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Abstract

Streamline based reservoir simulation has been used with great success in the petroleum industry
for decades. Fast computational speed together with the fact that sensitivities can be computed
analytically along streamlines makes streamline based methods efficient for history matching prob-
lems. The key idea for streamline based methods is to approximate 3D fluid flow by a family of
1D transport equations along streamlines. This is done by introducing a time-of-flight coordinate
variable. In this thesis a method called generalized travel-time inversion (GTTI) will be discussed
for history matching. The main idea behind GTTI is to combine amplitude matching with travel-
time matching. The inverse problem associated with the amplitude matching is fully nonlinear and
can therefore give unstable and non-unique solutions, while the travel-time inversion has quasi-
linear properties. GTTI is able to use all the data available and still preserve the quasi-linear
properties of the travel-time inversion. Several authors has studied GTTI previously. In all these
articles only the first order sensitivities are used in the history matching. Since the second order
sensitivities can be computed along the streamlines at practically no cost, a method that includes
information from the second order sensitivities will in theory show better convergence properties.
Some synthetic examples shows that this is true for cases where almost no regularization is needed
but not for more realistic and illposed problems. To further improve the convergence properties
of the minimization a line search and a trust-region strategy is suggested. Both the line search
strategy and the trust region method of Levenberg-Marquardt shows good performance. Both
in the ability to reduce the objective function and in characterizing the permeability field. A
method where the regularization parameters are chosen by the L-curve criteria is also considered
and compared to the other methods. An advantage of this method is that the regularization term
is reduced as the iterate enters into the neighborhood of the solution and less regularization is
needed.
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Contents

This master thesis consists of 7 chapters. In the first chapter the reader is introduced to the
motivations and ideas behind history matching. The governing equations for fluid flow in porous
medium are introduced in Chapter 2. In Chapter 3, the concept of streamlines and time-of-
flight is introduced to formulate a simplified model for fluid flow. History matching is an inverse
problem. Theory on inverse problem and regularization is found in Chapter 4. To solve non-linear
inverse problems, the Jacobian and the Hessian is needed depending on the method which is used.
A unique advantage of the streamline based method is that semi-analytic expressions for these
sensitivities can be found. These semi-analytic expressions is motivated and analyzed in Chapter
5. In Chapter 6, a generalized travel-time method to solve the history matching problems is
introduced. To test different methods for solving GTTI, some test cases are considered. Finally,
Chapter 7 summarizes the results and suggests directions for future work.
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Chapter 1

Introduction

In mathematics you don’t understand things.
You just get used to them.

Johann von Neumann

It is important for the petroleum industry to have an accurate description of the reservoir. A
reservoir is described by its rock and fluid properties. With an accurate description of the reservoir,
future oil and gas production can be predicted with the use of a reservoir simulator. The reservoir
simulator solves the model equations governing the fluid flow in the reservoir, given a set of rock and
fluid parameters and feasible boundary conditions. To obtain a good reservoir description, as much
as possible of the available information needs to be incorporated into the geological model. The
available information can be categorized into two categories: static and dynamic. Static data are
time invariant data, such as well logs, core measurements and data from seismic. Time dependent
data, such as pressure, saturation, flow rates, data from 4D seismic, and tracer responses are
examples of dynamic data. The process of including dynamic data into the geological model based
on static data is referred to as history matching. While static data can be incorporated relatively
easy, with the help of geo-statistical model, the process of integrating dynamic data is much more
complicated [2]. Traditionally the history matching is done by adjusting the reservoir parameters
manually by a trial and error procedure. Manual history matching is time consuming and depends
highly on the experience of the reservoirs engineers. In the past years significant development has
been done in the field of automatic history matching. The most common approach for automatic
history matching is based on minimizing an objective function. Typically the objective function
is given as the sum of the misfit between the observed data dobsj and the calculated data dcalj over
all data points j = 1, ..., Nd:

f =
Nd∑
j=1

wj(dobsj − dcalj )2, (1.1)

where wj is a scalar that weighs the influence of each observation.
There are different techniques to minimize the objective function in (1.1). Commonly used

methods as steepest descent, Gauss-Newton and Levenberg-Marquardt, see [13], uses the gradient
of the objective function to find its minimum. The calculation of the gradients is usually the
most computationally expensive part of the history matching algorithms. Effective algorithms
that compute the gradients are therefore a crucial part of the minimization methods. There are
minimization methods that do not need any calculation of the gradients, but they will not be
considered here [11].

History matching is an example of an inverse problem. In a forward problem the goal is to
compute a set of data given a set of parameters, which is in contrast to an inverse problem where
the goal is to find parameters that best match the data. Typically the number of parameters to
match in a history matching problem is higher than the number of data points available. This
lead to an under determined problem, which do not have a unique solution. In addition to lack of
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data, there will be errors in the measurements and numerical errors that make the problem more
difficult to solve. To find the best possible solution, additional constraint must therefore be added
to the objective function to regularize the problem.

Finite volume, finite element and streamline based fluid flow models can for example be used
in an automatic history matching. One of the advantages of the streamline based method is that it
is faster than conventional methods based on finite volume and finite elements. Especially for high
resolution models, where the number of reservoir parameters can be several million, the streamline
formulation gives benefits compared to the more traditional methods. Another huge advantage of
the streamline formulation is that sensitivities of streamline related production responses can be
computed semi-analytically along the streamlines. The sensitivities needed in the history matching
problem can therefore be computed using a single forward run of the simulator.
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Chapter 2

A reservoir model of fluid flow in
porous medium

all models are wrong,
but some are useful

George E. P Box

A reservoir model consists of a set of differential equations that reflects the physical laws, and
a set of fluid and rock parameters. In this chapter basic fluid and rock properties is defined. A
general reservoir model based on the physical laws that governs fluid flow in a porous medium
is also introduced. These models are in general difficult to solve, therefore simplified models for
single-phase and two-phase flow will be presented. The presentation is mainly based on the book
written by Bear [1].

2.1 Basic definitions

An oil or gas reservoir is a porous geologic formation that contains in its pore space, in addition
to water, at least one hydrocarbon (oil or gas) in liquid or gaseous phase. Basic concepts and
equations will also be valid for other types of reservoir with other types of fluids, still oil and gas
reservoirs will be used as examples throughout this thesis.

A porous medium consists of two parts, the solid part and the empty part. The solid part is
called the matrix and the empty part pore. It is a difficult task to exactly describe the complex
structure of a porous medium on a microscopic level. To calculate the fluid flow within these
complex structures for a whole reservoir is even more difficult, still microscopic models on either
simplified structures or on small scale problems can be used to model fluid flow. Alternatively the
processes may be described on a macroscopic level. To be able to describe a porous medium on
a macroscopic level, different parameters that describes fluid and matrix properties in a porous
medium is defined.

2.1.1 Fluid properties

On a macroscopic level, fluid is seen as a continuum and not as solid particles. The density of the
fluid is defined as mass per unit volume. A relation between pressure, temperature and density
is called an equation of state. Only isothermal processes will be discussed in this paper. An
isothermal process is a process with constant temperature. Density, ρ can then be expressed as a
function of pressure, p:

ρ = ρ(p) (2.1)

For an incompressible fluid, the density is constant. A second property describing a fluid is the
ability of a fluid to resist deformation. A fluid obeying Newton’s law of viscosity, that is that the
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share force per unit area is proportional to the local velocity gradient, is called a Newtonian fluid.
This proportional constant is called the viscosity, µ of the fluid. All fluids considered in this paper
are Newtonian. For isothermal processes the viscosity equation is a function of p,

µ = µ(p). (2.2)

In this thesis both the density and the viscosity will be assumed to be constants.

2.1.2 Rock properties

The porosity of a porous medium is defined as the fraction of the pore space in the medium. To
find the porosity, a medium needs to be pulverized to measure the matrix volume. This is not an
optimal approach, not only because it destroys the sample, but also because the porosity found
in this way, do not resemble the transport abilities of the medium. In a porous medium there
are isolated pores and pore channels that do not reconnect to the pore. Since these pores do not
contribute to the fluid flow, it is more convenient to define an effective porosity. The effective
porosity of a medium is defined as:

φ =
VPe
Vt

, (2.3)

where Vt is the total volume of the medium and VPe is the effective pore volume without isolated
and unconnected pores. When it is referred to porosity in this paper, it is referred to the effective
porosity. An example of a porous rock is limestone. The porosity of limestone is approximately
1-10%. Sediments, such as clay, has a porosity as large as 45-55% [1].

In 1855 Henry Darcy did a series of experiments to investigate the ability of water to flow
through different types of sand. For one dimensional flow he concluded that the flux, f̃ is propor-
tional to the hydraulic gradient, J̃ . The hydraulic gradient describes the direction of flow from
high to low values of the total pressure and potential energies. For a horizontal case where the
difference in water elevation is h1 − h2, and the length is l, the hydraulic gradient is equal to:
J̃ = (h2 − h1)/l. The result of these experiments is known as Darcy’s law:

f̃ = K̃J̃ . (2.4)

The proportional coefficient K̃ is called the hydraulic conductivity. Following Bear [1] the hydraulic
conductivity can be expressed in terms of viscosity and density as

K̃ =
Kρg

µ
,

where K is called the permeability. The permeability is a measure of the ability of a medium to
transmit fluids. The unit of permeability is Darcy. One Darcy is converted to SI-units, 1 Darcy
= 0.987 ∗ 10−12m2. Typical reservoir rocks, as sandstone and limestone, have a permeability
between 10−1 − 104 milli-Darcy(mD), while dolomite is less previous with permeability less than
10−1 mD. Other examples are gravel and sand with permeability between 102 − 108 mD and
granite with values as small as 10−5mD [1]. In general permeability is both dependent on spatial
location and direction of flow. Therefore it must be described by a second order tensor field. In
this context a tensor field is an extension of the vector field. A vector field is a first order tensor.
For a n dimensional space each point is associated by a vector determined by n components. For
a second order tensor field, each point is associated by a matrix with n × n components. The
permeability tensor is then, K = Kij(x). A medium that is independent of spatial location is
called homogeneous. The permeability tensor for a homogen medium is: K = Kij . If a medium
is isotropic, it is independent of the direction of flow. For an isotropic and homogeneous medium
the permeability is a constant, K = KI, where I is the identity matrix. Trough out this work,
only isotropic mediums will be considered.
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2.2 The continuity equation

Within a closed volume Ω, quantities such as mass and momentum are conserved. For a quantity
m̃ the conservation law can be expressed by the following integral equation:∫

Ω

∂m̃

∂t
dV +

∫
∂Ω

f̃ · ndS =
∫

Ω

qdV.

The conservation law says that the change in m̃ must come from a source or sink, q inside the
volume or from fluxes, f̃ through the surface of the volume. The outward unit normal vector n
gives the direction of the surface ∂Ω. The divergence theorem together with the fact that the
conservation law is valid for an arbitrary volume Ω, leads to the continuity equation:

∂m̃

∂t
+∇ · f̃ = q. (2.5)

2.3 Single-phase flow

A typical oil reservoir consists not only of a single phase of oil, but also of water and gas. Still,
single-phase models could be used in other types of reservoirs such as ground water reservoirs and
dam reservoirs. Single-phase models can also be used for tracking pollution. Some chemical and
radioactive pollution do not interact with other present phases and can therefore be modeled by
single-phase models. Radioactive and chemical components can also be injected into the reservoir
as tracers. Tracer concentration curves in production wells can then help reservoir engineers
deciding about reservoir properties as layers, channels and how wells are connected. Examples of
tracers used in reservoir characterization are NOX and SO4.

For a single-phase flow, the mass density, m̃ is given by: m̃ = φρ and the flux density, f̃ is
given by f̃ = ρu. The velocity, u is not the actual particle velocity, but a macroscopic measure
called the Darcy velocity. The Darcy velocity is defined as the flow rate (volume/time) divided
by the cross section area along the flow path. With these expressions of the mass density and flux
density, the conservation equation in (2.5) becomes:

∂

∂t
(φρ) +∇ · (ρu) = q. (2.6)

For a incompressible fluid,
∇ · u = 0 (2.7)

away from the wells. Since ∇ · (ρu) = u · ∇ρ+ ρ∇ · u, equation (2.6) becomes

φ
∂ρ

∂t
+ u · ∇ρ = q (2.8)

for incompressible fluids. The Darcy velocity u is given by the generalized version of Darcy’s law
on differential form [1]:

u = −K
µ

(∇p− ρg). (2.9)

In this generalized form of the Darcy’s law, the flow can be either pressure driven or driven by
gravitational forces. Together with the equation of state for density (2.1) and viscosity (2.2), the
incompressible equation (2.7) and the continuity equation (2.8) forms a closed set of equation
for single-phase flow in a porous medium. For a tracer that flows without interacting with other
present phases, the continuity equation reads

φ
∂C

∂t
+ u · ∇C = q, (2.10)

where C is the concentration of the tracer.
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2.4 A model for multi-phase flow

In general, a reservoir consists of multiple phases. In addition to already present oil and gas,
water is often injected to increase oil recovery. Another way to increase oil recovery is to inject
gas. The injected gas is miscible with the displaced fluid. Therefore a mixed zone will be created
between the different phases. In this thesis only immiscible fluids will be discussed. Water and oil
are examples of immiscible fluids. For an immiscible fluid, saturation, Sα of phase α is defined as
the fraction of the void volume of the porous media:

Sα =
Vα
VPe

, (2.11)

where Vα is the volume occupied by phase α and VPe is the effective pore volume. Assuming all
pores to be filled with fluids, the total saturation at a point is always one,∑

α

Sα = 1. (2.12)

Forces acting between different medium are called surface tensions. These tensions bend the
surfaces such that it is always true that the pressure on the concave side is larger than the pressure
on the convex side. The fluid on the convex side is called wetting and the fluid on the concave
side is called nonwetting. The difference in pressure between the phases is called the capillary
pressure,

Pc = pnw − pw, (2.13)

where pnw is the pressure in the non-wetting phase and pw is the pressure in the wetting phase. For
idealized models it is possible to derive a expression for Pc = Pc(Sw), where Sw is the saturation
of the wetting phase w. For a general medium a relation between saturation of the wetting phase
and the capillary pressure must be found experimentally. Only one phase of immiscible fluids can
flow through a pore at a given time. Still, other present phases will reduce the pore space and
therefore influence the permeability. A relative permeability is defined to decouple the effect of the
present phases from the rock permeability. The effective permeability for wetting and non-wetting
fluid is given by

kw = krwK, (2.14)

knw = krnwK, (2.15)

where krw and krnw is the relative permeability for wetting and nonwetting fluids. To simplify
notation, mobility is defined as:

λα = krα/µα, (2.16)

where krα is the relative permeability and µα is the viscosity.
For a multi-phase and multi-dimensional flow, a generalization of Darcy’s law for single phase

flow given in (2.9) can be made. Several attempts have been made to prove the generalized Darcy’s
law from more fundamental laws of physics. By averaging the Navier-Stokes equations, Whitaker
showed that Darcy’s law could by motivated from the principle of conservation of momentum.
Other examples can be found in [1]. Even though Darcy’s generalized law cannot be proved, it is
supported by experimental data, therefore it is assumed that

uα = −λαK(∇pα − ραg) (2.17)

for each phase α [1]. Darcy’s generalized law is an empiric law that tells that the velocity, uα of
the flow in a porous media is proportional to the pressure gradient, ∇pα and the gravitational
force rate, ραg. The proportional constant is divided into two parts. The first part is a tensor
describing the rock permeability, K. The second part is the relative mobility of the flow, λα. While
the relative mobility is depending on the saturation and concentration of other present phases,
the rock permeability is only depending on the rock.
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By using the conserved mass density, m̃α = φραSα and the flux density, f̃α = ραuα, the
following modified form of the continuity equation could be found:

∂

∂t
(φραSα) +∇ · (ραuα) = qα. (2.18)

The modified continuity equation (2.18) and Darcy’s law (2.17) forms a coupled set of nonlinear
differential equations. Together with the equation of state (2.1), the viscosity equation (2.2), the
capillary pressure equation (2.13) and the assumptions that all pores are totally filled with fluids
(2.12), these equations form a closed set of equations. Adding initial and boundary conditions, it is
possible to solve these sets of equations, and therefore describe the fluid flow. Still the complexity
of the equations and the geometry of the reservoir make this a difficult task. Analytic solutions
exist only for simplified equations with simple boundaries. In practice numerical methods, for
example based on finite differences or finite elements must be used to find a solution. Solving the
full model equations for a multi-phase flow is computational intensive. To solve the flow equations
efficiently, simplified models can be introduced. See Chen et al [19] for a guide to computational
methods for multi-phase flow in porous medium. In this thesis a simplified model for two phase
flow due to Buckley and Leverett will be used.

