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Chapter 1

Introduction

Our aim throughout this project has been to understand and possibly improve the ways

in which the classical molecular dynamics (MD) can incorporate geometries and shapes

of different structures. The areas of knowledge mostly belonging to the field of chemistry

were originally very little known to us, but we had some knowledge of solid state physics

and atomic and molecular physics, fields which are closed to the main research fields of our

Department. The first period of this project some years ago has been connected with the

so called Tersoff potential. The meaning of the words ”Tersoff potential” will become clear

later, it is simply one of several known model interactions suitable for silicon and carbon.

Carbon nanostructures, in particular possible understanding of the conditions under which

carbon nanocones would be preferred over carbon nanotubes has probably been the first

motivation of studying the Tersoff potentials.

Originally, MD simulations of composition of different nanostructures were the plan for the

research. using the MD software package PROTOMOL, developed partly here in Bergen.

However, the implementation of Tersoff’s interactions in the PROTOMOL package was

not at all straightforward. Thus we started to study the potentials themselves, why are

they designed in their present form and in principle how one can really simulate chemistry

with the help of classical potentials. This has then become the present subject of this

research. In the thesis I will come several times to this important relation between classical

and quantum approaches, simply expressed by the statement that chemistry can really be

understood only from the quantum point of view.

In the generally known presentations of atomic interactions one usually meets interactions

between two particles, which are naturally called two-body interactions or pair interactions.

Further, the most known interactions depend only on the distances between the two part-

ners, the word is isotropic, no angles are involved. To explain complicated structures as for

example the famous diamond structure or the shape of the fullerenes, it is necessary to go
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6 CHAPTER 1. INTRODUCTION

beyond two-body isotropic interactions. It has been found that interactions which describe

the spatial structures can be thought of to be derived from sort of series expansions of the

so called potential energy surfaces for the system of particles. Such a series can be inter-

preted as a sum of two-body, three-body, four-body etc potential functions. The first such

approach we know about is the work of Axilrod and Teller already in 1943, but the work

of Stillinger and Weber from 1985 is closer related to the discussion, since they explicitly

described the series expansions. The tersoff potential mentioned above can also be seen in

the same line of research. The two-body potentials control the mutual distances between

pairs of atoms, also known as bond lengths. The angle between two bonds involves a triplet

of atoms and so can be described only by three-body potentials. The spatial correlation

of four particles involving three bonds is specified in chemistry by so called dihedral angle.

For many readers this can be simply said as the angle between the two planes formed by the

two closest triplets in the quadruplet in question, and this can be described by four body

potentials. The question to be raised is ”when can we stop?”. Stillinger and Weber stopped

at the three-body term, Tersoff left the idea of the expansion, but effectively remained also

at the three-body level.

The just described paradigm of molecular modeling is probably not the most known one.

More often molecular dynamics or molecular mechanics refers to studies where most of the

bonds are unbreakable. The models of chemical compounds or other groups of atoms are

parts of the model. Together with a large collection of empirical chemical knowledge are

in these cases parts of so called force fields. The most famous are probably AMBER and

CHARMM, also with very powerful molecular dynamics software, optimized for the use

in several fields of research, mainly in biosciences. The present work is part of a different

branch of molecular modeling, where the formation of structures and bonds is of prime

interest, and our work is more related to material research and condensed matter physics.

However, these areas of research share many features and a differentiation between them is

probably not generally useful. Nevertheless, the term ”molecular mechanics” is becoming

more popular recently. In my work I have had great use of literature which could be

classified more as molecular mechanics while our research belongs to the molecular dynamics

area.

The investigation of atomic interactions led us to the design of our own molecular dynamics

software which has been in later stages implemented mostly using the computing and

visualization system MATLAB. Work with these aspects has been a large part of my project.

Visualization of the geometrical structures inside MATLAB, as well as the two free systems,

VMD and JMOL has contributed to our understanding of the problems and results. In

visualization, we have also learned that not all tasks are best done with computers. I

have rediscovered the molecular model building sets which gave the possibility to grasp
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some three-dimensional relations much faster than any computer programs would allow at

present without any expensive 3-dimensional visualization equipment.

The analysis of the existing models has shown that the Tersoff type potentials could be

modified, but especially to a conclusion that there might be a place for a new approach.

A very successful and complete interaction model called ReaxFF (Reactive Force Fields)

is becoming more and more popular. However, unlike the earlier models, the ReaxFF

contains many parameters and is indeed very complex. We have instead tried to design

one more model which is in principle very simple and intuitive, but will allow inclusion

of many parameters to improve the fitting of the known chemistry. We have called this

model Orbital Based Molecular Dynamics (OBMD). The new idea is that the structure is

not represented by the potential, but is a part of the interacting objects, model of atoms

and their orbitals. As a result, all the necessary potentials become pair interactions.

The work on this project resulted in five distinct papers which are included in the thesis

in chapter 7.





Chapter 2

Theoretics and Contemplation

In this chapter we shall look at some basic features of classical mechanics, quantum me-

chanics and statistical physics. The stability of matter and the basic understanding of

chemistry are only possible in the quantum perspective. Nevertheless molecular modeling

is based on classical Newton equations. We discuss in some detail these matters.

Many applications of molecular simulations are concerned with systems of finite tempera-

ture. Thermodynamics and its microscopic basis - statistical mechanics are thus essential

in many applications. In this chapter we thus also look at some features of the statistical

mechanics, especially at the implications of the so called ergodic theorem.

The topics covered in this chapter can be found in various textbooks, but the discussions

in section 2.2.1 are based to some degree on an advanced research review and are generally

not found in introductory texts.

2.1 Newtonian mechanics and quantum mechanics

When matter is viewed as collection of atoms, classical physics can not explain the stabil-

ity of matter. Chemical properties of materials and stability of matter follow only from

quantum mechanics.

In classical ”Newtonian” mechanics for a collection of bodies one seeks to find all their

positions and motions as a function of time. The positions are given by coordinates X(t)

which obey newtons equations, given as a collection of ordinary differential equations For

N objects the vector X contains 3 times N components,

MẌ = −∇V (X) (2.1)

and the starting velocities Ẋ(t0) must be specified at one time t0 M is a generalized mass
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10 CHAPTER 2. THEORETICS AND CONTEMPLATION

matrix, ∇ specifies the 3-N dimensional gradient. As is well known, this gives us trajectories

for all N particles, it means X(t) and Ẋ(t) for all times. In other words, if at one instant

of time the position and momentum of each particle in a system are known, then all

trajectories at any later as well as earlier times are precisely computable by integrating the

corresponding Newtonian equations of motion. The evaluation of forces from potentials

as implied by the gradient and vice versa is not possible for all types of interactions.

Alternatively, one can use the mathematical generalizations via the so called Lagrange and

Hamilton formulations. These are built on mathematical theorems for systems of ordinary

differential equations and allow treatment of much more general types of interactions (see

also section 2.2.1 ).

Thus Newtonian world consist of interacting bodies with conserved total energy and tra-

jectories in principle determined for all times, if completely known at one instant of time.

This classical world-view was well described by the French mathematician Pierre Laplace:

”An intelligence which at a given instant knew all the forces acting in nature and

the position of every object in the universe - if endowed with a brain sufficiently

vast to make all necessary calculations - could describe with a single formula

the motions of the largest astronomical bodies and those of the smallest atoms.

To such an intelligence, nothing would be uncertain; the future, like the past,

would be an open book.”

Classical theory of mechanics can neither determine nor explain physics at scales of the

atomic and molecular systems.

Quantum mechanics uses the same set of coordinates for the position of the interacting

bodies as classical equations 2.1 , but no deterministic equations for trajectories exist as in

classical mechanics. Instead, equations must be found and solved for time development of

so called wavefunction or state vector. These Schrödinger wave equations are constructed

as hamiltonian equations of motion, but the physical quantities themselves are replaced by

so called operators. The relations connecting the operators, which can be e.g. operators

of differentiation is applied to the unknown wavefunction, giving the differential equation

of Schrödinger. For most systems of interest the Schrödinger equations are well known.

For illustration we show the Schrödinger equation for a one-dimensional motion. The

coordinate is x, the momentum operator pxand the total energy operator E

px = −ih̄
∂

∂x
E = ih̄

∂

∂t
(2.2)

and the relation E = p2
x/2m + V (x) then gives the Schrödinger equation

− h̄2

2m

∂2

∂x2
Ψ(x, t) + V (x)Ψ(x, t) = ih̄

∂

∂t
Ψ(x, t) (2.3)
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This so called time-dependent Schrödinger equation (TDSE) is much less known than

the time independent version. This appears as a consequence of separation of variables,

assuming that the solutions are of the form Ψ(x, t) = ψ(x)ϕ(t), giving solutions of the type

ϕ(t) = exp(− i

h̄
Et) (2.4)

and the remaining time-independent or stationary equation

− h̄2

2m

∂2

∂x2
ψ(x) + V (x)ψ(x) = Eψ(x) (2.5)

The importance of these stationary states follows from the probability density interpretation

of the wavefunction, i.e. that the only information obtainable is the probability distribution

of the studied coordinate,

ρ(x, t) = |Ψ(x, t)|2 (2.6)

Since the time component ϕ(t) is in fact only a phase factor with absolute value one, the

so called stationary solutions give stationary probability density (i.e. independent of time)

ρ(x) = |Ψ(x)|2 (2.7)

Solutions of equation 2.5 are only possible for certain values of the constant E, giving the

energy spectrum of the system in question. The detail treatment of this formulation can

be found in every introductory quantum mechanics or quantum chemistry text.

The probability interpretation of equation 2.6 has been postulated by Max Born in 1926

(in a footnote) and gave him a Nobel prize only as late as 1954. When the ρ(x) is known

and the quantity x is measured, the relative probability of obtaining the result x0 ± Δx

will be given by

ΔP (x) = ρ(x)Δx (2.8)

This interpretation is valid also for three dimensional systems where the interval is replaced

by volume, Δx→ ΔxΔyΔz, as well as multidimensional systems of many particles.

The time dependent Schrödinger equation remains important for processes which are not

stationary, it means when some change really happens. It is essential for our understanding

of chemical reactions and matter changes as explained and applied in the following section.

Another feature of quantum formalism is the so called uncertainty relation. It follows

from the properties of the wave equation, similar relations are known also in acoustics and

applications of electric pulses: certain pairs of quantities are such that they can not be

given both with infinite precision. In musical acoustics, the picking instruments with tones

of short short duration have ”uncertainty” in frequency. A clean frequency tone must last

for a very long time, as for violins and wind instruments.



12 CHAPTER 2. THEORETICS AND CONTEMPLATION

In addition to uncertainty of the discussed type, there are also two other features: any

measurement process itself will require exchange of energy which can not be made negligible.

Further, it will also change the wavefunction of the combined system consisting of the

observed system and the observing device system. It means that any measurement result

can be given only with a certain probability, it is not guaranteed that the measurement

will happen. These features and the related phenomena of decoherence and entanglement

make the quantum measurement fundamentally different from the understanding of it in

classical physics. In Newtonian physics, measurement processes can be devised in such a

way that energy and momentum exchange with the observed system are truly negligible, as

for example observation of reflected light rays. In quantum physics the scattering of light

can change the state of an atom or molecule.

2.2 Quantum mechanics and atomic level systems

Within the quantum perspective above supported by experiments, an atom is a struc-

tured object composed of a nucleus and electrons. The spectra and other features can be

understood by studying the stationary states of the quantum models.

Orbitals in more complex objects, it means molecules and larger aggregates, are our mental

mathematical images of where and how probable it is to detect an electron in a spatial

region around that nuclei. Those orbitals shape the atomic and molecular structures,

where each holds no more than two electrons which have furthermore opposite spins, a

pure quantum phenomenon that has no classical analogue. Atoms interact with each other

and aggregate in different molecular structures; free and chemically bonded atoms having

an otherwise spherical electronic distribution can attract each other when they are a small

distance apart. Such attraction, known as van der Waals, is electrostatic in origin, and

is ascribed to either permanent-permanent, permanent-induced or instantaneous induced-

induced dipoles interaction. However, when atoms approach each other too close, they

repel each other due to the electrostatic repulsions of the like-charges, as well as Fermi

repulsion, since each part of quantum space can be occupied by only one electron.

The effect of aggregation of atoms into complex structures can be described by studying the

stationary states of electrons and nuclei of combined atomic subsystems. In the following

we discuss how and why the nuclear and electronic motions can be considered separately.

The n-electron wavefunctions in isolated atoms themselves or in combined structures as

molecules, can in simplest cases be considered as wavefunctions for independent electrons.

The effects of electron interactions and the Pauli principle are taken into account by so

called self-consistent methods (as DFT or SCF bellow). Each of the electrons thus occupies
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one spin orbital, which is the same as saying that two electrons with opposite spin can

occupy one spatial orbital.

Atomic orbitals situated on different atoms will not generally remain valid single electron

orbitals for the constructions mentioned above. New orbitals must be identified which

best describe the electronic configurations in the fields of combined nuclei and the other

electrons.

These new orbitals, or single electron states can be called molecular orbitals or Bloch states

if the structures are periodic. For historical reasons there unfortunately exists a certain

confusion in chemical literature, where two approximation assumptions about the molecular

orbitals are presented as two distinct theories. From the point of physics, there is a need to

define the hierarchy of approximations, where the famous Koster-Slater LCAO approach

can serve as a basic approximation.

In this approach, the so called covalent bonding is a result of the fact that the energetically

lowest stationary state in a situation with two (or in fact several) attraction centers is

always lower than the lowest state created by any of the centers alone. As an example,

the lowest state of one electron in the field of two protons situated at any distance will

always be lower than the ground state of hydrogen. This fact is reflected by the existence

of the H+
2 molecular ion, the simplest system studied in molecular physics. The covalently

bound molecule H2 results when the two electrons are placed in the same spatial orbital.

Bonding in systems where the participating electrons would originally belong to higher

atomic orbitals follows the same principle, but becomes more complicated and leads to the

geometrical features of molecules as discussed below.

In addition to the covalent bonding mentioned here there are also other types of electron

rearrangements. The most important is probably the so called delocalized bonds important

mainly in metals and in many carbon structures. Another one is the so called ionic bonding

which is in fact the same as the covalent bonding, but the orbitals are highly localized on

one of the centers. Due to this localization, the combined system appears as one negative

and one positive ion. The fourth known bonding interaction is called hydrogen bonding. In

Chemistry it is generally described by the attraction between the positive partial charge on a

hydrogen covalently bonded to Oxygen, Nitrogen or Sulfur and the negative charge density

of a lone-pair on another Oxygen, Nitrogen or Sulfur. That is the molecular orbital involves

contributions from three atoms rather than just two [15] in such a way that the overall

wavefunction is a linear combination of the wavefunction corresponding to the covalent bond

and the wavefunction corresponding to the lone-pair. The hydrogen bond has somehow a

directional character but it is weaker than the covalent bond, it is strongest when the three

atoms are aligned where the hydrogen lies unequally in between.
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The just mentioned mechanisms are important to explain the stability of our physical world

and only quantum theory gives us parts of that explanation, where one should in principle

solve the many particle molecular Schrödinger equation. Exact and analytical solutions for

these wavefunctions are in practice impossible, therefore approximation schemes must be

used.

To predict the dynamical evolution of a system of such small particles, one needs to solve

the time dependent Schrödinger wave equation to be able to describe chemical reactions,

condensation into solid state or melting of solid structures. A method to decouple, separate,

the motion of electrons and nuclei called Born-Oppenheimer approach is in principle the

basis of most of the applications of quantum theory to the analysis of chemical phenomena.

In the following, this approach will be introduced. The presentation is to some degree

based on ref. [5, 10] where also other references and details can be found.

2.2.1 Molecular structure: Separation of electronic and nuclear
degrees of freedom

A molecular system with the positions of N nuclei, R = {R1, R2, · · · , RN}, and the n

electrons located at r = {r1, r2, · · · , rn}, is completely described nonrelativistically by

the molecular Schrödinger equation

ıh̄
∂

∂t
Φ (r, R; t) = H Φ (r, R; t) (2.9)

where H is the nonrelativistic molecular Hamiltonian, in SI units, of the N nuclei and n

electrons, and it has the form

H (R, r) = −
N∑

I=1

h̄2

2MI

∇2
RI

−
n∑

ı=1

h̄2

2me

∇2
rı

+

N−1
N∑

I=1,
J>I

ZIZJe2

4πε0|RJ − RI | +

n−1
n∑

ı=1,
j>ı

e2

4πε0 |rj − rı| +

N
n∑

I=1
ı=1

ZIe
2

4πε0|RI − rı| (2.10)

the first term on the right-hand side of the above equation is the nuclear kinetic energy

operator, the electronic kinetic energy operator is second, whereas the last three terms

correspond respectively to the internuclear, inter-electronic and nuclear-electronic electro-

static interactions. MI is the mass of nucleus I whose atomic number is ZI , me is the mass

of the electron, and e is its charge. The operators ∇RI
and ∇rı act on the coordinates of

nucleus I and electron ı respectively.

