

(

|∇d + h∇µ| − |∇d| −
(

∇ (d + hµ) · n

|n| − ∇d · n

|n|

))

dx,

(6.48)

where µ is a function belonging to BV0 (Ω). By using the difference of two squares and
factorization we get

|∇d + h∇µ| − |∇d| =
(∇ (d + hµ))2 − (∇d)2

|∇ (d + hµ) | + |∇d| = h
2∇µ · ∇d + h∇µ · ∇µ

|∇ (d + h∇µ) | + |∇d| .
(6.49)
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By Theorem 5, the Dominated Convergence theorem, it is possible to take the limit inside
the integral sign. The equation simplifies to

∂F

∂d
µ =

∫

Ω

lim
h→0

(

2∇d · ∇µ + h∇µ · ∇µ

|∇ (d + hµ) | + |∇d| − ∇µ · n

|n|

)

dx. (6.50)

When h → 0 the equation becomes

∂F

∂d
µ =

∫

Ω

∇d · ∇µ

|∇d| − ∇µ · n

|n| dx. (6.51)

Using Greens formulas in Theorem 6, we get
∫

Ω

( ∇d

|∇d| −
n

|n|

)

· ∇µ dx = −
∫

Ω

∇ ·
( ∇d

|∇d| −
n

|n|

)

µ dx +

∫

∂Ω

( ∇d

|∇d| −
n

|n|

)

· νµ ds,

(6.52)
where ν is the outer normal vector to the boundary ∂Ω. Since µ ∈ BV0(Ω), the boundary
integral vanishes and the Euler-Lagrange condition is

0 =
∂F

∂d
µ = −

∫

Ω

∇ ·
( ∇d

|∇d| −
n

|n|

)

µ dx. (6.53)

As this holds for all functions µ ∈ BV0 (Ω), the equation to solve is

∇ ·
( ∇d

|∇d| −
n

|n|

)

= 0 in Ω,

d = d0 on ∂Ω.

(6.54)

To avoid singularities when |∇d| = 0, we use the same regularization as in the previous
section,

|∇d|ε =
√

|∇d|2 + ε. (6.55)

When normalizing the normal vectors n, the same regularization is used. This leads to the
minimization problem

min
d

∫

Ω

(

√

|∇d|2 + ε −∇d · n
√

|n|2 + ε

)

dx and d = d0 on ∂Ω. (6.56)

The functional to minimize is

Fε (d) =

∫

Ω

(

√

|∇d|2 + ε −∇d · n
√

|n|2 + ε

)

dx, (6.57)

and the regularized Euler-Lagrange equation is

∇ ·
(

∇d
√

|∇d|2 + ε
− n
√

|n|2 + ε

)

= 0 in Ω,

d = d0 on ∂Ω.

(6.58)
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Along edges where |∇d| � ε, the solution of (6.58) will be nearly the same as the
solution of (6.54). In smooth regions |∇d| � ε and the denominator will be close to a
constant,

√

|∇d| + ε ≈ √
ε.

If the boundary is decomposed into two parts, ∂ΩD and ∂ΩN , we use zero Neumann
boundary conditions on ∂ΩN .

∇ ·
(

∇d
√

|∇d|2 + ε
− n
√

|n|2 + ε

)

= 0 in Ω,

d = d0 on ∂ΩD,

∂d

∂ν
= 0 on ∂ΩN .

(6.59)

If we choose n = 0 in (6.59), this PDE reduces to the TV-method in [19].

6.2.1 Discretization

We have again used the method of steepest descent to find the minimum of F (d). The
algorithm is

dn+1 = dn + ∆t2

[

∇dn

√

|∇dn|2 + ε
− n
√

|n|2 + ε

]

, (6.60)

where ∆t2 is the step length.
After discretizing we get

dn+1
i,j = dn

i,j + ∆t2



Bx





Fxd
n
i,j

√

(

Fxd
n
i,j

)2
+
(

1
2
Cyd

n
i,j + 1

2
Cyd

n
i+1,j

)2
+ ε

− n1
i+ 1

2
,j





+ By





Fyd
n
i,j

√

(

Fyd
n
i,j

)2
+
(

1
2
Cxd

n
i,j + 1

2
Cxd

n
i,j+1

)2
+ ε

− n2
i,j+ 1

2







 ,

(6.61)

where n = (n1, n2) is discretized as

n1
i+ 1

2
,j

=
ui+ 1

2
,j

√

u2
i+ 1

2
,j

+
(

1
4

(

vi,j− 1

2

+ vi,j+ 1

2

+ vi+1,j+ 1

2

+ vi+1,j− 1

2

))2

+ ε

,
(6.62)

and

n2
i,j+ 1

2

= −
vi,j+ 1

2
√

v2
i,j+ 1

2

+
(

1
4

(

ui− 1

2
,j + ui+ 1

2
,j + vi+ 1

2
,j+1 + vi− 1

2
,j+1

))2

+ ε

.
(6.63)
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6.3 The implementation

The code for solving the problem consists of several parts. I will give an outline of the
main parts of the implementation.