2.5 The Buckley-Leverett model for two phase flow

For a two phase flow of oil and water that is incompressible, immiscible, and with constant viscosity,
and where the effect of gravity and capillary forces are neglected, Buckley and Leverett (1942)
introduced a simplified fluid model for flow in a porous medium. For constant ρ and φ equation
(2.18) can be rewritten as

φ
Sα
∂t

+∇ · uα =
qα
ρα
. (2.19)

The total velocity for a two face flow of oil, α = o and water, α = w is defined as: u = uo + uw.
Combining the equations from (2.19) for α = (o, w) gives

∂

∂t
(So + Sw) +∇ · (uo + uw) = q, (2.20)

where q = qo

ρo
+ qw

ρw
. The fluids are assumed to fill the pore space completely therefore So+Sw = 1,

and (2.20) is reduced to:
∇ · u = q. (2.21)

Neglecting capillary forces such that Pc(Sw) = 0 gives equal pressure for the oil and water phase:
p = po = pw. The following expressions can then be found from Darcy’s law (2.17):

uw = −λwK(∇p− ρwg)⇒ ∇p = (
−uw
λwK

+ ρwg), (2.22)

uo = −λoK(∇p− ρog)⇒ ∇p = (
−uo
λoK

+ ρog). (2.23)

By combining (2.22), (2.23) and using that uo = u−uw the following expression can be found for
uw:

uw = Fwu + FwλoKg(ρo − ρw),

here the fractional flow of water Fw is defined as:

Fw =
λw
λt
, (2.24)

where λt is the total mobility given by λt = λo+λw. For incompressible fluid, ∇·(Fwu) = u ·∇Fw
since∇·u = 0 away from the wells. Finally, by neglecting gravity, the equation for water saturation
becomes:

φ
∂Sw
∂t

+ u · ∇Fw = q̃, (2.25)
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where q̃ = qw

ρw
. By eliminating the w subscript, equation (2.21) and (2.25) becomes

∇ · u = q, (2.26)

and
φ
∂S

∂t
+ u · ∇F = q̃. (2.27)

The velocity, u is given by the Darcy’s law (2.17) without the gravity term:

u = −Kλt∇p. (2.28)

The elliptic equation (2.26) is called the pressure equation, and the hyperbolic transport equation
(2.27) is usually referred to as the Buckely-Leverett equation. Since the equations are dependent
on each other they have to be solved simultaneously. For some special cases with simple initial
and boundary conditions, it is possible to find analytic solutions. Some examples can be found in
[2] and [19]. These analytic solutions can give valuable understanding to the problem. Still, for
practical applications, a numerical approach is necessary.

In the Buckely-Leverett model the pressure equation and the saturation equation forms a set
of coupled differential equations. One way to solve these equations is to discretize them using
finite-differences and then solve them sequentially in time. The widely used reservoir simulator
Eclipse is based on an IMPES approach. IMPES solves an implicit discretization of the pressure
equations and an explicit discretization of the saturation equation sequentially in time. See [19]
for details. Another approach is to use a finite element discretization. The reservoir simulator
developed by Sintef, which is used in this master thesis, uses a multi-scale mixed finite element
solver for the pressure equation (MsMFEM). A short description of MsMFEM based on work by
Aarnes at al at Sintef [9] can be found in appendix A.

2.6 Summary and comments

In this chapter a mathematical model for fluid flow in a porous medium is introduced. Simplified
equations for single- and two-phase flow are found and both analytic and numerical solution
techniques are presented. The presentation in this chapter is general and is not restricted to a
streamline formulation. In the next chapter further simplification of these equation will derived
be introducing the concept of streamlines.
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Chapter 3

Streamline based transport
simulation

Make everything as simple as possible, but not simpler.
Albert Einstein

The computational speed is the most important reason for introducing a streamline based method
for simulation of fluid transport. Past years development in reservoir characterization has made
it possible to generate fine scale static models based on geologic and geophysical data. These fine
scale static models can include million of cells, making a simulation based on conventional grid
based methods time consuming. Even though streamline based methods have limitations, and
therefore never can substitute conventional methods, they can help provide important knowledge
about the reservoir. The strengths and limitations of streamline based methods will be discussed
in detail in the end of this chapter, but first some basic concepts need to be introduced.

3.1 Basic definitions

3.1.1 Streamlines

Streamlines are instantaneous lines that are everywhere tangential to a velocity field. Streamlines
can therefore be defined as the function x that solves the differential equation:

dx× u(x, t0) = 0, x(t0) = x0, (3.1)

where u is the velocity field. Note that streamlines are not time dependent. By knowing the
initial position x0 and the initial velocity field u(x, t0), streamlines can be generated instantly for
the whole region. This is in contrast to path lines. A path line is tangential to the velocity field
at time t, and describes the physical trajectory of a particle through space and time. For steady
velocity, streamlines will correspond to path lines, else streamlines represents the instantaneous
velocity field, and not the path of a particle. If the velocity field is time dependent, different
streamlines needs to be defined at each time of interest. Another important difference between
path lines and streamlines is that streamlines never cross for divergence free flow. Therefore fluid
transport can be calculated independently on each streamline.

3.1.2 A time-of-flight based coordinate system

A key concept of streamline methods is to use time-of-flight instead of arc-length to parameterize
the streamlines. By introducing time-of-flight as a spatial coordinate variable, the effect of the
geological heterogeneity is embedded into a time-of-flight based coordinate system. The other
coordinate variables are the Streamfunction in 2D and the Bi-Streamfunction in 3D.
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The Streamfunction for 2D flow

A 2D flow of an incompressible fluid can be described in Cartesian coordinates by a function Ψ
defined such that:

ux =
∂Ψ
∂y

, (3.2)

uy = −∂Ψ
∂x

. (3.3)

With this choice of function Ψ, the continuity equation for incompressible flow is automatically
satisfied:

∇ · u =
∂2Ψ
∂x∂y

− ∂2Ψ
∂x∂y

= 0.

For a 2D flow in the xy-plane x = (x, y, 0) and u = (ux, uy, 0). Therefore the definition of
streamlines in (3.1) simplify to

dx

ux
− dy

uy
= 0. (3.4)

Substituting (3.3) and (3.3) into (3.4) gives

∂Ψ
∂x

dx+
∂Ψ
∂y

dy = 0,

which means that dΨ = 0 along the streamlines and that

Ψ = Ψ(x, y) = constant, (3.5)

is a solution of (3.4). The function Ψ is the Streamfunction for 2D flow. The Streamfunction and
the streamlines are related such that the lines given by, Ψ = constant are the streamlines.

Bi-Streamfunctions

The notion of Streamfunction can be generalized to 3D flow. For divergence free flow, it is shown
by Bear [1] that the velocity in 3D can be described in terms of two scalar functions,

u = ∇ψ ×∇χ.

Observe that by this definition the continuity equation is satisfied, since

∇ · u = ∇ · (∇ψ ×∇χ) = 0,

for arbitrary scalar functions. The surfaces defined by

ψ = ψ(x, y, z) = constant, (3.6)
χ = χ(x, y, z) = constant. (3.7)

solves (3.1) [1], and are known as Bi-Streamfunctions in 3D. The intersection of these Bi-Streamfunctions
defines streamlines, since the cross product ∇ψ×∇χ must lie in both of the surfaces. Even though
Bi-Streamfunctions are sufficient to describe fluid flow, they are in general difficult to construct.
Therefore Bi-Streamfunctions are seldom used directly, but they play an important role in con-
structing the time-of-flight based coordinate system.
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time-of-flight

Time-of-flight, τ is the travel time of a passive tracer along a streamline [2]. Since the velocity
varies along the streamline, the time-of-flight along the streamline given by Γ is

τ =
∫

Γ

φ(x(ξ))
| u(x(ξ)) |

dξ, (3.8)

where ξ is the arc-length. Alternatively

u · ∇τ = φ. (3.9)

The two definitions are equivalent since

φ

|u|
=
dτ

dξ
=

u
|u|
· ∇τ.

The first of these equalities is due to the fundamental theorem of calculus and the second is
by the definition of directional derivatives. Since time-of-flight is given in the direction of the
streamlines, they are orthogonal to the bi-streamfunctions. A new coordinate system with (τ, ψ, χ)
as orthogonal bases, can then be constructed. The Jacobian of the transformation (x, y, z) 7→
(τ, ψ, χ) is

|∂(τ, ψ, χ)
∂(x, y, z)

| = |(∇ψ ×∇χ) · ∇τ | = |u · ∇τ | = φ. (3.10)

By using the chain rule the Cartesian gradient operator can be given with streamline coordinates
(τ, ψ, χ):

∇ = (∇τ)
∂

∂τ
+ (∇ψ)

∂

∂ψ
+ (∇χ)

∂

∂χ
.

Since u is orthogonal to both ∇ψ and ∇χ it follows that

u · ∇ = (u · ∇τ)
∂

∂τ
= φ

∂

∂τ
. (3.11)

Equation (3.10) and (3.11) will be used to simplify the model equations, but first more has to be
said about the calculation of streamlines and time-of-flight. If the velocity field can be expressed
in terms of a simple function, streamlines may be found analytically by solving the corresponding
differential equations in (3.1). Usually, the velocity field is found numerically by solving the
pressure equation. In this case a semi-analytic method due to Pollock is commonly used to trace
streamlines.

3.1.3 Pollock’s algorithm for tracing streamlines

Pollock’s method is based on making a piecewise linear approximation of the velocities in each
direction:

ux = ux1 + cx(x− x1),

uy = uy1 + cy(y − y1),

uz = uz1 + cz(z − z1), (3.12)

where (x1, x2, y1, y2, z1, z2) are the corners in a cell and (ux1 , ux2 , uy1 , uy2 , uz1 , uz2) gives the fluid
velocities on each of the six faces of the cell. See Figure 3.1. These face velocities, can be found be
solving the pressure equation (2.26). The coefficients in equation (3.12) are given by the difference
of the Darcy velocities on each of the cell faces:

cx = (ux2 − ux1)/(x2 − x1),

cy = (uy2 − uy1)/(y2 − y1),
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Figure 3.1: Illustration of the Pollock’s algorithm in 2D, after [2].
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cz = (uz2 − uz1)/(z2 − z1).

The streamlines can be found by using the definition in (3.1) for each direction, that is:

dτ

φ
=
dx

ux
=
dy

uy
=
dz

uz
. (3.13)

The first equality comes from the definition of time-of-flight in (3.9). For a particle that starts in
r0 = (x0.y0, z0), integrating (3.13) for the linear velocities given in (3.12) gives the time-of-flight
to each of the six faces:

∆τxi
= φ

∫ xi

x0

dx

ux
=

1
cx

ln
(
uxi

ux0

)
∆τyi

= φ

∫ yi

y0

dy

uy
=

1
cy

ln
(
uyi

uy0

)
∆τzi = φ

∫ zi

z0

dz

uz
=

1
cz

ln
(
uzi

uz0

)
(3.14)

where i = (1, 2). In Pollock’s method the time-of-flight is given as the minimum positive time-of-
flight, that is:

∆τ = min
∆τ>0

(∆τx1,∆τx2,∆τy1,∆τy2,∆τz1,∆τz2). (3.15)

The exit coordinates can be found by rearranging (3.14):

x = x0 + ux0

(
ecx∆τ/φ − 1

cx

)

y = y0 + uy0

(
ecy∆τ/φ − 1

cy

)
z = z0 + uz0

(
ecz∆τ/φ − 1

cz

)
(3.16)

Observe from equation (3.12) that, ∇ · u = cx + cy + cz, which means that the discrete method
conserves flux locally for an incompressible flow.

3.2 The transport equation along a streamline

3.2.1 Single-phase flow

The continuity equation of tracer flow given in (2.10) can be mapped from the Cartesian coordi-
nates to a time-of-flight based coordinate system. The transport equation for tracer flow along
the streamline is then given by

∂C

∂t
+
∂C

∂τ
= q. (3.17)

This comes directly from putting (3.11) into the continuity equation for a single-phase flow from
Chapter 2. This equation has an analytic solution. Observe that equation (3.17) is just the
definition of the directional derivative in the direction (t, τ) = (1, 1), therefore the solution must
be constant along each characteristic, t− τ = constant. For initial condition, C(0, τ) = C0(τ), the
tracer concentration is given by

C(t, τ) = C0(t− τ). (3.18)

For a constant injecting rate C0 and zero initial tracer concentration, the solution becomes

C(t, τ) =
{

0, t < τ,
C0, t > τ.