The electron-nucleus interactions bind electrons to nuclei, and leads to a mathematical

inseparable Hamiltonian. Born and Oppenheimer based their method on the observation
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that the motion of the nuclei must be much slower than the motion of electrons, mainly

due to the big nucleus-electron mass ratio. Since energy according to the classical kinetic

theory is equipartitioned over all degrees of freedom

meω
2
e = MIω

2
I → ωe

ωI

≈
√

MI

me

≈ 100. (2.11)

A treatable method thus becomes to solve first the equations for the fast moving electrons

for fixed configurations R of the nuclei, and only then allow the nuclear motion to be solved

in the resulting field of already known electronic motion. This is equivalent to rewriting

the molecular Hamiltonian as

H (R, r) = T (R) + He (R, r) (2.12)

where the electronic Hamiltonian is

He (R, r) = T (r) + V (R) + V (r) + V (R, r) = T (r) + Vt(r, R) (2.13)

where T (r) , V (R) , V (r) , and V (R, r) respectively represent: the electronic kinetic op-

erator, nuclear-nuclear and electron-electron repulsion, and nuclear-electron attraction.

The stationary schödinger equation for the electronic Hamiltonian Eq.(2.13) is assumed

solvable, moreover its solution is a set of orthonormal discrete eigenfunctions in the form,

Ψk (r, R), with a parametric dependence on the nuclear configuration R ≡ R(t).

He (r, R) Ψk (r, R) = Ek (R) Ψk (r, R) (2.14)

Note that Ψk (r, R) is multielectron wavefunction. The detailed determination of their

form is usually done with the help of further approximations. The simplest forms are

based on the so called Slater determinants which in turn are antisymmetrized versions of

the independent electron approximation. Thus

Ψk (r, R) = A(
ϕ1 (r1, t) , ϕ2 (r2, t) , · · ·ϕn (rn, t) ; α(1), α(2), · · · , α(n); β(1), β(2), · · · , β(n)

)
(2.15)

where {ϕi} are the space orbitals, α and β are the spin orbitals and each takes the spin

up and spin down states, and the operator A represents the antisymmetrization of the

product. In the two electron case,

Ψk (r, R) = N
(
ϕ1 (r1, t) ϕ2 (r2, t) ± ϕ2 (r1) ϕ1 (r2)

)(
α(1)β(2) ∓ α(2)β(1)

)
(2.16)

Details of single particle operators are consistently simplified in the nowadays most used

density functional theory (DFT), where the sketched effects of multielectron description do

not need to be considered explicitly.

The set {Ψk (r, R)} is known as the adiabatic basis set, and Ek being the adiabatic energy

eigenvalues. Since the eigenfunctions form a complete set, the total wavefunction Φ can
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be expanded in these bases, and takes the following form known as the Born-oppenheimer

ansatz

Φ (r, R; t) =
∑

l

χl (R, t) Ψl (r, R) (2.17)

Substitution for Φ, Eq.(2.17), in Eq.(2.9), multiplication form left by
〈
Ψk (r, R)

∣∣, and

integration over the electronic coordinates, gives the set of coupled equations

[T (R) + Ek] χk +
∑

l

Ckl χl = ih̄
∂

∂t
χk (2.18)

where Ckl is termed as the coupling operator, and is defined as

Ckl =
∑

I

−h̄2

MI

(〈
Ψk

∣∣∣∇2
RI

∣∣∣Ψl

〉
+

〈
Ψk

∣∣∣∇RI

∣∣∣Ψl

〉
∇RI

)
(2.19)

The adiabatic approximation

The electronic hamiltonian He depends parametrically on the nuclear configuration R, and

since R is slowly varying, one can use of adiabatic approximation. In this respect, different

electronic quantum states are weakly coupled, i.e., all the non-adiabatic off-diagonal terms,

(Ckl → 0 , ∀ k �= l), are disregarded. The following analysis explains when the adiabatic

approximation can be used

H|ψl〉 = El|ψl〉 (2.20)

∇RI
(H|ψl〉) = ∇RI

H|ψl〉 + H∇RI
|ψl〉 (2.21)

= ∇RI
El|ψl〉 + El∇RI

|ψl〉 (2.22)

multiplying the right hand sides of Eqs.(2.21 and 2.22 ) by 〈ψk|
〈ψk|∇RI

H|ψl〉 + 〈ψk|H∇RI
|ψl〉 = 〈ψk|∇RI

El|ψl〉 + 〈ψk|El∇RI
|ψl〉

〈ψk|∇RI
H|ψl〉 + 〈Hψk|∇RI

|ψl〉 = 〈ψk|∇RI
El|ψl〉 + El〈ψk|∇RI

|ψl〉
〈ψk|∇RI

H|ψl〉 + Ek〈ψk|∇RI
|ψl〉 = 〈ψk|∇RI

El|ψl〉 + El〈ψk|∇RI
|ψl〉 (2.23)

the first term on the right hand side vanishes, and further manipulation of Eq.(2.23) gives

〈ψk|∇RI
H|ψl〉 = (El − Ek) 〈ψk|∇RI

|ψl〉
〈ψk|∇RI

H|ψl〉
(El − Ek)

= 〈ψk|∇RI
|ψl〉 (2.24)

that is, only when the energy difference (El − Ek) is everywhere big, one can use the

adiabatic approximation. It can be easily shown that
( ∑

I

h̄2

MI

〈
Ψk

∣∣∣∇RI

∣∣∣Ψk

〉
∇RI

= 0
)
.

Thus, only the diagonal terms are to be considered

Ckk =
∑

I

−h̄2

MI

〈
Ψk

∣∣∣∇2
RI

∣∣∣Ψk

〉
(2.25)
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which represents the adiabatic correction of the eigenvalues Ek. The result is a set of

decoupled equations of the nuclear eigenfunctions, and implies that the nuclear motion

does not change the electronic quantum state during the time evolution, i.e., electrons are

bound to the nuclei and respond instantaneously to the slow nuclear motion.

[T (R) + Ek (R)]χk + Ckk χk = ih̄
∂

∂t
χk (2.26)

Consequently, the wave function Eq.(2.17) is reduced to a single term wavefunction being

a direct product of the electronic and nuclear wavefunctions

Φ (r, R; t) = χk (R, t) Ψk (r, R) (2.27)

Born-Oppenheimer approximation

Born-Oppenheimer approximation assumes only very small changes in the adiabatic elec-

tronic quantum state (wavefunction) when the configuration, R, of the massive nuclei is by

little and slowly changed near the equilibrium. Mathematically, derivatives operate over

approximately the same dimensions, i.e., ∇RI
ψk is of the same order as ∇ri

ψk ∼ peψk,

where pe is the momentum of an electron. Hence

h̄

2MI

∇2
RI
ψk ∼ p2

e

2MI

=
me

MI

Ee ∼ 10−4Ee

where Ee = Ek − V (R) is the electronic kinetic energy. That is, the dependence of the

electronic state on, R, is so weak that both first and second derivatives of the electronic

state with respect to the nuclear configuration, R, are negligibly small. Thus the diagonal

coupling terms, Ckk, are also ignored, and the nuclear Schrödinger equation now takes the

form

[T (R) + Ek (R)]χk = ih̄
∂

∂t
χk (2.28)

and describes nuclei as moving in an effective potential, Ek, modified by all electrons. The

electronic degrees of freedom no longer appear in the above equation since all electronic

effects are now superimposed upon the slowly moving nuclei via the Ek term which is

referred to as the ”interatomic” potential energy surface.

Classical approximation of motion of nuclei in the adiabatic electronic basis

In the areas of atomic collisions and classical Molecular Dynamics, Chap.(3), nuclei are

classical point particles moving according to Newton laws under the influence of their

interatomic potential. To impose the classical point particle approximation on Eq.(2.28),

the nuclear wavefunction corresponding to the k-electronic state is rewritten as

χk (R; t) = Ak (R; t) exp

[
ıSk (R; t)

h̄

]
(2.29)
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with an amplitude Ak, and a phase factor Sk being both real. When Eq.(2.29) is substituted

in Eq.(2.28), one obtains

∂Sk

∂t
= −

∑
I

(∇RI
Sk)

2

2MI

−
∑

I

h̄2

2MI

(∇2
RI

Ak)

Ak

(2.30)

∂Ak

∂t
= −

∑
I

(∇RI
Ak)(∇RI

Sk)

MI

−
∑

I

Ak(∇2
RI

Sk)

2MI

(2.31)

multiplying Eq.(2.31) from left by 2Ak, gives

∂A2
k

∂t
= −

∑
I

∇RI
(A2

k∇RI
Sk)

MI

(2.32)

which is identified as the continuity equation for the probability density, P = A2
k, and the

current density, JI =
A2

k∇ISk

MI

, in the k-electronic state. In the classical limit h̄ → 0, then

Eq.(2.30) becomes
∂Sk

∂t
= −

∑
I

(∇RI
Sk)

2

2MI

− Ek (2.33)

The nuclear velocity is given by

ṘI =
JI

P
=

∇RI
Sk

MI

(2.34)

the classical kinetic energy of nuclei evaluates to Tk =
∑

I

1

2
MIṘ

2
I , then Eq.(2.33) becomes

∂Sk

∂t
= −(Tk + Ek) = −Etot = constant (2.35)

where Etot is the constant total energy. Finally, applying the gradient on Eqs.(2.35) gives

the classical ”Newtonian” equations of motion for all nuclei in the k-electronic state

MIR̈I = −∇RI
Ek (2.36)

Considering only the electronic ground state wavefunction Ψ0 of He, defines the so-called

ground state Born-oppenheimer potential energy surface

EBO

0 = min
Ψ0

{〈
Ψ0 |He|Ψ0

〉}
(2.37)

2.3 Basic classical statistical Mechanics

Statistical mechanics is the field of physics which describes the phenomenological ther-

modynamics in relations to the classical microscopic behavior of atoms in the system in
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question. That is, a macroscopic state (macrostate) described by thermodynamic quan-

tities (experimental observables such as temperature and pressure, etc.), is statistically

interpreted in terms of all the accessible microscopic mechanical states (microstates) where

each is characterized by all the N atoms’ positions,
(
q1, q2, · · · , qN ≡ qN

)
, and momenta,(

p1, p2, · · · , pN ≡ pN
)
, i.e., points in the multidimensional phase space Γ. In a thermody-

namic equilibrium, measurements of observables are invariant independently of the time

of the measurements and the system’s initial microstate. Theoretically and assuming that

the equations of motion of the system are solved, each observable can be empirically asso-

ciated with a function, (O), of the instantaneous microstate,
(
qN(t), pN(t)

)
, of the system.

The quantity O(
qN(t), pN(t)

)
is not an observable since measurements are performed in a

macroscopic time; thus any microscopic observable is assumed to be a time averaged value:s

〈O〉t = lim
τ→∞

1

τ

∫ τ0+τ

τ0

O(
qN(t), pN(t)

)
dt (2.38)

Thermodynamic observable can be alternatively modeled by considering at once a collection

of identical systems. Each system represent one of all the accessible microstates, i.e all

points in the phase space. If this collection (statistical ensemble) is allowed to evolve in time,

its behavior can be characterized by a time dependent distribution function, ρ
(
qN(t), pN(t)

)
,

for the microstates, i.e., the quantity

∫
V

ρ
((

qN(t), pN(t)
))

dqN dpN would give the average

number of microstates in the region, V , in the phase space. Obviously if we integrate over

the whole volume in phase space, then

∫
Γ

ρ
((

qN(t), pN(t)
))

dqN dpN = M, where M is

the number of all accessible points in the phase space. The instantaneous average value of

the observable, O, over the phase space is now interpreted as

∫
Γ
O(

qN(t), pN(t)
)
ρ
((

qN(t), pN(t)
))

dqN dpN

∫
Γ
ρ
((

qN(t), pN(t)
))

dqN dpN
(2.39)

If we assume equal probability for all microstates, then the distribution of points in phase

space is frozen into one single shape, i.e., the distribution function is time invariant, and

the condition
dρ

(
qN(t), pN(t)

)
dt

= 0 (2.40)

describes the thermodynamic equilibrium. The the so-called ensemble average is defined as

〈O〉ensemble =

∫
Γ
O(

qN , pN
)
ρ
((

qN , pN
))

dqN dpN

∫
Γ
ρ
((

qN , pN
))

dqN dpN
(2.41)

The ergodic hypothesis states that in thermodynamic equilibrium, the time average and

the ensemble average are equal. That is, if one allows the system to evolve indefinitely in
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time, the system will pass through all possible microstates, and the experimental measure-

ment will coincide with the calculated time and ensemble averages. Liouville’s theorem

asserts the relation Eq.(2.40), when the Hamiltonian is conserved, that is the distribution

function is constant along any trajectory in the phase space. Liouville’s theorem ensures

thus, independently from ergodic hypothesis, the equality between time averages and their

corresponding ensemble averages.

Statistical ensembles

The three most popular statistical ensembles in classical molecular dynamics simulations

are mentioned below:

The microcanonical ensemble is the thermodynamic state defined by a fixed number of

atoms,N , constant volume, V, and energy, E. It corresponds to an isolated system and

sometimes known denoted as NVE ensemble.

The canonical (NVT) ensemble is a collection of all systems whose thermodynamic state is

characterized by a fixed number of atoms, N,,a constant volume, V, and temperature, T.

The Isobaric-Isothermal (NPT) ensemble is the state where the number of atoms, N, pres-

sure, P, and temperature, T, are all constants.

The distribution function of an ensemble has the following form

ρ(qN , pN) ∼ exp

(−H(qN , pN)

KBT

)

and the distribution density can be defined as

ρ(qN , pN)

Z

where H is the classical Hamiltonian, T is the temperature, kB is Boltzmann’s constant

and Z, the normalization constant, is known as the partition function defined as

Z =

∫
dqNdpNρ(qN , pN)

It is of a usual difficulty to solve Eq.(2.41) since all the accessible microstates must be

previously known. However, in classical molecular dynamics points in an ensemble are

calculated sequentially over a long time, and one can the compute the time average

〈O〉t ≈
1

n

n∑
t=1

O(qN(t), pN(t)
)

(2.42)

where t is time, n is the number of timesteps or the number of times calculations were

performed, and O(pN(t), rN(t)
)

is clearly the instantaneous value of the O-observable.

Time Averages in Molecular Dynamics

Time average of the potential energy

〈V 〉 =
1

n

n∑
t=1

(
N∑

i=1

V (qi(t), pi(t))

)
(2.43)
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where the index i marks atoms, and V is written here as a function of positions and momenta

for a generality, even though it is in most cases velocity-independent.

Time average of the kinetic energy

〈Ek〉 =
1

n

n∑
t=1

(
N∑

i=1

pi(t)
2

2mi

)
(2.44)

where mi is the mass of the particle i, and pi is its momentum. Remember that, to rely on

the values computed above, the molecular dynamics simulation must run for a sufficiently

long time so that enough representative configuration are sampled i.e. the system will have

traveled through enough points in the phase space.





Chapter 3

Molecular Dynamics

Molecular dynamics (MD) is a specialized computer-based discipline to simulate time evolv-

ing atomistic or molecular systems. In such simulations, motion of atoms is determined

within the framework of classical mechanics, this is carried out in intention to reveal the

structural and energetics information. The extracted information of the so many micro-

scopic dynamical states, over a certain period, are condensed and employed by means of

statistical mechanics to calculate macroscopic and bulk properties of solids, liquids as well

as gases. Yet MD is a powerful computational approach, and is mainly used to compute

macroscopic properties that include structures, thermodynamics e.g. enthalpy, temperature

and pressure, and transport properties e.g. thermal conductivity, viscosity and diffusion.

In a molecular system, each atom is subjected to intermolecular forces derived from a

single pre-defined potential energy surface set up by the rest of the system constituents,

electrons as well as nuclei, yet motion of a single atom influences all the others, coupling

thus their Newtonian equations of motion. To analytically solve (integrate) the aforesaid

coupled Newtonian second order differential equations for a vast number, thousands to mil-

lions, of particles is out of reach; numerical methods, using the so-called time integration

algorithm Sec.(3.1.2), are thus implemented to overcome this problem and compute the

classical trajectories of atoms in the system.