6.3.1 Editing in Gimp

The region Ω to be inpainted must be marked manually in such a way that it can be recog-
nized in the code. To do this I have used the image manipulation program Gimp. Gimp is
a freely distributed piece of software and is available on the web, http://www.gimp.org/.

Since the boundary is decomposed into two parts with different boundary conditions,
the code must be able to separate these two parts from each other. I have solved this by
filling the parts of Ω verging towards ∂ΩD with the colour white and the parts of Ω verging
towards ∂ΩN with the colour black. If one of these colours is present in the rest of the image,
I have to choose another colour instead. It is important that all the damaged information
around ∂ΩD is removed. Otherwise it will propagate into the inpainting region and destroy
the result. Outside ∂ΩN it is not necessary to be that accurate since no information will
propagate through this part of the boundary.

In the image in Figure 6.3 a) I want to remove the man. The inpainting region Ω is
marked as explained above.

a) The original image. b) The image with
the inpainting

region Ω marked.

Figure 6.3: An example of how the inpainting region is marked in Gimp.
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It is important that the image is stored in a format that saves all the information in
the image. The JPEG-format is not well suited, because it compresses the image to save
storage space. When the code later tries to recognize the region Ω it will not be able to
find it exactly as I specified it. I have chosen to use the PNM-format.

6.3.2 Implementation in Matlab

The code for this problem is made in Matlab. After specifying the parameters ∆t1, ∆t2
and ε this code automatically fills in the missing region Ω in the chosen image d0.

The image d0 is converted to a double precision matrix. In the computations of the
tangential vectors τ and the image d, information in an area around the inpainting region
is used. To make the code work even when the inpainting region is on the boundary of the
image, I extend the image with two pixels around the whole boundary. The values of the
added pixels are the same as those on the boundary of the image.

To recognize the inpainting region Ω the code finds all the indices with the chosen
colours. The indices of the tangential vectors τ and the image d0 on the boundary ∂ΩN

must also be found.
It is easiest to implement the code to calculate everything on a rectangle. The maxi-

mum and minimum indices of Ω in each direction are used to create the smallest possible
rectangle.

Computation of the tangential vectors τ

To improve the convergence the inpainting region is filled with random values from the
interval [0, 255]. From this image the new tangential vectors τ are calculated on the
rectangle. After each iteration the values outside the inpainting region are replaced by
their initial values and the tangential vectors τ are set to zero on the boundary ∂ΩN . The
zero boundary condition will then propagate into the region.

This step has two parameters, ∆t1 and ε which must be chosen properly for the algo-
rithm to converge. During experiments I have found that ∆t1 = 0.03 is a good choice.
With this value all the experiments converged. With a smaller value more iterations are
needed. In the alternative approach (6.40) it is possible to choose a larger ∆t1. The ad-
vantage of this approach is that it converges after fewer iterations. The parameter ε is
supposed to be small, and I have used ε = 0.0001 in most occasions. If it is chosen to be
larger the tangential vectors will be smoother, and the calculations will converge faster. It
will also be stable even if a large ∆t1 is used.

To check that this part of the code is correct I look at the boundary ∂Ω. The tangential
vectors τ should propagate smoothly from the boundary ∂ΩD and the zero boundary
condition should propagate from the boundary ∂ΩN .

In the image in Figure 6.4 a) I have tried to remove one of the players. Since both
white and black is present in the rest of the image, I have used violet and cyan to mark
the region Ω instead. Figure 6.4 d) shows the original tangential vectors τ0 and Figure
6.4 e) shows the tangential vectors after I have filled the inpainting region Ω with random
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values from 0 to 255. As expected, the tangential vectors have propagated smoothly into
Ω from the boundary of the violet region and the zero boundary condition has propagated
from the cyan region. This is shown in Figure 6.4 f).
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a) The original image d0. b) The image with c) The restored image d.
the inpainting region marked.
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d) The tangential vectors τ0. e) The tangential vectors τ

before any iterations.
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0

50

100
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f) The tangential vectors τ

of the restored image d.

Figure 6.4: Example of an image inpainting problem.
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Computation of the image d

In the second part I use the normalized normal vectors found from the tangential vectors
calculated in the first part. All the pixels in the rectangular region are computed and the
indices of the inpainting region are used to update d only in Ω. The normal vectors n are
set to zero on the boundary ∂ΩN and d is updated on ∂ΩN in each iteration. The iterations
are repeated until convergence.

In this part the parameter ∆t2 must be chosen in such a way that d converges as fast
as possible. If the normal vectors are very smooth, ∆t2 can be large, approximately 1.
∆t2 = 0.1 will in general be a good choice. A normalization is necessary in this part as
well, and ε plays the same role as in the first part.