In [6] tracer data is used for history matching. An advantage of using tracer data for history
matching is that analytic solutions can be found. Tracer data will however not be used for history
matching in this theses. Instead water cut data from a two-phase flow will be used.
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3.2.2 Two-phase flow

As with the single-phase flow problem, the introduction of a time-of-flight based coordinate system
reduces the Buckely-Leverett equation to simple 1D transport equations along the streamlines.
Applying equation (3.11) to the Buckely-Leverett equation (2.27) gives

φ
∂S

∂t
+ φ

∂F (S)
∂τ

= q̃,

along the streamlines. Since each streamline is traced between wells there will be no sink or source
term, q̃ = 0. Dividing the equation on φ simplifies it further to:

∂S

∂t
+
∂F (S)
∂τ

= 0. (3.19)

The 1D transport equation given in (3.19) describes changes in water saturation along the stream-
line. For a Buckley-Leverett displacement it is also possible to find analytic solutions. Solving the
differential equation in (3.19) with initial water saturation S0 and constant injecting state Sinj ,
corresponds to solving a Riemann problem with initial data

S(0, τ) =
{
Sinj , τ < 0,
S0, τ ≥ 0. (3.20)

Assuming Sinj > S0 , the solution for F ′′(S) > 0 will be [4]

S(t, τ) =
{
Sinj , τ < σt,
S0, τ ≥ σt, (3.21)

where σ is the shock speed given by the Rankine-Hugoniot condition

σ =
F (S0)− F (Sinj)

S0 − Sinj
. (3.22)

For F ′′(S) > 0, the saturation will form a shock with height Sinj that travels with shock speed σ.
The waterfront will reach the producer at t = τ/σ. For F ′′(S) < 0 the solution becomes[4]

S(t, τ) =

 Sinj , τ < F ′(Sinj)t,
(F ′)−1(τ/t), F ′(Sinj)t ≤ τ ≤ F ′(S0)t,
S0, τ > F ′(S0)t

For F ′′(S) < 0 there will be no shock, instead a rear fraction wave will form a continuous solution
between the different states Sinj and S0. If F is both convex and concave the upper concave
envelope of F must be constructed, that is F̃ . The solution will then be

S(t, τ) =


Sinj , τ < F̃ ′(Sinj)t,
(F ′)−1(τ/t), F̃ ′(Sinj)t ≤ τ ≤ F̃ ′(S0)t,
S0, τ > F̃ ′(S0)t.

For more general displacements where the injecting problem is not a simple Riemann problem,
numerical methods must be used. An often used numerical method called the Upwind method for
solving the transport equation is based on taking the one-sided approximation of the derivative
in space and a backward Euler step in time. An disadvantage with the upwind method is that
numerical diffusion is introduced [10]. Therefore a better method that does not introduce numerical
diffusion will be used. This method is called front tracking.
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3.2.3 Front Tracking

The main idea behind front tracking is to approximate the initial saturation by piecewise constant
functions, and the flux function by piecewise linear functions, and then solve the Riemann problems
associated with each of the initial discontinuities. By tracking the fronts and solving new Riemann
problems whenever fronts collides, a global solution can be found. Following Holden and Risebro
in [8], the procedure for solving the one-dimensional transport equation (3.19) will be:

1. Approximate F by a continuous, piecewise linear flux function F δ.

2. Approximate initial data S(0, τ) by a piecewise constant function Sη(0, τ).

3. Solve the initial value problem

∂S

∂t
+
∂F δ(S)
∂τ

= 0, S|t=0 = Sη(0, τ),

exactly for each η and δ. Denote the solution Sδ,η.

4. As F δ and Sη(0, τ) approach F and S(0, τ), respectively, the approximate solution Sδ,η will
converge to S, the solution of (3.19).

Since the front tracking method solves the Riemann problems exactly, the method do not need to
take into account the CFL criteria [8], and can therefore use larger time steps. This method does
not introduce numerical diffusion and will therefore preserve the frontal structure of the solution.

3.2.4 Mappings between Streamlines and the pressure grid

To get the saturation in each cell, the saturation along each streamline must be mapped back to
the underlying grid. The initial saturation, Sinj used for solving equation (3.19) can be obtained
by picking the values from the pressure grid.

Sl,i = Si

Note that for the Riemann problem given in (3.20), Sinj for streamline l is equal to Sl,i = Si,
where i is the cell number where the streamline starts. To map the saturation from the streamlines
back to the pressure grid, a volumetric average can be used. Each streamline l is considered as a
representation of a stream tube with cross section A. The volumetric flux, ql is defined such that
ql = |u(ξ)|A(ξ). The pore volume associated with streamline l is

Vl =
∫

Γ

φ(ξ)A(ξ)dξ = ql

∫
Γ

φ(ξ)
|u(ξ)|

dξ = qlτl.

The volume associated with a streamline going through cell i is Vl,i = ql∆τl,i. The saturation in
cell i is given as the average of all streamlines going through that cell:

Si =
∑
l Sl,iVl,i∑
l Vl,i

. (3.23)

All streamlines are traced from equally distant points at the faces of cells where the injector
is placed. The streamlines will then carry approximately the same amount of fluid; that is,
ql=q/Nsl, where q is the total well rate and Nsl is the total number of streamlines. For large and
heterogeneous reservoir streamlines will not go through all cells. These untraced cells can either
be ignored or alternatively additional streamlines can be traced both forward to a producer and
backward to an injector. Since untraced cells often lie in regions that contribute little to the well
production they will be ignored.

A disadvantage of the mapping in 3.23 is that it does not conserve mass, and may lead to
incorrect saturation and production curves. Stenerud et al. [17] therefore suggest an alternative
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method, based on the observation that ∆τl,i may not be a good approximation to the average time-
of-flight over the cross section of the associated stream tubes. To guarantee global conservation
of mass, a factor αi = Vi/

∑
l Vl,i is used to scale ∆τl,i in cell i. The factor α guarantees global

conservation of mass for the mapping from grid to streamlines,

V wgrid =
∑
i

ViSi =
∑
l,i

αiVl,iSi =
∑
l,i

αiVl,iSl,i = V wsl ,

where V wsl and V wgrid are the total volumes for water on the streamline grid and pressure grid,
respectively. The same is also valid for the mapping from streamlines to grid. By forcing mass
conservation, local errors in the saturation profile are introduced. This is because the scaling factor
α corresponds to a local stretching or shrinking of the streamline grid. But as demonstrated by
Stenerud et al. [17], the global properties of the solution are better. The water breakthrough time
at a producer, can be used as data in a history matching procedure. Therefore to get an accurate
breakthrough time, this scaling is only applied after the water breakthrough. The effect of this
mapping is showed in one of the examples that follow.

3.3 Examples

In the two first chapter of this thesis, the theory behind streamline simulation has been intro-
duced. To illustrate some of the practical aspects of streamline simulation some examples will be
considered. In all examples and through out this thesis the SAM Research Simulator version 1.0
from Sintef is used. More details about the reservoir simulator can for instance be found in [16]
and [17].

As the first example, a reservoir with 10 grid cells in each dimension is considered. All cells
are 1m × 1m in size and have constant porosity 1. Three different rock permeability fields is
used to illustrate the effect of the permeability has on the solution, these is referred to as Case
1, 2 and 3, respectively. The initial permeability is given in Figure 3.2. Initially all cells are
filled with oil with density 1kg/m3 and viscosity 2centipose. Water, with density 1kg/m3 and
viscosity 1centipose, is injected with a constant rate 1.0m2/day in the lower right corner, grid cell
(10, 10). A producer is placed in the upper left corner, (1, 1). The relative permeability of water
and oil is given by: krw(Sw) = S2

w and kro(Sw) = (1− Sw)2. By the definition of mobility (2.16);
λw = krw/µw = S2

w and λo = kro/µo = (1 − Sw)2/2. The fractional flow of water is therefore
F (Sw) = λw/(λo + λw) = 2S2

w/(1− 2Sw + 3S2
w).

The results of the simulation for these examples are plotted in different figures. In all simula-
tions, 10 steps are taken, each with step size 10 and the number of streamlines used are 100. Water
saturation for different times are given in Figure 3.3. For Case 1 with homogeneous permeability,
the water is flowing radially out from the injecting well. The plot in the middle of Figure 3.4
shows that the water reaches the producer after approximately 50 days. In Case 2 and Case 3
the water saturates the reservoir almost radially, but the effects of the difference in permeability
field are clearly seen. The water cut profile for the different cases shows no significant differences,
apart from the arrival time. In Case 2 and 3 water arrive after 40 days of injection. Even thought
the permeability fields are totally different the production data is not. This is because the wells
are forced to produce with a constant rate. To obtain constant production the pressure at the
well is adjusted. In more realistic problems the production of the wells depends on the reservoir
pressure. The reservoir simulator used in this thesis uses only simple wells that inject and produce
with constant rates.

The second example is used to illustrate how streamlines and time-of-flight are dependent
on the heterogeneity of the permeability field. The Sintef simulator uses the method of Pollock
to trace streamlines. The Figures in 3.5 clearly show how the streamlines are dependent of the
permeability. The structure in the permeability field in Case 2 is clearly seen in the streamlines
in Figure 3.5. In all these simulations a total of 100 streamlines are used. Observe that in the
corners away from the wells there are almost no streamlines. Also in the middle of the reservoir
the number of streamlines is fewer than expected. This is due to the regular two dimensional
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Cartesian grid that is used. Streamlines are traced from equally distant points at the faces of cell
(10, 10), where the injector is placed [16]. Since no streamlines are traced from the corners, the
center for the region is under represented by streamlines. The time-of-flight in the producer is
seen in Figure 3.5.

The Sintef simulator uses Front tracking to solve the transport equation. The third example
compares the numerical solution obtained from the Sintef simulator with an analytic solution.
Since F is either convex nor concave, the convex envelope of F (S) must be constructed. That is
the straight line from (0, 0) that intersect F (S), but do not cross F (S). The slope of the straight
line is the shock speed. The slope of the straight line from (0, 0) that intersect F (S), but do not
cross is 1.366 for the fractional flow given above. Therefore the shock speed, σ = 1.366. The
analytic and the numerical solution from the Sintef Simulator for streamline 1 and 25 is compared
in Figure 3.6. Streamline 1 is in the middle, and streamline 25 is the first from right. The
numerical solution does not match the analytic solution very well, especially for streamline 25.
Since the front tracking method is semi-analytic it should solve the saturation equation exactly
for this simple example. The difference between the numerical and analytic solution is due to the
coarse Cartesian grid. The effects of the grid can be seen as small jumps along the saturation
profile. In Figure 3.7 the solution can be seen for a finer 100 × 100 grid. Observe that the grid
effects are less obvious for this case, both for streamline 1 and 25. To be able to get a saturation
profile on grid cell i the mapping in (3.23) are used. An illustrate of what happens if too few
streamlines are traced in the simulation, can be seen in Figure 3.9, but observe that there are
no major difference in the water cut in Figure 3.8. This is due to the α-factor introduced in the
mapping. All these examples show that there are different aspects such as number of streamlines
and grid cells that must be kept in mind when using a streamline simulator. More about spatial
errors and convergence is found in the textbook by Datta-Gupta and King [2].

3.4 Summary and comments

In this chapter the basic concepts of streamline based flow simulation have been introduced. The
main key for the streamline simulation is the introduction of time-of-flight. With time-of-flight the
heterogeneity of the reservoir is embedded into the coordinate system and the multi-dimensional
transport equation is decoupled into one-dimensional problems. This gives significant speed up
compared to traditional methods. For advection dominated flow the pressure equation does not
need to be updated at every time step. This is also a huge advantage since the pressure equation of-
ten is the most computational expensive part of the simulation. Dispersion will however be present
in the flow equations if the effect of capillary forces is included in the model. The dispersion term
will then introduce transverse fluid flow and therefore violate the important assumption above.
The same cross streamline flow will also be present if the fluid is more compressible. Dispersion
can however be handled by updating the streamlines more often, but then the computationally
expensive pressure equation most be solved equivalently often. Effects from gravitation, changing
well condition, etc can also be included in the model [2].

For an incompressible advection dominated fluid flow, streamline methods are optimal, but
for more complex models other methods such as IMPES are better to use. Another disadvantage
with a streamline based method is the inaccurate mapping between the streamlines and the grid
cells. The examples in Section 3.3 showed how grid size and number of streamlines affects the
solution accuracy. Still much work remains to be done to get a better understanding of error
estimates and convergence. For uncertainty analysis and history matching where a large number
of realizations of the model are needed, streamline simulation has shown its greatest potential.
Streamline simulation will therefore be used to solve the history matching problem given in the
introduction. But first some more has to be said about the nature of inverse problems.
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Figure 3.2: Initial permeability field for Case 1 (left), 2 (center) and 3 (right)

Figure 3.3: Water saturation after 10 (left) and 50 (right) days for case 1 (top), 2 (middle) and 3
(bottom).
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Figure 3.4: Watercut at producer for Case 1 (left), 2 (center) and 3 (right).

Figure 3.5: Streamlines (left) and time-of-flight (right) for Case 1 (top), 2 (middle) and 3 (bottom).
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Figure 3.6: Comparing analytic (dotted) and numerical solution (solid) for a 10 × 10 grid for
streamline 1 (top) and streamline 25 (bottom).
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Figure 3.7: Comparing analytic (dotted) and numerical solution (solid) for a 100 × 100 grid for
streamline 1 (top) and streamline 25 (bottom).

Figure 3.8: Water cut at producer for Case 1 for 10× 10 (left), 100× 100 (center), both with 100
streamline, and 100× 100 with 200 streamlines (right).
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Figure 3.9: Water Saturation after 10 (left) and 50 (right) days for Case 1 with 10 × 10 (top),
100× 100 (middle), both with 100 streamlines and 100× 100, with 200 streamlines (bottom).
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Chapter 4

Inverse Problems

Inverse problems are a field
in which one is called upon to reconstruct the cow

from the hamburger meat, so to speak
Andreas Mandelis

Since the days of Newton it has been widely accepted that the physical world is fully determined
through physical laws. This makes it possible to predict the future. The problem of predicting
the future is a forward problem. In mathematical language a forward problem is:

g(m) = d, (4.1)

where m is the model parameters, d is the collected data set, and g is the operator that reflects the
physical laws that relates the model parameters to the data set. A model is a set of parameters
that describes the physical system or as in our case, reservoir parameters as permeability and
porosity. For a linear problem, equation (4.1) could be written as a matrix equation: Gm = d,
where G ∈ Rm×n, m ∈ Rm and d ∈ Rn. The forward problem defined in (4.1) is only valid
in a theoretical world. Even thought the fundamental physical laws governing the nature are
adequately understood, simplification and assumptions needs to be done to actually solve the
problem. This will result in errors in the prediction. In the real world, there always exists error in
the measurements in addition to error in the prediction. This will introduce errors in the predicted
data, hence d = dt + η, where η is the data error.

For a forward model problem the target is to find d for a given m. But frequently scientists
and engineers meet problems where the model m is unknown. To determine the model they then
collect data and solve the corresponding inverse problem, that is to find m, for a given d. The
history matching problem introduced in the introduction, where reservoir engineers want to use
historical production data to better characterize the reservoir, is an example of an inverse problem.
There are two main approaches to formulate the theory of inverse problems, the deterministic and
the stochastic. The main focus of this presentation will be on the deterministic approach. Still
some references will be made to the stochastic formulation. More on the stochastic approach can
be found in [13]. Solution strategies based on the deterministic approach for inverse problems is
presented later in this chapter, but first some general concepts of inverse problems is introduced.
While a forward problem has a unique solution if the model and physics is perfectly known, this
is not the case for the inverse problem. For a given forward operator, a set of data cannot be
matched by any model or, alternatively, by infinitely many models. Therefore, a careful analysis
of the well-posedness of the inverse problem needs to be done.

4.0.1 Well-posedness

A problem is said to be well-posed if a stable and unique solution exists. To better understand
the well-posedness of inverse problems, some linear and discrete problems will be discussed. For a
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Figure 4.1: Geometrical interpretation of least squares

linear and discrete case the forward operator is a matrix. The condition and rank of this matrix
will determine the well-posedness of the problem. In all cases the measurement error is assumed
to be zero.