Molecular dynamics is an in-between-theory-and-experiment discipline, and it is used to

either investigate and verify a theoretical model describing physical and chemical processes,

or perform a very low-cost virtual experiment on a computer screen. Given a theoretical

model with varying complexity, calculations are carried out using a computer algorithm,

results are then compared with experimental measurements and/or first principles’ calcu-

lations. MD provides thus a possibility to modify the model in a hand, or research and

study some experimentally-inaccessible phenomena if the model is validated.

Molecular systems and motion of their constituents, both nuclei and electrons, are known

23
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to be accurately described only by laws of quantum mechanics; why is it then Newtonian

mechanics used to describe that motion of atoms (nuclei) in molecular dynamics?

Well, implementation of classical laws of mechanics in this scheme involves a series of

approximations for the quantum description; first, the molecular wavefunction (solution) of

the molecular Schrödinger equation is separated into nuclear and electronic parts according

to Born-Oppenheimer approximation, Sec.(2.2.1), so that motion of nuclei is decoupled from

electronic motion due to the fact that nuclei are much heavier. Such decoupling allows their

equations of motion to be separated and solved. Second, nuclei are approximated as classical

particles, Sec.(3.1.1) and Sec.(2.2.1). Third, electronic variables are either integrated out

beforehand and an approximate single potential energy surface (usually representing the

electronic ground state) is constructed, or they are treated within a suitable approximation

as active degrees of freedom via the electronic schrödinger equation, and forces on nuclei

are computed by electronic structure calculations that are performed for each generated

trajectory. Accordingly, MD simulation is branched out into two methodologies:

1. Classical Molecular Dynamics, Sec.(3.1), where forces are derived from predefined

potential models by analytical gradient applications.

2. Ab initio Molecular Dynamics, Sec.(3.2), where forces on nuclei are obtained from

the electronic structure calculations.

Herein and in the next chapter, we would briefly introduce and describe the basics and

basic machineries of molecular dynamics, see Refs.([2, 12, 23, 27, 28, 33, 39]) for further

in-depth and detailed discussions and analysis. For concerns in first principle molecular

dynamics for excited states and nonadiabatic transition , see Refs([10, 22]).

3.1 Classical Molecular Dynamics

Classical molecular dynamics requires a predefined potential energy function representing

Born-Oppenheimer ground state potential surface. This function, and based on scientific

intuitions, is empirically constructed and fitted to experimental observations, yet casted

in a functional form of geometrical quantities, e.g., relative distances, angles. Interatomic

potentials effectively sum up all the inter- and intramolecular electrostatic interactions.

Time variation of the electric and magnetic fields due to motion of charges are (assumed)

small and spin interactions are ignored, therefore magnetic effects are dropped out. The

interatomic (electrostatic) forces are conservative, since the electric field in a molecule is

irrotational by assumption. That is, forces depend only on positions and has no explicit

time dependence, thus they can be represented by a position-dependent potential energy
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function satisfying the following

FI = MIR̈I = − ∂

∂ �RI

V (�R1, �R2, ..., �RN), I = 1, 2, ..., N (3.1)

where FI , MI , RI are the respective force, mass and position of I − th atom , and V is the

potential function that depends on all atomic positions and thereby, couples the ’classically

interpreted’ motion of atoms. If the interacting particles in the simulation are molecules

rather than atoms, then also the equations of the rotational motion must be integrated

since neither sizes molecules nor their spherical asymmetry can be neglected anymore.

3.1.1 Derivation of Classical Molecular Dynamics

Following references [27, 28], we show how to understand the classical molecular dynamics

from the quantum point of view. Considering once more the molecular non-relativistic

time-dependent schödinger equation Eq.(2.9), with Φ (r, R; t) being the total wavefunction

of electronic, nuclear degrees of freedom and time, and H is the Hamiltonian given by

Eq.(2.10).

Invoking the time dependent self consistent field approximation (TDSCF), i.e, a separable

total wavefunction is written as a single determinant (configuration) ansatz

Φ (r, R; t) ≈ Ψ (r; t) χ (R; t) exp

[
ı

h̄

∫ t

t0

dt′Ee (t′)
]

(3.2)

where the electronic and nuclear wavefunctions are separately normalized

〈Ψ (r; t) |Ψ (r; t)〉 = 1, 〈χ (R; t) |χ (R; t)〉 = 1

and the phase factor has the form

Ee =

∫
drdR Ψ� (r; t) χ� (R; t) He Ψ (r; t) χ (R; t) (3.3)

Inserting Eq.(3.2) into the molecular schrödinger Eq.(2.9), with H being defined in Eq.(2.12)

and Eq.(2.13), multiply from left by 〈Ψ (r; t) | and 〈χ (R; t) |, integrate over R and r, and

apply the energy conservation

d

dt

∫
Φ� (r, R; t) H Φ (r, R; t) = 0
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the following system of coupled equations is obtained

ıh̄
∂Ψ

∂t
= −

∑
i

h̄2

2me

∇2
ri
Ψ +

{∫
drdR χ� (R; t) Vt (r, R) χ (R; t)

}
Ψ (3.4)

ıh̄
∂χ

∂t
= −

∑
I

h̄2

2MI

∇2
RI

χ +

{∫
drdR Ψ� (r; t) He (r, R) Ψ (r; t)

}
χ (3.5)

which defines the basis of the TDSCF. Each wavefunction above obey Schödinger equa-

tion but with time dependent effective potential obtained by appropriate averages over the

other degrees of freedom; the quantum mechanical expectation values of the coulombic

electrons-nuclei attractions for the electronic wavefunction, and the electronic hamiltonian

for the nuclear wavefunctions. These averages and the ansatz Eq.(3.2) lead to a mean-field

description of the coupled dynamics of electrons and nuclei.

Imposing the classical point particle representation (approximation) for nuclei, their corre-

sponding wavefunction is rewritten as

χ (R; t) = A (R; t) exp

[
ıS (R; t)

h̄

]
(3.6)

the amplitude A > 0 and the phase factor S are both real. Substitution in Eq.(3.5) for the

nuclei in TDSCF system, and then separating of the real and imaginary parts reads as

∂S

∂t
+

∑
I

1

2MI

(∇RI
S)2 +

∫
drΨ�HeΨ = h̄2

∑
I

1

2MI

(∇2
RI

A)

A
(3.7)

∂A

∂t
+

∑
I

1

MI

(∇RI
A)(∇RI

S) +
∑

I

1

2MI

A(∇2
RI

S) = 0 (3.8)

Eqs.(3.7,3.8) in the new variables A and S correspond exactly to Eq.(3.5). More important,

the term containing h̄ in Eq.(3.7) vanishes at the classical limit, and Eq(3.7) is reduced to:

∂S

∂t
+

∑
I

1

2MI

(∇RI
S)2 +

∫
drΨ�HeΨ = 0 (3.9)

which is similar to Hamiltonian-Jacobi equations of motions:

∂S

∂t
+ H (R,∇IS) = 0 (3.10)

with H being the classical hamiltonian:

H (R,P ) = T (P ) + V (R) (3.11)
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where R and P are respectively the generalized coordinates and their conjugate momenta,

and relate one another by the following transformation

PI ≡ ∇RI
S (R (t) ; t)

Newtonian equations of motion for nuclei ṖI = −∇RI
V (R) corresponding to Eq.(3.9) are

then

ṖI = MIR̈I (t) = −∇RI

∫
dr Ψ�HeΨ = −∇RI

V Ehr

e (R (t)) (3.12)

that is, nuclei move now according to laws of classical mechanics in the effective poten-

tial set up by all electrons. This potential depends only on the nuclear positions at a

time t, and is the electronic hamiltonian, He, averaged over electronic degrees of freedom

when the instantaneous set of nuclear positions R (t) is kept fixed. However, the nuclear

wavefunction χ (RI ; t) appears in the electronic part Eq.(3.4), it has to be replaced by

the nuclear positions for consistency; this is achieved by replacing the nuclear probability

density |χ (R; t) |2 by a delta-functions product
∏

I δ (RI − RI (t)) centered at the classical

nuclear instantaneous positions RI given by Eq.(3.12), the expectation values of nuclear

positions are thus ∫
dR χ� (R; t) RI χ (R; t)

h̄→0−→ RI (t) (3.13)

at this classical limit, the electronic time dependent schrödinger ’wave’ equation is

ıh̄
∂Ψ

∂t
= −

∑
i

h̄2

2me

∇2
ri
Ψ + Vt (r, R (t)) Ψ

= He (r, R (t)) Ψ (r, R; t) (3.14)

which shows that electrons evolve quantum mechanically and self-consistently with the clas-

sically moving nuclei according to Eq.(3.12). Now He, therefore Ψ, depends parametrically

on the classical nuclear positions {R (t)} at time ”t” through the potential Vt (r, R (t)).

Up to the present stage, only nuclei behave like classical particles, whereas electrons are

still quantum objects. Moreover, transition between different electronic states is possible

though the TDSCF leads to a mean field theory. This can be realized if the electronic

wavefunction Ψ for a fixed time ”t” is expanded in an appropriate basis of many electronic

states or determinants Ψk

Ψ (r, R; t) =
∞∑

k=0

ck (t) Ψk (r; R) (3.15)

the ck (t) coefficients are complex, with the properties
∑

k |ck (t)|2 ≡ 1, and |ckt|2 explicitly

describe the time evolution of the occupancy of the different k-states. One choice of the

basis set is the ”instantaneous” orthonormal adiabatic basis functions {Ψk} which result

from solving the time-independent schrödinger equation

He (r; R (t)) Ψk (r; R (t)) = Ek (R (t)) Ψk (r; R (t)) (3.16)
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where the instantaneous nuclear positions {R (t)} at a time ”t”, is substituted from Eq.(3.12),

{Ek} is the set of energy eigenvalues corresponding to the electronic hamiltonian He, and

{Ψk} are their associated eigenfunctions.

To examine the possible transition between different electronic states, we insert the elec-

tronic wave function expansion, Eq.(3.15), within the adiabatic basis obtained from Eq.(3.16),

into the force equation of the classical nuclei, Eq.(3.12), Hellmann-Feynman theorem then

yields

FI = MIR̈I (t) = −〈Ψ|∇RI
He|Ψ〉 (3.17)

∇RI
〈Ψ|He|Ψ〉 =

∑
k,l

c�
k (t) cl (t) ∇RI

〈
Ψk|He|Ψl

〉
=

∑
k

c�
k (t)

∑
l

cl (t) ∇RI
El δkl

=
∑
k,l

c�
k (t) cl (t)

(〈
∇RI

Ψk|He|Ψl

〉
+

〈
Ψk|He|∇RI

Ψl

〉
+

〈
Ψk|∇RI

He|Ψl

〉)

=
∑
k,l

c�
k (t) cl (t)

(
El

〈
∇RI

Ψk|Ψl

〉
+ Ek

〈
Ψk|∇RI

Ψl

〉
+

〈
Ψk|∇RI

He|Ψl

〉)

(3.18)

because the electronic eigenfunctions are orthonormalized

δkl =
〈
Ψk|Ψl

〉

0 = ∇I

〈
Ψk|Ψl

〉
=

〈
∇RI

Ψk|Ψl

〉
+

〈
Ψk|∇RI

Ψl

〉
→

〈
∇RI

Ψk|Ψl

〉
= −

〈
Ψk|∇RI

Ψl

〉

then, Eq.(3.18) with a little rearrangement becomes

−〈Ψ|∇RI
He|Ψ〉 =

∑
k,l

c�
k (t) cl (t)

(
−∇RI

El δkl + El

〈
∇RI

Ψk|Ψl

〉
+ Ek

〈
Ψk|∇RI

Ψl

〉)

= −
∑

k

|ck (t)|2 ∇RI
Ek +

∑
k,l

c�
k (t) cl (t) (Ek − El)

〈
Ψk|∇RI

Ψl

〉

but the hermitianity of the electronic hamiltonian gives

〈
Ψl|H|∇RI

Ψk

〉
=

〈
ΨlEl|∇RI

Ψk

〉
=

〈
∇RI

Ψk|H|Ψl

〉�

=
〈
∇RI

Ψk|EkΨl

〉�

=
〈
ΨlEk|∇RI

Ψk

〉

and the equations of motion of nuclei in the adiabatic basis are thus given by

MIR̈I (t) = −
∑

k

|ck (t)|2 ∇RI
Ek −

∑
k,l

c�
k (t) cl (t) (Ek − El) dkl

I (3.19)

where

dkl
I (R (t)) =

〈
Ψk |∇RI

Ψl

〉
; dkk

I (R (t)) ≡
〈
Ψk |∇RI

Ψk

〉
= 0 (3.20)
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are the non-adiabatic coupling terms. To evaluate the time evolution of the time-dependent

expansion coefficients of the time-dependent electronic wavefunction in the adiabatic ba-

sis from Eq.(3.16), ,substitute Eq.(3.15) into the time dependent electronic schrödinger

equation Eq.(3.14) is

He

∑
l

cl (t)
∣∣∣Ψl

〉
= ıh̄

∂

∂t

∑
l

cl (t)
∣∣∣Ψl

〉

= ıh̄
∑

l

ċl (t)
∣∣∣Ψl

〉
+ ıh̄

∑
l

cl (t)
∂

∂t

∣∣∣Ψl

〉

= ıh̄
∑

l

ċl (t)
∣∣∣Ψl

〉
+ ıh̄

∑
l

∑
I

cl (t)∇RI

∣∣∣Ψl

〉∂RI

∂t
(3.21)

where
∂

∂t
Ψl =

∑
I

∇RI
Ψl

∂RI

∂t

multiplying both sides of Eq.(3.21) from left by
〈
Ψk

∣∣∣, gives

ck (t) Ek = ıh̄ċk (t) + ıh̄
∑
I,l

cl (t) ṘId
kl
I (3.22)

which shows the possible non-adiabatic transition between the electronic states Ψk and Ψl,

where |ck (t)|2 is now interpreted as the probability density of finding the system is in the

adiabatic state Ψk at time ”t”.

When the energy difference between the ground and the first excited states is everywhere

large in comparison with the thermal energy, the electronic wave function at each time in-

stant can be restricted to the ground state Ψ0 of the electronic hamiltonian He in Eq.(3.16),

i.e., |c0(t)|2 = 1 in Eq.(3.16). In such a limit, the nuclei move on the single potential energy

surface defined by

V Ehr

e =
〈
Ψ0 |He|Ψ0

〉
≡ E0 (R) (3.23)

which is computed by solving the electronic time-independent schrödinger equation only

for the ground state:

HeΨ0 = E0Ψ0 (3.24)

Now, E0 is a function of nuclear positions R, and both Ehrenfest- and the ground state

Born-Oppenheimer potentials are identical.

Furthermore the overall ”internal interaction” potential is approximated to V appr which

is expanded to pair-wise, three-body, four-body and up to n-body contributions, these

contributions are categorized as intermolecular long-range and intramolecular short-range
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interactions

V Ehr ≈ V appr(R) =
N∑

I<J

VIJ(RI , RJ) +
N∑

I<J<K

VIJK(RI , RJ , RK)

+
N∑

I<J<K<L

VIJKL(RI , RJ , RK , RL) + · · · (3.25)

Potential expansion is practically truncated at some term to reduce the dimensionality

resulting from the increase of the number of active nuclear degrees of freedom. Within the

same potential expansion, electronic degrees of freedom do no longer appear explicitly but

are effectively included in a functional form of V appr potential.

Equation (3.23) justifies the separation of computations of nuclear dynamics from that

of the potential energy hypersurface. Assuming the possibility to solve the stationary

scrödinger equation (3.16) for as many nuclear configurations as possible, the classical

molecular dynamics approach is derived by the following three step scheme:

1. Solving Eq.(3.24) for many representative nuclear configurations to compute the

ground state energy E0.

2. The generated data points
(
R, V Ehr (R)

)
or some equivalent experimental data points

are fitted to a suitable analytical functional form to construct a global potential energy

surface.

3. The following Newtonian equation of motion

MIR̈I (t) = −∇RI
V appr (3.26)

is solved by applying analytically the gradient for many different initial conditions to

produce the nuclear classical trajectories on this global potential energy surface.