It is not uncommon that some pixels get values outside the interval [0, 255]. During the
iterations I let the pixels oscillate in the interval [−20, 300]. Often it will converge inside
the correct interval, but to be sure I always set all pixels to be in the interval [0, 255] when
the iterations have reached a steady state.

To make sure that the second part of the code is correct, I try to reconstruct a known
image from its true normal vectors. Having all the level curves in an image will determine
the image itself. Since I have approximations to the isophote directions in discrete points
inside Ω this will only be an approximation. The true normal vectors can be very oscillating
and some pixels do not converge unless epsilon is approximately 10. This is shown in
Figure 6.5. In Figure 6.5 b) the image is reconstructed perfectly, but in Figure 6.5 c) there
is a red spot which does not disappear.

a) The inpainting region b) ε = 10 c) ε = 0.0001
marked white.

Figure 6.5: Reconstruction of an image from its true normals.

If the image is a colour image, the two steps must be performed three times, one for
each matrix in the RGB colour model.
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6.3.3 Discussion

The method has been tested on different types of problems. These are included in the
appendix.

In the first examples I remove a part of a gray-scale image and try to restore it. This is
a good way of testing the code, because I can choose the inpainting region as I want. From
these tests I find that the method produces good results if the inpainting region consists
of small disconnected areas.

An example of this is shown in Figure 6.6. In Figure 6.6 a) many small areas are
missing. The result in Figure 6.6 b) is nearly perfect. The only problem is that the edge
of her shoulder has some dark spots.

a) The original image d0. b) The reconstructed image d.

Figure 6.6: Reconstruction of an image with several small regions missing.

The method has some weaknesses. One weakness is that it does not recreate texture
very well. This is illustrated in Figure 6.7.

a) The original image d0. b) The reconstructed image d.

Figure 6.7: Reconstruction of an image with texture.
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To improve this we could combine the method with a texture synthesis technique as ex-
plained in Section 2.2.

I have also tried to make objects disappear. The image in Figure 6.3 is an example of
this. Figure 6.8 shows the restored image d.

The restored image d.

Figure 6.8: Removal of a man from an image.

Another example of this is shown in Figure 6.4. Neither of these two examples contain
much texture and the results are good.

The method makes good results when I try to remove text written on an image. In
Figure 6.9 a similar problem is shown.

a) The original image d0. b) The reconstructed image d.

Figure 6.9: Reconstruction of an image with musical notes written on it.
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In general, the method does not restore objects that have parts of their boundaries
missing. Neither does it connect lines and edges very well, especially not across wide
regions.

The convergence varies from image to image. If the regions to be inpainted are small,
few iterations are necessary. This is also the case if the missing regions are long and narrow
as in Figure 6.9. In the alternative approach (6.40) fewer iterations are needed, but if the
inpainting region Ω is large, this will require considerably more computational time.

The implementation is not optimal. An example of this is that the computations are
done on a rectangle containing the missing regions. In images like in Figure 6.6 there are
done a lot more computations than necessary.

A further discussion of the TV-Stokes method and our results are presented in the
appendix.
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Image inpainting using a TV-stokes equation∗

Xue-Cheng Tai†, Stanley Osher‡ and Randi Holm§

May 23, 2005

Abstract

Based on some geometrical considerations, we propose a two-step method

to do digital image inpainting. In the first step, we try to propagate the

isophote directions into the inpainting domain. An energy minimization

model combined with the zero divergence condition is used to get a non-

linear Stokes equation. Once the isophote directions are constructed, an

image is restored to fit the constructed directions. Both steps reduce to

the solving of some nonlinear partial differential equations. Details about

the discretization and implementation are explained. The algorithms have

been intensively tested on synthetic and real images. The advantages of

the proposed methods are demonstrated by these experiments.

1 Introduction

For a digital image, inpainting refers to the process of filling-in missing data. It
ranges from removing objects from an image to repairing damaged images and
photographs.

The term of ”digital inpainting” seems to be introduced into image process-
ing by Bertalmi, Sapiro, Casseles and Ballester [2]. In the past few years, several
different approaches have been proposed to tackle this complicated image pro-
cessing task. The basic idea for most of the inpainting techniques is to do a
smooth propagation of the information in the region surrounding the inpainting
area and interpolating level curves in a proper way [2, 21, 5]. However, there
are different strategies to achieve these goals. In [2], they proposed to minimize
some energy to compute the restored image and this results in the solving of
some coupled nonlinear differential equations. In a related work [4], this idea
is further extended to guarantee that the level curves are propagated into the
inpainting domain. In [3], a connection between the isophote direction of the
image and the Navier-Stokes equation is observed and they propose to solve
some transport equations to fill in the inpainting domain. This is related to our
methods. Another related work is [10] where a minimization of the divergence
is done to construct optical flow functions.