First let m = n, that means the dimension of the model and data space is equal and G is
a square matrix. If G is of full rank, that is rank(G) = n, then there exists a unique solution
m = G−1d, since the inverse of a nonsingular and square matrix always exists and is unique.

The case when m > n is called over-determined since there are more data than the model
can match. For a over-determined system of full rank, the solution of the matrix equation will
be unique, but not exact since null(GGT ) is nontrivial. Therefore, instead of finding the exact
solution, a solution that minimizes an objective function is found. Without any regularization,
the objective function, f(m) is defined as:

f(m) =‖ r ‖2 (4.2)

in some appropriate norm. The residual r = d − Gm. A model that minimizes the objective
function (4.2) in the 2-norm is called a least squares solution. If ri is the i-th element of the
residual, the discrete 2-norm of the residual is defined such that:

‖ r ‖22=
n∑
i=1

r2
i .

The least square solution has an intuitive geometric interpretation, see Figure 4.1. The orthogonal
projection of d onto range(G) is Gm− d, and therefore each column of G is orthogonal to
Gm− d. Thus GT (Gm− d) = 0 or GTGm = GTd. This system of equations is called the
normal equations. If G has full rank (GTG)−1 always exists [13]. The least square solution

mL2 = (GTG)−1GTd. (4.3)

For normal distributed errors, the least squares solution is unbiased and also the maximum likeli-
hood solution [13].

The case when m < n is called under-determined. An under-determined system will have an
exact solution, but it will not be unique. Since m < n, the null space of G, null(G) is nontrivial.
Therefore, all models m0 ∈ null(G) is solutions of Gm0 = 0, and also any combination of these
solutions is a solution, resulting in infinitely many solutions of the inverse problem. This is
typically the case for the history matching problem, since the number of data points d often are
lower than the number of parameters m to match. Even if it is possible to find an exact solution

22



to the inverse problem, this is not what is aimed for. There is error both in the model and in
the data, therefore a solution of the inverse problem is the model m that minimizes the objective
function defined in (4.2). The minimization problem in (4.2) is unstable, which means that a small
change in the measurements can lead to an enormous change in the estimated model [13]. The
minimization problem in (4.2) often is ill-conditioned. A linear problem is ill-conditioned when
the condition number of the matrix is large. For a matrix A ∈ Rm×n of full rank the condition
number, κ(A) is given by:

κ(A) =
σ1

σn
, (4.4)

where σ1 and σn are the largest and smallest eigenvalue of A, receptively [10]. To stabilize the
solution additional constrains can be added to the problem, this is referred to as regularization.

4.0.2 Regularization

One way to regularize the solution, is to add constraints that punish large variations of the model,
‖ m ‖2< ε for some given ε, to the objective function. An alternatively is to seek a solution that
minimizes the 2-norm of the model among those solutions that fits the data good enough:

min
m
‖m ‖22 for ‖ d−Gm ‖22≤ δ, (4.5)

for some given parameter δ. This regularization is called a zero order Tikhonovs regularization. A
damped least squares formulation of the Tikhonovs regularization can be found by applying the
method of Lagrange multipliers to (4.5):

min
m
‖ d−Gm ‖22 +α2 ‖m ‖22, (4.6)

where α is a regularization parameter [13]. The regularization parameter must be chosen with
care since all regularization introduces bias to the solution. One way to chose the regularization
parameter is by the L-curve criteria [5]. Plotting the values of ‖ m ‖2 versus ‖ d − Gm ‖2
on a log-log scale usually gives a characteristic L shape. The idea is to pick α such that both
‖ m ‖2 and ‖ d − Gm ‖2 is minimized, in other words find the solution that is closest to the
corner in the L-curve. Another method to find the regularization parameter is called Generalized
Cross Validation (GCV). For more details about both the L-curve method and the GCV method
see [13]. Prior knowledge of the model and data error variance can also be used to determine
the regularization parameter. Often it is desired to minimize the norm of the model derivatives.
If L ∈ Rn×n is the finite difference approximation of the derivatives, a higher-order Tikhonovs
regularization is

min
m
‖ d−Gm ‖22 +α2 ‖ Lm ‖22 . (4.7)

In a zero-order Tikhonovs regularization L = I, where I is the identity matrix. A first order
Tikhonovs regularization will penalize solutions that are rough in its first derivatives. In one
dimensions, the first order derivatives is approximated by

L =


−1 1

−1 1
· · ·
−1 1

−1 1

 .
In two or three dimensions the corresponding finite difference approximation of the derivative
must be used. An alternative way to regularize the inverse problem is to penalize large variation
from a prior model, mp. This way to regularize is closely related to Bayesian inversion. For
a linear model Gm = d, with Gaussian error distribution and Gaussian prior model parameter
distribution the maximum a posterior (MAP) solution can be found by

min
m
‖ d−Gm ‖2

C−1
D

+ ‖m−mp ‖2C−1
M

(4.8)
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where ‖ d−Gm ‖2
C−1

D

= (Gm− d)TC−1
D (Gm− d) and ‖m−mp ‖2C−1

M

= (m−mp)TC−1
M (m−mp)

for the model and data covariance matrix given by CM and CD, respectively. In the special case
where CM = (1/α)2I and CD = I equation (4.8) simplifies to

min
m
‖ d−Gm ‖22 +α2 ‖m−mp ‖22, (4.9)

which is the zero order non-standard Tikhonovs regularization [13]. In other words, prior knowl-
edge acts as a regularization term with increasing weight as the belief in the prior model decreases.
In history matching problems, geologists and geophysicists have made a prior model mp, based
on known geological structure, well core tests and seismic data etc. Their predicted uncertainty
of the prior model and error can therefore be used to determine the regularization terms in the
regularized inverse problem.

To reduce the number of degrees of freedom will also regularize the inverse problem. For a
discrete case this is the same as reducing the resolution of the model space and therefore reduce
the rank-deficiency of matrix G. All regularization will introduce bias and error to the solution.
Still a stable biased solution is preferred to an unstable unbiased solution. More on additional
regularization techniques can be found in [13].

4.0.3 Solving an inverse problem

The least square solution of the damped least square problem (4.7) can by rewritten as an aug-
menting system of equations

min
m

∥∥∥∥( G
αL

)
m−

(
d
0

)∥∥∥∥2

2

.

For α > 0,
(

G
αL

)
has full rank and can be solved by the method of normal equations [13],

m = (GTG + α2LTL)−1GTd.

Unfortunately the normal equations are typically unstable for ill-conditioned problems involving
close fits [14]. A more stable way than solving the least square problem via the Normal equations,

is to solve it via QR factorization [14]. Since
(

G
αL

)
is a sparse matrix an iterative method is to

be preferred since it requires less flops and storage. The conjugate gradient method can be applied
directly to the normal equation since GTG and also GTG + α2LTL is symmetric and positive
definite [14]. To further stabilize the solution the conjugate gradient method can be used via a
QR factorization. The LSQR algorithm combines the conjugate gradient method with the QR
factorization. Both the LSQR and the QR factorization algorithms are implemented in Matlab and
is therefore not investigated further here. For details about the LSQR algorithm, convergence and
speed, we refer to [12]. The QR factorization and conjugate gradient methods is fully presented
by Trefethen in [14]. The LSQR algorithm will be used to solve the history matching problem.

4.1 Nonlinear inverse problems

In the previous discussion only linear problems is considered. The equations that describe fluid flow
in a porous medium are nonlinear. The nonlinearity of the equations adds additional challenges
to the inverse problems. The least squares solution of a nonlinear inverse problem is the minimum
of the objective function given by:

f(m) =‖ r(m) ‖22, (4.10)

where the residual, r(m) = d− g(m) [11]. Note that here g(m) is a multi-dimensional operator,
and not a matrix. As for the linear case a regularization term can be added to the objective
function. Regularization of non linear inverse problems will be considered later. One approach
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that solves the nonlinear inverse problems is to use a local Taylor approximation of the objective
function iteratively. This leads to a local solution, a point at which the objective function is smaller
than all surrounding points. For a linear problem the local solution is always the global solution.
The same is true for all convex problems, but for a general nonlinear problem the local solution
is not always the global solution. To find the global solution of a non-convex problem is usually
difficult. The global minimum of the objective function for an non-convex problem can be found
by applying local minimization sequentially for different sub-domains [11]. Global minimization
problems are complex and time consuming and is not the focus of this thesis. All algorithms for
solving nonlinear least squares problems presented here are local solvers.

4.1.1 Newton’s method

Most of the algorithms that solve nonlinear least squares problems are iterative methods. Given
a initial point m0 the algorithms generate a sequence of iterates {mk} until either, no more
progress can be made, or the desired accuracy is reached. The nonlinear objective function can
be approximated by its Taylor’s polynomial. If f is twice continuously differentiable, the second
order Taylor approximation of f(mk + ∆m), where ∆m is a small perturbation of m, is

f(mk + ∆m) ≈ f(mk) + ∆mT∇f(mk) +
1
2

∆mT∇2f(mk)∆m,

where ∇f(mk) and ∇2f(mk) is the gradient and the Hessian of f(mk). Similarly the gradient of
f(mk + ∆m) can be approximated around mk,

∇f(mk + ∆m) ≈ ∇f(mk) + ∆mT∇2f(mk).

For m∗ to be a local minimizer of f(m), the gradient must be equal to zero, ∇f(m∗) = 0. A local
minimum of the objective function can therefore be found by solving

∇2f(mk)∆m = −∇f(mk). (4.11)

iteratively until convergence. The next iterate is updated such that, mk+1 = mk + ∆m. This
method is called Newton’s method. Newton’s method is a second order method since it makes
use of the second order derivatives. Newton’s method will converge quadratically to m∗ if f(m)
is continuously differentiable in the neighborhood of m∗, and there is a constant C such that
‖ ∇2f(m)−∇2f(m̃) ‖2≤ C ‖m−m̃ ‖2 for every m̃ in the neighborhood, and ∇2f(m) is positive
definite, and m0 is close enough to m∗ [13]. A real symmetric matrix A is positive definite if
zTAz > 0 for all real nonzero vectors z [13].

For least squares problems the Jacobian and Hessian of f(mk) can be expressed in terms of
the Jacobian and Hessian of g(m):

∇f(m) = J(m)T r(m), (4.12)

∇2f(m) = J(m)TJ(m) +
m∑
j=1

rj(m)∇2rj(m), (4.13)

where rj is the jth component of r [13]. The Jacobian is given by:

J(m) =


∂g1(m)
∂m1

· · · ∂g1(m)
∂mn

...
. . .

...
∂gm(m)
∂m1

· · · ∂gm(m)
∂mn

 . (4.14)

In Newton’s method, the Hessian of f(m) must be calculated in each iteration. To find explicit
formulas for the Hessian is often not possible. Still, the Hessian can be found by using finite
difference approximation to the derivatives, but this is often computationally expensive. In the
mid 1950s a new class of nonlinear optimization methods were developed using an approximation
to the Hessian instead of the Hessian itself. These methods are called Quasi-Newton methods.
One such Quasi-Newton method is called the Gauss-Newton (GN) method.
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4.1.2 The Gauss-Newton method

In the Gauss-Newton method the last part of the Hessian in equation (4.13) is omitted such that
∇2f(m) ≈ J(m)TJ(m). With this approximation of the Hessian and the gradient given in (4.13),
equation (4.11) becomes:

J(mk)TJ(mk)∆m = −J(mk)T r(mk). (4.15)

The Gauss-Newton method solves (4.10) by sequentially solving (4.15) until r(mk+1) < δ, where
δ is some convergence criterion. Note that J(m)TJ(m) always is positive definite, so for a almost
linear problem where the initial model is close to the true model the Gauss-Newton algorithm
converges rapidly. There is however a main drawback with the Gauss-Newton method. If J(m) is
rank-deficient, the method is ill-posed.

As for the linear case given in (4.7), a regularization term can be added to the Gauss-Newton
method to make it well-posed. A damped least squares formulation of a Tikhonovs regularized
nonlinear objective function is:

f(m) =‖ d− g(m) ‖22 +α2 ‖ Lm ‖22 . (4.16)

The Jacobian of the regularized objective function is:

K(m) =
[

J(m)
αL

]
.

This gives the following regularized Gauss-Newton algorithm for solving (4.16):

(J(mk)TJ(mk) + α2LTL)∆m = J(mk)T r(mk)− α2LTLmk. (4.17)

One of the advantages of the Gauss-Newton method is that the evaluation of the approimation of
the Hessian is almost free once the Jacobian is obtained. Another advantage is that the algorithm
in (4.15) is similar to the normal equations (4.3). The Gauss-Newton method can therefore be
reformulated as a linear problem with the Jacobian as the forward operator:

min
∆m
‖ J(mk)∆m− r(mk) ‖22 .

As for the linear case, regularization can be added to the objective function

f(∆m) =‖ J(mk)∆m− r(m)k ‖22 +α2 ‖ L∆m ‖22, (4.18)

where α is the regularization parameter. An advantage of this formulation is that the regularization
parameter can be found using tools available for linear problems as the L-curve method and the
general cross validation method. The minimum of the objective function in (4.18) is then the least
squares solution to the following augmented linear system:(

J(mk)
αL

)
∆m =

(
r
0

)
. (4.19)

A solution to a nonlinear inverse problem can be found by solving the linear system in (4.19)
iteratively with LSQR. A pseudo algorithm for an iterative LSQR method is:

1. Let m0 = mp, where mp is the prior model.

2. Solve (4.19) with LSQR.

3. Update the model mk+1 = mk + ∆m.

4. Repeat step 2-3 as long as f(mk+1) > f(mk) or some other convergence criterion is reached.
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For problems where the eigenvalues of JTJ �
∑m
j=1 rj(m)∇2rj(m), the Gauss-Newton method

and the iterative LSQR method works as good as the Newton’s method. This is the case when
the residual, r(m) is small or g(m) is almost linear [11]. For large residual problems the second
part of the Hessian is too important to ignore, therefore the Hessian or a better approximation
of the Hessian should be used if possible. There are more sophisticated methods to approximate
the Hessian than what the Gauss-Newton method uses. For a more complete introduction to
optimization and algorithms for solving optimization problems, see [11]. These methods will not
be considered in this thesis since the Hessian can be approximated practically at no cost using the
streamline formulation. To better the convergence properties, the Gauss-Newton method and the
Newton method can be extended by including line search, trust region and scaling strategies.

4.1.3 Line search, trust region and scaling strategies

In a line search strategy, the next iterative mk+1 = mk + γk∆m, where ∆m is the direction and
γk is an optimal distance. The optimal distance is the distance such that f(mk+1) is minimized.
The unit step, γk = 1 is a natural step length to the Gauss-Newton and Newton’s method. Still
the distance may be adjusted when it does not reduce the objective function satisfactory. A
satisfactory reduction is guaranteed by the Wolfe conditions:

f(mk + γk∆m) ≤ f(mk) + c1γ
k∇f(mk)T∆m

∇f(mk + γk∆m)T∆m ≥ c2∇f(mk)T∆m, (4.20)

for constants 0 < c1 < c2 < 1. The first condition guaranties the upper bound and the second the
lower bound of the step length. There are different strategies for adjusting the step length. Since
each evaluation of the objective function requires at least one evaluation of the forward model,
a good enough distance rather than the optimal distance is searched for. Different strategies,
based on quadratic or cubic interpolation of known function and derivative values of the objective
function, that adjusts the step length can be found in [11]. If the calculated step-size do not satisfy
the Wolfe conditions in its first try, the step size is further restricted until the Wolfe conditions
is satisfied or a maximum number of guess is reached. In a line search strategy the direction of
the update is calculated and then the optimal distance that minimizes the objective function is
found. An alternative strategy is to fix the distance first, and then calculate the optimal direction
to move. This alternative strategy is called a trust region strategy.