Classical Molecular Dynamics, revisited

In classical molecular dynamics, the quantum electrons are assumed to remain in their

instantaneous eigenstate (no change in their configurations) as they only respond instan-

taneously to the much slower motion of nuclei, henceforth their degrees of freedom are

integrated out. Thereafter nuclei evolve classically on one single Born-Oppenheimer poten-

tial energy surface represented by a functional form which effectively includes the electronic

effects. The single Born-Oppenheimer potential energy surface is traditionally identified

by the electronic ground state. It is now an entire classical mechanical problem, quan-

tum mechanical effects were by construction excluded, and so are chemical reactions, bond

formation or breaking, i.e., chemistry is hardly understood in such scheme.
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3.1.2 Finite difference method and the integration algorithm

Finite difference method:

Exact analytical formulae of solutions to initial value problems are usually rare and

generally difficult to find, they are furthermore not suitable to implement on computers.

An alternative method is to find an approximate function, or its discrete approximation,

which satisfies the differential equations along with their initial (boundary) conditions. One

approach is to provide numerical approximate solutions to differential equation problems

based on the finite difference approach. In this method, the differential equation is trans-

formed into a finite difference problem by discretizing the domain, continuous independent

variable(s) of the solution function, into infinitesimally separated points on a grid, the sep-

aration between any two adjacent points is known as the step. The discrete approximate

solutions are found at the grid’s successive points only and count for the overall solution.

The finite difference formulas are continuous obtained from Taylor expansion truncated at

some term, derivatives in the differential equation are then replaced by finite difference

approximations based only on values of the function itself at those discrete points.

Finite difference approximation for derivatives of a univariate function

From calculus, a derivative of a univariate function is defined as

df

dx
≡ f ′(x) := lim

δx→0

f(x + δx) − f(x)

δx

omitting the limit in the above expression is a valid approximation as long as the δx is

finite and small, if the continuous independent variable x is further discretized on a grid

such that xn+1 = xn + δx, then

[
df

dx

]+

n

:=
f(xn+1) − f(xn)

δx
(3.27)

where n indicates the grid point at which the derivative is approximated, and + sign

indicates the so-called forward approximation. Considering a third-order taylor expansion

of f(x) at the point xn+1 reads:

f(xn+1) = f(xn) + δxf ′(xn) +
1

2
f ′′(xn)δx2 +

1

6
f ′′′(xn)δx3 + O(δx4) (3.28)

A backward approximation is also possible and it takes the form:

[
df

dx

]−

n

:=
f(xn) − f(xn−1)

δx
(3.29)
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where the third-order taylor expansion at the point xn−1 = xn − δx is:

f(xn−1) = f(xn) − δxf ′(xn) +
1

2
f ′′(xn)δx2 − 1

6
f ′′′(xn)δx3 + O(δx4) (3.30)

each of the above one-sided (forward and backward) approximations to the first derivative

has a first order accuracy, i.e., the discretization (truncation) error is of the order O(δx).

An alternative approximation, simply the average of the two one-sided above, is referred

to as the centered approximation, and is expressed:[
df

dx

]0

n

:=
f(xn+1) − f(xn−1)

2δx
=

1

2

( [
df

dx

]+

n

+

[
df

dx

]−
n

)
(3.31)

substituting eq(3.28) and eq(3.30) into eq(3.31), the centered approximation reads:[
df

dx

]0

n

= f ′(xn) + O(δx2)

which clearly exhibits a second order accuracy.

The finite difference approximation for a second order derivative can be computed

in analogous ways, the forward approximation is:[
d2f

dx2

]+

n

:=
f ′(xn+1) − f ′(xn)

δx

=
1

δx

[(
f(xn+2) − f(xn+1)

δx

)
−
(

f(xn+1) − f(xn)

δx

)]

=
1

δx2

(
f(xn+2) − 2f(xn+1) + f(xn)

)
(3.32)

while the backward difference approximation is:[
d2f

dx2

]−
n

:=
f ′(xn) − f ′(xn−1)

δx

=
1

δx

[(
f(xn) − f(xn−1)

δx

)
−
(

f(xn−1) − f(xn−2)

δx

)]

=
1

δx2

(
f(xn) − 2f(xn−1) + f(xn−2)

)
(3.33)

both eq(3.32) and eq(3.33) have an error in the first order of the discretization step δx.

The centered approximation can be computed as:[
d2f

dx2

]0

n

:=
f ′(xn+1) − f ′(xn−1)

2δx

=
1

2δx

[(
f(xn+2) − f(xn)

2δx

)
−
(

f(xn) − f(xn−2)

2δx

)]

=
1

4δx2

(
f(xn+2) − 2f(xn) + f(xn−2)

)
(3.34)
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which can be achieved alternatively by applying the forward, then backward approximations

or the other way around, as follows:[
d2f

dx2

]0

n

:=
f ′(xn+1) − f ′(xn)

δx

=
1

δx

[(
f(xn+1) − f(xn)

δx

)
−

(
f(xn) − f(xn−1)

δx

)]

=
1

δx2

(
f(xn+1) − 2f(xn) − f(xn−1)

)
(3.35)

or [
d2f

dx2

]0

n

:=
f ′(xn) − f ′(xn−1)

δx

=
1

δx

[(
f(xn+1) − f(xn)

δx

)
−

(
f(xn) − f(xn−1)

δx

)]

=
1

δx2

(
f(xn+1) − 2f(xn) − f(xn−1)

)
(3.36)

eq(3.35) and eq(3.36) are equivalent to eq(3.34) if δx in the latest two expressions is doubled.

The truncation error again is of order δx2 as when equations 3.28 and 3.30 are substituted

in eq(3.36) or its equivalent ones above, the approximation gives:
[
d2f

dx2

]0

n

=
d2f(xn)

dx2
+ O(δx2)

Time integration algorithm

In molecular dynamics simulations, the successive configurations of a system are

obtained by integrating the equations of motion, i.e., Newton’s second law. The resultant

solution function (trajectories) describes obviously the change in positions and velocities of

the moving particles over time. Under influence of continuous potentials, the force on each

particle varies with its position as well as positions of some/all other particles; this coupled

motion of particles gives rise to a complicated many-body problem. To cope with this

difficulty, the equations of motion are numerically integrated using the simple, yet efficient

method of finite difference discussed above. The trajectory of the system is a univariate

function of time which is discretized into infinitesimally separated points on the time axis,

such separation is of the order of the atomic unit of time, at least one order of magnitude

less than the fastest motion (vibration) in the system. The choice of a small time step

reduces both the truncation and the round-off errors [12], and that is why a time step in

the order of a femtosecond is usual in most MD applications.

Numerical integration of the equations of motion of the interacting particles, requires

the time integration algorithm. Such algorithms are based on the finite difference scheme
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which is based on ’truncated’ Taylor expansion at some terms. Once the positions and their

first and second order time derivatives are known at some time (point on the grid), their

equivalent quantities are computed by the integration algorithm. Among the so many time

integration algorithms and most commonly used in MD is the Verlet integration algorithm,

the basic idea is to consider a third order Taylor series expansion of the position r(t) twice,

one forward and one backward in time, similar to Eqs.(3.28 and 3.30)

r(tn+1) = r(tn) + δt
d

dt
r(tn) +

1

2

d2

dt2
r(tn)δt2 +

1

6

d3

dt3
r(tn)δt3 + O(δt4) (3.37)

r(tn−1) = r(tn) − δt
d

dt
r(tn) +

1

2

d2

dt2
r(tn)δt2 − 1

6

d3

dt3
r(tn)δt3 + O(δt4) (3.38)

the sum of eqs 3.37 and 3.38 gives:

r(tn+1) = 2r(tn) − r(tn−1) + a(tn)δt2 + O(δt4) (3.39)

where a(tn) =
d2

dt2
r(tn) = − 1

m
∇V (r(tn)) is the acceleration of particle, and V is the

potential energy surface. The error is shown to be of the order Oδt4 in eq 3.39. One can

compute velocities from the positions by using the centered finite method as:

v(tn) =
d

dt
r(tn) =

r(tn+1) − r(tn−1)

2δt
(3.40)

This velocity expression is associated with an error of the order δt2 rather than δt4 which

could affect the computations. However, some variants of the verlet algorithm have been

developed: the leap-frog and the velocity Störmer-Verlet ( the later is simply referred to as

velocity Verlet).

The leap-frog is a modified version of the Verlet algorithm to obtain more accurate

velocity expression than in eq 3.40 and overcome thus the errors in the order δt2, this is

usually used when the kinetic energy is needed as for example in velocity scaling.

r(tn+1) = 2r(tn) − r(tn−1) + a(tn)(δt2)

= r(tn) +

(
r(tn) − r(tn−1)

δt

)
(δt) + a(tn)(δt2)

= r(tn) + v(tn− 1
2
)(δt) + a(tn)(δt2)

= r(tn) +
(
v(tn− 1

2
) + a(tn)(δt)

)
(δt)

= r(tn) + v(tn+ 1
2
)(δt) (3.41)

it is clear that, v(tn− 1
2
) =

(
r(tn) − r(tn−1)

δt

)
is just the centered finite difference approxi-

mation of the first order time derivative of the position at the grid point tn − 1
2

at points

half the time step away, similarly v(tn+ 1
2
) =

(
v(tn− 1

2
) + a(tn)(δt)

)
is the centered finite
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difference expression of a(tn) as the first order time derivative of v(tn) using again half

time step.

In the velocity Störmer Verlet algorithm, positions, velocities and accelerations at

some instant of time are obtained from their counterparts at the very earlier time instant

(time step) as below shown:

r(tn+1) = r(tn) + v(tn)(δt) +
1

2
a(tn)(δt2) (3.42)

v(tn+ 1
2
) = v(tn) +

1

2
a(tn)(δt) (3.43)

a(tn+1) = − 1

m
∇V (r(tn+1)) (3.44)

v(tn+1) = v(tn+ 1
2
) +

1

2
a(tn+1)(δt) (3.45)

where r, v, a, are the position, velocity and acceleration of the particle respectively.

Verlet algorithm as seen is not a self-starting, that is it depends on two sets of initial

conditions of positions in two instants back in time where we have obviously one and only

one set of initial positions and velocities, one way to overcome such a case is by using the

truncated Taylor series:

r(t−1) = r(t0) + v(t0)(δt)

to get the second set of positions at earlier times. The initial velocities at time t0 can be

set to zeros, hence r(t−1) = r(t0), or assigned from a Maxwellian distribution at a certain

temperature ’T’. In the later case, the velocities must have a zero mean and their variance is

one, i.e., there no translational motion for whole system since the total linear momentum is

zero. Such ambiguity does not occur in either the leap-frog or the velocity Verlet schemes as

they take only one set of initial positions. One of the remarkable properties of Verlet algo-

rithm is the time reversibility [47], i.e., under the transformation,
(
r (t + δt) → r (t − δt)

)
,

such algorithm is invariant. The forward and backward time evolution are equally possible

to compute in principle using Verlet algorithms, whereas in practice round-off errors are

the reason for numerical irreversibility.

3.2 Ab initio Molecular Dynamics

In situations when classical molecular dynamics breaks down or it becomes extremely in-

appropriate, in addition to the absence of one universal fixed interatomic potential model,

ab initio Molecular Dynamics is used in intention to minimize the amount of fitting and

guesswork. In the ab initio discipline, the electronic variables can not be integrated out,

and the quantum nature of the very small electrons is considered by including their active
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degrees of freedom. Forces on nuclei are then obtained from first principle electronic struc-

ture calculations for each generated molecular dynamics trajectory, and the subsequent

nuclear trajectories are generated by solving Newton’s equations of motion on the ground

state electronic surface. Some case examples where ab initio approach is devised, are:

1. Effects of finite temperature.

2. Non-trivial reaction coordinates.

3. Materials properties under high pressure and high temperature.

4. Bond making, bond breaking and any corresponding qualitative change in bonding.

5. Systems of many different types of atom where there are many different interatomic

interactions that have to be parameterized.

Though the ab initio schemes are advantaged with accuracy over the classical approach,

they are still limited to small systems (hundreds to thousands of atoms) and to short time

dynamics and/or sampling times. Those limits are due to the difficulty to handle the many

electron system, and to select an appropriate approximation for solving the Schrödinger

equation.

In the following, we would briefly describe the three variants of ab initio methods, namely:

Born-Oppenheimer, Ehrenfest and Car-Parrinello Molecular Dynamics. For more detailed

discussions, see Refs([27, 28]).

3.2.1 Born-Oppenheimer Molecular Dynamics

Born-Oppenheimer Molecular Dynamics considers the quantum nature of electrons by solv-

ing the electronic time-independent Schrödinger equation for each time step, i.e., each nu-

clear configuration, where the time-dependence of the electronic structure is included only

via the nuclear motion. The time evolution of the system in the electronic ground state, is

described by the simultaneous numerical solutions of the following two equations

EBO

0 = min
Ψ0(r,R)

{〈
Ψ0 (r, R) |He|Ψ0 (r, R)

〉}
(3.46)

where He was defined in Eq.(2.13). The classical dynamics of nuclei is described by

MIR̈I(t) = −∇RI
EBO

0 (3.47)
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3.2.2 Ehrenfest Molecular Dynamics

Ehrenfest TDSCF Molecular Dynamics method is identified by simultaneously solving

Eqs.(3.12 and 3.14) numerically, with the assumption that the electronic subsystem remains

in one single adiabatic state which is usually taken to be the ground state 〈Ψg (r, R (t)) |.
The respective nuclear and electronic equations are :

MIR̈I (t) = −∇RI
〈Ψg (r, R (t)) |He|Ψg (r, R (t))〉 (3.48)

ıh̄
∂Ψg (r, R (t))

∂t
= He (r, R (t)) Ψg (r, R (t)) (3.49)

The point catches attention here is that self-consistent minimization (diagonalization) of

Eq.(3.46) has to be performed in each time step, it is stated that in Ehrenfest method

a wavefunction minimizing the electronic hamiltonian at the start will always be in its

respective minimum when the nuclei evolve classically according to Eq.(3.48). This ini-

tial wavefunction is obtained by one-time self-consistent diagonalization. However, the

time-independent electronic Schrödinger equation is solved in Born-Oppenheimer method,

whereas it is the electronic time-dependent Schrödinger equation is to be solved. This dif-

ference is reflected in the size of the maximum timestep, i.e. in Born-Oppenheimer method

the size of the maximum time step follows the nuclear motion, while in Ehrenfest Molecular

Dynamics the electronic motion controls the time step in Ehrenfest Molecular Dynamics.

3.2.3 Car-Parrinello Molecular Dynamics

Car-Parrinello Molecular Dynamics is a method that allows the use of a big time step

controlled by the nuclear motion, and at the same time takes into account the electronic

time-evolution in a different fashion than solving electronic time-dependent Schrödinger

equation. To clear the point we consider the following, the ground state energy of the

electronic subsystem, E0 = 〈Ψ0|He|Ψ0〉, was shown to be a function of nuclear positions R,

it can be considered also as a functional of the total wavefunction Ψ0, if this wavefunction

is expanded in time-dependent one-particle basis set (orbitals); E0 is then a functional

of those orbitals {ψi(r, t)}. This way, forces on orbital would be computed in analogy

to forces on nuclei as functional derivatives of a Lagrangian function with respect to the

orbitals themselves. R. Car and M. Parrinello proposed, in their famous 1985 paper ”Uni-

fied Approach for Molecular Dynamics and Density-Functional Theory[9] ”, the following

Lagrangian for a molecular system

Lcp =
N∑

I

1

2
MIṘ

2
I +

n∑

i

1

2
μi〈ψ̇i|ψ̇i〉 − 〈Ψ0 |He|Ψ0〉 + constraint (3.50)
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where μi is the fictitious mass assigned to the i-orbital, and it has units of energy times

a squared time since orbitals are unitless. The constraint, e.g. orthonormality, within the

total wavefunction might be a function of both R, and {ψi}, and will lead to a constraint

dynamics. The Newtonian equations of motion, obtained from Euler-Lagrange equations,

for nuclei and orbitals are

d

dt

(
∂L
∂ṘI

)
=

∂L
∂RI

(3.51)

d

dt

(
δL
δψ̇�

i

)
=

δL
δψ�

i

(3.52)

that is, the Car-Parrinello equations of motion for nuclei and orbitals are

MIR̈I (t) = −∇RI
〈Ψ0|He|Ψ0〉 + ∇RI

(constraint) (3.53)

μiψ̈i = − δ

δψ�
i

〈Ψ0|He|Ψ0〉 +
δ

δψ�
i

(constraint) (3.54)

Have the system’s ground state wave function been at a given time known, the dynamical

behavior of that system is followed with the help of Eqs.(3.53, 3.54) which describe the

simultaneous and concurrent propagation of electrons (orbitals) and nuclei. Iteration of

the electronic structure problem would not be needed as long as the coupling (kinetic

energy transfer) is small between nuclei and electrons. When the fictitious kinetic energy(∑
i

μi〈ψ̇2
i |ψ̇2

i 〉
)

of the orbitals is low, electrons remain in their instantaneous ground state on the Born-

Oppenheimer surface, still the orbitals’ fictitious kinetic energy must be hight enough so

that electrons adiabatically respond to the nuclear motion. General and deeper insights on

the Car-Parrinello method are also provided in reference [44], in addition to the previously

mentioned references [27, 28].