∗We acknowledge support from the Norwegian Research Council.
†Department of Mathematics, University of Bergen, Johannes Brunsgate 12, N-5007

Bergen, Norway. Email: Tai@mi.uib.no. URL: http://www.mi.uib.no/̃ tai.
‡Department of Mathematics UCLA, California, USA (e-mail: sjo@math.ucla.edu)
§Department of Mathematics, University of Bergen, Johannes Brunsgate 12, N-5007

Bergen, Norway.
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The work of [8, 6] is trying to minimize the TV-norm of the reconstructed
image to fill in the missing data. In some later work [7, 9], energy involving the
curvature of the level curves is used and this is in some sense trying to guarantee
that the level curves are connected in a smooth fashion. The equations obtained
from such models are highly nonlinear and of higher order.

Recently, texture inpainting has attracted more attentions. In [20], the image
in the surrounding area is first decomposed into texture and structure and then
propagated into the inpainting domain in different ways. This idea to decompose
texture and structure is also utilized in [11]. Some statistical approaches are
used in [1] to do texture synthesis and structure propagation.

We shall also mention some recent works which related the phase-field model
and Ginzburg-Landau equation to image processing, [14, 15, 12, 11]. These ideas
were used in [14, 15, 12] for image segmentation. In [11] it has been used for
image inpainting.

The idea used in this work has been motivated by [18, 19, 2, 3]. We still
follow the basic ideas for image inpainting, i.e. we are trying to propagate the
information into the inpainting domain along the isophote directions. However,
we choose a two-step method to carry out this task as in [19]. The first step is
trying to reconstruct the isophote directions for the missing data. The second
step is trying to construct an image fitting to the restored directions. This is the
same idea used in [19] to remove noise from digital images. One new idea which
is essential to the present method is that we impose the zero divergence condition
on the constructed directions. This guarantees that there exists an image such
that its isophote directions are the restored vectors. This is important when
the inpainting regions is relatively large. Different from [3], we obtain our TV-
Stokes equation from this consideration which implies that the obtained vectors
have the smallest TV-norm. The solution of the Navier-Stokes equation may not
have such a property. Inherited from the flexibility of our approach, we propose
some novel ideas to alternate the boundary condition for the inpainting domain
to select the information that shall be propagated into the region. We have
only tested our algorithms on propagated structure information. It is possible
to combine it with texture inpainting as in [20].

This work is organized in the following way. In section 2, we explain the
detailed mathematical principles for our methods. First, some geometrical mo-
tivations are explain for our methods. These geometrical observations are then
combined with some energy minimization models to get the nonlinear equations
for our inpainting methods. Discretization and implementation details are then
supplied which are needed for solving the equations numerically. When solv-
ing the equations, it is rather easy to change the boundary conditions. Due
to this flexibility, we show that it is rather easy to discriminate against some
information and block it from propagating into the inpainting region. Intensive
numerical experiments on real and synthetic images are supplied in Section 3.
With these experiments, we are trying to summarize the convergence behavior
of the algorithms and compare our method with some literature results.

2 The Mathematical principles

Suppose that an image u0 : R 7→ [a, b] is defined on a rectangle domain R and
a < b. We shall assume that Ω ⊂ R is the domain where the data is missing. We
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want to fill in the information on Ω based in the geometrical and photometric
information surrounding the region Ω. Similar to [2], we shall use information
in a band B around the domain Ω. We shall use Ω̃ = Ω ∪ B in the following.

2.1 Connection between digital images and flow fields

In [3], the connection between image inpainting and fluid dynamics is done
by observing that the isophote directions of an image are corresponding to an
incompressible velocity field. This same observation will be used here in our
work. However, the equation we shall use for the inpainting is different and is
more inspired by the work of [19]. We give a brief outline of the idea of [19] in
the following.

Given scalar functions u and v, denote:

∇u = (ux, uy), ∇⊥u = (−uy, ux), ∇× (u, v) = uy − vx, ∇ · (u, v) = ux + vy.

Given an image d0, the level curves:

Γ(c) = {x : d0(x) = c, ∀c ∈ (−∞,∞)}.

has the normal vectors ~n(x) and tangential vectors ~τ (x) given by

~n(x) = ∇d0(x) ~τ (x) = ∇⊥d0(x).

The vector fields ~n and ~τ satisfy

∇× ~n(x) = 0, ∇ · ~τ(x) = 0. (1)

Suppose that the surface d0(x) is exposed to rain, then the rain will flow down
the surface along the directions −~n(x). One observation is that the surface d0

can be constructed from the vector fields ~n(x) or ~τ (x) using some boundary
condition or some other information along the curve.

For image inpainting, the information of d0 in the surrounding band B is
known. Thus, we also know the normal and tangential vectors of d0 in B. The
principle idea to fill in the information in Ω is to propagate the vector field ~n
or ~τ into the interior region Ω. Afterwards, we construct an image in region Ω
to fit the computed vectors in Ω.