A trust region strategy is based on constructing a trust region where the solution is searched
within. The trust region sub-problem can be formulated as:

min
m

f(m) such that ||m|| ≤ ∆k (4.21)

The trust region radius ∆k is chosen based on the performance of the previous iterations. Different
algorithms that computes the trust region radius is given in [11].

A Gauss-Newton method with a trust-region strategy is called a Levenberg-Marquardt method
(LM). In the Levenberg-Marquardt method a positive term λITI is added to (4.15):

(J(mk)TJ(mk) + λkIT I)∆m = −J(mk)T r(mk). (4.22)

The λ parameter is closely related to the trust region radius since it always exists a λ > 0 such
that equation (4.21) and equation (4.22) is satisfied [11]. The λIT I term is not a Tikhonovs
regularization even thought it looks like it, since λIT I is added in the algorithm and not directly
to the objective function. Note that while the regularization parameter α is fixed during all
iteration, λ is adjusted during the iterations. If there is good agreement between the change in
the model and the change in the objective function, it is safe to expand the trust region so λ
is reduced. Similarly λ is increased if the agreement is bad [11]. A large λ will bias the search
direction towards the steepest descent direction [11]:

∆m = −J(mk)T r(mk) (4.23)
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The steepest descent direction will always converge if small enough steps are taken, but for difficult
problems the convergence can be extremely slow [11].

A trust region strategy can also be used together with Newton’s method. An advantage of
Newton’s method with trust region is that the Hessian matrix do not need to be positive definite.
If a positive term λIT I is added such that J(m)TJ(m) +

∑m
j=1 rj(m)∇2rj(m) + λIT I is positive

definite, Newton’s method with trust region will converge. Different techniques for choosing λ can
be found in [11].

Another important extension to the least squares algorithms is scaling. The range of the
variables in least squares problems can be huge, if such variation is ignored, the algorithms may
give solutions of poor quality. To better the convergence the problems are scaled. One way to
scale the problem is to use a ellipsoidal trust region instead of a spherical trust region. The trust
region sub-problem then becomes:

min
m

f(m) such that ||Dkm|| ≤ ∆k,

where Dk is a diagonal matrix where the diagonal elements are the principal axes of the trust
region. The corresponding Levenberg-Marquardt method is

(J(mk)TJ(mk) + λk(Dk)TDk)∆m = −J(mk)T r(mk). (4.24)

One way to chose the diagonal elements of Dk is to chose them such that it match the diagonal of
the Hessian [11]. Scaling have significant effect on the rate of convergence. Some scaling techniques
for History Matching problems are compared in [18].

4.2 Summary and comments

In this chapter the basic topics related to solving both linear and nonlinear inverse problems is
presented. For more details see [13] and [11]. The theory in this chapter is valid for general inverse
problems and is not related to the streamline formulation presented in the previous chapter. Still
the streamline formulation gives huge benefits, also in solving inverse problems. Computation of
the Jacobian plays an important role in all the methods presented for solving nonlinear inverse
problems and is often the most time consuming part of the method. In the next chapter different
techniques of computing the Jacobian and Hessian is presented. Using the streamline formulation
and time-of-flight, the Jacobian and the Hessian matrix for reservoir responses related to time-of-
flight can be expressed analytically. This a huge advantage of the streamline model compared to
more standard models of fluid flow in porous medium.
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Chapter 5

Streamline based calculation of
sensitivities

Computers are incredibly fast, accurate, and stupid.
Human beings are incredibly slow, inaccurate, and brilliant.

Together they are powerful beyond imagination.
Albert Einstein

Derivatives of reservoir responses with respect to reservoir parameters are called sensitivities. The
first order sensitivity is the Jacobian required in the solution algorithms for solving nonlinear
inverse problems described in the previous chapter. The Hessian is similarly related to the second
order sensitivity. In this chapter a streamline based method for calculating the sensitivities is
introduced. A benefit of the streamline based approach is that sensitivities can be obtained semi-
analytically along the streamlines. This makes streamline based methods optimal regarding speed
for computation of sensitivities for high-resolution geological models. An important assumption
in all streamline based computation of sensitivities is that streamlines are assumed to not shift
during perturbation. To understand how this assumption affects the calculation is therefore an
important question that must and is addressed in this chapter.

5.1 A finite difference approximation of the sensitivities

Derivatives measure the sensitivity of a function to a infinitesimal change in the values of the
variables. The idea of the finite difference method is to make small but finite perturbations of
the variables and examine the resulting difference in the function value. If gk is the k th element
of a vector function g : Rn → Rm, and mi the ith component of vector m, the elements of the
Jacobian can be approximated by the forward-difference formula

∂gk(m)
∂mi

≈ gk(m + εei)− gk(m)
ε

, (5.1)

where ε is a small positive scalar and ei is the ith unit vector. If ε → 0 the forward difference
formula is the definition of the Jacobian. This formula requires (n + 1) ∗ m evaluations of the
function g. In Newton’s method the Hessian matrix is needed in each of the iteration. The Hessian
matrix can be found be taking the finite difference formula on the gradient of the function, this
process requires a total of (n+1)∗m evaluations of the gradient of the function. Taken into account
that there can be millions of parameters in a high-resolution model and that the iterative methods
for solving nonlinear inverse problems presented in the previous chapter needs several iterations
to converge, a faster method for computing the Jacobian will have significant effect on the total
solution time. More sophisticated methods must therefore be used to find the Jacobian and the
Hessian. The Jacobian matrix is often sparse, a method that make use of the sparsity of the
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Jacobian can reduce the number of function evaluation considerable, still the number of function
evaluation can be too large for high-resolution models. There are other methods for computing
the sensitivities such as the adjoint method that requires less function evaluation [15]. Still, by
using the streamline formulation from Chapter 3, it is possible to find semi-analytic expressions
for sensitivities of production responses that are related to the time-of-flight. These semi-analytic
expressions will only require one function evaluation.

5.2 Semi-analytic expressions for the sensitivities

5.2.1 The time-of-flight sensitivity

As time-of-flight was the key idea behind the streamline based simulation, it also plays a major
role in the streamline based computation of the sensitivities. Having the time-of-flight sensitiv-
ity, sensitivities that can be related to the time-of-flight sensitivity can be found. Recalling the
definition of time-of-flight in (3.8)

τ =
∫

Ψ

s(x)dr,

where s is the slowness function. The slowness function is

s(x) =
φ(x)
| u(x) |

, (5.2)

where u is the Darcy’s velocity given by Darcy’s law (2.28). For constant reservoir parameters mi

in grid block i, the sensitivity of the time-of-flight along a streamline following Γi is

∂τ

∂mi
=
∫

Γi

∂s(x)
∂mi

dr. (5.3)

The first order sensitivity of the slowness function with respect to permeability is:

∂s

∂K
≈ ∂

∂K
(

φ

Kλt | ∇p |
) =

−φ
K2λt | ∇p |

= − s

K
, (5.4)

and the second order sensitivity is:

∂2s

∂K2
≈ ∂

∂K
(

−φ
K2λt | ∇p |

) =
2φ

K3λt | ∇p |
=

2s
K2

. (5.5)

These expressions for the sensitivities are only approximation, since a perturbation in the per-
meability will generate change in pressure and hence a corresponding shift in the streamlines.
Following Datta-Gupta in [2], the consequence of these approximations for the total variation of
the velocity due to a small perturbation δKi = εKi can be divided into two parts:

δui = εui − λtKi∇δpi, (5.6)

where δpi is the corresponding shift in the pressure in cell i. The first part of (5.6) corresponds to
changes in the velocity along the streamlines. The second part corresponds to the effect of shifting
streamlines. For an incompressible flow

∇δui = ∇(εui − λtKi∇δpi) = 0.

Therefore δpi satisfies the Laplace equation:

∇ · (λtKi∇δpi) = ∇ · (εui) = φ
∂ε

∂τ
, (5.7)

where the last equality in (5.7) is due to equation (3.11). The change in the velocity that is not
along the streamlines will therefore decay by a factor 1/R for two dimensions and 1/R2 for three
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dimensions, where R is the distance from the shifted permeability [2]. This effect can be seen in
the examples in Section 5.3. . Similar expressions for the sensitivities can be found with respect to
parameters such as porosity, relative permeability, mobility, well rates etc. [15]. If the definition
of the time-of-flight sensitivity in equation (5.3) is combined with the expression for the sensitivity
of the slowness function with respect to permeability in (5.4), an expression for the first order
time-of-flight sensitivity with respect to permeability is found. The time-of-flight sensitivity with
respect to the permeability Ki in cell i will then be:

∂τ

∂Ki
=
∫

Γi

− s

Ki
dr = −∆τi

Ki
, (5.8)

where ∆τi is the increase of time-of-flight over cell i. An expression for the second order sensitivity
if found if (5.5) is used instead of (5.4):

∂2τ

∂K2
i

=
∫

Γi

2s
K2
i

dr =
2∆τi
K2
i

. (5.9)

By relating the sensitivities of the travel-time and production data to the time-of-flight sensitivities,
semi-analytical expression for the sensitivities can be found for single- and two-phase flow.

5.2.2 Sensitivities for single-phase flow

Time-of-flight measures the time it takes a passive tracer to propagate from one point in the
reservoir to another. For a general quantity, the same time is referred to as travel-time. The
travel-time sensitivities for a passive tracer will therefore be equal to the time-of-flight sensitivities.
Assuming that the streamlines do not shift, the sensitivities of the tracer concentration can be
found by differentiating equation (3.18) using the chain rule:

∂C

∂mi
=
∂C

∂τ

∂τ

∂mi
= −∂C0

∂τ

∂τ

∂mi
. (5.10)

The same expression can be found without assuming that streamlines do not shift, by using a first
order approximation of the sensitivities [2]. As with the time-of-flight sensitivities, a less smooth
sensitivity is expected using the above expression. Expression for the sensitivities with respect to
permeability can then be found by using equation (5.8).

5.2.3 Sensitivities for two-phase flow

For a Buckley-Leverett displacement satisfying equation (3.19), where the water injection rate is
constant, the travel-time of the water front is related to the time-of-flight by t = τ/σ, where σ is
the shock speed (3.21). Assuming that the streamlines do not shift, the travel-time sensitivities
are:

∂t

∂mi
=

1
σ

∂τ

∂mi
. (5.11)

Since the sensitivities are calculated along one dimensional streamlines that do not shift, the
expressions for the second order sensitivities will be similar to the first order sensitivities. The
second order sensitivity of the travel-time is:

∂2t

∂m2
i

=
1
σ

∂2τ

∂m2
i

. (5.12)

The second order sensitivity with respect to permeability can then be found by using equation
(5.9). Expressions for the sensitivities for the fractional flow can be found by assuming that the
streamlines do not shift and then using the chain rule

∂F (S)
∂mi

=
∂F (S)
∂τ

∂τ

∂mi
,

where ∂F (S)
∂τ can be found analytically using (3.2.2) or numerically using a finite difference ap-

proximation to the fractional flow at at given time.
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5.2.4 Average sensitivities at the wells

All the semi-analytic expressions for the sensitivity derived so fare are along individual streamlines.
Since streamlines are assumed to not shift during perturbation each of the individual sensitivity of
a streamline is independent of all the other streamlines. To map the sensitivities from streamlines
to the pressure grid a flux weighed average is used. In history matching problems, data is usually
obtained in the production wells. The sensitivities of the production response at the well is
therefore of special interest. The travel-time sensitivities at well k is given as the flux weighed
average of all the travel-time sensitivities given in (5.11) corresponding to streamlines l = 1, ..., Nsl,
that is connected to the well:

∂tk
∂mi

=
1
q

Nsl∑
l=1

ql
∂tk,l
∂mi

, (5.13)

where Nsl is the total number of streamlines connected to the well, and q is the total flux in the
well. The second order sensitivity of the average travel-time is given by:

∂2tk
∂mi∂mı

=

{
∂2tk
∂m2

i
ı = i

0 ı 6= i,
(5.14)

where the diagonal term is given by the flux weighed average of the travel-time sensitivity given
in (5.12):

∂tk
∂m2

i

=
1
q

Nsl∑
l=1

ql
∂2tk,l
∂m2

i

.

The non-diagonal element of the second order sensitivity is assumed to be zero since the streamlines
is assumed to not shift during perturbation.

5.3 Semi-analytic vs finite difference approximation of the
Jacobian and Hessian

To compare the semi-analytic streamline based approximation with the finite difference approx-
imation, two different approximations of the sensitivities with respect to permeability values at
all grid-cells are compared. First the sensitivity of the time-of-flight at the well with respect to
permeability is compared to investigate the effect of the assumptions that the streamlines do not
shift when the permeability is perturbed. To investigate the effects of the summations that maps
from streamlines to grid cells, the sensitivity of the average travel-time at the well with respect
to permeability is also compared. Both the sensitivities are with respect to permeability. In both
cases the first and the second order sensitivities will be compared. The reservoir has 11X11 grid
cells each of size 10. The permeability are equal to 100 in all cells. In the lower right corner a
well injects water at rate 5, and in the upper left corner a well produces at the same rate. A total
of 20 simulation steps is made, each with time step equal to 20. The permeability will be shifted
0.01 in each grid cell, that is ε = 0.01 in (5.1). For the finite difference approximation to be a
good approximation of the sensitivity ε must be close to zero. The streamline simulator do not
sense changes less than 0.01, this makes the finite difference approximation of the sensitivity less
accurate.