Chapter 4

Interatomic Potential Modeling

We start this chapter by a description of the interatomic interactions along with their

assumed nature and how forces are related to a pre-defined scaler potential energy function.

Then a historical overview of the design development of the potential model interactions is

followed. In the second section we provide an intensive description of two major approaches

of potential modeling for covalent systems, we discuss afterwards possibilities on how to add

new features in those two forms of potential so to differentiate between the two diamond

structures described in Chap.(6).

4.1 Many-body potential Models

It was only the electrostatic interactions considered in the molecular Schrödinger equation.

It is further assumed that the expectation value of the electronic hamiltonian Eq.(2.10)

describes a conservative interatomic potential, i.e. interactions are path independent and

irrotational. Then interatomic forces can be within the above assumption evaluated as the

gradient of that scaler interatomic potential function V(R), where (R ≡ {R1, R2, . . . , RN})
is the set of positions of the N nuclei in the system

FRI
= −∇RI

V (R1, R2, . . . , RN)

Since a conservative potential is invariant under translation and rotation, the corresponding

equations of motion are also invariant, and their solutions are unique for the same set of

initial conditions in all inertial frames. Lengths and angles under rotation and translation

are preserved, and the potential functions can be expressed in terms of their relative position

coordinates.

V = V (r12, · · · , r1N , rIN , · · · , rN,N−1)

The potential function is furthermore expanded to pair-wise, three-body, and up to many-

body contributions which are moreover categorized as intermolecular long-range and in-

39



40 CHAPTER 4. INTERATOMIC POTENTIAL MODELING

tramolecular short-range interactions, see Eq.(3.25)

V (R) =
∑
i<j

V2(rij) +
∑

i<j<k

V3(rij, rik, rjk) +
∑

i<j<k<l

V4(rij, rik, ril, rjk, rjl, rkl) + .... (4.1)

where R is the atomic configuration. The expansion above is practically truncated at some

term to reduce the dimensionality resulting from the increasing number of active nuclear

degrees of freedom, where higher-order interactions would be instead effectively modeled.

In the early days of Molecular Dynamics, only pair potentials were mostly used, spe-

cially Morse and Lennard-Jones formulae. While Morse potential describes bonding in

diatomic molecules, the model of Lennard-Jones describes approximately the isotropic

(non-directional and only distant-dependent) parts of van der Waals (long-range attrac-

tive dipolar) and short-range repulsive forces, and usually parametrized in the ’6-12’ form

V0(r) = −A

r6
+

B

r12
(4.2)

where A and B are positive constants. The isotropic character of the two former potentials

would limit their outcomes only to highly symmetric close-packed structures, i.e. structures

of a minimized surface and a maximized number of neighbors.

Generally, all analytical pair potentials describe only the isotropic parts of interactions.

They would moreover predict hexagonal close-packed structures. The cubic close-packing

nature of Argon could be predicted by using Dymond-Alder numerical pair potential [11].

Experiments provide however that, except helium, nobel gas crystals are cubic close-packed

with roughly 0.001 deeper energy minimum than if they would have been hexagonally close-

packed. The interplay between experimental and pair potential outcomes was stated in

Ref.([38]) as follows:

”Some of the earliest experimental evidence for many-body interactions comes

from the noble gas solids. The most accurate nobel gas pair potentials incorrectly

predict a hexagonal close-packed structure, and crystal binding energies indicate

approximately 10% deviations from the pairwise additivity.”

One of the earliest attempts to model the anisotropic many body interaction was by Axilrod

and Teller. In their formula[4], a triple-dipole dispersive interaction was proposed via the

following three-body correction term.

V123 = ε0

[
1 + 3 cos(γ1) cos(γ2) cos(γ3)(

r12r13r23

)3

]
(4.3)

where γn is the angle subtended at atom n, and ε0 is a positive parameter.
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In metallic solids, atoms are held together by the co-called metallic bonds. This type of

bonding is identified by molecular orbitals delocalized over all atoms where the valence

electrons in those orbital are shared among all nuclei. The whole structure is bound due to

the isotropic coulomb attraction between those delocalized valence electrons and positive

cores. The isotropy in metallic bonding leads to closed-packed structures that maximize

both space filling and coordination number, i.e. number of closest neighbors.

Ionic bonds in analogy are characterized by the highly localized molecular orbitals, and

stability of the ionic structures are attributed to the electrostatic attraction between the

opposite ions in the solid. Ionic solids are also expected to form closed packed structures,

however the relative size of the cation and anion seems to have influence on the coordination

number[35]. In a brief prospective, the many body effects in ionic or metallic system are

usually introduced in functional form of the coordination number of an atom. Physically,

it takes into account the effects of the local environment of the atom i.e. the bigger the

coordination number is (or the more the neighbors are), the weaker the bonds become as

a consequence of Pauli exclusion principle.

Structures in which atoms have a low coordination number, less or equal to 4, provide

evidence for a dominant role of the highly directional covalent bonding among nearest

neighbors. A weaker directional character is also evident for hydrogen bonding and dipole-

dipole interactions, and its absence in pair potentials, i.e., the absence of many body effects,

makes pair potentials inappropriate to simulate open structures such as the tetrahedral

based diamond for example. Stillinger and Weber have stated this clearly as follows:

”No reasonable pair potential will stabilize the diamond structure, as VLJ stabi-

lizes the close-packed crystals characteristics of the noble gases.”

They, Stillinger and Weber, have in 1985 constructed a potential formula, Sec.(4.2.1), that

has a three-body term which models the directionality in the covalent net of diamond by

including explicit dependency on the bond angle, i.e., the angle between two bonds centered

at one atom.

V =
∑

i<j

V2({rij}) +
∑

i<j<k

V3({rij}, {θijk}) (4.4)

where θ = 109.5◦ is the angle of a minima.

Some atoms adapt themselves to different environments in different structures, this is the

idea behind the environment dependent interaction potential (EDIP)[17] and its extended

or generalized form[26]. EDIP can be thought of as a modified version of Stillinger-Weber

formulation, where both the two-body and the angular three-body contributions depend on

the configuration of the atoms, i.e. on the number of neighbors, where the later is included

in the potential with the help of a continuous switching cutoff function.
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Chemistry of atoms is confirmed such that competing bonds on one atom weaken each

other, i.e., a bond to a central atoms is weaker if the same atom forms another bond with

another atom. This is the central idea of the Bond Order Potential (BOP). BOP is simply

written as a pair interactions with coefficients of either attraction, repulsion or both are no

longer constant but modified by the local environment of each atom, i.e.,

Vij = V r
ij(rij)

∑
k

Aij({rij}, {θijk}) + V a
ij(rij)

∑
k

Bij({rij}, {θijk}) (4.5)

where Aij and Bij are the strength of repulsion V r
ij and attraction V a

ij respectively and they

are functions of the atom’s local environment, see Sec.(4.2.2). Bij is described as a three-

body interactions, and usually short ranged to the nearest neighbors of the atom, analysis

reveals that a 4-body term can be strengthen by controlling the range of interactions, see

Sec.(4.2.3).

4.2 Potential models for covalent systems

In contrast to metallic and ionic systems, the anisotropic interactions in covalent structures

do not maximize the space filling, this is a consequence to the low coordination number

characterizes the covalent interactions. In what follows we will discuss two potential for-

mulas representing anisotropic potential energy-surface, and mark their basic approach to

simulate covalent systems. We would also describe how possible to effectively include a

four-body interactions i.e. effects of the so called dihedral dependences.

4.2.1 Stillinger-Weber potential

Stillinger and Weber potential defined their potential formula[36] as follows:

Φ(r1, r2, r3, ...., rN) =
∑
i<j

v2(ri, rj) +
∑

i<j<k

v3(ri, rj, rk) + ...... (4.6)

Introduce energy and length units, ε and σ,

v2(ri, rj) = v2(rij) = εf2(rij/σ)

v3(ri, rj, rk) = εf3(ri/σ, rj/σ, rk/σ) (4.7)

f2(r) =

⎧⎪⎨
⎪⎩

A(Br−p − r−q) exp [(r − a)−1] , r < a

0, r ≥ a

(4.8)
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f3(ri, rj, rk, ) = h(rij, rik, θjik) + h(rji, rjk, θijk) + h(rki, rkj, θikj) (4.9)

where θijk is the angle between rji and rki, at the vertex i. The functions h have two

parameters, (λ, γ) > 0, which is nonzero only if both rij < a and rik < a

h(rij, rik, θjik) = λ exp
[
γ(rij − a)−1 + γ(rik − a)−1

] (
cos θjik +

1

3

)2

(4.10)

and identically equal to zero outside of these two conditions.

They made a limited search, their parameters:

A = 7.049556277, B = 0.6022245584

p = 4, q = 0, a = 1.80

λ = 21.0, γ = 1.20,

with units in Ångström and electronvolt.

4.2.2 Tersoff’s potential

Based on Abell’s work[1], J. Tersoff constructed in 1988 a potential formula for elemental

covalent systems[42], a modified version of his earlier formulation found in Ref.([40]) ,

this formula is based on the chemical concept of bond order introduce by Linus Pauling.

Bond order potential considers the influence of the closet neighbors to one atom on its

bonding strength. The bond strength in Tersoff’s model includes the effect of the angular

configuration of the covalently bonded atoms, i.e., the characteristic directional nature of

the covalent bonds. The proposed potential is:

E =
1

2

N∑
ı=1
j�=ı

Vıj

Vıj = fc(rıj)[aıj fR(rıj) − bıj fA(rıj)]

(4.11)

where

fR(r) = A exp(−λ1 r)

fA(r) = B exp(−λ2 r)

(4.12)
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are the repulsive and attractive interactions respectively, andfc(r) is an appropriate cut-off

function defined by Tersoff as:

fc(r) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, r < R − D

1
2
− 1

2
sin[π

2
(r−R)

D
], R − D < r < R + D

0, r > R + D

(4.13)

The term aij represents the repulsion strength, and its proposed form is:

aıj = [1 + (αηıj)
n]−

1
2n

ηıj =
∑
k �=ı
k �=j

fc(rık) exp[λ3
3(rıj − rık)

3
] (4.14)

when α is sufficiently small, aij ≈ 1. Tersoff set α to zero so that aij = 1, i.e., repulsion

between two atoms is not influenced nor modified by the presence of other atoms. Similarly,

the bıj term represents the attraction strength whose form is:

bıj = [1 + (βζıj)
n]−

1
2n

ζıj =
N∑

k �=i
k �=j

ζıjk (4.15)

ζıjk = fc(rık) g(θıjk) exp[λ3
3(rıj − rık)

3
]

g(θ) = 1 +
( c

d

)2

− c2

d2 + [h − cos(θ)]2

note that, unless the two atoms ı and j have exactly similar local surroundings ’environ-

ments’, bıj �= bjı, i.e., the bonding strength has in general asymmetric formulation.

Parameters for Carbon as given in [41] are:

A (eV) 1393.6 n 0.72751

B (eV) 346.74 c 38049

λ1 (Å−1) 3.4879 d 4.3484

λ2 (Å−1) 2.2119 h -0.57058

λ3 (Å−1) 0 R (Å) 1.95

β 1.5724 ×10−7 D (Å) 0.15

Tersoff himself has extended his model where he proposed a general form to treat the

heteronuclear bonds for multicomponent system[43].



4.2. POTENTIAL MODELS FOR COVALENT SYSTEMS 45

Brenner showed in [6] that under a reasonable choice of the functionals and parameters,

the expressions of both the embedded-atom method, developed by Daw and Baskes, and

that of Tersoff model are identical. Furthermore Brenner [7] indicated the nonphysical

behavior resulting from interaction between a 4-coordinated and another 3-coordinated

Carbon atoms where bonding in such a case is better described as over-binding of radicals.

The absence of a nonlocal effects ,e.g., conjugated and non-conjugated bonding would

also lead to a physical inconsistency. In attempt to correct both problems above and

simultaneously keep the fit of Tersoff’s formula, he proposed a sum over bonds in Eq.(4.11),

and introduced a nonlocal term, to diversify conjugated and non-conjugated systems, in

the attraction strength which is then averaged as follows

bij =
bij + bji

2

For the case of hydrocarbons as well as Carbon systems, he has introduced a new empirical

potential expression based on the Abell-Tersoff empirical bond order formalism. For more

information on his formula, the reader is referred to [7]. A second-generation potential

energy function [8] based on the bond order formalism was later proposed, by Brenner and

coauthors, for solid carbon and hydrocarbon molecules. According to Brenner, the new

approach allows a classical description of covalent bond breaking and forming along with

the associated changes in atomic hybridization.

4.2.3 The four body correlations and the cut-off features

A large number of simulations is based on the so called bond-order potentials, mainly the

Tersoff and Brenner versions. These potentials are highly empirical, based originally on

the concept of bond order, i.e. the presence of other atoms (bonds) influences the strength

of the individual terms of the potential. The potential energy, giving rise to the individual

forces, assumes a full summation over all of the constituents, in practice limited by the

cut-off properties of the model. This limit marks this potential essentially as a three-body

interaction model, i.e. it would not, similar to Stilinger-Weber formula, distinguish between

structures that have different four-body configurations (dihedral angles), e.g the structures

of diamond and lonsdaleite. In this part we have studied critically the current versions of

these potentials, with respect to how they can and how they in fact do incorporate the

desired physical features of the atomic systems in question. In our studies we have first

noticed a somewhat unexpected strong dependence on the cut-off parameters, in fact as

illustrated for the case two atoms in Fig.(4.1), the main attractive forces are determined by

the derivative of the cut-off function. This is not a serious problem in principle, since all the

parameters have been found appropriate in the rich spectrum of applications, but we are

rather pointing to the possibility of greatly simplifying the mathematical functions used.
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The most important question we have been pursuing is how the very complex mathematical

form incorporates the structural features, as visualized by the angles between the bonds,

and related further geometrical features.
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(a) Role of the cutoff in potential
between two atoms.

(b) Role of the cutoff in the force
between two atoms

Figure 4.1: Cutoff role in Tersoff-Brenner formalism

The cut-off function used in most Tersoff-Brenner applications is the cosine-type cut-off

(4.13) which does not have a smooth derivative. In all our work it was replaced by the

everywhere smooth and infinitely differentiable Fermi function

1

exp( r−μ
ν

) + 1
(4.16)

the parameter ν can be easily adjusted. Fig.(4.2) shows the comparison of the two cut-

off features, and Fig.(4.3) shows how to control the Fermi cutoff, where the parameters

μ = (R2 + R1)/2 and ν = (R2 − R1) ∗ π
20

in Eq.(4.16), and the parameters R = R1+R2

2
and

D = R2−R1

2
in Eq.(4.13).

The geometry hidden in Tersoff potentials is of the same type as in Stillinger-Weber formula,

i.e. the angle must be close to the ”preferred” angle (θ0 = cos−1(h = −0.57058) ∼ 124.7907◦)

which minimizes the angular function in Eq.(4.16). Since only one angle is however in-

cluded, how can Tersoff-Brenner potentials generate both graphene and diamonds? We

believe this is a consequence of the topological properties of the Euclidean space as a sec-

ond factor, i.e. a slight deviation from the preferred angle θ0 results in only a slight change

in the attraction strength, it is rather possible to build up both structures due to the fact

that hexagons (angle 120◦) cover the plane, and highly ordered tetrahedral-based geome-

try (angle of 109.5◦) results in hexagonal and cubic diamonds in the 3-dimensional space.