Define ~τ0 = ∇⊥d0. There are different ways to propagate the vectors from
B into Ω. In [3], the Navier-Stokes equations are used. Here, we shall use an
energy minimization model to propagate the vector fields, i.e. we shall solve

min
∇·~τ=0

∫

Ω̃

|∇~τ |dx +
1

ε

∫

B

|~τ − ~τ0|2dx (2)

Above,
∫

Ω̃
|∇~τ |dx is the total variation for vector field ~τ . We require ∇ · ~τ = 0

to guarantee that the reconstructed vector field ~τ is a tangential vector for the
level curves of a scalar function in the region Ω. The penalization parameter ε
is chosen to be very small to guarantee that ~τ ≈ ~τ0 in B. For most of the cases
we have tested, it is enough to take B to be just one pixel wide around Ω. For
such a case, we can take ε → 0 and thus the minimization problem reduces to
find a ~τ such that ~τ = ~τ0 on ∂Ω which solves:

min
∇·~τ=0

∫

Ω

|∇~τ |dx. (3)
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The reason why we use the total variation norm of ~τ is due to the fact that
the boundary value ~τ0 may have discontinuities. In order to propagate such a
discontinuity into the region Ω, we need to allow ~τ to have discontinuities and
thus the TV-norm is preferred to the H1-norm.

We use χB to denote the characteristic function over the domain B, i.e.
χB = 1 in B and χB = 0 elsewhere. If we use a Lagrange multiplier λ to deal
with the divergence constraint ∇ · ~τ = 0, the Euler-Lagrangian equation of (2)
is:















−∇ ·
( ∇~τ

|∇~τ |

)

+
χB

ε
(~τ − ~τ0) −∇λ = 0 in Ω̃,

∇ · ~τ = 0 in Ω̃,

∇~τ · ~ν = ~0 on ∂Ω̃.

(4)

Here, ~ν denotes the outer unit normal vector of ∂Ω̃. Similarly, the Euler-
Lagrangian equation of (3) is:















−∇ ·
( ∇~τ

|∇~τ |

)

−∇λ = 0 in Ω,

∇ · ~τ = 0 in Ω,
~τ = ~τ0 on ∂Ω.

(5)

Once the tangential vector field ~τ is available in Ω̃, it is easy to get the
normal vector field ~n. Let u and v be the two components of the vector field ~τ ,
i.e. ~τ = (u, v). Then, we have

~n(x) = ~τ⊥(x) = (−v, u). (6)

From the vector field ~n(x), we use the same idea as in [19, 2] to construct
an image d whose normal vectors shall fit the computed vectors ~n(x). This is
achieved by solving the following minimization problem:

min

∫

Ω̃

|∇d| − ∇d · ~n

|~n|dx +
1

ε

∫

B

|d − d0|2dx. (7)

The penalization parameter ε can be chosen to be same as in (2). It can also
be chosen to be different. In case that B is only one pixel wide around Ω, the
above minimization problem reduces to the following problem if we take ε → 0:

min
d

∫

Ω

|∇d| − ∇d · ~n

|~n|dx and d = d0 on ∂Ω. (8)

The Euler-Lagrangian equation of (7) is:














−∇ ·
( ∇d

|∇d| −
~n

|~n|

)

+
χB

ε
(d − d0) = 0 in Ω̃,

(
∇~τ

|∇~τ | −
~n

|~n| ) · ~ν = ~0 on ∂Ω̃.
(9)

Similarly, the Euler-Lagrangian equation of (8) is:







−∇ ·
( ∇d

|∇d| −
~n

|~n|

)

= 0 in Ω,

d = d0 on ∂Ω.
(10)
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2.2 Discretization

We shall try to explain some of the details in discretizing the equations derived
in the last section for numerical simulations. For clarity, we shall only outline
the details for algorithms (5) and (10). The discretization for (4) and (9) can
be done in a similar way.

For simplicity, gradient decent method will be used in our simulations. The
gradient flow equation for ~τ is:

∂~τ

∂t
−∇ · ( ∇~τ

‖∇~τ‖) −∇λ = 0 in Ω, (11)

∇ · ~τ = 0, in Ω, ~τ = ~τ0 on ∂Ω. (12)

where ‖∇~τ‖ =
√

|ux|2 + |uy|2 + |vx|2 + |vy |2. We have tried two algorithms to
solve (11)-(12). The first algorithm uses the following iterative procedure to
update ~τ and λ with the time step ∆t1 and initial values properly chosen:

~τn+1 = ~τn + ∆t1

[

∇ ·
( ∇~τn

‖∇~τn‖

)

+ ∇λn

]

, (13)

λn+1 = λn + ∆t1∇ · ~τn (14)

The second algorithm is trying to update ~τ and λ by:

~τn+1 = ~τn + ∆t1

[

∇ ·
( ∇~τn

‖∇~τn‖

)

+ ∇λn

]

, (15)

− ∆λn+1 = ∇ ·
[

∇ ·
( ∇~τn

‖∇~τn‖

)]

. (16)

In (16), ∆ denotes the Laplace operator and we impose a zero Neumann bound-
ary condition for λn+1. If ∇ · τ0 = 0 and (16) is satisfied by all λn, then we get
from (15) that

∇ · τn+1 = 0, ∀n.