The finite difference method does not assume that the streamlines do not shift when the per-
meability is shifted. From the analysis in (5.2.1), the sensitivities obtained with finite difference
are expected to show diffusive effects compared to the streamline based semi-analytic sensitivities.
Figure 5.3 shows the sensitivity of the time-of-flight at the producer with respect to permeability
for streamline 1 at time 10 for both the semi-analytic and finite difference approximation. The
finite difference approximation is smoothed out with a factor 1/R compared to the semi-analytic
approximation as expected. Figure 5.3 shows the same effect for streamline 25. Since the stream-
lines are assumed to not shift when the permeability is changed, the time-of-flight at producer for
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Figure 5.1: Semi-analytic (left) and finite difference (right) approximations of the time-of-flight
sensitivities with respect to permeability for streamline 1 at time 10.

streamline 1 is only sensitive to changes in the cells it goes through. In the finite difference approx-
imation the streamlines do shift and therefore the time-of-flight at the producer for the streamlines
are sensitive to changes in all cells. The streamline based semi-analytic sensitivities will therefore
be less smoothed out than the sensitivities obtained from the finite difference method. The same
effect is shown in Figure 5.3. This plots show the sensitivities for the 5th column and 5th row of
the grid. Note also that all the semi-analytic sensitivities are positive. Since the semi-analytic ap-
proximation of the sensitivity is computed independently along each streamline, a positive change
in the permeability in one grid cell will lead to a positive change in the time-of-flight at the well
for all streamlines that goes through this grid cell, and no change in all the streamlines that do
not go through that grid cell. In a finite difference approximation the sensitivity are not computed
independently along each streamline. A positive change in the permeability may therefore lead
to a negative change in the time-of-flight for a streamline that do not go through the grid cell
that is changed. In Figure 5.3 the sensitivity of the average arrival time at time 1, 10 and 100
are plotted. The streamline based sensitivity of the average arrival-time is of a greater magnitude
than the sensitivity computed from finite differences. This is expected since only positive sensitiv-
ities are summed in the streamline based method. Figure 5.3 shows the diagonal elements of the
second order sensitivities of the average arrival-time. The finite difference approximation of the
second order sensitivities are based on a perturbation in the semi-analytic streamline based first
order sensitivities. The non-diagonal elements of column 49, that corresponds to a finite difference
approximation of (5.14) with ı = 49, is plotted together with its streamline based semi-analytic
approximation in Figure 5.3. The finite difference approximation of the second order sensitivity
shows the same tendency as the first order sensitivities. The magnitude of the sensitivity decays
as it moves from the shifted grid cell. The same results can be seen for all the mixed finite sensi-
tivities. For small perturbations of the permeability, all mixed partial sensitivities can be assumed
to be zero.

5.4 Summary and comments

In this chapter different semi-analytic expressions for computation of sensitivities have been found
by relating them to the time-of-flight sensitivities. Underlying all the expressions for the sensitiv-
ities is the major assumption that streamlines do not shift when the permeability is shifted. Both
theoretical and computational studies indicate that this assumption is valid for small shifts in the
permeability. So far the sensitivity of travel-time and production data for single- and two-phase
flow has been accounted for. In similarly ways semi-analytical expressions for water cut and oil/gas
ratio can be found for three-phase flow [2].

Pressure data has not been accounted for in this presentation. A huge benefit of pressure
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Figure 5.2: Semi-analytic (left) and finite difference (right) approximations of the time-of-flight
sensitivities with respect to permeability for streamline 25 at time 10.

Figure 5.3: Column 5 (left) and row 5 (right) of the time-of-flight sensitivity with respect to
permeability for streamline 1 at time 10.
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Figure 5.4: Semi-analytic (left) and finite difference (right) approximations of the average arrival-
time sensitivities with respect to permeability at time 1 (top), 10 (middle) and 20 (bottom).
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Figure 5.5: Semi-analytic (left) and finite difference (right) approximations of the second order
average arrival-time sensitivities with respect to permeability at time 1 (top), 10 (middle) and 20
(bottom).
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Figure 5.6: Column 49 of the second order sensitivity of the average arrival-time with respect to
permeability at time 1 (top) and 10 (bottom).

data is that the pressure front propagates with an infinite speed. While the water front can
use years before it reaches the producer, the pressure response from injecting wells are observed
instantly in the surrounding wells. By defining a diffusive time-of-flight, the arrival-time of pressure
interference can be related to the diffusive time-of-flight. More on how to integrate pressure data
with the use of streamline formulation can be found in [2].

In this work only sensitivities with respect to permeability are considered. Derivatives with
respect to porosity, relative permeability, mobility, well rates and the magnitude of the pressure
gradient is given in [15].

The streamline approach to compute sensitivities is optimal in the sense that it only needs one
forward simulation. Compared to a finite difference approximation of the sensitivities the potential
to save computational time is huge. The streamline based computation of the sensitivities is not
restricted to a streamline simulator. In [7] streamline sensitivities are used together with a standard
forward simulator based on finite difference to speed up the computation of the sensitivities.

Still much work remains in the streamline based computation of the sensitivity. First of all
more reservoir parameters and responses need to be related to the time-of-flight sensitivities. As
important is it to understand the errors done in the approximations of the sensitivity.
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Chapter 6

History Matching

Far better an approximate answer to the right question,
which is often vague,

than an exact answer to the wrong question,
which can always be made precise.

John W. Tukey

The goal of history matching is to use dynamic data from reservoir responses to characterize the
reservoir parameters. Different types of reservoir responses are used for history matching. One
type of data used in history matching is the amplitude of production data such as pressure data,
flow rates, and fractional flows. Examples of reservoir parameters that can be determined in the
history matching procedure are permeability, relative permeability and porosity.

History matching is an inverse problem. The goal is to find reservoir parameters such that
the mismatch between the simulated reservoir responses, dcalk (tk,j) and the historical reservoir
responses, dobsk (tk,j) is minimized for all time, tk,j , where the time index j = 1, ..., Nd and the well
index k = 1, ..., Nw. In a least squares formulation the history matching problem is to find the
reservoir parameters such that

Nw∑
k=1

Nd∑
j=1

(dobsk (tk,j)− dcalk (tk,j))2 (6.1)

is minimized for all k and j.
Some of the challenges related to history matching is due to the non-linearity in the governing

fluid flow equations in the porous mediums. From Chapter 3, it is known that the relation between
the reservoir parameters and the reservoir responses is a set of nonlinear differential equations. In
general it is not possible to find an analytic solution to such a set of equations. Therefore dcalk
is picked from the results of a reservoir simulation. To find dcalk is therefore as time consuming
as one simulation with the simulator. Since the inverse problem is non-linear a iterative method
must be used to minimize the objective function. The Jacobian must therefore be calculated in
each of the iterations. For Newton’s method also the Hessian is needed. The calculation of the
Jacobian and Hessian typically involves several function evaluations and is therefore the most time
consuming part of the minimization. The second main challenge in history matching is therefore
the computational time. For large problems with millions of parameters, one simulation can take
several hours, even if a fast computer is used. A method that solves the inverse problem with as
few as possible simulation runs is therefore preferable. In addition the inverse problem is ill-posed.
In history matching data often are available only in the wells. The number of data to match is
therefore fewer than the number of parameters to determined. The inverse problem is therefore
highly under determined and no unique solution exists.

The challenge related to the ill-posedness of history matching is solved with regularization.
Often prior information of the reservoir is known via static data from well-cores, seismic, etc.
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Prior knowledge of the reservoir is used to regularize the problem as it is formulated in (4.9).
Regularization will make the problem well-posed such that a unique solution to the regularized
problem exists. Still it is important to keep in mind that the solution to the regularized problem
is biased and depends on the chosen regularization parameters.

To speed up the simulation a streamline based simulator is used. A huge advantage with the
streamline formulation is that a semi-analytic approximation of both the Jacobian and the Hessian
can be found for data that can be related to the time-of-flight variable. With the streamline based
formulation of the sensitivities, an iterative nonlinear solver will use only one simulation for each
of the iterations.

To make the history matching problem less nonlinear, production data at a given reference
time such as the peak production time or the first arrival time of water or tracers can be matched.
This is called travel-time inversion. If tobsk is the observed reference time at well k and tcalk is the
calculated time, the travel-time inversion finds the reservoir parameters that minimize

Nw∑
k=1

(tobsk − tcalk )2,

for all k. Travel-time and amplitude inversion is illustrated in Figure 6.1. While the inverse
problem associated with matching production data amplitudes is fully nonlinear, the travel-time
inversion has quasi-linear properties well known in the context of seismic inversion [6]. This
makes travel-time inversion more stable and robust than the amplitude matching. Still travel-
time inversion only uses production data at one given time. To include all data in the amplitude
matching, while keeping the robustness of the travel-time inversion, the amplitude matching and
travel-time matching is merged into the so-called generalized travel-time inversion.

6.1 The generalized travel-time inversion

The main idea behind the generalized travel-time inversion (GTTI) is to combine production data
matching with travel-time matching. According to [6] GTTI preserves the quasi-linear property
of the travel-time method while making full use of the production data. The GTTI solves the
history matching problem in two steps. First it finds the time-shift ∆tk that minimize

f(∆tk) =
Nd∑
j=1

(dobsk (tk,j)− dcalk (tk,j + ∆tk))2 (6.2)

for all k. A cubic interpolation is used to compute dcal(tk,j+∆tk) based on known calculated data.
Additional reservoir simulations is therefore not needed to minimize the least squares problem in
(6.2). The one-dimensional least squares problem in (6.2) can be solved by systematically shifting
the calculated production curve until the objective function is minimized. For example Matlabs
lsqnonlin can be used to minimize the objective function in (6.2). Figure 6.1 shows an example
of how the calculated production curves are shifted to maximize its correlation to the observed
production curve. The second step is to minimize

Nw∑
k=1

∆t2k (6.3)

The least squares problem in (6.3) is solved with one of the algorithms for solving nonlinear least
squares problems presented in Chapter 4.

The main advantage of the generalized travel-time inversion is that the relation between the
time-shift and the reservoir parameters is less non-linear than the direct relation between the
amplitudes of the production data [6]. Since the one-dimensional least squares problem in (6.2)
can be solved without any need of sensitivities, only the time-shift sensitivities with respect to the
reservoir parameters are needed. Time dependent data such as production rates, water cut and
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Figure 6.1: Illustration of amplitude inversion (top), travel-time inversion (middle) and GTTI
(bottom) 40



tracer data can be matched with GTTI without need of additional sensitivity calculations. With
GTTI more reservoir responses can therefore be match even thought semi-analytic expressions that
relates the sensitivities of the reservoir responses to the time-of-flight sensitivities is not known.
Another advantage of the time-shift sensitivity is that it is independent of the number of data
points. For large problems this could lead to a considerable savings in computational time in the
inversion algorithms.

6.1.1 The time-shift sensitivities

The Time-shift sensitivity with respect to the reservoir parameter, m is defined as an average of
the travel-time sensitivities given in (5.13) for each well k

∂∆tk
∂mi

= − 1
Nd

Nd∑
j=1

∂tk,j
∂mi

, (6.4)

where Nd is the total number of data points. The minus sign in (6.4) is by convention. The second
order sensitivity is similarly given by averaging (5.14):

∂2∆tk
∂mi∂mı

= − 1
Nd

Nd∑
j=1

∂2tk,j
∂mi∂mı

, (6.5)

The definitions of the sensitivities in (6.4) and (6.5) are approximations. The Figure in 6.2 com-
pares the semi-analytic first and second order sensitivities with a finite difference based calculation.
This comparesing is similar to what is done in Chapter 5. As the figures indicate the difference in
the semi-analytic and finite difference approximation is large. One reason for the large variation is
the large shift in the permeability in the finite difference approximation. The no shift assumption
in the semi-analytic approximations is discussed in the previous chapter and will not be discussed
further here. For small shifts in the permeability the effect of streamlines that shift is small on the
sensitivity. Therefore the streamline based semi-analytic approximation is a decent approximation
of the sensitivities. As in the previous chapter all mixed partial sensitivities are assumed to be
zero. It is therefore only the diagonal elements of the Hessian matrix that is plotted in Figure 6.2.

6.1.2 An automatic history matching procedure

Given an initial prior model based on static data, the goal of the history matching is to update the
initial model such that the mismatch between the observed and calculated production response is
minimized. The main steps of an automatic streamline based GTTI history matching algorithm
are: (i) Run the streamline simulator to obtain the desired production responses; (ii) Calculate
the time-shift by finding the minimum of (6.2); (iii) Calculate the streamline based semi-analytic
time-shift sensitivities with respect to a given reservoir parameter; (iv) Solve (6.3) to updated
the reservoir parameters. These steps are repeated until a desired history match is achieved.
One stop criteria is to stop the iterations when the objective function reaches a given value. An
alternative is to stop the iterations if the reduction in each step is less than a given tolerance, or
the number of iterations reaches a maximum given value. Since the purpose of this thesis is to
examine different minimization algorithms the iterations will be repeated as long as the objective
function is reduced. By not restricting the maximum number of iterations, the long term behavior
of the method can be studied. An outline of the automatic history matching procedure is given
in a flowchart in Figure 6.3

6.2 Solution methods

The nonlinear least squares problem stated in equation (6.3) can be solved by one of the algorithms
that solves nonlinear least squares problem in Chapter 4. The performance of some of these
methods will be studied through some examples.
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Figure 6.2: Semi-analytic (left) and finite difference (right), first (top) and second (bottom) order
time-shift sensitivity.

Figure 6.3: A flowchart for automatic history matching
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6.2.1 Gauss-Newton vs Newton

A standard way to minimize the objective function in (6.3) is to solve the augmented linear system
in (4.19) with LSQR. Both synthetic and field case examples can be found in [2, 6, 16, 17, 20]. This
method only makes use of the first order sensitivities. Since it is possible to compute the Hessian
matrix without making any new forward runs, Newton’s method is a good alternative option for
solving the history matching problem. In the context of history matching, the initial model based
on static data, is close to the true model, only small adjustments to the model is therefore needed.
In this case using LSQR on the linear system in (4.19) gives good results. Solving the linear
system in (4.19) corresponds to the Gauss-Newton method. In the Gauss-Newton method, the
last part of the Hessian matrix is omitted such that ∇2f(m) ≈ J(m)TJ(m). For a almost linear
problem where the prior model is close to the true model this is a good approximation. For large
residual cases a better approximation is needed. One alternative is to use a more sophisticated
quasi-Newton method as BFGS [11], but since the Hessian matrix can be calculated analytically
using the streamline formulation, the original Newton method is a better alternative. In theory,
the Gauss-Newton method shows slower convergence than the Newton method, if the residuals in
the solution are large [11]. The Newton method is therefore expected to show faster convergence
than the Gauss-Newton method for large residual cases.

In the Gauss-Newton method, the residual and the Jacobian are needed. The residual is the
time-shift, r = ∆t and the Jacobian is the semi-analytic approximation of the time-shift sensitivity,
J(m) = ∂∆t

∂m . The Newton method also involves calculation of the Hessian matrix in addition to
the residual and the Jacobian. The Hessian matrix for the least squares problem is

∇2f(m) = J(m)TJ(m) +
m∑
k=1

rk(m)∇2rk(m), (6.6)

where rk(m) and ∇2rk(m) is the residual and the Hessian in well k, respectively. The Hessian is
given by: ∇2rk(m) = ∂2∆tk

∂mi∂mı
. The non-diagonal element of the Hessian is zero since streamlines

are assumed to not shift during perturbation. For Newton’s method to converge, the Hessian
matrix must be positive definite [13]. To assure positive definiteness a small term, λ is added to
the diagonal. The λ term will bias the search direction towards the steepest descent direction
and must therefore be kept as small as possible. One simple way to chose λ is to put it equal
the largest diagonal element of the Hessian matrix. If a large λ must be used to assure positive
definiteness, the modified Newton’s method will show slower convergence than the Gauss-Newton
method. Some synthetic examples will be shown to compare the capability of the Gauss-Newton
method (GN) and the Newton method (NM).