Similarly, the angle of a regular pentagon (108◦) would result if atoms are arranged in a

spherical shell, as it is the case of Buckminsterfullerene (C60).
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Figure 4.2: Tersoff-Brenner cutoff and Fermi cutoff
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Carbon atom in both diamond and lonsdaleite structures has up to the first neighbors

a completely identical environment. The interaction with the nearest neighbors can be

sufficiently well represented by a three-body interaction of as simple type as the Stillinger-

Weber ,Tersoff-Brenner potentials contain in principle more complex correlations. The

angular features in the Tersoff-brenner potential concern only the bond angle, i.e. the

bonding strength bij is maximized for the (ijk)-triple when the angle θijk is close to the

value of θ0 = cos−1(h), see Eq.(4.16). However diamond and lonsdaleite differ one another

in the four-body configuration (dihedral angle), only the 60◦ dihedral angle (staggered

configuration) appears in diamond whereas lonsdaleite has both the staggered and the

eclipsed (0◦ dihedral angle) configurations. The difference in diamond family structures

can be seen by the aliphatic type and boat type chains, see the figure 4.4. To differentiate

between those two different 4-atom conformations in the two discussed structures, a 4-

body correlation must be made effective in the interaction model. Due to the implicit sum

(a) The armchair chain
characterizes lonsdaleite.

(b) The aliphatic chain in both
lonsdaleite and diamond

Figure 4.4: Carbon Chains in diamond polymorphs

over all triplets in the bond strength of the Tersoff-Brenner potentials, one would expect

the possibility to have a 4-body correlation. However, with the cut-off function used in

the standard formulation, the mutual influence is limited to the nearest neighbors, and

the standard cut-off prevents any higher than a 3-body correlation. If repulsion would be

allowed to act over a longer range, using a different cut off for each of the two terms, one

could in principle model a four body correlation using only 3-body interactions without

any other modifications of the Tersoff-Brenner model, see Fig.(4.5).

There is no particular reason why the repulsion and attraction parts should have identical

range, but it remains to be tested how extensive modifications to the whole model would

be needed to implement such changes of the cut-off feature. Without any such modifica-

tion, Both Tersoff-Brenner and Stillinger-Weber interactions lead to a situation where both

diamond and lonsdaleite are energetically completely equivalent. The effective four-body
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4

4’

3 2

1

The cut-off role in effectively mod-
eling a four body correlation for
Tersoff-Brenner formula. The solid
red line does not distinguish between
atom 4 or 4

′
seen from atom 1,

whereas the dashed red line indi-
cates the difference. Both blue lines
indicate no difference in three-body
terms 234 and 234

′
seen from atom

2, i.e. the components ζ324 = ζ324
′ ,

see Eq.(4.16)

Figure 4.5: 4-body correlations

effect due to a longer repulsion discussed here for the Tersoff-Brenner case would give a

similar effect also in the case of the Stillinger-Weber formula, even without introducing a

new explicit 4-body term. With this same approach, lonsdaleite would become energetically

less favorable than diamond, which is a desirable result, both from observation and from

calculations, see reference [31]. The above suggested procedure can be used to diversify

any two 4-body configuration, it is a matter of what range in which the cut-off function is

active.

The effective four-body interaction modeled this way is at the expenses of getting the an

energy barrier as seen in Fig.(4.6). This energy hump can probably be interpreted as the

amount of energy needed to form or break the chemical bond between two atoms since this

hump is negligible when the all bonded neighbors are considered. Reference [34] provides a

similar attitude to effectively model implicitly all angular features by only using an isotropic

pair potential.
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Figure 4.6: Energy barrier and the shape of the force
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Finally we show why Tersoff-Brenner formalism is not additive, and why the functional

forms are always an exponential. The many-body interaction in Tersoff approach can be

rewritten in the general form

V (r1, r2, . . . . . . rN) =
1

2

N∑
i

N∑
j;j �=i

Fij

(
N∑

k �=i,j

G(ri, rj, rk)

)

One can imagine that this form is a result of a certain summation of this type of series:

V (r1, r2, . . . . . . rN) =

(pairs)∑
i,j;i<j

Pij (ri, rj) +

(triplets)∑
i,j,k

Tijk(ri, rj, rk)

+

(quadruplets)∑
i,j,k,m

Qijkm(ri, rj, rk, rm) + . . . (4.17)

in the sense described by Stillinger and Weber. However, only special types of the latter

general expansion when summed would result into the former type of expression.



Chapter 5

Some programing aspects for
molecular dynamics

We describe herein some of the aspects we have constantly used in programming Molecular

Dynamics codes for investigation and explorations. The first is the fact that not all terms

of geometrical quantities or forces are unique, thus they need not be directly calculated.

The second is somehow related, for a short-range potential only some pairs in the system

interact and again we do not need compute the zero-terms, those undesired terms are

excluded by application of the soon described Verlet list. The third is the application of

the periodic boundary conditions which serves to exclude effects of both the surface and

the finite number of particles in the simulation.

5.1 Symmetry and antisymmetry

When coding a MD program, the first aim is to calculate all the relevant geometrical

quantities (GQ), e.g., distances, angle, for the configuration of points, the set of their

positions at a time instant. These GQ are furthermore substituted in some functional

formula representing the intermolecular interaction potential. The corresponding forces

are then computed by applying the analytical gradient on that potential energy surface.

Forces are afterwards used to generate the new set of positions, configuration of points, at a

later time instant using an appropriate time integration algorithm. This circular procedure

is repeated over and over again, once per each time step in such a code.

In attempt to gain a speed up, we used the fact that only the unique and completely

independent terms of the GQs need to be computed, henceforth terms in the potential and

forces are also unique and independent. Identification of such unique terms is done by

means of exploitation of anti-symmetry and symmetry presented in the potential formula.

51
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Other dependent or non-unique terms are generated by performing the proper sum or

permutation over the respective indices.

There is at least one anti-symmetric relation that is always reflected in forces due to the

notation convention used to describe the relative distances between any two points, i.e.,

�rıj = �rj − �rı (5.1)

reflects a linear dependency of forces one on others for each unique n-tuple of indices,

{ı1 ı2 ı3 · · · ın}; considering an n-body potential, Vn, the corresponding interaction term

is expressed as

Vn ≡ Vı1ı2ı3···ın
(
rı1ı2 , rı1ı3 , · · · , rı1ın ; rı2ı3 , · · · , rı2ın ; · · · , rı3ın ; · · · ; rın−1ın

)
(5.2)

the corresponding forces are

−F(ı1)ı2ı3···ın =
∂Vn

∂rı1ı2

∇ı1rı1ı2 +
∂Vn

∂rı1ı3

∇ı1rı1ı3 · · · ∂Vn

∂rı1ın

∇ı1rı1ın

−Fı1(ı2)ı3···ın =
∂Vn

∂rı1ı2

∇ı2rı1ı2 +
∂Vn

∂rı2ı3

∇ı2rı2ı3 · · · ∂Vn

∂rı2ın

∇ı2rı2ın

−Fı1ı2(ı3)···ın =
∂Vn

∂rı1ı3

∇ı3rı1ı3 +
∂Vn

∂rı2ı3

∇ı3rı2ı3 · · · ∂Vn

∂rı3ın

∇ı3rı3ın

...
...

...
...

−Fı1ı2ı3···(ın) =
∂Vn

∂rı1ı2

∇ınrı1ın +
∂Vn

∂rı2ın

∇ınrı2ın · · · ∂Vn

∂rın−1ın

∇ınrın−1ın

(5.3)

whose expressions are simplified to

−F(ı1)ı2ı3···ın =
∂Vn

∂rı1ı2

(−r̂ı1ı2) +
∂Vn

∂rı1ı3

(−r̂ı1ı3) · · · ∂Vn

∂rı1ın

(−r̂ı1ın)

−Fı1(ı2)ı3···ın =
∂Vn

∂rı1ı2

(r̂ı1ı2) +
∂Vn

∂rı2ı3

(−r̂ı2ı3) · · · ∂Vn

∂rı2ın

(−r̂ı2ın)

−Fı1ı2(ı3)···ın =
∂Vn

∂rı1ı3

(r̂ı1ı3) +
∂Vn

∂rı2ı3

(r̂ı2ı3) · · · ∂Vn

∂rı3ın

(−r̂ı3ın)

...
...

...
...

−Fı1ı2ı3···(ın) =
∂Vn

∂rı1ı2

(r̂ı1ın) +
∂Vn

∂rı2ın

(r̂ı2ın) · · · ∂Vn

∂rın−aın

(
r̂ın−1ın

)

(5.4)

addition of Eqs.(5.4) yields

F(ı1)ı2ı3···ın + Fı1(ı2)ı3···ın + Fı1ı2(ı3)···ın + Fı1ı2ı3···(ın) = 0 (5.5)

and clearly indicates, for each unique n-tuple, a dependency of one force term on all other

terms, i.e., one needs to calculate (n − 1) terms where the n − th term is simply negative
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the sum of the last (n− 1) terms. In the special case of pair-wise interactions, the GQs are

only the relative distances, and this anti-symmetric relation corresponds to Newton’s third

law. It is therefor authors consequently refer to such anti-symmetry as Newton’s third law

for n-interacting particles.

For any further existent symmetry or antisymmetry, only the unique permutations for the

N-particles through n-wise (n-body) potential are to be considered. Using permutation on

a multiset the number of unique terms of the GQs or potential terms is
⎛
⎜⎝ N

n − S

⎞
⎟⎠

⎛
⎜⎝ N − (n − S)

S

⎞
⎟⎠ =

N !

(N − n + S)! (n − S)!

(N − n + S)!

(N − n)!S!

=
N !

(N − n)! (n − S)!S!
(5.6)

where {S : 0 <= S <= n} is the number of unique bins (places) per any index in the n-

tuple of indices {ı1 ı2 ı3 · · · ın} which identify the n-indexed geometrical quantity and its

corresponding term in the n-body potential interactions. In the case when S = 0, the

number of unique permutation is
N !

(N − n)!n!

and it corresponds to a complete asymmetry. One of the three-indexed geometrical quantity

we have frequently encountered is the angle cosine, see [paper 2]. In this case application of

analytical gradient relative to each index uncovers the linearly-dependence eq.(5.5) among

the resultant forces. The (valence) bond angle θıjk subtended at the vortex ı has symmetry

under the interchange (permute) of the other two indices j, k, henceforth only half the

angles of all triplets in the N-particles system must be computed. The formula describing

the angle subtended at the vortex ı

cos(θıjk) = r̂ıj.r̂ık ≡ r̂ık.r̂ıj (5.7)

exhibits symmetry under the interchange of the indices j and k. In a similar analogy, the

formula

sin(θıjk) = r̂ıj × r̂ık ≡ −r̂ık × r̂ıj (5.8)

exhibits antisymmetry under interchanging the indices j and k. Thus in both cases {S = 2; n = 3};
and the number of unique angles is obviously

N !

(N − 3)! (3 − 2)!2!
=

1

2

N !

(N − 3)!

and the total unique force terms of the N-particle system triplet-wise interaction defined

as a functional of the angle cosine is

1

2

N !

(N − 3)!
(n − 1) =

N !

(N − 3)!
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since n = 3. For a three particle system, N = 3, then the numbers of unique angles and

forces are 3 out of 6 and 6 out of 18 respectively. Similar discussions on exploitation of

symmetry and antisymmetry in three-body interactions are available in [24, 37] with a

further implementation for parallel molecular dynamics coding.

5.2 Verlet Neighbor list [46]

For short-range potentials, not all the n-permutations of a tuple of indices represent a set

of interacting particles since particles at a larger separation than a spatial cutoff radius do

not interact. A further reduction in computation is simply by taking advantage of the a

spatial cutoff function which allows preclude calculations of the expected zero-terms. To do

so, it is constructed for each particle a neighbor list containing all particles that are within

slightly a larger distance than the cutoff radius. This list is used for several consecutive

R
cut

R
verlet

R
diff

Figure 5.1: Graphical representation of Verlet Neighbor list
Rdiff = Rverlet > Rcut

time steps before being updated. List update must be at the correct frequency, a common

update is between 10 to 20 time steps. The greater Rdiff is, the less frequent update of

the neighbor list is required. To avoid double counting in the energy summation, only

neighbors where (j > ı) are stored. In some cases of three/four body interactions, it is a

must to only exclude equal indices, i.e., the list must contain all the pairs (j �= ı) as it is

clarified in [paper 1] for evaluation of three-body terms defined by the valence bond angle.
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5.3 Boundaries

Restriction on the size of a time step is not the only challenge in molecular dynamics

methods. Another concerns the finite size effects of the simulated system as its number

of particles is far fewer than that in any natural sample, and is most from thousands to

maximum few millions. Enclosing the system with a rigid-walled container, most particles

would be under the influence of its boundaries through collisions. If we ignore the bound-

aries most particles would lie at surface whose area tends to be of minimized, distorting

thus the shape of the system whenever it is a non-spherical. It is of no help to increase

particles in a system as the more particles exist, the more particles are at the surface and

more undesired effects are encountered. Those peculiarity due to the size limit and the

improper treatment of boundaries, makes it unreliable to statistically extract macroscopic

bulk properties since the later are calculated in the limit N → ∞, where N is the number of

particles. To go over both practical difficulties, periodic boundary conditions are imposed

on the relatively small systems in such a way that particles experience forces as if they

reside in the bulk.

5.3.1 Periodic boundary conditions (PBC)

When applying periodic boundaries, the fundamental (primitive) simulation cell is repli-

cated infinitely and periodically in all directions. There is no restriction on the shape of the

cell other than having the characteristic to completely fill all of space translationally with

no overlaps nor voids. It is appropriate to choose a cell shape that reflects the underlying

geometry of the system in question. When the interactions are of a short range each side

of the replicated primitive cell must be of a length that is at least twice the radius of the

spatial cutoff so to keep accuracy. Particles in this case are subjected to the condition

such that when a particle leaves the primitive cell, its image from the cell on the opposite

side reenters the cell with the same velocity. Herein, boundaries of the cell are no longer

rigid but imaginary and their effects are completely absent. One must bear in mind when

subjecting the system to this condition, the system is not any more invariant (symmetric)

under space rotation, henceforth the angular momentum is no longer conserved whereas

the linear momentum and mechanical energy are still conserved.

5.3.2 Minimum image convention for short range interactions

For short ranged forces, PBC are used in conjunction with the minimum image convention.

In this scheme each particle interacts at most with only one image of every other particle
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in the system. To exclude interactions of a particle with its own images (self-interaction),

the assumed cubic simulation cell, as already mentioned, must have a side length of at

least as twice as the radius of the cutoff. Interactions terms between pairs further away

from each other than the cutoff radius are obviously zeros. Some three-body formulas are

Figure 5.2: Graphical representation of Minimum image in 2D

expressed in terms of the three distances comprised by the triplet of interacting particles;

considering the minimum image convention in these cases e.g. Axilrod-Teller potential[4],

requires attention as the shape of the triangle formed by the interacting triplet must be

kept contiguous. That is all the three relative distances must be within the cutoff range and

must not be bigger than its radius, for more discussion on this point, readers are referred

to [25, 49]. Such ambiguity is not encountered in programing Tersoff formula as the three-

body term depends on only two distances rather than on the three, the geometrical shape

formed by the triplet is the angle which is intuitively contiguous as long as the two distances

from the vortex-particle to the other two particles at the ending points are within the cutoff

range.



Chapter 6

Structural geometries

In this chapter, we introduce the after-the-fact orbital hybridization approach which is

used to describe different structural geometries due to different bonding environments.

Then we will describe different lattices in the following comparative prospective: graphene

is introduced first; since it is widely used to describe many of the carbon elemental crystals,

including graphite, fullerenes and nanotubes. Graphite is introduced second, and last is

diamond. Then by using the so-called sphere close packing, we will provide a comparative

description of geometrical aspects in two tetrahedral-based lattices for silicon, carbon and

water ice.

6.1 Hybridization and Bonding in Carbon

To predict a molecular geometry and shape, the empirical-based VSEPR theory could

be used. In this approach, ligands arrange themselves about the central atoms so as to

maximize spherical symmetry. Though it works in some cases, it lacks any theoretical first

principle justification. It does not model π-bonds nor does it give any information about

either the electronic structure or the energetics of the system under investigation. For

those reasons, two slightly different approaches, Molecular orbital (MO) theory and valence

bond (VB) theory, were established on quantum bases. The concept of hybridization can

be related to Linus Pauling’s work and thus to VB, and it does beautifully describe the

geometrical features for the different bonding phases of a two-, three- and four-coordinated

central atom for a system in equilibrium.

The origin of the hybrid orbitals can be explained as follows: the 2s and 2p orbitals in

one electron plus bare-nucleus atom, i.e. hydrogen-like atom, have the same energy. If

we allow for the possibility of creating structures, i.e. give up the rotational symmetry so

that the wavefunctions are not required to be eigenfunctions of angular momentum, we can

57
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construct any combinations of these degenerate states. Since they have the same energy;

any choice of a linear combination is as good as any other.