We use a stagged grid to approximate u, v and λ. Note that ~τ = (u, v) is
used to construct d. When we try to compute d from (9) or (10), we are trying
to enforce the following relation approximately: u = −dy, v = dx. Due to this
relation, the grid points used in the approximation for u are chosen to be the
points marked with ∗. The approximation points for v are marked with ◦. The
centers of the rectangle elements marked with ? are used as the approximation
points for λ. The vertices of the rectangular mesh are used as the approximation
points for d. The horizontal axis represents the x-variable and the vertical axis
represents the y-variable, c.f Figure 1.

For a given domain Ω, we use Uh(Ω) to denote all the approximation points
∗ for u inside Ω, Vh(Ω) to denote all the approximation points ◦ for v inside Ω,
Λh(Ω) to denote all the approximation points ? for λ inside Ω and Dh(Ω) to
denote all the approximation points for d inside Ω. The updating formula for
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Figure 1: The pixels and the approximation points for u, v, λ and d. The ap-
proximation points are: ∗ for u, ◦ for v, ? for λ.

(u, v) and λ for (13)-(14) are:

un+1 = un + ∆t1

(

D−

x

(

D+
x un

T n
1

)

+ D−

y

(

D+
y un

T n
2

)

+ Ch/2
x λn

)

on Uh(Ω),

(17)

vn+1 = vn + ∆t1

(

D−

x

(

D+
x vn

T n
2

)

+ D−

y

(

D+
y vn

T n
1

)

+ Ch/2
y λn

)

on Vh(Ω),

(18)

λn+1 = λn + ∆t1(C
h/2
x un+1 + Ch/2

y vn+1) on Λh(Ω).

(19)

Above, D±
x , D±

y are the standard forward/backward finite difference operators

and C
h/2
x , C

h/2
x are the central finite difference operators with mesh size h/2. h

denotes the mesh size for the approximations and is taken to be one. The terms
T n

1 and T n
2 are evaluated as in the following:

T n
1 =

√

|D+
x u|2 + |Ch

y u|2 + |Ch
y v|2 + |D+

y v|2 + ε on Λh(Ω), (20)

T n
2 =

√

|Ch
xu|2 + |D+

y u|2 + |D+
y v|2 + |Ch

y v|2 + ε on Dh(Ω). (21)

If we use the second algorithm to compute (u, v) and λ from (15)-(16), the
solution of (16) is not unique due to the use of the Neumann boundary condition.
We fix the value of λ to be zero at one point on the boundary to overcome this
problem, which is standard for this kind of problems. Fast methods, like FFT
(Fast Fourier Transformation), can be used to solve (16).

Once the iterations for u and v have converged to a steady state, we use them
to obtain d. Note that the relation between (u, v) and ~n is as in (6). Similar as
in [19], the following gradient flow scheme is used to update d of (10):

dn+1 = dn + ∆t2

((

D−

x

(

D+
x dn

Dn
1

+
v√

û2 + v2 + ε

)

+

(

D−

y

(

D+
y dn

Dn
2

− u√
u2 + v̂2 + ε

))

on Dh(Ω). (22)
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In the above, û, v̂ are the average values of the four nearest approximation points
and

Dn
1 =

√

|D+
x dn|2 + |Ch

y dn|2 + ε on Dh(Ω), (23)

Dn
2 =

√

|Ch
xdn|2 + |D+

y dn|2 + ε on Dh(Ω). (24)

This iteration is the standard gradient updating for d. We could use the AOS
scheme of [16, 17] to accelerate the convergence. The AOS scheme was first
proposed in [16, 17]. It was later rediscovered in [22, 13] and used for image
processing problems.

Up to now we have only explained the approximation details for (5) and (10).
It is easy to see that the discretization for (4) and (9) can be done in a similar
way. The Dirichlet or Neumann boundary conditions for the different equations
shall be implemented in the standard way and we will omit the details.

2.3 Other kind of boundary conditions

We have proposed two alternatives to deal with the information which is in the
surrounding area of Ω, i.e.

• Using information in a narrow band around the inpainting region Ω and
trying to propagate this information into the region Ω using equations (4)
and (9).

• Using information of the two nearest pixels around the inpainting region
Ω and using equations (5) and (10) to propagate the information into the
region Ω.

There is no strong argument about which of these two alternatives are the better.
In fact, numerical experiments show that one produces better result for some
images, while the other one produces better for some other images. In most of
the tests given in this work, we have used the boundary conditions (5) and (10).