6.2.2 Regularization, line-search and trust-regions strategies

In Chapter 4, there is a small discussion about regularization, line-search, trust-region and scaling
strategies. The effect of these strategies will also be tested. In the line-search strategy (LS) a cubic
interpolant is used to predict the reduction in the objective function. The constants c1 = 1.0−4

and c2 = 0.9 are used in the Wolfe conditions as given in (4.20). These relatively loose restrictions
on the time-steps have shown good performance for Newton and Gauss-Newton types of problems
[11]. The line-search algorithm is restricted to make only 5 guesses of the step-length, since each
guess requires one time consuming run with the streamline simulator. However, in most cases a
step-length satisfying the Wolfe conditions is obtained in the first guess. An ellipsoidal trust-region
will be used for the trust-region strategy in the Levenberg-Marquardt method (LM) as given in
(4.24). The axis of the ellipsoidal is given as the absolute value of the diagonal of the Hessian
matrix. An automatic Tikhonovs regularization where the regularization terms are given via the
L-curve criteria will also be considered. This method will be referred to as Lcurve.
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6.3 Synthetic example cases

In all the examples a two dimensional, two-phase flow of oil and water is considered. The fluid
properties is as in the examples in section 3.3. Synthetic water cut data at the well is included
to update the permeability in each cell. Since the objective of these test cases is to compare the
performance of different minimization techniques, no error is assumed in the dynamic data. The
porosity is constantly equal to 0.3 in all the examples. Initially the reservoir is saturated with oil.
Five different cases is considered.

6.3.1 Case 1

The first case is a 11 × 11 reservoir, where each cell has size 10m × 10m. Synthetic data is
obtained from the true permeability field. No prior information of the permeability is assumed to
be known, so the prior permeability field is assumed to be a constant equal the average of the true
permeability field. The prior permeability is plotted visa via the true permeability in Figure 6.4.
In the center of the reservoir one injector (I1) starts to inject water immediately with a constant
rate of 20m2/day. In each of the corners, the production wells P1, P2, P3 and P4 produces at a
constant production rate of 5m2/day. A total of 20 time-steps is taken, each with a length of 20
days. The number of streamlines used is 250.

The objective function for the time-shifts given in (6.3) is shown in Figure 6.5. During the
first iterations, while the iterate still is far from the solution, NM and GN show nearly the same
convergence rate, but as the iterate approach the solution NM shows faster convergence than the
GN method. In the first iterations NM needs to add a small term to the diagonal of the Hessian
to assure positive definiteness. This term bias the Newton direction towards the steepest decent
direction and hence slows the convergence.

In GNLS and NMLS a line-search strategy is used together with the GN and NM. For both
the cases the line-search strategy is able to improve the convergence of the objective function.
Especially NMLS shows a fast convergence rate, and is able to reduce the objective function value
to less than 1.0−5.

The trust-region strategy is also able to improve the performance of the method. The LM
method shows a smaller convergence rate than the GN method in the beginning but is able to
reduce the objective function more. In LM a positive term is added to the diagonal of the approx-
imated Hessian, for large such terms the convergence rate will be slower. Still the trust-region
strategy is more stable and LM is therefore able to converge in situations where the Gauss-Newton
method is not. In LM the trust-region is adjusted during the iterations, a similar adjustment of
the regularization terms is done in Lcurve.

The Gauss Newton method with an automatic Tikhonovs regularization determined by the
L-curve criteria, Lcurve, shows a slower convergence rate than the GN method without the reg-
ularization. The regularization terms will linearize the problem similar to what the LM method
did. Therefore slower convergence is expected. Slower convergence is the cost to pay to obtain a
more stable and regularized solution. The regularization parameter automatically chosen by the
L-curve method is plotted in Figure 6.8. As the iterate moves closer to the true solution, less
regularization is used as expected.

Our original problem is to minimize the production misfit. The behavior of the objective func-
tion defined in (6.2) is plotted in Figure 6.6. All the methods are able to convergence to reasonable
small values of the objective function for production data. LM shows the best performance both
that it converges with the least number of iteration and also to the smallest value of the objective
function. The plot for the GNLS method shows some strange effects. The reason for this is that
all the simulation runs are plotted, also the ones that is rejected since they do not satisfies the
Wolfe conditions. Due to this the number of iterations for the GNLS and NMLS are larger in the
plot of the production data misfit than in the time-shift misfit plot in Figure 6.5.

The figures in 6.9-6.12 shows the water cut in the production wells for the initial, observed and
updated permeability fields for all the different methods. In well P1, P2 and P3 all methods are
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Figure 6.4: True (left) and initial (right) permeability in Case 1

able the match the water cut data. But a closer look at P4 shows that GN and GNLS is not able
to match the water cut data in the well as good as the other methods.

The objective in history matching is to use dynamic data to characterize the reservoir. To
illustrate the ability of the different methods to obtain a permeability field that resemble the true
permeability with the help of water cut data in the wells, the norm of the relative error is plotted
in 6.7. The updated permeability fields for the different methods is plotted in Figure 6.13. Both
the GN and NM show promising decay in the error on early iteration, but are not able to stop the
iterations at the right time. The updated permeability for GN shows that the method gives too
high values to the permeability in the lower right corner of the reservoir. NM is able to characterize
the true permeability field in the lower right corner. Still in the lower left corner NM is not able
to reduce the value of the permeability as good as LM.

The pressure in the wells are plotted in Figure 6.14. These figures show that the pressure in
the well is adjusted to maintain a fixed production rates in the well. In well P1, the pressure is
almost zero. In P2 and P3 the well pressure is negative such that more oil and water is produced.
In P4, which is connected to I1 with a high permeable zone, the pressure is positive such that
less oil and water is produced than expected. As these figures indicate the reservoir responses
are sensitive to the pressure in the wells. The updated permeability field with NM is not able
to match the pressure data in the well. The other methods show approximately the same poor
performance. This is expected since pressure data is not used in the history matching. A better
characterization of the reservoir is possible if pressure data is included in the history matching.
The streamline simulator used in this thesis only uses simple wells with fixed production rates.
Since only water cut data is used to characterize the permeability in the reservoir, rate controlled
wells is not optimal. Still since all methods are using the same simulator, the comparing of the
methods is valid.

The streamline effects can be seen in all the updated permeability fields. The effect of fewer
traced streamlines in the center and on the edges is also clearly seen in the entire updated per-
meability field. This effect is reduced, if more complex cell geometries and more streamlines are
used in the simulations.
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Figure 6.5: Norm of objective function of time-shifts in Case 1

Figure 6.6: Norm of the objective function of water cut data in Case 1
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Figure 6.7: Norm of relative error in Case 1

Figure 6.8: Regularization term given by L-curve criteria in Case 1
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Figure 6.9: Observed (*), initial (black) and updated (blue) water cut in well P1 for GN (top
left), NM (top right), GNLS (middle left), NMLS (middle right), LM (bottom left) and Lcurve
(bottom right) in Case 1
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Figure 6.10: Observed (*), initial (black) and updated (blue) water cut in well P2 for GN (top
left), NM (top right), GNLS (middle left), NMLS (middle right), LM (bottom left) and Lcurve
(bottom right) in Case 1
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Figure 6.11: Observed (*), initial (black) and updated (blue) water cut in well P3 for GN (top
left), NM (top right), GNLS (middle left), NMLS (middle right), LM (bottom left) and Lcurve
(bottom right) in Case 1
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Figure 6.12: Observed (*), initial (black) and updated (blue) water cut in well P4 for GN (top
left), NM (top right), GNLS (middle left), NMLS (middle right), LM (bottom left) and Lcurve
(bottom right) in Case 1
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Figure 6.13: Updated permeability for GN (top left), NM (top right), GNLS (middle left), NMLS
(middle right), LM (bottom left) and Lcurve (bottom right) in Case 1
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Figure 6.14: Observed (*), initial (black) and updated pressure data with NM (blue) in well P1
(top left), P2 (top right), P3 (bottom left) and P4 (bottom right) in Case 1.
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Figure 6.15: True (left) and initial (right) permeability in Case 2

6.3.2 Case 2

The true permeability field used in the first case is made for the purpose of illustrating the
performance of the different methods. In the next cases less regular true permeability field will
be used to obtain synthetic data used for the history matching. First the 11 × 11 reservoir from
Case 1 will be considered but with a different true permeability field. No prior information of the
structure of the reservoir is assumed to be known so the initial permeability field is a constant.
The true and prior permeability is shown in Figure 6.15. All other input parameters are similar
to Case 1.

In Case 2, NM gives a better reduction of the objective function than GN and Lcurve. See
Figure 6.16. Still the extended Gauss-Newton methods, GNLS and LM show more or less the same
reduction of the objective function as NM. Both GNLS and NMLS are able to reduce the objective
function faster than the other methods. However as Figure 6.17 indicates, the LS-strategy needs
to take some extra simulations to be able to compute step-lengths satisfying the Wolfe conditions.
Figure 6.18 shows the relative error of the updated permeability and Figure 6.19 shows the updated
permeability for the different methods. None of the methods are able to characterize the structure
of the true permeability field. This is expected since all the data are available in wells. The local
structure of the reservoir can therefore not be found with only dynamic data in the wells. In
a history matching problem, some of the structures of the reservoir are assumed to be known.
Static or dynamic data from seismic surveys are not restricted to wells and can therefore be used
to characterize the structure of the permeability field. In the next case a prior permeability field
is used as a initial guess in the history matching algorithms.
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Figure 6.16: Norm of objective function of time-shifts in Case 2

Figure 6.17: Norm of the objective function of water cut data in Case 2
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Figure 6.18: Norm of relative error in Case 2
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Figure 6.19: Updated permeability for GN (top left), NM (top right), GNLS (middle left), NMLS
(middle right), LM (bottom left) and Lcurve (bottom right) in Case 2
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Figure 6.20: Norm of objective function of time-shift in Case 3

6.3.3 Case 3

In Case 3 a permeability field which shows some of the same structures as the true permeability
field is used as a prior guess in the algorithms. All the other parameters and the true permeability
field is the same as in Case 2. The prior permeability field is plotted together with the true
permeability field in Figure 6.23. The prior permeability is used to regularize the problem as
formulated in (4.9). The regularization parameter, α = 10−4 is used in for all the methods. Since
a regularization parameter is fixed prior to the iterations, Lcurve with L-curve criteria is not tested
in Case 3.

In Case 3 NM, GN and LM show approximately the same performance. Both in reducing
the objective function for the time-shift and the water cut data. See Figure 6.20 and 6.21. The
LS-strategy is able to improve the reduction of the objective function of time-shift considerably.
Especially NMLS performs well for Case 3. But a closer look at Figure 6.21 shows that both GNLS
and NMLS needs to make several iterations to find a step-length satisfying the Wolfe conditions. If
these extra iterations are taken into account, the different methods show almost the same reduction
rate in the objective function.

In Case 3 regularization is added to punish large variations from the prior model. In this way
some of the structure of the prior field is preserved in the updated permeability fields. If the
updated permeability fields for Case 2 in Figure 6.19 is compared with the updated permeability
fields for Case 3 in 6.23, it shows that the updated permeability fields in Case 3 are more similar
to the true permeability field. The plot of relative error in Figure 6.22 shows a decreasing error
for all the methods. Especially GNLS and NMLS show a fast reduction of the relative error in the
first couple of iterations.
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Figure 6.21: Norm of the objective function of water cut data in Case 3

Figure 6.22: Norm of relative error in Case 3
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Figure 6.23: Updated permeability for GN (top left), NM (top right), GNLS (middle left), NMLS
(middle right), LM (bottom left) and Lcurve (bottom right) in Case 3
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Figure 6.24: Norm of objective function of time-shift in Case 4

6.3.4 Case 4

In the three first cases a coarse grid with only 11×11 grid cells is used. One of the advantages with
streamline simulation is that fine scale models can be used. In the last two cases the number of
grid cells is extended to 41×41, each with size 1m×1m. All the other fluid and rock parameters is
as in the previous cases. As in Case 3, a prior permeability field is assumed to be known and used
to regularize the problem. The regularization parameter used is the same as in Case 3, α = 10−5.
A total number of 500 streamlines is used. The prior and true permeability field are plotted in
the top of Figure 6.27.

As Figure 6.24 indicates none of the methods are able to reduce the objective function sig-
nificantly. The largest reduction in the objective function of time-shift is done by NMLS. The
objective function for water cut data is plotted in Figure 6.25, relative error in 6.26 and the up-
dated permeability fields in Figure 6.27. Some change can be observed in the updated permeability
fields. In the lower right corner, especially the NMLS is able to characterize the low permeable
region. Still none of the methods is able to characterize the low permeable zone that separates
well P3 from I1. The effect of the high permeable regions in the lower left corner is smeared out
in the whole region where the streamlines from well I1 to P2 is traced. The GN and NM show
almost the same performance in Case 4.

Case 4 emphasizes what was seen in Case 3. As the problem becomes more ill-posed, more
regularization is needed, a larger positive term is added to the Hessian to make sure it is positive
definite, and the trust-region is extended. The consequence is the same. A positive term is added
to the diagonal of the Hessian matrix such that the search direction is biased towards the steepest
decent direction. Since the steepest decent method has a slower convergence rate than both the
Gauss-Newton and Newton’s method a slower convergence is observed. The line-search strategy is
able to speed up the convergence in Case 4. Since it can adjust the step length to obtain a decent
reduction in the objective function even thought the search direction is not optimal.

61



Figure 6.25: Norm of the objective function of water cut data in Case 4

Figure 6.26: Norm of relative error in Case 4
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Figure 6.27: Updated permeability for GN (top left), NM (top right), GNLS (middle left), NMLS
(middle right) and LM (bottom center) in Case 4
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6.3.5 Case 5

In the last case the ability to characterize a high permable zone from the injection well, I1 to
the production well, P3 is tested. As in the previous cases, only water cut data from the wells is
used in the history matching. The true and initial permeability field is given in 6.31. Other input
parameters are as in Case 4.

The norm of the objective function of time-shift and production data are plotted in Figure
6.28 and 6.29. As this figure indicates GN shows the best reduction in the objective function,
followed by LM and NM. The line search strategy fails both for GN and NM and is not able to
reduce the objective function any further. Figure 6.30 shows that the relative error are increasing
for all the methods. The updated permeability field in 6.31 shows that all the methods are able
to characterize some of the high permeable zone from the injection well to well P3. As expected
the region is smeared out since data only are available in the wells. The low permeable zone in
the lower right corner is however not detected by any of the methods.