We start from sp hybridization orbitals, i.e. we assume that we want to keep 2pz and 2py

for themselves and make two completely equivalent combinations of the 2s and 2px. This

means, they should both have 50 per cent of each of the two. First we take the 2s, 2p+,

2p−, and 2p0 and replace them with φs, φpx , φpy , and φpz . The simple choices are

ψspx

1 =
1√
2
(2φs + 2φpx) , and ψspx

2 =
1√
2
(2φs − 2φpx), which is rewritten as :

⎡
⎢⎣ ψsp

1

ψsp
2

⎤
⎥⎦ =

⎡
⎢⎣

1√
2

1√
2

1√
2

− 1√
2

⎤
⎥⎦

⎡
⎢⎣ 2φs

2φpx

⎤
⎥⎦

The above wavefunctions are two sausages, one points in +x, the other in -x direction. The

two remaining py and pz are π-bonding orbitals, i.e., they allow the formation of π bonds

neighboring atoms. Such hybridized states are found in carbon chains which has either

alternating single and triple bonds or by cumulated double bonds [13, 45].

To further construct the sp2 hybrid orbitals, we include 2s, 2px and 2py, and keep the out

of plane 2pz away. Each of the three new degenerate orbitals must have 33.3 percent of 2s

since it does not have any geometrical direction, and 66.6% from the involved p-orbitals.

We can start by combining 2s and 2px as before, but now with
√

1
3

and
√

2
3

as coefficients,

and we can as well use the plus sign. It quickly turns out that the sp2 hybridized orbitals

(vectors) must be as follows:

⎡
⎢⎢⎢⎢⎢⎣

ψsp2

1

ψsp2

2

ψsp2

3

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

1√
3

√
2√
3

0

1√
3

− 1√
3×2

1√
2

1√
3

− 1√
3×2

− 1√
2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

φs

φpx

φpy

⎤
⎥⎥⎥⎥⎥⎦

The sp2 case has an angle of 120◦ between the geometrical directions of any two consecutive

vectors. The possibility of pz to form π bond gives rise to the energetically favorable planar

geometry as it is the case in graphene.

In a similar manner, each degenerate sp3 hybridized orbitals get 1
4

of the φs orbital and an
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over all of 3
4

from the contributing p-orbitals.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψsp3

1

ψsp3

2

ψsp3

3

ψsp3

4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
4

√
3√
4

0 0

− 1√
4

1√
3
× 1√

4

√
2√
3

0

− 1√
4

1√
3
× 1√

4

√
2√
3
×− 1√

4

√
2√
3
×−

√
3√
4

− 1√
4

1√
3
× 1√

4

√
2√
3
×− 1√

4
−

√
2√
3
×−

√
3√
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

φs

φpx

φpy

φpz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The resulting four vectors pointing towards the vertices of a regular tetrahedron are shown

in figure(6.1) Thus we see that the tetrahedral structure of diamond can be traced to quite

Figure 6.1: sp3 Hybridized orbitals

elementary quantum mechanics. The requirement of energetically equivalent orbitals leads

to both the hexagonal structure of graphite and the tetrahedral structure of diamond. The

next point is the understanding of the built-up of the structure covering ”whole space”.

We shall see that there are two possibilities, which are described by little intuitive terms

”cubic diamond structure” and ”hexagonal structure”.

6.2 Crystal structures

Elemental carbon occurs in several allotropes, i.e different geometrical structures due to

different local bonding environment. Information on carbon allotropes, some of their phys-

ical properties, and applications can be found in [13]. Such allotropes can be classified by

means of the hybridization scheme. In that sense, carbon atom undergoes either sp1, sp2,
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or sp3 bonding configurations corresponding respectively to carbyne and polyyne, graphene

and graphite, and diamond. Fullerenes and other nanostructures have in the major part an

sp2 hybridization state, but the arrangement of atoms on a spherical or cylindrical surface

requires atoms to be in a mixed state between sp2 − sp3 hybridization as a response to the

surface curvature. That is, space influences also the geometry of structures; it is known

that hexagons do not cover a spherical surface, but twelve pentagons in addition to twenty

hexagons will fit and cover beautifully the spherical surface of Buckyball. Similarly, car-

bon atoms in nanotubes are mainly in sp2 hybridized state environment, but a small sp3

hybridization proportions must exist.

Considering further neighbors of a carbon atom in crystalline arrays than its closest bonded

ones, different arrangement and configurations of atoms are recognized. Crystals having

the same bonding environment but have different configurations are known as polymorphs.

Polytypes, being a special case of polymorphism, are variations of two or more polymorphs

of the same element that are identical in two dimension but different in the third, i.e., they

can be distinguished one from another by means of their layers’ stacking sequences. That

is, for our concern here spheres packing helps determine precisely the hybridization state

and the overall geometry.

6.2.1 Graphene

Graphene Fig.(6.2), recently prepared as a unit apart in a free state [30], is a single sheet

of carbon atoms arranged in regular benzene-like hexagonal rings. Each atom lies in a

common vortex of three adjacent hexagons, and is covalently bonded to three atoms. The

Graphene honeycomb lattice: the green
rhombus is the non-primitive repeat unit cell
of two lattice points, the red lines represent
the lattice vectors �a1 and �a2, and the bond

length is the same as basis vector (
�a1

3
+

�a2

3
).

The red and blue colored circles show points
of two different hexagonal lattices

Figure 6.2: Graphene honeycomb lattice

three bonds are equivalent and each has an order of 4
3
; this bond-order corresponds to

one σ-bond and 1
3

of a non-localized π-bond. The bond length is (1.42 Å), and the bond

angle is (120◦), this geometrical configuration is well understood in terms of the carbon sp2

hybridized orbitals , Sec.(6.1). The remaining p-orbitals overlap together and form π-bonds

delocalized over the whole sheet. Delocalization of the π-bonds is the reason behind both

the planar geometry of graphene and the metallic behavior of heat and electric conductivity.
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Even though silicon has a comparable electronic structure to that of carbon, silicon atoms

do not aggregate into the planar structure of graphene, i.e they do not undergo sp2 hy-

bridization, the reason is that silicon-silicon σ-bonds are comparatively long, thus π orbitals

can have a partial overlap which results in no energetic gain in forming π-bonds. Silicon

atoms prefer instead the sp3 tetrahedral arrangement described later.

In crystal notation, graphene has the well known honeycomb lattice which can be viewed

as two interpenetrating bidimensional triangular (hexagonal) lattices, one is translated by

(
�a1

3
+

�a2

3
) from the other, or equivalently as one bidimensional triangular lattice of two-atom

base, the basis vectors are (0 0 0) and (
�a1

3
+

�a2

3
); where we define the triangular lattice’s

(basal) vectors a1 and a2, with a0 = 1.42
√

3Å.

�a1 = a0 (cos(+
π

6
)̂ı sin(+

π

6
)ĵ 0k̂)

�a2 = a0 (cos(−π

6
)̂ı sin(−π

6
)ĵ 0k̂) (6.1)

6.2.2 Graphite polytypes:

Graphite is multi parallel graphene layers stacked one above another at distance 3.35Å.

Carbon atoms in adjacent graphenes interact weakly by van der Walls interlayer interac-

tions balanced with the electrostatic and quantum fermi repulsion between electrons in

the completely full delocalized π molecular orbitals. Henceforth, the weakly bound layers

are far apart and can slide one over another, describing thus why graphite is lubricant.

Even though the (abab) hexagonal stacking of layers is the best arrangement reducing the

inter-distance repulsion [16], natural and laboratory graphite crystalline contains 80% and

14% hexagonal and rhombohedral graphite respectively, where the 6% left is disordered.

The three distinct graphite crystals, described later, can be completely distinguished by

the hexagonal lattice basal vectors �a1 and �a2 in Eq.(6.1), and the following principal axis

�a3 = pc0 (0 0 k̂) (6.2)

with c0 being equal to the interlayers’ distance (3.35Å), and p is the periodicity along �a3.

Simple hexagonal graphite

Simple hexagonal graphite, Fig.(6.3), is an example of graphite intercalation compounds,

i.e., another element than carbon is intercalated (inserted) between graphene sheets that

are located directly on the top of each other, i.e., (aaa) sequence. This crystal structure is

described using the hexagonal lattice vectors �a1 and �a2 from Eq.(6.1), and �a3 from Eq.(6.2)
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with periodicity, (p = ps = 1). Using the simple hexagonal lattice of one-atom bases at

the origin, i.e. basis vector equals 0, the lattice of the simple hexagonal graphite is then

viewed as two interpenetrating simple hexagonal lattices, with one translated by (
�a1

3
+

�a2

3
)

from the other.

(a) Sideview (b) Topview.

Figure 6.3: Simple hexagonal Graphite

Hexagonal or Bernal graphite

Hexagonal graphite, Fig.(6.4), is the ground state of all carbon structures. Graphene Layers

in this crystal adopt the (abab) stacking sequence: half the carbon atoms in one graphene

lies midway in the line between those in the very two adjacent graphenes above and beneath,

while the other half of carbons in the same plane lies midway in the line between the centers

of the hexagons in the first two adjacent bounding planes.

(a) Sideview (b) Topview.

Figure 6.4: Hexagonal Graphite

Bernal graphite lattice can be defined as two interpenetrating simple hexagonal graphite

lattices whose vectors are now {�a1, �a2, �a3}, p = ph = 2; one of the simple hexagonal

graphite lattice is shifted by (
�a1

3
+

�a2

3
+

�a3

2
) from the other. In terms of the hexagonal

lattice, i.e. an (abab) sequence of two close-packed layers with a relative translation (
�a1

3
+

�a2

3
+

�a3

2
); the hexagonal graphite is formed by two hexagonal lattices placed at the origin
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and (
�a1

3
+

�a2

3
).

Rhombohedral graphite

Rhombohedral graphite, Fig.(6.5), can not be isolated in a pure form, but found usually in

small quantities in graphite crystals. Here graphene sheets have an (abc) extended stacking

fault in the hexagonal system: half the carbon atoms in one graphene lies midway in the

line between atoms in the graphene above and the centers of the hexagons in the graphene

beneath, the other half of carbons in the same plane lies midway in the line between the

centers of the hexagons in the above graphene and atoms in the graphene beneath.

(a) Sideview (b) Topview.

Figure 6.5: Rhombohedral Graphite

The resultant lattice is interpreted by three interpenetrating simple hexagonal graphite

lattices whose vectors are {�a1, �a2, �a3}; p = pr = 3. The three simple hexagonal graphite

lattices are located at the origin, (
�a1

3
+

�a2

3
+

�a3

3
) and (

2�a1

3
+

2�a2

3
+

2�a3

3
). The rhombohedral

lattice is a stretched cubic close-packed lattice along the direction of a3, and has three close-

packed layers in (abc) sequence with two translated relative to the third by (
�a1

3
+

�a2

3
+

�a3

3
) and (

2�a1

3
+

2�a2

3
+

2�a3

3
). Rhombohedral graphite is equivalently two interpenetrating

rhombohedral (elongated close-packed lattice), one translated from the other by (
�a1

3
+

�a2

3
).

6.2.3 Diamond polytypes

Diamond structure is a highly ordered network of tetrahedrally coordinated atoms, e.g car-

bon, silicon, or molecules as in water-ice. The intrinsic tetrahedral geometrical symmetry

in diamond is attributed to the quadrivalent, tetravalent, sp3-hybridized carbon or silicon

atoms where each is covalently bonded to four other in the tetrahedral configuration, i.e any

bond angle is approximately 109.4◦. In water-ice structures, each water molecule is linked
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layer 1 layer 2 layer 1 layer 3

(a) Basal shift between layers 1 and 2 (b) Basal shift between layers 1 and 3

layer 2 layer 3

=

= 1

= 1

(c) Basal shift between layers 2 and 3 (d) Layers’ basal shift arithmatics.

Figure 6.6: Basal shift in graphite layers
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to four others by tetrahedrally oriented hydrogen bonds. There are mainly two diamond

crystals reflecting the local tetrahedral symmetry, nevertheless they reflect different over-

all symmetries depending on how tetrahedrons are oriented relative to each other. Cubic

diamond lattice results when each two tetrahedra are in the staggered configuration, i.e

they contact one another in a vortex-to-vortex manner, their point of contact lies in the

line joining their centers, and one’s base is 60◦ rotated relative to the other’s. The other

crystal is the hexagonal diamond, it has both staggered and eclipsed configurations, the

eclipsed configuration of two tetrahedra is when their bases eclipse one another. Naturally,

diamond adopts both cubic and hexagonal lattices which are referred to herein as diamond

and lonsdaleite (one element analogue of the wurtzite structure). At room temperature

carbon diamond is mostly found in the energetically favored cubic form while the wurtzite

structure is preferred at higher temperatures. Water-ice is a similar analogue such that the

wurtzite structure occurs at temperatures above (−80◦) whereas the cubic forms is most

likely to occur at temperatures between (−130◦ → −80◦). Diamond and lonsdaleite relate

one another by the same way hexagonal and cubic close-packed structures are related, as we

shall soon describe. Hexagonal and cubic close packing are the most frequent stacking se-

quences, yet are they the only naturally existing. Intermixed stacking sequences of both are

also adopted in nature. Such stacking fault, interrupted sequence, results in transforming

a hexagonal to another bigger cubic or hexagonal lattice and vice versa [14, 35]. Analogous

to the close-packed intermix, different synthesized diamond polytypes have layers in an

alternate stacking sequences between diamond and lonsdaleite, as will be described later,

and the new intermixed lattice exploits either the hexagonal or cubic symmetry. One of

the many examples on such synthesized lattices is known as rhombohedral diamond which

is just a larger hexagonal lattice. Throughout the remaining of this chapter, I will assume

a familiarity of the reader with the close-packing schemes, otherwise extensive details on

this topic and the types of lattices are found in [3, 18, 19, 35]. Different intermixed dia-

mond lattices are described in [31, 48], and [29] provides some structural and mechanical

properties of diamond polytypes.

To describe and show differences between the hexagonal and cubic lattices of diamond,

we will use the regular tetrahedral proportions; considering a regular tetrahedron of side

length L, then its center-to-vortex distance, R, is
1

4

√
6L and its height, H, is

1

3

√
6L, and

the distance from the center of any base to the tetrahedron center, r, is
1

12

√
6L. The

basal vectors defined in Eq.(6.1) have a length (a0 = L), whereas a3 is redefined by setting

(c0 = H) in Eq.(6.2), and cubic lattice periodicity is (pd = 3), and that of lonsdaleite lattice

is (pl = 2).
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Cubic diamond

A six close-packed layer repeat builds up diamond structures, Fig(6.7), those layers are

not equidistant as in graphite, instead there are two interlayer distances characterized by

the center-to-vortex distance,R, and the base center to the tetrahedron center, r. We

view diamond lattice as two interpenetrating cubic packed lattices; one has the relative

translation (Râ3 ≡ R

pdH
�a3). The ratio (

R

3H
) being equal to (

1

4
) with |�a3| representing

the cubic cell diagonal, explains the description of the cubic diamond lattice by Kathlene

Lonsdale[20]:

”... consists of two interpenetrating face-centered cubic patterns, separated from

each other by a translation of a quarter of the cube diagonal ...”

In the field of crystallography and mineralogy, this lattice is viewed as cubic close-packing

of pyramids, i.e., a four-atom group where three are placed at the vortices of the regular

tetrahedron and at its center lies the fourth atom. The close-packed layers of pyramids,

i.e., bilayers of atoms where the two layers are separated by the distance r =
1

12

√
6L, are

known as buckled layers or buckled graphenes sometimes, and are used to describe the

layers’ relative shift.

The unit cell of the hexagonal system is usually considered to be a right rhombic prism

which is 1
3

of the hexagonal prism and it is itself a parallelepiped. While a right rhombic

prism can be recognized as translational unit repeat for diamond, it can not represent its

space group symmetry; diamond is known to have four 3-fold axes of symmetry which pro-

ceed diagonally from corner to corner through the center of the cube which is conventionally

taken as a unit cell of diamond.

Hexagonal diamond ”lonsdaleite”

Lonsdaleite lattice, Fig(6.8), is a construction of a non-equidistant four close-packed layer

repeat, the interlayer distances are the same as in diamond. The whole structure is formed

by two hexagonal close-packed cells interpenetrating each other at (Râ3 ≡ R

plH
�a3). Two

different bilayers occur in lonsdaleite, they can not be described only by translation but

either by a reflection or a combined translation and rotation; that is to say: it is impossible

to have hexagonal close-packed tetrahedra (pyramids) if we are to preserve their orienta-

tions. In other words, hexagonal close-packing requires objects to have a bilateral ”mirror”

symmetry along the principal axis.