In the following, we shall even propose another boundary condition to treat
some special situations. For some images, we may want some of the information
from the surrounding area to be propagated into Ω, while some other information
from the surrounding area is not welcome to be propagated into the region Ω,
see Figures 10, 12, 13. In order to deal with this kind of situation, we propose
the following alternative:

• Decompose the boundary ∂Ω into two parts, i.e. ∂Ω = ∂ΩD ∪ ∂ΩN . For
equation (5), replace the boundary condition by

a) ~τ = ~τ0 on ∂ΩD, b) ~τ = ~0 on ∂ΩN , (25)

and replace the boundary condition of (10) by

a) d = d0 on ∂ΩD b)
∂d

∂~ν
= 0 on ∂ΩN . (26)

Condition (26.b) means that we do not want to propagate any information
through ∂ΩN . Due to the reason that ∇d⊥ ≈ ~τ , condition (26.b) implies that
we must have condition (25.b) for ~τ on ∂ΩN . A similar procedure can be
performed for equations (4) and (9).
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3 Numerical Experiments

First, we explain how to choose ε, ∆t1 and ∆t2 in numerical implementations.
We add ε to the denominator to avoid dividing by zero in (20)-(21) and (23)-
(24). If ε is chosen to be large, the computed image will be smoother. If ε is
chosen to be too small, it may slow down the convergence. We have chosen ε to
be the same in (20)-(21) and (23)-(24), but it will be different from example to
example.

With large ∆t1 and ∆t2, the iterations will converge faster, but if they are
too large, the scheme is unstable. For most occurrences ∆t1 ≈ 0.03 will lead
to convergence of the normal vectors. A smaller ∆t1 will also work, but more
iterations might be necessary. If the normal vectors are smooth, ∆t2 is less
sensitive and can be chosen to be large. If vector field is less smooth, ∆t2 must
be smaller.

3.1 Example 1

In this example we test out our method on an image from a Norwegian news-
paper. The image shows a man jumping from Jin Mao Tower, a 421 meters tall
building in the city of Shanghai. We want to remove the man and restore the
city in the background.

The first part of the code computes the normal vectors in the missing region.
From Figure 3 we see that the vectors are propagating into the inpainting region
in a smooth fashion. When ∆t1 = 0.03 and ε = 10 are used, a steady state is
reached after 3000 iterations using (13)-(14). If we use (15)-(16), less than 1000
iterations are needed to reach a steady state, see Figure 3 e) and Figure 3 f).

The second part reconstructs the image using the computed normal vectors.
Figure 4 shows how the man gradually is disappearing during the iterations.
With ∆t2 = 0.15 it takes 30000 iterations before a steady state is reached. In
the resulting image the man has disappeared completely and the background
is restored in a natural way. There are no discontinuities in the sky, and the
skyline is almost a straight line. It is nearly impossible to detect that the sky
and the skyline contains the missing region.

Figure 2: The original image.
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Figure 3: The restored flow vector ~τ using (13)-(14) at different iterations. a)
at iteration 0; b) at iteration 1000; c) at iteration 2000; d) at iteration 3000;
e) The plot for ‖u‖ and ‖v‖ which shows that the equations (13)-(14) reach a
steady state, i.e. at iteration 3000. f) In this plot, we show the convergence for
‖u‖ and ‖v‖ using equations (15)-(16). They reach steady states quicker than
(13)-(14), i.e. at iteration 1000.
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a) b)

c) d)

e) f)

Figure 4: The restored image d using equation (10) at different iterations. a)
at iteration 0; b) at iteration 10000; c) at iteration 20000; d) at iteration 30000;
e) The restored image using the new method (15)-(16) to find ~τ . f) The plot
for ‖d − d0‖ which shows that the equation (5) reaches a steady state, i.e. at
iteration 30000.
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3.2 Example 2

We test our method on some well-know examples which have been tested by
others using different methods [2]. We use these results to show the quality of
the restored images compared with other methods.

a)

b)

c)

Figure 5: a) The original image. b) The restored image using equations (5) and
(10). c) The difference image.

In this example as shown in Figure 5, red text is written over the picture.
The text is the inpainting area, and we want to fill it with information from
the image. With ε = 1 and ∆t1 = 0.03 the normal vectors converge after 7000
iterations for (13)-(14). The second part of the code converged after only 3000
iterations with ∆t2 = 0.5.
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a) b)

c)

Figure 6: a) The original image. b) The image with the inpainting region
obtained manually. c) The restored image using equations (5) and (10).

In Figure 6, another image which has been tested in the literature, is used
here to compare our method with the others, [2, 1]. The image has the white
text ’Japanese animation’, and we want to remove this. An area around the
text is lighter than the background and has to be restored as well. Figure 6
b) shows the manually obtained inpainting region. Figure 6 c) shows restored
image. The values for ∆t1 and ∆t2 are chosen to be the same as in the previous
example, and the convergence is nearly the same.
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a) b )

c)

Figure 7: a) The original image d0. b) The image with the inpainting region
white. c) The restored image d.