Water cut and pressure data is plotted for P2, P3 and P4 for GN and NM in 6.32-6.37. There
is almost no difference between the initial and the true permeability field in the lower left corner.
Both GN and NM is therefore able to match the water cut data in P2 as expected. Still a closer
look at the pressure data in the same well shows that the pressure in the updated permeability
field is further from the pressure data for the true permeability field than for the initial field. In
P3 both GN and NM is able to match the water cut data better. Especially the water cut data
after 50 days shows a good match. Also the pressure data match is better in P3 for both the
methods. That is however not the situation in P4. In P4 as in P2 the pressure match after the
update is worse than before the update. If pressure data is included in the history matching or
if pressure is used to control the wells, a better characterization is expected. The match of water
cut data is improved with both GN and NM. As these figures indicates the difference between the
performance of GN and NM is not to large. The second order information of the sensitivities is
not able to improve the history matching in Case 5 significantly. The line-search strategy also fails
in Case 5 and is not able to improve the performance of the method. During the first iterations
the step-length is not adjusted. One reason for this is the loose Wolfe conditions. With more
strict Wolfe conditions, and a larger number of allowed step-length guesses, a better reduction of
the objective function is expected. Still the additional time required to do so, will not justify the
expected improvements.
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Figure 6.28: Norm of objective function of time-shift in Case 5

Figure 6.29: Norm of the objective function of water cut data in Case 5
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Figure 6.30: Norm of relative error in Case 5
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Figure 6.31: Updated permeability for GN (top left), NM (top right), GNLS (middle left), NMLS
(middle right) and LM (bottom center) in Case 5

67



Figure 6.32: Observe(*), initial (black) and updated (blue) water cut in well P2 for GN (left) and
NM (right) in Case 5.

Figure 6.33: Observe(*), initial (black) and updated (blue) water cut in well P3 for GN (left) and
NM (right) in Case 5.

Figure 6.34: Observe(*), initial (black) and updated (blue) water cut in well P4 for GN (left) and
NM (right) in Case 5.
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Figure 6.35: Observe(*), initial (black) and updated (blue) pressure in well P2 for GN (left) and
NM (right) in Case 5.

Figure 6.36: Observe(*), initial (black) and updated (blue) pressure in well P3 for GN (left) and
NM (right) in Case 5.

Figure 6.37: Observe(*), initial (black) and updated (blue) pressure in well P4 for GN (left) and
NM (right) in Case 5.
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6.4 Summary and comments

The goal of history matching is to include dynamic data in the reservoir characterization. Stream-
line models are well suited for history matching for two reasons. The first reason is the speed
and the second is the fact that sensitivities can be calculated along the streamline analytically.
Using the generalized travel-time inversion water cut data can be used to characterize the reser-
voir model. The quasi-linearity of the generalized travel-time inversion makes the method more
suitable for integrating dynamic data in the models than the more traditional amplitude match-
ing. Generalized travel-time inversion solves the history matching problem in two steps. First it
finds the time-shift that minimizes the production data. The second step is to find the reservoir
parameters that best match the time-shift. This minimization problem is nonlinear and in general
ill-posed. Different methods and strategies is used to solve the minimization problem. Newton’s
method, where second order information of the sensitivities is included, shows good performance
on problems where no regularization is required. But as the history matching problem gets more
ill-posed such that regularization is needed, the improved performance of Newton’s method com-
pared to the original Gauss-Newton method is less obvious. For Newton’s method to converge
the Hessian must be positive definite, to assure positive definiteness, a small and positive term
is added to the diagonal. For ill-posed problems regularization will add a similar term to the
diagonal. These terms will bias the direction of the iterations toward the steepest decent direction
which has a slower convergence rate than the Newton direction. The second order information of
the sensitivities added in the Newton algorithms will therefore not contribute significantly to the
reduction of the objective function for highly ill-posed problems.

Also different line-search and trust-region strategies are suggested to speed up and better
the convergence ability of the methods. The line-search strategy is able to reduce the objective
function significantly. The trust-region strategy in Levenberg-Marquardt also showed promis-
ing performance both in the reduction of the objective function and in characterizing the true
permeability field.

In theory a better approximation of the Hessian gives a faster reduction of the objective
function, but in practice the ill-posedness of the history matching problem makes the second order
information of the sensitivities less relevant compared to the regularization terms that needs to
be added to the diagonal of the Hessian to obtain a stable solution.
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Chapter 7

Summary, recommendations and
further work

As far as the laws of mathematics refer to reality, they are not certain;
and as far as they are certain, they do not refer to reality.

Albert Einstein

The main objective of this master thesis has been to investigate the streamline based history
matching procedure developed by Datta-Gupta and others. Some of their work is gathered in [2].
The two main focus of the investigation has been the streamline based sensitivity calculation and
the minimization of the objective function based on the time-shift in the generalized travel-time
method.

The streamline based calculation of sensitivities is optimal in the sense that semi-analytic
expressions of sensitivities of reservoir responses can be obtained as long as they can be related
to the time-of-flight variable. With semi-analytic expressions these sensitivities can be calculated
at practically no additional cost. This is a huge advantage since calculation of the sensitivities
usually are the most time consuming part of the inversion algorithms. An important assumption
underlying all streamline based calculation of sensitivities is that streamlines are assumed to
not shift during perturbation. For small perturbations this assumptions holds. The streamline
based expressions therefore gives an approximation of the sensitivities. Another advantage with
the streamline based approximation of the sensitivities is that second order sensitivities can be
found along the streamlines. These second order sensitivities can also be used to improve the
minimization of the objective function in the history matching procedure.

The standard way to minimize the objective function based on the time-shift is to solve a
reformulated version of the Gauss-Newton method with LSQR. This method only uses first order
information of the sensitivities. Since second order sensitivities can be found at practically no
additional cost, a second order method is suggested to improve the convergence speed of the inver-
sion algorithm. Examples shows that for cases where no regularization is used, Newton’s method
shows promising performance, but as the problems becomes more ill-posed, the standard first or-
der method shows approximately the same performance. Newton’s method has slow convergence
in early iterations since a small and positive term is added to the diagonal of the Hessian to make
sure that the Hessian is positive definite. These added terms, bias the search direction towards the
steepest decent direction given in, which has a slower convergence rate than the Gauss-Newton
method.

To better the convergence properties different additional strategies where suggested. The
line-search strategy is able to reduce the objective function considerably. But for more ill-posed
problems where regularization is used, the line-search strategy is not able to characterize the
reservoir very well.

The trust-region strategy also shows promising results. There are two reasons for the good
performance of Levenberg-Marquardt. First of all Levenberg-Marquardt is a stable and a robust
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method. For well-posed problems large steps are taken, but as the problem becomes more ill-
posed the trust-region is extended such that smaller steps are used. The result is a method which
is as fast as possible, and still is able to handle ill-posed problems. The second reason for the
good performance of Levenberg-Marquardt is that the problem is scaled. Scaling both better the
condition of the linear system and also weights the regularization parameters such that a better
control of the effect of the regularization is possible.

The L-curve criterion for an automatic determination of the regularization parameter is also
tested. The idea was that with an automatic determined regularization parameter, the regular-
ization parameter is reduced as the iterate moves closer to the solution. The reason for suggesting
this strategy is that the objective function is expected to be more linear as the iterate moves closer
to the solution. Therefore the need of regularization is less in the neighborhood of the solution. In
Case 1, regularization with parameters determined by the L-curve criteria shows good results, but
as the problems gets more ill-posed the method is not able to show the same good performance.

7.1 Recommendations and further work

To extend the utilization of streamline based history matching the streamline simulator needs to be
further developed to be able to simulate more realistic reservoirs. Extensions to include pressure
controlled wells, complex cell geometries and multi-phase flow is considered in the textbook by
Datta-Gupta and King [2]. The textbook also shows how to include effects of capillary forces and
compressibility of fluids to the streamline simulator.

In this work only water cut data has been used for history matching. To include other types
of production data, analytic expressions of the sensitivities of these production data is needed.
Expressions for oil/gas ratio and tracer data can be found in [2].

Pressure data propagates with an infinite speed. This is a huge benefit with pressure data
compared to production data. To include pressure data in streamline based history matching has
therefore been a major area of studies these past years. One way to include pressure data is to
define a diffusive time-of-flight. The arrival time of the pressure interference can then be related
to the diffusive time-of-flight. Some of this work is summarized in [2].

Permeability is the only reservoir parameter that is estimated in this thesis. To be able to
update other reservoir properties they have to be related to the time-of-flight variable. Semi-
analytic expressions for the derivatives of the reservoir responses with respect to porosity, relative
permeability, mobility and well rates is given in [15].

The various examples cases shows the difficulty of solving inverse problems and in particularly
under determined problems. Regularization is needed to stabilize the solution, but the regular-
ization will bias the solution. The regularization parameters are often given by the uncertainty
of the data and the model in history matching problems. These regularization terms are fixed
during the iterations. For faster convergence these regularization terms can be adjusted during the
iterations. The automatic L-curve criterion for finding the regularization parameters is suggested.
Only Tikhonovs regularization is considered in this thesis. Other regularization methods exist. If
the reservoir parameters are reparametrized by a linear expansion of basis functions, the numbers
of degrees of freedom may be reduced so that the problem becomes well-posed. Regularization
with a linear expansion of basis functions will not bias the search direction of the algorithm towards
the steepest decent direction and will therefore not slow down the convergence. A combination of
Newton’s method with regularization based on reparametrization may therefore give good results.

Another suggestion for further work is to include a trust-region strategy to the Newton’s
method. An advantage of the trust-region method is that the Hessian do not need to be positive
definite for the method to converge. Instead the trust-region radius can be constructed such that
the modified Hessian always is positive definite [11].

Since the objective of these test cases is to compare the performance of different minimization
techniques, no error is assumed in the dynamic data. Dynamic data used in history matching
problems always contains errors. A study of the effect of adding noise to the dynamic data is
therefore important. If error is added to the dynamic data the objective function is not expected
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to converge to zero. The residual will therefore not be equal to zero in the solution. For large
residual cases, the Hessian approximation of Gauss-Newton is not valid. The Newton method is
therefore expected to show better performance for large residual cases.

One of the advantages of streamline simulation is that a fine grid with millions of parameters
can be used in the simulation. Since the focus of this thesis has been to test different minimiza-
tion techniques, only relatively coarse grids are used. With a coarse grid the properties of each
minimization method is more visible, still for a final validation of the methods a full scale field
test with real production data is recommended.

The final conclusion is that even thought additional strategies to better the convergence prop-
erties of the minimization methods shows promising performance on test cases where no regular-
ization is required, the complexity of a general history matching problem, unable the additional
strategies to improve the performance of the method for more realistic and ill-posed problems.
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Appendix A

A multi-scale mixed finite element
formulation(MsMFEM)

The are several reasons for using a MsMFEM formulation. First MsMFEM has a finite element
formulation. Finite element methods are optimal for solving elliptic equations in complex domains,
because of the flexibility of the finite elements. Also important physical principle as mass balances
can be guaranteed locally by the special formulation of these finite elements. An introduction to
finite element theory can be found in [3]. The reason for using a multi-scale method is to be able
to solve the pressure equation on a course grid, without losing fine scale geological information.
The fine scale information of the velocity field is represented by different basis functions.

To obtain the mixed variational formulation of (2.26) and (2.28), we formally multiply the first
equation (2.26) with a vector function w ∈ U and the second (2.28) with a function l ∈ V . Then
we integrate each of the equations over the domain Ω ∈ Rd where d is the dimension:∫

Ω

l∇ · udx =
∫

Ω

qldx, ∀l ∈ V,

∫
Ω

u · (λtK)−1wdx−
∫

Ω

∇p ·wdx = 0, ∀w ∈ U.

The functional spaces U and V are representing solution spaces for velocity and pressure, re-
spectively. For no flow across the boundary ∂Ω and incompressible fluid, U is chosen to be the
following Hilbert space:

Hdiv
0 (Ω) = {u : u ∈ (L2(Ω))d,∇ · u ∈ L2(Ω) and u · n = 0 on ∂Ω},

where the function space L2(Ω) consist of all square integrable function over Ω in the sense of
Lebesgue. The solution space V = L2(Ω). By choosing Ψi as bases for space U , an approximation
of the velocity can be formulated in terms of these basis functions, that is: u =

∑
ûiΨi. Similarly

p =
∑
p̂kΦk, for bases Φk for pressure space V . The coefficients ûi and p̂k can be found be solving

the following linear system. [
B C

CT 0

] [
û
−p̂

]
=
[

o
q

]
where B = bij , C = cij and q = qk are given by:

bij =
∫

Ω

Ψi(λtK)−1Ψjdx,

cij =
∫

Ω

Φk∇ ·Ψjdx,
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qk =
∫

Ω

Φkqdx.

To formulate a multi-scale method, a fine and course grid partitioning of Ω, Km and Ti, respec-
tively, must be defined. The pressure space can then be approximated by piecewise constant
functions. Thus V̂ = span(Φi) where

Φi(x) =
{

1, x ∈ Ti,
0, otherwise.

In contrast to the standard finite-element formulations, where also the velocity space is approx-
imated by some low-order piecewise polynomials, in this multi-scale method the basis functions
{Ψi} are adaptive to the local properties of the pressure equation. The bases Ψij = ΨiΨj , for
the interface Γij = ∂Ti

⋂
Tj , can then be obtained by solving the pressure equation on all sub

domains Ωij = Ti ∪ Γij ∪ Tj :

Ψij = λtK∇Φij , ∇ ·Ψij =
{
wi(x), x ∈ Ti,
−wj(x), x ∈ Tj ,

with Ψ·n = 0 on ∂Ωij , where n is the outward unit normal to ∂Ωij . The total mobility λt = λt(S) is
given on the underlying fine gridKm. The weight function wi(x) is a normalized source distribution
function, and it can be defined in many ways. Aarnes suggest the following definition:

wi(x) =
{
q(x)/

∫
Ti
q(ξ)dξ if

∫
Ti
q(x)dx 6= 0,

trace(K(x))/(d
∫
Ti
σ(ξ)dξ), otherwise.

, where d is the number of space dimensions. With this choice of weight function, the high-
permeable directions are weighted more than low permeable directions. According to numerical
testing done by Aarnes this gives good results also for non-heterogeneous permeability field.
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Nomenclature

α fluid phase

α regularization parameter

∆tk time-shift at well k

δ, ε small positive numbers

∆k trust-region radius

Γ the path of the streamline

γ step length

κ(A) condition number of a matrix A defined in (4.4)

λ trust-region parameter

λα mobility of phase α defined in (2.16)

µ viscosity in centipose

φ porosity defined in (2.3)

Ψ Streamfunction in 2D defined in (3.5)

ψ, χ Bi-Streamfunction in 3D defined in (3.7)

ρ density in kg/m3

σ shockspeed defined in (3.22)

τ time-of-flight defined in (3.8)

ξ arc-length

C tracer concentration

dcalj calculated data j

dobsj observed data j

F fractional flow of water defined in (2.24)

f objective function

g forward operator

i, ı cell indexes

k well index
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kw relative permeability for the wetting phase defined in (2.14)

knw relative permeability for the non-wetting phase defined in (2.15)

m size of model space

n size of data space

Nd number of data points

Nw number of wells

Nsl number of streamlines

p pressure in Pa

Pc capillary pressure

q flow rate from source or sink in m2/day

S saturation of water defined in (2.11)

s(x) slowness function defined in (5.2)

t time

tcalk calculated reference time at well k

tobsk observed reference time at well k

wobsj weight of data j

AT transposed of matrix A

CD data covariance matrix

CM model covariance matrix

d data vector

Dk diagonal scaling matrix

G linear forward operator

g gravitational acceleration constant

H Hessian of g(m)

I identity matrix

J Jacobian of g(m) defined in (4.14)

K permeability in millidarcy (mD)

L finite difference approximation of the derivative

mp prior model

m model parameters

r residual vector

u the Darcy velocity in m/day

x position vector
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