With reference to Figs.(6.7 and 6.8), the major difference between those two tetrahedrally

symmetric structures is the four-atom configuration or dihedral conformation as used in
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(a) Sideview (b) Layers stacking sequence

(c) Topview. (d) Sideview.

Figure 6.7: Cubic Diamond
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1
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2

(a) Sideview (b) Topview.
(c) Layers stacking

sequence.

Figure 6.8: Lonsdaleite, the hexagonal diamond
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chemistry. Dihedral configuration in diamond is either
π

3
, π or

5π

3
, where lonsdaleite

has zero-, 2π
3

4π
3

dihedral angles. This difference is reflected in two different chain types,

Fig.(4.4), and two different six-membered buckled rings. Following the series of 180-dihedral

angle reveals the aliphatic chain which does occur in both diamond and lonsdaleite. The

”armchair” chain occurs only in lonsdaleite, and is described when we follow both the zero-

and 180- torsional angles successively. Each atom in diamond is common to six aliphatic

chains whereas an atom in lonsdaleite is common to three chains of each type. The smallest

closed circuits of the bonded atoms are the buckled hexagonal rings[21], diamond has only

one type of rings that correspond to a series of 60◦ dihedral angles (staggered configuration

of any two tetrahedra), it is ofcourse the familiar ring of chair configuration. Lonsdaleite

has, in addition to the six-membered chair-configuration rings, six-membered rings in the

boat configuration, i.e., a ring which possess four 60◦- and two 0◦- torsional angles.

6.2.4 Tetrahedral model to build up diamond structures

In accordance to our orbital based representation of atoms, Sec.(7.3), for molecular dynam-

ics, the sp3 hybridized atom is represented by an atomic center with prescribed geometric

arrangement of active orbitals, represented by four equivalent arms pointing to vortices of a

regular tetrahedron, the length of each arm is half length the σ-bond in diamond structure.

Orientations of arms indicate the best directions in space for covalent interactions. There

exist tools, see Fig.(6.9), with similar representation to build up and view many complicated

structures. The first of the tool sets we have used, is the ”Orbit molecular building system”

which comprises one-, two-, three-, four-, up to twelve-pronged atomic centers. The second

set was the ”Organichem model set”, which comprises only one-, three-, and four-pronged

atomic centers, making it good enough to build up structures of graphene, diamond and

lonsdaleite. Those two sets were of a great help to visualize such complicated structures.

Other visualization tools were the VMD and JMOL as indicated in the introduction.

Shown furthest left the so-called car-
bon cage in cubic diamond, furthest
right is the carbon cage of lons-
daleite, and at the middle is the non-
planar hexagon known as buckled
or puckered hexagon, or simply the
hexagon in the chair configuration.

Figure 6.9: Tool sets
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Figure 6.10: Visualization in VMD and Jmol

To build up diamond and lonsdaleite structures with emphasis on their tetrahedral sym-

metry, tetrahedra are packed into one hexagonal basal layer. In that sense, two arms (one

per tetrahedron) touch each other at their outer edges and get aligned in a straight line

(presenting the bond), then tetrahedra are rotated 60◦, around their common axis (bond),

relative to each other (staggered configuration). Keeping on so doing, results in a com-

mon layer for both structures. Diamond is completely determined by four layers, where all

first neighboring tetrahedra in whatsoever direction are in the staggered configuration. For

the second layer in lonsdaleite, one tetrahedron is packed along the principal axis and is

oriented in the eclipsed configuration with one tetrahedron in the first layer. To continue,

keep on so doing as long as you are in the direction of the principal axis, or you can do what

has been done earlier to build up the first layer, the same is repeated to get lonsdaleite

structure which is determined by three of such layers.

Using layers’ stacking as a common ground for analogy and comparison between both

structures, we construct four similar basal layers. In lonsdaleite, each layer is a mirror

reflection of the one beneath, i.e., flip the second layer up-side-down and stack it upon

the first, the third layer would also be a mirror reflection of the second, and is simply

identical to the first. To get diamond, flip the second layer, rotate it 60 degrees around

one bond parallel to the principal axis and stack it upon the first, flip the third layer that

was completely congruent to the second, rotate around one bond 60 degrees in the same

direction of the first rotation, and stack it. The fourth is 60 degrees rotated reflection of

the third, which would be equivalent to the first. Remember bilayers in diamond can be

stacked only by proper translations as was earlier explained.

Intermixed diamond crystals can be built up by stacking such bilayers, i.e., alternate flipped

(reflected) and rotated flipped layers in the proper sequences. For details on some of the

possible sequences and their corresponding unit cells, the reader is referred to [31, 48].

The h-c notation is usually used in crystallography and can be found here [19]. In the h-c

notation, each layer is specified in terms of the orientation of layers above and beneath.

’h’ stands for a hexagonally stacked layer, i.e., surrounded on either side by two layers in
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similar orientation. ’c’ denotes a layer in cubic configuration, i.e., surrounded on either

side by layers in different orientations. One example is the structure that has an (abcacb)

stacking sequence, and can be written as (hcchcc) in the h-c notation, while (abacacbcb)

stacking is described as hhc.

6.2.5 Phase transition between carbon allotropes

The formation of diamond from graphite can be achieved through application of high

temperatures and high pressure. Such transition are difficult to control. Recently, as

described in ref.([32]), femtosecond laser pulses have been used to induce the formation of

diamond from graphite. The process has been monitored at the crystal structure level by

ultrafast electron crystallography.



Chapter 7

Introduction to papers

The following papers are submitted as part of this thesis:

1. L. Kocbach and S. Lubbad (2009), Reactive interatomic potentials and their geomet-

rical features

being submitted to Modelling and Simulation in Materials Science and Engineering

2. S. Lubbad and L. Kocbach (2009), Exploring molecular dynamics with forces from

n-body potentials using Matlab

being submitted to Computer Physics Communications

3. L. Kocbach and S. Lubbad (2009), Design of Orbital Based Molecular Dynamics

Method

being submitted to Modelling and Simulation in Materials Science and Engineering

4. L. Kocbach and S. Lubbad (2009),

Transverse dipole-dipole effective interaction for sheet arrangements

A short letter, submitted tentatively to Physical Review Letters

5. L. Kocbach and S. Lubbad (2009),

Geometrical simplification of the dipole-dipole interaction formula

submitted to Physics Education

The papers are shortly presented in the following sections
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7.1 Reactive interatomic potentials and their geomet-

rical features

A large number of simulations is based on the so called bond-order potentials, mainly the

Tersoff and Brenner versions. These potentials are highly empirical, based originally on

the concept of bond order, i.e. the presence of other atoms (bonds) influences the strength

of the individual terms of the potential. The potential energy, giving rise to the individual

forces, assumes a full summation over all of the constituents, in practice limited by the

cut-off properties of the model.

From some recent papers a reader might get the impression that the empirical potentials are

no longer necessary because the advances in computing will soon allow quantum mechanical

calculations of atomic interactions based on e.g. density functional methods for nearly any

type of atomic scale simulations. This work shows, among other things, that the empirical

potentials are still used in many applications and will probably remain to be used for studies

of some aspects of particle systems for a long time. The project reported here started as

a simple investigation of how do the Tersoff-Brenner potentials model the geometrical or

stereochemical features of the modeled aggregates of atoms. During this work we found

details about a number of alternative approaches and the comparisons between the various

features lead us to the presented analysis.

These results should be useful for researchers starting work on various molecular structures

of the type covered by any of the mentioned approaches to atom-atom interactions, as

well as for projects aiming at development of improved or combined systems. In this

thesis the work described in section 7.3 could not be carried out without this comparative

study. In the paper we discuss the models known as EDIP, ABOP, ReaxFF as well as ab

initio methods, and two special features, use of neural networks on one side and synthetic

diamond-like structures from elements interacting by two-body isotropic potentials.

7.2 Exploring molecular dynamics with forces from

n-body potentials using Matlab

As the title of this paper indicates, it is concerned with our method to explore the evaluation

of forces from n-body potentials using the matrix-oriented system MATLAB. The classical

Newtonian equations of molecular dynamics (MD) can be solved using the Verlet algorithm,

which makes the programing rather short and simple. An important feature, discussed

below is that MATLAB allows to write element-wise operations on complex objects (vectors,

matrices, multidimensional arrays) as if they were simple numbers. In the paper we have



7.3. DESIGN OF ORBITAL BASED MOLECULAR DYNAMICS METHOD 73

described methods which can be useful in design and exploration of new methods, or simply

in education. While the large systems require optimization of the computations and often

possibility of parallel computation, the presented MD models are supposed to be of the

size up to tenths or possibly hundreds of particles. We show that for such relatively small

systems of model atoms the computations can be carried out inside the systems MATLAB

(or OCTAVE).

It is generally well known that MATLAB and related systems have interpreted programming

languages, which make execution of large programs rather slow. On the other hand, they

have the ability to perform mathematical operations on complicated structured objects in

one single statement using ordinary mathematical notation. This property is essential for

our approach. A simple MD simulation code with pair potentials can be written in about

30 statements. These can be complemented by another set of routines of a comparable size

(about 20 to 30 statements) for quite powerful real time visualizations.

It should be mentioned that similar types of operations can be designed in Object Oriented

programming methodology, but the simplicity of MATLAB and OCTAVE together with the

built in visualization techniques can not be matched by any general purpose programming

languages and libraries, perhaps with the exception of the libraries for the language python

(SciPY - Scientific Python and pylab - an analogue to MATLAB)

7.3 Design of Orbital Based Molecular Dynamics Method

This paper presents a proposal of a rather new type of effective interatomic interaction for

molecular dynamics and similar applications. It introduces the concept of Orbital-Based

Molecular Dynamics interactions (OBMD). The model consists of atoms with prescribed

geometric arrangement of active orbitals, represented by arms of the length of half of the

relevant bond lengths. The interactions have a repulsive part between the atomic centers

and an attraction between the arm ends of different atoms. For each atom pair only the

closest pair of arms interacts attempting to form the bond. This is a picture of sigma

bonds, the pi bonds are modeled by alignment of additional internal vectors which might

characterize a given atom. Also these are primarily pair interactions. Thus there are

only pair interactions of several types present. The intrinsic arrangement of the model

elements, virtual orbitals, or arms and internal vectors can be switched depending on

the environment. Thus the complexity of the many-body potentials is replaced by pair

interactions between atoms with complex internal behavior. The proposed model thus

allows formation of new geometries, establishing new and breaking existing bonds with

the use of only pair interactions and environment scanning. The switching of the bond
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character is supposed to be implemented as stochastic quantum jumps with probabilities

determined by the local environment (coordination number, i.e. a function of the number

of closest neighbors). SUch features already exist in some of the models described in the

paper of section 7.1.

The rigid character of the geometrical structures requires their re-orientation by rotational

motion to get the right orientation of mutually interacting atoms. Since the unoptimized

orientation of the arms can not represent a physically relevant energy of the system, the

rotational arrangement is modeled as rotation of over-damped type, in analogy to the

Langevin dynamics. The unphysical excitation energy is thus dissipated to unphysical

friction and is automatically removed from the system. In contrast to that, the relative

displacements of the arms and their imperfect angular alignment are parts of the physical

model and the resulting potential energies and forces become the physically important part

of the model.

We discuss in some detail the carbon case and very shortly also hydrogen, silicon and sulfur.

Determination of detailed values of the model parameters is not attempted at this stage.

Most of the parameters can be extracted from the existing models reviewed in section 7.1.

This is relatively a simple task, since only pair interactions are present.

7.4 Transverse dipole-dipole effective interaction for

sheet arrangements

In this short letter we propose a simple effective interaction which can be tuned to arrange

the interacting objects into sheets. The interaction is based on the decomposition of the

dipole-dipole interaction into two components, one parallel and one perpendicular to the

connecting line between the dipoles. A very detailed discussion of this decomposition can

be found in the work described in 7.5 Only the perpendicular part is used here. Various

aspects of this simple interaction are discussed, in particular in connection to two recent

papers on self assembly of carbon nanostructures. On the other hand, the features discussed

are quite general and might be of interest in different areas of microscopic modeling.

In this thesis, the work in 7.3 uses also this form as one part of a much more complex

model.
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7.5 Geometrical simplification of the dipole-dipole in-

teraction formula

The well known formula for dipole-dipole interaction potential energy is well known. For

our purpose we needed to work with simple representations and thus the idea presented

here seemed suitable for a more popular presentation. This was especially motivated by

the fact that we have by chance found small magnets which added some extra fun to the

presentation. At different levels of their education students of both chemistry and physics

are exposed to the presentation of dipole-dipole potential energy when they are taught

electrostatics or magnetostatics. This popular formula is also featured in the encyclopedias.

We have shown that by a simple rewriting of the formula it becomes apparent that for

example, by reorienting the two dipoles, their attraction can become exactly twice as large.

The physical facts are naturally known, but the presented transformation seems to underline

the geometrical features in a rather unexpected way. The consequence of the discussed

features is the so called magic angle which appears in many applications. We also discussed

possibility for designing educational toys based on small magnets. Finally, we have tried

to to understand why this formula has not been written down frequently before this work.

Similar transformation is possible for the field of a single dipole, there it seems to be

observed earlier, but also in this case we could not find any published detailed discussion.

This popular science paper complements the other papers, since we have based the two

model interactions of section 7.3 (OBMD model) and section 7.4 (TDDI model) on a part

of the dipole-dipole expressions which otherwise probably would not be designed in this

simple way.





Chapter 8

Conclusion

We believe that the empirical model interactions with pre-defined potential functions will

remain an important tool of molecular modeling even though the more fundamental or ab

initio methods are becoming more and more attractive with the development of computing

facilities. Therefore I feel that the presented work aimed at increased understanding and

knowledge of a class of both previously available empirical approaches and the proposed

extensions is a relevant contribution to the some areas of molecular modeling.

For an adequate modeling of different molecular geometries consistent with experimental

results there must be mechanisms represented by many body interaction leading to geo-

metrical relations to which atoms in a larger system are known to adapt themselves. We

have seen that the three-body interaction is the simplest necessary contribution used in

many applications. However, we have seen that in the case of tetrahedral structures there

is a problem of modeling the so called cubic and hexagonal polytypes (section 6.2.3) with

the three-body approach alone. In this case all the three-body correlations are exactly the

same, but the over all crystal structure is drastically different. It means that in this case

the four-body correlations in terms of the so called dihedral angle must be included in

the modeling to account for the difference. Inclusion of four-body and higher interactions

is of course a matter of complexities both in parameterizations and data fitting, also the

computational cost would be considerably increased.

We have shown that the four-body correlations may be included explicitly in the inter-

action forms or implicitly by relying on the basic topological properties of the Euclidean

space. The implicit approach is not limited to the four-body case. In section 4.2.3 I have

explained that with the Tersoff or already Stillinger-Weber type of three-body correlation

one obtains diamond-like structures in the three-dimensional space, hexagonal sheet in the

two-dimensional Euclidean space and the C60 fullerenes on the sphere.

Finally, I would like to stress our proposal of Orbital Based Molecular Dynamics method
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(OBMD). This simple and intuitive model requires only a set of pair-interactions, and is

capable to generate various structures with less parameters, data fitting and computational

costs. Moreover, it is proposed to involve environment dependence, where each atom it-

self configures its own orbitals in response to the presence of bonding neighbors, i.e. a

geometrical re-structurabilty is part of the model atom.

The OBMD has only been described as a model without full specific implementation. A

straight forward simple implementation could have been attempted by simply consulting

the tables of bond lengths and strengths and then adjusting one of the simple functional

forms to a subset of vibrational characteristics. However, we think that such a simple

implementation would not compete well with the already existing models, and that the full

range of its possibilities could not be appreciated. We thus believe that a more thorough

implementation, hopefully involving a much broader participation of collaborators will be

performed in the future. This I believe is the main line of continuation of the present

project.

Further possible extensions to consider is the treatment of the other directional interactions

of hydrogen bonding in a very similar procedure. According to the usual picture, hydrogen

bonding would involve interactions between two nonbonded atoms of different types such

that the positive center on one atom and one negative center representing the so-called

lone-pair orbital on the other atom. We have recently found a paper arguing for covalency

of the hydrogen bonding [15], involving basically the three instead of just two atoms. It

would be very interesting to perform the quantum chemical calculations and try to develop

a similar model as the OBMD above for the hydrogen bonding, in the way indicated in the

last quoted paper. Alternatively, one could also try to be formulate a two-body interaction

in a similar way as discussed in papers 3 and 4 which are attached to this thesis.
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