Figure 7 a) shows an old photo which has been damaged. We mark the
inpainting region in white colour, as shown in Figure 7 b) and try to restore it.
The result is shown in Figure 7 c).
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a)

b)

Figure 8: a) The image with the inpainting region white. b) The restored image
using equations (5) and (10).

The image in Figure 8 a) shows another situation where our algorithm can be
applied. The image has a piece of musical notes written on it. A large amount
of information is lost, but it is scattered on the image in narrow areas. The
first part converges after 2500 iterations and the second part converges after
1000 iterations when using our algorithm for this image. The restored image in
Figure 8 b) looks rather good.
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3.3 Example 3

Figure 9 a) shows a picture of Lena. We have removed a rectangle containing
a part of her face and shoulder, Figure 9 a), and restored it in 9 b). The image
has converged, but it is still possible to see where the image has been restored.
The line connecting the shoulder has diffused to the background. In Figure 9 c),
a long narrow rectangle is removed. Here the result is better. In Figure 9 d) it
is only possible to see a discontinuity on her hat and on her nose.

In both examples ε = 1, ∆t1 = 0.03 and ∆t2 = 0.3. The first part con-
verged after about 7000 iterations, while the second part converged after 70000
iterations in Figure 9 b) and 10000 iterations in Figure 9 d).

a) b)

c) d)

Figure 9: a) The image with the inpainting region removed. b) The restored
image using only Dirichlet boundary condition. c) The image with the inpainting
region removed. d) The restored image using only Dirichlet boundary condition.
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3.4 Example 4

To test the code for the new boundary condition (25)-(26), we made a simple
image, see Figure 10. Information is missing in a rectangle in the middle of the
image which only has two intensity values. If we use Dirichlet boundary con-
ditions (5)-(10), all information from the surrounding area will be transported
into the inpainting region. If the Neumann boundary is used (25)-(26), it is
possible to choose which intensity value to be selected to propagate into the
inpainting region. The result is shown in Figure 10. The result using Dirichlet
boundary conditions is displayed in Figure 10 b). With ε=0.0001, ∆t1 = 0.01,
the normal vectors converged after 12000 iterations and with ∆t2 = 0.2 the
second part converged after 25000 iterations. With a larger ε, the corners and
the boundary close to the corners may be smeared.

Figure 10 c) shows a similar test with Dirichlet conditions on the upper half
and with Neumann boundary conditions on the lower half of the boundary of the
inpainting region. From Figure 10 c) we see that both colours have propagated
to the interior.
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Figure 10: a) The image with the inpainting region marked. b) The image
obtained with Dirichlet boundary. c) The image obtained using Dirichlet and
Neumann boundary conditions.
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3.5 Example 5

In this example, we process an image from the match between Norway and
Croatia in the XIX Men’s World Championship. We want to remove the croatian
player in Figure 11. When a Dirichlet condition is used around the whole
boundary, Figure 12 a), colours from the Norwegian players propagate into the
background. To make it look natural, it is necessary to use Neumann boundary
conditions around the two Norwegian players. The inpainting region and the
Neumann boundary are marked in Figure 12 b). Figure 12 c) shows the restored
image using this new boundary condition. When Neumann boundary condition
is used, the colour on the Neumann boundary does not influence the interior.

Figure 11: An image from the match between Norway and Croatia in the XIX
Men’s World Championship.
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a)

b)

c)

Figure 12: a) The restored image using Dirichlet boundary conditions. b) The
image with the inpainting region violet. c) The restored image using Dirichlet
and Neumann boundary conditions.
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3.6 Example 6

This example has more texture in the background. We want to remove the
snowboarder and fill in the missing region. It is not desirable that the yellow
object in the front propagates into the inpainting region. Figure 13 d) shows that
the best result is obtained with Neumann conditions on part of the boundary.

a) b)

c) d)

Figure 13: a) A photo taken by Espen Lystad, a well-known snowboard pho-
tographer in Norway. b) The image with the inpainting region marked. The
Neumann boundary is black. c) The restored image only using Dirichlet bound-
ary condition. d) The restored image using Dirichlet and Neumann boundary
conditions.
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3.7 Example 7

In several of the proceeding examples, we have tried to show the advantages
of our algorithms. In this example, we shall give a more qualified comparison
between our method and other methods proposed in the literature. Figure 14
a) shows the image with the inpainting region. The restored image using the
method of [8] and our method are shown in Figure 14 b) and c) respectively.
In the computation, we have used ∆t1 = 0.03, ∆t2 = 0.2 and ε = 0.0001.
To show more details, we display the zoomed images in Figure 15. When the
two methods are compared, we see that the spiral is most visible using the
TV-inpainting method [8], see Figure 14 b).

a)

b ) c)

Figure 14: a) The original image d0. b)The restored image using the method of
[8]. c) The restored image using our method.
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a)

b) c)

Figure 15: a) The original image d0 zoomed in. b)The restored image using the
method of [8] zoomed in. c) The restored image using our method zoomed in.
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